WO2010107038A1 - ジエポキシ化合物の製造方法 - Google Patents

ジエポキシ化合物の製造方法 Download PDF

Info

Publication number
WO2010107038A1
WO2010107038A1 PCT/JP2010/054475 JP2010054475W WO2010107038A1 WO 2010107038 A1 WO2010107038 A1 WO 2010107038A1 JP 2010054475 W JP2010054475 W JP 2010054475W WO 2010107038 A1 WO2010107038 A1 WO 2010107038A1
Authority
WO
WIPO (PCT)
Prior art keywords
bis
phenylene
methyl
hydrogen atom
group
Prior art date
Application number
PCT/JP2010/054475
Other languages
English (en)
French (fr)
Inventor
浅海拓
板垣誠
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2010107038A1 publication Critical patent/WO2010107038A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • C07D303/16Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by esterified hydroxyl radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/27Condensation of epihalohydrins or halohydrins with compounds containing active hydrogen atoms
    • C07D301/28Condensation of epihalohydrins or halohydrins with compounds containing active hydrogen atoms by reaction with hydroxyl radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • C07D303/18Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by etherified hydroxyl radicals
    • C07D303/20Ethers with hydroxy compounds containing no oxirane rings
    • C07D303/24Ethers with hydroxy compounds containing no oxirane rings with polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • C07D303/18Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by etherified hydroxyl radicals
    • C07D303/20Ethers with hydroxy compounds containing no oxirane rings
    • C07D303/24Ethers with hydroxy compounds containing no oxirane rings with polyhydroxy compounds
    • C07D303/27Ethers with hydroxy compounds containing no oxirane rings with polyhydroxy compounds having all hydroxyl radicals etherified with oxirane containing compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • C07D303/18Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by etherified hydroxyl radicals
    • C07D303/28Ethers with hydroxy compounds containing oxirane rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • C07D303/18Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by etherified hydroxyl radicals
    • C07D303/28Ethers with hydroxy compounds containing oxirane rings
    • C07D303/30Ethers of oxirane-containing polyhydroxy compounds in which all hydroxyl radicals are etherified with oxirane-containing hydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • C08G59/06Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
    • C08G59/063Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols with epihalohydrins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic

Definitions

  • the present invention relates to a method for producing a diepoxy compound.
  • Epoxy cured products obtained by curing diepoxy compounds exhibit excellent mechanical and electrical properties in addition to good heat resistance and moisture resistance, and are widely used industrially.
  • Macromol. Chem. Phys. 199, 853-859 (1998) includes the formula (A)
  • a cured product obtained by curing the diepoxy compound and the curing agent represented by formula (B) is described as a method for producing the diepoxy compound represented by formula (A).
  • a method is described in which a compound represented by the above and epichlorohydrin are reacted in the presence of benzyltrimethylammonium bromide, and the resulting reaction mixture is mixed with an aqueous sodium hydroxide solution.
  • the present invention ⁇ 1> In the presence of an ammonium salt, an inorganic base and an alcohol compound, the formula (1) (Wherein R 1 represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or an alkoxy group having 1 to 3 carbon atoms, and R 2 represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or 1 to 3 carbon atoms) R 3 represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or an alkoxy group having 1 to 3 carbon atoms, and R 4 represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or 1 carbon atom.
  • R 5 represents a hydrogen atom, a methyl group or an alkoxy group having 1 to 3 carbon atoms
  • R 6 represents a hydrogen atom, a methyl group or an alkoxy group having 1 to 3 carbon atoms
  • R 7 Represents a hydrogen atom, a methyl group or an alkoxy group having 1 to 3 carbon atoms
  • R 8 represents a hydrogen atom, a methyl group or an alkoxy group having 1 to 3 carbon atoms.
  • X 1 represents a halogen atom.
  • a process for producing a diepoxy compound represented by: ⁇ 2> The production method according to ⁇ 1>, wherein the alcohol compound is at least one selected from the group consisting of a secondary
  • R 1 represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or an alkoxy group having 1 to 3 carbon atoms
  • R 2 represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or 1 to 3 carbon atoms
  • R 3 represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or an alkoxy group having 1 to 3 carbon atoms
  • R 4 represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or 1 carbon atom.
  • R 5 represents a hydrogen atom, a methyl group or an alkoxy group having 1 to 3 carbon atoms
  • R 6 represents a hydrogen atom, a methyl group or an alkoxy group having 1 to 3 carbon atoms
  • R 7 Represents a hydrogen atom, a methyl group or an alkoxy group having 1 to 3 carbon atoms
  • R 8 represents a hydrogen atom, a methyl group or an alkoxy group having 1 to 3 carbon atoms.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 each have the same meaning as described above.
  • a method for producing a diepoxy compound represented by the following (hereinafter abbreviated as diepoxy compound (3)) will be described.
  • the alkyl group having 1 to 3 carbon atoms in R 1 , R 2 , R 3 and R 4 include a methyl group, an ethyl group, a propyl group and an isopropyl group, and a methyl group is preferable.
  • Examples of the alkoxy group having 1 to 3 carbon atoms in R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 include a methoxy group, an ethoxy group, a propoxy group and an isopropoxy group. A methoxy group is preferred.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are each independently preferably a hydrogen atom, a methyl group or a methoxy group, preferably a hydrogen atom or a methyl group. It is more preferable.
  • Examples of the halogen atom represented by X 1 include a chlorine atom and a bromine atom, with a chlorine atom being preferred.
  • examples of the compound (2) include epichlorohydrin and epibromohydrin, with epichlorohydrin being preferred.
  • the amount of compound (2) to be used is generally 2-200 mol, preferably 5-150 mol, per 1 mol of compound (1).
  • tetramethylammonium chloride, tetraethylammonium chloride, tetrabutylammonium chloride, benzyltrimethylammonium chloride, benzyltriethylammonium chloride, benzyltributylammonium chloride, tetramethylammonium bromide, tetraethylammonium bromide, tetrabutylammonium bromide, benzyltrimethyl Quaternary ammonium halides such as ammonium bromide, benzyltriethylammonium bromide, tetramethylammonium iodide, tetraethylammonium iodide, tetrabutylammonium iodide, benzyltributylammonium iodide, and the like include tetrabutylammonium bromide and benzyltrimethylammonium chloride
  • Chill ammonium bromide is preferred.
  • Two or more ammonium salts may be mixed and used.
  • the amount of the ammonium salt to be used is generally 0.0001 to 1 mol, preferably 0.001 to 0.5 mol, per 1 mol of compound (1).
  • the inorganic base include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide and potassium hydroxide, and alkali metal carbonates such as sodium carbonate and potassium carbonate. Alkali metal hydroxides are preferred, and sodium hydroxide And potassium hydroxide is more preferred.
  • Two or more inorganic bases may be mixed and used.
  • the amount of the inorganic base to be used is generally 0.1 to 20 mol, preferably 0.5 to 10 mol, per 1 mol of compound (1).
  • An inorganic base in the form of a solid such as a granule may be used, or an inorganic base in the form of an aqueous solution having a concentration of about 1 to about 60% by weight may be used.
  • an alcohol compound a secondary alcohol and a tertiary alcohol are preferable, a tertiary alcohol is more preferable, and a tertiary alcohol having 4 to 10 carbon atoms is particularly preferable.
  • the amount of the alcohol compound used is usually 0.01 to 100 parts by weight, preferably 0.1 to 50 parts by weight, more preferably 1 to 50 parts by weight with respect to 1 part by weight of the compound (1).
  • Two or more alcohol compounds may be mixed and used.
  • Reaction of a compound (1) and a compound (2) is normally implemented by mixing a compound (1), a compound (2), an alcohol compound, ammonium salt, and an inorganic base. It is preferable to carry out the reaction by mixing the compound (1), the compound (2), the ammonium salt and the alcohol compound, and further mixing the resulting mixture with an inorganic base.
  • the reaction may be carried out in the presence of a solvent.
  • the solvent examples include ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, acetonitrile, benzoate.
  • ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone
  • N, N-dimethylformamide N, N-dimethylacetamide, N-methylpyrrolidone
  • acetonitrile benzoate
  • examples include aprotic polar solvents such as nitrile and dimethyl sulfoxide, and ether solvents such as diethyl ether, tert-butyl methyl ether, 1,2-dimethoxyethane, 1,4-dioxane, tetrahydrofuran, and anisole. Is preferred.
  • Compound (2) may be used as a solvent.
  • the alcohol compound When the alcohol compound is a liquid at the reaction temperature, the alcohol compound may be used as a solvent. Two or more of these solvents may be mixed and used. The amount of the solvent to be used is generally 0.01-100 parts by weight, preferably 0.1-50 parts by weight, per 1 part by weight of compound (1).
  • the reaction may be performed under normal pressure conditions, may be performed under pressure conditions, or may be performed under reduced pressure conditions.
  • the reaction may be carried out in an atmosphere of an inert gas such as nitrogen gas or argon gas.
  • the reaction temperature is usually ⁇ 20 ° C. to 150 ° C., preferably ⁇ 10 ° C. to 120 ° C.
  • the progress of the reaction can be confirmed by ordinary analytical means such as liquid chromatography.
  • the reaction time is usually 0.5 to 72 hours.
  • the reaction is carried out by mixing the compound (1), the compound (2), the ammonium salt and the alcohol compound, and the reaction is further carried out by mixing the resulting mixture with an inorganic base
  • the compound (1 ) The compound (2), the ammonium salt, and the alcohol compound are preferably mixed at ⁇ 10 ° C. to 150 ° C., more preferably 0 ° C. to 120 ° C.
  • the temperature at which the obtained mixture and inorganic base are mixed is preferably -20 ° C to 120 ° C, more preferably -10 ° C to 80 ° C.
  • an organic layer containing the diepoxy compound (3) is obtained by mixing the reaction mixture with water and, if necessary, a solvent insoluble in water, followed by liquid separation after stirring.
  • the inepoxy compound (3) can be taken out by removing the insoluble matter by filtration and concentrating as necessary.
  • the extracted diepoxy compound (3) may be further purified by a usual purification means such as recrystallization.
  • diepoxy compound (3) 1,4-phenylene-bis ⁇ 4- (2,3-epoxypropoxy) benzoate ⁇ , 1,4-phenylene-bis ⁇ 4- (2,3-epoxypropoxy) -2-methylbenzoate ⁇ , 1,4- Phenylene-bis ⁇ 4- (2,3-epoxypropoxy) -3-methylbenzoate ⁇ , 1,4-phenylene-bis ⁇ 4- (2,3-epoxypropoxy) -3,5-dimethylbenzoate ⁇ , 1, 4-phenylene-bis ⁇ 4- (2,3-epoxypropoxy) -2,6-dimethylbenzoate ⁇ , 2-methyl-1,4-phenylene-bis ⁇ 4- (2,3-epoxypropoxy) benzoate ⁇ , 2-methoxy-1,4-phenylene-bis ⁇ 4- (2,3-epoxypropoxy) benzoate ⁇ , 2-methyl-1,4-phenylene-bis ⁇ 4- (2, -Epoxypropoxy)
  • 1,4-phenylene-bis ⁇ 4- (2,3-epoxypropoxy) benzoate ⁇ 1,4-phenylene-bis ⁇ 4- (2,3-epoxypropoxy) -2-methylbenzoate ⁇
  • 2 -Methyl-1,4-phenylene-bis ⁇ 4- (2,3-epoxypropoxy) -2-methylbenzoate ⁇ 2-methyl-1,4-phenylene-bis ⁇ 4- (2,3-epoxypropoxy) -3-methylbenzoate ⁇
  • R 20 represents a hydrogen atom or a methyl group
  • R 21 represents a hydrogen atom or a methyl group
  • R 22 represents a hydrogen atom or a methyl group
  • R 23 represents a hydrogen atom or a methyl group
  • R 24 Represents a hydrogen atom or a methyl group
  • R 25 represents a hydrogen atom or a methyl group
  • R 26 represents a hydrogen atom or a methyl group
  • R 27 represents a hydrogen atom or a methyl group, provided that methyl bonded to the benzene ring
  • the total number of groups is 2, 3 or 4.
  • the diepoxy compound represented by is a novel compound and has excellent solubility in methyl isobutyl ketone.
  • Example 1 In a reaction vessel equipped with a cooling apparatus, 2.00 g of 2-methyl-1,4-phenylene-bis (4-hydroxybenzoate), 0.088 g of tetrabutylammonium bromide, 17.2 mL of epichlorohydrin and 2-methyl- 17.2 mL of 2-propanol was mixed at about 25 ° C. The resulting mixture was stirred at 70 ° C. for 12 hours and then cooled to room temperature. To the obtained mixture, 4.40 g of a 15 wt% aqueous sodium hydroxide solution was gradually added.
  • the resulting mixture was stirred at room temperature for 3 hours.
  • the resulting reaction mixture was cooled to 0 ° C., and 30 mL of 10 wt% aqueous ammonium chloride solution was added. Further, 50 mL of ion exchange water was added.
  • the obtained mixture was extracted with 100 mL of chloroform to obtain an organic layer and an aqueous layer. The organic layer was washed 3 times with ion exchange water, and then the insoluble matter in the obtained organic layer was removed by filtration. The obtained filtrate was concentrated to obtain a crude product. Toluene and 2-propanol were added to the obtained crude product. The resulting mixture was cooled to room temperature and allowed to stand overnight.
  • Example 2 In a reaction vessel equipped with a cooling apparatus, 2.00 g of 2-methyl-1,4-phenylene-bis (4-hydroxybenzoate), 0.042 g of tetramethylammonium bromide, 17.2 mL of epichlorohydrin and 2-methyl- 17.2 mL of 2-propanol was mixed at about 25 ° C. The resulting mixture was stirred at 70 ° C. for 7 hours and then cooled to room temperature. To the obtained mixture, 4.40 g of a 15 wt% aqueous sodium hydroxide solution was gradually added. The resulting mixture was stirred at room temperature for 3 hours.
  • Example 3 In a reaction vessel equipped with a cooling apparatus, 2.00 g of 2-methyl-1,4-phenylene-bis (4-hydroxybenzoate), 0.063 g of benzyltrimethylammonium bromide, 17.2 mL of epichlorohydrin and 2-methyl- 17.2 mL of 2-propanol was mixed at about 25 ° C. The resulting mixture was stirred at 70 ° C. for 13 hours and then cooled to room temperature. To the obtained mixture, 4.40 g of a 15 wt% aqueous sodium hydroxide solution was gradually added. The resulting mixture was stirred at room temperature for 3 hours.
  • Example 4 In a reaction vessel equipped with a cooling apparatus, 2.00 g of 2-methyl-1,4-phenylene-bis (4-hydroxybenzoate), 0.076 g of tetrabutylammonium chloride, 17.2 mL of epichlorohydrin and 2-methyl- 17.2 mL of 2-propanol was mixed at about 25 ° C. The resulting mixture was stirred at 70 ° C. for 7 hours and then cooled to room temperature. To the obtained mixture, 4.40 g of a 15 wt% aqueous sodium hydroxide solution was gradually added. The resulting mixture was stirred at room temperature for 3 hours.
  • Example 5 In a reaction vessel equipped with a cooling device, 2.00 g of 2-methyl-1,4-phenylene-bis (4-hydroxybenzoate), 0.101 g of tetrabutylammonium iodide, 17.2 mL of epichlorohydrin and 2-methyl 2-Propanol 17.2mL was mixed at about 25 degreeC. The resulting mixture was stirred at 70 ° C. for 10 hours and then cooled to room temperature. To the obtained mixture, 4.40 g of a 15 wt% aqueous sodium hydroxide solution was gradually added. The resulting mixture was stirred at room temperature for 3 hours.
  • Example 6 In a reaction vessel equipped with a cooling apparatus, 2.00 g of 2-methyl-1,4-phenylene-bis (4-hydroxybenzoate), 0.088 g of tetrabutylammonium bromide, 17.2 mL of epichlorohydrin and 2-methyl- 17.2 mL of 2-propanol was mixed at about 25 ° C. The resulting mixture was stirred at 70 ° C. for 7 hours and then cooled to room temperature. To the obtained mixture, 4.40 g of a 15 wt% aqueous sodium hydroxide solution was gradually added. The resulting mixture was stirred at room temperature for 4 hours.
  • Example 7 In a reaction vessel equipped with a cooling device, 2.00 g of 2-methyl-1,4-phenylene-bis (4-hydroxybenzoate), 0.088 g of tetrabutylammonium bromide, 17.2 mL of epichlorohydrin and 2-butanol 17 .2 mL was mixed at about 25 ° C. The resulting mixture was stirred at 70 ° C. for 7 hours and then cooled to room temperature. To the obtained mixture, 4.40 g of a 15 wt% aqueous sodium hydroxide solution was gradually added. The resulting mixture was stirred at room temperature for 4 hours.
  • the obtained reaction mixture was treated in the same manner as in Example 1 to obtain 0.86 g of white crystals of 2-methyl-1,4-phenylene-bis ⁇ 4- (2,3-epoxypropyl) benzoate ⁇ .
  • the purity area percentage
  • the yield was calculated assuming that the purity was the content of 2-methyl-1,4-phenylene-bis ⁇ 4- (2,3-epoxypropyl) benzoate ⁇ in the crystal. Yield: 33% (based on 2-methyl-1,4-phenylene-bis (4-hydroxybenzoate)).
  • the obtained organic layer was washed twice with 25 mL of ion-exchanged water and then concentrated to obtain a crude product.
  • the obtained crude product was recrystallized from toluene and 2-propanol to give 1.13 g of white crystals of 2-methyl-1,4-phenylene-bis ⁇ 4- (2,3-epoxypropyl) benzoate ⁇ .
  • the purity area percentage
  • the yield was calculated assuming that the purity was the content of 2-methyl-1,4-phenylene-bis ⁇ 4- (2,3-epoxypropyl) benzoate ⁇ in the crystal.
  • the resulting mixture was stirred at 70 ° C. for 7 hours and then cooled to room temperature. To the resulting mixture, 4.07 g of a 15 wt% aqueous sodium hydroxide solution was gradually added. The resulting mixture was stirred at room temperature for 5 hours. To the obtained mixture, 0.41 g of a 15 wt% aqueous sodium hydroxide solution was further added and stirred for 2 hours. To the obtained mixture, 0.95 g of a 15% by weight aqueous sodium hydroxide solution was further added and stirred for 30 minutes. To the obtained mixture, 0.41 g of a 15% by weight aqueous sodium hydroxide solution was further added and stirred for 30 minutes. The resulting reaction mixture was cooled to 0 ° C.
  • the obtained filtrate was concentrated to obtain a crude product containing 2,6-dimethyl-1,4-phenylene-bis ⁇ 4- (2,3-epoxypropoxy) benzoate ⁇ .
  • Toluene and 2-propanol were added to the obtained crude product.
  • the resulting mixture was cooled to room temperature and allowed to stand overnight.
  • the precipitated solid was collected by filtration, washed with 2-propanol, dried, and white crystals of 2,6-dimethyl-1,4-phenylene-bis ⁇ 4- (2,3-epoxypropoxy) benzoate ⁇ . 48 g was obtained. When the crystals were analyzed by liquid chromatography, the purity (area percentage) was 97.5%.
  • the obtained filtrate was concentrated to obtain a crude product containing 2,3,6-trimethyl-1,4-phenylene-bis ⁇ 4- (2,3-epoxypropoxy) benzoate ⁇ .
  • Toluene and 2-propanol were added to the obtained crude product.
  • the resulting mixture was cooled to room temperature and allowed to stand overnight.
  • the precipitated solid was taken out by filtration, washed with 2-propanol, dried, and white crystals of 2,3,6-trimethyl-1,4-phenylene-bis ⁇ 4- (2,3-epoxypropoxy) benzoate ⁇ 1.97 g was obtained.
  • the purity (area percentage) was 94.6%.
  • the obtained filtrate was concentrated to obtain a crude product containing 2-methoxy-1,4-phenylene-bis ⁇ 4- (2,3-epoxypropoxy) benzoate ⁇ .
  • Toluene and 2-propanol were added to the obtained crude product.
  • the resulting mixture was cooled to room temperature and allowed to stand overnight.
  • the precipitated solid was taken out by filtration and washed with 2-propanol to obtain white crystals.
  • Toluene and 2-propanol were added to the obtained white crystals.
  • the resulting mixture was cooled to room temperature and allowed to stand overnight.
  • the diepoxy compound represented by the formula (3) can be produced with good yield and purity. Further, the diepoxy compound represented by the formula (4) is excellent in solubility in methyl isobutyl ketone.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Epoxy Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

アンモニウム塩、無機塩基およびアルコ-ル化合物の存在下、式(1) (式中、Rは水素原子、炭素数1~3のアルキル基または炭素数1~3のアルコキシ基を表わし、Rは水素原子、炭素数1~3のアルキル基または炭素数1~3のアルコキシ基を表わし、Rは水素原子、炭素数1~3のアルキル基または炭素数1~3のアルコキシ基を表わし、Rは水素原子、炭素数1~3のアルキル基または炭素数1~3のアルコキシ基を表わし、Rは水素原子、メチル基または炭素数1~3のアルコキシ基を表わし、Rは水素原子、メチル基または炭素数1~3のアルコキシ基を表わし、Rは水素原子、メチル基または炭素数1~3のアルコキシ基を表わし、Rは水素原子、メチル基または炭素数1~3のアルコキシ基を表わす。) で示されるジヒドロキシ化合物と式(2) (式中、Xはハロゲン原子を表わす。) で示される化合物とを反応させることを特徴とする式(3) (式中、R、R、R、R、R、R、RおよびRはそれぞれ前記と同一の意味を表わす。) で示されるジエポキシ化合物の製造方法。

