WO2017145412A1 - 樹脂シート及び樹脂シート硬化物 - Google Patents

樹脂シート及び樹脂シート硬化物 Download PDF

Info

Publication number
WO2017145412A1
WO2017145412A1 PCT/JP2016/074881 JP2016074881W WO2017145412A1 WO 2017145412 A1 WO2017145412 A1 WO 2017145412A1 JP 2016074881 W JP2016074881 W JP 2016074881W WO 2017145412 A1 WO2017145412 A1 WO 2017145412A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
resin sheet
resin
monomer
epoxy
Prior art date
Application number
PCT/JP2016/074881
Other languages
English (en)
French (fr)
Inventor
智雄 西山
竹澤 由高
片木 秀行
一也 木口
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to CN201680082736.5A priority Critical patent/CN108699262B/zh
Priority to EP16891569.2A priority patent/EP3418324B1/en
Priority to JP2018500969A priority patent/JP6775735B2/ja
Priority to US16/079,739 priority patent/US10988585B2/en
Priority to TW106106057A priority patent/TWI728057B/zh
Publication of WO2017145412A1 publication Critical patent/WO2017145412A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • C08G59/1433Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds
    • C08G59/1438Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • C08L61/12Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols with polyhydric phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron

Definitions

  • the present disclosure relates to a resin sheet and a cured resin sheet.
  • Recent semiconductor package devices require measures for heat dissipation since the periphery of the chip tends to become high temperature due to the progress of higher density and higher integration.
  • SiC silicon carbide
  • organic materials are being used in place of inorganic materials such as ceramics that have been used so far, as power devices have become smaller and lighter.
  • examples of the usage form of the organic material include a composite material made of a mixture of an organic polymer (resin) and an inorganic filler.
  • the organic material has advantages such as high workability of the material and reduction in weight as compared with the inorganic material, while the thermal conductivity is lower than that of the inorganic material, and 0.1 W / in a general thermosetting resin. It is about (m ⁇ K) to 0.3 W / (m ⁇ K).
  • the thermal conductivity of the composite material can be increased by increasing the filling amount of the inorganic filler, but the filling amount is limited from the viewpoint of compatibility with insulation.
  • the thermal conductivity of the composite material can be dramatically increased.
  • the thickness per sheet is about 120 ⁇ m. This is because if the coating thickness is increased, the organic solvent is less likely to volatilize from the coated surface, and the remaining organic solvent may expand due to heating during curing to form voids. For this reason, in the case of using an organic solvent, a thick film is generally formed by laminating a resin sheet of about 80 ⁇ m and forming one layer by pressing.
  • an object of the present invention is to provide a resin sheet excellent in moldability in a solvent-free or low solvent amount and excellent in thermal conductivity and insulation after curing, and a cured resin sheet.
  • Means for solving the above problems include the following embodiments.
  • the epoxy resin oligomer includes a reaction product of an epoxy resin monomer having a mesogenic skeleton and a divalent phenol compound having a structure in which two hydroxyl groups are bonded to one benzene ring, Resin sheet.
  • the epoxy resin oligomer includes a reaction product of a compound represented by the following general formula (1) and a divalent phenol compound having a structure in which two hydroxyl groups are bonded to one benzene ring.
  • R 1 to R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • ⁇ 5> The resin sheet according to any one of ⁇ 1> to ⁇ 4>, wherein the epoxy resin monomer includes a compound having a mesogenic skeleton and two epoxy groups in a molecule.
  • the epoxy resin monomer includes at least one selected from the group consisting of a compound represented by the following general formula (1) and a biphenyl type epoxy resin monomer, and any one of ⁇ 1> to ⁇ 5> The resin sheet according to item.
  • R 1 to R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • the curing agent includes a dihydroxybenzene novolac resin.
  • the epoxy resin oligomer has a number average molecular weight of 600 to 2300.
  • the average thickness is 0.2 mm to 3 mm.
  • a cured resin sheet which is a cured product of the resin sheet according to any one of ⁇ 1> to ⁇ 9>.
  • the present invention is not limited to the following embodiments.
  • the components including element steps and the like are not essential unless otherwise specified.
  • the term “process” includes a process that is independent of other processes and includes the process if the purpose of the process is achieved even if it cannot be clearly distinguished from the other processes. It is.
  • numerical values indicated by using “to” include numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range. Good. Further, in the numerical ranges described in this specification, the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
  • the content of each component in the composition is the sum of the plurality of substances present in the composition unless there is a specific indication when there are a plurality of substances corresponding to each component in the composition. It means the content rate of.
  • the term “layer” refers to the case where the layer is formed only in a part of the region in addition to the case where the layer is formed over the entire region. Is also included.
  • the resin sheet of this embodiment includes an epoxy resin containing an epoxy resin oligomer and an epoxy resin monomer, a curing agent, and an inorganic filler, and the content of the inorganic filler is more than 30% by volume and less than 80% by volume.
  • the resin sheet having the above-described configuration is excellent in moldability with no solvent or in a low solvent amount, whereby a thick resin sheet can be obtained.
  • the thickness of the resin sheet is not particularly limited.
  • the average thickness of the resin sheet can be increased to 3 mm.
  • the average thickness of the resin sheet is preferably 0.2 mm to 3 mm.
  • curing this resin sheet is excellent in heat conductivity and insulation.
  • the “average thickness of the resin sheet” in this specification means the thickness of a single layer (not a laminate of a plurality of resin layers).
  • the average thickness means a number average value when 9 points are measured.
  • the reason why the resin sheet of this embodiment is excellent in moldability in the absence of a solvent or in a low solvent amount is not clear, but by including an epoxy resin oligomer as a resin component, the epoxy resin does not include an oligomer. It is conceivable that the elongation amount of the resin in the semi-cured state is increased, the moldability is improved, and that the reaction of the functional group is advanced by the oligomerization, the curing heat generation can be suppressed. Further, by increasing the thickness of the resin sheet, it is considered that the moldability is excellent because the cushioning property can be exhibited even when the inorganic filler is highly filled.
  • the resin sheet of this embodiment can be produced without solvent or with a low solvent amount. For this reason, the residual volatile matter of a resin sheet can be suppressed to 0.1 mass% or less, for example. Thereby, generation
  • FIG. 1 is a schematic diagram illustrating an example of a cross-sectional view of the cured resin sheet of the present embodiment.
  • the resin sheet 3 has a structure in which a boron nitride filler 1 is dispersed in a resin matrix 2 (mixed phase of cured epoxy resin and alumina filler).
  • Reference numeral 4 indicates the surface of the resin sheet.
  • FIG. 2 is a schematic view showing an example of a cross section of a cured resin sheet in which a plurality of layers are laminated.
  • the resin sheet 3 has a structure in which boron nitride filler 1 is dispersed in a resin matrix 2 (mixed phase of epoxy resin cured product and alumina filler).
  • FIG. 3 is an example of a scanning electron microscope (SEM) photograph of a cross section of the cured resin sheet of the present embodiment.
  • the resin sheet 3 has a structure in which the boron nitride filler 10 is dispersed in the resin matrix 11.
  • FIG. 4 is an example of an SEM photograph of a cross section of a cured resin sheet in which a plurality of layers are laminated.
  • the resin sheet 3 has a structure in which an alumina filler 10 and a boron nitride filler 13 are dispersed in a resin matrix 12. Further, an interface 12 is formed between the resin sheets 3. Along the interface, the boron nitride filler particles are deformed so as to be crushed.
  • epoxy resin The resin sheet of this embodiment contains an epoxy resin containing an epoxy resin oligomer and an epoxy resin monomer.
  • the “epoxy resin oligomer” is an epoxy resin monomer multimer (including a dimer) having an unreacted epoxy group and having a molecular weight of 600 or more and 6000 or less by GPC measurement. Means.
  • the epoxy resin contained in the resin sheet is a polymer of an epoxy resin monomer in addition to an epoxy resin oligomer and an epoxy resin monomer, has an unreacted epoxy group, and is measured by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • the content of the epoxy resin (total of epoxy resin oligomer, epoxy resin monomer and other epoxy resins) in the resin sheet is not particularly limited. For example, it is preferably 2% by mass to 38% by mass of the entire resin sheet, and more preferably 4% by mass to 28% by mass.
  • the content of the epoxy resin oligomer in the epoxy resin is not particularly limited. For example, it is preferably 3% by mass to 50% by mass of the total epoxy resin, and more preferably 5% by mass to 45% by mass.
  • the content rate of the epoxy resin oligomer in an epoxy resin can be calculated
  • the content of the epoxy resin monomer in the epoxy resin is not particularly limited.
  • the content is preferably 30% by mass to 97% by mass and more preferably 35% by mass to 95% by mass with respect to the entire epoxy resin.
  • the content rate of the epoxy resin monomer in an epoxy resin can be calculated
  • the resin sheet of the present embodiment preferably includes an epoxy resin having a mesogen skeleton as an epoxy resin.
  • the “mesogen skeleton” refers to a molecular structure that facilitates the expression of crystallinity or liquid crystallinity. Specific examples include a biphenyl skeleton, a phenylbenzoate skeleton, an azobenzene skeleton, a stilbene skeleton, a cyclohexylbenzene skeleton, and derivatives thereof.
  • Epoxy resins having a mesogenic skeleton in the molecular structure tend to form a higher order structure when cured to form a resin matrix, and tend to achieve higher thermal conductivity when a cured product is produced.
  • the higher order structure is a state in which the constituent elements are regularly arranged, and corresponds to, for example, a crystal phase and a liquid crystal phase. Whether or not such a higher-order structure exists can be easily determined by observation with a polarizing microscope. That is, when an interference pattern due to depolarization is observed in observation in the crossed Nicols state, it can be determined that a higher-order structure (also referred to as a periodic structure) exists.
  • the change in the storage elastic modulus of the resin with respect to temperature becomes small, so the presence of the crystal structure or liquid crystal structure is indirectly confirmed by measuring the change in the storage elastic modulus with respect to temperature. it can.
  • High-order structures with high regularity derived from mesogenic structures include nematic structures and smectic structures.
  • the nematic structure is a liquid crystal structure in which the long axis of the molecule is oriented in a uniform direction and has only alignment order.
  • the smectic structure is a liquid crystal structure having a one-dimensional positional order in addition to the orientation order and having a layer structure with a constant period.
  • the direction of the period of the layer structure is uniform within the same periodic structure of the smectic structure. That is, the order of molecules is higher in the smectic structure than in the nematic structure.
  • Whether or not the periodic structure in the resin matrix contains a smectic structure can be determined by the method described in Examples.
  • the content of the epoxy resin having a mesogen skeleton in the epoxy resin is not particularly limited. For example, it is preferably 30% by mass or more of the entire epoxy resin, more preferably 50% by mass or more, and further preferably 70% by mass or more.
  • the content of the epoxy resin having a mesogenic skeleton in the epoxy resin can be determined by, for example, dissolving the epoxy resin and the curing agent in an organic solvent, removing the inorganic filler, and then sorting by GPC column, nuclear magnetic resonance, infrared It can be determined by combining measurement methods such as spectroscopy, time-of-flight mass spectrometry, and gas-type mass spectrometry.
  • Epoxy resin oligomer The resin sheet of this embodiment contains an epoxy resin oligomer as an epoxy resin.
  • the epoxy resin oligomer may be one type or two or more types.
  • the number average molecular weight of the epoxy resin oligomer is not particularly limited.
  • the number average molecular weight as measured by gel permeation chromatography (GPC) is preferably 600 to 2300, and more preferably 650 to 2200.
  • the epoxy resin oligomer is preferably a multimer of epoxy resin monomers having a mesogenic skeleton.
  • the epoxy resin oligomer is a multimer of epoxy resin monomers having a mesogen skeleton
  • specific examples of the epoxy resin monomer having a mesogen skeleton include YL6121H (Mitsubishi Chemical Corporation).
  • the epoxy resin oligomer may be a multimer of epoxy resin monomers represented by the following general formula (1).
  • the monomer represented by the following general formula (1) may be used alone or in combination of two or more.
  • R 1 to R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • R 1 to R 4 are each independently preferably a hydrogen atom or an alkyl group having 1 to 2 carbon atoms, more preferably a hydrogen atom or a methyl group, and even more preferably a hydrogen atom.
  • 2 to 4 of R 1 to R 4 are hydrogen atoms, more preferably 3 or 4 are hydrogen atoms, and more preferably that all 4 are hydrogen atoms.
  • any of R 1 to R 4 is an alkyl group having 1 to 3 carbon atoms
  • at least one of R 1 and R 4 is preferably an alkyl group having 1 to 3 carbon atoms.
  • the epoxy resin oligomer is a reaction product of an epoxy resin monomer having a mesogenic skeleton and a compound having a structure in which two hydroxyl groups are bonded to one benzene ring (hereinafter also referred to as a specific dihydric phenol compound). preferable.
  • the epoxy resin oligomer is a reaction product of an epoxy resin monomer and a specific dihydric phenol compound
  • control of the molecular weight, thermal conductivity, and glass transition temperature (Tg) of the epoxy resin oligomer when the epoxy resin oligomer is synthesized It tends to be easy.
  • Tg glass transition temperature
  • the reaction can be easily controlled and the occurrence of gelation is sufficient as compared with the case where a phenol compound having three or more hydroxyl groups bonded to the benzene ring is used. Tend to be suppressed.
  • the softening point is higher than when a phenol compound having three or more hydroxyl groups bonded to the benzene ring is used, and the handling property tends to be improved (see, for example, Japanese Patent No. 5019272).
  • the specific dihydric phenol compound may be any of catechol (1,2-benzenediol), resorcinol (1,3-benzenediol) or hydroquinone (1,4-benzenediol), and derivatives thereof. Also good.
  • Examples of the derivative of the specific divalent phenol compound include a compound in which a substituent such as an alkyl group having 1 to 8 carbon atoms is bonded to the benzene ring.
  • the specific dihydric phenol compound may be only one type or two or more types.
  • the specific dihydric phenol compound is preferably hydroquinone. Since hydroquinone has a positional relationship in which the two hydroxyl groups on the benzene ring are in the para position, the epoxy resin oligomer obtained by reacting with the epoxy resin monomer has a rigid molecule having a linear structure. For this reason, it is considered that molecules of the epoxy resin oligomer and the epoxy resin monomer are easily overlapped in the resin sheet, and a crystal structure is easily formed.
  • the following specific examples are dimers of an epoxy resin monomer, they may be trimers or more.
