WO2016136881A1 - 微多孔性フィルムの製造方法及び微多孔性フィルム - Google Patents

微多孔性フィルムの製造方法及び微多孔性フィルム Download PDF

Info

Publication number
WO2016136881A1
WO2016136881A1 PCT/JP2016/055644 JP2016055644W WO2016136881A1 WO 2016136881 A1 WO2016136881 A1 WO 2016136881A1 JP 2016055644 W JP2016055644 W JP 2016055644W WO 2016136881 A1 WO2016136881 A1 WO 2016136881A1
Authority
WO
WIPO (PCT)
Prior art keywords
chemically modified
modified cellulose
microporous film
weight
crystal
Prior art date
Application number
PCT/JP2016/055644
Other languages
English (en)
French (fr)
Inventor
亮 石黒
諭 中村
まり子 吉岡
Original Assignee
株式会社日本製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本製鋼所 filed Critical 株式会社日本製鋼所
Priority to US15/553,815 priority Critical patent/US10633498B2/en
Priority to EP16755625.7A priority patent/EP3263636B1/en
Priority to CN201680012199.7A priority patent/CN107428977B/zh
Priority to KR1020177023807A priority patent/KR102038940B1/ko
Publication of WO2016136881A1 publication Critical patent/WO2016136881A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0083Nucleating agents promoting the crystallisation of the polymer matrix
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • H01M50/4295Natural cotton, cellulose or wood
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/494Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • B29K2023/12PP, i.e. polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • B29K2105/041Microporous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • B29K2105/162Nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2401/00Use of cellulose, modified cellulose or cellulose derivatives, e.g. viscose, as filler
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/12Melt flow index or melt flow ratio
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/15Isotactic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2401/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2401/02Cellulose; Modified cellulose
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a polyolefin-based microporous film containing cellulose nanofiber (hereinafter referred to as CeNF) and a microporous film.
  • CeNF cellulose nanofiber
  • microporous films are often used for applications that require precise filtration of gases and liquids, separation of battery separators, and the like.
  • PP polypropylene
  • inorganic filler particles such as calcium carbonate, silicon oxide, barium sulfate, etc.
  • the method was initially known.
  • the microporous film obtained by such a method has an ash content when burned at the time of disposal, and the inorganic filler particles have low compatibility with the polyolefin of the inorganic filler particles during production and use. There was a problem of falling off as dust.
  • a polyolefin resin is used in the method for producing these microporous films.
  • a method for producing a microporous film using this resin two methods, a wet method (phase separation method) and a dry method (stretching method), are widely known.
  • a polyolefin resin and a plasticizer such as paraffin are melted and kneaded in an apparatus having kneading ability such as an extruder or a table kneader, and then extruded into a sheet shape using a T-die or the like.
  • an apparatus having kneading ability such as an extruder or a table kneader
  • the plasticizer and the resin are phase-separated and then subjected to biaxial stretching in the longitudinal and lateral directions or simultaneously to form a thin film.
  • the microporous film is obtained by extracting and removing the plasticizer in this thin film using an organic solvent.
  • the dry method after the polyolefin resin is melted and kneaded in an apparatus having kneading ability such as an extruder or a table kneader, it is molded into a sheet shape using a T-die, etc., and thinned with a high draft ratio. Thereafter, heat treatment is performed to form highly regulated crystals in the sheet. Thereafter, there is a method in which stretching is performed at low and high temperatures, the crystal interface is peeled off, gap portions are formed between lamellas, and a porous structure is formed. Unlike the above-described wet method, this method does not require an extraction step, so the manufacturing process can be simplified.
  • Patent Document 3 and Patent Document 4 since it is uniaxial stretching, the yield of the microporous film obtained at a low stretching ratio is low. The cost is high. In addition, there is a problem that when the strength in the width direction is low and it is pierced with a sharp protrusion or the like, it is easy to tear vertically (Patent Document 3 and Patent Document 4).
  • Patent Document 6 shows a result that the separator characteristics are greatly improved compared to the conventional one when CeNF is combined with a polyethylene base material by a wet method. From this, the effect of compounding CeNF into the separator is clear, but polyethylene is the base material, and the melting point is about 130 to 140 ° C., which is more heat resistant than the dry method using the PP base material, although it varies depending on the molecular weight and stretching conditions. Low.
  • the wet method uses a degreasing solvent, and thus the manufacturing process is complicated, so that the cost is high and there is a problem in environmental characteristics.
  • Japanese Unexamined Patent Publication No. 2010-540692 Japanese Unexamined Patent Publication No. 2014-181250
  • Japanese Patent No. 2883726 Japanese Unexamined Patent Publication No. 2012-179798 Japanese Unexamined Patent Publication No. 2011-162773 Japanese Patent No. 5462227
  • the present invention has been made in order to solve the problems with respect to the above-mentioned Patent Documents 1 to 6, and in particular, can produce a microporous film that can be easily produced, has excellent strength properties, heat resistance, and high productivity. It is to provide a method and a microporous film.
  • a method for producing a microporous film according to the present invention comprises a resin component made of polypropylene, 0.01 to 20 parts by weight of chemically modified cellulose or chemically modified cellulose nanofiber with respect to 100 parts by weight of the resin component, and the resin.
  • a resin composition comprising 0.01 to 3 parts by weight of a ⁇ crystal type nucleating agent with respect to 100 parts by weight of the component is formed into a film shape in which the ⁇ crystal forming ability of the crystal phase of the polypropylene component in the resin composition is 60% or more.
  • a manufacturing method in which a film is melt-molded and then the film-like material is stretched at a temperature of 60 to 160 ° C. [2] A resin component made of polypropylene, and 0.01 to 20 parts by weight of chemically modified cellulose or chemically modified cellulose nanofiber with respect to 100 parts by weight of the resin component, and 0.01 to 3 parts by weight with respect to 100 parts by weight of the resin component
  • a resin composition comprising chemically modified cellulose or chemically modified cellulose nanofibers chemically added with a part of the ⁇ crystal nucleating agent has a ⁇ crystal forming ability of the crystal phase of the polypropylene component in the resin composition of 60% or more.
  • the resin made of polypropylene is a resin made of isotactic polypropylene having a melt flow rate in the range of 1 to 50 g / 10 minutes (230 ° C.) and a pentad fraction in the range of 80 to 98%.
  • the ⁇ crystal type nucleating agent is: (1) at least one selected from the group consisting of N, N′-diphenylhexanediamide, N, N′-dicyclohexylterephthalamide and N, N′-dicyclohexyl-2,6-naphthalenedicarboxamide, or (2) N, N'-dicyclohexanecarbonyl-p-phenylenediamine, N, N'-dibenzoyl-1,5-diaminonaphthalene, N, N'-dibenzoyl-1,4-diaminocyclohexane and N, N'- At least one selected from the group consisting of dicyclohexanecarbonyl-1,4-diaminocyclohexane, or (3) at least one
  • the microporous film according to the present invention has a structure produced by the
  • the ⁇ crystal type nucleating agent is (1) at least one selected from the group consisting of N, N′-diphenylhexanediamide, N, N′-dicyclohexylterephthalamide and N, N′-dicyclohexyl-2,6-naphthalenedicarboxamide, or (2) N, N'-dicyclohexanecarbonyl-p-phenylenediamine, N, N'-dibenzoyl-1,5-diaminonaphthalene, N, N'-dibenzoyl-1,4-diaminocyclohexane and N, N'- At least one selected from the group consisting of dicyclohexanecarbonyl-1,4-diaminocyclohexane, or (3) at least
  • the method for producing a microporous film according to the present invention is the production method according to any one of [1] to [7] and [9], wherein the stretching is biaxial stretching.
  • the microporous film according to the present invention has a configuration according to any one of [8], [10] and [11], wherein the stretching is biaxial stretching.
  • the method for producing a microporous film and the microporous film according to the present invention are configured as described above, they do not contain inorganic substances by a simple means, and use PP which is a more versatile resin.
  • a microporous film having a high porosity and excellent air permeability is obtained. Therefore, the microporous film obtained by the present invention is optimal for applications that require precise filtration of gases and liquids, separation of battery separators, and the like. Also, it is used well for various packaging materials such as dehumidifiers, oxygen scavengers, chemical warmers, simple rain gear, simple work clothes, clothing such as gloves, waterproof sheets, windproof sheets, etc., and agricultural multi-sheets. .