Description

ジエポキシ化合物の製造方法
 本発明は、ジエポキシ化合物の製造方法に関する。
 ジエポキシ化合物を硬化させることにより得られるエポキシ硬化物は、良好な耐熱性および耐湿性に加えて、機械的および電気的に優れた特性を示し、工業的に広く利用されている。
 Macromol.Chem.Phys.199,853−859(1998)には、式(A)
Figure JPOXMLDOC01-appb-I000005
で示されるジエポキシ化合物と硬化剤とを硬化させることにより得られる硬化物が記載されており、式(A)で示されるジエポキシ化合物の製造方法として、式(B)
Figure JPOXMLDOC01-appb-I000006
で示される化合物とエピクロロヒドリンとを、ベンジルトリメチルアンモニウムブロミドの存在下に反応させ、得られた反応混合物と水酸化ナトリウム水溶液とを混合する方法が記載されている。
 本発明は、
<1> アンモニウム塩、無機塩基およびアルコール化合物の存在下、式(1)
Figure JPOXMLDOC01-appb-I000007
(式中、Rは水素原子、炭素数1~3のアルキル基または炭素数1~3のアルコキシ基を表わし、Rは水素原子、炭素数1~3のアルキル基または炭素数1~3のアルコキシ基を表わし、Rは水素原子、炭素数1~3のアルキル基または炭素数1~3のアルコキシ基を表わし、Rは水素原子、炭素数1~3のアルキル基または炭素数1~3のアルコキシ基を表わし、Rは水素原子、メチル基または炭素数1~3のアルコキシ基を表わし、Rは水素原子、メチル基または炭素数1~3のアルコキシ基を表わし、Rは水素原子、メチル基または炭素数1~3のアルコキシ基を表わし、Rは水素原子、メチル基または炭素数1~3のアルコキシ基を表わす。)
で示される化合物と式(2)
Figure JPOXMLDOC01-appb-I000008
(式中、Xはハロゲン原子を表わす。)
で示される化合物とを反応させることを特徴とする式(3)
Figure JPOXMLDOC01-appb-I000009
(式中、R、R、R、R、R、R、RおよびRはそれぞれ前記と同一の意味を表わす。)
で示されるジエポキシ化合物の製造方法;
<2> アルコ−ル化合物が、2級アルコ−ルおよび3級アルコ−ルからなる群から選ばれる少なくとも1種である<1>に記載の製造方法;
<3> 式(1)で示される化合物、式(2)で示される化合物、アンモニウム塩およびアルコ−ル化合物を混合することにより、反応を行い、得られた混合物と無機塩基とを混合することにより、さらに反応を実施する<1>または<2>に記載の製造方法;
<4> 無機塩基が、水酸化ナトリウムまたは水酸化カリウムである<1>~<3>のいずれかに記載の製造方法;
<5> アンモニウム塩が、4級アンモニウムハライドである<1>~<4>のいずれかに記載の製造方法;
<6> 式(4)
Figure JPOXMLDOC01-appb-I000010
(式中、R20は水素原子またはメチル基を表わし、R21は水素原子またはメチル基を表わし、R22は水素原子またはメチル基を表わし、R23は水素原子またはメチル基を表わし、R24は水素原子またはメチル基を表わし、R25は水素原子またはメチル基を表わし、R26は水素原子またはメチル基を表わし、R27は水素原子またはメチル基を表わす。ただし、ベンゼン環に結合するメチル基の数の合計は、2、3または4である。)
で示されるジエポキシ化合物;等を提供するものである。
 まず、アンモニウム塩、無機塩基およびアルコ−ル化合物の存在下、式(1)
Figure JPOXMLDOC01-appb-I000011
(式中、Rは水素原子、炭素数1~3のアルキル基または炭素数1~3のアルコキシ基を表わし、Rは水素原子、炭素数1~3のアルキル基または炭素数1~3のアルコキシ基を表わし、Rは水素原子、炭素数1~3のアルキル基または炭素数1~3のアルコキシ基を表わし、Rは水素原子、炭素数1~3のアルキル基または炭素数1~3のアルコキシ基を表わし、Rは水素原子、メチル基または炭素数1~3のアルコキシ基を表わし、Rは水素原子、メチル基または炭素数1~3のアルコキシ基を表わし、Rは水素原子、メチル基または炭素数1~3のアルコキシ基を表わし、Rは水素原子、メチル基または炭素数1~3のアルコキシ基を表わす。)
で示される化合物(以下、化合物(1)と略記する。)と式(2)
Figure JPOXMLDOC01-appb-I000012
(式中、Xはハロゲン原子を表わす。)
で示される化合物(以下、化合物(2)と略記する。)とを反応させることを特徴とする式(3)
Figure JPOXMLDOC01-appb-I000013
(式中、R、R、R、R、R、R、RおよびRはそれぞれ前記と同一の意味を表わす。)
で示されるジエポキシ化合物(以下、ジエポキシ化合物(3)と略記する。)の製造方法について説明する。
 R、R、RおよびRにおける炭素数1~3のアルキル基としては、メチル基、エチル基、プロピル基およびイソプロピル基が挙げられ、メチル基が好ましい。
 R、R、R、R、R、R、RおよびRにおける炭素数1~3のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基およびイソプロポキシ基が挙げられ、メトキシ基が好ましい。R、R、R、R、R、R、RおよびRはそれぞれ独立して、水素原子、メチル基またはメトキシ基であることが好ましく、水素原子またはメチル基であることがより好ましい。
 化合物(1)としては、
1,4−フェニレン−ビス(4−ヒドロキシベンゾエート)、1,4−フェニレン−ビス(4−ヒドロキシ−2−メチルベンゾエート)、1,4−フェニレン−ビス(4−ヒドロキシ−3−メチルベンゾエート)、1,4−フェニレン−ビス(4−ヒドロキシ−3,5−ジメチルベンゾエート)、1,4−フェニレン−ビス(4−ヒドロキシ−2,6−ジメチルベンゾエート)、2−メチル−1,4−フェニレン−ビス(4−ヒドロキシベンゾエート)、2−メトキシ−1,4−フェニレン−ビス(4−ヒドロキシベンゾエート)、2−メチル−1,4−フェニレン−ビス(4−ヒドロキシ−2−メチルベンゾエート)、2−メチル−1,4−フェニレン−ビス(4−ヒドロキシ−3−メチルベンゾエート)、2−メチル−1,4−フェニレン−ビス(4−ヒドロキシ−3,5−ジメチルベンゾエート)、2−メチル−1,4−フェニレン−ビス(4−ヒドロキシ−2,6−ジメチルベンゾエート)、2,6−ジメチル−1,4−フェニレン−ビス(4−ヒドロキシベンゾエート)、2,6−ジメチル−1,4−フェニレン−ビス(4−ヒドロキシ−3−メチルベンゾエート)、2,6−ジメチル−1,4−フェニレン−ビス(4−ヒドロキシ−3,5−ジメチルベンゾエート)、2,3,6−トリメチル−1,4−フェニレン−ビス(4−ヒドロキシベンゾエート)、2,3,6−トリメチル−1,4−フェニレン−ビス(4−ヒドロキシ−2,6−ジメチルベンゾエート)、2,3,5,6−テトラメチル−1,4−フェニレン−ビス(4−ヒドロキシベンゾエート)、2,3,5,6−テトラメチル−1,4−フェニレン−ビス(4−ヒドロキシ−3−メチルベンゾエート)および2,3,5,6−テトラメチル−1,4−フェニレン−ビス(4−ヒドロキシ−3,5−ジメチルベンゾエート)が挙げられる。
 なかでも、1,4−フェニレン−ビス(4−ヒドロキシベンゾエート)、1,4−フェニレン−ビス(4−ヒドロキシ−2−メチルベンゾエート)、2−メチル−1,4−フェニレン−ビス(4−ヒドロキシベンゾエート)、2−メトキシ−1,4−フェニレン−ビス(4−ヒドロキシベンゾエート)、2−メチル−1,4−フェニレン−ビス(4−ヒドロキシ−2−メチルベンゾエート)、2−メチル−1,4−フェニレン−ビス(4−ヒドロキシ−3−メチルベンゾエート)、2,6−ジメチル−1,4−フェニレン−ビス(4−ヒドロキシベンゾエート)、2,3,6−トリメチル−1,4−フェニレン−ビス(4−ヒドロキシベンゾエート)および2,3,5,6−テトラメチル−1,4−フェニレン−ビス(4−ヒドロキシベンゾエート)が好ましい。
 かかる化合物(1)は、市販されているものを用いてもよいし、Macromol.Chem.Phys.199,853−859(1998)に記載の方法等の公知の方法に従って製造したものを用いてもよい。
 化合物(2)の式中、Xで示されるハロゲン原子としては、塩素原子および臭素原子が挙げられ、塩素原子が好ましい。化合物(2)としては、エピクロロヒドリンおよびエピブロモヒドリンが挙げられ、エピクロロヒドリンが好ましい。
 化合物(2)の使用量は、化合物(1)1モルに対して、通常2~200モル、好ましくは5~150モルである。
 アンモニウム塩としては、テトラメチルアンモニウムクロリド、テトラエチルアンモニウムクロリド、テトラブチルアンモニウムクロリド、ベンジルトリメチルアンモニウムクロリド、ベンジルトリエチルアンモニウムクロリド、ベンジルトリブチルアンモニウムクロリド、テトラメチルアンモニウムブロミド、テトラエチルアンモニウムブロミド、テトラブチルアンモニウムブロミド、ベンジルトリメチルアンモニウムブロミド、ベンジルトリエチルアンモニウムブロミド、テトラメチルアンモニウムヨーダイド、テトラエチルアンモニウムヨーダイド、テトラブチルアンモニウムヨーダイド、ベンジルトリブチルアンモニウムヨーダイド等の4級アンモニウムハライドが挙げられ、テトラブチルアンモニウムブロミドおよびベンジルトリメチルアンモニウムブロミドが好ましい。
 二種以上のアンモニウム塩を混合して用いてもよい。
 アンモニウム塩の使用量は、化合物(1)1モルに対して、通常0.0001~1モル、好ましくは0.001~0.5モルである。
 無機塩基としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物および炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩が挙げられ、アルカリ金属水酸化物が好ましく、水酸化ナトリウムおよび水酸化カリウムがより好ましい。二種以上の無機塩基を混合して用いてもよい。
 無機塩基の使用量は、化合物(1)1モルに対して、通常0.1~20モル、好ましくは0.5~10モルである。
 粒状等の固体の形態の無機塩基を用いてもよいし、約1~約60重量%の濃度の水溶液の形態の無機塩基を用いてもよい。
 アルコール化合物としては、2級アルコールおよび3級アルコールが好ましく、3級アルコールがより好ましく、炭素数4~10の3級アルコールが特に好ましい。具体的には、2−ブタノール、2−ペンタノール、3−ペンタノール、2−ヘキサノール、3−ヘキサノール、2−ヘプタノール、3−ヘプタノール、2−オクタノール、4−デカノール、2−ドデカノール、3−メチル−2−ブタノール、3,3−ジメチル−2−ブタノール、3−メチル−2−ペンタノール、5−メチル−2−ヘキサノール、4−メチル−3−ヘプタノール、2−メチル−2−プロパノール、2−メチル−2−ブタノール、2,3−ジメチル−2−ブタノール、2−メチル−2−ペンタノール、3−メチル−3−ペンタノール、3−エチル−3−ペンタノール、2,3−ジメチル−3−ペンタノール、3−エチル−2,2−ジメチル−3−ペンタノール、2−メチル−2−ヘキサノールおよび3,7−ジメチル−3−オクタノールが挙げられる。
 アルコール化合物の使用量は、化合物(1)1重量部に対して、通常0.01~100重量部、好ましくは0.1~50重量部、より好ましくは1~50重量部である。
 二種以上のアルコ−ル化合物を混合して用いてもよい。
 化合物(1)と化合物(2)の反応は、通常、化合物(1)、化合物(2)、アルコール化合物、アンモニウム塩および無機塩基を混合することにより実施される。化合物(1)、化合物(2)、アンモニウム塩およびアルコ−ル化合物を混合することにより反応を行い、得られた混合物と無機塩基とを混合することにより、さらに反応を実施することが好ましい。反応は、溶媒の存在下に実施してもよく、溶媒としては、メチルエチルケトン、メチルイソブチルケトン等のケトン溶媒、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドン、アセトニトリル、ベンゾニトリル、ジメチルスルホキシド等の非プロトン性極性溶媒およびジエチルエーテル、tert−ブチルメチルエーテル、1,2−ジメトキシエタン、1,4−ジオキサン、テトラヒドロフラン、アニソール等のエーテル溶媒が挙げられ、非プロトン性極性溶媒が好ましい。化合物(2)を溶媒として用いてもよい。反応温度において、アルコ−ル化合物が液体である場合は、該アルコール化合物を溶媒として用いてもよい。かかる溶媒は、二種以上を混合して用いてもよい。
 溶媒の使用量は、化合物(1)1重量部に対して、通常0.01~100重量部、好ましくは0.1~50重量部である。
 反応は、常圧条件下で実施してもよいし、加圧条件下で実施してもよいし、減圧条件下で実施してもよい。
 窒素ガス、アルゴンガス等の不活性ガスの雰囲気下で反応を実施してもよい。
 反応温度は、通常−20℃~150℃、好ましくは−10℃~120℃である。
 反応の進行は、液体クロマトグラフィー等の通常の分析手段により確認することができる。
 反応時間は、通常0.5~72時間である。