  • the epoxy resin oligomers represented by the above formulas (2-1) to (2-3) and the above formulas (2-a) to (2-c) include hydroxyl groups on the benzene ring derived from the specific dihydric phenol compound. There are three types of isomers with different positions. For example, when the specific dihydric phenol compound is hydroquinone, the epoxy resin oligomers represented by the above formulas (2-1) to (2-3) and the above formulas (2-a) to (2-c) are respectively It is represented by the following formulas (3-1) to (3-3) and the following formulas (3-a) to (3-c).
  • epoxy resin oligomers represented by at least one of formulas (3-1) to (3-3) are preferable, and at least one of the above formulas (3-a) to (3-c) is preferred.
  • An epoxy resin oligomer represented by the formula is more preferable.
  • the epoxy resin oligomers represented by the above formulas (3-1) to (3-3) and the above formulas (3-a) to (3-c) have a linear structure, a high molecular stacking property, and a higher order structure. Therefore, the thermal conductivity tends to be further improved.
  • the method for synthesizing the epoxy resin oligomer is not particularly limited.
  • an epoxy resin monomer, a specific dihydric phenol compound, and a reaction catalyst can be dissolved in a synthesis solvent and synthesized by stirring while heating.
  • a synthesis solvent it is necessary to raise the temperature to a temperature at which the epoxy resin monomer melts, making it difficult to control the reaction. Become. For this reason, from the viewpoint of safety, a synthesis method using a synthesis solvent is preferable.
  • the synthetic solvent is not particularly limited as long as it can be heated to a temperature necessary for the reaction of the epoxy resin monomer and the specific dihydric phenol compound to proceed.
  • Specific examples include cyclohexanone, cyclopentanone, ethyl lactate, propylene glycol monomethyl ether, N-methylpyrrolidone and the like. Only one synthetic solvent or two or more synthetic solvents may be used.
  • the amount of the synthesis solvent is not particularly limited as long as it is an amount that can dissolve all of the epoxy resin monomer, the specific dihydric phenol compound, and the curing catalyst at the reaction temperature.
  • solubility varies depending on the type of raw material before the reaction, the type of solvent, and the like, if the charged solid content concentration is 20% by mass to 60% by mass, the resin solution viscosity after synthesis is generally within the preferred range.
  • the type of reaction catalyst is not particularly limited, and an appropriate one can be selected from the viewpoint of reaction rate, reaction temperature, storage stability, and the like.
  • Specific examples of the reaction catalyst include imidazole compounds, organic phosphorus compounds, tertiary amines, quaternary ammonium salts and the like.
  • the reaction catalyst may be used alone or in combination of two or more.
  • an organic phosphine compound an organic phosphine compound, maleic anhydride, a quinone compound (1,4-benzoquinone, 2,5-toluquinone, 1,4-naphthoquinone, 2,3-dimethylbenzoquinone, 2 , 6-dimethylbenzoquinone, 2,3-dimethoxy-5-methyl-1,4benzoquinone, 2,3-dimethoxy-1,4-benzoquinone, phenyl-1,4-benzoquinone, etc.), diazophenylmethane, phenol resin, etc.
  • a quinone compound (1,4-benzoquinone, 2,5-toluquinone, 1,4-naphthoquinone, 2,3-dimethylbenzoquinone, 2 , 6-dimethylbenzoquinone, 2,3-dimethoxy-5-methyl-1,4benzoquinone, 2,3-dimethoxy-1,4-benzoquino
  • the reaction catalyst is preferably an organic phosphine compound.
  • organic phosphine compound include triphenylphosphine, diphenyl (p-tolyl) phosphine, tris (alkylphenyl) phosphine, tris (alkoxyphenyl) phosphine, tris (alkylalkoxyphenyl) phosphine, and tris (dialkylphenyl).
  • Phosphine tris (trialkylphenyl) phosphine, tris (tetraalkylphenyl) phosphine, tris (dialkoxyphenyl) phosphine, tris (trialkoxyphenyl) phosphine, tris (tetraalkoxyphenyl) phosphine, trialkylphosphine, dialkylarylphosphine, Examples thereof include alkyl diaryl phosphine.
  • the amount of the reaction catalyst is not particularly limited. From the viewpoint of reaction rate and storage stability, it is preferably 0.1% by mass to 3% by mass, and preferably 0.2% by mass to 2% by mass with respect to the total mass of the epoxy resin monomer and the specific dihydric phenol compound. It is more preferable that
  • the container used for the synthesis of the epoxy resin oligomer is not particularly limited, and for example, a glass flask or a stainless steel synthesis kettle can be used.
  • a specific synthesis method is as follows, for example. First, an epoxy resin monomer is put into a flask or a synthesis kettle, a synthesis solvent is added, and the mixture is heated to a reaction temperature with an oil bath or a heat medium to dissolve the epoxy resin monomer. Next, a characteristic dihydric phenol compound is charged, and after confirming that the compound is uniformly dissolved in the synthesis solvent, a curing catalyst is charged and the reaction is started. By removing the reaction solution after a predetermined time, a solution containing an epoxy resin oligomer is obtained. Moreover, a solid epoxy resin oligomer can be obtained by distilling a synthetic
  • the reaction temperature is not limited as long as the reaction between the epoxy group and the phenolic hydroxyl group proceeds in the presence of the reaction catalyst. For example, a range of 100 ° C. to 180 ° C. is preferable, and a range of 120 ° C. to 170 ° C. is more preferable.
  • the reaction temperature By setting the reaction temperature to 100 ° C. or higher, the time until the reaction is completed tends to be shortened.
  • the reaction temperature to 180 ° C. or lower, the possibility of gelation tends to be reduced.
  • the equivalent ratio of the epoxy resin monomer and the specific dihydric phenol compound when synthesizing the epoxy resin is not particularly limited.
  • the ratio (Ep / Ph) between the number of equivalents of epoxy groups (Ep) of the epoxy resin monomer and the number of equivalents of phenolic hydroxyl groups (Ph) of the specific dihydric phenol compound is in the range of 100/5 to 100/50. preferable.
  • Ep / Ph By setting Ep / Ph to be 100/5 or more, the softening point of the resulting epoxy resin oligomer is lowered, and the fluidity tends to be increased.
  • Ep / Ph is set to 100/50 or less, a decrease in cross-linking point density is suppressed, and heat resistance and thermal conductivity tend to increase.
  • Epoxy resin monomer The resin sheet of this embodiment contains an epoxy resin monomer.
  • the resin sheet of this embodiment contains both an epoxy resin oligomer and an epoxy resin monomer as an epoxy resin, so that the moldability is better than when the epoxy resin contains only an epoxy resin oligomer.
  • the epoxy resin monomer may be one type or two or more types.
  • the epoxy resin monomer contained in the resin sheet may be the same as or different from the epoxy resin monomer constituting the epoxy resin oligomer contained in the resin sheet.
  • the epoxy resin monomer may be an epoxy resin monomer that is contained in an unreacted state in a solution or solid obtained in the process of synthesizing the epoxy resin oligomer.
  • the structure of the epoxy resin monomer is not particularly limited.
  • the epoxy resin monomer constituting the epoxy resin oligomer can be selected from the specific examples described above.
  • the epoxy resin monomer is preferably an epoxy resin monomer having a mesogenic skeleton.
  • Specific examples of the epoxy resin monomer having a mesogen skeleton include those described above as the epoxy resin monomer having a mesogen skeleton constituting the epoxy resin oligomer.
  • the epoxy resin monomer having a mesogenic skeleton may be only one type or two or more types.
  • the epoxy resin monomer may be an epoxy resin monomer other than the epoxy resin monomer having a mesogen skeleton.
  • epoxy resin monomers include glycidyl ethers of phenol compounds such as bisphenol A, bisphenol F, bisphenol S, phenol novolac, cresol novolac, resorcinol novolak; glycidyl ethers of alcohol compounds such as butanediol, polyethylene glycol, and polypropylene glycol; Glycidyl esters of carboxylic acid compounds such as phthalic acid, isophthalic acid, and tetrahydrophthalic acid; glycidyl types (including methyl glycidyl type) in which active hydrogen bonded to nitrogen atom such as aniline or isocyanuric acid is substituted with glycidyl group Epoxy resin monomer; vinylcyclohexene epoxide obtained by epoxidizing olefin bonds in the molecule, 3,4-epoxycyclohex
  • the resin sheet of this embodiment contains an inorganic filler.
  • an inorganic filler By including an inorganic filler, high thermal conductivity and high insulation can be achieved.
  • the kind of the inorganic filler is not particularly limited, and examples thereof include boron nitride, alumina, aluminum nitride, silica, mica, magnesium oxide, silicon nitride, aluminum hydroxide, and barium sulfate. From the viewpoint of thermal conductivity and electrical insulation, it is preferable to include at least one selected from the group consisting of boron nitride, alumina, and aluminum nitride.
  • the thermal conductivity is drastically improved.
  • this can be considered as follows.
  • Boron nitride has a Mohs hardness of 2, which is lower and softer than other insulating ceramics (eg, hardness 8) such as alumina and aluminum nitride.
  • other insulating ceramics eg, hardness 8
  • boron nitride having a spherical shape, round shape, or the like is in a state where primary particles are aggregated, voids exist inside the particles. For this reason, the particles themselves are easily deformed while being harder than the resin contained in the resin sheet.
  • the fillers can easily approach each other, and it becomes easier to form a structure in which the large particle size filler containing boron nitride is continuously in contact with the inside of the resin sheet, and the thermal conductivity is improved. be able to.
  • the crystal form of the filler in the resin sheet can be confirmed by observing the cross section of the resin sheet with an SEM (scanning electron microscope). Further, it can be confirmed by qualitating the filler element by using SEM-EDX (energy dispersive X-ray spectrometer).
  • the particle size corresponds to 50% cumulative from the small particle size side of the weight cumulative particle size distribution of the inorganic filler when the particle size is plotted on the horizontal axis and the curve is plotted on the vertical axis.
  • the average particle diameter (D50) is preferably 20 ⁇ m to 120 ⁇ m, more preferably 25 ⁇ m to 115 ⁇ m from the viewpoint of thermal conductivity.
  • a particle size distribution curve has a some peak, it can comprise, for example in combination of 2 or more types of inorganic fillers which have a different average particle diameter.
  • the average particle diameter (D50) of the inorganic filler is measured using a laser diffraction method, and when the weight cumulative particle size distribution curve is drawn from the small particle diameter side, the particle diameter at which the weight cumulative is 50%.
  • the particle size distribution measurement using the laser diffraction method can be performed using a laser diffraction scattering particle size distribution measuring apparatus (for example, Beckman Coulter, Inc., LS230).
  • the content of the inorganic filler in the resin sheet is more than 30% by volume and less than 80% by volume when the total volume of the resin sheet is 100% by volume.
  • the content of the inorganic filler is preferably more than 30% by volume and 75% by volume or less, preferably 40% by volume to 70% by volume. It is more preferable that When there is more content of an inorganic filler than 30 volume%, it exists in the tendency for thermal conductivity to improve. On the other hand, when the content of the inorganic filler is less than 80% by volume, formability tends to be improved.
  • the content (volume%) of the inorganic filler in the resin sheet in the present specification is a value determined by the following formula.
  • Content of inorganic filler (% by volume) ⁇ (Ew / Ed) / ((Aw / Ad) + (Bw / Bd) + (Cw / Cd) + (Dw / Dd) + (Ew / Ed) + (Fw / Fd)) ⁇ ⁇ 100
  • each variable is as follows.
  • Aw mass composition ratio of epoxy resin (mass%)
  • Cw mass composition ratio (mass%) of silane coupling agent (optional component)
  • Dw Mass composition ratio (mass%) of curing accelerator (optional component)
  • Ew mass composition ratio of inorganic filler (mass%)
  • Fw Mass composition ratio (mass%) of other components (arbitrary components)
  • Ad Specific gravity of epoxy resin
  • Bd Specific gravity of curing agent
  • Cd Specific gravity of silane coupling agent (optional component)
  • Dd Specific gravity of curing accelerator (optional component)
  • Ed Specific gravity of inorganic filler
  • Other components optional component) Specific gravity
  • the resin sheet in the present invention contains a curing agent.
  • the curing agent is not particularly limited as long as it can react with the epoxy resin oligomer and the epoxy resin monomer contained in the resin sheet.
  • a phenol curing agent is preferable from the viewpoint of improving heat resistance.
  • the phenol curing agent include trifunctional phenol compounds such as 1,2,4-trihydroxybenzene and 1,3,5-trihydroxybenzene.
  • a phenol novolak resin obtained by connecting these low-molecular phenol compounds with a methylene chain or the like to form a novolak can also be used as a curing agent.
  • the curing agent preferably includes a phenol novolac resin, and includes a phenol novolac resin (dihydroxybenzene novolac resin) in which bifunctional phenolic compounds such as catechol, resorcinol and hydroquinone are connected by a methylene chain. Is more preferable.
  • the dihydroxybenzene novolac resin may be a resin obtained by novolacizing one phenol compound such as a catechol novolak resin, a resorcinol novolak resin, or a hydroquinone novolak resin, or two or more kinds of phenols such as a catechol resorcinol novolak resin or a resorcinol hydroquinone novolak resin. It may be a resin in which the compound is novolakized. Among these, a compound having a structural unit represented by the following general formula (4) (that is, a structural unit derived from resorcinol) is preferable.
  • R 1 represents an alkyl group, an aryl group, or an aralkyl group.
  • R 2 and R 3 each independently represents a hydrogen atom, an alkyl group, an aryl group or an aralkyl group.
  • m represents a number from 0 to 2
  • n represents a number from 1 to 7.
  • two R 1 may be the same or different.
  • the compound having the structural unit represented by the general formula (4) may further include a structural unit derived from a phenol compound other than resorcinol.
  • phenol compounds other than resorcinol include phenol, cresol, catechol, hydroquinone, 1,2,3-trihydroxybenzene, 1,2,4-trihydroxybenzene, 1,3,5-trihydroxybenzene, and the like. be able to.
  • the structural unit derived from a phenol compound other than resorcinol may be only one type or two or more types.
  • the partial structure derived from the phenol compound means a monovalent or divalent group constituted by removing one or two hydrogen atoms from the benzene ring portion of the phenol compound.
  • the position where the hydrogen atom is removed is not particularly limited.
  • the partial structure derived from a phenol compound other than resorcinol is phenol, cresol, catechol, hydroquinone, 1, from the viewpoint of thermal conductivity and adhesiveness. It is preferably a partial structure derived from at least one selected from 2,3-trihydroxybenzene, 1,2,4-trihydroxybenzene, and 1,3,5-trihydroxybenzene, and selected from catechol and hydroquinone More preferably, it is a partial structure derived from at least one kind.
  • the content ratio of the partial structure derived from resorcinol is not particularly limited. From the viewpoint of the elastic modulus, the content ratio of the partial structure derived from resorcinol in the total mass of the compound having the structural unit represented by the general formula (4) is preferably 55% by mass or more. From the viewpoint of the glass transition temperature (Tg) and linear expansion coefficient after curing, the content ratio of the partial structure derived from resorcinol in the total mass of the compound having the structural unit represented by the general formula (4) is 60% by mass or more. More preferably, it is more preferably 80% by mass or more, and particularly preferably 90% by mass or more from the viewpoint of thermal conductivity.
  • Tg glass transition temperature
  • the content ratio of the partial structure derived from resorcinol in the total mass of the compound having the structural unit represented by the general formula (4) is 60% by mass or more. More preferably, it is more preferably 80% by mass or more, and particularly preferably 90% by mass or more from the viewpoint of thermal conductivity.