  • a chemically modified CeNF-reinforced microporous film having high porosity and excellent air permeability, and improved mechanical properties and heat resistance is obtained.
  • the present invention relates to a resin component comprising PP, 0.01 to 20 parts by weight of chemically modified cellulose or chemically modified cellulose nanofiber with respect to 100 parts by weight of the resin component, and 0.01 to 100 parts by weight of the resin component.
  • a resin composition comprising ⁇ 3 parts by weight of a ⁇ crystal type nucleating agent is melt-molded into a film-like material having a ⁇ crystal forming ability of the crystal phase of the PP component in the resin composition of 60% or more, and then the film A microporous film characterized by stretching a film at a temperature of 60 to 160 ° C., and a method for producing the same.
  • the present invention also provides a resin component comprising PP, and 0.01 to 20 parts by weight of chemically modified cellulose or chemically modified cellulose nanofiber with respect to 100 parts by weight of the resin component, and 0.01 to 100 parts by weight of the resin component.
  • a resin composition composed of chemically modified cellulose or chemically modified cellulose nanofibers chemically added with a resin composition composed of ⁇ 3 parts by weight of a ⁇ crystal type nucleating agent is converted into ⁇ in the crystal phase of the PP component in the resin composition.
  • a microporous film characterized by melt-molding into a film-like material having a crystal forming ability of 60% or more, and then stretching the film-like material at a temperature of 60 to 160 ° C., and a method for producing the same.
  • PP includes a homopolymer of propylene or a copolymer of an ⁇ -olefin having 2 to 10 carbon atoms such as ethylene, butene, pentene, hexene, and the like.
  • the copolymerization amount of the ⁇ -olefin is not particularly limited, but is preferably 10% by weight or less.
  • the melt flow index (230 ° C.) of the resin made of PP is preferably 0.1 to 50 g / 10 minutes, and more preferably 1 to 50 g / 10 minutes.
  • PP is preferably an isotactic polypropylene having a Pendat fraction in the range of 80 to 98%. Further, PP preferably has a molecular weight of 100,000 or more and Mw / Mn of 2 to 10.
  • the chemically modified cellulose used in the present invention may be nano-defibrated or not during chemical modification.
  • Cellulose raw materials include cellulose powder such as microcrystalline cellulose (microcrystalline cellulose product manufactured by Asahi Kasei Chemicals Co., Ltd .: Theolas) and cellulose nanofibers, and dibasic acid anhydrides using a pressure kneader, etc.
  • the mixture was added by kneading reaction in an amount of 2 to 10% by weight under a non-catalytic condition while heating at a temperature of 80 to 140 ° C., and the alkylene oxide was subsequently added at 80 to 140 ° C. in the absence of catalyst using a pressure vessel. It is prepared by 1-20% by weight addition polymerization with heating.
  • the raw material may be a cellulose nanofiber having a fiber diameter of 5 nm to 1 ⁇ m by a defibrating method such as a high-pressure homogenizer treatment or a counter-collision treatment, regardless of whether or not nano-fibrillation is performed during chemical modification.
  • a defibrating method such as a high-pressure homogenizer treatment or a counter-collision treatment, regardless of whether or not nano-fibrillation is performed during chemical modification.
  • This cellulose chemical modification method is characterized by the fact that it does not require any solvent washing and is very low cost and green chemical.
  • As a chemical modification method there is a method based on other ideas, but in the present invention, this method is fixed.
  • the blending ratio of the chemically modified cellulose or chemically modified cellulose nanofiber is 0.01 to 20 parts by weight, preferably 0.01 to 10 parts by weight with respect to 100 parts by weight of the PP resin component.
  • a ⁇ crystal nucleating agent is used together with the resin component.
  • this ⁇ crystal type nucleating agent known ones can be used without particular limitation, but preferably quinacridone, quinacridonequinone, isoindoquinone, phthalocyanine, indigodol brown IRRD, indigosol red violet IRH, cibatine orange HR, indigo Pigments such as sol pink IR, Cibachinburu-2B, indigo sol golden yellow IGK, indigo sol gray IBL, sodium benzoate, magnesium succinate, magnesium phthalate, magnesium terephthalate, magnesium isophthalate, sodium 1,2-hydroxystearate Alkali or alkaline earth metal salts of carboxylic acids such as, aromatic sulfonic acid compounds such as sodium benzenesulfonate, sodium naphthalenesulfonate, N, N′-diphenylhexa Diamide, N, N′-dicyclohexylter
  • the blending ratio of the ⁇ crystal type nucleating agent is 0.01 to 3 parts by weight, preferably 0.05 to 2 parts by weight with respect to 100 parts by weight of the PP resin component.
  • the blending ratio of the ⁇ crystal type nucleating agent resin is smaller than 0.01 parts by weight, the ⁇ crystal becomes difficult to grow.
  • the blending ratio is larger than 3 parts by weight, the dispersion of the ⁇ crystal type nucleating agent in the resin becomes poor.
  • additives such as phenol-based, sulfur-based antioxidants, dehydrochlorinating agents, lubricants, colorants, surfactants, antistatic agents, flame retardants and the like are added to the above resin compositions as necessary. It is preferable to mix.
  • the blending amount is preferably 0.01 to 2 parts by weight with respect to 100 parts by weight of the resin composition.
  • each component is preferably blended with a Henschel mixer, a tumbler blender, a V blender, a ribbon mixer or the like.
  • the mixing temperature is usually from room temperature to 100 ° C.
  • the rotation speed of the apparatus is usually from 500 to 2000 rpm
  • the mixing time is usually from 1 to 20 minutes.
  • the resin composition thus obtained is granulated with an extruder and formed into a film with a T-die or an extruder equipped with an inflation film molding machine.
  • the resin temperature at the time of granulation or film formation is usually selected from 180 to 260 ° C.
  • the thickness of the film-like material is usually 10 to 50 ⁇ m.
  • the film-like material is subjected to a treatment for growing ⁇ crystals. It is common. This treatment may be carried out by any method, but the film-like material discharged in a molten state from the extruder from the film production process is brought into contact with a roll having a specific temperature not higher than the melting point of the ⁇ crystal to form a crystal. It is preferable to grow.
  • the temperature is from room temperature to 160 ° C. for a good drop, more preferably from 60 to 160 ° C., more preferably from 60 to 155 ° C., and particularly preferably from 60 to 135 ° C. for a good drop.
  • the crystal phase of the PP component in the film-like material is substantially composed of the ⁇ crystal phase as described above.
  • the film-like material is finely microporous when stretched, and an excellent microporous film having a high porosity and good air permeability can be produced.
  • some ⁇ crystals may be included.
  • ⁇ crystal formation ability measured by the following differential scanning calorimeter (DSC)
  • DSC differential scanning calorimeter
  • ⁇ crystal formation ability ⁇ Hb / [( ⁇ Ha + ⁇ Hb)] ⁇
  • 100 ⁇ Hb is the dissolution of ⁇ crystals appearing at 145 ° C. to 157 ° C., and ⁇ Ha melting point is higher than 158 ° C. ⁇ is 60% or more, preferably 70% or more, more preferably 80 to 98%.
  • ⁇ crystal formation is also followed by X-ray diffraction (XRD).
  • PP forms a spherulite structure ( ⁇ -type spherulite) that is usually called ⁇ -type crystal ( ⁇ -type spherulite).
  • ⁇ -type spherulite composed of crystals called ⁇ -type ( ⁇ -crystal) different from ⁇ -type. Since the unit cell of the crystal is different between the ⁇ and ⁇ crystals and a diffraction peak ((300) plane) peculiar to the ⁇ crystal is observed, the existence ratio of the ⁇ crystal should be evaluated from the X-ray diffraction pattern. Can do.
  • the optimal stretching temperature may be selected in consideration of the stability of film formation, the suppression of thickness unevenness, the target pore size and permeability, and the like.
  • the longitudinal stretching temperature is preferably 60 to 160 ° C, more preferably 80 to 140 ° C.
  • the effective stretching ratio in the machine direction is preferably 4 to 10 times. If the effective stretching ratio in the machine direction is less than 4, the resulting microporous film may have poor permeability.
  • the film forming speed is slow even at the same casting speed, and the productivity may be inferior.
  • the effective stretching ratio in the longitudinal direction is 10 times or more, the film may be broken in the longitudinal stretching or transverse stretching step, and the film forming property may be deteriorated.
  • a relaxation step may be provided to such an extent that it does not affect the shape and dimensions of the film, the pore size and permeability. This is preferable from the viewpoint of dimensional stability in the longitudinal stretching direction.
  • the strain rate in the longitudinal stretching is preferably 5 to 50000 sec ⁇ 1 from the viewpoint of productivity and film formation stability.
  • the film after longitudinal stretching is stretched in the width direction through a preheating step.
  • the temperature of the preheating step may be appropriately selected depending on the film raw material, but is preferably 1 to 20 ° C. lower than the transverse stretching temperature (M TD ).
