WO2016104788A1 - エポキシ樹脂成形材料、成形物、成形硬化物及び成形物の製造方法 - Google Patents

エポキシ樹脂成形材料、成形物、成形硬化物及び成形物の製造方法 Download PDF

Info

Publication number
WO2016104788A1
WO2016104788A1 PCT/JP2015/086414 JP2015086414W WO2016104788A1 WO 2016104788 A1 WO2016104788 A1 WO 2016104788A1 JP 2015086414 W JP2015086414 W JP 2015086414W WO 2016104788 A1 WO2016104788 A1 WO 2016104788A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
molding material
resin molding
group
general formula
Prior art date
Application number
PCT/JP2015/086414
Other languages
English (en)
French (fr)
Inventor
田中 賢治
優香 吉田
慎一 小杉
片木 秀行
陶 晴昭
竹澤 由高
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2016566569A priority Critical patent/JP7114220B2/ja
Publication of WO2016104788A1 publication Critical patent/WO2016104788A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives

Definitions

  • the present invention relates to an epoxy resin molding material, a molded product, a molded cured product, and a method for manufacturing the molded product.
  • Thermosetting resins such as epoxy resins are widely used as insulating materials used in industrial and automotive motors, inverters, and other devices from the standpoints of high insulation performance, ease of molding, heat resistance, etc. ing.
  • the high output and miniaturization of these devices have rapidly progressed, and the level of characteristics required for insulating materials has become considerably high.
  • the amount of heat generated from a high-density conductor tends to increase with downsizing, and how to dissipate heat is an important issue. Accordingly, various attempts have been made to improve the thermal conductivity after molding of the thermosetting resin.
  • thermosetting resin having high thermal conductivity an epoxy resin having a mesogen skeleton is used, and a cured product of a resin composition containing the epoxy resin has been proposed (see, for example, Japanese Patent No. 4118691).
  • Epoxy resins having a mesogenic skeleton are disclosed in, for example, Japanese Patent No. 4619770, Japanese Patent Application Laid-Open No. 2010-241797, and Japanese Patent No. 5471975.
  • an epoxy resin having a specific structure as described in Japanese Patent No. 5127164 has been proposed.
  • Epoxy resin A having a mesogenic skeleton and having a phase transition temperature of 140 ° C. or lower for transition from a crystal phase to a liquid crystal phase; A curing agent; An inorganic filler; Epoxy resin molding material containing.
  • the epoxy resin A is a reaction between a divalent phenol compound having two hydroxyl groups in one benzene ring and an epoxy resin B having a mesogenic skeleton and a phase transition from a crystal phase to a liquid crystal phase.
  • the epoxy resin molding material as described in ⁇ 1> containing a thing.
  • the epoxy resin A is a ratio of the number of equivalents of the phenolic hydroxyl group of the divalent phenol compound to the number of equivalents of the epoxy group of the epoxy resin B (the number of equivalents of epoxy group / the number of equivalents of phenolic hydroxyl group).
  • ⁇ 6> The epoxy resin molding material according to any one of ⁇ 2> to ⁇ 5>, wherein the divalent phenol compound contains hydroquinone.
  • ⁇ 7> The epoxy resin molding material according to any one of ⁇ 1> to ⁇ 6>, wherein the curing agent includes a phenol-based curing agent.
  • the phenolic curing agent includes a compound having a structural unit represented by at least one selected from the group consisting of the following general formula (II-1) and the following general formula (II-2) ⁇ 7 > Epoxy resin molding material.
  • each R 1 independently represents an alkyl group, an aryl group, or an aralkyl group, and the alkyl group, aryl group, and aralkyl group are substituents.
  • R 2 and R 3 each independently represents a hydrogen atom, an alkyl group, an aryl group, or an aralkyl group, and the alkyl group, aryl group, and aralkyl group each have a substituent.
  • M is each independently an integer of 0 to 2.
  • n is each independently an integer of 1 to 7.
  • R 11 and R 14 each independently represents a hydrogen atom or a hydroxyl group.
  • R 12 and R 13 each independently represent a hydrogen atom or a carbon number. Represents an alkyl group of 1 to 8.
  • the adhesion amount of silicon atoms derived from the silane coupling agent per specific surface area of the inorganic filler is 5.0 ⁇ 10 ⁇ 6 mol / m 2 to 10.0 ⁇ 10 ⁇ 6 mol / m 2 .
  • the epoxy resin molding material according to any one of ⁇ 10> to ⁇ 12>.
  • ⁇ 14> The epoxy resin molding material according to any one of ⁇ 1> to ⁇ 13>, wherein the inorganic filler includes at least one selected from the group consisting of magnesium oxide and alumina.
  • ⁇ 21> The molded cured product according to ⁇ 20>, wherein a diffraction angle 2 ⁇ has a diffraction peak in a range of 3.0 ° to 3.5 ° in an X-ray diffraction spectrum obtained by an X-ray diffraction method using CuK ⁇ rays. .
  • the epoxy resin molding material containing the epoxy resin A according to any one of ⁇ 1> to ⁇ 17> is molded in a temperature range of not less than a phase transition temperature of the epoxy resin A and not more than 150 ° C. Manufacturing method of a molded product.
  • a numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
  • the amount of each component in the composition is the total amount of the plurality of substances present in the composition unless there is a specific indication when there are a plurality of substances corresponding to each component in the composition. means.
  • the term “process” is not limited to an independent process, and even if it cannot be clearly distinguished from other processes, the term “process” is used if the intended purpose of the process is achieved. included.
  • the epoxy resin molding material of this embodiment has an epoxy resin A having a mesogenic skeleton and having a phase transition from a crystal phase to a liquid crystal phase (hereinafter also referred to as “phase transition temperature”) of 140 ° C. or less, a curing agent, And an inorganic filler.
  • phase transition temperature a phase transition temperature of 140 ° C. or less
  • the epoxy resin molding material of this embodiment may further contain other components as necessary.
  • Epoxy resin molding material contains an epoxy resin A having a mesogenic skeleton and a phase transition temperature of 140 ° C. or lower. Epoxy resins having a mesogenic skeleton are liable to form a higher order structure upon curing and tend to achieve higher thermal conductivity when a cured product of the epoxy resin molding material is produced.
  • the “mesogen skeleton” indicates a molecular structure that may exhibit liquid crystallinity. Specific examples include a biphenyl skeleton, a phenylbenzoate skeleton, an azobenzene skeleton, a stilbene skeleton, and derivatives thereof. Epoxy resins having a mesogenic skeleton tend to form a higher order structure at the time of curing, and tend to achieve higher thermal conductivity when a cured product is produced.
  • the higher order structure is a state in which the constituent elements are arranged microscopically, and corresponds to, for example, a crystal phase and a liquid crystal phase. Whether or not such a higher-order structure exists can be easily determined by observation with a polarizing microscope. That is, when an interference pattern due to depolarization is observed in the observation in the crossed Nicol state, it can be determined that a higher order structure exists.
  • the higher order structure usually exists in an island shape in the resin, and forms a domain structure. Each island forming the domain structure is called a higher-order structure.
  • the structural units constituting the higher order structure are generally bonded by a covalent bond.
  • the phase transition temperature of the epoxy resin A is 140 ° C. or lower, and preferably 135 ° C. or lower.
  • the phase transition temperature can be measured using a differential scanning calorimetry (DSC) measuring device (for example, Pyris 1 manufactured by PerkinElmer). Specifically, the differential scanning calorific value of a sample of 3 mg to 5 mg sealed in an aluminum pan under the conditions of a temperature rise rate of 20 ° C./min, a measurement temperature range of 25 ° C. to 350 ° C., and a flow rate of 20 ⁇ 5 ml / min in a nitrogen atmosphere. It is measured as a temperature at which an energy change (endothermic reaction) occurs with a phase transition. An example of a graph obtained by this measurement is shown in FIG. The temperature of the endothermic reaction peak appearing in FIG. 1 is defined as a phase transition temperature.
  • DSC differential scanning calorimetry
  • the epoxy resin A is not particularly limited as long as it has a mesogenic skeleton and a phase transition temperature of 140 ° C. or lower.
  • the epoxy resin A may be an epoxy compound or an oligomer of an epoxy compound.
  • the oligomer may be a reaction product of epoxy compounds, or may be in a prepolymer state in which a part of the epoxy compound is partially reacted with a curing agent or the like.
  • the epoxy compound used for prepolymerization is preferably an epoxy resin B having a mesogenic skeleton and a property of phase transition from a crystal phase to a liquid crystal phase.
  • Epoxy resin B may have a phase transition temperature of 140 ° C. or lower or may exceed 140 ° C.
  • the phase transition temperature of the epoxy resin B is 140 ° C. or higher, it is preferable to use it as a pre-polymerized reaction product by reacting with a dihydric phenol compound having two hydroxyl groups as substituents on one benzene ring. . It is preferable to use such a dihydric phenol compound from the viewpoint of controlling the molecular weight, thermal conductivity, and glass transition temperature (Tg) of the epoxy resin. Moreover, when the epoxy resin B and the dihydric phenol compound are partially reacted to form a prepolymer, the phase transition temperature can be lowered. Therefore, even if the phase transition temperature of the epoxy resin B is 140 ° C. or higher, it can be used. In general, since an epoxy resin having a mesogenic skeleton has a high phase transition temperature, a prepolymerization technique is useful.
  • the phenol compound used for prepolymerization is a monohydric phenol having one hydroxyl group in one molecule, the crosslink density after curing is lowered, so that the thermal conductivity may be lowered.
  • the phenol compound used for prepolymerization has three or more hydroxyl groups in one molecule, the reaction is difficult to control during prepolymerization, which may cause gelation.
  • a dihydric phenol compound having two or more benzene rings is used, the structure of the epoxy resin becomes rigid, which is advantageous for increasing the thermal conductivity, but the softening point tends to increase and the handling property tends to decrease. (For example, see Japanese Patent No. 5019272)
  • an amine compound may be sufficient besides a dihydric phenol compound.
  • an amine compound when an amine compound is used, secondary amine or tertiary amine is produced in the prepolymerized epoxy resin, so that the storage stability of the epoxy resin itself and the epoxy resin after blending the epoxy resin with a curing agent The storage stability of the molding material may be reduced.
  • Epoxy resin B may be used alone or in combination of two or more. Specific examples of the epoxy resin B are described in, for example, Japanese Patent No. 4118691. Although the specific example of the epoxy resin B is shown below, this invention is not limited to these.
  • R 1 to R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • the epoxy resin A When the epoxy resin A is a reaction product of the epoxy resin B and the dihydric phenol, the epoxy resin A dissolves, for example, the epoxy resin B, the dihydric phenol compound, and the reaction catalyst in a synthetic solvent, and applies heat. It can be synthesized by stirring. It is possible to synthesize the epoxy resin A by melting and reacting the epoxy resin B without using a synthetic solvent, but it must be heated to a temperature at which the epoxy resin melts. For this reason, from the viewpoint of safety, a synthesis method using a synthesis solvent is preferable.
  • the ratio of the number of equivalents of the phenolic hydroxyl group of the dihydric phenol compound to the number of equivalents of the epoxy group of the epoxy resin B (the number of equivalents of epoxy group / the number of equivalents of phenolic hydroxyl group) is 100/10 to 100/20. It is preferable that the ratio is 100/10 to 100/15.
  • the synthetic solvent is not particularly limited as long as the solvent can be heated to a temperature necessary for the reaction between the epoxy resin B and the dihydric phenol compound to proceed.
  • Specific examples include cyclohexanone, cyclopentanone, ethyl lactate, propylene glycol monomethyl ether, N-methylpyrrolidone and the like.
  • the type of reaction catalyst is not particularly limited, and an appropriate one can be selected from the viewpoint of reaction rate, reaction temperature, storage stability, and the like.
  • Specific examples of the reaction catalyst include imidazole compounds, organophosphorus compounds, tertiary amines, and quaternary ammonium salts. These may be used alone or in combination of two or more.
  • a compound having intramolecular polarization formed by adding a compound having a ⁇ bond a complex of an organic phosphine compound and an organic boron compound (tetraphenylborate, tetra-p-tolylborate, tetra-n-butylborate, etc.); It is preferably at least one selected from the group consisting of
  • organic phosphine compounds include triphenylphosphine, diphenyl (p-tolyl) phosphine, tris (alkylphenyl) phosphine, tris (alkoxyphenyl) phosphine, tris (alkylalkoxyphenyl) phosphine, tris (dialkylphenyl) phosphine, tris (tri Alkylphenyl) phosphine, tris (tetraalkylphenyl) phosphine, tris (dialkoxyphenyl) phosphine, tris (trialkoxyphenyl) phosphine, tris (tetraalkoxyphenyl) phosphine, trialkylphosphine, dialkylarylphosphine, alkyldiarylphosphine, etc. Can be mentioned.
  • the amount of the reaction catalyst is not particularly limited. From the viewpoint of reaction rate and storage stability, it is preferably 0.1% by mass to 1.5% by mass, and preferably 0.2% by mass to 1% by mass with respect to the total mass of the epoxy resin B and the dihydric phenol compound. It is more preferable that
  • the epoxy resin A can be synthesized using a glass flask if it is a small scale, and using a stainless steel synthesis pot if it is a large scale.
  • a specific synthesis method is as follows, for example. First, the epoxy resin B is put into a flask or a synthesis kettle, a synthesis solvent is added, and the mixture is heated to the reaction temperature with an oil bath or a heating medium, and the epoxy resin B is dissolved. A dihydric phenol compound is added thereto, and after confirming that the compound is sufficiently dissolved in the synthesis solvent, a reaction catalyst is added to start the reaction. If the reaction solution is taken out after a predetermined time, an epoxy resin A solution is obtained. Moreover, if the synthesis solvent is distilled off under reduced pressure in a flask or a synthesis kettle under heating conditions, the epoxy resin A is obtained as a solid at room temperature (for example, 25 ° C.).
  • phenolic curing agent those usually used can be used without particular limitation.
  • a phenol compound and a phenol resin obtained by novolacizing a phenol compound can be used.
  • a phenol novolak resin a resin in which one kind of phenol compound such as cresol novolak resin, catechol novolak resin, resorcinol novolak resin, hydroquinone novolak resin or the like is novolakized; two or more kinds of phenol compounds such as catechol resorcinol novolak resin, resorcinol hydroquinone novolak resin And a novolak resin.
  • one kind of phenol compound such as cresol novolak resin, catechol novolak resin, resorcinol novolak resin, hydroquinone novolak resin or the like is novolakized
  • two or more kinds of phenol compounds such as catechol resorcinol novolak resin, resorcinol hydroquinone novolak resin
  • a novolak resin a resin in which one kind of phenol compound such as cresol novolak resin, catechol novolak resin, resorcinol novolak resin, hydroquinone novolak resin or the
  • each R 1 independently represents an alkyl group, an aryl group, or an aralkyl group.
  • the alkyl group, aryl group and aralkyl group represented by R 1 may further have a substituent.
  • the substituent include an alkyl group (except when R 1 is an alkyl group), an aryl group, a halogen atom, and a hydroxyl group.
  • m independently represents an integer of 0 to 2, and when m is 2, two R 1 s may be the same or different.
  • Each m is independently preferably 0 or 1, and more preferably 0.
  • Each n independently represents an integer of 1 to 7.
  • R 2 and R 3 each independently represent a hydrogen atom, an alkyl group, an aryl group, or an aralkyl group.
  • the alkyl group, aryl group, and aralkyl group represented by R 2 and R 3 may further have a substituent. Examples of the substituent include an alkyl group (except when R 2 or R 3 is an alkyl group), an aryl group, a halogen atom, a hydroxyl group and the like.
  • R 2 and R 3 in the general formulas (II-1) and (II-2) are preferably a hydrogen atom, an alkyl group, or an aryl group from the viewpoint of storage stability and thermal conductivity.
  • An atom, an alkyl group having 1 to 4 carbon atoms, or an aryl group having 6 to 12 carbon atoms is more preferable, and a hydrogen atom is still more preferable.
  • the partial structure derived from a phenol compound other than resorcinol includes phenol, cresol, catechol, hydroquinone, 1 from the viewpoint of thermal conductivity and adhesiveness. , 2,3-trihydroxybenzene, 1,2,4-trihydroxybenzene and 1,3,5-trihydroxybenzene, preferably a partial structure derived from at least one selected from the group consisting of catechol and It is more preferably a partial structure derived from at least one selected from hydroquinone.
  • the partial structure derived from a phenol compound other than catechol includes phenol, cresol, resorcinol, hydroquinone, 1 from the viewpoint of thermal conductivity and adhesiveness. , 2,3-trihydroxybenzene, 1,2,4-trihydroxybenzene and 1,3,5-trihydroxybenzene, preferably a partial structure derived from at least one selected from the group consisting of resorcinol and It is more preferably a partial structure derived from at least one selected from hydroquinone.
  • the partial structure derived from the phenol compound means a monovalent or divalent group constituted by removing one or two hydrogen atoms from the benzene ring portion of the phenol compound.
  • the position where the hydrogen atom is removed is not particularly limited.
  • the content ratio of the partial structure derived from resorcinol is not particularly limited. From the viewpoint of elastic modulus, the content ratio of the partial structure derived from resorcinol to the total mass of the compound having the structural unit represented by the general formula (II-1) is preferably 55% by mass or more. From the viewpoint of the transition temperature (Tg) and the linear expansion coefficient, it is more preferably 60% by mass or more, further preferably 80% by mass or more, and from the viewpoint of thermal conductivity, it is 90% by mass or more. Particularly preferred.
  • the molecular weight of the compound having a structural unit represented by at least one selected from the group consisting of general formula (II-1) and general formula (II-2) is not particularly limited.
  • the number average molecular weight (Mn) is preferably 2000 or less, more preferably 1500 or less, and even more preferably 350 to 1500.
  • the weight average molecular weight (Mw) is preferably 2000 or less, more preferably 1500 or less, and further preferably 400 to 1500. These Mn and Mw are measured by a usual method using gel permeation chromatography (GPC).
  • the hydroxyl equivalent of the compound having a structural unit represented by at least one selected from the group consisting of general formula (II-1) and general formula (II-2) is not particularly limited. From the viewpoint of the crosslinking density involved in heat resistance, the hydroxyl group equivalent is preferably 50 g / eq to 150 g / eq on average, more preferably 50 g / eq to 120 g / eq, and 55 g / eq to 120 g / eq. More preferably, it is eq.
  • the hydroxyl equivalent is a value measured according to JIS K0070: 1992.
  • the proportion of the compound having a structural unit represented by at least one selected from the group consisting of general formula (II-1) and general formula (II-2) is preferably 50% by mass or more, and more preferably 80% by mass or more. More preferably, 90 mass% or more is still more preferable.
  • the phenol novolak resin is represented by at least one selected from the group consisting of the following general formula (III-1) to the following general formula (III-4) It is also preferable to include a compound having
  • n each independently represents a positive integer, and represents the number of each structural unit to which m or n is attached.
  • Ar independently represents a group represented by the following general formula (III-a) or the following general formula (III-b).
  • the structure represented by at least one selected from the group consisting of the general formula (III-1) to the general formula (III-4) may be included as the main chain skeleton of the phenol novolak resin, or the phenol novolak It may be contained as part of the side chain of the resin. Furthermore, each structural unit constituting the partial structure represented by any one of the general formulas (III-1) to (III-4) may be included randomly or regularly. It may be included or may be included in a block shape. Further, in the general formulas (III-1) to (III-4), the substitution position of the hydroxyl group is not particularly limited as long as it is on the aromatic ring.
  • R 11 and R 14 in formulas (III-a) and (III-b) each independently represent a hydrogen atom or a hydroxyl group, and are preferably a hydroxyl group from the viewpoint of thermal conductivity. Further, the substitution positions of R 11 and R 14 are not particularly limited.
  • R 12 and R 13 each independently represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
  • alkyl group having 1 to 8 carbon atoms in R 12 and R 13 include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, pentyl group, hexyl. Groups, heptyl groups, and octyl groups.
  • substitution positions of R 12 and R 13 in the general formula (III-a) are not particularly limited.
  • Ar in the general formulas (III-1) to (III-4) is a group derived from dihydroxybenzene (in the general formula (III-a), R 11 is a hydroxyl group) from the viewpoint of achieving better thermal conductivity.
  • a is, R 12 and R 13 is a hydrogen atom group), and at least one of R 14 in group (general formula (III-b) derived from a dihydroxy naphthalene is selected from the group consisting of group) a hydroxyl group It is preferable that
  • group derived from dihydroxybenzene means a divalent group formed by removing two hydrogen atoms from the aromatic ring portion of dihydroxybenzene, and the position at which the hydrogen atom is removed is not particularly limited. Further, the “group derived from dihydroxynaphthalene” has the same meaning.
  • Ar is more preferably a group derived from dihydroxybenzene, and a group derived from 1,2-dihydroxybenzene (catechol) and 1,3- More preferably, it is at least one selected from the group consisting of groups derived from dihydroxybenzene (resorcinol).
  • resorcinol groups derived from dihydroxybenzene
  • Ar contains at least a group derived from resorcinol.
  • the structural unit represented by the structural unit n preferably contains a group derived from resorcinol.
  • the compound having a structure represented by at least one selected from the group consisting of general formula (III-1) to general formula (III-4) includes a structural unit derived from resorcinol
  • the structural unit derived from resorcinol The content of is 55 in the total weight of the compound having a structure represented by at least one selected from the group consisting of general formula (III-1) to general formula (III-4) from the viewpoint of elastic modulus.
  • the viewpoint of Tg and linear expansion coefficient of the cured product more preferably 60% by weight or more, still more preferably 80% by weight or more, from the viewpoint of thermal conductivity, It is particularly preferably 90% by mass or more.
  • (m + n) is preferably 20 or less, more preferably 15 or less, and still more preferably 10 or less from the viewpoint of fluidity.
  • the lower limit of (m + n) is not particularly limited.
  • the compound having a structure represented by at least one selected from the group consisting of general formula (III-1) to general formula (III-4) is particularly a group derived from dihydroxybenzene in which Ar is substituted or unsubstituted, and When it is at least one kind of a group derived from substituted or unsubstituted dihydroxynaphthalene, compared with a phenolic resin or the like obtained by simply novolacizing these, a curing agent having a low softening point is easily synthesized. It tends to be obtained. Therefore, by including such a phenol resin as a curing agent, there are advantages such as easy manufacture and handling of the epoxy resin molding material.
  • the proportion of the compound having a structure represented by at least one selected from the group consisting of formula (III-1) to general formula (III-4) is preferably 50% by mass or more, more preferably 80% by mass or more. 90 mass% or more is more preferable.
  • the content ratio of the monomer that is a phenol compound is not particularly limited.
  • the content in the phenolic curing agent is preferably 5% by mass to 80% by mass, more preferably 15% by mass to 60% by mass, and 20% by mass to 50% by mass. More preferably.
  • the monomer content is 80% by mass or less, the amount of monomers that do not contribute to crosslinking during the curing reaction is reduced, and the number of crosslinked high molecular weight substances is increased, so that a higher density crosslinked structure is formed and the thermal conductivity is increased. Tend to improve. Moreover, since it is easy to flow at the time of shaping
  • the content of the curing agent is not particularly limited.
  • the equivalent number of active hydrogens of the phenolic hydroxyl group contained in the phenolic curing agent (equivalent number of phenolic hydroxyl groups) and the equivalent of the epoxy group contained in the epoxy resin
  • the number ratio is preferably 0.5 to 2, more preferably 0.8 to 1.2.
  • the epoxy resin molding material contains at least one kind of inorganic filler.
  • the cured product of the epoxy resin molding material has improved thermal conductivity.
  • the inorganic filler is preferably insulating.
  • the “insulating property” of the inorganic filler means the property that the inorganic filler itself does not flow current even when a voltage of several hundred volts to several thousand volts is applied, and is the most occupied by electrons. This is because the valence band having a high energy level is separated from the next band (conduction band) above it by a large energy gap.
  • the material for the inorganic filler include boron nitride, alumina, silica, aluminum nitride, magnesium oxide, silicon oxide, aluminum hydroxide, and barium sulfate.
  • at least one selected from the group consisting of magnesium oxide and alumina is preferable from the viewpoints of fluidity, thermal conductivity, and electrical insulation.
  • boron nitride, silica, aluminum nitride or the like may be further contained within a range not impeding fluidity.
  • the total proportion of at least one inorganic filler selected from the group consisting of magnesium oxide and alumina in the inorganic filler is preferably 50% by mass or more, more preferably 80% by mass or more, More preferably, it is 90 mass% or more.
  • the inorganic filler may have a single peak or a plurality of peaks when a particle size distribution curve is drawn with the particle diameter on the horizontal axis and the frequency on the vertical axis.
  • the average particle size (D50) corresponding to 50% cumulative from the small particle size side of the weight cumulative particle size distribution of the inorganic filler is From the viewpoint of conductivity, the thickness is preferably 0.1 ⁇ m to 100 ⁇ m, more preferably 0.1 ⁇ m to 70 ⁇ m.
  • the average particle size of the inorganic filler is measured using a laser diffraction method, and can be measured using a laser diffraction scattering particle size distribution measuring device (for example, LS230 manufactured by Beckman Coulter).
  • the inorganic filler having a plurality of peaks in the particle size distribution curve can be constituted by combining two or more kinds of inorganic fillers having different average particle diameters, for example.
  • the content of the inorganic filler in the epoxy resin molding material is not particularly limited. From the viewpoint of thermal conductivity and moldability, when the total solid content of the epoxy resin molding material is 100% by volume, the content of the inorganic filler is preferably 60% by volume to 90% by volume, More preferably, it is 70 volume% to 85 volume%. Higher thermal conductivity can be achieved when the content of the inorganic filler is 60% by volume or more. On the other hand, when the content of the inorganic filler is 90% by volume or less, an epoxy resin molding material having excellent moldability can be obtained.
  • the solid content of the epoxy resin molding material means the remaining components obtained by removing volatile components from the epoxy resin molding material.
  • Inorganic filler content (volume%) ⁇ (Ew / Ed) / ((Aw / Ad) + (Bw / Bd) + (Cw / Cd) + (Dw / Dd) + (Ew / Ed) + (Fw / Fd)) ⁇ ⁇ 100
  • each variable is as follows.
  • Aw mass composition ratio of epoxy resin A (mass%)
  • Bw mass composition ratio (% by mass) of curing agent
  • Cw mass composition ratio of inorganic filler (mass%)
  • Dw Mass composition ratio (% by mass) of a curing accelerator used as necessary
  • Ew Mass composition ratio (% by mass) of a silane coupling agent used as necessary
  • Fw mass composition ratio (% by mass) of other components used as necessary
  • Ad Specific gravity of epoxy resin A Bd: Specific gravity of curing agent Cd: Specific gravity of inorganic filler
  • Ed Specific gravity of silane coupling agent used as needed
  • Fd Necessary Specific gravity of other components used depending on
  • the epoxy resin molding material may contain a curing accelerator as necessary. By using a curing accelerator together with the curing agent, the epoxy resin molding material can be further sufficiently cured.
  • the type and blending amount of the curing accelerator are not particularly limited, and an appropriate one can be selected from the viewpoint of reaction rate, reaction temperature, storage property, and the like.
  • the curing accelerator include imidazole compounds, organophosphorus compounds, tertiary amines, and quaternary ammonium salts. These may be used alone or in combination of two or more.
  • an organic phosphine compound an organic phosphine compound with maleic anhydride, a quinone compound (1,4-benzoquinone, 2,5-toluquinone, 1,4-naphthoquinone, 2,3-dimethylbenzoquinone, 2, 6-dimethylbenzoquinone, 2,3-dimethoxy-5-methyl-1,4benzoquinone, 2,3-dimethoxy-1,4-benzoquinone, phenyl-1,4-benzoquinone, etc.), diazophenylmethane, phenol resin, etc.
  • a compound having intramolecular polarization formed by adding a compound having a ⁇ bond a complex of an organic phosphine compound and an organic boron compound (tetraphenylborate, tetra-p-tolylborate, tetra-n-butylborate, etc.); It is preferably at least one selected from the group consisting of
  • organic phosphine compound examples include triphenylphosphine, diphenyl (p-tolyl) phosphine, tris (alkylphenyl) phosphine, tris (alkoxyphenyl) phosphine, tris (alkylalkoxyphenyl) phosphine, and tris (dialkylphenyl).
  • Phosphine tris (trialkylphenyl) phosphine, tris (tetraalkylphenyl) phosphine, tris (dialkoxyphenyl) phosphine, tris (trialkoxyphenyl) phosphine, tris (tetraalkoxyphenyl) phosphine, trialkylphosphine, dialkylarylphosphine, Examples thereof include alkyl diaryl phosphine.
  • the content of the curing accelerator in the epoxy resin molding material is not particularly limited.
  • the content of the curing accelerator is preferably 0.1% by mass to 1.5% by mass with respect to the total mass of the epoxy resin and the curing agent, and is 0.2% by mass. More preferably, it is ⁇ 1% by mass.
  • the epoxy resin molding material may contain a silane coupling agent as required.
  • a silane coupling agent By including a silane coupling agent, an interaction occurs between the surface of the inorganic filler and the epoxy resin surrounding it, improving fluidity, achieving high thermal conductivity, and further intruding moisture. Insulating reliability tends to improve insulation reliability.
  • the type of the silane coupling agent is not particularly limited, and one type may be used alone or two or more types may be used in combination. Among these, a silane coupling agent having a phenyl group is preferable.
  • a silane coupling agent containing a phenyl group is likely to interact with an epoxy resin having a mesogenic skeleton. For this reason, when an epoxy resin molding material contains the silane coupling agent containing a phenyl group, when it is set as hardened
  • silane coupling agent containing a phenyl group is not particularly limited.
  • Specific examples of the silane coupling agent having a phenyl group include 3-phenylaminopropyltrimethoxysilane, 3-phenylaminopropyltriethoxysilane, N-methylanilinopropyltrimethoxysilane, and N-methylanilinopropyltriethoxy.
  • the silane coupling agent containing a phenyl group may be used individually by 1 type, or may use 2 or more types together.
  • a commercial product may be used as the silane coupling agent containing a phenyl group.
  • the proportion of the silane coupling agent having a phenyl group in the entire silane coupling agent is preferably 50% by mass or more, more preferably 80% by mass or more, and further preferably 90% by mass or more. .
  • the inorganic filler may contain a silane coupling agent in which a phenyl group is directly bonded to a silicon atom (Si). More preferred.
  • the silane coupling agent may be present in a state of adhering to the surface of the inorganic filler or in a state of not adhering to the surface of the inorganic filler. , Both may be mixed.
  • silicon atoms derived from the silane coupling agent present on the surface of the inorganic filler are quantified.
  • Examples of the quantitative method include 29 Si CP / MAS (Cross-Polarization / Magic angle spinning) solid-state NMR (nuclear magnetic resonance). Since the nuclear magnetic resonance apparatus (for example, JNM-ECA700, manufactured by JEOL Ltd.) has high resolution, even when the epoxy resin molding material contains silica as an inorganic filler, the silicon atoms derived from silica as the inorganic filler and It is possible to distinguish from silicon atoms derived from silane coupling agents.
  • the silicon atoms derived from the silane coupling agent are also quantified using a fluorescent X-ray analyzer (for example, Supermini 200, manufactured by Rigaku Corporation). can do.
  • a fluorescent X-ray analyzer for example, Supermini 200, manufactured by Rigaku Corporation.
  • the silane coupling agent per specific surface area of the inorganic filler The coating amount of the derived silicon atoms is calculated.
  • the inorganic filler contained in the epoxy resin molding material can be taken out of the epoxy resin molding material by, for example, the following method.
  • An epoxy resin molding material is put in a magnetic crucible and heated in a muffle furnace or the like (for example, 600 ° C.) to burn the resin component.
  • the resin component of the epoxy resin molding material is dissolved in an appropriate solvent, and the inorganic filler is recovered by filtration and dried.
  • the method for adding the silane coupling agent to the epoxy resin molding material is not particularly limited. Specifically, an integral method in which a silane coupling agent is also added when mixing other materials such as epoxy resin and inorganic filler, after mixing a certain amount of silane coupling agent with a small amount of resin, Master batch method to mix with other materials such as inorganic filler, before mixing with other materials such as epoxy resin, mix inorganic filler and silane coupling agent in advance on the surface of inorganic filler There is a pretreatment method for treating a ring agent.
  • a dry method in which a stock solution or a solution of a silane coupling agent is dispersed together with an inorganic filler by high-speed stirring, the inorganic filler is slurried with a dilute solution of the silane coupling agent, or an inorganic filler is used.
  • a wet method in which the surface of the inorganic filler is treated with a silane coupling agent by immersing the silane coupling agent.
  • the epoxy resin molding material may contain other components in addition to the components described above.
  • Other components include oxidized and non-oxidized polyolefins, carnauba wax, montanic acid esters, montanic acid, stearic acid and other mold release agents, silicone oil, silicone rubber powder and other stress relieving agents, and glass fiber reinforcement. Materials.
  • the other components may be used alone or in combination of two or more.
  • the method for preparing the epoxy resin molding material is not particularly limited.
  • As a general method there is a method in which components of a predetermined blending amount are sufficiently mixed by a mixer or the like, then melt-kneaded, cooled, and pulverized.
  • the melt kneading can be performed with a kneader, a roll, an extruder or the like that has been heated to 70 ° C. to 140 ° C. in advance.
  • Epoxy resin molding materials are easy to use if they are tableted with dimensions and masses that meet the molding conditions.
  • Whether or not the epoxy resin molding material is in the A-stage state is determined according to the following criteria.
  • a certain amount of the epoxy resin molding material is put into an organic solvent (tetrahydrofuran, acetone, etc.) in which the epoxy resin contained in the epoxy resin molding material is soluble, and the inorganic filler remaining after a certain period of time is filtered off. To do. If the difference between the mass after drying of the residue obtained by filtration and the mass of ash after high-temperature treatment is within ⁇ 0.5% by mass, it is judged that the epoxy resin molding material was in the A-stage state. Is done. The mass of ash is measured and calculated in accordance with JIS K 7250-1: 2006.
  • reaction heat per fixed mass of the epoxy resin molding material that has been previously determined to be in the A-stage state is measured by a differential scanning calorimeter (DSC, for example, Pyris 1 manufactured by PerkinElmer) and used as a reference value. Thereafter, if the difference between the measured value of the reaction heat per fixed mass of the prepared epoxy resin molding material and the reference value is within ⁇ 5%, it is determined that the A-stage state has been reached.
  • DSC differential scanning calorimeter
  • the mass reduction rate after heating the A-stage epoxy resin molding material at 180 ° C. for 1 hour is preferably 0.1% by mass or less.
  • the mass reduction rate after heating the A-stage epoxy resin molding material at 180 ° C. for 1 hour is 0.1% by mass or less, which means that the A-stage epoxy resin molding material is a so-called “solventless type”.
  • the molded product of the present embodiment is produced by molding the epoxy resin molding material of the present embodiment.
  • the molded cured product of the present embodiment is produced by heat-treating (post-curing) the molded product of the present embodiment.
  • the method for molding the epoxy resin molding material is not particularly limited, and can be selected from known press molding methods or the like according to the application.
  • the transfer molding method is the most common, but a compression molding method or the like may be used.
  • the mold temperature during molding is preferably not less than the phase transition temperature of epoxy resin A and not more than 150 ° C., more preferably not more than 140 ° C. When the temperature is higher than the phase transition temperature of the epoxy resin A, the epoxy resin A is sufficiently melted during molding to facilitate molding, and when the temperature is 150 ° C. or lower, the thermal conductivity of the molded product tends to be excellent.
  • Mold temperature during press molding is generally 150 ° C to 180 ° C from the viewpoint of fluidity, and at temperatures below 150 ° C, general epoxy resins are difficult to melt, so molding tends to be difficult There is. However, the epoxy resin molding material of this embodiment can be molded even at 150 ° C. or lower.
  • the molded product preferably has a diffraction peak in the range of diffraction angle 2 ⁇ of 3.0 ° to 3.5 ° in an X-ray diffraction spectrum obtained by an X-ray diffraction method using CuK ⁇ rays.
  • the molded product having such a diffraction peak has a highly ordered smectic structure among higher order structures, and is excellent in thermal conductivity.
  • the molded product removed from the mold after molding may be used as it is, or may be used after being cured by heating in an oven or the like, if necessary.
  • the molded cured product is obtained by post-curing the molded product by heating.
  • the heating conditions for the molded product can be appropriately selected according to the type and amount of the epoxy resin A, the curing agent and the like contained in the epoxy resin molding material.
  • the heating temperature of the molded product is preferably 130 ° C. to 200 ° C., more preferably 150 ° C. to 180 ° C.
  • the heating time of the molded product is preferably 1 hour to 10 hours, more preferably 2 hours to 6 hours.
  • the molded cured product is diffracted in the X-ray diffraction spectrum obtained by the X-ray diffraction method using CuK ⁇ rays in a diffraction angle 2 ⁇ of 3.0 ° to 3.5 °. Has a peak. This indicates that the highly ordered smectic structure formed in the molded product is maintained after post-curing by heating, and a molded cured product having excellent thermal conductivity can be obtained.
  • the molded product and molded cured product of the epoxy resin molding material of the present embodiment can be used in fields such as a printed wiring board and a semiconductor element sealing material in addition to industrial and automotive motors and inverters.
  • the epoxy resin molding materials of Examples 1 to 10 and Comparative Examples 1 to 10 were all in the A-stage state. Further, when the epoxy resin molding materials of Examples 1 to 10 and Comparative Examples 1 to 10 were heated at 180 ° C. for 1 hour, the mass reduction ratios were all 0.1% by mass or less.
  • Epoxy resin 7 YSLV-80XY without mesogen skeleton bisphenol F type epoxy resin, manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., epoxy equivalent: 195 g / eq, liquid crystal phase is not shown and isotropically cured
  • CRN (catechol resorcinol novolak resin, catechol (C) and resorcinol (R) charge mass ratio (C / R): 5/95)
  • CRN catechol resorcinol novolak resin, catechol (C) and resorcinol (R) charge mass ratio (C / R): 5/95)
  • KBM-202SS diphenyldimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd., molecular weight 244
  • KBM-573 3-phenylaminopropyltrimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd., molecular weight 255)
  • the solid content of the epoxy resins 1 to 6 was measured by the heat loss method.
  • the solid content is measured by measuring 1.0 g to 1.1 g of the sample in an aluminum cup and leaving it in a dryer set at a temperature of 180 ° C. for 30 minutes, and the measured amount before heating. Based on the following formula:
  • Solid content (%) (Measured amount after standing for 30 minutes / Measured amount before heating) ⁇ 100
  • the number average molecular weights of the epoxy resins 1 to 6 were measured by gel permeation chromatography (GPC). The measurement was performed using a high performance liquid chromatography L6000 manufactured by Hitachi, Ltd. and a data analyzer C-R4A manufactured by Shimadzu Corporation. As analytical GPC columns, Tosoh Corporation G2000HXL and 3000HXL were used. The measurement was performed at a sample concentration of 0.2% by mass, tetrahydrofuran as the mobile phase, and a flow rate of 1.0 ml / min. A calibration curve was prepared using a polystyrene standard sample, and the number average molecular weight was calculated using the polystyrene conversion value.
  • the epoxy equivalents of epoxy resins 1 to 6 were measured by the perchloric acid titration method.
  • the phase transition temperatures of the epoxy resins 1 to 6 were measured using a differential scanning calorimetry (DSC) measuring device (Pyris 1 manufactured by PerkinElmer). DSC measurement of a 3 mg to 5 mg sample sealed in an aluminum pan was performed under the conditions of a nitrogen atmosphere with a temperature increase rate of 20 ° C./min, a measurement temperature range of 25 ° C. to 350 ° C., and a flow rate of 20 ⁇ 5 ml / min. The temperature at which the accompanying energy change occurs (endothermic reaction peak temperature) was defined as the phase transition temperature.
  • FIG. 1 the graph obtained by the DSC measurement of the epoxy resins 1 and 3 is shown.
  • the number average molecular weight and the weight average molecular weight of the obtained CRN were measured by GPC.
  • the measurement was performed using a high performance liquid chromatography L6000 manufactured by Hitachi, Ltd. and a data analyzer C-R4A manufactured by Shimadzu Corporation.
  • As analytical GPC columns Tosoh Corporation G2000HXL and 3000HXL were used.
  • the measurement was performed at a sample concentration of 0.2% by mass, tetrahydrofuran as the mobile phase, and a flow rate of 1.0 ml / min.
  • a calibration curve was prepared using a polystyrene standard sample, and the number average molecular weight and the weight average molecular weight were calculated using the polystyrene conversion value.
  • the hydroxyl equivalent was measured as follows.
  • the hydroxyl equivalent was measured by acetyl chloride-potassium hydroxide titration method.
  • the determination of the titration end point was performed by potentiometric titration instead of the coloring method using an indicator because the solution color was dark.
  • the hydroxyl group of the measurement resin was acetylated in a pyridine solution, the excess reagent was decomposed with water, and the resulting acetic acid was titrated with a potassium hydroxide / methanol solution.
  • the obtained CRN is a mixture of compounds having a partial structure represented by at least one of the general formulas (III-1) to (III-4), and Ar is represented by the general formula (III-a)
  • R 11 is a hydroxyl group
  • R 12 and R 13 are hydrogen atoms, a group derived from 1,2-dihydroxybenzene (catechol) and a group derived from 1,3-dihydroxybenzene (resorcinol), respectively.
  • the adhesion amount of silicon atoms derived from the silane coupling agent per specific surface area of the inorganic filler was measured by the following method. First, the specific surface area of the inorganic filler was measured by the BET method using a specific surface area pore distribution measuring apparatus (SA3100, manufactured by Beckman Coulter).
  • the molded product or molded cured product is cut to produce a 5 mm ⁇ 50 mm ⁇ 3 mm rectangular parallelepiped, and using a three-point bending vibration test jig with a dynamic viscoelasticity measuring apparatus (RSA-G2 manufactured by TA Instruments), frequency: The dynamic viscoelasticity was measured in the temperature range of 40 ° C. to 300 ° C. under the conditions of 1 Hz and temperature rising rate: 5 ° C./min.
  • the glass transition temperature (Tg) was defined as the temperature at the peak top portion in tan ⁇ obtained from the ratio of the storage elastic modulus and loss elastic modulus obtained by the above method.
  • the molded product or the molded cured product was cut to produce a 10 mm square cube, and the density (g / cm 3 ) was measured by Archimedes method.
  • the molded product or the molded cured product was cut to produce a 10 mm square cube and blackened with a graphite spray. Thereafter, the thermal diffusivity was evaluated by a xenon flash method (LFA447 nanoflash manufactured by NETZSCH). From the product of this value, the density measured by the Archimedes method, and the specific heat measured by DSC (Pyris 1 manufactured by Perkin Elmer), the thermal conductivity of the molded product or molded cured product was determined.
  • Examples 1 to 5 and Comparative Examples 1 to 5 magnesium oxide was used as the inorganic filler, and in Examples 6 to 10 and Comparative Examples 6 to 10, alumina was used. Comparative Examples 1, 2, 6, and 7 using the epoxy resin 1 or 2 having a phase transition temperature of 140 ° C. or higher could not be molded.
  • Examples 1 to 10 having a phase transition temperature of 140 ° C. or lower are comparative examples using an epoxy resin 7 having no mesogenic skeleton. Compared with 3 to 5 and 8 to 10, the thermal conductivity increased by 2 W / (m ⁇ K) to 3 W / (m ⁇ K).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