  • the molecular weight of the compound having the structural unit represented by the general formula (4) is not particularly limited. From the viewpoint of fluidity, the number average molecular weight (Mn) is preferably 2000 or less, more preferably 1500 or less, and further preferably 350 to 1500. The weight average molecular weight (Mw) is preferably 2000 or less, more preferably 1500 or less, and further preferably 400 to 1500. These Mn and Mw are measured by a usual method using gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • the hydroxyl equivalent of the compound having the structural unit represented by the general formula (4) is not particularly limited. From the viewpoint of the crosslinking density involved in heat resistance, the hydroxyl group equivalent is preferably 55 g / eq to 200 g / eq on average, more preferably 62 g / eq to 190 g / eq, and 65 g / eq to 180 g. More preferably, it is / eq.
  • the curing agent may include both a phenol novolac resin and a phenol compound constituting the phenol novolac resin in an unreacted state (hereinafter also referred to as a monomer).
  • the content ratio of the monomer (hereinafter also referred to as “monomer content ratio”) in the total mass of the phenol novolac resin and the monomer is not particularly limited. From the viewpoint of thermal conductivity and moldability, the monomer content is preferably 5% by mass to 80% by mass, more preferably 15% by mass to 60% by mass, and 20% by mass to 50% by mass. More preferably.
  • the monomer content is 80% by mass or less, the amount of monomers that do not contribute to crosslinking during the curing reaction is reduced and the number of crosslinked high molecular weight substances is increased, so that a higher-order higher-order structure is formed and heat conduction is increased. Tend to improve. Further, when the monomer content ratio is 5% by mass or more, the fluidity during molding is good, the adhesion with the inorganic filler is further improved, and more excellent thermal conductivity and heat resistance are achieved. There is a tendency.
  • the content of the curing agent in the resin sheet is not particularly limited.
  • the content of the phenolic curing agent in the resin sheet is the number of equivalents of active hydrogen of the phenolic hydroxyl group in the phenol curing agent (the number of equivalents of the phenolic hydroxyl group) and the resin.
  • the content of the epoxy resin oligomer contained in the sheet and the epoxy resin monomer equivalent to the number of epoxy group equivalents is preferably 0.5 to 2, More preferably, the content is 0.8 to 1.2.
  • the resin sheet of this embodiment may contain a curing accelerator.
  • the type of the curing accelerator is not particularly limited, and an appropriate one can be selected from the viewpoint of reaction rate, reaction temperature, storage property, and the like.
  • Specific examples of the curing accelerator include compounds exemplified as a reaction catalyst that can be used for the synthesis of an epoxy resin oligomer.
  • the content of the curing accelerator is preferably 0.1% by mass to 1.5% by mass with respect to the total mass of the epoxy resin oligomer, the epoxy resin monomer and the curing agent. More preferably, the content is 0.2% by mass to 1% by mass.
  • the resin sheet of this embodiment may contain a silane coupling agent.
  • silane coupling agent By including the silane coupling agent, interaction between the surface of the inorganic filler and the epoxy resin surrounding the surface of the inorganic filler occurs, and the fluidity and thermal conductivity tend to be improved. In addition, the penetration of moisture into the resin sheet is suppressed and the insulation reliability tends to be improved.
  • the silane coupling agent is not particularly limited, and a commonly used one can be used. Specifically, 3-phenylaminopropyltrimethoxysilane, 3-phenylaminopropyltriethoxysilane, N-methylanilinopropyltrimethoxysilane, N-methylanilinopropyltriethoxysilane, 3-phenyliminopropyltrimethoxy Examples thereof include silane, 3-phenyliminopropyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, triphenylmethoxysilane, and triphenylethoxysilane.
  • a silane coupling agent may use only 1 type, or may use 2 or more types together.
  • the amount of the silane coupling agent used is preferably set so that the coverage with respect to the entire surface area of the inorganic filler (hereinafter also referred to as the coverage of the silane coupling agent) is 0.4 to 4.0.
  • the coverage of the silane coupling agent determined by the above equation is 1 when the surface of the inorganic filler is completely covered with the silane coupling agent.
  • the surface of the inorganic filler only reacts with the silane coupling agent. Since there may be no polar group such as a hydroxyl group, an unreacted silane coupling agent that does not react with the inorganic filler may occur. Therefore, when the coverage of the silane coupling agent is 4.0 or less, the silane coupling agent that does not bind to the inorganic filler is inhibited from inhibiting the bonding between the inorganic filler and the epoxy resin or cross-linking between the epoxy resin molecules. Therefore, a decrease in thermal conductivity can be prevented.
  • the coverage of the silane coupling agent is 0.4 or more, molding defects such as voids tend not to occur after molding. Accordingly, the coverage of the silane coupling agent is preferably 0.4 to 4.0, and more preferably 0.5 to 3.0.
  • the method for adding the silane coupling agent to the resin sheet is not particularly limited.
  • the integral method added when mixing with other materials such as epoxy resin and inorganic filler; after mixing a certain amount of silane coupling agent with a small amount of epoxy resin, mix with other materials such as inorganic filler examples include a master batch method; a pretreatment method in which a surface of an inorganic filler is preliminarily treated with a silane coupling agent before being mixed with another material such as an epoxy resin.
  • the pretreatment method includes a dry method in which a stock solution or solution of a silane coupling agent is uniformly dispersed by high-speed stirring together with an inorganic filler, and a slurry or a direct immersion in a dilute solution of a silane coupling agent.
  • a wet method in which the surface of the inorganic filler is treated.
  • the resin sheet of this embodiment may contain a stress relaxation material, a reinforcing material, etc. as needed.
  • a stress relaxation material include rubber particles (butyl rubber, neoprene rubber, nitrile rubber (NBR), silicone rubber, etc.).
  • the reinforcing material include inorganic fibers such as glass fiber and carbon fiber.
  • the method for producing the resin sheet of the present embodiment is not particularly limited.
  • components of a specified blending amount are sufficiently mixed with a mixer, etc., then melt-kneaded with a mixing roll, an extruder, etc., cooled and pulverized to produce pellets, which are put into a mold or the like
  • the pellets can be prepared, for example, by sufficiently stirring and mixing a predetermined amount of components, kneading with a kneader, roll, extruder, etc., which has been heated to 60 ° C. to 120 ° C., cooling, and pulverizing.
  • the pellets may be formed into a tablet in a semi-cured state by tableting with dimensions and masses that meet the molding conditions, compression molding or transfer molding.
  • the resin sheet may be formed on the base material in order to improve handleability. Moreover, in order to protect the surface, you may arrange
  • the kind in particular of base material is not restrict
  • the thickness of the substrate is not particularly limited, and can be, for example, 9 ⁇ m to 300 ⁇ m.
  • the thickness (average thickness) of the resin sheet formed on the substrate is not particularly limited and can be appropriately selected according to the purpose. For example, it may be 0.2 mm to 3.0 mm, and preferably 0.3 mm to 2.5 mm.
  • the resin sheet of this embodiment is preferably formed with no solvent or a low solvent amount.
  • the thickness of the single layer of the resin sheet can be increased.
  • the resin sheet By forming the resin sheet as a single layer, generation of voids at the interface of the laminated resin sheets, formation of a thin resin layer for adhesion between the resin sheets, orientation along the interface of relatively soft fillers such as boron nitride Or generation
  • a single-layer resin sheet tends to be superior in characteristics such as thermal conductivity as compared to a resin sheet obtained by laminating a plurality of resin sheets.
  • the resin sheet of this embodiment can be used as an adhesive sheet, for example.
  • As a general usage method of the resin sheet as the adhesive sheet for example, there is a method in which a resin sheet formed on a substrate is attached to an adherend, and then the substrate is removed.
  • the cured resin sheet of the present embodiment is a cured product of the above-described resin sheet.
  • the method for curing the resin sheet is not particularly limited.
  • a cured product can be obtained by performing heat treatment at 100 ° C. to 250 ° C. for 0.5 hour to 10 hours, preferably 130 ° C. to 230 ° C. for 1 hour to 8 hours.
  • the resin sheet may be cured by a transfer molding method, a compression molding method, or the like.
  • a cured product can be obtained by heating at a mold temperature of 140 ° C. to 180 ° C. and a molding pressure of 10 MPa to 25 MPa for 30 seconds to 600 seconds. If necessary, the cured product removed from the mold may be further heated at 140 ° C. to 230 ° C. for 1 hour to 8 hours, followed by a curing treatment.
  • the resin sheet is preferably cured by heating and pressing.
  • the resin sheet is heated at 100 ° C. to 250 ° C. for 1 hour to 10 hours, preferably 1 MPa to 15 MPa while being pressurized to 1 MPa to 20 MPa, preferably 1 MPa to 15 MPa, and heated at 130 ° C. to 230 ° C. for 1 hour to 8 hours.
  • a cured product can be obtained.
  • a post-curing treatment may be performed by further heating at 160 ° C. to 230 ° C. for 1 hour to 8 hours.
  • the cured product having such a diffraction peak has a higher order structure (smectic phase) of the resin and is excellent in thermal conductivity.
  • the epoxy resin reactant 1 includes an epoxy resin oligomer generated by the reaction, an unreacted epoxy resin monomer, and a part of the synthesis solvent.
  • the number average molecular weight of the epoxy resin reactant 1 was measured by gel permeation chromatography (GPC)
  • the number average molecular weight of the oligomer component newly produced by the synthesis was 1210 g / mol
  • the unreacted epoxy resin monomer and epoxy The total number average molecular weight of the resin oligomer was 494 g / mol.
  • the number average molecular weight of the epoxy resin reactant 2 was measured by gel permeation chromatography (GPC), the number average molecular weight of the oligomer component newly generated by the synthesis was 1520 g / mol, and the unreacted epoxy resin monomer was included.
  • the number average molecular weight of the range was 583 g / mol. It was 263 g / eq when the epoxy equivalent of the epoxy resin reaction product 2 was measured by the perchloric acid titration method.
  • Example 1 to Example 5 The materials shown in Table 1 were premixed in a beaker at the compounding ratio (parts by mass) shown in Table 1, kneaded in a kneader at a kneading temperature of 60 ° C. to 90 ° C. and a kneading time of 2 minutes, and then cooled and ground. By doing this, pellets of the resin composition were obtained. Subsequently, a pellet was spread on a 50 mm ⁇ 50 mm mold, and the resin sheet (B stage sheet) in a semi-cured state was produced by molding at a pressing temperature of 120 ° C., a molding pressure of 15 MPa, and a pressing time of 2 minutes.
  • This resin sheet was sandwiched between two 35 ⁇ m-thick PET sheets, and cured at a press temperature of 180 ° C., a molding pressure of 8 MPa, and a press time of 120 minutes.
  • the resin sheets of Examples 1 to 3 are molded using a mold having a height of 500 ⁇ m
  • Example 4 is molded using a mold having a height of 200 ⁇ m
  • Example 5 has a height of Molding was performed using a 2000 ⁇ m mold.
  • This resin sheet was sandwiched between two 35 ⁇ m-thick PET sheets, and cured at a press temperature of 180 ° C., a molding pressure of 8 MPa, and a press time of 120 minutes.
  • the resin sheets of Comparative Examples 1, 3, 6, and 7 were molded using a mold having a height of 500 ⁇ m
  • Comparative Example 4 was molded using a mold having a height of 100 ⁇ m
  • Comparative Example 5 was high.
  • Comparative Example 2 The materials shown in Table 1 were premixed in a plastic bottle at the blending ratio (parts by mass) shown in Table 1, and the rotational speed was 1000 revolutions / minute (model number: ARE-500, Shinky Co., Ltd.) rpm) for 5 minutes to obtain a resin sheet coating solution.
  • a resin film coating solution was applied by a table coater so that a PET film having one surface released from the mold was used as a support, and the thickness after compression was about 100 ⁇ m.
  • the laminate was dried in a box oven at 100 ° C. for 5 minutes to form a laminate (A stage sheet) in which a resin layer in an A stage state was formed on a PET film.
  • Five layers of resin layers were stacked on the obtained A stage sheet while peeling off the support other than the support serving as the outermost layer. This is heat-pressed using a hot press device (hot plate 120 ° C., pressure 15 MPa, treatment time 10 minutes) to bond the resin layers together, and a semi-cured resin sheet having an average thickness of 501 ⁇ m ( B stage sheet) was obtained.
  • a hot press device hot plate 120 ° C., pressure 15 MPa, treatment time 10 minutes
  • the PET film was peeled from both sides of the B-stage sheet obtained above and sandwiched between two 35 ⁇ m-thick PET sheets, followed by pressing.
  • the press treatment conditions were a hot plate temperature: 150 ° C., a degree of vacuum: 10 kPa or less, a pressure: 15 MPa, and a treatment time: 10 minutes. Further, heat treatment was performed in a box-type oven in the order of 140 ° C. for 2 hours, 165 ° C. for 2 hours, and 190 ° C. for 2 hours to obtain a cured resin sheet of Comparative Example 2.
  • B stage volatiles The mass of the resin sheet (B stage sheet) prepared in Examples and Comparative Examples was measured, and then the mass after heating at 180 ° C. for 30 minutes was measured. The percentage of the value obtained by subtracting the mass after heating from the mass before heating and dividing by the mass before heating was defined as B stage volatile content (% by mass).
  • thermo diffusivity Resin sheets (after curing) prepared in Examples and Comparative Examples were cut into 10 mm squares, blackened with graphite spray, and thermal diffusivity was measured using a thermal diffusivity measuring device (NETZSCH, Nanoflash LFA467 type). Was measured. The measurement conditions were as follows: measurement temperature: 25 ⁇ 1 ° C., measurement voltage: 270 V, Amplitude: 5000, and pulse width: 0.06 ms. The thermal conductivity (W / (m ⁇ K)) was calculated from the product of the thermal diffusivity measured above, the density measured by the Archimedes method, and the specific heat measured by DSC (differential calorimeter). The results are shown in Table 1 together with the measured density value.
  • the thickness of the resin sheet (after curing) prepared in Examples and Comparative Examples was measured with a micrometer (Mitutoyo Corporation) at 9 points, and this average thickness ( ⁇ m) was taken as the thickness. The results are shown in Table 1.
  • Table 1 Details of the materials shown in Table 1 are as follows. In the table, “-” means that the corresponding material is not contained or evaluation is not performed.
  • Monomer 3 Bisphenol A / F mixed epoxy resin (model number: ZX-1059, Nippon Steel & Sumikin Chemical Co., Ltd.)
  • Comparative Example 2 where the epoxy resin was only an epoxy resin monomer having a mesogenic skeleton and an organic solvent was used as a dispersion medium for improving moldability, a good dielectric breakdown voltage was obtained, but the thermal conductivity was an example. It was lower than. The reason why the dielectric breakdown voltage is good may be that the moldability is improved by using an organic solvent. On the other hand, the reason why the thermal conductivity is low may be that an interface in which a plurality of resin sheets are laminated as shown in FIG. 2 has occurred.
  • the present invention provides a resin sheet excellent in moldability in a solvent-free or low solvent amount and excellent in thermal conductivity and insulation after curing, and a cured resin sheet. It was.
  • 1 boron nitride filler
  • 2 resin matrix
  • 3 resin sheet
  • 4 surface of resin sheet
  • 5 interface between resin sheets
  • 10 alumina filler
  • 11 resin matrix
  • 12 interface between resin sheets
  • 13 Boron nitride filler