 化合物(1)、化合物(2)、アンモニウム塩およびアルコ−ル化合物を混合することにより反応を行い、得られた混合物と無機塩基とを混合することにより、さらに反応を実施する場合、化合物(1)と化合物(2)とアンモニウム塩とアルコ−ル化合物とを混合する温度は、−10℃~150℃が好ましく、0℃~120℃がより好ましい。得られた混合物と無機塩基とを混合する温度は、−20℃~120℃が好ましく、−10℃~80℃がより好ましい。
 反応終了後、例えば、反応混合物と水、および、必要に応じて水に不溶の溶媒とを混合し、攪拌後、分液することにより、ジエポキシ化合物(3)を含む有機層が得られる。得られた有機層を水で洗浄した後、必要に応じて不溶分を濾過により除去し、濃縮することにより、ジエポキシ化合物(3)を取り出すことができる。
 取り出したジエポキシ化合物(3)は、再結晶等の通常の精製手段により、さらに精製してもよい。
 かかるジエポキシ化合物(3)としては、
1,4−フェニレン−ビス{4−(2,3−エポキシプロポキシ)ベンゾエート}、1,4−フェニレン−ビス{4−(2,3−エポキシプロポキシ)−2−メチルベンゾエート}、1,4−フェニレン−ビス{4−(2,3−エポキシプロポキシ)−3−メチルベンゾエート}、1,4−フェニレン−ビス{4−(2,3−エポキシプロポキシ)−3,5−ジメチルベンゾエート}、1,4−フェニレン−ビス{4−(2,3−エポキシプロポキシ)−2,6−ジメチルベンゾエート}、2−メチル−1,4−フェニレン−ビス{4−(2,3−エポキシプロポキシ)ベンゾエート}、2−メトキシ−1,4−フェニレン−ビス{4−(2,3−エポキシプロポキシ)ベンゾエート}、2−メチル−1,4−フェニレン−ビス{4−(2,3−エポキシプロポキシ)−2−メチルベンゾエート}、2−メチル−1,4−フェニレン−ビス{4−(2,3−エポキシプロポキシ)−3−メチルベンゾエート}、2−メチル−1,4−フェニレン−ビス{4−(2,3−エポキシプロポキシ)−3,5−ジメチルベンゾエート}、2−メチル−1,4−フェニレン−ビス{4−(2,3−エポキシプロポキシ)−2,6−ジメチルベンゾエート}、2,6−ジメチル−1,4−フェニレン−ビス{4−(2,3−エポキシプロポキシ)ベンゾエート}、2,6−ジメチル−1,4−フェニレン−ビス{4−(2,3−エポキシプロポキシ)−3−メチルベンゾエート}、2,6−ジメチル−1,4−フェニレン−ビス{4−(2,3−エポキシプロポキシ)−3,5−ジメチルベンゾエート}、2,3,6−トリメチル−1,4−フェニレン−ビス{4−(2,3−エポキシプロポキシ)ベンゾエート}、2,3,6−トリメチル−1,4−フェニレン−ビス{4−(2,3−エポキシプロポキシ)−2,6−ジメチルベンゾエート}、2,3,5,6−テトラメチル−1,4−フェニレン−ビス{4−(2,3−エポキシプロポキシ)ベンゾエート}、2,3,5,6−テトラメチル−1,4−フェニレン−ビス{4−(2,3−エポキシプロポキシ)−3−メチルベンゾエート}および2,3,5,6−テトラメチル−1,4−フェニレン−ビス{4−(2,3−エポキシプロポキシ)−3,5−ジメチルベンゾエート}が挙げられる。
 なかでも、1,4−フェニレン−ビス{4−(2,3−エポキシプロポキシ)ベンゾエート}、1,4−フェニレン−ビス{4−(2,3−エポキシプロポキシ)−2−メチルベンゾエート}、2−メチル−1,4−フェニレン−ビス{4−(2,3−エポキシプロポキシ)ベンゾエート}、2−メトキシ−1,4−フェニレン−ビス{4−(2,3−エポキシプロポキシ)ベンゾエート}、2−メチル−1,4−フェニレン−ビス{4−(2,3−エポキシプロポキシ)−2−メチルベンゾエート}、2−メチル−1,4−フェニレン−ビス{4−(2,3−エポキシプロポキシ)−3−メチルベンゾエート}、2,6−ジメチル−1,4−フェニレン−ビス{4−(2,3−エポキシプロポキシ)ベンゾエート}、2,3,6−トリメチル−1,4−フェニレン−ビス{4−(2,3−エポキシプロポキシ)ベンゾエート}および2,3,5,6−テトラメチル−1,4−フェニレン−ビス{4−(2,3−エポキシプロポキシ)ベンゾエート}が好ましい。
 なお、ジエポキシ化合物(3)のうち、式(4)
Figure JPOXMLDOC01-appb-I000014
(式中、R20は水素原子またはメチル基を表わし、R21は水素原子またはメチル基を表わし、R22は水素原子またはメチル基を表わし、R23は水素原子またはメチル基を表わし、R24は水素原子またはメチル基を表わし、R25は水素原子またはメチル基を表わし、R26は水素原子またはメチル基を表わし、R27は水素原子またはメチル基を表わす。ただし、ベンゼン環に結合するメチル基の数の合計は、2、3または4である。)
で示されるジエポキシ化合物は新規な化合物であり、メチルイソブチルケトンへの溶解性に優れる。
 以下、実施例および比較例により、本発明を具体的に説明するが、本発明はこれら実施例に限定されない。
[実施例1]
 冷却装置を取り付けた反応容器に、2−メチル−1,4−フェニレン−ビス(4−ヒドロキシベンゾエート)2.00g、テトラブチルアンモニウムブロミド0.088g、エピクロロヒドリン17.2mLおよび2−メチル−2−プロパノール17.2mLを約25℃で混合した。得られた混合物を70℃で12時間攪拌した後、室温まで冷却した。得られた混合物に、15重量%水酸化ナトリウム水溶液4.40gを徐々に加えた。得られた混合物を室温で3時間攪拌した。得られた反応混合物を0℃まで冷却した後、10重量%塩化アンモニウム水溶液30mLを加えた。さらに、イオン交換水50mLを加えた。得られた混合物をクロロホルム100mLで抽出し、有機層と水層とを得た。有機層をイオン交換水で3回洗浄した後、得られた有機層中の不溶分を濾過により除去した。得られた濾液を濃縮し、粗生成物を得た。
 得られた粗生成物に、トルエンおよび2−プロパノールを加えた。得られた混合物を室温まで冷却し、終夜静置した。析出した固体を濾過により取り出し、2−プロパノールで洗浄した後、乾燥し、2−メチル−1,4−フェニレン−ビス{4−(2,3−エポキシプロピル)ベンゾエート}の白色結晶1.88gを得た。該結晶を液体クロマトグラフィーにより分析したところ、純度(面積百分率)は95.9%であった。該純度を該結晶中の2−メチル−1,4−フェニレン−ビス{4−(2,3−エポキシプロピル)ベンゾエート}の含有量と仮定して、収率を算出した。収率:69%(2−メチル−1,4−フェニレン−ビス(4−ヒドロキシベンゾエート)基準)。
[実施例2]
 冷却装置を取り付けた反応容器に、2−メチル−1,4−フェニレン−ビス(4−ヒドロキシベンゾエート)2.00g、テトラメチルアンモニウムブロミド0.042g、エピクロロヒドリン17.2mLおよび2−メチル−2−プロパノール17.2mLを約25℃で混合した。得られた混合物を70℃で7時間攪拌した後、室温まで冷却した。得られた混合物に、15重量%水酸化ナトリウム水溶液4.40gを徐々に加えた。得られた混合物を室温で3時間攪拌した。得られた反応混合物を、実施例1と同様に処理し、2−メチル−1,4−フェニレン−ビス{4−(2,3−エポキシプロピル)ベンゾエート}の白色結晶1.68gを得た。該結晶を液体クロマトグラフィーにより分析したところ、純度(面積百分率)は94.9%であった。該純度を該結晶中の2−メチル−1,4−フェニレン−ビス{4−(2,3−エポキシプロピル)ベンゾエート}の含有量と仮定して、収率を算出した。収率:60%(2−メチル−1,4−フェニレン−ビス(4−ヒドロキシベンゾエート)基準)。
[実施例3]
 冷却装置を取り付けた反応容器に、2−メチル−1,4−フェニレン−ビス(4−ヒドロキシベンゾエート)2.00g、ベンジルトリメチルアンモニウムブロミド0.063g、エピクロロヒドリン17.2mLおよび2−メチル−2−プロパノール17.2mLを約25℃で混合した。得られた混合物を70℃で13時間攪拌した後、室温まで冷却した。得られた混合物に、15重量%水酸化ナトリウム水溶液4.40gを徐々に加えた。得られた混合物を室温で3時間攪拌した。得られた反応混合物を、実施例1と同様に処理し、2−メチル−1,4−フェニレン−ビス{4−(2,3−エポキシプロピル)ベンゾエート}の白色結晶1.51gを得た。該結晶を液体クロマトグラフィーにより分析したところ、純度(面積百分率)は95.6%であった。該純度を該結晶中の2−メチル−1,4−フェニレン−ビス{4−(2,3−エポキシプロピル)ベンゾエート}の含有量と仮定して、収率を算出した。収率:55%(2−メチル−1,4−フェニレン−ビス(4−ヒドロキシベンゾエート)基準)。
[実施例4]
 冷却装置を取り付けた反応容器に、2−メチル−1,4−フェニレン−ビス(4−ヒドロキシベンゾエート)2.00g、テトラブチルアンモニウムクロリド0.076g、エピクロロヒドリン17.2mLおよび2−メチル−2−プロパノール17.2mLを約25℃で混合した。得られた混合物を70℃で7時間攪拌した後、室温まで冷却した。得られた混合物に、15重量%水酸化ナトリウム水溶液4.40gを徐々に加えた。得られた混合物を室温で3時間攪拌した。得られた反応混合物を、実施例1と同様に処理し、2−メチル−1,4−フェニレン−ビス{4−(2,3−エポキシプロピル)ベンゾエート}の白色結晶1.78gを得た。該結晶を液体クロマトグラフィーにより分析したところ、純度(面積百分率)は97.5%であった。該純度を該結晶中の2−メチル−1,4−フェニレン−ビス{4−(2,3−エポキシプロピル)ベンゾエート}の含有量と仮定して、収率を算出した。収率:68%(2−メチル−1,4−フェニレン−ビス(4−ヒドロキシベンゾエート)基準)。
[実施例5]
 冷却装置を取り付けた反応容器に、2−メチル−1,4−フェニレン−ビス(4−ヒドロキシベンゾエート)2.00g、テトラブチルアンモニウムヨーダイド0.101g、エピクロロヒドリン17.2mLおよび2−メチル−2−プロパノール17.2mLを約25℃で混合した。得られた混合物を70℃で10時間攪拌した後、室温まで冷却した。得られた混合物に、15重量%水酸化ナトリウム水溶液4.40gを徐々に加えた。得られた混合物を室温で3時間攪拌した。得られた反応混合物を、実施例1と同様に処理し、2−メチル−1,4−フェニレン−ビス{4−(2,3−エポキシプロピル)ベンゾエート}の白色結晶1.75gを得た。該結晶を液体クロマトグラフィーにより分析したところ、純度(面積百分率)は97.5%であった。該純度を該結晶中の2−メチル−1,4−フェニレン−ビス{4−(2,3−エポキシプロピル)ベンゾエート}の含有量と仮定して、収率を算出した。収率:67%(2−メチル−1,4−フェニレン−ビス(4−ヒドロキシベンゾエート)基準)。
[実施例6]
 冷却装置を取り付けた反応容器に、2−メチル−1,4−フェニレン−ビス(4−ヒドロキシベンゾエート)2.00g、テトラブチルアンモニウムブロミド0.088g、エピクロロヒドリン17.2mLおよび2−メチル−2−プロパノール17.2mLを約25℃で混合した。得られた混合物を70℃で7時間攪拌した後、室温まで冷却した。得られた混合物に、15重量%水酸化ナトリウム水溶液4.40gを徐々に加えた。得られた混合物を室温で4時間攪拌した。得られた反応混合物を、実施例1と同様に処理し、2−メチル−1,4−フェニレン−ビス{4−(2,3−エポキシプロピル)ベンゾエート}の白色結晶1.54gを得た。該結晶を液体クロマトグラフィーにより分析したところ、純度(面積百分率)は97.1%であった。該純度を該結晶中の2−メチル−1,4−フェニレン−ビス{4−(2,3−エポキシプロピル)ベンゾエート}の含有量と仮定して、収率を算出した。収率:59%(2−メチル−1,4−フェニレン−ビス(4−ヒドロキシベンゾエート)基準)。
[実施例7]
 冷却装置を取り付けた反応容器に、2−メチル−1,4−フェニレン−ビス(4−ヒドロキシベンゾエート)2.00g、テトラブチルアンモニウムブロミド0.088g、エピクロロヒドリン17.2mLおよび2−ブタノール17.2mLを約25℃で混合した。得られた混合物を70℃で7時間攪拌した後、室温まで冷却した。得られた混合物に、15重量%水酸化ナトリウム水溶液4.40gを徐々に加えた。得られた混合物を室温で4時間攪拌した。得られた反応混合物を、実施例1と同様に処理し、2−メチル−1,4−フェニレン−ビス{4−(2,3−エポキシプロピル)ベンゾエート}の白色結晶1.44gを得た。該結晶を液体クロマトグラフィーにより分析したところ、純度(面積百分率)は97.8%であった。該純度を該結晶中の2−メチル−1,4−フェニレン−ビス{4−(2,3−エポキシプロピル)ベンゾエート}の含有量と仮定して、収率を算出した。収率:55%(2−メチル−1,4−フェニレン−ビス(4−ヒドロキシベンゾエート)基準)。
[比較例1]