 エポキシ樹脂成形材料は、メソゲン骨格を有し且つ相転移温度が140℃未満のエポキシ樹脂Aと、硬化剤と、無機充填材と、を含有する。

Description

エポキシ樹脂成形材料、成形物、成形硬化物及び成形物の製造方法
 本発明は、エポキシ樹脂成形材料、成形物、成形硬化物及び成形物の製造方法に関する。
 産業用及び自動車用のモーター、インバーター等の装置に用いられる絶縁材料には、絶縁性能の高さ、成形の容易さ、耐熱性等の観点から、エポキシ樹脂等の熱硬化性樹脂が広く使用されている。近年、これらの装置の高出力化及び小型化が急速に進み、絶縁材料に求められる特性のレベルもかなり高くなっている。特に、小型化に伴い高密度化された導体から発生する発熱量が増大する傾向にあり、いかに熱を放散させるかが重要な課題となっている。そこで、熱硬化性樹脂の成形後の熱伝導性を向上させる方策が種々試みられている。
 高熱伝導性を有する熱硬化性樹脂として、メソゲン骨格を有するエポキシ樹脂を用い、これを含む樹脂組成物の硬化物が提案されている(例えば、特許4118691号公報参照)。メソゲン骨格を有するエポキシ樹脂は、例えば、特許4619770号公報、特開2010-241797号公報、及び特許5471975号公報に示されている。また、高熱伝導性を有し、且つ軟化点(融点)の低い熱硬化性樹脂としては、特許5127164号公報に記載されるような、特定の構造を有するエポキシ樹脂が提案されている。
 また、熱硬化性樹脂の成形後の熱伝導性を向上させる手法のひとつとして、高熱伝導性の無機充填材を熱硬化性樹脂に混合することが挙げられる(例えば、特開2008-13759号公報参照)。
 熱硬化性樹脂に無機充填材を混合する場合、無機充填材の量が増加するに従って樹脂組成物の粘度が上昇し、作業性が悪化したり、無機充填材の分散性が低下したりする傾向にある。さらに、有機物である熱硬化性樹脂と無機充填材との親和性にも問題が生じる場合が多く、熱硬化性樹脂と無機充填材との界面でボイドの発生することがある。そのため、複合材料としての熱伝導率の低下及び長期信頼性の悪化を生ずることがある。
 また、メソゲン骨格を有するエポキシ樹脂はその骨格の特性から高融点化する傾向があり、流動性が低下して成形が困難になるという課題を生じることがある。この課題の対策として、分散剤を添加することにより、流動性を高める手法が一般的に知られている。しかし、このような手法では、硬化後において高熱伝導化が発揮されないことがある。
 本発明は、硬化後に高熱伝導性を発揮するエポキシ樹脂成形材料、該エポキシ樹脂を用いた成形物及び成形硬化物、並びに成形物の製造方法を提供することを課題とする。
 前記課題を達成するための具体的手段は以下の通りである。
<1> メソゲン骨格を有し且つ結晶相から液晶相に相転移する相転移温度が140℃以下のエポキシ樹脂Aと、
 硬化剤と、
 無機充填材と、
を含有するエポキシ樹脂成形材料。
<2> 前記エポキシ樹脂Aは、1つのベンゼン環に2個の水酸基を有する2価フェノール化合物と、メソゲン骨格を有し且つ結晶相から液晶相に相転移する性質を有するエポキシ樹脂Bとの反応物を含む<1>に記載のエポキシ樹脂成形材料。
<3> 前記エポキシ樹脂Bの相転移温度が、140℃以上である<2>に記載のエポキシ樹脂成形材料。
<4> 前記エポキシ樹脂Aは、前記2価フェノール化合物のフェノール性水酸基の当量数と、前記エポキシ樹脂Bのエポキシ基の当量数と、の比(エポキシ基の当量数/フェノール性水酸基の当量数)を100/10~100/20とした反応物を含む<2>又は<3>に記載のエポキシ樹脂成形材料。
<5> 前記エポキシ樹脂Bが、下記一般式(I)で表される化合物を含む<2>~<4>のいずれか1項に記載のエポキシ樹脂成形材料。
Figure JPOXMLDOC01-appb-C000008