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Emergency Medicine (AREA)
  • Materials Engineering (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)

Abstract

エポキシ樹脂オリゴマー及びエポキシ樹脂モノマーを含むエポキシ樹脂と、硬化剤と、無機フィラーとを含み、前記無機フィラーの含有率が30体積%を超え80体積%未満である、樹脂シート。

Description

樹脂シート及び樹脂シート硬化物
 本開示は、樹脂シート及び樹脂シート硬化物に関する。
 近年の半導体パッケージデバイスは、高密度化及び高集積化の進展により、チップの周囲が高温になり易くなっていることから、放熱対策が必要となっている。特に、電気自動車、ハイブリッド自動車、産業機器等に使用されるパワーデバイスの分野においては、シリコンに替わり、より高出力化が可能な炭化ケイ素(SiC)の適用が盛んに検討されており、高い熱伝導特性と絶縁性を有する周辺材料の開発が求められている。
 パワーデバイスの周辺に配置される部材は、パワーデバイスの小型化及び軽量化の進展に伴い、これまで使用されてきたセラミック等の無機材料に替わり、有機材料が使用されつつある。有機材料の使用形態としては、有機高分子(樹脂)と無機フィラーとの混合物からなるコンポジット材料が挙げられる。
 有機材料は、無機材料と比較して材料の加工性が高い、軽量化できる等の利点を有する一方、熱伝導率が無機材料と比べて低く、一般的な熱硬化性樹脂では0.1W/(m・K)~0.3W/(m・K)程度である。
 有機材料を高熱伝導率化する手法としては、高い熱伝導率を有するアルミナ、窒化ホウ素等に代表される無機フィラーを樹脂に混合する手法が知られている(例えば、特許第4889110号公報参照)。また、メソゲン骨格等の剛直な構造を樹脂の分子内に導入し、分子間スタッキング性を利用し、液晶性又は結晶性を発現させ、フォノン散乱を抑制することにより熱伝導率を高める手法も知られている(例えば、特許文献1及び特許文献2参照)。前者の手法では、無機フィラーの充填量を増やすことでコンポジット材料の熱伝導率を高めることができるが、絶縁性との両立の観点からは充填量に限界がある。これに対して、後者の熱伝導率の高い樹脂を使用する手法では、コンポジット材料の熱伝導率を飛躍的に高くすることが可能となる。
 しかしながら、熱伝導率の高い樹脂は一般に融点が高く、取り扱い性に劣るという問題がある。そこで、結晶性の高熱伝導樹脂と相溶性のある樹脂をブレンドすることにより樹脂の結晶性を低下させ、流動性及び絶縁性を高める手法が知られている。しかし、この手法では、硬化後の高熱伝導樹脂のスタッキング性が阻害され、コンポジット材料の高熱伝導率化が発揮されない場合がある。
 一方、有機材料から形成される樹脂シートの絶縁性を向上するためには、樹脂シートの厚みを厚くすることが有効である。しかし、有機溶剤に樹脂を溶解した液状の原料をコンマコータ等により基材に塗工する方法で樹脂シートを作製する場合は、1枚あたりの厚さは120μm程度が限界である。これは、塗工厚を厚くすると有機溶剤が塗工面から揮発し難くなり、残留した有機溶剤が硬化時の加温で膨張してボイドを形成するおそれがあるためである。このため、有機溶剤を用いる場合は80μm程度の樹脂シートを積層してプレスにより1層化することにより厚膜化が一般に行われている。しかし、複数の樹脂シートを重ねた場合、樹脂シート間の界面が生じて熱伝導率が低下するおそれがある。また、残留する有機溶剤を加熱のみで完全に除去するのは、樹脂流動性の確保、硬化度の制御、ボイドの発生等を考慮すると困難であると考えられる。
特許第4118691号公報 特許5397476号公報
 本発明は上記事情に鑑み、無溶剤又は低溶剤量での成形性に優れ、かつ硬化後の熱伝導性及び絶縁性に優れる樹脂シート、並びに樹脂シート硬化物を提供することを課題とする。
 上記課題を解決するための手段には、以下の実施態様が含まれる。
<1>エポキシ樹脂オリゴマー及びエポキシ樹脂モノマーを含むエポキシ樹脂と、硬化剤と、無機フィラーと、を含み、
 前記無機フィラーの含有率が30体積%を超え80体積%未満である、樹脂シート。
<2>前記エポキシ樹脂オリゴマーは、メソゲン骨格を有するエポキシ樹脂モノマーと、1個のベンゼン環に2個の水酸基が結合した構造を有する2価フェノール化合物との反応物を含む、<1>に記載の樹脂シート。
<3>前記エポキシ樹脂オリゴマーは、下記一般式(1)で表される化合物と、1個のベンゼン環に2個の水酸基が結合した構造を有する2価フェノール化合物との反応物を含む、<1>又は<2>に記載の樹脂シート。
Figure JPOXMLDOC01-appb-C000003
 一般式(1)中、R~Rはそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を表す。
<4>前記2価フェノール化合物がヒドロキノンを含む、<2>又は<3>に記載の樹脂シート。
<5>前記エポキシ樹脂モノマーは、分子中にメソゲン骨格と2個のエポキシ基を有する化合物を含む、<1>~<4>のいずれか1項に記載の樹脂シート。
<6>前記エポキシ樹脂モノマーは、下記一般式(1)で表される化合物及びビフェニル型エポキシ樹脂モノマーからなる群より選択される少なくとも1種を含む、<1>~<5>のいずれか1項に記載の樹脂シート。
Figure JPOXMLDOC01-appb-C000004
 一般式(1)中、R~Rはそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を表す。
<7>前記硬化剤は、ジヒドロキシベンゼンノボラック樹脂を含む、<1>~<6>のいずれか一項に記載の樹脂シート。
<8>前記エポキシ樹脂オリゴマーの数平均分子量は600~2300である、<1>~<7>のいずれか1項に記載の樹脂シート。
<9>平均厚さが0.2mm~3mmである、<1>~<8>のいずれか1項に記載の樹脂シート。
<10><1>~<9>のいずれか1項に記載の樹脂シートの硬化物である、樹脂シート硬化物。
<11>CuKα線を用いたX線回折法による測定において、回折角2θ=3.0°~3.5°の範囲に回折ピークを有する、<10>に記載の樹脂シート硬化物。
 本発明によれば、無溶剤又は低溶剤量での成形性に優れ、硬化後の熱伝導性及び絶縁性に優れる樹脂シート、並びに樹脂シート硬化物が提供される。
本実施形態の樹脂シート硬化物の断面図の一例を示す模式図である。 複数の層が積層した樹脂シート硬化物の断面の一例を示す模式図である。 本実施形態の樹脂シート硬化物の断面の走査型電子顕微鏡(SEM)写真の一例である。 複数の層が積層した樹脂シート硬化物の断面のSEM写真の一例である。
 以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
 本明細書において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
 本明細書において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本明細書中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本明細書において組成物中の各成分の含有率は、組成物中に各成分に該当する物質が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率を意味する。
 本明細書において「層」との語には、当該層が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
<樹脂シート>
 本実施形態の樹脂シートは、エポキシ樹脂オリゴマー及びエポキシ樹脂モノマーを含むエポキシ樹脂と、硬化剤と、無機フィラーとを含み、前記無機フィラーの含有率が30体積%を超え80体積%未満である。
 本発明者らの検討の結果、上記構成を有する樹脂シートは無溶剤又は低溶剤量での成形性に優れ、これにより、厚い樹脂シートを得ることができることが判った。樹脂シートの厚みは特には制限されないが、例えば、樹脂シートの平均厚さを3mmまで厚くすることができる。更には、樹脂シートの平均厚さが0.2mm~3mmであることが好ましい。
また、この樹脂シートを硬化して得られる樹脂シート硬化物は、熱伝導性及び絶縁性に優れることが判った。本明細書における「樹脂シートの平均厚さ」は単層(複数の樹脂層の積層体ではない)の厚みを意味する。平均厚さは、9点測定を行ったときの数平均値を意味する。
 本実施形態の樹脂シートが無溶剤又は低溶剤量での成形性に優れている理由は明らかではないが、樹脂成分としてエポキシ樹脂のオリゴマーを含むことで,エポキシ樹脂がオリゴマーを含まない場合に比べて半硬化状態での樹脂の伸び量が大きくなり、成形性が向上すること、及び、オリゴマー化により官能基の反応が進んでいることで硬化発熱を抑制できること等が考えられる。また、樹脂シートの厚みを厚くすることで、無機フィラーが高充填されていてもクッション性が発現できるために成形性に優れることが考えられる。
 本実施形態の樹脂シートは、無溶剤又は低溶剤量で作製することが可能である。このため、例えば、樹脂シートの残存揮発分を0.1質量%以下に抑えることができる。これにより、残存する有機溶媒によるボイドの発生が効果的に抑制され、絶縁性がより向上する傾向にある。
 図1は、本実施形態の樹脂シート硬化物の断面図の一例を示す模式図である。図1に示すように、樹脂シート3は、窒化ホウ素フィラー1が樹脂マトリックス2(エポキシ樹脂硬化物とアルミナフィラーの混合相)中に分散した構造を有している。符号4は樹脂シートの表面を示す。
 図2は複数の層が積層した樹脂シート硬化物の断面の一例を示す模式図である。図1と同様に、樹脂シート3は、窒化ホウ素フィラー1が樹脂マトリックス2(エポキシ樹脂硬化物とアルミナフィラーの混合相)中に分散した構造を有している。さらに、樹脂シート3の間に界面5が形成されている。樹脂シートの界面5付近では、窒化ホウ素1が配向して樹脂シート3の厚さ方向の垂直に向いた状態になっており、これが熱の伝導を妨げる要因となっていると考えられる。
 図3は、本実施形態の樹脂シート硬化物の断面の走査型電子顕微鏡(SEM)写真の一例である。図1と同様に、樹脂シート3は、樹脂シート3は、窒化ホウ素フィラー10が樹脂マトリックス11中に分散した構造を有している。
 図4は、複数の層が積層した樹脂シート硬化物の断面のSEM写真の一例である。樹脂シート3は、アルミナフィラー10と窒化ホウ素フィラー13が樹脂マトリックス12中に分散した構造を有している。さらに、樹脂シート3の間に界面12が形成されている。この界面に沿って、窒化ホウ素フィラーの粒子が押しつぶされるように変形している。
(エポキシ樹脂)
 本実施形態の樹脂シートは、エポキシ樹脂オリゴマー及びエポキシ樹脂モノマーを含むエポキシ樹脂を含む。本明細書において「エポキシ樹脂オリゴマー」とは、エポキシ樹脂モノマーの多量体(2量体を含む)であって、未反応のエポキシ基を有し、GPC測定による分子量が600以上6000以下である化合物を意味する。
 樹脂シートに含まれるエポキシ樹脂は、エポキシ樹脂オリゴマー及びエポキシ樹脂モノマーのほかに、エポキシ樹脂モノマーの重合体であって、未反応のエポキシ基を有し、ゲルパーミエーションクロマトブラフィー(GPC)測定による分子量が6000を超える化合物を含んでもよい。
 樹脂シート中のエポキシ樹脂(エポキシ樹脂オリゴマー、エポキシ樹脂モノマー及びその他のエポキシ樹脂の合計)の含有率は、特に制限されない。例えば、樹脂シート全体の2質量%~38質量%であることが好ましく、4質量%~28質量%であることがより好ましい。
 エポキシ樹脂中のエポキシ樹脂オリゴマーの含有率は、特に制限されない。例えば、エポキシ樹脂全体の3質量%~50質量%であることが好ましく、5質量%~45質量%であることがより好ましい。エポキシ樹脂中のエポキシ樹脂オリゴマーの含有率は、例えば、GPCを用いた面積換算により求めることができる。
 エポキシ樹脂中のエポキシ樹脂モノマーの含有率は、特に制限されない。例えば、エポキシ樹脂全体の30質量%~97質量%であることが好ましく、35質量%~95質量%であることがより好ましい。エポキシ樹脂中のエポキシ樹脂モノマーの含有率は、例えば、GPCを用いた面積換算により求めることができる。
 熱伝導性の観点からは、本実施形態の樹脂シートは、エポキシ樹脂としてメソゲン骨格を有するエポキシ樹脂を含むことが好ましい。本明細書において「メソゲン骨格」とは、結晶性又は液晶性を発現し易くするような分子構造のことを指す。具体的には、ビフェニル骨格、フェニルベンゾエート骨格、アゾベンゼン骨格、スチルベン骨格、シクロヘキシルベンゼン骨格、それらの誘導体等が挙げられる。
 分子構造中にメソゲン骨格を有するエポキシ樹脂は、硬化して樹脂マトリックスを形成した際に高次構造を形成し易く、硬化物を作製した場合により高い熱伝導率を達成できる傾向にある。ここで、高次構造とは、その構成要素が規則的な配列をしている状態のことであり、例えば、結晶相及び液晶相が相当する。このような高次構造が存在しているか否かは、偏光顕微鏡での観察によって容易に判断することが可能である。すなわち、クロスニコル状態での観察において、偏光解消による干渉模様が見られる場合は高次構造(周期構造ともいう)が存在していると判断できる。また、結晶構造又は液晶構造が存在すると樹脂の貯蔵弾性率の温度に対する変化が小さくなるので、この貯蔵弾性率の温度に対する変化を測定することにより、結晶構造又は液晶構造の存在を間接的に確認できる。
 メソゲン構造に由来する規則性の高い高次構造には、ネマチック構造、スメクチック構造等がある。ネマチック構造は分子の長軸が一様な方向を向いており、配向秩序のみを持つ液晶構造である。これに対し、スメクチック構造は配向秩序に加えて一次元の位置の秩序を持ち、一定周期の層構造を有する液晶構造である。また、スメクチック構造の同一の周期構造内部では、層構造の周期の方向が一様である。すなわち、分子の秩序性は、ネマチック構造よりもスメクチック構造の方が高い。秩序性の高い周期構造が樹脂マトリックス中に形成されると、熱伝導の媒体であるフォノンが散乱するのを抑制することができる。このため、ネマチック構造よりもスメクチック構造の方が、熱伝導率が高くなる傾向にある。
 樹脂マトリックス中の周期構造がスメクチック構造を含んでいるか否かは、実施例に記載の方法により判断することができる。
 エポキシ樹脂中のメソゲン骨格を有するエポキシ樹脂の含有率は、特に制限されない。例えば、エポキシ樹脂全体の30質量%以上であることが好ましく、50質量%以上であることがより好ましく、70質量%以上であることが更に好ましい。エポキシ樹脂中のメソゲン骨格を有するエポキシ樹脂の含有率は、例えば、エポキシ樹脂と硬化剤を有機溶剤に溶解し、無機フィラーを除去した後に、GPCカラムによる分取を行い、核磁気共鳴、赤外分光、飛行時間型質量分析、ガス型質量分析等の測定方法を組み合わせることにより求めることができる。
(1)エポキシ樹脂オリゴマー
 本実施形態の樹脂シートは、エポキシ樹脂としてエポキシ樹脂オリゴマーを含む。エポキシ樹脂オリゴマーは1種のみでも、2種以上であってもよい。
 エポキシ樹脂オリゴマーの数平均分子量は、特に制限されない。例えば、ゲルパーミエーションクロマトブラフィー(GPC)測定による数平均分子量が600~2300であることが好ましく、650~2200であることがより好ましい。