  • the transverse stretching temperature may be selected in consideration of the stability of film formation, suppression of thickness unevenness, the target pore size and permeability, and the like.
  • the transverse stretching temperature is preferably 60 to 160 ° C, more preferably 100 to 150 ° C.
  • the transverse stretching speed is preferably 5 to 50000 sec ⁇ 1 from the viewpoint of productivity and dimensional stability.
  • the effective stretch ratio of the laterally stretched film is preferably 10 times or less.
  • the transverse draw ratio is preferably 3 to 10 times.
  • Longitudinal stretching and lateral stretching ratios can be 1.1 to 100 times in terms of area ratio compared to the original fabric sheet, but if the film is stretched excessively, the film may be broken, so 1.1 to 60 times is preferable. It is.
  • the stretching ratio is preferably 4 to 10 times in the longitudinal direction and 3 to 10 times in the lateral direction, and the area ratio is 1.1 to 60 times. Is optimal.
  • the stretching temperature in simultaneous biaxial stretching is preferably 60 to 160 ° C., more preferably 100 to 158 ° C. When the stretching temperature is higher than 100 ° C., it is possible to efficiently perform stretching, and when it is 158 ° C. or lower, there is not much fear of melting below the melting point of the film raw material, which is preferable.
  • the stretching speed in simultaneous biaxial stretching is preferably 5 to 50000 sec ⁇ 1 . If the stretching speed is deviated, the film forming stability and dimensional stability are deteriorated, and the film permeability is affected.
  • the stretching temperature in the sequential stretching is preferably 60 to 160 ° C., more preferably 100 to 158 ° C., and particularly preferably 120 to 155 ° C.
  • the stretching temperature exceeds a favorable temperature, the ⁇ crystal is immediately changed to ⁇ crystal by heat during stretching, and the film is not well microporous.
  • stretching temperature is 100 degreeC or more, it is preferable. Thereby, the resulting microporous film is well microporous.
  • the crystal structure of the PP component in the film usually undergoes a crystal transition from the ⁇ crystal phase to the ⁇ crystal phase.
  • the microporous film is not only a single layer, but also has a different composition in the resin composition of the present invention, a multi-layer structure in which other microporous films are laminated, and a substrate on the surface. Also, a resin coated with heat-resistant resin, metal, ceramics or the like may be used. Further, the microporous film of the present invention preferably has a Gurley value of 10 to 2000 sec / 100 cc and a porosity of 25% to 80%.
  • the ⁇ crystal-forming ability was measured using a differential scanning calorimeter (DSC).
  • the apparatus was RINT-TTRIII type (Perkin Elmer).
  • Another confirmation of the ⁇ crystal forming ability was performed by X-ray diffraction (XRD).
  • the apparatus was based on PANalytical (Spectroos Co., Ltd.).
  • the mechanical properties were measured using an autograph (manufactured by Shimadzu Corporation).
  • As for the puncture strength the maximum load when the needle penetrated was measured using an automatic puncture strength meter (manufactured by Kato Tech Co., Ltd .: KES-FB3-AUTO). In addition, 10 points
  • the Gurley value was measured using a Gurley type automatic measuring machine (manufactured by TESTING MACHINES INC) by cutting the produced film into 50 mm ⁇ 50 mm square. In this measurement, the time required for 100 cc of air stipulated in JIS P8177 to pass through the film was defined as the Gurley value.
  • the porosity and film thickness were cut into 50 ⁇ 50 mm squares, 10 points of each part of the film were measured using a micrometer, and the average value was taken as the film thickness. The porosity was calculated from the measured weight of the film and the theoretical weight calculated from the density and volume.
  • the PP, ⁇ crystal type nucleating agent and chemically modified cellulose used in the present invention are as follows. 1) PP A homopolymer having a density of 0.920 g / cm 3 and an MF1 of 8.0 g / 10 min, Noprene (manufactured by Sumitomo Chemical Co., Ltd.)
  • Chemically modified cellulose is made from cellulose powder such as Avicel (Asahi Kasei Chemicals Co., Ltd .: microcrystalline cellulose product), and diester acid anhydride is used as a monoesterification condition using a pressure kneader. After preparing by adding 2 to 10% by weight in a non-catalytic condition under a non-catalytic condition while heating at a temperature of 80 to 140 ° C., the alkylene oxide is subsequently used in a pressure-resistant vessel and in the non-catalytic state at 80 to 140 ° C. Was prepared by addition polymerization of 1 to 20% by weight.
  • Example 1 A resin composition comprising 1 part by weight of chemically modified cellulose and 100 parts by weight of the resin component of the PP resin component comprising 0.3 parts by weight of the ⁇ crystal nucleating agent (A). 1 is kneaded at 200 ° C. and 80 rpm for 10 minutes using a desktop kneader (manufactured by Nippon Steel Works), which is the kneader 1 shown in FIG. 1, and then at 200 ° C. and 5 ° C. using the hot press 2 shown in FIG. And a sheet having a thickness of 1 mm was obtained. This sheet was sequentially stretched using a stretching machine 3 shown in FIG.
  • a desktop kneader manufactured by Nippon Steel Works
  • Example 2 In the method of Example 1, PP resin and ⁇ crystal type nucleating agent (B) were used as raw materials. The rest is the same as in the first embodiment. Comparative Example 1 In the method of Example 1, PP resin and ⁇ crystal type nucleating agent (C) were used as raw materials. The rest is the same as in the first embodiment. Comparative Example 2 In the method of Example 1, PP resin and ⁇ crystal type nucleating agent (D) were used as raw materials. The rest is the same as in the first embodiment. Comparative Example 3 The compounding amount of chemically modified cellulose was set to zero, and ⁇ crystal type nucleating agent (A) was used. The rest is the same as in the first embodiment.
  • Comparative Example 4 The characteristic values of Example 1 described in Japanese Patent Application Laid-Open No. 2014-224240. Comparative Example 5 Selion P1610 (CS TECH CO.LTD dry PP separator: lamellar hole method). Comparative Example 7 CeNF composite separator manufactured by a wet method (Japanese Patent No. 5462227).
  • Results Comparison Table 1 shows the ⁇ crystal forming ability of the sheets produced under the conditions of Examples 1 and 2 and Comparative Examples 1 to 3.
  • the ⁇ crystal forming ability of Examples 1 and 2 was 80% or more.
  • Comparative Example 3 in which no cellulose was added, the ⁇ crystal forming ability was 80%, and it was determined that the addition of cellulose did not contribute to ⁇ crystal formation.
  • the puncture strength of Examples 1 and 2 to which cellulose was added was 500 gf / cm 2 or more. This was at least 10% higher than Comparative Examples 3 and 4 where no cellulose was added.
  • the puncture strength indicates the strength at the time of film breakage due to lithium ion dendrites caused by deterioration over time or foreign matter contamination during battery manufacture.
  • the improvement of the puncture strength in Examples 1 and 2 is presumed to be an effect of the added cellulose nanofibers being highly dispersed in the sheet and composited with the resin.
  • the tensile strength was confirmed to be improved in Example 1 and Example 2 when cellulose was added. This is presumed to be an effect due to the composite of cellulose and resin.
  • Comparative Example 1 was a sheet using the ⁇ crystal type nucleating agent (C) and could not be stretched.
  • Comparative Example 2 was a sheet using the ⁇ crystal type nucleating agent (D) and could not be stretched.
  • Comparative Example 3 is the separator of Example 1 described in Japanese Patent Application Laid-Open No. 2011-162773.
  • Comparative Example 5 is a physical property value of a commercially available lamellar pore opening method (dry method) separator film.
  • Comparative Example 6 is a physical property value of a separator manufactured by a wet method using a polyethylene base material.
  • the comparative example 7 is a physical-property value of the cellulose nanofiber composite separator manufactured by the method shown by the Japan patent 5462227 gazette.
  • FIG. 4 shows the results of XRD analysis using the sheets of Example 1 and Comparative Example 1.
  • Comparative Example 1 having no ⁇ crystal forming ability no ⁇ crystal peak is observed.
  • Example 1 having the ⁇ crystal forming ability the ⁇ crystal peak was detected in this range, indicating that the ⁇ crystal necessary for forming micropores was formed in the sheet of the present invention. It was done.
  • a microporous film containing a polyolefin resin and a ⁇ crystal type nucleating agent and chemically modified cellulose or chemically modified cellulose nanofibers according to the present invention and a separator obtained by the method for producing the same comprises a dibasic acid anhydride at 80 to 140 ° C.
  • a chemically modified cellulose or a chemically modified cellulose nanofiber prepared by addition of 2 to 10% by weight of a kneading reaction followed by addition of 1 to 20% by weight of an alkylene oxide in a pressure resistant container by heating at 80 to 140 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Cell Separators (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 本発明は、ポリプロピレン(PP)を樹脂成分とし、該樹脂成分100重量部に対し0.01~20重量部の化学修飾セルロース又は化学修飾セルロースナノファイバー、及び該樹脂成分100重量部に対し0.01~3重量部のβ結晶型核剤からなる樹脂組成物を調製し、該樹脂組成物中のポリプロピレン成分の結晶相が実質的にβ結晶相である膜状物に溶融成形し、次いで該膜状物を60~160℃の温度で延伸する、微多孔性フィルムの製造方法並びに微多孔性フィルムである。