 
(一般式(I)中、R~Rはそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を表す。)
<6> 前記2価フェノール化合物が、ヒドロキノンを含む<2>~<5>のいずれか1項に記載のエポキシ樹脂成形材料。
<7> 前記硬化剤が、フェノール系硬化剤を含む<1>~<6>のいずれか1項に記載のエポキシ樹脂成形材料。
<8> 前記フェノール系硬化剤が、下記一般式(II-1)及び下記一般式(II-2)からなる群より選択される少なくとも1つで表される構造単位を有する化合物を含む<7>に記載のエポキシ樹脂成形材料。
Figure JPOXMLDOC01-appb-C000009
(一般式(II-1)及び一般式(II-2)中、Rはそれぞれ独立に、アルキル基、アリール基、又はアラルキル基を表し、該アルキル基、アリール基、及びアラルキル基は置換基を有していてもよい。R及びRはそれぞれ独立に、水素原子、アルキル基、アリール基、又はアラルキル基を表し、該アルキル基、アリール基、及びアラルキル基は置換基を有していてもよい。mはそれぞれ独立に、0~2の整数を表す。nはそれぞれ独立に、1~7の整数を表す。)
<9> 前記フェノール系硬化剤が、下記一般式(III-1)~下記一般式(III-4)からなる群より選択される少なくとも1つで表される構造単位を有する化合物を含む<7>又は<8>に記載のエポキシ樹脂成形材料。
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
(一般式(III-1)~一般式(III-4)中、m及びnはそれぞれ独立に、正の整数を表す。また、Arはそれぞれ独立に、下記一般式(III-a)又は下記一般式(III-b)で表される基を表す。)
Figure JPOXMLDOC01-appb-C000014
(一般式(III-a)及び一般式(III-b)中、R11及びR14はそれぞれ独立に、水素原子又は水酸基を表す。R12及びR13はそれぞれ独立に、水素原子又は炭素数1~8のアルキル基を表す。)
<10> さらにシランカップリング剤を含む、<1>~<8>のいずれか1項に記載のエポキシ樹脂成形材料。
<11> 前記シランカップリング剤が、フェニル基を有するシランカップリング剤を含む<10>に記載のエポキシ樹脂成形材料。
<12> 前記フェニル基を有するシランカップリング剤が、ケイ素原子にフェニル基が直接結合した構造を有する<11>に記載のエポキシ樹脂成形材料。
<13> 前記無機充填材の比表面積あたりの前記シランカップリング剤由来のケイ素原子の付着量が、5.0×10-6モル/m~10.0×10-6モル/mである<10>~<12>のいずれか1項に記載のエポキシ樹脂成形材料。
<14> 前記無機充填材が、酸化マグネシウム及びアルミナからなる群より選択される少なくとも1種を含む<1>~<13>のいずれか1項に記載のエポキシ樹脂成形材料。
<15> 前記無機充填材の含有率が、固形分中において60体積%~90体積%である<1>~<14>のいずれか1項に記載のエポキシ樹脂成形材料。
<16> A-ステージ状態にある<1>~<15>のいずれか1項に記載のエポキシ樹脂成形材料。
<17> 180℃で1時間加熱後の質量減少率が、0.1質量%以下である<16>に記載のエポキシ樹脂成形材料。
<18> <1>~<17>のいずれか1項に記載のエポキシ樹脂成形材料を成形した成形物。
<19> CuKα線を用いたX線回折法で得られるX線回折スペクトルにおいて、回折角2θが3.0°~3.5°の範囲に回折ピークを有する<18>に記載の成形物。
<20> <18>又は<19>に記載の成形物を加熱により硬化した成形硬化物。
<21> CuKα線を用いたX線回折法で得られるX線回折スペクトルにおいて、回折角2θが3.0°~3.5°の範囲に回折ピークを有する<20>に記載の成形硬化物。
<22> <1>~<17>のいずれか1項に記載の、エポキシ樹脂Aを含有するエポキシ樹脂成形材料を、前記エポキシ樹脂Aの相転移温度以上150℃以下の温度範囲で成形する、成形物の製造方法。
 本発明によれば、硬化後に高熱伝導性を発揮するエポキシ樹脂成形材料、該エポキシ樹脂を用いた成形物及び成形硬化物、並びに成形物の製造方法を提供することができる。
示差走査熱量(DSC)測定で得られるグラフの一例を示す図である。 実施例1及び比較例3の成形硬化物のX線回折スペクトルである。
 本明細書において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
 本明細書中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 さらに本明細書において組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
 また、本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。
<エポキシ樹脂成形材料>
 本実施形態のエポキシ樹脂成形材料は、メソゲン骨格を有し且つ結晶相から液晶相に相転移する温度(以下「相転移温度」ともいう)が140℃以下のエポキシ樹脂Aと、硬化剤と、無機充填材と、を含有する。本実施形態のエポキシ樹脂成形材料は、必要に応じてその他の成分をさらに含有していてもよい。
 本実施形態のエポキシ樹脂成形材料によれば、硬化後に高熱伝導性を発揮することが可能となる。その理由は明らかではないが、エポキシ樹脂の相転移温度が140℃以下であるとエポキシ樹脂成形材料を作製する際に、エポキシ樹脂が溶融しやすくなり、そのため混錬により均質化しやすくなり、結果、液晶相の生成に関して偏りが抑えられるためであると考えられる。
 以下、本実施形態のエポキシ樹脂成形材料に含有される各成分について詳細に説明する。
-エポキシ樹脂-
 エポキシ樹脂成形材料は、メソゲン骨格を有し相転移温度が140℃以下のエポキシ樹脂Aを含有する。メソゲン骨格を有するエポキシ樹脂は、硬化時に高次構造を形成し易く、エポキシ樹脂成形材料の硬化物を作製した場合に、より高い熱伝導率を達成できる傾向にある。
 本明細書において「メソゲン骨格」とは、液晶性を発現する可能性のある分子構造を示す。具体的には、ビフェニル骨格、フェニルベンゾエート骨格、アゾベンゼン骨格、スチルベン骨格、これらの誘導体等が挙げられる。メソゲン骨格を有するエポキシ樹脂は、硬化時に高次構造を形成し易く、硬化物を作製した場合に、より高い熱伝導率を達成できる傾向にある。
 ここで、高次構造とは、その構成要素がミクロに配列している状態のことであり、例えば、結晶相及び液晶相が相当する。このような高次構造が存在しているか否かは、偏光顕微鏡での観察によって容易に判断することが可能である。すなわち、クロスニコル状態での観察において、偏光解消による干渉模様が見られる場合は高次構造が存在していると判断できる。
 高次構造は、通常では樹脂中に島状に存在しており、ドメイン構造を形成している。そして、ドメイン構造を形成している島のそれぞれを高次構造体という。高次構造体を構成する構造単位同士は、一般的には共有結合で結合されている。
 エポキシ樹脂Aの相転移温度は、140℃以下であり、135℃以下であることが好ましい。
 相転移温度は、示差走査熱量(DSC)測定装置(例えば、パーキンエルマー製、Pyris1)を用いて測定することができる。具体的には、昇温速度20℃/分、測定温度範囲25℃~350℃、流量20±5ml/minの窒素雰囲気下の条件で、アルミパンに密閉した3mg~5mgの試料の示差走査熱量測定を行い、相転移に伴うエネルギー変化(吸熱反応)が起こる温度として測定される。この測定で得られるグラフの一例を図1に示す。図1に現れる吸熱反応ピークの温度を相転移温度とする。
 エポキシ樹脂Aは、メソゲン骨格を有し相転移温度が140℃以下であれば特に制限されない。例えば、エポキシ樹脂Aは、エポキシ化合物であってもよく、エポキシ化合物のオリゴマー体であってもよい。また、オリゴマー体は、エポキシ化合物同士の反応物であっても、エポキシ化合物の一部を硬化剤等により部分的に反応させたプレポリマーの状態であってもよい。メソゲン骨格を有するエポキシ化合物を一部重合させると成形性が向上する場合がある。プレポリマー化させるのに用いるエポキシ化合物は、メソゲン骨格を有し且つ結晶相から液晶相に相転移する性質を有するエポキシ樹脂Bであることが好ましい。エポキシ樹脂Bは、相転移温度が140℃以下であっても、140℃を超えていてもよい。
 特に、エポキシ樹脂Bの相転移温度が140℃以上である場合、1つのベンゼン環に2個の水酸基を置換基として有する2価フェノール化合物と反応させてプレポリマー化した反応物として用いることが好ましい。このような2価フェノール化合物を用いることが、エポキシ樹脂の分子量、熱伝導率、及びガラス転移温度(Tg)の制御の観点から好ましい。
 また、エポキシ樹脂Bと2価フェノール化合物とを部分的に反応させてプレポリマー化すると、相転移温度を下げることが可能となる。そのため、エポキシ樹脂Bの相転移温度が140℃以上であっても使いこなすことが可能となる。一般に、メソゲン骨格を有するエポキシ樹脂は相転移温度が高いため、プレポリマー化する手法は有益である。
 プレポリマー化に用いるフェノール化合物が、水酸基を1分子内に1個有する1価フェノールの場合、硬化後の架橋密度が低下するため熱伝導率が低くなる恐れがある。一方、プレポリマー化に用いるフェノール化合物が、水酸基を1分子内に3個以上有する場合、プレポリマー化する際に反応の制御が困難となり、ゲル化する恐れがある。また、2つ以上のベンゼン環を有する2価フェノール化合物を用いた場合、エポキシ樹脂の構造が剛直になるため高熱伝導率化には有利に働くが、軟化点が高くなりハンドリング性が低下する傾向がある(例えば、特許第5019272号公報参照)
 なお、エポキシ樹脂Bと反応させる硬化剤としては、2価フェノール化合物以外にアミン化合物であってもよい。しかし、アミン化合物を用いた場合、プレポリマー化されたエポキシ樹脂に2級アミン又は3級アミンが生成するため、エポキシ樹脂自体の貯蔵安定性、及びエポキシ樹脂を硬化剤と配合した後のエポキシ樹脂成形材料の貯蔵安定性が低下する場合がある。
 エポキシ樹脂Bは、1種類単独で用いても、2種類以上を併用してもよい。エポキシ樹脂Bの具体例は、例えば、特許4118691号明細書に記載されている。以下に、エポキシ樹脂Bの具体例を示すが、本発明はこれらに限定されない。
 エポキシ樹脂Bとしては、1-(3-メチル-4-オキシラニルメトキシフェニル)-4-(4-オキシラニルメトキシフェニル)-1-シクロヘキセン、1-(3-メチル-4-オキシラニルメトキシフェニル)-4-(4-オキシラニルメトキシフェニル)-ベンゼン、4-{4-(2,3-エポキシプロポキシ)フェニル}シクロヘキシル=4-(2,3-エポキシプロポキシ)ベンゾエート等が挙げられる。これらのエポキシ樹脂の中でも、熱伝導率を向上させる観点から、1-(3-メチル-4-オキシラニルメトキシフェニル)-4-(4-オキシラニルメトキシフェニル)-ベンゼン及び4-{4-(2,3-エポキシプロポキシ)フェニル}シクロヘキシル=4-(2,3-エポキシプロポキシ)ベンゾエートからなる群より選択される少なくとも一種を用いることが好ましい。
 さらに成形材料の流動性向上の観点から、エポキシ樹脂Bは、結晶相から液晶相に相転移する際、単独では秩序性が低いネマチック構造を形成するが、硬化剤との反応物では、より秩序性の高いスメクチック構造を形成するエポキシ樹脂であることが好ましい。このような樹脂としては、下記一般式(I)で示されるtrans-4-{4-(2,3-エポキシプロポキシ)フェニル}シクロヘキシル=4-(2,3-エポキシプロポキシ)ベンゾエートが挙げられる。
Figure JPOXMLDOC01-appb-C000015
 一般式(I)で示される化合物の中でも、下記一般式(I-1)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000016
 一般式(I)及び一般式(I-1)中、R~Rはそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を表す。
 1つのベンゼン環に2個の水酸基を有する2価フェノール化合物としては、例えば、カテコール、レゾルシノール、ヒドロキノン、及びこれらの誘導体が挙げられる。誘導体としては、ベンゼン環に炭素数1~8のアルキル基等が置換した化合物が挙げられる。これらの2価フェノール化合物の中でも、熱伝導率を向上させる観点から、ヒドロキノンを用いることが好ましい。ヒドロキノンは2つの水酸基がパラ位の位置関係となるように置換されている構造であるため、エポキシ樹脂Bと反応させて得られるプレポリマー化されたエポキシ樹脂は直線構造となる。このため、分子のスタッキング性が高く、高次構造を形成し易いと考えられる。2価フェノール化合物は、1種類単独で用いてもよく、2種類以上を併用してもよい。
 エポキシ樹脂Aがエポキシ樹脂Bと2価フェノールとの反応物である場合、エポキシ樹脂Aは、例えば、合成溶媒中にエポキシ樹脂B、2価フェノール化合物、及び反応触媒を溶解し、熱をかけながら撹拌することによって合成することができる。合成溶媒を使用せず、エポキシ樹脂Bを溶融して反応させることでもエポキシ樹脂Aを合成することは可能であるが、エポキシ樹脂が溶融する温度まで高温にしなければならない。このため、安全性の観点からは、合成溶媒を使用した合成法が好ましい。
 2価フェノール化合物のフェノール性水酸基の当量数と、エポキシ樹脂Bのエポキシ基の当量数と、の比(エポキシ基の当量数/フェノール性水酸基の当量数)は、100/10~100/20であることが好ましく、100/10~100/15であることがより好ましい。
 合成溶媒としては、エポキシ樹脂Bと2価フェノール化合物との反応が進行するために必要な温度に加温できる溶媒であれば特に制限されない。具体例としては、シクロヘキサノン、シクロペンタノン、乳酸エチル、プロピレングリコールモノメチルエーテル、N-メチルピロリドン等が挙げられる。
 合成溶媒の量は、反応温度において、エポキシ樹脂B、2価フェノール化合物、及び硬化触媒を全て溶解できる量が最低必要である。反応前の原料種類、溶媒種類等によって溶解性が異なるが、仕込み固形分濃度を20質量%~60質量%とすることが好ましい。このような合成溶媒の量とすると、合成後の樹脂溶液粘度として好ましい範囲となる傾向にある。
 反応触媒の種類は特に限定されず、反応速度、反応温度、貯蔵安定性等の観点から適切なものを選択することができる。反応触媒の具体例としては、イミダゾール系化合物、有機リン系化合物、第3級アミン、第4級アンモニウム塩等が挙げられる。これらは1種類単独でも、2種類以上を併用してもよい。中でも、耐熱性の観点から、有機ホスフィン化合物;有機ホスフィン化合物に無水マレイン酸、キノン化合物(1,4-ベンゾキノン、2,5-トルキノン、1,4-ナフトキノン、2,3-ジメチルベンゾキノン、2,6-ジメチルベンゾキノン、2,3-ジメトキシ-5-メチル-1,4ベンゾキノン、2,3-ジメトキシ-1,4-ベンゾキノン、フェニル-1,4-ベンゾキノン等)、ジアゾフェニルメタン、フェノール樹脂等のπ結合をもつ化合物を付加してなる分子内分極を有する化合物;及び有機ホスフィン化合物と有機ボロン化合物(テトラフェニルボレート、テトラ-p-トリルボレート、テトラ-n-ブチルボレート等)との錯体;からなる群より選択される少なくとも1つであることが好ましい。
 有機ホスフィン化合物としては、トリフェニルホスフィン、ジフェニル(p-トリル)ホスフィン、トリス(アルキルフェニル)ホスフィン、トリス(アルコキシフェニル)ホスフィン、トリス(アルキルアルコキシフェニル)ホスフィン、トリス(ジアルキルフェニル)ホスフィン、トリス(トリアルキルフェニル)ホスフィン、トリス(テトラアルキルフェニル)ホスフィン、トリス(ジアルコキシフェニル)ホスフィン、トリス(トリアルコキシフェニル)ホスフィン、トリス(テトラアルコキシフェニル)ホスフィン、トリアルキルホスフィン、ジアルキルアリールホスフィン、アルキルジアリールホスフィン等が挙げられる。
 反応触媒の量は特に制限されない。反応速度及び貯蔵安定性の観点から、エポキシ樹脂Bと2価フェノール化合物の合計質量に対して0.1質量%~1.5質量%であることが好ましく、0.2質量%~1質量%であることがより好ましい。
 エポキシ樹脂Aは、少量スケールであればガラス製のフラスコを使用し、大量スケールであればステンレス製の合成釜を使用して合成することができる。具体的な合成方法は、例えば以下の通りである。まず、エポキシ樹脂Bをフラスコ又は合成釜に投入し、合成溶媒を入れ、オイルバス又は熱媒により反応温度まで加温し、エポキシ樹脂Bを溶解する。そこに2価フェノール化合物を投入し、合成溶媒中で十分溶解したことを確認した後に反応触媒を投入し、反応を開始する。所定時間の後に反応溶液を取り出せば、エポキシ樹脂A溶液が得られる。また、フラスコ内又は合成釜内において、加温条件のもと減圧下で合成溶媒を留去すれば、エポキシ樹脂Aが室温(例えば、25℃)下で固体として得られる。
 反応温度は、反応触媒の存在下でエポキシ基とフェノール性水酸基との反応が進行する温度であれば制限されず、例えば、100℃~180℃の範囲が好ましく、120℃~170℃の範囲がより好ましい。反応温度を100℃以上とすることで、反応が完結するまでの時間をより短くできる傾向にある。一方、反応温度を180℃以下とすることで、ゲル化が抑えられる傾向にある。
 エポキシ樹脂Aのエポキシ当量は、130g/eq~500g/eqであることが好ましく、135g/eq~400g/eqであることがより好ましく、140g/eq~300g/eqであることが更に好ましい。エポキシ当量は、JIS K7236:2009に準拠して過塩素酸滴定法により測定する。
-硬化剤-
 エポキシ樹脂成形材料は、硬化剤を含有する。硬化剤としては、当分野で通常用いられるものを特に制限なく用いることができる。硬化剤としては、酸無水物系硬化剤、アミン系硬化剤、フェノール系硬化剤、メルカプタン系硬化剤等の重付加型硬化剤、その他イミダゾール等の潜在性硬化剤などが挙げられる。耐熱性及び密着性の観点からは、アミン系硬化剤又はフェノール系硬化剤が好ましい。さらに、保存安定性の観点からは、フェノール系硬化剤がより好ましい。
 フェノール系硬化剤としては、通常用いられるものを特に制限なく用いることができる。例えば、フェノール化合物、及びフェノール化合物をノボラック化したフェノール樹脂を用いることができる。
 フェノール化合物としては、フェノール、o-クレゾール、m-クレゾール、p-クレゾール等の単官能の化合物;カテコール、レゾルシノール、ヒドロキノン等の2官能の化合物;1,2,3-トリヒドロキシベンゼン、1,2,4-トリヒドロキシベンゼン、1,3,5-トリヒドロキシベンゼン等の3官能の化合物;などが挙げられる。また、フェノール樹脂としては、これらフェノール化合物をメチレン鎖等で連結してノボラック化したフェノールノボラック樹脂を硬化剤として用いることもできる。
 フェノール系硬化剤としては、熱伝導性の観点から、カテコール、レゾルシノール、ヒドロキノン等の2官能のフェノール化合物、又は2官能のフェノール化合物をメチレン鎖で連結したフェノールノボラック樹脂であることが好ましく、耐熱性の観点から、2官能のフェノール化合物をメチレン鎖で連結したフェノールノボラック樹脂であることがより好ましい。
 フェノールノボラック樹脂として、クレゾールノボラック樹脂、カテコールノボラック樹脂、レゾルシノールノボラック樹脂、ヒドロキノンノボラック樹脂等の1種類のフェノール化合物をノボラック化した樹脂;カテコールレゾルシノールノボラック樹脂、レゾルシノールヒドロキノンノボラック樹脂等の2種類以上のフェノール化合物をノボラック化した樹脂;などを挙げることができる。
 フェノール系硬化剤としてフェノールノボラック樹脂が用いられる場合、下記一般式(II-1)及び下記一般式(II-2)からなる群より選択される少なくとも1つで表される構造単位を有する化合物を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000017
 一般式(II-1)及び一般式(II-2)において、Rはそれぞれ独立に、アルキル基、アリール基、又はアラルキル基を表す。Rで表されるアルキル基、アリール基及びアラルキル基は、さらに置換基を有していてもよい。該置換基としては、アルキル基(但し、Rがアルキル基の場合を除く)、アリール基、ハロゲン原子、水酸基等を挙げることができる。mはそれぞれ独立に、0~2の整数を表し、mが2の場合、2つのRは同一であっても異なっていてもよい。mはそれぞれ独立に、0又は1であることが好ましく、0であることがより好ましい。また、nはそれぞれ独立に、1~7の整数を表す。
 一般式(II-1)及び一般式(II-2)において、R及びRはそれぞれ独立に、水素原子、アルキル基、アリール基、又はアラルキル基を表す。R及びRで表されるアルキル基、アリール基、及びアラルキル基は、さらに置換基を有していてもよい。該置換基としては、アルキル基(但し、R又はRがアルキル基の場合を除く)、アリール基、ハロゲン原子、水酸基等を挙げることができる。
 一般式(II-1)及び(II-2)中のR及びRとしては、保存安定性と熱伝導性の観点から、水素原子、アルキル基、又はアリール基であることが好ましく、水素原子、炭素数1~4のアルキル基又は炭素数6~12のアリール基であることがより好ましく、水素原子であることが更に好ましい。
 一般式(II-1)で表される構造単位を有する化合物において、レゾルシノール以外のフェノール化合物に由来する部分構造としては、熱伝導性及び接着性の観点から、フェノール、クレゾール、カテコール、ヒドロキノン、1,2,3-トリヒドロキシベンゼン、1,2,4-トリヒドロキシベンゼン及び1,3,5-トリヒドロキシベンゼンからなる群より選ばれる少なくとも1種類に由来する部分構造であることが好ましく、カテコール及びヒドロキノンから選ばれる少なくとも1種類に由来する部分構造であることがより好ましい。
 一般式(II-2)で表される構造単位を有する化合物において、カテコール以外のフェノール化合物に由来する部分構造としては、熱伝導性及び接着性の観点から、フェノール、クレゾール、レゾルシノール、ヒドロキノン、1,2,3-トリヒドロキシベンゼン、1,2,4-トリヒドロキシベンゼン及び1,3,5-トリヒドロキシベンゼンからなる群より選ばれる少なくとも1種類に由来する部分構造であることが好ましく、レゾルシノール及びヒドロキノンから選ばれる少なくとも1種類に由来する部分構造であることがより好ましい。
 ここで、フェノール化合物に由来する部分構造とは、フェノール化合物のベンゼン環部分から1個又は2個の水素原子を取り除いて構成される1価又は2価の基を意味する。なお、水素原子が取り除かれる位置は特に限定されない。
 また、一般式(II-1)で表される構造単位を有する化合物において、レゾルシノールに由来する部分構造の含有比率については特に制限はない。弾性率の観点から、一般式(II-1)で表される構造単位を有する化合物の全質量に対するレゾルシノールに由来する部分構造の含有比率が55質量%以上であることが好ましく、硬化物のガラス転移温度(Tg)及び線膨張率の観点から、60質量%以上であることがより好ましく、80質量%以上であることが更に好ましく、熱伝導性の観点から、90質量%以上であることが特に好ましい。
 また、一般式(II-2)で表される構造単位を有する化合物において、カテコールに由来する部分構造の含有比率については特に制限はない。弾性率の観点から、一般式(II-2)で表される構造単位を有する化合物の全質量に対するカテコールに由来する部分構造の含有比率が55質量%以上であることが好ましく、硬化物のガラス転移温度(Tg)及び線膨張率の観点から、60質量%以上であることがより好ましく、80質量%以上であることが更に好ましく、熱伝導性の観点から、90質量%以上であることが特に好ましい。
 一般式(II-1)及び一般式(II-2)からなる群より選択される少なくとも1つで表される構造単位を有する化合物の分子量は特に制限されない。流動性の観点から、数平均分子量(Mn)としては、2000以下であることが好ましく、1500以下であることがより好ましく、350~1500であることが更に好ましい。また、重量平均分子量(Mw)としては、2000以下であることが好ましく、1500以下であることがより好ましく、400~1500であることが更に好ましい。これらMn及びMwは、ゲルパーミエーションクロマトグラフィー(GPC)を用いた通常の方法により測定される。
 一般式(II-1)及び一般式(II-2)からなる群より選択される少なくとも1つで表される構造単位を有する化合物の水酸基当量は特に制限されない。耐熱性に関与する架橋密度の観点から、水酸基当量は平均値で50g/eq~150g/eqであることが好ましく、50g/eq~120g/eqであることがより好ましく、55g/eq~120g/eqであることが更に好ましい。なお、水酸基当量は、JIS K0070:1992に準拠して測定された値をいう。
 フェノール系硬化剤として一般式(II-1)及び一般式(II-2)からなる群より選択される少なくとも1つで表される構造単位を有する化合物が用いられる場合、フェノール系硬化剤に占める一般式(II-1)及び一般式(II-2)からなる群より選択される少なくとも1つで表される構造単位を有する化合物の割合は、50質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上が更に好ましい。
 フェノール系硬化剤としてフェノールノボラック樹脂が用いられる場合、フェノールノボラック樹脂が、下記一般式(III-1)~下記一般式(III-4)からなる群より選択される少なくとも1つで表される構造を有する化合物を含むことも好ましい。
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
 一般式(III-1)~一般式(III-4)中、m及びnはそれぞれ独立に、正の整数を表し、m又はnが付されたそれぞれの構造単位の数を表す。また、Arはそれぞれ独立に、下記一般式(III-a)又は下記一般式(III-b)で表される基を表す。
Figure JPOXMLDOC01-appb-C000022
 一般式(III-a)及び一般式(III-b)中、R11及びR14はそれぞれ独立に、水素原子又は水酸基を表す。R12及びR13はそれぞれ独立に、水素原子又は炭素数1~8のアルキル基を表す。
 一般式(III-1)~一般式(III-4)からなる群より選択される少なくとも1つで表される構造を有する化合物は、2価のフェノール化合物をノボラック化する製造方法によって副生成的に生成可能なものである。
 一般式(III-1)~一般式(III-4)からなる群より選択される少なくとも1つで表される構造は、フェノールノボラック樹脂の主鎖骨格として含まれていてもよく、又はフェノールノボラック樹脂の側鎖の一部として含まれていてもよい。さらに、一般式(III-1)~一般式(III-4)のいずれか1つで表される部分構造を構成するそれぞれの構造単位は、ランダムに含まれていてもよいし、規則的に含まれていてもよいし、ブロック状に含まれていてもよい。