 熱伝導率と絶縁性の観点からは、エポキシ樹脂オリゴマーは、メソゲン骨格を有するエポキシ樹脂モノマーの多量体であることが好ましい。エポキシ樹脂オリゴマーがメソゲン骨格を有するエポキシ樹脂モノマーの多量体である場合、メソゲン骨格を有するエポキシ樹脂モノマーとして具体的には、ビフェニル型エポキシ樹脂モノマーとしては、YL6121H(三菱化学株式会社)が挙げられる。3環型エポキシ樹脂モノマーとしては、ターフェニル骨格を有するエポキシ樹脂モノマー、1-(3-メチル-4-オキシラニルメトキシフェニル)-4-(4-オキシラニルメトキシフェニル)-1-シクロヘキセン、1-(3-メチル-4-オキシラニルメトキシフェニル)-4-(4-オキシラニルメトキシフェニル)-ベンゼン(住友化学株式会社)、trans-4-{4-(2,3-エポキシプロポキシ)フェニル}シクロヘキシル=4-(2,3-エポキシプロポキシ)ベンゾエート(住友化学株式会社)等が挙げられる。
 硬化後の樹脂マトリックス中にスメクチック構造を効率よく形成し、高熱伝導率を達成する観点からは、エポキシ樹脂オリゴマーは、下記一般式(1)で表されるエポキシ樹脂モノマーの多量体であることが好ましい。下記一般式(1)で表されるモノマーは、1種を単独で用いてもよく、2種以上を併用してもよい。
Figure JPOXMLDOC01-appb-C000005
 一般式(1)中、R~Rはそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を表す。R~Rはそれぞれ独立に、水素原子又は炭素数1~2のアルキル基であることが好ましく、水素原子又はメチル基であることがより好ましく、水素原子であることがさらに好ましい。また、R~Rのうちの2個~4個が水素原子であることが好ましく、3個又は4個が水素原子であることがより好ましく、4個すべてが水素原子であることがさらに好ましい。R~Rのいずれかが炭素数1~3のアルキル基である場合、R及びRの少なくとも一方が炭素数1~3のアルキル基であることが好ましい。
 なお、一般式(1)で表されるエポキシ樹脂モノマーとしては、R~Rがすべて水素原子である4-{4-(2,3-エポキシプロポキシ)フェニル}シクロヘキシル=4-(2,3-エポキシプロポキシ)ベンゾエートが好ましく、trans-4-{4-(2,3-エポキシプロポキシ)フェニル}シクロヘキシル=4-(2,3-エポキシプロポキシ)ベンゾエートがより好ましい。
 エポキシ樹脂オリゴマーは、メソゲン骨格を有するエポキシ樹脂モノマーと、1個のベンゼン環に2個の水酸基が結合した構造を有する化合物(以下、特定2価フェノール化合物ともいう)との反応物であることが好ましい。
 エポキシ樹脂オリゴマーがエポキシ樹脂モノマーと、特定2価フェノール化合物との反応物である場合は、エポキシ樹脂オリゴマーを合成する際のエポキシ樹脂オリゴマーの分子量、熱伝導率、及びガラス転移温度(Tg)の制御がしやすい傾向にある。また、特定2価フェノール化合物を反応に用いる場合は、ベンゼン環に結合している水酸基が3個以上であるフェノール化合物を用いた場合と比べて反応の制御が容易となり、ゲル化の発生が十分に抑制される傾向にある。また、ベンゼン環に結合している水酸基が3個以上であるフェノール化合物を用いた場合に比べて軟化点が高くなり、ハンドリング性が向上する傾向にある(例えば、特許第5019272号公報参照)。
 特定2価フェノール化合物は、カテコール(1,2-ベンゼンジオール)、レゾルシノール(1,3-ベンゼンジオール)又はヒドロキノン(1,4-ベンゼンジオール)のいずれであってもよく、これらの誘導体であってもよい。特定2価フェノール化合物の誘導体としては、例えば、ベンゼン環に炭素数1~8のアルキル基等の置換基が結合した化合物が挙げられる。特定2価フェノール化合物は、1種のみであっても、2種以上であってもよい。
 熱伝導率を向上させる観点からは、特定2価フェノール化合物はヒドロキノンであることが好ましい。ヒドロキノンは、ベンゼン環上の2つの水酸基がパラ位の位置関係であるため、エポキシ樹脂モノマーと反応させて得られるエポキシ樹脂オリゴマーは剛直な分子が直線構造となる。このため、樹脂シート中でエポキシ樹脂オリゴマーとエポキシ樹脂モノマーの分子同士が重なり易くなり、結晶構造を形成し易いと考えられる。
 エポキシ樹脂オリゴマーは、上記の一般式(1)で表されるエポキシ樹脂モノマーと特定2価フェノール化合物との反応物であることが好ましく、4-{4-(2,3-エポキシプロポキシ)フェニル}シクロヘキシル=4-(2,3-エポキシプロポキシ)ベンゾエートと特定2価フェノール化合物との反応物であることがより好ましく、trans-4-{4-(2,3-エポキシプロポキシ)フェニル}シクロヘキシル=4-(2,3-エポキシプロポキシ)ベンゾエートと特定2価フェノール化合物との反応物であることが更に好ましい。樹脂シートがこのようなエポキシ樹脂オリゴマーを含むことで、硬化後の熱伝導率を良好に維持しながら成形性を向上させることができる。このメカニズムは、後に記述する。
 以下、4-{4-(2,3-エポキシプロポキシ)フェニル}シクロヘキシル=4-(2,3-エポキシプロポキシ)ベンゾエートと特定2価フェノール化合物との反応物であるエポキシ樹脂オリゴマーの具体例を示す。下記具体例の中でも、式(2-1)~(2-3)の少なくとも1つで表されるエポキシ樹脂オリゴマーが好ましく、式(2-a)~(2-c)の少なくとも1つ、すなわち、4-{4-(2,3-エポキシプロポキシ)フェニル}シクロヘキシル=4-(2,3-エポキシプロポキシ)ベンゾエートがトランス体であるエポキシ樹脂オリゴマーがより好ましい。なお、以下の具体例はエポキシ樹脂モノマーの二量体であるが、3量体以上であってもよい。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
 上記式(2-1)~(2-3)及び上記式(2-a)~(2-c)で表されるエポキシ樹脂オリゴマーには、特定2価フェノール化合物に由来するベンゼン環上の水酸基の位置が異なる3種類の異性体が存在する。例えば、特定2価フェノール化合物がヒドロキノンである場合、上記式(2-1)~(2-3)及び上記式(2-a)~(2-c)で表されるエポキシ樹脂オリゴマーは、それぞれ下記式(3-1)~(3-3)及び下記式(3-a)~(3-c)で表される。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
 上記のエポキシ樹脂オリゴマーの中でも、式(3-1)~(3-3)の少なくとも1つで表されるエポキシ樹脂オリゴマーが好ましく、上記式(3-a)~(3-c)の少なくとも1つで表されるエポキシ樹脂オリゴマーがより好ましい。上記式(3-1)~(3-3)及び上記式(3-a)~(3-c)で表されるエポキシ樹脂オリゴマーは、直線構造であり分子のスタッキング性が高く、高次構造を形成し易いため、熱伝導率がより向上する傾向にある。
 エポキシ樹脂オリゴマーの合成方法は、特に制限されない。例えば、合成溶媒中にエポキシ樹脂モノマー、特定2価フェノール化合物、及び反応触媒を溶解し、加温しながら撹拌して合成することができる。溶媒を使用せず、エポキシ樹脂モノマーを溶融して反応させてもエポキシ樹脂オリゴマーを合成することは可能であるが、エポキシ樹脂モノマーが溶融する温度まで高温にしなければならず、反応制御が困難になる。このため、安全性の観点から、合成溶媒を使用した合成法が好ましい。
 合成溶媒は、エポキシ樹脂モノマーと特定2価フェノール化合物の反応が進行するために必要な温度に加温できる溶媒であれば特に制限されない。具体的には、シクロヘキサノン、シクロペンタノン、乳酸エチル、プロピレングリコールモノメチルエーテル、N-メチルピロリドン等が挙げられる。合成溶媒は1種のみでも、2種以上であってもよい。
 合成溶媒の量は、反応温度において、エポキシ樹脂モノマー、特定2価フェノール化合物、及び硬化触媒を全て溶解できる量であれば、特に制限されない。反応前の原料の種類、溶媒の種類等によって溶解性が異なるが、仕込み固形分濃度を20質量%~60質量%とすれば、合成後の樹脂溶液粘度として概ね好ましい範囲となる。
 反応触媒の種類は特に限定されず、反応速度、反応温度、貯蔵安定性等の観点から適切なものを選択することができる。反応触媒の具体例としては、イミダゾール化合物、有機リン化合物、第3級アミン、第4級アンモニウム塩等が挙げられる。反応触媒は1種のみを用いても、2種以上を併用してもよい。中でも、耐熱性の観点から、有機ホスフィン化合物;有機ホスフィン化合物に、無水マレイン酸、キノン化合物(1,4-ベンゾキノン、2,5-トルキノン、1,4-ナフトキノン、2,3-ジメチルベンゾキノン、2,6-ジメチルベンゾキノン、2,3-ジメトキシ-5-メチル-1,4ベンゾキノン、2,3-ジメトキシ-1,4-ベンゾキノン、フェニル-1,4-ベンゾキノン等)、ジアゾフェニルメタン、フェノール樹脂等のπ結合をもつ化合物を付加してなる分子内分極を有する化合物;及び有機ホスフィン化合物と有機ボロン化合物(テトラフェニルボレート、テトラ-p-トリルボレート、テトラ-n-ブチルボレート等)との錯体;からなる群より選択される少なくとも1つであることが好ましい。
 反応速度及び熱伝導率の観点からは、反応触媒は有機ホスフィン化合物であることが好ましい。有機ホスフィン化合物としては、具体的には、トリフェニルホスフィン、ジフェニル(p-トリル)ホスフィン、トリス(アルキルフェニル)ホスフィン、トリス(アルコキシフェニル)ホスフィン、トリス(アルキルアルコキシフェニル)ホスフィン、トリス(ジアルキルフェニル)ホスフィン、トリス(トリアルキルフェニル)ホスフィン、トリス(テトラアルキルフェニル)ホスフィン、トリス(ジアルコキシフェニル)ホスフィン、トリス(トリアルコキシフェニル)ホスフィン、トリス(テトラアルコキシフェニル)ホスフィン、トリアルキルホスフィン、ジアルキルアリールホスフィン、アルキルジアリールホスフィン等が挙げられる。
 反応触媒の量は特に制限されない。反応速度及び貯蔵安定性の観点からは、エポキシ樹脂モノマーと特定2価フェノール化合物の合計質量に対して0.1質量%~3質量%であることが好ましく、0.2質量%~2質量%であることがより好ましい。
 エポキシ樹脂オリゴマーの合成に使用する容器は特に制限されず、例えば、ガラス製のフラスコでもステンレス製の合成釜でも使用できる。具体的な合成方法は、例えば以下の通りである。まず、エポキシ樹脂モノマーをフラスコ又は合成釜に投入し、合成溶媒を入れ、オイルバス又は熱媒により反応温度まで加温し、エポキシ樹脂モノマーを溶解する。次いで、特性2価フェノール化合物を投入し、合成溶媒中に均一に溶解したことを確認した後に硬化触媒を投入し、反応を開始する。所定時間の後に反応溶液を取り出すことで、エポキシ樹脂オリゴマーを含む溶液が得られる。また、フラスコ内又は合成釜内において、加温条件のもと減圧下で合成溶媒を留去することで、固体状のエポキシ樹脂オリゴマーを得ることができる。
 反応温度は、反応触媒の存在下でエポキシ基とフェノール性水酸基との反応が進行する温度であれば制限されない。例えば、100℃~180℃の範囲が好ましく、120℃~170℃の範囲がより好ましい。反応温度を100℃以上とすることで、反応が完結するまでの時間をより短くできる傾向にある。一方、反応温度を180℃以下とすることで、ゲル化する可能性を低減できる傾向にある。
 エポキシ樹脂を合成する際の、エポキシ樹脂モノマーと特定2価フェノール化合物の当量比は、特に制限されない。例えば、エポキシ樹脂モノマーのエポキシ基の当量数(Ep)と特定2価フェノール化合物のフェノール性水酸基の当量数(Ph)との比率(Ep/Ph)は、100/5~100/50の範囲が好ましい。Ep/Phを100/5以上とすることで、得られるエポキシ樹脂オリゴマーの軟化点が低くなり、流動性が高まる傾向にある。一方、Ep/Phを100/50以下とすることで、架橋点密度の低下が抑制され、耐熱性及び熱伝導率が高まる傾向にある。
(2)エポキシ樹脂モノマー
 本実施形態の樹脂シートは、エポキシ樹脂モノマーを含む。本実施形態の樹脂シートは、エポキシ樹脂としてエポキシ樹脂オリゴマーとエポキシ樹脂モノマーの双方を含むことで、エポキシ樹脂がエポキシ樹脂オリゴマーのみを含む場合よりも成形性が良好である。エポキシ樹脂モノマーは1種のみであっても、2種以上であってもよい。
 樹脂シート中に含まれるエポキシ樹脂モノマーは、樹脂シート中に含まれるエポキシ樹脂オリゴマーを構成するエポキシ樹脂モノマーと同じであっても、異なっていてもよい。また、エポキシ樹脂モノマーは、エポキシ樹脂オリゴマーの合成の過程で得られる溶液又は固体中に未反応の状態で含まれているエポキシ樹脂モノマーであってもよい。
 エポキシ樹脂モノマーの構造は、特に制限されない。例えば、エポキシ樹脂オリゴマーを構成するエポキシ樹脂モノマーとして上述した具体例から選択して用いることができる。熱伝導性の観点からは、エポキシ樹脂モノマーは、メソゲン骨格を有するエポキシ樹脂モノマーであることが好ましい。メソゲン骨格を有するエポキシ樹脂モノマーの具体例としては、エポキシ樹脂オリゴマーを構成するメソゲン骨格を有するエポキシ樹脂モノマーとして上述したものが挙げられる。メソゲン骨格を有するエポキシ樹脂モノマーは1種のみであっても、2種以上であってもよい。
 エポキシ樹脂モノマーは、メソゲン骨格を有するエポキシ樹脂モノマー以外のエポキシ樹脂モノマーであってもよい。このようなエポキシ樹脂モノマーとしては、ビスフェノールA、ビスフェノールF、ビスフェノールS、フェノールノボラック、クレゾールノボラック、レゾルシノールノボラック等のフェノール化合物のグリシジルエーテル;ブタンジオール、ポリエチレングリコール、ポリプロピレングリコール等のアルコール化合物のグリシジルエーテル;フタル酸、イソフタル酸、テトラヒドロフタル酸等のカルボン酸化合物のグリシジルエステル;アニリン、イソシアヌール酸等の窒素原子に結合した活性水素をグリシジル基で置換したもの等のグリシジル型(メチルグリシジル型も含む)エポキシ樹脂モノマー;分子内のオレフィン結合をエポキシ化して得られるビニルシクロヘキセンエポキシド、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、2-(3,4-エポキシ)シクロヘキシル-5,5-スピロ(3,4-エポキシ)シクロヘキサン-m-ジオキサン等の脂環型エポキシ樹脂モノマー;ビス(4-ヒドロキシ)チオエーテルのエポキシ化物;パラキシリレン変性フェノール樹脂、メタキシリレンパラキシリレン変性フェノール樹脂、テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂、シクロペンタジエン変性フェノール樹脂、多環芳香環変性フェノール樹脂、ナフタレン環含有フェノール樹脂等のグリシジルエーテル;スチルベン型エポキシ樹脂モノマー;ハロゲン化フェノールノボラック型エポキシ樹脂モノマーなど(但し、これらのうちメソゲン骨格を有するエポキシ樹脂モノマーを除く)が挙げられる。メソゲン骨格を有するエポキシ樹脂モノマー以外のエポキシ樹脂モノマーは、1種のみであっても、2種以上であってもよい。
(無機フィラー)
 本実施形態の樹脂シートは、無機フィラーを含む。無機フィラーを含むことにより、高熱伝導性と高絶縁性を達成することができる。無機フィラーの種類は特に制限されず、窒化ホウ素,アルミナ、窒化アルミニウム、シリカ、マイカ、酸化マグネシウム、窒化ケイ素、水酸化アルミニウム、硫酸バリウムが挙げられる。熱伝導性及び電気絶縁性の観点からは、窒化ホウ素、アルミナ及び窒化アルミニウムからなる群より選択される少なくとも1種を含むことが好ましい。