Description

微多孔性フィルムの製造方法及び微多孔性フィルム
 本発明は、セルロースナノファイバー(以下、CeNFと云う)を含有するポリオレフィン系の微多孔性フィルムの製造方法及び微多孔性フィルムに関する。
 従来、気体や液体の精密な濾過、電池のセパレータ等の分離を必要とする用途に、通気性を有する微多孔性フィルムが多く使用されている。こうした微多孔性フィルムの簡便な製造方法として、ポリプロピレン(以下、PPと云う)に、炭酸カルシウム、酸化珪素、硫酸バリウム等の無機充填剤粒子を混練し製膜した後、延伸し微多孔化する方法が当初、知られた。しかしながら、かかる方法により得られる微多孔性フィルムは、廃棄時に燃焼すると灰分が残存し、また、無機充填剤粒子のポリオレフィンとの相溶性の低さから、製造中や使用中に該無機充填剤粒子が塵埃となって脱落するという問題があった。
 また、上記の微多孔性フィルムの用途の中で、リチウムイオン電池用セパレータの場合、温度上昇時のシャットダウン後、さらなる電池温度の上昇があっても、セパレータが高温まで破膜(ショート)せず、絶縁を維持し、安全に電池を終息させることが求められている。これらの要求を満たすため、耐熱層のコートや複層構造のセパレータ化など、様々な方法が試みられている。しかし、製造方法が複雑であり、また薄膜化が困難である。力学物性と耐熱性のさらなる向上といった課題はいまだ解決されていなかった。
 これらの微多孔性フィルムを製造する方法には、ポリオレフィン系樹脂が用いられている。この樹脂を用いた微多孔性フィルムの製造方法は、湿式法(相分離法)と乾式法(延伸法)の二つが広く知られている。
 湿式法は、ポリオレフィン系樹脂およびパラフィンなどの可塑剤を、押出機や卓上混練機などの混練能力を有する装置内で溶融・混練したあと、Tダイなどを用いて、シート状に押し出す。シート状に押し出された樹脂をロール上で冷却する際に、可塑剤と樹脂を相分離させた後、縦および横に逐次もしくは同時に2軸延伸を行い、薄膜化する。そして、この薄膜中の可塑剤を有機溶剤などを用いて抽出除去することにより、微多孔性フィルムを得る。しかし、本方法では、可塑剤の抽出工程が必要となるため、製造工程が複雑化し、製造ラインが長くなるといった問題がある。また、可塑剤を抽出する際に用いた有機溶剤の処理や、人体への悪影響などが問題となる(特許文献1、特許文献2)。
 一方、乾式法では、ポリオレフィン系樹脂を押出機や卓上混練機などの混練能力を有する装置中で溶融・混練した後、Tダイなどを用いてシート状に成型し、高ドラフト比で薄膜化した後、熱処理を施して規制性の高い結晶をシート中に形成する。その後、低温および高温で延伸を行い、結晶界面を剥離させて、ラメラ間に間隙部分を形成し、多孔構造を形成する方法がある。本方法では、前述の湿式法とは異なり、抽出工程を必要としないため、製造工程が簡略化できるが、一軸延伸であるため、延伸倍率が低く得られる微多孔性フィルムの収率が低いため、コスト高となる。また、幅方向の強度が低く、鋭い突起などで突刺された場合、縦裂けしやすいといった問題がある(特許文献3、特許文献4)。
 これに対応するために、無機物充填粒子の代りにPP基材とβ結晶型核剤からなるPP組成物を混練し、成形して得た膜状物を120~150℃といった温度で延伸することにより、良好な通気性を有するβ晶法が開発された(特許文献5)。しかし、本方法でもPPの融点が分子量と延伸条件で変わるとしても一般的には160℃~170℃程度までしか耐熱性維持できなかった。
 また、特許文献6では湿式法でポリエチレン基材にCeNFを複合化した場合に、セパレータ特性が従来のものより大幅に向上した結果が示されている。これから、CeNFをセパレータに複合化する効果が明らかであるが、ポリエチレンが基材で、分子量や延伸条件によって変わるものの、その融点は130~140℃程度でPP基材を用いる乾式法より耐熱性が低い。また、湿式法では脱脂溶剤を使うため製造プロセスが複雑なため高コストで、かつ環境性に問題があった。
日本国特開2010-540692号公報 日本国特開2014-181250号公報 日本国特許第2883726号公報 日本国特開2012-179798号公報 日本国特開2011-162773号公報 日本国特許第5462227号公報
 本発明は、前述の各特許文献1~6に対する課題を解決するためになされたもので、特に、簡便に製造でき、なおかつ強度物性・耐熱性に優れ、生産性が高い微多孔性フィルムの製造方法及び微多孔性フィルムを提供することである。
[1]本発明による微多孔性フィルムの製造方法は、ポリプロピレンからなる樹脂成分、前記樹脂成分100重量部に対し0.01~20重量部の化学修飾セルロース又は化学修飾セルロースナノファイバー、及び前記樹脂成分100重量部に対し0.01~3重量部のβ結晶型核剤からなる樹脂組成物を、前記樹脂組成物中のポリプロピレン成分の結晶相のβ結晶形成能が60%以上となる膜状物に溶融成形し、次いで前記膜状物を60~160℃の温度で延伸する製造方法であり、また、
[2]ポリプロピレンからなる樹脂成分、及び前記樹脂成分100重量部に対し0.01~20重量部の化学修飾セルロース又は化学修飾セルロースナノファイバーに前記樹脂成分100重量部に対し0.01~3重量部のβ結晶型核剤を化学的に付加した化学修飾セルロース又は化学修飾セルロースナノファイバーからなる樹脂組成物を、前記樹脂組成物中のポリプロピレン成分の結晶相のβ結晶形成能が60%以上となる膜状物に溶融成形し、次いで前記膜状物を60~160℃の温度で延伸する製造方法であり、また、
[3]前記ポリプロピレンからなる樹脂が、メルトフローレイト1~50g/10分(230℃)の範囲で、かつペンタッド分率が80~98%の範囲にあるアイソタクチックポリプロピレンからなる樹脂であり、分子量10万以上かつMw/Mnが2~10であるポリプロピレンからなる樹脂である[1]又は[2]に記載の製造方法であり、また、
[4] 前記β結晶型核剤が、
(1)N,N’-ジフェニルヘキサンジアミド、N,N’-ジシクロヘキシルテレフタルアミド及びN,N’-ジシクロヘキシル-2,6-ナフタレンジカルボキサミドからなる群から選択される少なくとも1種、又は、
(2)N,N’-ジシクロヘキサンカルボニル-p-フェニレンジアミン、N,N’-ジベンゾイル-1,5-ジアミノナフタレン、N,N’-ジベンゾイル-1,4-ジアミノシクロヘキサン及びN,N’-ジシクロヘキサンカルボニル-1,4-ジアミノシクロヘキサンからなる群から選択される少なくとも1種、又は、
(3)N-シクロヘキシル-4-(N-シクロヘキサンカルボニルアミノ)ベンズアミド及びN-フェニル-5-(N-ベンゾイルアミノ)ペンタンアミドからなる群から選択される少なくとも1種、又は、
(4)前記(1)~(3)のアミド系化合物の2種以上の混合物、のいずれかである[1]~[3]のいずれかに記載の製造方法であり、また、
[5]前記化学修飾セルロースまたは化学修飾セルロースナノファイバーの原料が、高圧ホモジナイザー処理や対向衝突処理等による解繊処理方法で繊維径を5nm~1μmとしたセルロースナノファイバーである[1]~[4]のいずれかに記載の製造方法であり、また、
[6]前記化学修飾セルロース又は化学修飾セルロースナノファイバーが、二塩基酸無水物を80~140℃で2~10重量%混練反応により付加し、引き続きアルキレンオキシドを耐圧容器により80~140℃の加温化で1~20重量%付加重合することにより調製された化学修飾セルロース又は化学修飾セルロースナノファイバーである[1]~[5]のいずれかに記載の製造方法であり、また、
[7]ポリオレフィン系樹脂、β結晶型核剤及び化学修飾セルロース又は化学修飾セルロースナノファイバー、もしくはポリオレフィン系樹脂及びβ結晶型核剤を化学的に付加した化学修飾セルロース又は化学修飾セルロースナノファイバーを溶融混練してポリオレフィン樹脂組成物を得る工程、前記ポリオレフィン樹脂組成物をシート状に押出成形する工程、得られたシート状成形体を延伸しフィルム化する工程を用い、前記ポリオレフィン樹脂組成物の融点以下の温度による延伸と収縮性を抑制するための熱固定工程とを逐次もしくは同時に行う製造方法であり、また、
[8]本発明による微多孔性フィルムは、[7]に記載の製造方法によって製造された構成であり、また、
[9]本発明による微多孔性フィルムの製造方法は、前記ポリオレフィン系樹脂が、メルトフローレイト1~50g/10分(230℃)の範囲で、かつペンタッド分率が80~98%の範囲にあるアイソタクチックポリプロピレンからなる樹脂であり、分子量10万以上かつMw/Mnが2~10であるポリプロピレンからなる樹脂であり、
 前記β結晶型核剤が、
(1)N,N’-ジフェニルヘキサンジアミド、N,N’-ジシクロヘキシルテレフタルアミド及びN,N’-ジシクロヘキシル-2,6-ナフタレンジカルボキサミドからなる群から選択される少なくとも1種、又は、
(2)N,N’-ジシクロヘキサンカルボニル-p-フェニレンジアミン、N,N’-ジベンゾイル-1,5-ジアミノナフタレン、N,N’-ジベンゾイル-1,4-ジアミノシクロヘキサン及びN,N’-ジシクロヘキサンカルボニル-1,4-ジアミノシクロヘキサンからなる群から選択される少なくとも1種、又は、
(3)N-シクロヘキシル-4-(N-シクロヘキサンカルボニルアミノ)ベンズアミド及びN-フェニル-5-(N-ベンゾイルアミノ)ペンタンアミドからなる群から選択される少なくとも1種、又は、
(4)前記(1)~(3)のアミド系化合物の2種以上の混合物、のいずれかであり、
 前記化学修飾セルロース又は化学修飾セルロースナノファイバーの原料が、高圧ホモジナイザー処理や対向衝突処理等による解繊処理方法で繊維径を5nm~1μmとしたセルロースナノファイバーであり、
連続的に微多孔性フィルムを製造する[7]に記載の製造方法であり、また、
[10]本発明による微多孔性フィルムは、[9]に記載の製造方法によって製造された構成であり、また、
[11][7]に記載の微多孔性フィルムとして、ガーレ値が10~2000sec/100ccであり、空孔率が25%~80%である構成であり、また、
[12]本発明による微多孔性フィルムの製造方法は、前記延伸が二軸延伸である[1]~[7]及び[9]のいずれかに記載の製造方法であり、また、
[13]本発明による微多孔性フィルムは、前記延伸が二軸延伸である[8]、[10]及び[11]のいずれかに記載の構成である。
 本発明による微多孔性フィルムの製造方法及び微多孔性フィルムは、以上のように構成されているため、簡便な手段で無機物を含有せず、より汎用性の高い樹脂であるPPを用いて、高い空隙率と優れた通気性を有する微多孔性フィルムが得られる。