 また、一般式(III-1)~一般式(III-4)において、水酸基の置換位置は芳香族環上であれば特に制限されない
 一般式(III-1)~一般式(III-4)のそれぞれについて、複数存在するArは全て同一の原子団であってもよいし、2種類以上の原子団を含んでいてもよい。なお、Arはそれぞれ独立に、一般式(III-a)又は一般式(III-b)で表される基を表す。
 一般式(III-a)及び一般式(III-b)におけるR11及びR14はそれぞれ独立に、水素原子又は水酸基を表し、熱伝導性の観点から水酸基であることが好ましい。また、R11及びR14の置換位置は特に制限されない。
 また、一般式(III-a)におけるR12及びR13はそれぞれ独立に、水素原子又は炭素数1~8のアルキル基を表す。R12及びR13における炭素数1~8のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、及びオクチル基が挙げられる。また、一般式(III-a)におけるR12及びR13の置換位置は特に制限されない。
 一般式(III-1)~一般式(III-4)におけるArは、より優れた熱伝導性を達成する観点から、ジヒドロキシベンゼンに由来する基(一般式(III-a)においてR11が水酸基であって、R12及びR13が水素原子である基)、及びジヒドロキシナフタレンに由来する基(一般式(III-b)においてR14が水酸基である基)からなる群より選ばれる少なくとも1種類であることが好ましい。
 ここで、「ジヒドロキシベンゼンに由来する基」とは、ジヒドロキシベンゼンの芳香環部分から水素原子を2つ取り除いて構成される2価の基を意味し、水素原子が取り除かれる位置は特に制限されない。また、「ジヒドロキシナフタレンに由来する基」についても同様の意味である。
 また、エポキシ樹脂成形材料の生産性及び流動性の観点からは、Arはジヒドロキシベンゼンに由来する基であることがより好ましく、1,2-ジヒドロキシベンゼン(カテコール)に由来する基及び1,3-ジヒドロキシベンゼン(レゾルシノール)に由来する基からなる群より選ばれる少なくとも1種類であることが更に好ましい。特に、熱伝導性を特に高める観点から、Arとして少なくともレゾルシノールに由来する基を含むことが好ましい。また、熱伝導性を特に高める観点から、構造単位nで表される構造単位は、レゾルシノールに由来する基を含んでいることが好ましい。
 一般式(III-1)~一般式(III-4)からなる群より選択される少なくとも1つで表される構造を有する化合物がレゾルシノールに由来する構造単位を含む場合、レゾルシノールに由来する構造単位の含有率は、弾性率の観点から、一般式(III-1)~一般式(III-4)からなる群より選択される少なくとも1つで表される構造を有する化合物の総重量中において55質量%以上であることが好ましく、硬化物のTgと線膨張率の観点から、60質量%以上であることがより好ましく、80質量%以上であることが更に好ましく、熱伝導性の観点から、90質量%以上であることが特に好ましい。
 一般式(III-1)~一般式(III-4)におけるm及びnについては、流動性の観点からm/n=20/1~1/5であることが好ましく、20/1~5/1であることがより好ましく、20/1~10/1であることが更に好ましい。また、(m+n)は、流動性の観点から20以下であることが好ましく、15以下であることがより好ましく、10以下であることが更に好ましい。なお、(m+n)の下限値は特に制限されない。
 一般式(III-1)~一般式(III-4)からなる群より選択される少なくとも1つで表される構造を有する化合物は、特にArが置換又は非置換のジヒドロキシベンゼンに由来する基及び置換又は非置換のジヒドロキシナフタレンに由来する基の少なくともいずれか1種類である場合、これらを単純にノボラック化したフェノール樹脂等と比較して、その合成が容易であり、軟化点の低い硬化剤が得られる傾向にある。したがって、このようなフェノール樹脂を硬化剤として含むことで、エポキシ樹脂成形材料の製造及び取り扱いが容易になる等の利点がある。
 なお、フェノールノボラック樹脂が上記一般式(III-1)~上記一般式(III-4)のいずれかで表わされる部分構造を有するか否かは、電界脱離イオン化質量分析法(FD-MS)によってそのフラグメント成分として上記一般式(III-1)~上記一般式(III-4)のいずれかで表わされる部分構造に相当する成分が含まれるか否かによって判断することができる。
 一般式(III-1)~一般式(III-4)からなる群より選択される少なくとも1つで表される構造を有する化合物の分子量は特に制限されない。流動性の観点から、数平均分子量(Mn)として2000以下であることが好ましく、1500以下であることがより好ましく、350~1500であることが更に好ましい。また、重量平均分子量(Mw)としては2000以下であることが好ましく、1500以下であることがより好ましく、400~1500であることが更に好ましい。これらMn及びMwは、GPCを用いた通常の方法により測定される。
 一般式(III-1)~一般式(III-4)からなる群より選択される少なくとも1つで表される構造を有する化合物の水酸基当量は特に制限されない。耐熱性に関与する架橋密度の観点から、水酸基当量は平均値で50g/eq~150g/eqであることが好ましく、50g/eq~120g/eqであることがより好ましく、55g/eq~120g/eqであることが更に好ましい。
 フェノール系硬化剤として一般式(III-1)~一般式(III-4)からなる群より選択される少なくとも1つで表される構造を有する化合物が用いられる場合、フェノール系硬化剤に占める一般式(III-1)~一般式(III-4)からなる群より選択される少なくとも1つで表される構造を有する化合物の割合は、50質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上が更に好ましい。
 フェノール系硬化剤として一般式(II-1)及び一般式(II-2)からなる群より選択される少なくとも1つで表される構造単位を有する化合物又は一般式(III-1)~一般式(III-4)からなる群より選択される少なくとも1つで表される構造を有する化合物が用いられる場合、フェノール系硬化剤は、一般式(II-1)及び一般式(II-2)からなる群より選択される少なくとも1つで表される構造単位を有する化合物又は一般式(III-1)~一般式(III-4)からなる群より選択される少なくとも1つで表される構造を有する化合物を構成するフェノール化合物であるモノマーを含んでいてもよい。フェノール化合物であるモノマーの含有比率(以下、「モノマー含有比率」ともいう)としては特に制限されない。熱伝導性及び成形性の観点から、フェノール系硬化剤中、5質量%~80質量%であることが好ましく、15質量%~60質量%であることがより好ましく、20質量%~50質量%であることが更に好ましい。
 モノマー含有比率が80質量%以下であることで、硬化反応の際に架橋に寄与しないモノマーが少なくなり、架橋した高分子量体が多くなるため、より高密度な架橋構造が形成され、熱伝導性が向上する傾向にある。また、5質量%以上であることで、成形の際に流動し易いため、フィラーとの密着性がより向上し、より優れた熱伝導性と耐熱性が達成できる傾向にある。
 硬化剤の含有量は特に制限されない。例えば、硬化剤としてフェノール系硬化剤を用いる場合、フェノール系硬化剤に含有されるフェノール性水酸基の活性水素の当量数(フェノール性水酸基の当量数)と、エポキシ樹脂に含有されるエポキシ基の当量数との比(フェノール性水酸基の当量数/エポキシ基の当量数)が0.5~2となることが好ましく、0.8~1.2となることがより好ましい。
-無機充填材-
 エポキシ樹脂成形材料は、無機充填材の少なくとも1種類を含む。無機充填材を含むことにより、エポキシ樹脂成形材料の硬化物は、熱伝導性が向上する。無機充填材は、絶縁性であることが好ましい。本明細書において無機充填材の「絶縁性」とは、数百ボルト~数千ボルト程度の電圧をかけても無機充填材自体が電流を流さない性質のことをいい、電子に占有された最もエネルギー準位の高い価電子帯からその上にある次のバンド(伝導帯)までが大きなエネルギーギャップで隔てられているために有する性質である。
 無機充填材の材質としては、具体的には、窒化ホウ素、アルミナ、シリカ、窒化アルミニウム、酸化マグネシウム、酸化ケイ素、水酸化アルミニウム、硫酸バリウム等が挙げられる。中でも、流動性、熱伝導性及び電気絶縁性の観点から、酸化マグネシウム及びアルミナからなる群より選択される少なくとも1種が好ましい。また、流動性を妨げない範囲で、窒化ホウ素、シリカ、窒化アルミニウム等をさらに含有してもよい。
 無機充填材に占める、酸化マグネシウム及びアルミナからなる群より選択される少なくとも1種の無機充填材の合計割合は、50質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることが更に好ましい。
 無機充填材は、横軸に粒子径を、縦軸に頻度をとった粒度分布曲線を描いた場合に単一のピークを有していてもよく、複数のピークを有していてもよい。粒度分布曲線が複数のピークを有する無機充填材を用いることで、無機充填材の充填性が向上し、エポキシ樹脂成形材料の成形硬化物としての熱伝導性が向上する。
 無機充填材が粒度分布曲線を描いたときに単一のピークを有する場合、無機充填材の重量累積粒度分布の小粒径側からの累積50%に対応する平均粒子径(D50)は、熱伝導性の観点から、0.1μm~100μmであることが好ましく、0.1μm~70μmであることがより好ましい。無機充填材の平均粒子径は、レーザー回折法を用いて測定され、レーザー回折散乱粒度分布測定装置(例えば、ベックマン・コールター製、LS230)を用いて測定することができる。
 また、粒度分布曲線が複数のピークを有する無機充填材は、例えば、異なる平均粒子径を有する2種類以上の無機充填材を組み合わせることで構成できる。
 エポキシ樹脂成形材料中の無機充填材の含有率は特に制限されない。熱伝導性及び成形性の観点から、エポキシ樹脂成形材料の固形分の全体積を100体積%とした場合に、無機充填材の含有率は、60体積%~90体積%であることが好ましく、70体積%~85体積%であることがより好ましい。無機充填材の含有率が60体積%以上であることで、より高い熱伝導性を達成することができる。一方、無機充填材の含有率が90体積%以下であることで、成形性に優れたエポキシ樹脂成形材料を得ることができる。
 なお、本明細書においてエポキシ樹脂成形材料の固形分とは、エポキシ樹脂成形材料から揮発性成分を除いた残りの成分を意味する。
 エポキシ樹脂成形材料中の無機充填材の含有率(体積%)は、次式により求めた値とする。
 無機充填材含有率(体積%)={(Ew/Ed)/((Aw/Ad)+(Bw/Bd)+(Cw/Cd)+(Dw/Dd)+(Ew/Ed)+(Fw/Fd))}×100
 ここで、各変数は以下の通りである。
 Aw:エポキシ樹脂Aの質量組成比(質量%)
 Bw:硬化剤の質量組成比(質量%)
 Cw:無機充填材の質量組成比(質量%)
 Dw:必要に応じて用いられる硬化促進剤の質量組成比(質量%)
 Ew:必要に応じて用いられるシランカップリング剤の質量組成比(質量%)
 Fw:必要に応じて用いられるその他の成分の質量組成比(質量%)
 Ad:エポキシ樹脂Aの比重
 Bd:硬化剤の比重
 Cd:無機充填材の比重
 Dd:必要に応じて用いられる硬化促進剤の比重
 Ed:必要に応じて用いられるシランカップリング剤の比重
 Fd:必要に応じて用いられるその他の成分の比重
-硬化促進剤-
 エポキシ樹脂成形材料は、必要に応じて硬化促進剤を含有してもよい。
 硬化剤と共に硬化促進剤を併用することで、エポキシ樹脂成形材料をさらに十分に硬化させることができる。硬化促進剤の種類及び配合量は特に限定されず、反応速度、反応温度、保管性等の観点から、適切なものを選択することができる。
 硬化促進剤の具体例としては、イミダゾール系化合物、有機リン系化合物、第3級アミン、第4級アンモニウム塩等が挙げられる。これらは1種類単独で用いてもよく、2種類以上を併用してもよい。中でも、耐熱性の観点から、有機ホスフィン化合物;有機ホスフィン化合物に無水マレイン酸、キノン化合物(1,4-ベンゾキノン、2,5-トルキノン、1,4-ナフトキノン、2,3-ジメチルベンゾキノン、2,6-ジメチルベンゾキノン、2,3-ジメトキシ-5-メチル-1,4ベンゾキノン、2,3-ジメトキシ-1,4-ベンゾキノン、フェニル-1,4-ベンゾキノン等)、ジアゾフェニルメタン、フェノール樹脂等のπ結合をもつ化合物を付加してなる分子内分極を有する化合物;及び有機ホスフィン化合物と有機ボロン化合物(テトラフェニルボレート、テトラ-p-トリルボレート、テトラ-n-ブチルボレート等)との錯体;からなる群より選択される少なくとも1つであることが好ましい。
 有機ホスフィン化合物としては、具体的には、トリフェニルホスフィン、ジフェニル(p-トリル)ホスフィン、トリス(アルキルフェニル)ホスフィン、トリス(アルコキシフェニル)ホスフィン、トリス(アルキルアルコキシフェニル)ホスフィン、トリス(ジアルキルフェニル)ホスフィン、トリス(トリアルキルフェニル)ホスフィン、トリス(テトラアルキルフェニル)ホスフィン、トリス(ジアルコキシフェニル)ホスフィン、トリス(トリアルコキシフェニル)ホスフィン、トリス(テトラアルコキシフェニル)ホスフィン、トリアルキルホスフィン、ジアルキルアリールホスフィン、アルキルジアリールホスフィン等が挙げられる。
 エポキシ樹脂成形材料が硬化促進剤を含む場合、エポキシ樹脂成形材料中の硬化促進剤の含有率は特に制限されない。流動性及び成形性の観点から、硬化促進剤の含有率は、エポキシ樹脂と硬化剤の合計質量に対して0.1質量%~1.5質量%であることが好ましく、0.2質量%~1質量%であることがより好ましい。
-シランカップリング剤-
 エポキシ樹脂成形材料は、必要に応じてシランカップリング剤を含有してもよい。シランカップリング剤を含むことで、無機充填材の表面とその周りを取り囲むエポキシ樹脂との間で相互作用を生じさせ、流動性が向上し、高熱伝導化が達成され、さらには水分の浸入を妨げることにより絶縁信頼性が向上する傾向にある。
 シランカップリング剤の種類は特に制限されず、1種類を単独で用いても、2種類以上を併用してもよい。中でも、フェニル基を有するシランカップリング剤が好ましい。フェニル基を含有するシランカップリング剤は、メソゲン骨格を有するエポキシ樹脂と相互作用しやすい。このため、エポキシ樹脂成形材料がフェニル基を含有するシランカップリング剤を含有することで、硬化物としたときに、より優れた熱伝導性が達成される傾向にある。
 フェニル基を含有するシランカップリング剤の種類は特に限定されない。フェニル基を有するシランカップリング剤の具体例としては、3-フェニルアミノプロピルトリメトキシシラン、3-フェニルアミノプロピルトリエトキシシラン、N-メチルアニリノプロピルトリメトキシシラン、N-メチルアニリノプロピルトリエトキシシラン、3-フェニルイミノプロピルトリメトキシシラン、3-フェニルイミノプロピルトリエトキシシラン、フェニルトリメトシキシラン、フェニルトリエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、トリフェニルメトキシシラン、トリフェニルエトキシシラン等が挙げられる。フェニル基を含有するシランカップリング剤は1種類単独で用いても、2種類以上を併用してもよい。フェニル基を含有するシランカップリング剤は市販品を用いてもよい。
 シランカップリング剤全体に占めるフェニル基を有するシランカップリング剤の割合は、50質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることが更に好ましい。
 無機充填材の表面とその周りを取り囲むエポキシ樹脂を接近させ、優れた熱伝導率を達成する観点からは、ケイ素原子(Si)にフェニル基が直接結合しているシランカップリング剤を含むことがより好ましい。
 フェニル基を有するシランカップリング剤に占める、ケイ素原子(Si)にフェニル基が直接結合しているシランカップリング剤の割合は、30質量%以上であることが好ましく、50質量%以上であることがより好ましく、80質量%以上であることが更に好ましい。
 エポキシ樹脂成形材料がシランカップリング剤を含む場合、シランカップリング剤は、無機充填材の表面に付着した状態で存在していても、無機充填材の表面に付着しない状態で存在していても、双方が混在していてもよい。
 シランカップリング剤の少なくとも一部が無機充填材の表面に付着している場合、無機充填材の比表面積あたりのシランカップリング剤由来のケイ素原子の付着量は、5.0×10-6モル/m~10.0×10-6モル/mが好ましく、5.5×10-6モル/m~9.5×10-6モル/mがより好ましく、6.0×10-6モル/m~9.0×10-6モル/mが更に好ましい。
 無機充填材の比表面積あたりのシランカップリング剤由来のケイ素原子の被覆量の測定方法は、以下の通りである。
 まず、無機充填材の比表面積の測定法としては、主にBET法が適用される。BET法とは、窒素(N)、アルゴン(Ar)、クリプトン(Kr)等の不活性気体分子を固体粒子に吸着させ、吸着した気体分子の量から固体粒子の比表面積を測定する気体吸着法である。比表面積の測定は、比表面積細孔分布測定装置(例えば、ベックマン・コールター製、SA3100)を用いて行うことができる。
 さらに、無機充填材の表面に存在するシランカップリング剤由来のケイ素原子を定量する。定量方法としては、29Si CP/MAS(Cross-Polarization/Magic angle spinning)固体NMR(核磁気共鳴)が挙げられる。核磁気共鳴装置(例えば、日本電子株式会社製、JNM-ECA700)は高い分解能を有するため、エポキシ樹脂成形材料が無機充填材としてシリカを含む場合でも、無機充填材としてのシリカ由来のケイ素原子と、シランカップリング剤由来のケイ素原子とを区別することが可能である。
 エポキシ樹脂成形材料がシランカップリング剤由来のケイ素原子以外のケイ素原子を含まない場合は、蛍光X線分析装置(例えば、株式会社リガク製、Supermini200)によってもシランカップリング剤由来のケイ素原子を定量することができる。
 上述のようにして得られた無機充填材の比表面積と、無機充填材の表面に存在するシランカップリング剤由来のケイ素原子の量とに基づき、無機充填材の比表面積あたりのシランカップリング剤由来のケイ素原子の被覆量が算出される。
 上記測定を行うにあたり、エポキシ樹脂成形材料に含まれている無機充填材は、例えば、以下に挙げる方法によってエポキシ樹脂成形材料から取り出すことができる。
(1)エポキシ樹脂成形材料を磁気製のるつぼに入れ、マッフル炉等で加熱(例えば600℃)して樹脂成分を燃焼させる。
(2)エポキシ樹脂成形材料の樹脂成分を適当な溶媒に溶解させて無機充填材をろ過により回収し、乾燥させる。
 エポキシ樹脂成形材料がシランカップリング剤を含む場合、シランカップリング剤のエポキシ樹脂成形材料への添加方法は、特に制限はない。具体的には、エポキシ樹脂、無機充填材等の他の材料を混合する際にシランカップリング剤も添加するインテグラル法、少量の樹脂に一定量のシランカップリング剤を混合した後、これを無機充填材等の他の材料と混合するマスターバッチ法、エポキシ樹脂等の他の材料と混合する前に、無機充填材とシランカップリング剤とを混合してあらかじめ無機充填材の表面にシランカップリング剤を処理する前処理法などがある。前処理法としては、シランカップリング剤の原液又は溶液を無機充填材とともに高速撹拌により分散させて処理する乾式法、シランカップリング剤の希薄溶液で無機充填材をスラリー化したり、無機充填材にシランカップリング剤を浸漬したりすることで無機充填材表面にシランカップリング剤処理を施す湿式法が挙げられる。
-その他の成分-
 エポキシ樹脂成形材料には、上述した成分に加え、その他の成分を含んでもよい。その他の成分としては、酸化型及び非酸化型のポリオレフィン、カルナバワックス、モンタン酸エステル、モンタン酸、ステアリン酸等の離型剤、シリコーンオイル、シリコーンゴム粉末等の応力緩和剤、グラスファイバー等の補強材などが挙げられる。その他の成分は、それぞれ、1種類単独で用いても2種類以上を併用してもよい。
<エポキシ樹脂成形材料の調製方法>
 エポキシ樹脂成形材料の調製方法は、特に制限されない。一般的な手法としては、所定の配合量の成分をミキサー等によって十分混合した後、溶融混練し、冷却し、粉砕する方法が挙げられる。溶融混練は、予め70℃~140℃に加熱してあるニーダー、ロール、エクストルーダー等で行うことができる。エポキシ樹脂成形材料は、成形条件に合うような寸法及び質量でタブレット化すると使いやすい。
<エポキシ樹脂成形材料の状態>
 エポキシ樹脂成形材料は、A-ステージ状態にあることが好ましい。エポキシ樹脂成形材料がA-ステージ状態にあると、エポキシ樹脂成形材料を熱処理して硬化する際に、エポキシ樹脂成形材料がB-ステージ状態にある場合に比較してエポキシ樹脂と硬化剤との間の硬化反応の際に生ずる反応熱量が多くなり、硬化反応が進行しやすくなる。本明細書において、A-ステージ及びB-ステージなる用語の定義は、JIS K 6800:1985による。
 エポキシ樹脂成形材料がA-ステージ状態にあるか否かは、下記基準により判断される。
 一定量のエポキシ樹脂成形材料を、当該エポキシ樹脂成形材料に含まれるエポキシ樹脂が可溶な有機溶媒(テトラヒドロフラン、アセトン等)に投入し、一定時間経過後に残存する無機充填材等をろ過によりろ別する。ろ別により得られた残渣の乾燥後の質量と、高温処理後の灰分の質量と、の差が±0.5質量%以内であれば、エポキシ樹脂成形材料がA-ステージ状態であったと判断される。灰分の質量は、JIS K 7250-1:2006の規定に準じて測定し算出される。
 または、予めA-ステージ状態と判明したエポキシ樹脂成形材料の一定質量あたりの反応熱を示差走査熱量測定装置(DSC、例えば、パーキンエルマー製、Pyris1)により測定し、基準値とする。その後調製したエポキシ樹脂成形材料の一定質量あたりの反応熱の測定値と、前記基準値との差が±5%以内であればA-ステージ状態であったと判断される。
 エポキシ樹脂成形材料がA-ステージ状態にある場合、A-ステージ状態のエポキシ樹脂成形材料を180℃で1時間加熱した後の質量減少率が0.1質量%以下であることが好ましい。A-ステージ状態のエポキシ樹脂成形材料を180℃で1時間加熱した後の質量減少率が0.1質量%以下であるということは、A-ステージ状態のエポキシ樹脂成形材料が所謂「無溶剤型」のエポキシ樹脂成形材料であることを意味する。エポキシ樹脂成形材料が無溶剤型であると、乾燥工程を経ることなくエポキシ樹脂成形材料の成形物を得ることが可能となり、成形物又は成形硬化物を得るための工程を簡略化できる。
<成形物及び成形硬化物>
 本実施形態の成形物は、本実施形態のエポキシ樹脂成形材料を成形することによって作製される。本実施の形態の成形硬化物は、本実施の形態の成形物を熱処理(後硬化)することによって作製される。
 エポキシ樹脂成形材料を成形する方法は特に制限されず、公知のプレス成形法等から用途に応じて選択できる。トランスファ成形法が最も一般的であるが、圧縮成形法等を用いてもよい。成形時の金型の温度は、エポキシ樹脂Aの相転移温度以上150℃以下とすることが好ましく、140℃以下とすることがさらに好ましい。エポキシ樹脂Aの相転移温度以上であると成形時にエポキシ樹脂Aが十分に溶融して成形しやすくなり、150℃以下であると成形物の熱伝導率に優れる傾向がある。
 プレス成形時の金型温度は、流動性の観点からは150℃~180℃が一般的であり、150℃以下の温度では一般的なエポキシ樹脂は溶融しにくいことから、成形が困難になる傾向がある。しかしながら、本実施形態のエポキシ樹脂成形材料は、150℃以下でも成形が可能である。
 成形物は、CuKα線を用いたX線回折法で得られるX線回折スペクトルにおいて、回折角2θが3.0°~3.5°の範囲に回折ピークを有することが好ましい。このような回折ピークを有する成形物は、高次構造の中でもとくに秩序性の高いスメクチック構造が形成されており、熱伝導性に優れる。
 なお、本明細書におけるCuKα線を用いたX線回折測定の詳細は以下の通りである。
〔測定条件〕
使用装置:薄膜構造評価用X線回折装置ATX-G(株式会社リガク製)
X線種類:CuKα
走査モード:2θ/ω
出力:50kV、300mA
S1スリット:幅0.2mm、高さ:10mm
S2スリット:幅0.2mm、高さ:10mm
RSスリット:幅0.2mm、高さ:10mm
測定範囲:2θ=2.0°~4.5°
サンプリング幅:0.01°
 エポキシ樹脂成形材料は成形後、金型から外した状態の成形物をそのまま使用してもよく、必要に応じてオーブン等で加熱することにより後硬化してから使用してもよい。
 成形硬化物は、成形物を加熱により後硬化したものである。成形物の加熱条件は、エポキシ樹脂成形材料に含有されるエポキシ樹脂A、硬化剤等の種類及び量に応じて適宜選択することができる。例えば、成形物の加熱温度は130℃~200℃が好ましく、150℃~180℃がより好ましい。成形物の加熱時間は、1時間~10時間が好ましく、2時間~6時間がより好ましい。
 成形硬化物は、後硬化前の成形物と同様に、CuKα線を用いたX線回折法で得られるX線回折スペクトルにおいて、回折角2θが3.0°~3.5°の範囲に回折ピークを有する。このことは、成形物中で形成された秩序性の高いスメクチック構造が、加熱による後硬化後も維持され、熱伝導性に優れた成形硬化物を得られることを表している。
 本実施形態のエポキシ樹脂成形材料の成形物及び成形硬化物は、産業用及び自動車用のモーター並びにインバーターの他、プリント配線板、半導体素子用封止材等の分野などでも使用できる。
 次に、実施例により本発明を説明するが、本発明の範囲はこれらの実施例に限定されるものではない。
<エポキシ樹脂成形材料の調製>
 以下の成分をそれぞれ下記表3~表6に示す質量部で配合し、混練温度80℃、混練時間10分の条件でロール混練を行い、実施例1~実施例10及び比較例1~比較例10のエポキシ樹脂成形材料を作製した。なお表中の空欄は配合なしを表す。
 なお、実施例1~実施例10及び比較例1~比較例10のエポキシ樹脂成形材料は、いずれもA-ステージ状態にあった。
 また、実施例1~実施例10及び比較例1~比較例10のエポキシ樹脂成形材料を180℃で1時間加熱したところ、質量減少率はいずれも0.1質量%以下であった。
 以下に、用いた原材料とその略号を示す。
[エポキシ樹脂]
・エポキシ樹脂1
 trans-4-{4-(2,3-エポキシプロポキシ)フェニル}シクロヘキシル=4-(2,3-エポキシプロポキシ)ベンゾエート(下記構造で表されるエポキシ樹脂、特許第5471975号公報参照、エポキシ当量:212g/eq)
Figure JPOXMLDOC01-appb-C000023
・エポキシ樹脂2~6
 上記構造で表されるエポキシ樹脂1を、下記に示す量のヒドロキノンと反応させ、一部をプレポリマー化した化合物
Figure JPOXMLDOC01-appb-T000024

 表中、Epは、エポキシ樹脂1のエポキシ基の当量数であり、Phはヒドロキノンのフェノール性水酸基の当量数である。エポキシ樹脂2~6の合成方法については後述する。
・エポキシ樹脂7
 メソゲン骨格を有しないYSLV-80XY(ビスフェノールF型エポキシ樹脂、新日鉄住金化学株式会社製、エポキシ当量:195g/eq、液晶相は示さず等方的に硬化)
[硬化剤]
・CRN(カテコールレゾルシノールノボラック樹脂、カテコール(C)とレゾルシノール(R)の仕込み質量比(C/R):5/95)
 CRNの合成方法については後述する。
[無機充填材]
・パイロキスマ3350(酸化マグネシウム、協和化学工業株式会社製、平均粒子径50μm、比表面積0.1m/g)
・パイロキスマ3320(酸化マグネシウム、協和化学工業株式会社製、平均粒子径20μm、比表面積0.2m/g)
・スターマグSL(酸化マグネシウム、神島化学工業株式会社製、平均粒子径8μm、比表面積1m/g)
・AL35-63(アルミナ、新日鉄住金マテリアルズ株式会社製、平均粒子径50μm、比表面積0.1m/g)
・AL35-45(アルミナ、新日鉄住金マテリアルズ株式会社製、平均粒子径20μm、比表面積0.2m/g)
・AX3-32(アルミナ、新日鉄住金マテリアルズ株式会社製、平均粒子径4μm、比表面積1m/g)
[シランカップリング剤]
・KBM-202SS(ジフェニルジメトキシシラン、信越化学工業株式会社製、分子量244)
・KBM-573(3-フェニルアミノプロピルトリメトキシシラン、信越化学工業株式会社製、分子量255)
[硬化促進剤]
・TPP(トリフェニルホスフィン、北興化学株式会社製)
[離型剤]
・モンタン酸エステル(リコワックスE、クラリアントジャパン製)
(エポキシ樹脂2~6の合成(プレポリマー化))
 500mLの三口フラスコに、エポキシ樹脂1を50g(0.118mol)量り取り、そこに溶媒としてプロピレングリコールモノメチルエーテルを80g添加した。三口フラスコに冷却管及び窒素導入管を設置し、溶媒に漬かるように撹拌羽を取り付けた。この三口フラスコを120℃のオイルバスに浸漬し、撹拌を開始した。数分後にエポキシ樹脂1が溶解し、透明な溶液になったことを確認した後に、Ep/Phが上記値となるようにヒドロキノンを添加し、さらにトリフェニルホスフィンを0.5g添加し、120℃のオイルバス温度で加熱を継続した。5時間加熱を継続した後に、反応溶液からプロプレングリコールモノメチルエーテルを減圧留去し、残渣を室温(25℃)まで冷却することにより、エポキシ樹脂1の一部がプレポリマー化されたエポキシ樹脂2~6を得た。
 エポキシ樹脂1~6の固形分量を加熱減量法により測定した。なお、固形分量は、試料をアルミ製のカップに1.0g~1.1g量り取り、180℃の温度に設定した乾燥機内に30分間放置した後の計測量と、加熱前の計測量とに基づき、次式により算出した。
 固形分量(%)=(30分間放置した後の計測量/加熱前の計測量)×100
 エポキシ樹脂1~6の数平均分子量をゲルパーミエーションクロマトグラフィー(GPC)によって測定した。測定は、株式会社日立製作所製高速液体クロマトグラフィL6000、及び株式会社島津製作所製データ解析装置C-R4Aを用いて行った。分析用GPCカラムは東ソー株式会社製G2000HXL及び3000HXLを使用した。試料濃度を0.2質量%とし、移動相にはテトラヒドロフランを用い、流速を1.0ml/minとして測定を行った。ポリスチレン標準サンプルを用いて検量線を作成し、それを用いてポリスチレン換算値で数平均分子量を計算した。
 エポキシ樹脂1~6のエポキシ当量は、過塩素酸滴定法により測定した。
 エポキシ樹脂1~6の相転移温度の測定は、示差走査熱量(DSC)測定装置(パーキンエルマー製Pyris1)を用いて測定した。昇温速度20℃/分、測定温度範囲25℃~350℃、流量20±5ml/minの窒素雰囲気下の条件で、アルミパンに密閉した3mg~5mgの試料のDSC測定を行い、相転移に伴うエネルギー変化が起こる温度(吸熱反応ピークの温度)を相転移温度とした。図1に、エポキシ樹脂1及び3のDSC測定により得られたグラフを示す。
 これらの測定結果を下記表2にまとめた。
Figure JPOXMLDOC01-appb-T000025

 
(CRNの合成)
 撹拌機、冷却機及び温度計を備えた3Lのセパラブルフラスコに、レゾルシノール627g、カテコール33g、37質量%ホルムアルデヒド316.2g、シュウ酸15g、及び水300gを入れ、オイルバスで加温しながら100℃に昇温した。104℃前後で還流し、還流温度を4時間保持した。その後、水を留去しながらフラスコ内の温度を170℃に昇温し、170℃を8時間保持した。反応後、減圧下20分間濃縮を行い、系内の水等を除去し、フェノール樹脂(CRN)を得た。
 また、得られたCRNについて、FD-MSにより構造を確認したところ、一般式(III-1)~一般式(III-4)で表される部分構造すべての存在が確認できた。
 なお、上記反応条件では、一般式(III-1)で表される部分構造を有する化合物が最初に生成し、これがさらに脱水反応することで一般式(III-2)~一般式(III-4)のうち少なくとも1つで表される部分構造を有する化合物が生成すると考えられる。
 得られたCRNについて、数平均分子量及び重量平均分子量の測定をGPCによって測定した。測定は、株式会社日立製作所製高速液体クロマトグラフィL6000、及び株式会社島津製作所製データ解析装置C-R4Aを用いて行った。分析用GPCカラムは東ソー株式会社製G2000HXL及び3000HXLを使用した。試料濃度を0.2質量%とし、移動相にはテトラヒドロフランを用い、流速を1.0ml/minとして測定を行った。ポリスチレン標準サンプルを用いて検量線を作成し、それを用いてポリスチレン換算値で数平均分子量及び重量平均分子量を計算した。
 得られたCRNについて、水酸基当量の測定を次のようにして行った。
 水酸基当量は、塩化アセチル-水酸化カリウム滴定法により測定した。なお、滴定終点の判断は溶液の色が暗色のため、指示薬による呈色法ではなく、電位差滴定によって行った。具体的には、測定樹脂の水酸基をピリジン溶液中塩化アセチル化した後、その過剰の試薬を水で分解し、生成した酢酸を水酸化カリウム/メタノール溶液で滴定した。
 得られたCRNは一般式(III-1)~一般式(III-4)のうちの少なくとも1つで表される部分構造を有する化合物の混合物であり、Arが、一般式(III-a)においてR11が水酸基であり、R12及びR13がそれぞれ水素原子である1,2-ジヒドロキシベンゼン(カテコール)に由来する基及び1,3-ジヒドロキシベンゼン(レゾルシノール)に由来する基であり、低分子希釈剤として単量体成分(レゾルシノール)を35質量%含むフェノール樹脂(水酸基当量65g/eq、数平均分子量422、重量平均分子量564)であった。
(シランカップリング剤由来のケイ素原子の付着量の測定)
 実施例1~10及び比較例1~10のエポキシ樹脂成形材料について、以下の方法で無機充填材の比表面積あたりのシランカップリング剤由来のケイ素原子の付着量を測定した。
 まず、無機充填材の比表面積をBET法により、比表面積細孔分布測定装置(ベックマン・コールター製、SA3100)を用いて行った。次いで、無機充填材の表面に存在するシランカップリング剤由来のケイ素原子の定量を、核磁気共鳴装置(日本電子株式会社製、JNM-ECA700)を用いて29Si CP/MAS固体NMRにより行った。得られた値から、無機充填材の比表面積あたりのシランカップリング剤由来のケイ素原子の付着量を算出した。無機充填材は、エポキシ樹脂成形材料を磁気製のるつぼに入れ、マッフル炉で600℃に加熱して樹脂成分を燃焼させることにより取り出した。
(成形物及び成形硬化物の作製)
 実施例1~10及び比較例1~10のエポキシ樹脂成形材料を、トランスファ成形機により、成形圧力20MPa、成形温度140℃~180℃の条件で成形し成形物を得た。成形物を後硬化して成形硬化物を得る場合、硬化条件は180℃、5時間とした。表中の「後硬化有無」の欄が「有」であるものは評価対象が成形硬化物であることを、「無」であるものは評価対象が成形物である(後硬化を行っていない)ことを、「-」は「成形可否」が「否」であり以降の評価を行わなかったことをそれぞれ示す。
(流動距離の測定)
 成形時のエポキシ樹脂成形材料の流動性を示す指標として、スパイラルフローを測定した。測定方法は、EMMI-1-66に準じたスパイラルフロー測定用金型を用いて、エポキシ樹脂成形材料を上記条件で成形し、流動距離(cm)を求めた。また、表3~表6の「成形可否」とは、エポキシ樹脂成形材料が流動して金型に充填された場合を「可」、未充填部分が残る場合を「否」とした。
(ガラス転移温度(Tg)の測定)
 成形物又は成形硬化物を切断して5mm×50mm×3mmの直方体を作製し、動的粘弾性測定装置(TAインスツルメント製RSA-G2)にて三点曲げ振動試験冶具を用い、周波数:1Hz、昇温速度:5℃/分の条件で、40℃~300℃の温度範囲で動的粘弾性を測定した。ガラス転移温度(Tg)は、上記方法で得られた貯蔵弾性率と損失弾性率の比より求められるtanδにおいて、ピークトップ部分の温度とした。
(密度の測定)
 成形物又は成形硬化物を切断して10mm角の立方体を作製し、アルキメデス法により密度(g/cm)を測定した。
(熱伝導率の測定)
 成形物又は成形硬化物を切断して10mm角の立方体を作製し、グラファイトスプレーにて黒化処理した。その後、キセノンフラッシュ法(NETZSCH製LFA447 nanoflash)にて熱拡散率を評価した。この値と、アルキメデス法で測定した密度と、DSC(パーキンエルマー製Pyris1)にて測定した比熱との積から、成形物又は成形硬化物の熱伝導率を求めた。
(X線回折法について)
 成形物又はその後硬化物のX線回折を、広角X線回折装置(リガク製ATX-G)を使用して測定した。X線源としてCuKα線を用い、管電圧50kV、管電流300mAとし、走査速度を1.0度/分とした。図2に、実施例1及び比較例3の成形硬化物のX線回折スペクトルを示す。
 回折角2θが3.0°~3.5°の範囲に回折ピークが現れた場合、成形物又はその後硬化物中にスメクチック構造が形成されていることを表している。
(評価結果)
 前記の評価結果を表3~表6に記載した。表中、「成形可否」で「否」と判定したものについては、前記評価ができなかったため、「-」で示した。原材料の単位は、質量部である。
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027

 
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029

 
 実施例1~5と比較例1~5では無機充填材に酸化マグネシウムを、実施例6~10と比較例6~10ではアルミナを用いた。
 相転移温度が140℃以上のエポキシ樹脂1又は2を用いた比較例1、2、6、7は成形そのものができなかった。次に成形可能であったもので、同じ無機充填材を使用した系で比較すると、相転移温度が140℃以下の実施例1~10は、メソゲン骨格を有しないエポキシ樹脂7を用いた比較例3~5及び8~10に比較して熱伝導率は2W/(m・K)~3W/(m・K)上昇した。また、プレス成形温度が150℃を超える実施例4及び5を除く実施例は、CuKα線を用いたX線回折法で、回折角2θが3.0°~3.5°の範囲に回折ピークを有しており、スメクチック構造を形成していることが確認された。比較例ではプレス成形温度を変えても、スメクチック構造の形成を示す回折ピークは確認できなかった。
 なお、日本出願2014-266106の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (22)

  1.  メソゲン骨格を有し且つ結晶相から液晶相に相転移する相転移温度が140℃以下のエポキシ樹脂Aと、
     硬化剤と、
     無機充填材と、
    を含有するエポキシ樹脂成形材料。
  2.  前記エポキシ樹脂Aは、1つのベンゼン環に2個の水酸基を有する2価フェノール化合物と、メソゲン骨格を有し且つ結晶相から液晶相に相転移する性質を有するエポキシ樹脂Bとの反応物を含む請求項1に記載のエポキシ樹脂成形材料。
  3.  前記エポキシ樹脂Bの相転移温度が、140℃以上である請求項2に記載のエポキシ樹脂成形材料。
  4.  前記エポキシ樹脂Aは、前記2価フェノール化合物のフェノール性水酸基の当量数と、前記エポキシ樹脂Bのエポキシ基の当量数と、の比(エポキシ基の当量数/フェノール性水酸基の当量数)を100/10~100/20とした反応物を含む請求項2又は請求項3に記載のエポキシ樹脂成形材料。
  5.  前記エポキシ樹脂Bが、下記一般式(I)で表される化合物を含む請求項2~請求項4のいずれか1項に記載のエポキシ樹脂成形材料。
    Figure JPOXMLDOC01-appb-C000001

     
    (一般式(I)中、R~Rはそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を表す。)
  6.  前記2価フェノール化合物が、ヒドロキノンを含む請求項2~請求項5のいずれか1項に記載のエポキシ樹脂成形材料。
  7.  前記硬化剤が、フェノール系硬化剤を含む請求項1~請求項6のいずれか1項に記載のエポキシ樹脂成形材料。
  8.  前記フェノール系硬化剤が、下記一般式(II-1)及び下記一般式(II-2)からなる群より選択される少なくとも1つで表される構造単位を有する化合物を含む請求項7に記載のエポキシ樹脂成形材料。
    Figure JPOXMLDOC01-appb-C000002

    (一般式(II-1)及び一般式(II-2)中、Rはそれぞれ独立に、アルキル基、アリール基、又はアラルキル基を表し、該アルキル基、アリール基、及びアラルキル基は置換基を有していてもよい。R及びRはそれぞれ独立に、水素原子、アルキル基、アリール基、又はアラルキル基を表し、該アルキル基、アリール基、及びアラルキル基は置換基を有していてもよい。mはそれぞれ独立に、0~2の整数を表す。nはそれぞれ独立に、1~7の整数を表す。)
  9.  前記フェノール系硬化剤が、下記一般式(III-1)~下記一般式(III-4)からなる群より選択される少なくとも1つで表される構造単位を有する化合物を含む請求項7又は請求項8に記載のエポキシ樹脂成形材料。
    Figure JPOXMLDOC01-appb-C000003

    Figure JPOXMLDOC01-appb-C000004

    Figure JPOXMLDOC01-appb-C000005

    Figure JPOXMLDOC01-appb-C000006

    (一般式(III-1)~一般式(III-4)中、m及びnはそれぞれ独立に、正の整数を表す。また、Arはそれぞれ独立に、下記一般式(III-a)又は下記一般式(III-b)で表される基を表す。)
    Figure JPOXMLDOC01-appb-C000007

    (一般式(III-a)及び一般式(III-b)中、R11及びR14はそれぞれ独立に、水素原子又は水酸基を表す。R12及びR13はそれぞれ独立に、水素原子又は炭素数1~8のアルキル基を表す。)
  10.  さらにシランカップリング剤を含む、請求項1~請求項8のいずれか1項に記載のエポキシ樹脂成形材料。
  11.  前記シランカップリング剤が、フェニル基を有するシランカップリング剤を含む請求項10に記載のエポキシ樹脂成形材料。
  12.  前記フェニル基を有するシランカップリング剤が、ケイ素原子にフェニル基が直接結合した構造を有する請求項11に記載のエポキシ樹脂成形材料。
  13.  前記無機充填材の比表面積あたりの前記シランカップリング剤由来のケイ素原子の付着量が、5.0×10-6モル/m~10.0×10-6モル/mである請求項10~請求項12のいずれか1項に記載のエポキシ樹脂成形材料。
  14.  前記無機充填材が、酸化マグネシウム及びアルミナからなる群より選択される少なくとも1種を含む請求項1~請求項13のいずれか1項に記載のエポキシ樹脂成形材料。
  15.  前記無機充填材の含有率が、固形分中において60体積%~90体積%である請求項1~請求項14のいずれか1項に記載のエポキシ樹脂成形材料。
  16.  A-ステージ状態にある請求項1~請求項15のいずれか1項に記載のエポキシ樹脂成形材料。
  17.  180℃で1時間加熱後の質量減少率が、0.1質量%以下である請求項16に記載のエポキシ樹脂成形材料。
  18.  請求項1~請求項17のいずれか1項に記載のエポキシ樹脂成形材料を成形した成形物。
  19.  CuKα線を用いたX線回折法で得られるX線回折スペクトルにおいて、回折角2θが3.0°~3.5°の範囲に回折ピークを有する請求項18に記載の成形物。
  20.  請求項18又は請求項19に記載の成形物を加熱により硬化した成形硬化物。
  21.  CuKα線を用いたX線回折法で得られるX線回折スペクトルにおいて、回折角2θが3.0°~3.5°の範囲に回折ピークを有する請求項20に記載の成形硬化物。
  22.  請求項1~請求項17のいずれか1項に記載の、エポキシ樹脂Aを含有するエポキシ樹脂成形材料を、前記エポキシ樹脂Aの相転移温度以上150℃以下の温度範囲で成形する、成形物の製造方法。
PCT/JP2015/086414 2014-12-26 2015-12-25 エポキシ樹脂成形材料、成形物、成形硬化物及び成形物の製造方法 WO2016104788A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016566569A JP7114220B2 (ja) 2014-12-26 2015-12-25 エポキシ樹脂成形材料、成形物、成形硬化物及び成形物の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014266106 2014-12-26
JP2014-266106 2014-12-26

Publications (1)

Publication Number Publication Date
WO2016104788A1 true WO2016104788A1 (ja) 2016-06-30

Family

ID=56150784

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2015/086414 WO2016104788A1 (ja) 2014-12-26 2015-12-25 エポキシ樹脂成形材料、成形物、成形硬化物及び成形物の製造方法
PCT/JP2015/086373 WO2016104772A1 (ja) 2014-12-26 2015-12-25 エポキシ樹脂、エポキシ樹脂組成物、無機フィラー含有エポキシ樹脂組成物、樹脂シート、硬化物、及びエポキシ化合物

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/086373 WO2016104772A1 (ja) 2014-12-26 2015-12-25 エポキシ樹脂、エポキシ樹脂組成物、無機フィラー含有エポキシ樹脂組成物、樹脂シート、硬化物、及びエポキシ化合物

Country Status (7)

Country Link
US (2) US10934387B2 (ja)
EP (1) EP3239206B1 (ja)
JP (3) JP6686907B2 (ja)
KR (1) KR20170103797A (ja)
CN (1) CN107108856B (ja)
TW (3) TWI748935B (ja)
WO (2) WO2016104788A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017145412A1 (ja) * 2016-02-25 2017-08-31 日立化成株式会社 樹脂シート及び樹脂シート硬化物
WO2017209210A1 (ja) * 2016-06-02 2017-12-07 日立化成株式会社 エポキシ樹脂組成物、bステージシート、硬化エポキシ樹脂組成物、樹脂シート、樹脂付金属箔、及び金属基板
JP2018062604A (ja) * 2016-10-14 2018-04-19 日立化成株式会社 エポキシ樹脂組成物、エポキシ樹脂硬化物、熱伝導フィルム、及びエポキシ樹脂硬化物の製造方法
WO2018070535A1 (ja) * 2016-10-14 2018-04-19 日立化成株式会社 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
WO2018070534A1 (ja) * 2016-10-14 2018-04-19 日立化成株式会社 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
WO2018173953A1 (ja) * 2017-03-24 2018-09-27 東レ株式会社 プリプレグおよび炭素繊維強化複合材料
JP2018162366A (ja) * 2017-03-24 2018-10-18 日立化成株式会社 エポキシ樹脂組成物、樹脂シート、bステージシート、cステージシート、硬化物、樹脂付金属箔及び金属基板
WO2019043843A1 (ja) * 2017-08-30 2019-03-07 日立化成株式会社 エポキシ樹脂硬化物、エポキシ樹脂組成物、成形体及び複合材料
WO2019059384A1 (ja) * 2017-09-22 2019-03-28 日立化成株式会社 保護材付き厚銅回路
JPWO2018070052A1 (ja) * 2016-10-14 2019-07-25 日立化成株式会社 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
WO2019160143A1 (ja) * 2018-02-19 2019-08-22 日立化成株式会社 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
KR20200055003A (ko) * 2017-09-29 2020-05-20 히타치가세이가부시끼가이샤 에폭시 수지, 에폭시 수지 조성물, 에폭시 수지 경화물 및 복합 재료
EP3660081A4 (en) * 2017-07-28 2021-04-21 Toray Industries, Inc. PREPREG AND CARBON FIBER REINFORCED COMPOSITE

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017221810A1 (ja) * 2016-06-22 2019-04-11 日立化成株式会社 ガスバリア材料、樹脂組成物、ガスバリア材、硬化物、及び複合材料
EP3476879B1 (en) * 2016-06-22 2022-09-21 Showa Denko Materials Co., Ltd. Epoxy resin composition, cured product and composite material
WO2018096603A1 (ja) * 2016-11-22 2018-05-31 日立化成株式会社 回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの硬化物及び絶縁層付き物品
WO2018096602A1 (ja) * 2016-11-22 2018-05-31 日立化成株式会社 回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの硬化物及び絶縁層付き物品
WO2018096601A1 (ja) * 2016-11-22 2018-05-31 日立化成株式会社 回転電機用コイル、回転電機用コイルの製造方法、マイカテープ、マイカテープの硬化物及び絶縁層付き物品
CN110382586A (zh) * 2017-03-09 2019-10-25 日立化成株式会社 环氧聚合物、环氧树脂、环氧树脂组合物、树脂片材、b阶片材、固化物、c阶片材、带有树脂的金属箔、金属基板及环氧树脂的制造方法
CN110418810B (zh) * 2017-03-15 2023-03-28 日立化成株式会社 环氧树脂、环氧树脂组合物、环氧树脂固化物及复合材料
KR102408632B1 (ko) 2017-09-29 2022-06-13 쇼와덴코머티리얼즈가부시끼가이샤 에폭시 수지, 에폭시 수지 조성물, 에폭시 수지 경화물 및 복합 재료
US11560476B2 (en) 2017-09-29 2023-01-24 Showa Denko Materials Co., Ltd. Epoxy resin, epoxy resin composition, epoxy resin cured product, and composite material
WO2019077688A1 (ja) 2017-10-17 2019-04-25 日立化成株式会社 ガラス状液晶性エポキシ樹脂及びガラス状液晶性エポキシ樹脂組成物の製造方法、液晶性エポキシ樹脂及び液晶性エポキシ樹脂組成物の保存方法、ガラス状液晶性エポキシ樹脂及びガラス状液晶性エポキシ樹脂組成物、液晶性エポキシ樹脂及び液晶性エポキシ樹脂組成物、並びにエポキシ樹脂硬化物の製造方法
KR20200070359A (ko) 2017-12-27 2020-06-17 후지필름 가부시키가이샤 조성물, 열전도 재료, 열전도층 포함 디바이스, 및 열전도 재료의 제조 방법
JP7095732B2 (ja) * 2018-02-22 2022-07-05 昭和電工マテリアルズ株式会社 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及びその製造方法、複合材料、絶縁部材、電子機器、構造材料並びに移動体
KR20200143356A (ko) 2018-04-10 2020-12-23 쇼와덴코머티리얼즈가부시끼가이샤 에폭시 수지, 에폭시 수지 조성물, 에폭시 수지 경화물 및 복합 재료
EP3851474B1 (en) 2018-09-10 2023-07-19 Resonac Corporation Epoxy resin, epoxy resin composition, epoxy resin cured product and composite material
US20220025107A1 (en) * 2018-12-11 2022-01-27 Showa Denko Materials Co., Ltd. Epoxy resin b-stage film, epoxy resin cured film and method of producing epoxy resin cured film
CN109897528A (zh) * 2019-02-14 2019-06-18 安庆北化大科技园有限公司 一种改性涂料及其制备方法与应用
KR20210146326A (ko) * 2019-03-27 2021-12-03 쇼와덴코머티리얼즈가부시끼가이샤 에폭시 수지, 에폭시 수지 조성물, 에폭시 수지 경화물 및 복합 재료
JP7463845B2 (ja) 2020-05-22 2024-04-09 住友ベークライト株式会社 フェノキシ樹脂およびその用途
CN114262528B (zh) * 2021-12-07 2023-04-18 中国科学院深圳先进技术研究院 一种二氧化硅的表面改性方法及应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009215390A (ja) * 2008-03-10 2009-09-24 Shin Kobe Electric Mach Co Ltd 積層板の製造法
JP2013227451A (ja) * 2012-04-26 2013-11-07 Hitachi Chemical Co Ltd エポキシ樹脂組成物、半硬化エポキシ樹脂組成物、硬化エポキシ樹脂組成物、樹脂シート、プリプレグ、積層板、金属基板、及びプリント配線板
JP2014214307A (ja) * 2013-04-24 2014-11-17 サムソン エレクトロ−メカニックス カンパニーリミテッド. 低熱膨張率および高耐熱性を有するプリント基板用絶縁樹脂組成物、これを用いたプリプレグ、銅張積層板およびプリント基板

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002226550A (ja) * 2001-01-31 2002-08-14 Hitachi Ltd エポキシ樹脂組成物及び導電性ペースト
US7109288B2 (en) 2001-05-18 2006-09-19 Hitachi, Ltd. Cured thermosetting resin product
JP2004010762A (ja) 2002-06-07 2004-01-15 Hitachi Ltd エポキシ樹脂,エポキシ樹脂組成物,エポキシ樹脂硬化物及びそれらの製造方法
JP4619770B2 (ja) * 2003-12-24 2011-01-26 住友化学株式会社 エポキシ化合物および該エポキシ化合物を硬化せしめてなるエポキシ樹脂硬化物
JP4889110B2 (ja) 2007-02-05 2012-03-07 日東電工株式会社 熱伝導性樹脂組成物および熱伝導性シートとその製造方法
JP5091052B2 (ja) * 2008-08-25 2012-12-05 新日鐵化学株式会社 エポキシ樹脂組成物および成形物
US8242878B2 (en) * 2008-09-05 2012-08-14 Vishay Dale Electronics, Inc. Resistor and method for making same
WO2010107038A1 (ja) * 2009-03-17 2010-09-23 住友化学株式会社 ジエポキシ化合物の製造方法
CN102482242B (zh) * 2009-09-03 2014-07-16 住友化学株式会社 二环氧化合物、其制造方法和含有该二环氧化合物的组合物
KR20160140996A (ko) * 2009-09-29 2016-12-07 히타치가세이가부시끼가이샤 다층 수지 시트 및 그 제조 방법, 다층 수지 시트 경화물의 제조 방법, 그리고, 고열전도 수지 시트 적층체 및 그 제조 방법
JP2011098952A (ja) * 2009-10-06 2011-05-19 Sumitomo Chemical Co Ltd ジエポキシ化合物の製造方法
KR101958506B1 (ko) * 2011-11-02 2019-03-14 히타치가세이가부시끼가이샤 수지 조성물, 및 그것을 이용한 수지 시트, 프리프레그, 적층판, 금속 기판, 프린트 배선판 및 파워 반도체 장치
JP5681151B2 (ja) * 2012-09-03 2015-03-04 新日鉄住金化学株式会社 エポキシ樹脂組成物および成形物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009215390A (ja) * 2008-03-10 2009-09-24 Shin Kobe Electric Mach Co Ltd 積層板の製造法
JP2013227451A (ja) * 2012-04-26 2013-11-07 Hitachi Chemical Co Ltd エポキシ樹脂組成物、半硬化エポキシ樹脂組成物、硬化エポキシ樹脂組成物、樹脂シート、プリプレグ、積層板、金属基板、及びプリント配線板
JP2014214307A (ja) * 2013-04-24 2014-11-17 サムソン エレクトロ−メカニックス カンパニーリミテッド. 低熱膨張率および高耐熱性を有するプリント基板用絶縁樹脂組成物、これを用いたプリプレグ、銅張積層板およびプリント基板

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10988585B2 (en) 2016-02-25 2021-04-27 Showa Denko Materials Co., Ltd. Resin sheet and cured product of resin sheet
WO2017145412A1 (ja) * 2016-02-25 2017-08-31 日立化成株式会社 樹脂シート及び樹脂シート硬化物
WO2017209210A1 (ja) * 2016-06-02 2017-12-07 日立化成株式会社 エポキシ樹脂組成物、bステージシート、硬化エポキシ樹脂組成物、樹脂シート、樹脂付金属箔、及び金属基板
WO2018070535A1 (ja) * 2016-10-14 2018-04-19 日立化成株式会社 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
WO2018070534A1 (ja) * 2016-10-14 2018-04-19 日立化成株式会社 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP7160058B2 (ja) 2016-10-14 2022-10-25 昭和電工マテリアルズ株式会社 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP2020079417A (ja) * 2016-10-14 2020-05-28 日立化成株式会社 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
US10920010B2 (en) 2016-10-14 2021-02-16 Showa Denko Materials Co., Ltd. Epoxy resin, epoxy resin composition, epoxy resin cured product, and composite material
JP2018062604A (ja) * 2016-10-14 2018-04-19 日立化成株式会社 エポキシ樹脂組成物、エポキシ樹脂硬化物、熱伝導フィルム、及びエポキシ樹脂硬化物の製造方法
US10800872B2 (en) 2016-10-14 2020-10-13 Hitachi Chemical Company, Ltd. Epoxy resin, epoxy resin composition, epoxy resin cured product, and composite material
JPWO2018070535A1 (ja) * 2016-10-14 2019-06-24 日立化成株式会社 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JPWO2018070534A1 (ja) * 2016-10-14 2019-06-24 日立化成株式会社 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JPWO2018070052A1 (ja) * 2016-10-14 2019-07-25 日立化成株式会社 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
EP3527604A4 (en) * 2016-10-14 2020-06-10 Hitachi Chemical Company, Ltd. EPOXY RESIN, EPOXY RESIN COMPOSITION, EPOXY RESIN HARDENED OBJECT, AND COMPOSITE MATERIAL
EP3514191A4 (en) * 2016-10-14 2020-04-15 Hitachi Chemical Company, Ltd. EPOXY RESIN, EPOXY RESIN COMPOSITION, EPOXY RESIN HARDENED OBJECT, AND COMPOSITE MATERIAL
JPWO2018173953A1 (ja) * 2017-03-24 2019-03-28 東レ株式会社 プリプレグおよび炭素繊維強化複合材料
WO2018173953A1 (ja) * 2017-03-24 2018-09-27 東レ株式会社 プリプレグおよび炭素繊維強化複合材料
US11319420B2 (en) 2017-03-24 2022-05-03 Toray Industries, Inc. Prepreg and carbon fiber reinforced composite material
JP2018162366A (ja) * 2017-03-24 2018-10-18 日立化成株式会社 エポキシ樹脂組成物、樹脂シート、bステージシート、cステージシート、硬化物、樹脂付金属箔及び金属基板
EP3660081A4 (en) * 2017-07-28 2021-04-21 Toray Industries, Inc. PREPREG AND CARBON FIBER REINFORCED COMPOSITE
US11208541B2 (en) 2017-07-28 2021-12-28 Toray Industries, Inc. Prepreg and carbon fiber reinforced material
KR102379662B1 (ko) 2017-08-30 2022-03-25 쇼와덴코머티리얼즈가부시끼가이샤 에폭시 수지 경화물, 에폭시 수지 조성물, 성형체 및 복합 재료
KR20200041898A (ko) * 2017-08-30 2020-04-22 히타치가세이가부시끼가이샤 에폭시 수지 경화물, 에폭시 수지 조성물, 성형체 및 복합 재료
US11840600B2 (en) 2017-08-30 2023-12-12 Resonac Corporation Cured epoxy resin material, epoxy resin composition, molded article, and composite material
JPWO2019043843A1 (ja) * 2017-08-30 2020-09-10 日立化成株式会社 エポキシ樹脂硬化物、エポキシ樹脂組成物、成形体及び複合材料
WO2019043843A1 (ja) * 2017-08-30 2019-03-07 日立化成株式会社 エポキシ樹脂硬化物、エポキシ樹脂組成物、成形体及び複合材料
WO2019059384A1 (ja) * 2017-09-22 2019-03-28 日立化成株式会社 保護材付き厚銅回路
KR102408631B1 (ko) * 2017-09-29 2022-06-13 쇼와덴코머티리얼즈가부시끼가이샤 에폭시 수지, 에폭시 수지 조성물, 에폭시 수지 경화물 및 복합 재료
KR20200055003A (ko) * 2017-09-29 2020-05-20 히타치가세이가부시끼가이샤 에폭시 수지, 에폭시 수지 조성물, 에폭시 수지 경화물 및 복합 재료
JPWO2019160143A1 (ja) * 2018-02-19 2020-12-03 昭和電工マテリアルズ株式会社 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
TWI805693B (zh) * 2018-02-19 2023-06-21 日商力森諾科股份有限公司 環氧樹脂、環氧樹脂組成物、環氧樹脂硬化物及複合材料
WO2019160143A1 (ja) * 2018-02-19 2019-08-22 日立化成株式会社 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料

Also Published As

Publication number Publication date
TW202118808A (zh) 2021-05-16
TW201630959A (zh) 2016-09-01
CN107108856B (zh) 2022-05-31
EP3239206B1 (en) 2020-06-24
US20190256643A1 (en) 2019-08-22
KR20170103797A (ko) 2017-09-13
TW201631021A (zh) 2016-09-01
EP3239206A1 (en) 2017-11-01
EP3239206A4 (en) 2018-07-18
WO2016104772A1 (ja) 2016-06-30
JP6686907B2 (ja) 2020-04-22
TWI749762B (zh) 2021-12-11
US20170349695A1 (en) 2017-12-07
JP7114220B2 (ja) 2022-08-08
US10934387B2 (en) 2021-03-02
JP2021046552A (ja) 2021-03-25
US11208525B2 (en) 2021-12-28
JPWO2016104788A1 (ja) 2017-10-05
TWI748935B (zh) 2021-12-11
CN107108856A (zh) 2017-08-29
JP7160080B2 (ja) 2022-10-25
JPWO2016104772A1 (ja) 2017-09-07

Similar Documents

Publication Publication Date Title
JP7160080B2 (ja) エポキシ樹脂成形材料、成形物、成形硬化物及び成形物の製造方法
JP6680351B2 (ja) エポキシ樹脂組成物、半硬化エポキシ樹脂組成物、硬化エポキシ樹脂組成物、成形物及び成形硬化物
JP7226395B2 (ja) エポキシ樹脂成形材料、成形物、成形硬化物、及び成形硬化物の製造方法
JP6669080B2 (ja) エポキシ樹脂成形材料、成形物及び成形硬化物
JP6512295B2 (ja) エポキシ樹脂成形材料、成形物及び硬化物
WO2017145409A1 (ja) エポキシ樹脂成形材料、成形物、成形硬化物及び成形物の製造方法
JP2017122166A (ja) 樹脂組成物及び硬化物
JP2019056077A (ja) 厚銅回路充填用エポキシ樹脂組成物
JP2019056076A (ja) 厚銅回路充填用エポキシ樹脂組成物
TW201922909A (zh) 帶保護材的厚銅電路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15873356

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016566569

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15873356

Country of ref document: EP

Kind code of ref document: A1