 特に、樹脂シートが窒化ホウ素フィラーを含むことで、熱伝導性が飛躍的に向上する。これは例えば、以下のように考えることができる。窒化ホウ素のモース硬度は2であり、アルミナ、窒化アルミ等の他の絶縁セラミックス(例えば、硬度8)と比較して低く、柔らかい。さらに、球形、丸み状等の形状を有する窒化ホウ素は一次粒子が凝集した状態になっているので、粒子内部に空洞が存在している。このため、樹脂シートに含まれる樹脂よりは硬いながら、粒子自体も変形し易いものになっている。その結果、外力により容易に変形することができ、後述するプレス工程が行われた場合に変形が可能であり、この変形の際にフィラー間から樹脂を排除することができる。このため、フィラー同士が容易に接近することができ、樹脂シートの内部に窒化ホウ素を含む大粒子径のフィラーが連続して接触している構造が形成し易くなり、熱伝導性が向上すると考えることができる。
 樹脂シートが窒化ホウ素を含んでいることを確認するには、樹脂シートの組織を顕微鏡にて直接観察する手法が有効である。例えば、樹脂シートの断面をSEM(走査型電子顕微鏡)にて観察することで、樹脂シート中のフィラーの結晶形を確認できる。さらに、SEM-EDX(エネルギー分散型X線分光器)を用いることで、フィラーの元素を定性することで確認できる。
 無機フィラーが粒度分布を有する場合には、横軸に粒径、縦軸に曲線を描いた場合、無機フィラーの重量累積粒度分布の小粒径側からの累積50%に対応する粒子径である平均粒子径(D50)は、熱伝導性の観点から、20μm~120μmであることが好ましく、25μm~115μmであることがより好ましい。また、粒度分布曲線が複数のピークを有する場合は、例えば、異なる平均粒子径を有する2種類以上の無機フィラーを組み合わせて構成できる。
 本明細書において、無機フィラーの平均粒子径(D50)は、レーザー回折法を用いて測定され、重量累積粒度分布曲線を小粒径側から描いた場合に、重量累積が50%となる粒子径に対応する値とする。レーザー回折法を用いた粒度分布測定は、レーザー回折散乱粒度分布測定装置(例えば、ベックマン・コールター株式会社、LS230)を用いて行うことができる。
 樹脂シート中における無機フィラーの含有率は、樹脂シートの全体積を100体積%とした場合に、30体積%を超え80体積%未満である。熱伝導性及び成形性の観点からは、全体積を100体積%とした場合に、無機フィラーの含有率は30体積%を超え75体積%以下であることが好ましく、40体積%~70体積%であることがより好ましい。無機フィラーの含有率が30体積%より多いことで、熱伝導性が向上する傾向にある。一方、無機フィラーの含有率が80体積%より少ないことで、成形性が向上する傾向にある。
 本明細書における樹脂シート中の無機フィラーの含有率(体積%)は、次式により求めた値とする。
 無機フィラーの含有率(体積%)={(Ew/Ed)/((Aw/Ad)+(Bw/Bd)+(Cw/Cd)+(Dw/Dd)+(Ew/Ed)+(Fw/Fd))}×100
 ここで、各変数は以下の通りである。
 Aw:エポキシ樹脂の質量組成比(質量%)
 Bw:硬化剤の質量組成比(質量%)
 Cw:シランカップリング剤(任意成分)の質量組成比(質量%)
 Dw:硬化促進剤(任意成分)の質量組成比(質量%)
 Ew:無機フィラーの質量組成比(質量%)
 Fw:その他の成分(任意成分)の質量組成比(質量%)
 Ad:エポキシ樹脂の比重
 Bd:硬化剤の比重
 Cd:シランカップリング剤(任意成分)の比重
 Dd:硬化促進剤(任意成分)の比重
 Ed:無機フィラーの比重
 Fd:その他の成分(任意成分)の比重
(硬化剤)
 本発明における樹脂シートは、硬化剤を含む。硬化剤は、樹脂シートに含まれるエポキシ樹脂オリゴマー及びエポキシ樹脂モノマーと反応しうるものであれば特に制限されない。例えば、耐熱性向上の観点からは、フェノール硬化剤が好ましい。フェノール硬化剤としては、例えば、1,2,4-トリヒドロキシベンゼン、1,3,5-トリヒドロキシベンゼン等の3官能のフェノール化合物が挙げられる。また、これらの低分子のフェノール化合物をメチレン鎖等で連結してノボラック化したフェノールノボラック樹脂を硬化剤として用いることもできる。
 熱伝導性の観点からは、硬化剤はフェノールノボラック樹脂を含むことが好ましく、カテコール、レゾルシノール、ヒドロキノン等の2官能のフェノール化合物をメチレン鎖で連結したフェノールノボラック樹脂(ジヒドロキシベンゼンノボラック樹脂)を含むことがより好ましい。
 ジヒドロキシベンゼンノボラック樹脂は、カテコールノボラック樹脂、レゾルシノールノボラック樹脂、ヒドロキノンノボラック樹脂等の1種のフェノール化合物をノボラック化した樹脂であっても、カテコールレゾルシノールノボラック樹脂、レゾルシノールヒドロキノンノボラック樹脂等の2種以上のフェノール化合物をノボラック化した樹脂であってもよい。中でも、下記一般式(4)で表される構造単位(すなわち、レゾルシノールに由来する構造単位)を有する化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000010
 一般式(4)中、Rは、アルキル基、アリール基又はアラルキル基を表す。R及びRはそれぞれ独立して水素原子、アルキル基、アリール基又はアラルキル基を表す。mは0~2の数を表し、nは1~7の数を表す。mが2のとき、2つのRは同一であっても異なっていてもよい。
 上記一般式(4)で表される構造単位を有する化合物は、レゾルシノール以外のフェノール化合物に由来する構造単位をさらに含んでいてもよい。レゾルシノール以外のフェノール化合物としては、例えば、フェノール、クレゾール、カテコール、ヒドロキノン、1,2,3-トリヒドロキシベンゼン、1,2,4-トリヒドロキシベンゼン、1,3,5-トリヒドロキシベンゼン等を挙げることができる。レゾルシノール以外のフェノール化合物に由来する構造単位は、1種のみであっても2種以上であってもよい。
 ここで、フェノール化合物に由来する部分構造とは、フェノール化合物のベンゼン環部分から1個又は2個の水素原子を取り除いて構成される1価又は2価の基を意味する。なお、水素原子が取り除かれる位置は特に限定されない。
 上記一般式(4)で表される構造単位を有する化合物において、レゾルシノール以外のフェノール化合物に由来する部分構造としては、熱伝導性及び接着性の観点から、フェノール、クレゾール、カテコール、ヒドロキノン、1,2,3-トリヒドロキシベンゼン、1,2,4-トリヒドロキシベンゼン、及び1,3,5-トリヒドロキシベンゼンから選ばれる少なくとも1種類に由来する部分構造であることが好ましく、カテコール及びヒドロキノンから選ばれる少なくとも1種類に由来する部分構造であることがより好ましい。
 一般式(4)で表される構造単位を有する化合物において、レゾルシノールに由来する部分構造の含有比率は特に制限されない。弾性率の観点からは、一般式(4)で表される構造単位を有する化合物の全質量におけるレゾルシノールに由来する部分構造の含有比率は55質量%以上であることが好ましい。硬化後のガラス転移温度(Tg)及び線膨張率の観点からは、一般式(4)で表される構造単位を有する化合物の全質量におけるレゾルシノールに由来する部分構造の含有比率は60質量%以上であることがより好ましく、80質量%以上であることがさらに好ましく、熱伝導性の観点からは90質量%以上であることが特に好ましい。
 一般式(4)で表される構造単位を有する化合物の分子量は特に制限されない。流動性の観点からは、数平均分子量(Mn)としては2000以下であることが好ましく、1500以下であることがより好ましく、350~1500であることがさらに好ましい。また、重量平均分子量(Mw)としては2000以下であることが好ましく、1500以下であることがより好ましく、400~1500であることがさらに好ましい。これらMn及びMwは、ゲルパーミエーションクロマトグラフィー(GPC)を用いた通常の方法により測定される。
 一般式(4)で表される構造単位を有する化合物の水酸基当量は、特に制限されない。耐熱性に関与する架橋密度の観点からは、水酸基当量は平均値で55g/eq~200g/eqであることが好ましく、62g/eq~190g/eqであることがより好ましく、65g/eq~180g/eqであることがさらに好ましい。
 硬化剤は、フェノールノボラック樹脂と、フェノールノボラック樹脂を構成するフェノール化合物であって未反応の状態のもの(以下、モノマーともいう)の両方を含んでいてもよい。この場合、フェノールノボラック樹脂とモノマーの合計質量におけるモノマーの含有比率(以下、「モノマー含有比率」ともいう。)は、特に制限されない。熱伝導性及び成形性の観点から、モノマー含有比率は5質量%~80質量%であることが好ましく、15質量%~60質量%であることがより好ましく、20質量%~50質量%であることが更に好ましい。モノマー含有比率が80質量%以下であることで、硬化反応の際に架橋に寄与しないモノマーが少なくなり、架橋する高分子量体が多くなるため、より高密度な高次構造が形成され、熱伝導性が向上する傾向にある。また、モノマー含有比率が5質量%以上であることで、成形の際の流動性が良好であり、無機フィラーとの密着性がより向上し、より優れた熱伝導性及び耐熱性が達成される傾向にある。
 樹脂シート中の硬化剤の含有率は、特に制限されない。例えば、硬化剤としてフェノール系硬化剤を含有する場合、樹脂シート中におけるフェノール硬化剤の含有率は、フェノール硬化剤におけるフェノール性水酸基の活性水素の当量数(フェノール性水酸基の当量数)と、樹脂シートに含まれるエポキシ樹脂オリゴマー及びエポキシ樹脂モノマーのエポキシ基の当量数との比(フェノール性水酸基の当量数/エポキシ基の当量数)が0.5~2となる含有率であることが好ましく、0.8~1.2となる含有率であることがより好ましい。
(硬化促進剤)
 本実施形態の樹脂シートは、硬化促進剤を含んでもよい。硬化促進剤の種類は特に限定されず、反応速度、反応温度、保管性等の観点から適切なものを選択することができる。硬化促進剤の具体例としては、例えば、エポキシ樹脂オリゴマーの合成に使用しうる反応触媒として例示した化合物が挙げられる。
 樹脂シートが硬化促進剤を含有する場合、その含有率は特に制限されない。流動性及び成形性の観点からは、硬化促進剤の含有率は、エポキシ樹脂オリゴマー、エポキシ樹脂モノマー及び硬化剤の合計質量に対して0.1質量%~1.5質量%であることが好ましく、0.2質量%~1質量%であることがより好ましい。
(シランカップリング剤)
 本実施形態の樹脂シートは、シランカップリング剤を含んでもよい。シランカップリング剤を含むことで、無機フィラーの表面とその周りを取り囲むエポキシ樹脂との間の相互作用が生じ、流動性及び熱伝導性が向上する傾向にある。また、樹脂シート中への水分の浸入が抑制されて絶縁信頼性が向上する傾向にある。
 シランカップリング剤は特に限定されず、一般的に使用されているものを使用することができる。具体的には、3-フェニルアミノプロピルトリメトキシシラン、3-フェニルアミノプロピルトリエトキシシラン、N-メチルアニリノプロピルトリメトキシシラン、N-メチルアニリノプロピルトリエトキシシラン、3-フェニルイミノプロピルトリメトキシシラン、3-フェニルイミノプロピルトリエトキシシラン、フェニルトリメトシキシラン、フェニルトリエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、トリフェニルメトキシシラン、トリフェニルエトキシシラン等が挙げられる。シランカップリング剤は1種のみを用いても、2種以上を併用してもよい。
 シランカップリング剤の使用量は、無機フィラー全体の表面積に対する被覆率(以下、シランカップリング剤の被覆率ともいう。)が0.4~4.0となるように設定することが好ましい。シランカップリング剤の被覆率は、次式により算出される。
 シランカップリング剤の被覆率={シランカップリング剤の最小被覆面積(m/g)×シランカップリング剤の使用量(g)}/{無機フィラーの比表面積(m/g)×無機フィラーの使用量(g)}
 また、上式におけるシランカップリング剤の最小被覆面積は、次式により算出される。
 シランカップリング剤の最小被覆面積(m/g)={アボガドロ定数(6.02×1023)(mol-1)×シランカップリング剤1分子当たりの被覆面積(13×10-20)(m)}/シランカップリング剤の分子量(g/mol)
 上式により求められるシランカップリング剤の被覆率は、無機フィラー表面をシランカップリング剤が全て覆い尽くす場合に1となるが、この場合、無機フィラーの表面にシランカップリング剤と反応するだけの水酸基等の極性基がない場合があるために、無機フィラーと反応しない未反応のシランカップリング剤が生じる場合がある。そのため、シランカップリング剤の被覆率が4.0以下であると、無機フィラーと結合しないシランカップリング剤が無機フィラーとエポキシ樹脂との結合又はエポキシ樹脂の分子間の架橋を阻害するのが抑制され、熱伝導率の低下を防ぐことができる。また、シランカップリング剤の被覆率が0.4以上であると、成形後にボイド等の成形不良が発生しにくい傾向にある。したがって、シランカップリング剤の被覆率は0.4~4.0であることが好ましく、0.5~3.0であることがより好ましい。
 樹脂シートへのシランカップリング剤の添加方法は、特に制限されない。例えば、エポキシ樹脂、無機フィラー等の他の材料と混合する際に添加するインテグラル法;少量のエポキシ樹脂に一定量のシランカップリング剤を混合した後、無機フィラー等の他の材料と混合するマスターバッチ法;エポキシ樹脂等の他の材料と混合する前に、無機フィラーと混合して予め無機フィラーの表面にシランカップリング剤を処理する前処理法;などが挙げられる。また、前処理法には、シランカップリング剤の原液又は溶液を無機フィラーとともに高速撹拌により均一に分散させて処理する乾式法と、シランカップリング剤の希薄溶液でスラリー化したり、直接浸漬したりすることで無機フィラー表面に処理を施す湿式法とがある。
(その他の成分)
 本実施形態の樹脂シートは、必要に応じて、応力緩和材、補強材等を含んでもよい。応力緩和材としては、ゴム(ブチルゴム、ネオプレンゴム、ニトリルゴム(NBR)、シリコーンゴム等)の粒子などが挙げられる。補強材としては、グラスファイバー、カーボンファイバー等の無機繊維などが挙げられる。
(樹脂シートの作製方法)
 本実施形態の樹脂シートの作製方法は、特に制限されない。一般的な手法としては、所定の配合量の成分をミキサー等によって十分混合した後、ミキシングロール、押出機等によって溶融混練し、冷却及び粉砕してペレットを作製し、これを型枠等に入れてプレス成形するか、二軸成形機に投入して押出成形し、必要であれば延伸して厚さを制御する方法が挙げられる。
 ペレットの作製は、例えば、所定量の成分を充分に撹拌及び混合し、予め60℃~120℃に加熱してあるニーダー、ロール、エクストルーダー等で混練し、冷却し、粉砕することで作製できる。 ペレットの成形は、例えば、成形条件に合うような寸法及び質量でタブレット化し、圧縮成形又はトランスファー成形を行って、半硬化状態でシート化してもよい。
 樹脂シートは、取り扱い性向上のために基材の上に形成してもよい。また、表面を保護するために、樹脂シートの上に基材を配置してもよい。基材の種類は特に制限されず、ポリエチレンテレフタレート(PET)フィルム、アルミ箔、銅箔等が挙げられる。基材の厚みは特に制限されず、例えば9μm~300μmとすることができる。
 基材上に形成される樹脂シートの厚み(平均厚さ)は特に制限されず、目的に応じて適宜選択することができる。例えば、0.2mm~3.0mmであってもよく、0.3mm~2.5mmであることが好ましい。