 従って、本発明で得られる微多孔性フィルムは、気体や液体の精密な濾過、電池のセパレータ等の分離を必要とする用途に最適である。また、除湿剤、脱酸素剤、ケミカルカイロ等の各種包材、簡易雨具、簡易作業服、手袋等の衣料、防水シート、防風シート等の建築用、農業用マルチシート等に良好に使用される。
本発明のポリオレフィン系樹脂及びβ結晶型核剤とCeNFを含有した微多孔性フィルムの製造に用いた小型ニーダーの概観図である。 本発明におけるシート成形に用いたシート成形装置であるホットプレスを示す概観図である。 本発明におけるフィルム延伸に用いた延伸装置を示す概観図である。 XRDの分析結果である。
 本発明による微多孔性フィルムの製造方法並びに微多孔性フィルムによれば、高い空隙率と優れた通気性を有し、力学物性と耐熱性を高めた、化学修飾CeNF補強系の微多孔性フィルムが得られる。
 以下、図面と共に本発明による微多孔性フィルムの製造方法及び微多孔性フィルムの好適な実施の形態について説明する。
 尚、実施については、図1のニーダー1、図2の制御部、及び図3の延伸機3を用いた。
 まず、本発明者らは、前述の課題に鑑み、鋭意研究を続けてきた。
 その結果、セルロースの多塩基酸無水物・アルキレンオキシド逐次付加物という化学修飾セルロース又は化学修飾セルロースナノファイバー及びβ結晶型核剤とをPPと混練し、成形して得た膜状物を特定の延伸温度で延伸する方法により、上記の課題が解決できることを見いだし、本発明を完成するに至った。
 すなわち、該化学修飾セルロース又は化学修飾セルロースナノファイバーを含有させても、β結晶型核剤との共混練によりPP成分の結晶相が60%以上のβ結晶を形成させ得る条件が見出され、それにより得られるPP微多孔性フィルムが、単層で薄膜化し、なおかつ力学物性及び耐熱性に優れるものとなることを見出した。
 すなわち、本発明は、PPからなる樹脂成分、該樹脂成分100重量部に対し0.01~20重量部の化学修飾セルロースまたは化学修飾セルロースナノファイバー、及び該樹脂成分100重量部に対し0.01~3重量部のβ結晶型核剤からなる樹脂組成物を、該樹脂組成物中のPP成分の結晶相のβ結晶形成能が60%以上となる膜状物に溶融成形し、次いで該膜状物を60~160℃の温度で延伸することを特徴とする微多孔性フィルム、及びその製造方法である。
 また、本発明は、PPからなる樹脂成分、及び該樹脂成分100重量部に対し0.01~20重量部の化学修飾セルロースまたは化学修飾セルロースナノファイバーに該樹脂成分100重量部に対し0.01~3重量部のβ結晶型核剤からなる樹脂組成物を化学的に付加した化学修飾セルロースまたは化学修飾セルロースナノファイバーからなる樹脂組成物を、該樹脂組成物中のPP成分の結晶相のβ結晶形成能が60%以上となる膜状物に溶融成形し、次いで該膜状物を60~160℃の温度で延伸することを特徴とする微多孔性フィルム、及びその製造方法である。
 本発明においてPPは、プロピレンの単独重合体、あるいはエチレン、ブテン、ペンテン、ヘキセン等の炭素数2~10のα-オレフィンの共重合体等が挙げられる。ここで、上記プロピレン・α-オレフィン共重合体において、α-オレフィンの共重合量は、特に制限されるものではないが、10重量%以下であるのが好ましい。PPからなる樹脂のメルトフローインデックス(230℃)は0.1~50g/10分が好ましく、1~50g/10分がより好ましい。また、PPは、ペンダット分率が80~98%の範囲にあるアイソタクチックポリプロピレンであることが好ましい。さらに、PPは、分子量10万以上かつMw/Mnが2~10であることが好ましい。
 本発明で用いる化学修飾セルロースは、化学修飾時にナノ解繊の有無を問わない。セルロース原料としては、微結晶セルロース(旭化成ケミカルズ(株)製微結晶セルロース製品:セオラス)などセルロース粉末やセルロースナノファイバーを原料とし、二塩基酸無水物を加圧ニーダーなどを用い、モノエステル化の条件温度である80~140℃の加温下、無触媒の条件で、2~10重量%量、混練反応により付加し、引き続きアルキレンオキシドを耐圧容器を用い、無触媒下、80~140℃の加温で1~20重量%付加重合することにより調製されるものである。当該原料は、上記の通り、化学修飾時にナノ解繊の有無を問わないが、高圧ホモジナイザー処理や対向衝突処理等による解繊処理方法で繊維径を5nm~1μmとしたセルロースナノファイバーであることが好ましい。このセルロース化学修飾法の特徴は溶剤洗浄を全く要しないことで、大いに低コスト、グリーン化学的である点にある。化学修飾法としては、他の考え方によるやり方もあるが、本発明ではこのやり方に固定した。
 本発明において、上記化学修飾セルロースまたは化学修飾セルロースナノファイバーの配合割合は、PP樹脂成分100重量部に対して0.01~20重量部、好適には0.01~10重量部である。
 本発明では、また、上記樹脂成分と共にβ結晶型核剤を使用する。このβ結晶型核剤は、公知のものが特に制限なく使用できるが、好適にはキナクリドン、キナクリドンキノン、イソインドキノン、フタロシアニン、インジゴドルブラウンIRRD、インジゴゾルレッドバイオレットIRH、チバチンオレンジHR、インジゴゾルピンクIR、チバチンブル-2B、インジゴゾルゴールデンイエローIGK、インジゴゾルグレイIBL等の顔料、安息香酸ナトリウム、コハク酸マグネシウム、フタル酸マグネシウム、テレフタル酸マグネシウム、イソフタル酸マグネシウム、1,2-ヒドロキシステアリン酸ナトリウム等のカルボン酸のアルカリ又はアルカリ土類金属塩、ベンゼンスルフォン酸ナトリウム、ナフタリンスルフォン酸ナトリウム等の芳香族スルフォン酸系化合物、N,N’-ジフェニルヘキサンジアミド、N,N’-ジシクロヘキシルテレフタルアミド、N,N’-ジシクロヘキシル-2,6-ナフタレンジカルボキシルアミド、N,N’-ジシクロヘキサンカルボニル-p-フェニレンジアミン、N,N’-ジベンゾイル-1,5-ジアミノナフタレン、N,N’-ジベンゾイル-1,4-ジアミノシクロヘキサン、N,N’-ジシクロヘキサンカルボニル-1,4-ジアミノシクロヘキサン、N-シクロヘキシル-4-(N-シクロヘキサンカルボニルアミノ)ベンズアミド、N-フェニル-5-(N-ベンゾイルアミノ)ペンタンアミド等の芳香族アミド化合物等が挙げられる。
 本発明において、上記β結晶型核剤の配合割合は、PP樹脂成分100重量部に対して0.01~3重量部、好適には0.05~2重量部である。ここで、β結晶型核剤樹脂の配合割合が0.01重量部より小さい時、β結晶が成長し難くなる。一方、この配合割合が3重量部より大きい場合β結晶型核剤の樹脂中での分散が不良になる。
 なお、以上の樹脂組成物には、必要に応じて、フェノール系、イオウ系酸化防止剤、脱塩酸剤、滑剤、着色剤、界面活性剤、帯電防止剤、難燃防止剤等の添加剤を配合することが好ましい。その配合量は、樹脂組成物100重量部に対して0.01~2重量部が好適である。
 本発明では、以上の樹脂組成物を用いてPP成分の結晶相が実質的にβ結晶相である膜状物に溶融成形することが大切である。溶融成形法としては、如何なる方法で行っても良い。まず、各成分の配合は、ヘンシェルミキサー、タンブラー式ブレンダー、Vブレンダー、リボンミキサー等で行うのが好ましい。なお、混合温度としては、通常、室温~100℃、装置の回転速度としては、通常、500~2000rpm、混合時間としては、通常、1~20分間から採択される。こうして得られた樹脂組成物は、押出機で造粒され、Tダイ或いはインフレションフィルム成形機付きの押出成形機等で成膜される。ここで、上記造粒時や成膜時における樹脂温度は、通常、180~260℃から採択される。なお、膜状物の厚みは、通常10~50μmが採択される。
 通常、上記の方法で得られた膜状物は、PP成分の結晶構造において十分にβ結晶が成長していないため、本発明では、上記膜状物にβ結晶を成長させる処理を施すのが一般的である。この処理は、如何なる方法で実施しても良いが、膜の製造工程上から押出機より溶融状態で吐出してくる膜状物を、β結晶の融点以下の特定温度のロールに接触させて結晶を成長させることが好ましい。その温度は好滴には室温~160℃、より好滴には60~160℃、さらに好適には60~155℃、特に好適には60~135℃である。
 本発明では、この膜状物におけるPP成分の結晶相が上記の如く実質的にβ結晶相で構成されていることが重要である。それにより、該膜状物は延伸した際に良好に微多孔化し、高い空隙率と良好な通気性を有する優れた微多孔性フィルムを製造することが可能になる。ここで、本発明の微多孔性フィルムを製造するには、PP成分の結晶相がβ結晶で主に占められていれば、多少のα結晶が含まれていても良い。下記の示差走査熱量計(DSC)で測定されるβ結晶形成能
  β結晶形成能=△Hb/[(△Ha+△Hb)]×100
 {△Hbは145℃~157℃に現れるβ結晶の溶解であり、△Ha158℃以上はα結晶の溶解ピーク}が60%以上、好ましくは70%以上、さらに好ましくは80~98%である。
 β結晶形成はX線回折(X-ray diffraction、XRD)によっても追跡される。PPは通常α型と呼ばれる結晶(α結晶)からなる球晶構造(α型球晶)を形成しているが、既述のように、ここでのキャパシタ向けポリプロピレンの原反シートでは、核剤を用い、α型とは異なるβ型と呼ばれる結晶(β結晶)からなる球晶構造(β型球晶)を形成させている。αとβ結晶で結晶の単位格子が異なっており、β結晶に特有な回折ピーク((300)面)が観測されることから、X線回折パターンより、β結晶の存在割合などを評価することができる。なお、β結晶の形成メカニズムについては学術的に未解決な部分が未だに残されてはいるが、原反シートの成形条件やβ結晶核剤の添加などによって、β型球晶の大きさ、存在割合や分布が変化することが知られている。
 次いで、本発明では、上記の膜状物を、ロール延伸機、テンター延伸機等により一軸あるいは二軸に逐次、または同時に延伸して実施することが好ましい。
 逐次延伸方式で微多孔を形成する場合、縦延伸温度は、製膜の安定及び、厚みムラの抑制、目的とする孔径サイズや透過性などを考慮して、最適な温度条件を選択すればよい。縦延伸温度は、好適には60~160℃、より好適には80~140℃である。縦方向の実効延伸倍率は、4~10倍であることが好ましい。縦方向の実効延伸倍率が、4倍未満であると、得られる微多孔性フィルムの透過性が劣る場合がある。また倍率が低いために、同じキャスト速度でも製膜速度が遅く、生産性に劣る場合がある。縦方向の実効延伸倍率が10倍以上であると、縦延伸あるいは横延伸工程において、フィルムの破れが発生し、製膜性が悪化する場合がある。
 また、縦延伸後の冷却過程において、フィルムの形状や寸法、孔径サイズや透過性などに影響しない程度に、弛緩工程を設けても良い。これは、縦延伸方向の寸法安定性の観点から好ましい。また、縦延伸におけるひずみ速度は、生産性及び製膜の安定性の観点から、5~50000sec-1であることが好ましい。