 冷却装置を取り付けた反応容器に、2−メチル−1,4−フェニレン−ビス(4−ヒドロキシベンゾエート)2.00g、テトラブチルアンモニウムブロミド0.042gおよびエピクロロヒドリン17.2mLを約25℃で混合した。得られた混合物を70℃で12時間攪拌した後、室温まで冷却した。得られた混合物に、15重量%水酸化ナトリウム水溶液4.40gを徐々に加えた。得られた混合物を室温で3時間攪拌した。得られた反応混合物を、実施例1と同様に処理し、2−メチル−1,4−フェニレン−ビス{4−(2,3−エポキシプロピル)ベンゾエート}の白色結晶0.86gを得た。該結晶を液体クロマトグラフィーにより分析したところ、純度(面積百分率)は90.8%であった。該純度を該結晶中の2−メチル−1,4−フェニレン−ビス{4−(2,3−エポキシプロピル)ベンゾエート}の含有量と仮定して、収率を算出した。収率:33%(2−メチル−1,4−フェニレン−ビス(4−ヒドロキシベンゾエート)基準)。
[比較例2]
 冷却装置を取り付けた反応容器に、室温で、2−メチル−1,4−フェニレン−ビス(4−ヒドロキシベンゾエート)2.00g、ベンジルトリメチルアンモニウムブロミド0.038gおよびエピクロロヒドリン8.6mLを加えた。得られた混合物を、還流条件下で、35分間攪拌した。得られた混合物に、15重量%水酸化ナトリウム水溶液2.93gを加え、さらに35分間攪拌した。得られた混合物を室温まで冷却した後、イオン交換水25mLおよびエピクロロヒドリン25mLを加えた。得られた混合物を攪拌した後、有機層を分離した。得られた有機層をイオン交換水25mLで2回洗浄した後、濃縮し、粗生成物を得た。得られた粗生成物の再結晶をトルエンおよび2−プロパノールを用いて行い、2−メチル−1,4−フェニレン−ビス{4−(2,3−エポキシプロピル)ベンゾエート}の白色結晶1.13gを得た。
 該結晶を液体クロマトグラフィーにより分析したところ、純度(面積百分率)は89.6%であった。該純度を該結晶中の2−メチル−1,4−フェニレン−ビス{4−(2,3−エポキシプロピル)ベンゾエート}の含有量と仮定して、収率を算出した。収率:39%(2−メチル−1,4−フェニレン−ビス(4−ヒドロキシベンゾエート)基準)。
[参考例1]
 ディーンスターク装置を取り付けた反応容器に、4−ヒドロキシ−3−メチル安息香酸39.22g、メチルヒドロキノン16.00g、硫酸0.63gおよびキシレン111.6mLを約25℃で混合した。得られた混合物を還流条件下で11時間攪拌した後、室温まで冷却した。反応の進行に伴って生成した水はディーンスターク装置を用いて連続的に反応系外へ除去した。反応混合物中に析出した固体を濾過により取り出し、メタノール300mLで洗浄した後、50℃で4時間減圧乾燥し、2−メチル−1,4−フェニレン−ビス(4−ヒドロキシ−3−メチルベンゾエート)の薄灰色結晶41.21gを得た。
 該結晶を液体クロマトグラフィーにより分析したところ、純度(面積百分率)は、96.3%であった。該純度を該結晶中の2−メチル−1,4−フェニレン−ビス(4−ヒドロキシ−3−メチルベンゾエート)の含有量と仮定して、収率を算出した。収率:78%(メチルヒドロキノン基準)
H−NMR(δ:ppm,ジメチルスルホキシド−d)10.48(br,2H),7.75−7.95(c,4H),6.82−7.32(c,5H),1.90−2.30(c,9H)
[実施例8]
 冷却装置を取り付けた反応容器に、2−メチル−1,4−フェニレン−ビス(4−ヒドロキシ−3−メチルベンゾエート)2.00g、テトラメチルアンモニウムブロミド0.039g、エピクロロヒドリン15.9mLおよび2−メチル−2−プロパノール15.9mLを約25℃で混合した。得られた混合物を70℃で7時間攪拌した後、室温まで冷却した。得られた混合物に、15重量%水酸化ナトリウム水溶液4.07gを徐々に加えた。得られた混合物を室温で5時間攪拌した。得られた混合物に15重量%水酸化ナトリウム水溶液0.41gをさらに加えて2時間撹拌した。得られた混合物に、15重量%水酸化ナトリウム水溶液0.95gをさらに加えて30分間撹拌した。得られた混合物に、15重量%水酸化ナトリウム水溶液0.41gをさらに加えて30分間撹拌した。得られた反応混合物を0℃まで冷却して、10重量%塩化アンモニウム水溶液60mLを加えた。得られた混合物をクロロホルム100mLで抽出し、有機層と水層を得た。有機層をイオン交換水で3回洗浄した後、不溶分を濾過により除去した。得られた濾液を濃縮し、2−メチル−1.4−フェニレン−ビス{4−(2,3−エポキシプロポキシ)−3−メチルベンゾエート}を含む粗生成物を得た。
 得られた粗生成物にトルエンおよび2−プロパノールを加えた。得られた混合物を室温まで冷却し、終夜静置した。析出した固体を濾過により取り出し、2−プロパノールで洗浄した後、乾燥し、2−メチル−1,4−フェニレン−ビス{4−(2,3−エポキシプロポキシ)−3−メチルベンゾエート}の白色結晶1.88gを得た。
 該結晶を液体クロマトグラフィーにより分析したところ、純度(面積百分率)は、95.6%であった。該純度を該結晶中の2−メチル−1,4−フェニレン−ビス{4−(2,3−エポキシプロポキシ)−3−メチルベンゾエート}の含有量と仮定して、収率を算出した。収率:73%(2−メチル−1,4−フェニレン−ビス(4−ヒドロキシ−3−メチルベンゾエート)基準)。
H−NMR(δ:ppm,CDCl)7.92−8.19(c,4H),7.02−7.25(c,3H),6.80−7.00(c,2H),4.27−4.49(c,2H),3.95−4.18(c,2H),3.35−3.55(c,2H),2.90−3.09(c,2H),2.75−2.87(c,2H),2.32(s,6H),2.24(s,3H)
[参考例2]
 ディーンスターク装置を取り付けた反応容器に、4−ヒドロキシ−2−メチル安息香酸49.03g、メチルヒドロキノン20.00g、硫酸1.58gおよびキシレン139.5mLを約25℃で混合した。得られた混合物を還流条件下で6時間攪拌した後、室温まで冷却した。反応の進行に伴って生成した水はディーンスターク装置を用いて連続的に反応系外へ除去した。反応混合物中に析出した固体を濾過により取り出し、メタノール2600mLで洗浄した後、50℃で4時間減圧乾燥し、2−メチル−1,4−フェニレン−ビス(4−ヒドロキシ−2−メチルベンゾエート)の茶白色結晶53.70gを得た。
 該結晶を液体クロマトグラフィーにより分析したところ、純度(面積百分率)は、99.0%であった。該純度を該結晶中の2−メチル−1,4−フェニレン−ビス(4−ヒドロキシ−2−メチルベンゾエート)の含有量と仮定して、収率を算出した。収率:84%(メチルヒドロキノン基準)
H−NMR(δ:ppm,ジメチルスルホキシド−d)10.37−10.42(c,2H),7.95−8.13(c,2H),7.06−7.28(c,3H),6.70−6.82(c,4H),2.53(s,6H),2.17(s,3H)
[実施例9]
 冷却装置を取り付けた反応容器に、2−メチル−1,4−フェニレン−ビス(4−ヒドロキシ−2−メチルベンゾエート)20.00g、テトラブチルアンモニウムブロミド0.822g、エピクロロヒドリン159.5mLおよび2−メチル−2−プロパノール159.5mLを約25℃で混合した。得られた混合物を70℃で7時間攪拌した後、18℃まで冷却した。得られた混合物に、15重量%水酸化ナトリウム水溶液40.77gを徐々に加え、得られた混合物を18℃で3時間攪拌した。得られた反応混合物を0℃まで冷却した後、10重量%塩化アンモニウム水溶液を300mL加えた。得られた混合物に、イオン交換水500mLを加え、クロロホルム1000mLで抽出した。得られた有機層をイオン交換水で3回洗浄した後、不溶分を濾過により除去した。得られた濾液を濃縮し、2−メチル−1,4−フェニレン−ビス{4−(2,3−エポキシプロポキシ)−2−メチルベンゾエート}を含む粗生成物を得た。
 得られた粗生成物にトルエンおよび2−プロパノールを加えた。得られた混合物を室温まで冷却し、終夜静置した。析出した固体を濾過により取り出し、2−プロパノールで洗浄した後、乾燥し、2−メチル−1,4−フェニレン−ビス{4−(2,3−エポキシプロポキシ)−2−メチルベンゾエート}の白色結晶22.06gを得た。
 該結晶を液体クロマトグラフィーにより分析したところ、純度(面積百分率)は、97.8%であった。該純度を該結晶中の2−メチル−1,4−フェニレン−ビス{4−(2,3−エポキシプロポキシ)−2−メチルベンゾエート}の含有量と仮定して、収率を算出した。収率:85%(2−メチル−1,4−フェニレン−ビス(4−ヒドロキシ−2−メチルベンゾエート)基準)
H−NMR(δ:ppm,CDCl)8.12−8.27(c,2H),7.02−7.22(c,3H),6.79−6.93(c,4H),4.28−4.41(c,2H),3.95−4.12(c,2H),3.33−3.45(c,2H),2.90−2.98(c,2H),2.75−2.85(c,2H),2.66(s,6H),2.25(s,3H)
[参考例3]
 ディーンスターク装置を取り付けた反応容器に、4−ヒドロキシ−2−メチル安息香酸38.69g、ヒドロキノン14.00g、硫酸0.62gおよびキシレン97.7mLを約25℃で混合した。得られた混合物を還流下で3時間攪拌した後、室温まで冷却した。反応の進行に伴って生成した水はディーンスターク装置を用いて連続的に反応系外へ除去した。反応混合物中に析出した固体を濾過により取り出し、2−プロパノール300mLで洗浄した後、50℃で4時間減圧乾燥し、1,4−フェニレン−ビス(4−ヒドロキシ−2−メチルベンゾエート)の薄灰色結晶42.73gを得た。
 該結晶を液体クロマトグラフィーにより分析したところ、純度(面積百分率)は、93.9%であった。該純度を該結晶中の1,4−フェニレン−ビス(4−ヒドロキシ−2−メチルベンゾエート)の含有量と仮定して、収率を算出した。収率:83%(ヒドロキノン基準)。
H−NMR(δ:ppm,ジメチルスルホキシド−d)10.34(br,2H),8.01(dd,2H),7.29(s,4H),6.68−6.87(c,4H),2.52(s,6H)
[実施例10]
 冷却装置を取り付けた反応容器に、1,4−フェニレン−ビス(4−ヒドロキシ−2−メチルベンゾエート)2.00g、テトラブチルアンモニウムブロミド0.085g、エピクロロヒドリン16.5mLおよび2−メチル−2−プロパノール16.5mLを約25℃で混合した。得られた混合物を70℃で7時間攪拌した後、室温まで冷却した。得られた混合物に、15重量%水酸化ナトリウム水溶液4.20gを徐々に加えた。得られた混合物を室温で3時間、40℃で2時間、さらに50℃で3時間撹拌した。得られた反応混合物を0℃まで冷却して、10重量%塩化アンモニウム水溶液30mLを加えた。得られた混合物に、イオン交換水50mLを加えた後、得られた混合物をクロロホルム100mLで抽出した。得られた有機層をイオン交換水で3回洗浄した後、不溶分を濾過により除去した。得られた濾液を濃縮し、1,4−フェニレン−ビス{4−(2,3−エポキシプロポキシ)−2−メチルベンゾエート}を含む粗生成物を得た。
 得られた粗生成物にトルエンおよび2−プロパノールを加えた。得られた混合物を室温まで冷却し、終夜静置した。析出した固体を濾過により取り出し、2−プロパノールで洗浄し、白色結晶を得た。該結晶にトルエンおよび2−プロパノールを加えた後、得られた混合物を室温まで冷却し、終夜静置した。析出した固体を濾過により取り出し、2−プロパノールで洗浄した後、乾燥し、1,4−フェニレン−ビス{4−(2,3−エポキシプロポキシ)−2−メチルベンゾエート}の白色結晶1.91gを得た。
 該結晶を液体クロマトグラフィーにより分析したところ、純度(面積百分率)は、93.7%であった。該純度を該結晶中の1,4−フェニレン−ビス{4−(2,3−エポキシプロポキシ)−2−メチルベンゾエート}の含有量と仮定して、収率を算出した。収率:73%(1,4−フェニレン−ビス(4−ヒドロキシ−2−メチルベンゾエート)基準)。
H−NMR(δ:ppm,CDCl)8.12−8.25(c,2H),7.25(d,4H),6.76−6.90(c,4H),4.23−4.40(c,2H),3.95−4.08(c,2H),3.34−3.45(c,2H),2.83−3.00(c,2H),2.74−2.80(c,2H),2.66(s,6H)
[参考例4]
 ディーンスターク装置を取り付けた反応容器に、4−ヒドロキシ安息香酸21.99g、2,6−ジメチルヒドロキノン11.00g、p−トルエンスルホン酸1.51gおよびキシレン199mLを約25℃で混合した。得られた混合物を還流下で25時間攪拌した後、室温まで冷却した。反応の進行に伴って生成した水はディーンスターク装置を用いて連続的に反応系外へ除去した。反応混合物中に析出した固体を濾過により取り出し、メタノール1000mLで洗浄した後、50℃で4時間減圧乾燥し、2,6−ジメチル−1,4−フェニレン−ビス(4−ヒドロキシベンゾエート)の薄灰色結晶15.84gを得た。
 該結晶を液体クロマトグラフィーにより分析したところ、純度(面積百分率)は、98.6%であった。該純度を該結晶中の2,6−ジメチル−1,4−フェニレン−ビス(4−ヒドロキシベンゾエート)の含有量と仮定して、収率を算出した。収率:52%(2,6−ジメチルヒドロキノン基準)。
H−NMR(δ:ppm,ジメチルスルホキシド−d)10.53(br,2H),8.00(dd,4H),7.04(s,2H),6.94(dd,4H),2.10(s,6H)
[実施例11]
 冷却装置を取り付けた反応容器に、2,6−ジメチル−1,4−フェニレン−ビス(4−ヒドロキシベンゾエート)2.00g、テトラブチルアンモニウムブロミド0.085g、エピクロロヒドリン16.5mLおよび2−メチル−2−プロパノール16.5mLを約25℃で混合した。得られた混合物を70℃で7時間攪拌した後、室温まで冷却した。得られた混合物に、15重量%水酸化ナトリウム水溶液4.20gを徐々に加えた。得られた混合物を室温で4時間攪拌し、さらに50℃で2時間撹拌した。得られた反応混合物を0℃まで冷却して、10重量%塩化アンモニウム水溶液30mLを加えた。得られた混合物に、イオン交換水50mLを加えた後、得られた混合物をクロロホルム100mLで抽出した。得られた有機層をイオン交換水で3回洗浄した後、不溶分を濾過により除去した。得られた濾液を濃縮し、2,6−ジメチル−1,4−フェニレン−ビス{4−(2,3−エポキシプロポキシ)ベンゾエート}を含む粗生成物を得た。
 得られた粗生成物にトルエンおよび2−プロパノールを加えた。得られた混合物を室温まで冷却し、終夜静置した。析出した固体を濾過により取り出し、2−プロパノールで洗浄した後、乾燥し、2,6−ジメチル−1,4−フェニレン−ビス{4−(2,3−エポキシプロポキシ)ベンゾエート}の白色結晶1.48gを得た。
 該結晶を液体クロマトグラフィーにより分析したところ、純度(面積百分率)は、97.5%であった。該純度を該結晶中の2,6−ジメチル−1,4−フェニレン−ビス{4−(2,3−エポキシプロポキシ)ベンゾエート}の含有量と仮定して、収率を算出した。収率:58%(2,6−ジメチル−1,4−フェニレン−ビス(4−ヒドロキシベンゾエート)基準)。
H−NMR(δ:ppm,CDCl)8.17(dd,4H),6.82−7.16(c,6H),4.25−4.47(c,2H),3.95−4.13(c,2H),3.32−3.49(c,2H),2.86−3.00(c,2H),2.70−2.84(c,2H),2.20(s,6H)
[参考例5]
 ディーンスターク装置を取り付けた反応容器に、4−ヒドロキシ安息香酸21.78g、トリメチルヒドロキノン12.00g、p−トルエンスルホン酸1.50gおよびキシレン197.1mLを約25℃で混合した。得られた混合物を還流下で24時間攪拌した後、室温まで冷却した。反応の進行に伴って生成した水はディーンスターク装置を用いて連続的に反応系外へ除去した。反応混合物中に析出した固体を濾過により取り出し、メタノール1000mLで洗浄した後、50℃で4時間減圧乾燥し、2,3,6−トリメチル−1,4−フェニレン−ビス(4−ヒドロキシベンゾエート)の薄灰色結晶25.35gを得た。
 該結晶を液体クロマトグラフィーにより分析したところ、純度(面積百分率)は、98.2%であった。該純度を該結晶中の2,3,6−トリメチル−1,4−フェニレン−ビス(4−ヒドロキシベンゾエート)の含有量と仮定して、収率を算出した。収率:81%(トリメチルヒドロキノン基準)。
H−NMR(δ:ppm,DMSO−d)10.54(br,2H),8.02(dd,4H),6.88−7.09(c,5H),1.93−2.18(c,9H)
[実施例12]
 冷却装置を取り付けた反応容器に、2,3,6−トリメチル−1,4−フェニレン−ビス(4−ヒドロキシベンゾエート)2.00g、テトラブチルアンモニウムブロミド0.082g、エピクロロヒドリン15.9mLおよび2−メチル−2−プロパノール15.9mLを約25℃で混合した。得られた混合物を70℃で10時間攪拌した後、室温まで冷却した。得られた混合物に、15重量%水酸化ナトリウム水溶液4.07gを徐々に加えた。得られた混合物を室温で3時間攪拌し、さらに40℃で2時間撹拌した。得られた反応混合物を0℃まで冷却して、10重量%塩化アンモニウム水溶液30mLを加えた。得られた混合物をクロロホルム100mLで抽出した。得られた有機層をイオン交換水で3回洗浄した後、不溶分を濾過により除去した。得られた濾液を濃縮し、2,3,6−トリメチル−1,4−フェニレン−ビス{4−(2,3−エポキシプロポキシ)ベンゾエート}を含む粗生成物を得た。
 得られた粗生成物にトルエンおよび2−プロパノールを加えた。得られた混合物を室温まで冷却し、終夜静置した。析出した固体を濾過により取り出し、2−プロパノールで洗浄した後、乾燥し、2,3,6−トリメチル−1,4−フェニレン−ビス{4−(2,3−エポキシプロポキシ)ベンゾエート}の白色結晶1.97gを得た。
 該結晶を液体クロマトグラフィーにより分析したところ、純度(面積百分率)は、94.6%であった。該純度を該結晶中の2,3,6−トリメチル−1,4−フェニレン−ビス{4−(2,3−エポキシプロポキシ)ベンゾエート}の含有量と仮定して、収率を算出した。収率:73%(2,3,6−トリメチル−1,4−フェニレン−ビス(4−ヒドロキシベンゾエート)基準)。
H−NMR(δ:ppm,CDCl)8.12−8.37(c,4H),6.95−7.17(c,4H),6.91(s,1H),4.31−4.48(c,2H),3.99−4.18(c,2H),3.36−3.52(c,2H),2.88−3.07(c,2H),2.65−2.86(c,2H),2.05−2.35(c,9H)
[参考例6]
 ディーンスターク装置を取り付けた反応容器に、4−ヒドロキシ安息香酸8.31g、テトラメチルヒドロキノン5.00g、p−トルエンスルホン酸0.57gおよびキシレン75.2mLを約25℃で混合した。得られた混合物を還流下で46時間攪拌した後、室温まで冷却した。反応の進行に伴って生成した水はディーンスターク装置を用いて連続的に反応系外へ除去した。反応混合物中に析出した固体を濾過により取り出し、メタノール1000mLで洗浄した後、50℃で4時間減圧乾燥し、2,3,5,6−テトラメチル−1,4−フェニレン−ビス(4−ヒドロキシベンゾエート)の緑灰色結晶10.65gを得た。
 該結晶を液体クロマトグラフィーにより分析したところ、純度(面積百分率)は、96.8%であった。該純度を該結晶中の2,3,5,6−テトラメチル−1,4−フェニレン−ビス(4−ヒドロキシベンゾエート)の含有量と仮定して、収率を算出した。収率:84%(テトラメチルヒドロキノン基準)。
H−NMR(δ:ppm,ジメチルスルホキシド−d)10.54(br,2H),8.04(d,4H),6.95(d,4H),2.01(s,12H)
[実施例13]
 冷却装置を取り付けた反応容器に、2,3,5,6−テトラメチル−1,4−フェニレン−ビス(4−ヒドロキシベンゾエート)2.00g、テトラブチルアンモニウムブロミド0.079g、エピクロロヒドリン15.4mLおよび2−メチル−2−プロパノール15.4mLを約25℃で混合した。得られた混合物を70℃で7時間攪拌した後、18℃まで冷却した。得られた混合物に、15重量%水酸化ナトリウム水溶液3.94gを徐々に加えた。得られた混合物を18℃で4時間攪拌し、さらに40℃で3時間撹拌した。得られた混合物にジメチルスルホキシド15.4mLを加えた。得られた混合物を、50℃で2時間、60℃で2時間、70℃で3時間、さらに80℃で3時間撹拌した。得られた反応混合物を0℃まで冷却して、10重量%塩化アンモニウム水溶液30mLを加えた。得られた混合物に、イオン交換水50mLを加えた後、得られた混合物をクロロホルム100mLで抽出した。得られた有機層をイオン交換水で3回洗浄した後、不溶分を濾過により除去した。得られた濾液を濃縮し、2,3,5,6−テトラメチル−1,4−フェニレン−ビス{4−(2,3−エポキシプロポキシ)ベンゾエート}を含む粗生成物を得た。
 得られた粗生成物にトルエンおよび2−プロパノールを加えた。得られた混合物を室温まで冷却し、終夜静置した。析出した固体を濾過により取り出し、2−プロパノールで洗浄した後、乾燥し、2,3,5,6−テトラメチル−1,4−フェニレン−ビス{4−(2,3−エポキシプロポキシ)ベンゾエート}の白色結晶1.73gを得た。
 該結晶を液体クロマトグラフィーにより分析したところ、純度(面積百分率)は、93.5%であった。該純度を該結晶中の2,3,5,6−テトラメチル−1,4−フェニレン−ビス{4−(2,3−エポキシプロポキシ)ベンゾエート}の含有量と仮定して、収率を算出した。収率:63%(2,3,5,6−テトラメチル−1,4−フェニレン−ビス(4−ヒドロキシベンゾエート)基準)。
H−NMR(δ:ppm,CDCl)8.22(d,4H),7.04(d,4H),4.36(dd,2H),4.04(dd,2H),3.40(m,2H),2.95(m,2H),2.80(dd,2H),2.10(s,12H)
[参考例7]
 ディーンスターク装置を取り付けた反応容器に、4−ヒドロキシ安息香酸21.68g、メトキシヒドロキノン11.00g、p−トルエンスルホン酸1.49gおよびキシレン196.2mLを約25℃で混合した。得られた混合物を還流下で24時間攪拌した後、室温まで冷却した。反応の進行に伴って生成した水はディーンスターク装置を用いて連続的に反応系外へ除去した。反応混合物中に析出した固体を濾過により取り出し、シクロヘキサノン130mLおよびメタノール100mLで洗浄した後、50℃で4時間減圧乾燥し、2−メトキシ−1,4−フェニレン−ビス(4−ヒドロキシベンゾエート)の緑灰色結晶2.79gを得た。
 該結晶を液体クロマトグラフィーにより分析したところ、純度(面積百分率)は、94.9%であった。該純度を該結晶中の2−メトキシ−1,4−フェニレン−ビス(4−ヒドロキシベンゾエート)の含有量と仮定して、収率を算出した。収率:9%(メトキシヒドロキノン基準)。
H−NMR(δ:ppm,ジメチルスルホキシド−d)10.53(br,2H),7.82−8.09(c,4H),7.24(d,1H),7.10(d,1H),6.78−7.00(c,5H),3.74(s,3H)
[実施例14]
 冷却装置を取り付けた反応容器に、2−メトキシ−1,4−フェニレン−ビス(4−ヒドロキシベンゾエート)2.00g、テトラブチルアンモニウムブロミド0.085g、エピクロロヒドリン16.5mLおよび2−メチル−2−プロパノール16.5mLを約25℃で混合した。得られた混合物を70℃で7時間攪拌した後、室温まで冷却した。得られた混合物に、15重量%水酸化ナトリウム水溶液4.20gを徐々に加えた。得られた混合物を室温で2時間30分攪拌した。得られた反応混合物を0℃まで冷却して、10重量%塩化アンモニウム水溶液30mLを加えた。得られた混合物に、イオン交換水50mLを加えた後、得られた混合物をクロロホルム100mLで抽出した。得られた有機層をイオン交換水で3回洗浄した後、不溶分を濾過により除去した。得られた濾液を濃縮し、2−メトキシ−1,4−フェニレン−ビス{4−(2,3−エポキシプロポキシ)ベンゾエート}を含む粗生成物を得た。
 得られた粗生成物にトルエンおよび2−プロパノールを加えた。得られた混合物を室温まで冷却し、終夜静置した。析出した固体を濾過により取り出し、2−プロパノールで洗浄し、白色結晶を得た。得られた白色結晶にトルエンおよび2−プロパノールを加えた。得られた混合物を室温まで冷却し、終夜静置した。析出した固体を濾過により取り出し、2−プロパノールで洗浄した後、乾燥し、2−メトキシ−1,4−フェニレン−ビス{4−(2,3−エポキシプロポキシ)ベンゾエート}の白色結晶1.15gを得た。
 該結晶を液体クロマトグラフィーにより分析したところ、純度(面積百分率)は、95.7%であった。該純度を該結晶中の2−メトキシ−1,4−フェニレン−ビス{4−(2,3−エポキシプロポキシ)ベンゾエート}の含有量と仮定して、収率を算出した。収率:45%(2−メトキシ−1,4−フェニレン−ビス(4−ヒドロキシベンゾエート)基準)。
H−NMR(δ:ppm,CDCl)8.09−8.28(c,4H),7.18(d,1H),7.02(dd,4H),6.78−6.95(c,2H),4.27−4.43(c,2H),3.95−4.12(c,2H),3.81(s,3H),3.32−3.48(c,2H),2.89−3.03(c,2H),2.75−2.85(c,2H)
<溶解度の測定>
 実施例9で得られた2−メチル−1,4−フェニレン−ビス{4−(2,3−エポキシプロポキシ)−2−メチルベンゾエート}および2−メチル−1,4−フェニレン−ビス{4−(2,3−エポキシプロポキシ)ベンゾエート}の、40℃および65℃におけるメチルイソブチルケトンへの溶解度(ジエポキシ化合物(g)×100/[ジエポキシ化合物(g)+メチルイソブチルケトン(g)]、重量%)を求めた。結果を表1に示す。
 表1から、2−メチル−1,4−フェニレン−ビス{4−(2,3−エポキシプロポキシ)−2−メチルベンゾエート}の溶解度は、2−メチル−1,4−フェニレン−ビス{4−(2,3−エポキシプロポキシ)ベンゾエート}の溶解度よりも11倍以上大きいことがわかる。
Figure JPOXMLDOC01-appb-T000015
 本発明によれば、収率および純度よく、式(3)で示されるジエポキシ化合物を製造することができる。また、式(4)で示されるジエポキシ化合物は、メチルイソブチルケトンへの溶解性に優れる。

Claims (6)

  1.  アンモニウム塩、無機塩基およびアルコール化合物の存在下、式(1)
    Figure JPOXMLDOC01-appb-I000001
    (式中、Rは水素原子、炭素数1~3のアルキル基または炭素数1~3のアルコキシ基を表わし、Rは水素原子、炭素数1~3のアルキル基または炭素数1~3のアルコキシ基を表わし、Rは水素原子、炭素数1~3のアルキル基または炭素数1~3のアルコキシ基を表わし、Rは水素原子、炭素数1~3のアルキル基または炭素数1~3のアルコキシ基を表わし、Rは水素原子、メチル基または炭素数1~3のアルコキシ基を表わし、Rは水素原子、メチル基または炭素数1~3のアルコキシ基を表わし、Rは水素原子、メチル基または炭素数1~3のアルコキシ基を表わし、Rは水素原子、メチル基または炭素数1~3のアルコキシ基を表わす。)
    で示される化合物と式(2)
    Figure JPOXMLDOC01-appb-I000002
    (式中、Xはハロゲン原子を表わす。)
    で示される化合物とを反応させることを特徴とする式(3)
    Figure JPOXMLDOC01-appb-I000003
    (式中、R、R、R、R、R、R、RおよびRはそれぞれ前記と同一の意味を表わす。)
    で示されるジエポキシ化合物の製造方法。
  2.  アルコ−ル化合物が、2級アルコ−ルおよび3級アルコ−ルからなる群から選ばれる少なくとも1種である請求項1に記載の製造方法。
  3.  式(1)で示される化合物、式(2)で示される化合物、アンモニウム塩およびアルコ−ル化合物を混合することにより、反応を行い、得られた混合物と無機塩基とを混合することにより、さらに反応を実施する請求項1に記載の製造方法。
  4.  無機塩基が、水酸化ナトリウムまたは水酸化カリウムである請求項1に記載の製造方法。
  5.  アンモニウム塩が、4級アンモニウムハライドである請求項1に記載の製造方法。
  6.  式(4)
    Figure JPOXMLDOC01-appb-I000004
    (式中、R20は水素原子またはメチル基を表わし、R21は水素原子またはメチル基を表わし、R22は水素原子またはメチル基を表わし、R23は水素原子またはメチル基を表わし、R24は水素原子またはメチル基を表わし、R25は水素原子またはメチル基を表わし、R26は水素原子またはメチル基を表わし、R27は水素原子またはメチル基を表わす。ただし、ベンゼン環に結合するメチル基の数の合計は、2、3または4である。)
    で示されるジエポキシ化合物。
PCT/JP2010/054475 2009-03-17 2010-03-10 ジエポキシ化合物の製造方法 WO2010107038A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009063979 2009-03-17
JP2009-063979 2009-03-17

Publications (1)

Publication Number Publication Date
WO2010107038A1 true WO2010107038A1 (ja) 2010-09-23

Family

ID=42739698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/054475 WO2010107038A1 (ja) 2009-03-17 2010-03-10 ジエポキシ化合物の製造方法

Country Status (3)

Country Link
JP (1) JP2010241797A (ja)
TW (1) TW201100395A (ja)
WO (1) WO2010107038A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011034114A1 (ja) * 2009-09-17 2011-03-24 住友化学株式会社 ジエポキシ化合物、その製造方法および該ジエポキシ化合物を含む組成物
EP3239206B1 (en) 2014-12-26 2020-06-24 Hitachi Chemical Company, Ltd. Epoxy resin, epoxy resin composition, inorganic-filler-containing epoxy resin composition, resin sheet, cured product, and epoxy compound
US10941241B2 (en) 2016-02-25 2021-03-09 Showa Denko Materials Co., Ltd. Epoxy resin molding material, molded product, molded cured product, and method for producing molded cured product
US11319420B2 (en) 2017-03-24 2022-05-03 Toray Industries, Inc. Prepreg and carbon fiber reinforced composite material
EP3660081A4 (en) 2017-07-28 2021-04-21 Toray Industries, Inc. PREPREG AND CARBON FIBER REINFORCED COMPOSITE
KR20210005852A (ko) 2018-04-27 2021-01-15 도레이 카부시키가이샤 프리프레그 및 탄소섬유강화 복합재료

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5490400A (en) * 1977-12-20 1979-07-18 Shell Int Research Preparation of polyglycidyl ethers
JP2002037851A (ja) * 2000-07-28 2002-02-06 Sakamoto Yakuhin Kogyo Co Ltd 新規なエポキシ樹脂の製造法、およびその方法で製造されたエポキシ樹脂を含むエポキシ樹脂組成物
JP2002128771A (ja) * 2000-10-26 2002-05-09 Sakamoto Yakuhin Kogyo Co Ltd 新規なエポキシ化合物の製造法、およびその方法で製造されたエポキシ化合物を含むエポキシ樹脂組成物
JP2007269980A (ja) * 2006-03-31 2007-10-18 Dainippon Ink & Chem Inc 粉体塗料用エポキシ樹脂組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5490400A (en) * 1977-12-20 1979-07-18 Shell Int Research Preparation of polyglycidyl ethers
JP2002037851A (ja) * 2000-07-28 2002-02-06 Sakamoto Yakuhin Kogyo Co Ltd 新規なエポキシ樹脂の製造法、およびその方法で製造されたエポキシ樹脂を含むエポキシ樹脂組成物
JP2002128771A (ja) * 2000-10-26 2002-05-09 Sakamoto Yakuhin Kogyo Co Ltd 新規なエポキシ化合物の製造法、およびその方法で製造されたエポキシ化合物を含むエポキシ樹脂組成物
JP2007269980A (ja) * 2006-03-31 2007-10-18 Dainippon Ink & Chem Inc 粉体塗料用エポキシ樹脂組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MORMANN, W. ET AL., MACROMOL. CHEM. PHYS., vol. 199, 1998, pages 853 - 859 *

Also Published As

Publication number Publication date
JP2010241797A (ja) 2010-10-28
TW201100395A (en) 2011-01-01

Similar Documents

Publication Publication Date Title
WO2010107038A1 (ja) ジエポキシ化合物の製造方法
WO2011043204A1 (ja) ジエポキシ化合物の製造方法
JP5656952B2 (ja) ピペラジン誘導体蓚酸塩結晶
CS227007B2 (en) Method of preparing carbazol-4-yl oxypropanolamine derivatives
WO2007142236A1 (ja) 水酸基を有する3-エチルオキセタン化合物及びその製法
WO2011034114A1 (ja) ジエポキシ化合物、その製造方法および該ジエポキシ化合物を含む組成物
JP6222973B2 (ja) ジベンジルトリチオカーボネート誘導体
JP2008056615A (ja) ビニルエチニルアリールカルボン酸類、その製造方法及びそれを用いた熱架橋性化合物の製造方法
WO2020256045A1 (ja) ヘキサメチル置換/ジメチル置換4,4'-ビス(2-プロペン-1-イルオキシ)-1,1'-ビフェニルの結晶体
JP6826885B2 (ja) 新規なビス(ヒドロキシアルコキシフェニル)ジフェニルメタン類
CN112174819A (zh) 烯基芳基醚及其制备方法
AU2005275935A1 (en) Method for producing 2-(4-methyl-2-phenylpiperazine-1-yl)-3-cyanopiridine
WO1998012186A1 (fr) Procede de preparation d'ethers glycidyliques
JP4258658B2 (ja) アセチレン化合物の製造方法
JP6819961B2 (ja) 新規なジエポキシ化合物
TWI631104B (zh) 2-胺基菸鹼酸苄酯衍生物之製造方法
JP2008231223A (ja) 新規なオキセタン化ノボラック樹脂及びその製法
JP5411721B2 (ja) ジアリルイソシアヌレート化合物
JP2006028081A (ja) 芳香族ジアミン類の製造法
JPH08119939A (ja) 高純度エーテル型ビスマレイミドの製造方法
JP4154567B2 (ja) 4−ジフルオロメトキシ−3−ヒドロキシベンズアルデヒドの製造方法
JP2002338558A (ja) (4−アルキル−1−ピペラジニルメチル)安息香酸誘導体の製造方法
JP4067856B2 (ja) フタル酸誘導体およびその製造方法
CN117285521A (zh) 一种卢巴贝隆中间体2-((2-(噻吩-2-基)苯氧基)甲基)环氧乙烷的合成精制方法
CN1013443B (zh) 制备咪唑衍生物的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10753530

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10753530

Country of ref document: EP

Kind code of ref document: A1