 本実施形態の樹脂シートは、無溶剤又は低溶剤量で形成することが好ましい。無溶剤又は低溶剤量で形成することで、樹脂シートの単層の厚みを厚くすることができる。樹脂シートを単層で構成することで、積層した樹脂シートの界面におけるボイドの発生、樹脂シート同士の接着のための薄い樹脂層の形成、窒化ホウ素等の比較的柔らかいフィラーの界面に沿った配向又は変形等の発生を回避できる。その結果、単層の樹脂シートは複数の樹脂シートを積層した樹脂シートに比べて熱伝導性等の特性に優れる傾向にある。
 本実施形態の樹脂シートは、例えば、接着シートとして用いることができる。接着シートとしての樹脂シートの一般的な使用法としては、例えば、基材上に形成された樹脂シートを被着体に貼り付け、その後に基材を除去する方法が挙げられる。
<樹脂シート硬化物>
 本実施形態の樹脂シート硬化物は、上述した樹脂シートの硬化物である。
 樹脂シートの硬化方法は特に制限されない。例えば、100℃~250℃で0.5時間~10時間、好ましくは130℃~230℃で1時間~8時間の熱処理を行うことにより、硬化物を得ることができる。
 樹脂シートの硬化は、トランスファー成形法、圧縮成形法等によって行ってもよい。例えば、トランスファー成形の場合は、金型温度140℃~180℃、成形圧力10MPa~25MPaで30秒間~600秒間加熱することにより、硬化物を得ることができる。必要に応じて、金型から外した硬化物を140℃~230℃で1時間~8時間さらに加熱する後硬化処理を行ってもよい。
 樹脂シートの硬化方法は、加熱と加圧を伴うことが好ましい。例えば、樹脂シートを1MPa~20MPaに加圧しながら、100℃~250℃で1時間~10時間、好ましくは1MPa~15MPaに加圧しながら、130℃~230℃で1時間~8時間加熱することにより、硬化物を得ることができる。必要に応じて、上記の処理を行った後に、160℃~230℃で1時間~8時間さらに加熱する後硬化処理を行ってもよい。
 本実施形態の硬化物は、CuKα線を用いたX線回折法により、回折角2θ=3.0°~3.5°の範囲に回折ピークを有することが好ましい。このような回折ピークを有する硬化物は、樹脂の高次構造(スメクチック相)が形成されており、熱伝導性に優れる。
 本明細書におけるCuKα線を用いたX線回折測定の詳細は以下の通りである。
〔測定条件〕
 使用装置:薄膜構造評価用X線回折装置ATX-G(株式会社リガク)
 X線種類:CuKα
 走査モード:2θ/ω
 出力:50kV、300mA
 S1スリット:幅0.2mm、高さ:10mm
 S2スリット:幅0.2mm、高さ:10mm
 RSスリット:幅0.2mm、高さ:10mm
 測定範囲:2θ=2.0°~4.5°
 サンプリング幅:0.01°
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、特に断りのない限り、「部」及び「%」は質量基準である。
[エポキシ樹脂反応物の合成に用いた材料]
・原料のエポキシ樹脂モノマー
 trans-4-{4-(2,3-エポキシプロポキシ)フェニル}シクロヘキシル=4-(2,3-エポキシプロポキシ)ベンゾエート(住友化学株式会社、下記構造、特許第5471975号公報参照、エポキシ当量:212g/eq)
Figure JPOXMLDOC01-appb-C000011
・原料の特定2価フェノール化合物
 ヒドロキノン(水酸基当量:55g/eq、和光純薬工業株式会社)
・合成溶媒
 シクロヘキサノン(沸点:156℃、和光純薬工業株式会社)
・反応触媒
 トリフェニルホスフィン(分子量:262、北興化学工業株式会社)
[エポキシ樹脂反応物1の合成]
 エポキシ樹脂反応物1として、エポキシ樹脂モノマーのエポキシ基の当量数(Ep)と特定2価フェノール化合物のフェノール性水酸基の当量数(Ph)との比率(Ep/Ph)を100:7として反応させた。
 具体的には、500mLの三口フラスコに、原料のエポキシ樹脂モノマーを50g(0.118mol)量り取り、そこに合成溶媒を80g添加した。三口フラスコに冷却管及び窒素導入管を設置し、溶媒に漬かるように撹拌羽を取り付けた。この三口フラスコを160℃のオイルバスに浸漬し、撹拌を開始した。数分後、原料のエポキシ樹脂モノマーが溶解して透明な溶液になったことを確認した後に、特定2価フェノール化合物を0.91g(0.0083mol)フラスコに添加し、さらに反応触媒を0.5g添加し、160℃のオイルバス温度で加熱した。5時間加熱を継続した後に、反応溶液から合成溶媒を減圧留去し、残渣を室温まで冷却することにより、エポキシ樹脂反応物1を得た。なお、このエポキシ樹脂反応物1には、反応により生成したエポキシ樹脂オリゴマーと、未反応のエポキシ樹脂モノマーと、合成溶媒の一部とが含まれている。
 エポキシ樹脂反応物1の数平均分子量をゲルパーミエーションクロマトグラフィー(GPC)により測定したところ、合成により新たに生成したオリゴマー成分の数平均分子量は1210g/molであり、未反応のエポキシ樹脂モノマーとエポキシ樹脂オリゴマーの合計の数平均分子量は494g/molであった。また、エポキシ樹脂反応物1のエポキシ当量を過塩素酸滴定法により測定したところ、241g/eqであった。
 エポキシ樹脂反応物1をゲルパーミエーションクロマトグラフィー(GPC)を用いた面積換算により分析した結果、上記式(3-a)~(3-c)の少なくとも1つで表される化合物が含まれていることが確認された。上記式(3-a)~(3-c)の少なくとも1つで表される化合物の合計の含有率は、エポキシ樹脂反応物1の全量(合成溶媒を除く)に対して8.7質量%であった。
[エポキシ樹脂反応物2の合成]
 エポキシ樹脂反応物2として、エポキシ樹脂モノマーのエポキシ基の当量数(Ep)と特定2価フェノール化合物のフェノール性水酸基の当量数(Ph)との比率(Ep/Ph)を100:15として反応させた。
 具体的には、特定2価フェノール化合物の添加量を1.95g(0.0176mol)に変更した以外は、実施例1と同様にしてエポキシ樹脂反応物2を得た。
 エポキシ樹脂反応物2の数平均分子量をゲルパーミエーションクロマトグラフィー(GPC)により測定したところ、合成により新たに生成したオリゴマー成分の数平均分子量は1520g/molであり、未反応のエポキシ樹脂モノマーを含む範囲の数平均分子量は583g/molであった。エポキシ樹脂反応物2のエポキシ当量を過塩素酸滴定法により測定したところ、263g/eqであった。
 エポキシ樹脂反応物2をゲルパーミエーションクロマトグラフィー(GPC)を用いた面積換算により分析した結果、上記式(3-a)~(3-c)の少なくとも1つで表される化合物が含まれていることが確認された。上記式(3-a)~(3-c)の少なくとも1つで表される化合物の合計の含有率は、エポキシ樹脂反応物2の全量(合成溶媒を除く)に対して18.2質量%であった。
[実施例1~実施例5]
 表1に示す材料を、表1に示す配合比(質量部)でビーカー中で予備混合し、混練温度60℃~90℃、混練時間2分間の条件でニーダーにて混練した後、冷却及び粉砕することにより、樹脂組成物のペレットを得た。次いで、50mm×50mmの型枠にペレットを敷き詰め、プレス温度:120℃、成形圧力:15MPa、プレス時間:2分間で成形することで、半硬化状態の樹脂シート(Bステージシート)を作製した。この樹脂シートを35μm厚さのPETシート2枚で挟み、プレス温度:180℃、成形圧力:8MPa、プレス時間:120分間で硬化させた。
 なお、実施例1~実施例3の樹脂シートは高さが500μmの型枠を用いて成形し、実施例4は高さが200μmの型枠を用いて成形し、実施例5は高さが2000μmの型枠を用いて成形した。
[比較例1、比較例3~7]
 表1に示す材料を、表1に示す配合比(質量部)でビーカー中で予備混合し、混練温度60℃~90℃、混練時間2分間の条件でニーダーにて混練した後、冷却及び粉砕することにより、樹脂組成物のペレットを得た。次いで、50mm×50mmの型枠にペレットを敷き詰め、プレス温度:120℃、成形圧力:15MPa、プレス時間:2分間で成形することで、半硬化状態の樹脂シート(Bステージシート)を作製した。この樹脂シートを35μm厚さのPETシート2枚で挟み、プレス温度:180℃、成形圧力:8MPa、プレス時間:120分間で硬化させた。
 なお、比較例1、3、6、7の樹脂シートは高さが500μmの型枠を用いて成形し、比較例4は高さが100μmの型枠を用いて成形し、比較例5は高さが4000μmの型枠を用いて成形した。
(比較例2)
 表1に示す材料を、表1に示す配合比(質量部)でポリ瓶中で予備混合し、自公転ミキサ(型番:ARE-500、株式会社シンキー)を用いて回転数1000回転/分(rpm)にて5分間混合し、樹脂シート用塗工液を得た。 
 片面が離型処理されたPETフィルムを支持体とし、その離型処理面上に圧縮後の厚さが約100μmになるように、樹脂シート用塗工液をテーブルコータにて塗工した。100℃のボックス型オーブンで5分乾燥し、PETフィルム上にAステージ状態の樹脂層が形成された積層体(Aステージシート)を形成した。得られたAステージシートを、最外層となる支持体以外の支持体を剥がしながら、樹脂層を5層重ねた。これを熱プレス装置(熱板120℃、圧力15MPa、処理時間10分)を用いて、加熱加圧処理して樹脂層同士を貼り合わせ、平均厚さが501μmである半硬化状態の樹脂シート(Bステージシート)を得た。
 上記で得られたBステージシートの両面からPETフィルムを剥離し、35μm厚のPETシート2枚で挟んだ後、プレス処理を行った。プレス処理条件は、熱板温度:150℃、真空度:10kPa以下、圧力:15MPa、処理時間:10分とした。更にボックス型オーブン中で、140℃で2時間、165℃で2時間、190℃で2時間の順に加熱処理を行い、比較例2の樹脂シート硬化物を得た。
[評価]
(Bステージ揮発分)
 実施例及び比較例で作製した樹脂シート(Bステージシート)の質量を測定し、次いで180℃で30分間加熱した後の質量を測定した。加熱前の質量から加熱後の質量を差し引き,加熱前の質量で割った値の百分率を、Bステージ揮発分(質量%)とした。
(熱伝導率)
 実施例及び比較例で作製した樹脂シート(硬化後)を10mm角の正方形に切断し、グラファイトスプレーにより黒化処理し、熱拡散率測定装置(NETZSCH社、Nanoflash LFA467型)を用いて熱拡散率を測定した。測定条件は、測定温度:25±1℃、測定電圧:270V、Amplitude:5000及びパルス幅:0.06msとした。上記で測定された熱拡散率と、アルキメデス法で測定した密度、DSC(示差熱量計)により測定した比熱の積から熱伝導率(W/(m・K))を算出した。結果を密度の測定値とともに表1に示す。
(絶縁破壊電圧)
 実施例及び比較例で作製した樹脂シート(硬化後)を、50mm角の板状電極と、直径20mmの丸形電極とで挟み、フッ素系不活性液体(フロリナート FC-40、3M社)中で絶縁破壊電圧を測定した。測定条件は、4kVから測定をスタートし、0.5kV毎にステップ昇圧し、各電圧にて30秒保持し、保持した際の電流値が20mAを超えたときの電圧を絶縁破壊電圧(kVrms)とした。結果を表1に示す。
(厚さ)
 実施例及び比較例で作製した樹脂シート(硬化後)の厚さをマイクロメータ(株式会社ミツトヨ)にて9点測定を行い、この平均厚さ(μm)を厚さとした。結果を表1に示す。
(スメクチック構造の確認)
 CuKα線を用いたX線回折法により樹脂シート(硬化後)中のスメクチック構造の有無を分析したところ、いずれの実施例及び比較例でも回折角2θ=3.0°~3.5°の範囲に回折ピークを有していた。これにより、スメクチック構造が形成されていることが確認された。
Figure JPOXMLDOC01-appb-T000012
 表1に示す材料の詳細は、それぞれ以下の通りである。なお、表中の「-」は該当する材料を含有しないか、評価を実施していないことを意味する。
(エポキシ樹脂)
・反応物1:上記で作製したエポキシ樹脂反応物1
・反応物2:上記で作製したエポキシ樹脂反応物2
・モノマー1:trans-4-{4-(2,3-エポキシプロポキシ)フェニル}シクロヘキシル=4-(2,3-エポキシプロポキシ)ベンゾエート、住友化学株式会社、特許第5471975号公報参照、エポキシ当量:212g/eq
・モノマー2:下式中、Rが水素原子である化合物とRがメチル基である化合物とが約1:1の質量比で混合された混合物、三菱化学株式会社、YL6121H、エポキシ樹脂当量:171g/eq
Figure JPOXMLDOC01-appb-C000013
・モノマー3:ビスフェノールA/F混合型エポキシ樹脂(型番:ZX-1059、新日鉄住金化学株式会社)
(無機フィラー)
・窒化ホウ素:HP40MF100、水島合金鉄株式会社、体積平均粒径:42μm
・アルミナ1:AX3-32、新日鉄住金マテリアルズ株式会社 マイクロンカンパニー、体積平均粒径:5μm
・アルミナ2:名称:LS235、日本軽金属株式会社、体積平均粒径:0.5μm
(硬化剤)
・フェノールノボラック樹脂:A-4SM、日立化成株式会社
(硬化促進剤)
・トリフェニルホスフィン(TPP):北興化学工業株式会社
(シランカップリング剤)
 N-フェニル-3-アミノプロピルフェニルトリメトキシシラン:KBM-573、信越化学工業株式会社、分子量:255g/mol)
(溶媒)
 シクロヘキサノン
[結果の考察]
 表1の結果より、エポキシ樹脂としてメソゲン骨格を有するエポキシ樹脂オリゴマーを含む反応物を用いた実施例1~実施例5では、Bステージシート及び硬化後の外観が良好であり、無溶媒での成形性に優れていた。また、熱伝導率及び絶縁破壊電圧において良好な結果が得られた。
 エポキシ樹脂としてメソゲン骨格を有するエポキシ樹脂モノマーのみを用いた比較例1では、Bステージシートの外観と硬化後の外観がともに不良(カスレ)と判断され、絶縁破壊電圧が実施例よりも低かった。これは、メソゲン骨格を有するエポキシ樹脂オリゴマーを含む実施例よりも成形性に劣るため、ボイドが樹脂シート中に残存したためと考えられる。
 エポキシ樹脂がメソゲン骨格を有するエポキシ樹脂モノマーのみであり、成形性向上のために有機溶媒を分散媒として用いた比較例2では、良好な絶縁破壊電圧が得られたが、熱伝導率が実施例よりも低かった。絶縁破壊電圧が良好である理由としては、有機溶媒を用いたことにより成形性が向上したことが考えられる。他方、熱伝導率が低い理由としては、図2に示すような複数の樹脂シートを積層した界面が発生したことが考えられる。
 エポキシ樹脂としてメソゲン骨格を有するエポキシ樹脂モノマーと、液状のエポキシ樹脂モノマーを用いた比較例3では、Bステージシートの外観が不良(カスレ)と判断された。これは、メソゲン骨格を有するエポキシ樹脂モノマーに液状エポキシ樹脂モノマーを添加することによる改善効果が実施例ほど大きくないためと考えられる。
 無機フィラーの含有率が30体積%である比較例4では、Bステージシートの外観が不良(カスレ)と判断された。これは、樹脂量が多すぎて成形の際の樹脂流動量が多くなったためと考えられる。
 無機フィラーの含有率が80体積%である比較例5では、Bステージシートの外観が不良(カスレ)と判断された。これは、無機フィラーの量が多すぎて成形の際の樹脂流動量が少なくなったためと考えられる。
 以上の結果より、本発明によれば無溶剤又は低溶剤量での成形性に優れ、かつ硬化後の熱伝導性及び絶縁性に優れる樹脂シート、並びに樹脂シート硬化物が提供されることが判った。
 日本国特許出願第2016-034889号の開示はその全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書に参照により取り込まれる。
1:窒化ホウ素フィラー、2:樹脂マトリックス、3:樹脂シート、4:樹脂シートの表面、5:樹脂シート間の界面、10:アルミナフィラー、11:樹脂マトリックス、12:樹脂シート間の界面、13:窒化ホウ素フィラー