 縦延伸後のフィルムは、予熱工程を経て、幅方向に横延伸する。予熱工程の温度は、フィルム原料により適宜選択すればよいが、横延伸温度(MTD)に対して、1~20℃低い温度であることが好ましい。また、横延伸温度は、製膜の安定及び、厚みムラの抑制、目的とする孔径サイズや透過性などを考慮して、最適な温度条件を選択すればよい。横延伸温度は、好適には60~160℃、より好適には100~150℃である。また、横延伸速度は、生産性や寸法安定性の観点から、5~50000sec-1であることが好ましい。
 横延伸フィルムの実効延伸倍率は、10倍以下であることが好ましい。横延伸倍率が10倍以上であると、フィルムの破断が生じ、生産性や製膜性に影響する。横延伸倍率は、3~10倍であることが好ましい。
 縦延伸および横延伸倍率は、原反シートと比較した面積倍率で1.1~100倍が可能であるが、過度に延伸すると膜が破断する恐れがあるため、1.1~60倍が好適である。
 同時二軸延伸により、微多孔性フィルムを形成する場合、延伸倍率は縦方向に4~10倍、横方向に3~10倍であることが好ましく、面積倍率で、1.1~60倍が最適である。
 同時二軸延伸における延伸温度は、好適には60~160℃、より好適には100℃から158℃である。延伸温度が、100℃より大きいと、効率的に延伸を行うことができ、158℃以下であると、フィルム原料の融点より低く溶融する恐れがあまりないため好ましい。
 同時二軸延伸における延伸速度としては、5~50000sec-1であることが好ましい。該延伸速度を外れると、製膜安定性や寸法安定性が悪化し、フィルムの透過性に影響するためである。
 また、逐次延伸における延伸温度は、好適には60~160℃、より好適には100~158℃、特に好適には120~155℃である。延伸温度が、良好な温度を超えてしまった場合、延伸時に熱によりβ結晶がα結晶にすぐに変化してフィルムが良好に微多孔化しなくなる。また、延伸温度が100℃以上であると、効率的に延伸を行えるため好ましい。それにより、得られる微多孔性フィルムは、良好に微多孔化したものとなる。なお、こうした延伸を施すことによりフィルム中のPP成分の結晶構造は、通常、前記β結晶相からα結晶相に結晶転移する。
 なお、本発明において、微多孔性フィルムは、単層だけでなく、本発明の樹脂組成物において組成の異なるものや、他の微多孔性フィルムが積層された複層構造、表面に基材よりも耐熱性を有する樹脂や金属、セラミックスなどをコーティングしたものであっても良い。
 また、本発明の微多孔性フィルムは、ガーレ値が10~2000sec/100ccであることが好ましく、空孔率が25%~80%であることが好ましい。
 以下、本発明を更に具体的に説明するために実施例を示すが、本発明はこれらの実施例に何ら限定されるものではない。
 なお、実施例及び比較例に示す微多孔性フィルムの物性は下記の方法により測定した。
(1)β結晶形成能の測定は示差走査熱量計(DSC)を用いて測定した。装置はRINT-TTRIII型(パーキンエルマー社製)によった。
(2)β結晶形成能のもう一つの確認はX線回折(X-ray diffraction、XRD)によった。装置はPANalytical (スペクトリオス(株)製)によった。
(3)力学性はオートグラフ((株)島津製作所製)を用いて測定した。
(4)突刺強度は、自動突刺強度計(カトーテック社製:KES-FB3-AUTO)を用いて、針が貫通したときの最大の荷重を測定した。なお、同一フィルムで10点測定を行い、平均値を算出した。
(5)ガーレ値は、作製したフィルムを50mm×50mm角に切出し、ガーレ式自動計測機(TESTING MACHINES INC 社製)を用いて、測定を行った。本測定ではJISP8177で規定されている100ccの空気がフィルムを通過するまでの時間をガーレ値とした。
(6)空孔率と膜厚はサンプルを50×50mm角に切出し、マイクロメータを用いてフィルムの各部10点を計測し、平均値を膜厚とした。空孔率は、フィルムの実測重量と、密度と体積より算出した理論重量より、算出した。
 本発明で用いたPP、β結晶型核剤及び化学修飾セルロースは以下の通りである。
 1)PP
  ・0.920g/cmの密度を有し、MF1が8.0g/10分であるホモポリマー、ノープレン(住友化学(株)社製)
 2)β結晶型核剤
  ・(A)MPM113(Mayzo,Inc)(PP樹脂用マスターバッチ)
  ・(B)アミド類系β結晶型核剤
  ・(C)キナクリドン(PV-19γ型 大日精化社)
  ・(D)ピメリン酸カルシウム
 3)化学修飾セルロース
  ・化学修飾セルロースはアビセル(旭化成ケミカルズ(株)製微結晶セルロース製品:セオラス)などセルロース粉末を原料とし、二塩基酸無水物を加圧ニーダーなどを用い、モノエステル化の条件温度である80~140℃の加温下、無触媒の条件で2~10重量%量、混練反応により付加して調製後、引き続きアルキレンオキシドを耐圧容器を用い、無触媒下、80~140℃の加温で1~20重量%付加重合することにより調製した。
実施例1
 PP樹脂成分の該樹脂成分100重量部に対し、1重量部の化学修飾セルロース、及び該樹脂成分100重量部に対し0.3重量部のβ結晶型核剤(A)からなる樹脂組成物を、図1に示すニーダー1である卓上型混練機((株)日本製鋼所製)を用いて200℃、80rpmで10分間混練後、図2に示すホットプレス2を用いて、200℃、5分の熱圧成形を行い、厚さ1mmのシートを得た。このシートを図3に示す延伸機3を用いて逐次延伸を行った。
実施例2
 実施例1の方法で、原料にPP樹脂及びβ結晶型核剤(B)を用いた。それ以外については実施例1と同様である。
比較例1
 実施例1の方法で、原料にPP樹脂及びβ結晶型核剤(C)を用いた。それ以外については、実施例1と同様である。
比較例2
 実施例1の方法で、原料にPP樹脂及びβ結晶型核剤(D)を用いた。それ以外については、実施例1と同様である。
比較例3
 化学修飾セルロースの配合量をゼロとし、β結晶型核剤(A)を用いた。それ以外については、実施例1と同様である。
比較例4
 日本国特開2014-224240に記載されている実施例1の特性値。
比較例5
 Selion P1610(CS TECH CO.LTD製乾式PPセパレータ:ラメラ開孔法)。
比較例7
 湿式法にて製作したCeNF複合化セパレータ(日本国特許5462227号公報)。
結果比較
 表1に実施例1、2及び比較例1~3の条件で作製したシートのβ結晶形成能を示す。実施例1,2のβ結晶形成能は、いずれも80%以上であった。一方、セルロースを添加していない、比較例3の場合もβ結晶形成能は80%であり、セルロースの添加がβ結晶形成に寄与しないと判断される。
Figure JPOXMLDOC01-appb-T000001
 次に、比較例1及び2の核剤を用いた場合、β結晶形成能は0%であった。これらのβ結晶型核剤については、他特許(日本国特開平4-087759等)に記載されていることから、成形条件を満たした場合にのみβ結晶形成能が発現されるものと推察される。
 実施例および比較例に示した各シートについて、逐次延伸を行いフィルム化した。このフィルムの各物性値を表1に併記する。実施例1~2はいずれも延伸状態は良好であった。一方、β結晶形成能が確認されなかった比較例1及び2のシートについては延伸することができなかった。
 セルロースを添加した実施例1及び2の突刺強度は500gf/cm以上となった。これはセルロースを添加しない比較例3および4と比較して、少なくとも10%以上高くなった。突刺強度は、経時劣化により生じるリチウムイオンデンドライトや電池製造時の異物混入などにより、破膜する際の強度を示す。実施例1および2における突刺強度の向上は、添加したセルロースナノファイバーがシート中で高度に分散し、樹脂と複合化したことによる効果であると推察される。
 引張強度は、実施例1および実施例2において、セルロースを添加した場合に強度向上が確認された。これは、セルロースと樹脂が複合化されたことによる効果であると推察される。
 比較例1は、β結晶型核剤(C)を用いたシートであり、延伸することができなかった。
 比較例2は、β結晶型核剤(D)を用いたシートであり、延伸することができなかった。
 比較例3は、日本国特開2011-162773号公報に記載された実施例1のセパレータである。
 比較例5は、市販のラメラ開孔法(乾式法)セパレータフィルムの物性値である。
 比較例6は、ポリエチレン基材を用いて湿式法により製造したセパレータの物性値である。
 比較例7は、日本国特許5462227号公報で示された方法で製造したセルロースナノファイバー複合セパレータの物性値である。比較例6と比べて複合化により突刺強度が大幅に向上し、かつ耐熱性が20℃程度向上していることがわかる。しかし、基材がポリエチレンであるため、この製造条件では140℃程度で収縮性が高くなった。それでも市販のラメラ開孔法で製造した比較例5に比べると耐熱性は高くなっている。
 図4に実施例1と比較例1のシートを用いたXRDの分析結果を示す。ポリプロピレン系樹脂のβ結晶の(300)面に由来する回折ピークが、2θ=16.0°~16.5°の範囲に検出された場合、β結晶活性があると判断できる。β結晶形成能を有していない比較例1では、β結晶のピークは見られない。一方、β結晶形成能を有している実施例1ではβ結晶のピークがこの範囲で検出されたため、本発明におけるシートでは、微細孔の形成に必要なβ結晶が形成されていることが示された。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2015年2月26日出願の日本国特許出願(特願2015-036911)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明によるポリオレフィン系樹脂及びβ結晶型核剤と化学修飾セルロース又は化学修飾セルロースナノファイバーを含有した微多孔性フィルムとその製造方法において得られるセパレータは、二塩基酸無水物を80~140℃で2~10重量%混練反応により付加し、引き続きアルキレンオキシドを耐圧容器中で、80~140℃の加温化で1~20重量%付加重合して調製した化学修飾セルロース又は化学修飾セルロースナノファイバーとβ結晶核剤およびポリオレフィンの複合化により、リチウムイオン電池(非水二次電池)用セパレータとして要求される機械及び熱的特性のうち、特に、突刺強度と耐熱性を改善したセルロースナノファイバー複合化セパレータを高品質で安価に提供することができる。
  1  ニーダー
  2  ホットプレス
  3  延伸機