Claims (11)

  1.  エポキシ樹脂オリゴマー及びエポキシ樹脂モノマーを含むエポキシ樹脂と、硬化剤と、無機フィラーと、を含み、
     前記無機フィラーの含有率が30体積%を超え80体積%未満である、樹脂シート。
  2.  前記エポキシ樹脂オリゴマーは、メソゲン骨格を有するエポキシ樹脂モノマーと、1個のベンゼン環に2個の水酸基が結合した構造を有する2価フェノール化合物との反応物を含む、請求項1に記載の樹脂シート。
  3.  前記エポキシ樹脂オリゴマーは、下記一般式(1)で表される化合物と1個のベンゼン環に2個の水酸基が結合した構造を有する2価フェノール化合物との反応物を含む、請求項1又は請求項2に記載の樹脂シート。
    Figure JPOXMLDOC01-appb-C000001

     一般式(1)中、R~Rはそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を表す。
  4.  前記2価フェノール化合物がヒドロキノンを含む、請求項2又は請求項3に記載の樹脂シート。
  5.  前記エポキシ樹脂モノマーは、分子中にメソゲン骨格と2個のエポキシ基を有する化合物を含む、請求項1~請求項4のいずれか1項に記載の樹脂シート。
  6.  前記エポキシ樹脂モノマーは、下記一般式(1)で表される化合物及びビフェニル型エポキシ樹脂モノマーからなる群より選択される少なくとも1種を含む、請求項1~請求項5のいずれか1項に記載の樹脂シート。
    Figure JPOXMLDOC01-appb-C000002

     一般式(1)中、R~Rはそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を表す。
  7.  前記硬化剤は、ジヒドロキシベンゼンノボラック樹脂を含む、請求項1~請求項6のいずれか一項に記載の樹脂シート。
  8.  前記エポキシ樹脂オリゴマーの数平均分子量は600~2300である、請求項1~請求項7のいずれか1項に記載の樹脂シート。
  9.  平均厚さが0.2mm~3mmである、請求項1~請求項8のいずれか1項に記載の樹脂シート。
  10.  請求項1~請求項9のいずれか1項に記載の樹脂シートの硬化物である、樹脂シート硬化物。
  11.  CuKα線を用いたX線回折法による測定において、回折角2θ=3.0°~3.5°の範囲に回折ピークを有する、請求項10に記載の樹脂シート硬化物。
PCT/JP2016/074881 2016-02-25 2016-08-25 樹脂シート及び樹脂シート硬化物 WO2017145412A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680082736.5A CN108699262B (zh) 2016-02-25 2016-08-25 树脂片以及树脂片固化物
EP16891569.2A EP3418324B1 (en) 2016-02-25 2016-08-25 Resin sheet and cured resin sheet
JP2018500969A JP6775735B2 (ja) 2016-02-25 2016-08-25 樹脂シート及び樹脂シート硬化物
US16/079,739 US10988585B2 (en) 2016-02-25 2016-08-25 Resin sheet and cured product of resin sheet
TW106106057A TWI728057B (zh) 2016-02-25 2017-02-23 樹脂薄片及樹脂薄片硬化物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-034889 2016-02-25
JP2016034889 2016-02-25

Publications (1)

Publication Number Publication Date
WO2017145412A1 true WO2017145412A1 (ja) 2017-08-31

Family

ID=59685066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074881 WO2017145412A1 (ja) 2016-02-25 2016-08-25 樹脂シート及び樹脂シート硬化物

Country Status (6)

Country Link
US (1) US10988585B2 (ja)
EP (1) EP3418324B1 (ja)
JP (1) JP6775735B2 (ja)
CN (1) CN108699262B (ja)
TW (1) TWI728057B (ja)
WO (1) WO2017145412A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168556A1 (ja) * 2017-03-15 2018-09-20 日立化成株式会社 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP2019064089A (ja) * 2017-09-29 2019-04-25 日立化成株式会社 エポキシ樹脂シート、エポキシ樹脂シートの製造方法、絶縁体の製造方法及び電気機器の製造方法
WO2019163067A1 (ja) * 2018-02-22 2019-08-29 日立化成株式会社 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及びその製造方法、複合材料、絶縁部材、電子機器、構造材料並びに移動体

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3950755A4 (en) * 2019-03-28 2022-06-22 FUJIFILM Corporation COMPOSITION AND HEAT CONDUCTING MATERIAL
CN110591290B (zh) * 2019-09-27 2021-11-12 东华大学 一种无机颗粒填充反向切割式防刺割热固性树脂片及其制备方法与应用
CN115141460B (zh) * 2021-03-30 2023-09-01 太阳油墨(苏州)有限公司 热固性树脂组合物、固化物以及电子部件

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010084042A (ja) * 2008-09-30 2010-04-15 Tdk Corp エポキシプレポリマー、並びに、これを用いたエポキシ樹脂組成物、硬化物、半硬化物、プリプレグ及び複合基板
WO2011027802A1 (ja) * 2009-09-03 2011-03-10 住友化学株式会社 ジエポキシ化合物、その製造方法および該ジエポキシ化合物を含む組成物
JP2013227451A (ja) * 2012-04-26 2013-11-07 Hitachi Chemical Co Ltd エポキシ樹脂組成物、半硬化エポキシ樹脂組成物、硬化エポキシ樹脂組成物、樹脂シート、プリプレグ、積層板、金属基板、及びプリント配線板
JP2013234313A (ja) * 2011-11-02 2013-11-21 Hitachi Chemical Co Ltd エポキシ樹脂組成物、その半硬化体および硬化体、並びにそれを用いた樹脂シート、プリプレグ、積層板、金属基板、プリント配線板、およびパワー半導体装置
JP2015074750A (ja) * 2013-10-10 2015-04-20 日立化成株式会社 エポキシ樹脂組成物、接着シート及び半導体装置
JP2016113540A (ja) * 2014-12-15 2016-06-23 日立化成株式会社 エポキシ樹脂組成物、樹脂シート、半硬化エポキシ樹脂組成物、硬化エポキシ樹脂組成物及び金属基板
WO2016098709A1 (ja) * 2014-12-15 2016-06-23 日立化成株式会社 エポキシ樹脂組成物、樹脂シート、プリプレグ、積層板、エポキシ樹脂組成物の製造方法、及び硬化体
WO2016104788A1 (ja) * 2014-12-26 2016-06-30 日立化成株式会社 エポキシ樹脂成形材料、成形物、成形硬化物及び成形物の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002094905A1 (fr) 2001-05-18 2002-11-28 Hitachi, Ltd. Produit durci de resine thermodurcissable
JP5320384B2 (ja) 2008-03-03 2013-10-23 新日鉄住金化学株式会社 変性エポキシ樹脂、エポキシ樹脂組成物及び硬化物
WO2010116891A1 (ja) * 2009-04-10 2010-10-14 ポリマテック株式会社 熱伝導性塊状接着剤及び熱伝導性接着シート並びにそれらの製造方法
WO2011040416A1 (ja) 2009-09-29 2011-04-07 日立化成工業株式会社 樹脂組成物、樹脂シート、ならびに、樹脂硬化物およびその製造方法
JP6123277B2 (ja) * 2011-12-28 2017-05-10 日立化成株式会社 樹脂組成物、樹脂組成物シート及び樹脂組成物シートの製造方法、金属箔付樹脂組成物シート、bステージシート、半硬化の金属箔付樹脂組成物シート、メタルベース配線板材料、メタルベース配線板、led光源部材、並びにパワー半導体装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010084042A (ja) * 2008-09-30 2010-04-15 Tdk Corp エポキシプレポリマー、並びに、これを用いたエポキシ樹脂組成物、硬化物、半硬化物、プリプレグ及び複合基板
WO2011027802A1 (ja) * 2009-09-03 2011-03-10 住友化学株式会社 ジエポキシ化合物、その製造方法および該ジエポキシ化合物を含む組成物
JP2013234313A (ja) * 2011-11-02 2013-11-21 Hitachi Chemical Co Ltd エポキシ樹脂組成物、その半硬化体および硬化体、並びにそれを用いた樹脂シート、プリプレグ、積層板、金属基板、プリント配線板、およびパワー半導体装置
JP2013227451A (ja) * 2012-04-26 2013-11-07 Hitachi Chemical Co Ltd エポキシ樹脂組成物、半硬化エポキシ樹脂組成物、硬化エポキシ樹脂組成物、樹脂シート、プリプレグ、積層板、金属基板、及びプリント配線板
JP2015074750A (ja) * 2013-10-10 2015-04-20 日立化成株式会社 エポキシ樹脂組成物、接着シート及び半導体装置
JP2016113540A (ja) * 2014-12-15 2016-06-23 日立化成株式会社 エポキシ樹脂組成物、樹脂シート、半硬化エポキシ樹脂組成物、硬化エポキシ樹脂組成物及び金属基板
WO2016098709A1 (ja) * 2014-12-15 2016-06-23 日立化成株式会社 エポキシ樹脂組成物、樹脂シート、プリプレグ、積層板、エポキシ樹脂組成物の製造方法、及び硬化体
WO2016104788A1 (ja) * 2014-12-26 2016-06-30 日立化成株式会社 エポキシ樹脂成形材料、成形物、成形硬化物及び成形物の製造方法
WO2016104772A1 (ja) * 2014-12-26 2016-06-30 日立化成株式会社 エポキシ樹脂、エポキシ樹脂組成物、無機フィラー含有エポキシ樹脂組成物、樹脂シート、硬化物、及びエポキシ化合物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3418324A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168556A1 (ja) * 2017-03-15 2018-09-20 日立化成株式会社 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
US11466119B2 (en) 2017-03-15 2022-10-11 Showa Denko Materials Co., Ltd. Epoxy resin, epoxy resin composition, epoxy resin cured product, and composite material
JP2019064089A (ja) * 2017-09-29 2019-04-25 日立化成株式会社 エポキシ樹脂シート、エポキシ樹脂シートの製造方法、絶縁体の製造方法及び電気機器の製造方法
JP7124288B2 (ja) 2017-09-29 2022-08-24 昭和電工マテリアルズ株式会社 エポキシ樹脂シート、エポキシ樹脂シートの製造方法、絶縁体の製造方法及び電気機器の製造方法
WO2019163067A1 (ja) * 2018-02-22 2019-08-29 日立化成株式会社 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及びその製造方法、複合材料、絶縁部材、電子機器、構造材料並びに移動体
JPWO2019163067A1 (ja) * 2018-02-22 2021-02-18 昭和電工マテリアルズ株式会社 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及びその製造方法、複合材料、絶縁部材、電子機器、構造材料並びに移動体
JP7095732B2 (ja) 2018-02-22 2022-07-05 昭和電工マテリアルズ株式会社 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及びその製造方法、複合材料、絶縁部材、電子機器、構造材料並びに移動体

Also Published As

Publication number Publication date
TWI728057B (zh) 2021-05-21
EP3418324A4 (en) 2019-08-07
EP3418324A1 (en) 2018-12-26
US20200223994A1 (en) 2020-07-16
JP6775735B2 (ja) 2020-10-28
EP3418324B1 (en) 2023-03-01
TW201800454A (zh) 2018-01-01
CN108699262A (zh) 2018-10-23
JPWO2017145412A1 (ja) 2018-12-20
US10988585B2 (en) 2021-04-27
CN108699262B (zh) 2021-10-12

Similar Documents

Publication Publication Date Title
CN107108856B (zh) 环氧树脂、环氧树脂组合物、含有无机填料的环氧树脂组合物、树脂片、固化物以及环氧化合物
JP6775735B2 (ja) 樹脂シート及び樹脂シート硬化物
JP6988091B2 (ja) エポキシ樹脂組成物、樹脂シート、プリプレグ、樹脂付金属箔、金属基板、及びパワー半導体装置
TWI585147B (zh) 樹脂組成物、樹脂片、附有金屬箔的樹脂片、樹脂硬化物片、結構體以及動力用或光源用半導體元件
TW201831329A (zh) 積層體的製造方法(一)
JP6536045B2 (ja) 樹脂組成物、樹脂シート及び樹脂シート硬化物
CN109312053B (zh) 树脂组合物以及层叠体的制造方法
JP7024777B2 (ja) エポキシポリマー、エポキシ樹脂、エポキシ樹脂組成物、樹脂シート、bステージシート、硬化物、cステージシート、樹脂付金属箔、金属基板及びエポキシ樹脂の製造方法
JP2018002809A (ja) エポキシ樹脂組成物、成形材前駆体、及び成形材
TW202302693A (zh) 酚樹脂混合物、硬化性樹脂組成物及其硬化物
TW201922909A (zh) 帶保護材的厚銅電路
JP2017218468A (ja) エポキシ樹脂組成物、成形材前駆体、成形材、及び成形材の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018500969

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016891569

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016891569

Country of ref document: EP

Effective date: 20180918

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16891569

Country of ref document: EP

Kind code of ref document: A1