Claims (13)

  1.  ポリプロピレンからなる樹脂成分、前記樹脂成分100重量部に対し0.01~20重量部の化学修飾セルロース又は化学修飾セルロースナノファイバー、及び前記樹脂成分100重量部に対し0.01~3重量部のβ結晶型核剤からなる樹脂組成物を、前記樹脂組成物中のポリプロピレン成分の結晶相のβ結晶形成能が60%以上となる膜状物に溶融成形し、次いで前記膜状物を60~160℃の温度で延伸する、微多孔性フィルムの製造方法。
  2.  ポリプロピレンからなる樹脂成分、及び前記樹脂成分100重量部に対し0.01~20重量部の化学修飾セルロース又は化学修飾セルロースナノファイバーに前記樹脂成分100重量部に対し0.01~3重量部のβ結晶型核剤を化学的に付加した化学修飾セルロース又は化学修飾セルロースナノファイバーからなる樹脂組成物を、前記樹脂組成物中のポリプロピレン成分の結晶相のβ結晶形成能が60%以上となる膜状物に溶融成形し、次いで前記膜状物を60~160℃の温度で延伸する、微多孔性フィルムの製造方法。
  3.  前記ポリプロピレンからなる樹脂が、メルトフローレイト1~50g/10分(230℃)の範囲で、かつペンタッド分率が80~98%の範囲にあるアイソタクチックポリプロピレンからなる樹脂であり、分子量10万以上かつMw/Mnが2~10であるポリプロピレンからなる樹脂である請求項1又は2に記載の微多孔性フィルムの製造方法。
  4.  前記β結晶型核剤が、
    (1)N,N’-ジフェニルヘキサンジアミド、N,N’-ジシクロヘキシルテレフタルアミド及びN,N’-ジシクロヘキシル-2,6-ナフタレンジカルボキサミドからなる群から選択される少なくとも1種、又は、
    (2)N,N’-ジシクロヘキサンカルボニル-p-フェニレンジアミン、N,N’-ジベンゾイル-1,5-ジアミノナフタレン、N,N’-ジベンゾイル-1,4-ジアミノシクロヘキサン及びN,N’-ジシクロヘキサンカルボニル-1,4-ジアミノシクロヘキサンからなる群から選択される少なくとも1種、又は、
    (3)N-シクロヘキシル-4-(N-シクロヘキサンカルボニルアミノ)ベンズアミド及びN-フェニル-5-(N-ベンゾイルアミノ)ペンタンアミドからなる群から選択される少なくとも1種、又は、
    (4)前記(1)~(3)のアミド系化合物の2種以上の混合物、のいずれかである請求項1~3のいずれか一項に記載の微多孔性フィルムの製造方法。
  5.  前記化学修飾セルロース又は化学修飾セルロースナノファイバーの原料が、高圧ホモジナイザー処理や対向衝突処理等による解繊処理方法で繊維径を5nm~1μmとしたセルロースナノファイバーである、請求項1~4のいずれか一項に記載の微多孔性フィルムの製造方法。
  6.  前記化学修飾セルロース又は化学修飾セルロースナノファイバーが、二塩基酸無水物を80~140℃で2~10重量%混練反応により付加し、引き続きアルキレンオキシドを耐圧容器により80~140℃の加温化で1~20重量%付加重合することにより調製された化学修飾セルロース又は化学修飾セルロースナノファイバーである、請求項1~5のいずれか一項に記載の微多孔性フィルムの製造方法。
  7.  ポリオレフィン系樹脂、β結晶型核剤及び化学修飾セルロース又は化学修飾セルロースナノファイバー、もしくはポリオレフィン系樹脂及びβ結晶型核剤を化学的に付加した化学修飾セルロース又は化学修飾セルロースナノファイバーを、溶融混練してポリオレフィン樹脂組成物を得る工程、前記ポリオレフィン樹脂組成物をシート状に押出成形する工程、得られたシート状成形体を延伸しフィルム化する工程を用い、前記ポリオレフィン樹脂組成物の融点以下の温度による延伸と収縮性を抑制するための熱固定工程とを逐次もしくは同時に行う、微多孔性フィルムの製造方法。
  8.  請求項7に記載の製造方法によって製造された、微多孔性フィルム。
  9.  前記ポリオレフィン系樹脂が、メルトフローレイト1~50g/10分(230℃)の範囲で、かつペンタッド分率が80~98%の範囲にあるアイソタクチックポリプロピレンからなる樹脂であり、分子量10万以上かつMw/Mnが2~10であるポリプロピレンからなる樹脂であり、
     前記β結晶型核剤が、
    (1)N,N’-ジフェニルヘキサンジアミド、N,N’-ジシクロヘキシルテレフタルアミド及びN,N’-ジシクロヘキシル-2,6-ナフタレンジカルボキサミドからなる群から選択される少なくとも1種、又は、
    (2)N,N’-ジシクロヘキサンカルボニル-p-フェニレンジアミン、N,N’-ジベンゾイル-1,5-ジアミノナフタレン、N,N’-ジベンゾイル-1,4-ジアミノシクロヘキサン及びN,N’-ジシクロヘキサンカルボニル-1,4-ジアミノシクロヘキサンからなる群から選択される少なくとも1種、又は、
    (3)N-シクロヘキシル-4-(N-シクロヘキサンカルボニルアミノ)ベンズアミド及びN-フェニル-5-(N-ベンゾイルアミノ)ペンタンアミドからなる群から選択される少なくとも1種、又は、
    (4)前記(1)~(3)のアミド系化合物の2種以上の混合物、のいずれかであり、
     前記化学修飾セルロース又は化学修飾セルロースナノファイバーの原料が、高圧ホモジナイザー処理や対向衝突処理等による解繊処理方法で繊維径を5nm~1μmとしたセルロースナノファイバーであり、
    連続的に微多孔性フィルムを製造する請求項7に記載の微多孔性フィルムの製造方法。
  10.  請求項9に記載の製造方法によって製造された微多孔性フィルム。
  11.  請求項7に記載の微多孔性フィルムとして、ガーレ値が10~2000sec/100ccであり、空孔率が25%~80%である微多孔性フィルム。
  12.  前記延伸が二軸延伸である請求項1~7及び9のいずれか一項に記載の微多孔性フィルムの製造方法。
  13.  前記延伸が二軸延伸である請求項8、10及び11のいずれか一項に記載の微多孔性フィルム。
PCT/JP2016/055644 2015-02-26 2016-02-25 微多孔性フィルムの製造方法及び微多孔性フィルム WO2016136881A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/553,815 US10633498B2 (en) 2015-02-26 2016-02-25 Method for manufacturing microporous film and microporous film
EP16755625.7A EP3263636B1 (en) 2015-02-26 2016-02-25 Method for manufacturing microporous film and microporous film
CN201680012199.7A CN107428977B (zh) 2015-02-26 2016-02-25 微多孔膜的制造方法和微多孔膜
KR1020177023807A KR102038940B1 (ko) 2015-02-26 2016-02-25 미다공성 필름의 제조 방법 및 미다공성 필름

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015036911A JP2016160267A (ja) 2015-02-26 2015-02-26 微多孔性膜又は微多孔延伸フィルムの製造方法及び微多孔フィルム又は二軸微多孔延伸フィルム
JP2015-036911 2015-02-26

Publications (1)

Publication Number Publication Date
WO2016136881A1 true WO2016136881A1 (ja) 2016-09-01

Family

ID=56789611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055644 WO2016136881A1 (ja) 2015-02-26 2016-02-25 微多孔性フィルムの製造方法及び微多孔性フィルム

Country Status (6)

Country Link
US (1) US10633498B2 (ja)
EP (1) EP3263636B1 (ja)
JP (1) JP2016160267A (ja)
KR (1) KR102038940B1 (ja)
CN (1) CN107428977B (ja)
WO (1) WO2016136881A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020196800A1 (ja) * 2019-03-27 2020-10-01 古河電気工業株式会社 有機繊維強化樹脂成形体及びその製造方法
JPWO2019112011A1 (ja) * 2017-12-06 2020-12-10 宇部興産株式会社 発泡体

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106891557B (zh) * 2017-03-15 2019-06-07 中国科学技术大学 一种聚烯烃纳米纤维膜及其制备方法
EP3862393A4 (en) * 2018-10-03 2022-07-20 Furukawa Electric Co., Ltd. RESIN COMPOSITION AND CASTING
US20220081544A1 (en) * 2019-01-09 2022-03-17 Kao Corporation Fiber sheet and method for producing same
CN113549261A (zh) * 2020-04-26 2021-10-26 合肥杰事杰新材料股份有限公司 一种驻极熔喷聚丙烯材料及其制备方法
EP4183827A1 (en) * 2020-07-15 2023-05-24 Adeka Corporation Additive composition, resin composition containing same, and molded article of said resin composition
CN113480780B (zh) * 2021-06-07 2022-09-02 山东路德新材料股份有限公司 一种生物基三维土工网垫及其制备方法
WO2022265042A1 (ja) * 2021-06-16 2022-12-22 株式会社Adeka 核剤組成物、樹脂組成物、その成形品および樹脂組成物の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4999777A (ja) * 1973-01-31 1974-09-20
JPS5019146B1 (ja) * 1970-12-05 1975-07-04
JPH0680832A (ja) * 1992-09-03 1994-03-22 Nobuo Shiraishi ポリオレフィン組成物およびその製造方法
JP2010171005A (ja) * 2008-12-24 2010-08-05 Mitsubishi Plastics Inc 電池用セパレータおよび非水系リチウム二次電池
WO2013035786A1 (ja) * 2011-09-07 2013-03-14 株式会社日本製鋼所 セルロースナノファイバー入りポリオレフィン微多孔延伸フィルム、該フィルムの製造方法及び非水二次電池用セパレータ

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5940172B2 (ja) 1977-10-28 1984-09-28 東洋インキ製造株式会社 フタロシアニン顔料組成物
JPH0741523B2 (ja) 1990-07-30 1995-05-10 株式会社牧野フライス製作所 加工システムの工具管理方法
JP2883726B2 (ja) 1990-11-14 1999-04-19 日東電工株式会社 電池用セパレータの製造法
JP5024070B2 (ja) * 2001-02-21 2012-09-12 新日本理化株式会社 多孔性ポリプロピレン逐次二軸延伸フィルム及びその製造方法
CA2438243C (en) * 2001-02-21 2010-06-29 New Japan Chemical Co., Ltd. Successive biaxial stretched polypropylene porous film and process for producing the same
DE20308495U1 (de) 2003-05-28 2004-09-30 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Konversions-LED
US8273279B2 (en) 2007-09-28 2012-09-25 Toray Battery Separator Film Co., Ltd. Microporous polyolefin membrane and manufacturing method
US8021789B2 (en) 2007-09-28 2011-09-20 Toray Tonen Specialty Separator Godo Kaisha Microporous membrane and manufacturing method
US8304114B2 (en) 2007-09-20 2012-11-06 Toray Battery Separator Film Co., Ltd. Microporous polyolefin membrane and manufacturing method
JP2010540690A (ja) 2007-09-20 2010-12-24 東燃化学株式会社 微多孔膜およびそのような膜を製造し使用する方法
TWI367229B (en) 2007-10-05 2012-07-01 Toray Tonen Specialty Separato Microporous polymer membrane
US8377563B2 (en) 2008-03-31 2013-02-19 Nippon Paper Industruies Co., Ltd. Papermaking additive and paper containing the same
KR101310541B1 (ko) 2008-12-24 2013-09-23 미쓰비시 가가꾸 가부시키가이샤 전지용 세퍼레이터 및 비수계 리튬 전지
EP2444453A4 (en) * 2009-06-19 2012-12-12 Mitsubishi Plastics Inc POROUS POLYPROPYLENE FILM
JP5672015B2 (ja) 2010-01-12 2015-02-18 東レ株式会社 二軸配向多孔性フィルムおよび蓄電デバイス
JP2012179798A (ja) 2011-03-01 2012-09-20 Asahi Kasei E-Materials Corp 微多孔性フィルムの製造方法、及び電池用セパレータ
US8911540B2 (en) * 2012-05-01 2014-12-16 Case Western Reserve University Gas separation membrane
JP2014141644A (ja) * 2012-12-26 2014-08-07 Toray Ind Inc 二軸配向多孔性ポリプロピレンフィルム、蓄電デバイス用セパレータフィルムおよび蓄電デバイス
JP6102380B2 (ja) 2013-03-18 2017-03-29 日本ポリエチレン株式会社 微多孔フィルム、及びそれを用いたリチウムイオン電池用セパレータ
JP6361251B2 (ja) 2013-04-15 2018-07-25 東レ株式会社 多孔性フィルム、蓄電デバイス用セパレータおよび蓄電デバイス
JP5984307B2 (ja) 2013-06-04 2016-09-06 株式会社日本製鋼所 セルロースナノファイバー入りポリオレフィン微多孔延伸フィルムの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5019146B1 (ja) * 1970-12-05 1975-07-04
JPS4999777A (ja) * 1973-01-31 1974-09-20
JPH0680832A (ja) * 1992-09-03 1994-03-22 Nobuo Shiraishi ポリオレフィン組成物およびその製造方法
JP2010171005A (ja) * 2008-12-24 2010-08-05 Mitsubishi Plastics Inc 電池用セパレータおよび非水系リチウム二次電池
WO2013035786A1 (ja) * 2011-09-07 2013-03-14 株式会社日本製鋼所 セルロースナノファイバー入りポリオレフィン微多孔延伸フィルム、該フィルムの製造方法及び非水二次電池用セパレータ

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AMASH A. ET AL.: "Morphology and properties of isotropic and oriented samples of cellulose fibre-polypropylene composites", POLYMER, vol. 41, 2000, pages 1589 - 1596, XP004244148, DOI: doi:10.1016/S0032-3861(99)00273-6 *
See also references of EP3263636A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019112011A1 (ja) * 2017-12-06 2020-12-10 宇部興産株式会社 発泡体
JP7327164B2 (ja) 2017-12-06 2023-08-16 Ube株式会社 発泡体
WO2020196800A1 (ja) * 2019-03-27 2020-10-01 古河電気工業株式会社 有機繊維強化樹脂成形体及びその製造方法

Also Published As

Publication number Publication date
EP3263636A1 (en) 2018-01-03
EP3263636B1 (en) 2021-05-12
EP3263636A4 (en) 2018-08-01
US10633498B2 (en) 2020-04-28
KR20170107547A (ko) 2017-09-25
CN107428977B (zh) 2020-07-28
KR102038940B1 (ko) 2019-10-31
CN107428977A (zh) 2017-12-01
US20180037704A1 (en) 2018-02-08
JP2016160267A (ja) 2016-09-05

Similar Documents

Publication Publication Date Title
WO2016136881A1 (ja) 微多孔性フィルムの製造方法及び微多孔性フィルム
JP3523404B2 (ja) 微多孔性膜の製造方法
JP4755339B2 (ja) 耐破壊性ポリオレフィン膜
US8182908B2 (en) Microporous membranes having a relatively large average pore size and the methods of making the same
JP4838910B2 (ja) 多孔性ポリプロピレンフィルム
JP2017197746A (ja) 細繊維メッシュ構造を伴う微小多孔性材料並びにその製造及び使用方法
KR20030088120A (ko) 미공성 재료 및 그의 제조 방법
JP5194476B2 (ja) 多孔性ポリプロピレンフィルム
JPS63199742A (ja) ポリプロピレン微孔性フイルムの製造方法
JP6657890B2 (ja) 透湿性積層体
JP5262556B2 (ja) ポリオレフィン樹脂多孔膜及びそれを用いた電池セパレータ
JP2013163806A (ja) 多孔質フィルムおよび蓄電デバイス用セパレータ
JPH09176352A (ja) 微多孔性膜の製造方法
CN101309954B (zh) 半结晶型聚合物微孔膜及其制备方法
JP4894794B2 (ja) ポリオレフィン樹脂多孔膜
JP4797813B2 (ja) ポリオレフィン樹脂多孔膜
WO2014103713A1 (ja) 多孔性ポリオレフィンフィルムおよびその製造方法、ならびにそれを用いてなる蓄電デバイス用セパレータ
JP4466039B2 (ja) ポリオレフィン樹脂多孔膜
JP2017031293A (ja) 通気性フィルム
JP6686995B2 (ja) 多孔性樹脂フィルムの製造方法
JP2005129435A (ja) ポリオレフィン樹脂製電池セパレータ
US20070065655A1 (en) Flame retardant porous film
JP7135709B2 (ja) 多孔フィルム
JP2005139228A (ja) ポリオレフィン樹脂多孔膜
JP2023064466A (ja) 樹脂シート及び樹脂シートの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16755625

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177023807

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016755625

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15553815

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE