WO2019208242A1 - プリプレグおよび炭素繊維強化複合材料 - Google Patents

プリプレグおよび炭素繊維強化複合材料 Download PDF

Info

Publication number
WO2019208242A1
WO2019208242A1 PCT/JP2019/015807 JP2019015807W WO2019208242A1 WO 2019208242 A1 WO2019208242 A1 WO 2019208242A1 JP 2019015807 W JP2019015807 W JP 2019015807W WO 2019208242 A1 WO2019208242 A1 WO 2019208242A1
Authority
WO
WIPO (PCT)
Prior art keywords
prepreg
carbon fiber
epoxy resin
group
resin composition
Prior art date
Application number
PCT/JP2019/015807
Other languages
English (en)
French (fr)
Inventor
篤希 杉本
厚仁 新井
古川 浩司
遼平 渡
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201980027718.0A priority Critical patent/CN112041380A/zh
Priority to EP19791841.0A priority patent/EP3763774A4/en
Priority to US17/047,789 priority patent/US20210115208A1/en
Priority to JP2019521837A priority patent/JP7264050B2/ja
Priority to KR1020207029040A priority patent/KR20210005852A/ko
Publication of WO2019208242A1 publication Critical patent/WO2019208242A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5033Amines aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/248Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using pre-treated fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • C08J2363/02Polyglycidyl ethers of bis-phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2481/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2481/04Polysulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2481/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2481/06Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/18Amines; Quaternary ammonium compounds with aromatically bound amino groups
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to a prepreg from which a carbon fiber reinforced composite material having excellent mode I interlayer toughness and mode II interlayer toughness can be obtained, and a carbon fiber reinforced composite material.
  • fiber-reinforced composite materials made of carbon fiber, glass fiber, and other reinforcing fibers and epoxy resins, phenol resins, and other thermosetting resins are lightweight, yet have mechanical properties such as strength and rigidity, heat resistance, and corrosion resistance. It has been applied to many fields such as aviation / space, automobiles, rail cars, ships, civil engineering and sports equipment. Especially in applications where high performance is required, fiber reinforced composite materials using continuous reinforcing fibers are used, carbon fibers with excellent specific strength and specific elastic modulus are used as reinforcing fibers, and thermosetting is used as a matrix resin. Of these, many epoxy resins are used that are particularly excellent in adhesion to carbon fibers.
  • the carbon fiber reinforced composite material is a heterogeneous material having carbon fibers and a matrix resin as essential constituent elements. Therefore, there is a large difference between the physical properties in the arrangement direction of the carbon fibers and the physical properties in other directions. For example, it is known that interlayer toughness, which indicates the difficulty of progress of carbon fiber interlayer fracture, does not lead to drastic improvement only by improving the strength of carbon fiber.
  • a carbon fiber reinforced composite material using a thermosetting resin as a matrix resin reflects the low toughness of the matrix resin, and has a property of being easily broken by stress from other than the arrangement direction of the carbon fibers.
  • the fiber direction strength should be secured and stress from other than the carbon fiber alignment direction, including interlaminar toughness, must be handled.
  • Various techniques have been proposed for the purpose of improving the physical properties of composite materials that can be manufactured.
  • the matrix resin In order to obtain a carbon fiber reinforced composite material having high mode I interlayer toughness, the matrix resin itself needs to have high toughness.
  • a method of blending a rubber component with the matrix resin see Patent Document 1
  • a method of blending a thermoplastic resin see Patent Document 2
  • a method of inserting a kind of adhesive layer or shock absorbing layer called an interleaf see Patent Document 3
  • a method of strengthening the interlayer with particles see Patent Document 4
  • the objective of this invention is providing the prepreg from which the carbon fiber reinforced composite material excellent in both mode I interlayer toughness and mode II interlayer toughness is obtained, and a carbon fiber reinforced composite material.
  • the prepreg of the present invention that solves the above problems is a prepreg that includes the following components [A] to [C] and satisfies the conditions [I] to [III].
  • Q 1 , Q 2 and Q 3 each include one type of structure selected from the group (I).
  • R 1 and R 2 each represent an alkylene group having 1 to 6 carbon atoms.
  • Z in group (I) is each independently an aliphatic hydrocarbon group having 1 to 8 carbon atoms, an aliphatic alkoxy group having 1 to 8 carbon atoms, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a cyano group, A nitro group or an acetyl group is shown.
  • n independently represents an integer of 0 to 4.
  • Y 1 , Y 2 and Y 3 in the general formula (1) and the group (I) are selected from a single bond or one from the group (II).
  • the carbon fiber reinforced composite material of the present invention is obtained by curing the prepreg.
  • the component [A] sizing agent-coated carbon fiber of the present invention has excellent handling properties due to the effect of the sizing agent, and the sizing agent present on the surface of the carbon fiber reacts with the matrix resin, so that the carbon fiber and the matrix resin are reacted.
  • a carbon fiber reinforced composite material having excellent interfacial adhesion can be obtained.
  • the component [A] of the present invention is a continuous fiber, and the term “continuous fiber” as used herein means that the average fiber length is 100 mm or more.
  • the adhesion amount of the sizing agent in the component [A] of the present invention is preferably 0.1 parts by mass or more, more preferably 0.1 to 3.0 parts with respect to 100 parts by mass of the sizing agent-coated carbon fibers. It is in the range of 0.2 part by weight, more preferably 0.2 part by weight.
  • the measuring method of the adhesion rate of the sizing agent is that 2 ⁇ 0.5 g of sizing coated carbon fiber is sampled and the amount of mass change before and after the heat treatment when heat treatment is performed at 450 ° C. for 15 minutes in a nitrogen atmosphere is heat treated. It is the mass% of the value divided by the previous mass.
  • the sizing agent adhesion rate remaining on the carbon fiber after washing after washing with a solution in which acetonitrile and chloroform are mixed at a volume ratio of 9: 1 is 0.08 relative to the sizing agent-coated carbon fiber. It is preferable that it is mass% or more. The range is more preferably 0.08 to 3.0% by mass, and still more preferably 0.14 to 0.30% by mass. When the adhesion rate of the sizing agent after washing is within such a range, the interfacial adhesion between the carbon fiber and the sizing agent becomes good, and high shear toughness can be expressed when a carbon fiber reinforced composite material is obtained.
  • the “sizing agent adhesion rate after cleaning” referred to here is measured and calculated as follows. After sizing agent-coated carbon fiber 2 ⁇ 0.5 g was immersed in 10 ml of a mixture of acetonitrile and chloroform at a volume ratio of 9 to 1, and after sizing agent was eluted from carbon fiber by performing ultrasonic cleaning for 20 minutes, After drying and washing, the mass of the carbon fiber is measured. Further, after the washing, the carbon fiber is heat-treated at 450 ° C. in a nitrogen atmosphere for 15 minutes. The mass% of the value obtained by dividing the mass change before and after the heat treatment by the mass of the sizing agent-coated carbon fiber before the heat treatment is defined as the sizing agent adhesion rate after washing.
  • the sizing agent preferably contains an epoxy compound.
  • the epoxy compound contained in the sizing agent include an aliphatic epoxy compound and an aromatic epoxy compound, and these may be used alone or in combination.
  • a carbon fiber coated with a sizing agent composed only of an aromatic epoxy compound has an advantage that the reactivity between the sizing agent and the matrix resin is low, and the physical property change is small when the prepreg is stored for a long period of time. There is also an advantage that a rigid interface layer can be formed.
  • a so-called interface layer in the vicinity of the carbon fiber may be affected by the carbon fiber or the sizing agent and have different characteristics from the matrix resin.
  • the epoxy compound contained in the sizing agent has one or more aromatic rings, a rigid interface layer is formed, the stress transmission ability between the carbon fiber and the matrix resin is improved, and the carbon fiber reinforced composite material is pulled at 0 °. Mechanical properties such as strength are improved. Further, the hydrophobicity is improved by the aromatic ring, so that the interaction with the carbon fiber is weaker than that of the aliphatic epoxy compound, and the aliphatic epoxy compound can be covered and exist in the outer layer of the sizing layer.
  • the epoxy compound has two or more aromatic rings because long-term stability due to the aromatic ring is improved. There is no particular upper limit on the number of aromatic rings that the epoxy compound has, but 10 is sufficient from the viewpoint of mechanical properties and suppression of reaction with the matrix resin.
  • the epoxy equivalent of the sizing agent applied to the carbon fiber is preferably 350 to 550 g / mol. It is preferable for it to be 550 g / mol or less because the adhesion between the carbon fiber coated with the sizing agent and the matrix resin is improved. Moreover, since it is 350 g / mol or more, when this sizing agent application
  • the epoxy equivalent of the carbon fiber coated with the sizing agent in the present invention means that the sizing agent-coated fiber is immersed in a solvent typified by N, N-dimethylformamide and is eluted from the fiber by ultrasonic cleaning. After that, the epoxy group can be opened with hydrochloric acid, and it can be determined by acid-base titration.
  • Epoxy equivalent is preferably 360 g / mol or more, and more preferably 380 g / mol or more. Moreover, 530 g / mol or less is preferable and 500 g / mol or less is more preferable.
  • the epoxy equivalent of the sizing agent applied to the carbon fiber can be controlled by the epoxy equivalent of the sizing agent used for application and the heat history in drying after application.
  • the fiber form and arrangement of the constituent element [A] of the present invention are not limited.
  • fiber structures such as long fibers aligned in one direction, a single tow, a woven fabric, a knit, and a braid are used.
  • It may be used in combination with two or more kinds of carbon fibers, or other reinforcing fibers such as glass fibers, aramid fibers, boron fibers, PBO fibers, high-strength polyethylene fibers, alumina fibers, and silicon carbide fibers.
  • carbon fibers include acrylic, pitch, and rayon carbon fibers, and acrylic carbon fibers having particularly high tensile strength are preferably used.
  • Such an acrylic carbon fiber can be produced, for example, through the following steps.
  • a spinning solution containing polyacrylonitrile obtained from a monomer containing acrylonitrile as a main component is spun by a wet spinning method, a dry wet spinning method, a dry spinning method, or a melt spinning method.
  • the spun coagulated yarn can be made into a precursor through a spinning process, and then carbon fiber can be obtained through processes such as flame resistance and carbonization.
  • twisted yarn As the form of carbon fiber, twisted yarn, untwisted yarn, untwisted yarn, etc. can be used. However, in the case of twisted yarn, the orientation of the filaments constituting the carbon fiber is not parallel, so the carbon fiber reinforced composite material obtained Therefore, an untwisted yarn or a non-twisted yarn having a good balance between formability and strength properties of the carbon fiber reinforced composite material is preferably used.
  • the component [A] of the present invention is usually preferably subjected to an oxidation treatment and an oxygen-containing functional group is introduced in order to improve adhesion with a sizing agent present on the surface.
  • an oxidation treatment method vapor phase oxidation, liquid phase oxidation, and liquid phase electrolytic oxidation are used. From the viewpoint of high productivity and uniform treatment, liquid phase electrolytic oxidation is preferably used.
  • examples of the electrolytic solution used in the liquid phase electrolytic oxidation include an acidic electrolytic solution and an alkaline electrolytic solution. From the viewpoint of adhesiveness, it is more preferable to apply a sizing agent after performing liquid phase electrolytic oxidation in an alkaline electrolyte.
  • Examples of the acidic electrolyte include inorganic acids such as sulfuric acid, nitric acid, hydrochloric acid, phosphoric acid, boric acid, and carbonic acid, organic acids such as acetic acid, butyric acid, oxalic acid, acrylic acid, and maleic acid, or ammonium sulfate and ammonium hydrogen sulfate. And the like. Of these, sulfuric acid and nitric acid exhibiting strong acidity are preferably used.
  • alkaline electrolyte examples include aqueous solutions of hydroxides such as sodium hydroxide, potassium hydroxide, magnesium hydroxide, calcium hydroxide and barium hydroxide, sodium carbonate, potassium carbonate, magnesium carbonate, calcium carbonate, Aqueous solutions of carbonates such as barium carbonate and ammonium carbonate, aqueous solutions of bicarbonates such as sodium bicarbonate, potassium bicarbonate, magnesium bicarbonate, calcium bicarbonate, barium bicarbonate and ammonium bicarbonate, ammonia, tetraalkylammonium hydroxide And an aqueous solution of hydrazine.
  • hydroxides such as sodium hydroxide, potassium hydroxide, magnesium hydroxide, calcium hydroxide and barium hydroxide
  • Aqueous solutions of carbonates such as barium carbonate and ammonium carbonate
  • bicarbonates such as sodium bicarbonate, potassium bicarbonate, magnesium bicarbonate, calcium bicarbonate, bar
  • an aqueous solution of ammonium carbonate and ammonium hydrogen carbonate or an aqueous solution of tetraalkylammonium hydroxide exhibiting strong alkalinity is preferably used.
  • the concentration of the electrolytic solution used in the present invention is preferably in the range of 0.01 to 5 mol / liter, more preferably in the range of 0.1 to 1 mol / liter.
  • concentration of the electrolytic solution is 0.01 mol / liter or more, the electrolytic treatment voltage is lowered, which is advantageous for the operating cost.
  • concentration of the electrolytic solution is 5 mol / liter or less, it is advantageous from the viewpoint of safety.
  • the temperature of the electrolytic solution used in the present invention is preferably in the range of 10 to 100 ° C., more preferably in the range of 10 to 40 ° C.
  • the temperature of the electrolytic solution is 10 ° C. or higher, the efficiency of the electrolytic treatment is improved, which is advantageous for the operating cost.
  • the temperature of the electrolytic solution is 100 ° C. or less, it is advantageous from the viewpoint of safety.
  • the amount of electricity in the liquid phase electrolytic oxidation is preferably optimized in accordance with the carbonization degree of the carbon fiber, and a larger amount of electricity is required when processing the carbon fiber having a high elastic modulus.
  • the current density in the liquid phase electrolytic oxidation is preferably in the range of 1.5 to 1000 amperes, more preferably 3 to 500 amperes / m 2 per 1 m 2 of the surface area of the carbon fiber in the electrolytic treatment liquid. Is within the range.
  • the current density is 1.5 amperes / m 2 or more, the efficiency of the electrolytic treatment is improved, which is advantageous for the operating cost.
  • the current density is 1000 amperes / m 2 or less, it is advantageous from the viewpoint of safety.
  • the total amount of electrolysis used in the electrolytic treatment is preferably 3 to 300 coulombs per gram of carbon fiber.
  • the total amount of electrolytic electricity is 3 coulombs / g or more, functional groups can be sufficiently imparted to the carbon fiber surface, and the interfacial adhesion between the matrix resin and the carbon fiber becomes excellent.
  • the total amount of electrolytic electricity is 300 coulombs / g or less, it is possible to suppress the expansion of defects on the surface of the carbon fiber single fiber and reduce the strength reduction of the carbon fiber.
  • the component [A] used in the present invention preferably has a tensile modulus in the range of 200 to 440 GPa.
  • the tensile elastic modulus of the carbon fiber is affected by the crystallinity of the graphite structure constituting the carbon fiber, and the elastic modulus increases as the crystallinity increases.
  • the carbon fiber reinforced composite material is preferable because all of rigidity and strength are balanced at a high level.
  • a more preferable elastic modulus is in the range of 230 to 400 GPa, and further preferably in the range of 260 to 370 GPa.
  • the tensile elastic modulus of the carbon fiber is a value measured according to JIS R7601 (2006).
  • Carbon fibers include “Torayca (registered trademark)” T800G-24K, “Torayca (registered trademark)” T300-3K, “Torayca (registered trademark)” T700G-12K, and “Torayca (registered trademark)” T1100G. -24K (manufactured by Toray Industries, Inc.).
  • the component [A] used in the present invention preferably has a single fiber fineness of 0.2 to 2.0 dtex, more preferably 0.4 to 1.8 dtex.
  • the single fiber fineness is 0.2 dtex or more, the carbon fiber is hardly damaged by the contact with the guide roller at the time of twisting, and the same damage can be suppressed in the impregnation treatment step of the epoxy resin composition.
  • the single fiber fineness is 2.0 dtex or less, the carbon fiber can be sufficiently impregnated with the epoxy resin composition, and deterioration of fatigue resistance can be prevented.
  • the number of filaments in one fiber bundle is preferably in the range of 2500 to 50000.
  • the number of filaments is 2500 or more, meandering of the fiber array hardly occurs, and strength reduction can be suppressed.
  • the epoxy resin composition can be easily impregnated at the time of prepreg production or molding.
  • the number of filaments is more preferably in the range of 2800 to 40000.
  • the component [A] of the present invention has a surface oxygen concentration (O / C) which is a ratio of the number of oxygen (O) and carbon (C) atoms on the fiber surface measured by X-ray photoelectron spectroscopy of 0. It is preferable that it is 10 or more. More preferably within the range of 0.10 to 0.50, still more preferably within the range of 0.14 to 0.30, and particularly preferably within the range of 0.14 to 0.20. It is.
  • the surface oxygen concentration (O / C) is 0.10 or more, the oxygen-containing functional group on the surface of the carbon fiber can be secured and strong adhesion with the matrix resin can be obtained. Further, it is preferable that the surface oxygen concentration (O / C) is 0.50 or less because a decrease in strength of the carbon fiber itself due to oxidation can be suppressed.
  • the surface oxygen concentration of the carbon fiber is determined by X-ray photoelectron spectroscopy according to the following procedure. First, carbon fibers from which dirt and the like adhering to the carbon fiber surface were removed with a solvent were cut into 20 mm, spread and arranged on a copper sample support base, and then AlK ⁇ 1,2 was used as an X-ray source. The inside of the chamber was kept at 1 ⁇ 10 ⁇ 8 Torr, and measurement was performed at a photoelectron escape angle of 90 °. As a correction value for the peak accompanying charging during measurement, the binding energy value of the C 1s main peak (peak top) is adjusted to 284.6 eV.
  • the C 1s peak area is obtained by drawing a straight base line in the range of 282 to 296 eV
  • the O 1s peak area is obtained by drawing a straight base line in the range of 528 to 540 eV.
  • the surface oxygen concentration (O / C) is represented by an atomic ratio calculated by dividing the ratio of the O 1s peak area by the sensitivity correction value unique to the apparatus.
  • ESCA-1600 manufactured by ULVAC-PHI Co., Ltd. is used as the X-ray photoelectron spectroscopy apparatus, the sensitivity correction value unique to the apparatus is 2.33.
  • the interfacial shear strength (IFSS) defined by the following method is preferably 25 MPa or more, more preferably 29 MPa or more, and further preferably 40 MPa or more.
  • the interfacial shear strength is high, the adhesion between the carbon fiber and the epoxy resin also tends to be high, and high mode I interlayer toughness and mode II interlayer toughness are exhibited.
  • the “interfacial shear strength” in the present invention is an interfacial shear strength between a single fiber of carbon fiber and a bisphenol A type epoxy resin, and is a value calculated by measurement as follows.
  • dumbbell mold is made of silicone rubber, and the shape of the casting part is 5 mm in central part, 25 mm in length, 10 mm in width at both ends, and 150 mm in total length.
  • the prepared resin is poured into the mold after vacuum drying, and the temperature is raised to 75 ° C. at a temperature rising rate of 1.5 ° C./min using an oven, and kept for 2 hours. The temperature is increased to 125 ° C./min and held for 2 hours, and then the temperature is decreased to 30 ° C. at a temperature decreasing rate of 2.5 ° C./min. Then, it demolds and a test piece is obtained. A tensile force was applied to the test piece obtained by the above procedure in the fiber axis direction (longitudinal direction) at a strain rate of 0.3% / second to cause a strain of 12%. The number of fiber breaks N (pieces) in the range is measured.
  • the strand tensile strength ⁇ and the diameter d of the carbon fiber single yarn are measured, and the value calculated from the following formula is defined as “interfacial shear strength” in the present invention.
  • Interfacial shear strength IFSS (MPa) ⁇ (MPa) ⁇ d ( ⁇ m) / (2 ⁇ lc) ( ⁇ m).
  • the carbon fiber reinforced composite material obtained by curing the prepreg of the present invention surprisingly exhibits excellent mode I interlayer toughness and mode II interlayer toughness because the cured product of the epoxy resin composition has a higher order structure. .
  • the higher order structure here means a state in which molecules are aligned after curing or semi-curing of the epoxy resin composition, for example, a state in which a crystal structure or a liquid crystal structure exists in the cured product. .
  • the presence or absence of a higher order structure in the cured product of the epoxy resin composition can also be confirmed by examining the presence or absence of optical anisotropy using a polarizing microscope as described above.
  • a polarizing microscope as described above.
  • the size of the structure having optical anisotropy is equal to or larger than the visible light wavelength order, an interference pattern is observed with a polarizing microscope in a crossed Nicol state.
  • the higher order structure is not formed or the size of the formed higher order structure is smaller than the visible light wavelength order, no interference pattern is observed because of no optical anisotropy.
  • interference patterns such as a Battney structure, a focal conic fan structure, and an oily streak structure are observed with a polarizing microscope.
  • the prepreg of the present invention does not form a smectic structure in the epoxy resin composition under the condition of isothermal holding at 100 ° C. for 30 minutes (Condition [II]).
  • a smectic structure is formed in the resin composition (condition [III]).
  • the prepreg of the present invention exhibits high mode I interlayer toughness and mode II interlayer toughness by forming a smectic structure in the epoxy resin composition at 180 ° C. for 2 hours.
  • a peak is generally observed in the region of diffraction angle 2 ⁇ ⁇ 10 ° in X-ray diffraction measurement. The presence or absence of a peak in this range can confirm the presence or absence of a smectic structure in the epoxy resin composition.
  • This peak corresponds to a mesogenic structure (biphenyl group, terphenyl group, terphenyl analog group, which exists in the component [B], the component [C], or both the components [B] and [C]. This results from a periodic structure (higher order structure) based on anthracene groups, groups in which these are connected by azomethine groups or ester groups, and the like.
  • a specific method for confirming that the prepreg of the present invention satisfies the conditions [II] and [III] will be described.
  • a measurement sample prepared by cutting one prepreg of the present invention into a length of 20 mm and a width of 10 mm is prepared.
  • a measurement sample is set in a temperature control device (FP82; manufactured by METTLER TOLEDO) attached to a wide-angle X-ray diffractometer (D8 DISCOVER; manufactured by BRUKER AXS), and two-dimensional wide-angle X-ray diffraction measurement is performed.
  • Condition [II] is that the temperature of the measurement sample is raised from 40 ° C. to 100 ° C.
  • the higher order structure of the epoxy resin composition may be oriented in any direction with respect to the carbon fiber of component [A], but has a periodic structure only in the direction perpendicular to the carbon fiber axis.
  • the peak derived from the epoxy resin composition may not be observed by X-ray diffraction due to the strong peak derived from the carbon fiber.
  • the presence or absence of a periodic structure can be confirmed by measuring by X-ray diffraction with the resin composition excluding the carbon fiber.
  • the use of synchrotron radiation is also effective.
  • the beam diameter By narrowing the beam diameter to about several ⁇ m, it becomes possible to measure only the cured product of the epoxy resin composition including the constituent elements [B] and [C], excluding the constituent element [A], thereby forming a higher order structure. It is possible to confirm the presence or absence of
  • the cured product of the epoxy resin composition preferably includes a resin region exhibiting molecular anisotropy.
  • the resin region having molecular anisotropy herein refers to an alignment domain in which molecules are unidirectionally arranged with a diameter of 1 ⁇ m or more.
  • an arbitrary orientation is set to 0 °, and the polarization orientation is changed at intervals of 30 ° from 0 ° to 150 °. This can be confirmed by measuring polarization Raman spectroscopy and observing whether there is a change in signal intensity with respect to the polarization direction.
  • no change in intensity is observed with respect to the polarization direction.
  • the molding temperature is too high, high heat resistance is required for the equipment and auxiliary materials to be used, and the production cost of the carbon fiber reinforced composite material becomes high. If the molding temperature is too low, the reaction of the constituent elements [B] and [C] takes a long time, which may increase the manufacturing cost.
  • the maximum temperature used for molding is preferably 100 to 220 ° C, more preferably 120 to 200 ° C.
  • the epoxy resin composition containing the constituent elements [B] and [C] in the prepreg of the present invention has a nematic-isotropic phase transition temperature in the range of 130 ° C. to 180 ° C. as the condition [I].
  • the thermal conductivity and resin toughness of the epoxy resin composition alone are improved as the proportion of the higher order structure in the cured product of the epoxy resin composition increases.
  • the composition is cured so as not to include a non-liquid crystal structure (isotropic structure) portion while maintaining the liquid crystal state in a temperature range that does not cause curing failure. Is effective.
  • Condition [I] is a condition for satisfying both. If the condition [I] is satisfied, the cured product exhibits high resin toughness, and the resin viscosity decreases along with the phase transition from the nematic phase to the isotropic phase, so that the wettability with the component [A] is good. Thus, it becomes possible to sufficiently react with the sizing agent present on the surface of the component [A].
  • the interfacial adhesion between the resin and the carbon fiber is improved.
  • the nematic-isotropic phase transition temperature is higher than 180 ° C.
  • the resin viscosity is not sufficiently lowered, and the sizing agent present on the surface of the component [A] does not sufficiently react with the resin.
  • Interfacial adhesion between component [A] and the epoxy resin composition is not sufficiently improved.
  • the mode II interlayer toughness is lower than that of the epoxy resin composition satisfying the condition [I].
  • the nematic-isotropic phase transition temperature is lower than 130 ° C.
  • the proportion of the higher order structure contained in the cured product of the epoxy resin composition containing the constituent elements [B] and [C] decreases, and the resin toughness
  • the mode I interlayer toughness and the mode II interlayer toughness are lower than when the condition [I] is satisfied.
  • the nematic-isotropic phase transition temperature can be determined by observing the epoxy resin composition containing the constituent elements [B] and [C] with a polarizing microscope in a crossed Nicol state in the temperature rising process.
  • the epoxy resin composition forms a nematic phase in a polarizing microscope observation in a crossed Nicol state, interference patterns such as a schlieren structure, a filamentous structure, a sandy structure, and a droplet structure are observed.
  • the nematic phase is not formed (in the case of isotropic phase)
  • light is not transmitted due to the optical isotropy of the resin, and the interference pattern is not observed.
  • isotropic the field of view is observed as a dark area.
  • the epoxy resin composition containing the constituent elements [B] and [C] of the present invention undergoes a phase transition from a nematic phase to an isotropic phase as the temperature rises. At this time, the phase transition from the nematic phase to the isotropic phase does not occur abruptly, and the nematic phase and the isotropic phase may coexist.
  • a specific method for determining the nematic-isotropic phase transition temperature will be described.
  • a polarization microscope observation image of the epoxy resin composition containing the constituent elements [B] and [C] at a magnification of 300 times is acquired from 40 ° C.
  • the temperature rising process at a rate of 2 ° C./min is acquired in 5 ° C.
  • the ratio of the area occupied by the isotropic phase (region where no interference pattern is observed) is 40% or more of the total area of the epoxy resin composition including the nematic phase and the isotropic phase.
  • the temperature is defined as the nematic-isotropic phase transition temperature in the condition [I] of the present invention.
  • an insoluble component is included in a region other than the nematic phase or the isotropic phase, for example, the constituent elements [B] and [C]
  • the insoluble component is not involved in the calculation of the area.
  • Each area can be calculated by binarizing the image.
  • Component [B] is an epoxy resin having a mesogen structure in the molecule because the cured product of the epoxy resin composition in the prepreg and carbon fiber reinforced composite material of the present invention has a higher order structure. Having a mesogenic structure (biphenyl group, terphenyl group, terphenyl analog group, anthracene group, a group in which these are connected by an azomethine group or an ester group, etc.), a higher-order structure derived from that structure (also called a periodic structure) Say) is formed.
  • the component [B] is an epoxy resin having a structure represented by the following general formula (1).
  • Q 1 , Q 2 , and Q 3 each include one type of structure selected from the group (I).
  • R 1 and R 2 each represent an alkylene group having 1 to 6 carbon atoms.
  • Z in the general formula (1) is each independently an aliphatic hydrocarbon group having 1 to 8 carbon atoms, an aliphatic alkoxy group having 1 to 8 carbon atoms, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or a cyano group.
  • n independently represents an integer of 0 to 4.
  • Y 1 , Y 2 and Y 3 in the general formula (1) and group (I) are selected from a single bond or group (II).
  • Z in group (I) is each independently an aliphatic hydrocarbon group having 1 to 4 carbon atoms, an aliphatic alkoxy group having 1 to 4 carbon atoms, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a cyano group, A nitro group or an acetyl group is preferable, a methyl group, an ethyl group, a methoxy group, an ethoxy group, or a chlorine atom is more preferable, and a methyl group or an ethyl group is still more preferable.
  • each n is independently preferably an integer of 0 to 2, and more preferably 0 or 1.
  • the softening point in the present invention means that when a sample cast on a ring is heated in a bath by the ring and ball method defined in JIS-K7234 (1986), the sphere set on the sample crosses the optical sensor. Indicates the temperature.
  • Q 1 , Q 2 , and Q 3 in the general formula (1) include a benzene ring because the structure of the component [B] becomes rigid, so that a higher-order structure is easily formed, which is advantageous for improving toughness.
  • Q 1 , Q 2 , and Q 3 in the general formula (1) contain alicyclic hydrocarbons, the softening point is lowered and the handling property is improved.
  • the epoxy resin of component [B] may be used individually by 1 type, and may use 2 or more types together.
  • the component [B] can be produced by a known method.
  • Japanese Patent No. 4619770, Japanese Patent Application Laid-Open No. 2005-206814, Japanese Patent Application Laid-Open No. 2010-241797, Japanese Patent Application Laid-Open No. 2011-98952, Japanese Patent Application Laid-Open No. 2011-74366, Journal of Polymer Science: Part A: Polymer Chemistry, Vol. 42,3631 (2004) etc. can be referred to.
  • component [B] examples include 1,4-bis ⁇ 4- (oxiranylmethoxy) phenyl ⁇ cyclohexane, 1- ⁇ 3-methyl-4- (oxiranylmethoxy) phenyl-4- ⁇ 4 -(Oxiranylmethoxy) phenyl ⁇ cyclohexane, 1,4-bis ⁇ 4- (oxiranylmethoxy) phenyl ⁇ -1-cyclohexene, 1- ⁇ 3-methyl-4- (oxiranylmethoxy) phenyl ⁇ - 4- ⁇ 4- (oxiranylmethoxy) phenyl ⁇ -1-cyclohexene, 1- ⁇ 2-methyl-4- (oxiranylmethoxy) phenyl ⁇ -4- ⁇ 4- (oxiranylmethoxy) phenyl ⁇ - 1-cyclohexene, 1- ⁇ 3-ethyl-4- (oxiranylmethoxy) phenyl ⁇ -4- - (
  • the component [B] may include a prepolymer obtained by polymerizing a part of an epoxy resin having a structure represented by the general formula (1) with a curing agent or the like.
  • Epoxy resins having a structure represented by the general formula (1) are generally easily crystallized, and many of them require a high temperature to impregnate carbon fibers.
  • Including a prepolymer obtained by polymerizing a part of the epoxy resin having a structure represented by the general formula (1) as the component [B] improves the handling properties because crystallization tends to be suppressed. This is a preferred embodiment.
  • an epoxy resin can be an anionic polymerization catalyst such as tertiary amines and imidazoles, or Lewis such as boron trifluoride-amine complex. Polymerization may be performed using a cationic polymerization catalyst such as an acid, or a prepolymerizing agent having a functional group capable of reacting with an epoxy may be used.
  • a method using a prepolymerizing agent is preferable because the molecular weight of the prepolymer to be produced is easily controlled. If the molecular weight of the prepolymer is too large, the crosslinking density of the resin in the carbon fiber reinforced composite material is lowered, which may impair heat resistance and mechanical properties.
  • the prepolymerizing agent for partially polymerizing the epoxy resin having the structure represented by the general formula (1) is not particularly limited as long as it is a compound having 2 to 4 active hydrogens capable of reacting with the epoxy resin.
  • active hydrogen refers to a highly reactive hydrogen atom bonded to nitrogen, oxygen, or sulfur in an organic compound.
  • the number of active hydrogen groups is 5 or more, it becomes difficult to control the reaction when prepolymerizing the epoxy resin, which may cause gelation.
  • a phenol compound having 2 to 3 active hydrogens is particularly suitable from the standpoint of gelation during the prepolymerization reaction and the storage stability of the prepolymer.
  • the phenolic compounds having 1 to 2 benzene rings have a rigid prepolymerized epoxy resin structure, which makes it easy to form a higher order structure and improve toughness.
  • the viscosity of the epoxy resin composition containing the prepolymer and the component [B] including the epoxy resin having the structure represented by the general formula (1) and the curing agent of the component [C] Can be kept low, and handling is improved, which is preferable.
  • phenol compound having 2 to 3 active hydrogens examples include catechol, resorcinol, hydroquinone, bisphenol A, bisphenol F, bisphenol G, bisphenol Z, tris (4-hydroxyphenyl) methane, and derivatives thereof.
  • derivatives examples include compounds in which a benzene ring is substituted with an alkyl group having 1 to 8 carbon atoms. These phenol compounds may be used alone or in combination of two or more.
  • the molecular weight of the prepolymer contained in the component [B] is not particularly limited. From the viewpoint of the fluidity of the epoxy resin composition, the number average molecular weight is preferably 15000 or less, preferably 10,000 or less, and more preferably 350-5000.
  • the number average molecular weight of the present invention indicates a converted molecular weight using standard polystyrene by GPC (gel permeation chromatography, also referred to as SEC: size exclusion chromatography).
  • the method for partially polymerizing the epoxy resin having the structure represented by the general formula (1) to prepolymerize is not particularly limited.
  • the epoxy resin and the prepolymerizing agent are added in a synthetic solvent. It can be dissolved and stirred while applying heat to synthesize.
  • a catalyst may be used as long as it does not gel during the prepolymerization reaction.
  • the component [B] has a high melting point, and in the absence of a solvent, a high temperature is required for the prepolymerization reaction. Therefore, a synthetic solvent was used from the viewpoint of safety.
  • a synthetic method is preferred.
  • component [B] contains a prepolymer
  • the crystallization tends to be suppressed, so that the handleability is improved.
  • the content of the prepolymer is too large, the components [B] and [C] are included. There is a possibility that the melt viscosity of the epoxy resin composition becomes too high and impregnation into the carbon fiber becomes difficult.
  • component [B] contains a prepolymer
  • the content thereof is based on a total of 100 parts by mass of the prepolymer contained in component [B] and the epoxy resin having the structure represented by formula (1).
  • the range is preferably 80 parts by mass or less, and more preferably in the range of 5 to 60 parts by mass.
  • the ratio of the prepolymer-derived peak area to the total epoxy resin-derived peak area is preferably It is 0.80 or less, and more preferably in the range of 0.05 to 0.60.
  • the prepreg of the present invention may contain an epoxy resin other than the constituent element [B], a thermosetting resin other than the epoxy resin, a copolymer of an epoxy resin and a thermosetting resin, and the like.
  • the thermosetting resin include unsaturated polyester resins, vinyl ester resins, epoxy resins, benzoxazine resins, phenol resins, urea resins, melamine resins, and polyimide resins. These resin compositions and compounds may be used alone or in combination as appropriate. It is assumed that blending at least an epoxy resin or a thermosetting resin that does not exhibit liquid crystallinity has both the fluidity of the resin and the heat resistance after curing.
  • an epoxy resin that is liquid at room temperature (25 ° C.) is preferably used.
  • liquid means that when a piece of metal having a specific gravity of 7 or more in the same temperature state as the thermosetting resin to be measured is placed on the thermosetting resin and immediately buried by gravity, the thermosetting The resin is defined as liquid.
  • the metal piece having a specific gravity of 7 or more include iron (steel), cast iron, and copper.
  • a glycidyl ether type epoxy resin having phenol as a precursor is preferably used as the bifunctional epoxy resin.
  • examples of such epoxy resins include bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, naphthalene type epoxy resins, biphenyl type epoxy resins, urethane-modified epoxy resins, hydantoin type and resorcinol type epoxy resins. It is done.
  • examples of the tri- or higher functional glycidylamine type epoxy resin include diaminodiphenylmethane type, diaminodiphenylsulfone type, aminophenol type, metaxylenediamine type, 1,3-bisamino. Examples include methylcyclohexane type and isocyanurate type epoxy resins. Among them, diaminodiphenylmethane type and aminophenol type epoxy resins are particularly preferably used because of a good balance of physical properties.
  • Examples of the tri- or higher functional glycidyl ether type epoxy resin include epoxy resins such as phenol novolak type, orthocresol novolak type, trishydroxyphenylmethane type, and tetraphenylolethane type.
  • the component [B] is included in the range of 80 to 99 parts by mass with respect to 100 parts by mass of the entire epoxy resin in the prepreg. It is preferable to contain 1 to 20 parts by mass of a liquid epoxy resin at 25 ° C. with respect to 100 parts by mass of the entire epoxy resin in the prepreg. Within this range, it is difficult to inhibit the formation of a smectic structure in the cured product of the epoxy resin composition, and in addition, the sizing present on the surface of the resin and the component [A] can be achieved by reducing the viscosity of the epoxy resin composition.
  • the carbon fiber reinforced composite material having improved adhesiveness and excellent adhesive strength can be obtained.
  • an epoxy resin having a structure represented by the following general formula (2) By having a biphenyl structure in the molecule, it is easy to be compatible with the component [B], and has characteristics that it is difficult to cause phase separation in the epoxy resin composition and in the cured product of the epoxy resin composition.
  • R 1 and R 2 each represent an alkylene group having 1 to 6 carbon atoms.
  • Each Z is independently an aliphatic hydrocarbon group having 1 to 8 carbon atoms, an aliphatic alkoxy group having 1 to 8 carbon atoms, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a cyano group, a nitro group, or an acetyl group.
  • Indicates. n independently represents an integer of 0 to 4.
  • the blending amount thereof is an epoxy resin, prepolymer, or other epoxy resin having a structure represented by the general formula (1).
  • the content is preferably 1 to 30 parts by mass, more preferably 1 to 20 parts by mass with respect to 100 parts by mass in total.
  • the curing agent of the component [C] of the present invention is an epoxy resin curing agent, which is a compound having an active group capable of reacting with an epoxy group.
  • the curing agent include dicyandiamide, aromatic polyamine, aminobenzoic acid esters, various acid anhydrides, phenol novolac resin, cresol novolac resin, polyphenol compound, imidazole derivative, aliphatic amine, tetramethylguanidine.
  • Thiourea addition amine carboxylic acid anhydride such as methylhexahydrophthalic anhydride, carboxylic acid amide, organic acid hydrazide, polymercaptan and Lewis acid complex such as boron trifluoride ethylamine complex.
  • the epoxy resin composition containing the component [B] and the component [C] has a nematic-isotropic phase transition temperature in the range of 130 to 180 ° C.
  • the curing agent for the component [C] of the present invention is the curing agent for the component [C] of the present invention. Therefore, it is preferable to select in consideration of the combination with the component [B]. For example, even when the component [B] alone has a nematic-isotropic phase transition temperature in the range of 130 to 180 ° C., if the reaction of the component [C] curing agent is too fast, the component [B ] And the component [C] do not necessarily have a nematic-isotropic phase transition temperature in the range of 130-180 ° C.
  • the curing reaction proceeds instantaneously to form an epoxy resin composition containing the constituent elements [B] and [C].
  • the nematic phase liquid crystal structure
  • the nematic-isotropic phase transition temperature of the epoxy resin composition may increase.
  • the resin viscosity does not sufficiently decrease, cannot sufficiently react with the sizing agent on the surface of the component [A], and the interfacial adhesion between the epoxy resin composition and the carbon fiber is not improved.
  • an aromatic polyamine as the component [C] because a cured epoxy resin having good heat resistance can be obtained.
  • the aromatic polyamine has a slow curing reaction among the curing agents of the epoxy resin, the time for forming the liquid crystal accompanying the above-described curing progress of the epoxy resin composition containing the constituent elements [B] and [C] is increased, It is preferable because it is easy to form a higher order structure.
  • various isomers of diaminodiphenylsulfone can obtain a cured epoxy resin having good heat resistance and, in addition, have a slower curing reaction than other aromatic polyamines.
  • the epoxy resin composition containing [C] are likely to form liquid crystals as the curing proceeds. Therefore, the proportion of the higher order structure in the cured resin after curing can be increased, which is particularly preferable.
  • the optimum value of the addition amount of the curing agent as the component [C] varies depending on the type of the epoxy resin and the curing agent.
  • an aromatic polyamine curing agent is preferably added so as to have a stoichiometric equivalent, but the ratio of the active hydrogen amount of the aromatic polyamine curing agent to the amount of epoxy groups of the epoxy resin is 0.7 to 1.
  • the ratio of the active hydrogen amount of the aromatic polyamine curing agent to the epoxy group amount of the epoxy resin is 1.0 to 1.6, in addition to improving the curing rate, a high elongation resin may be obtained. This is also a preferred embodiment. Therefore, the ratio of the amount of active hydrogen in the curing agent to the amount of epoxy groups in the epoxy resin is preferably in the range of 0.7 to 1.6.
  • aromatic polyamine curing agents include Seika Cure S (manufactured by Wakayama Seika Kogyo Co., Ltd.), 3,3′-DAS (manufactured by Mitsui Chemicals), “Lonzacure (registered trademark)” M-DEA (Lonza, Inc.), “Lonzacure (registered trademark)” M-DIPA (Lonza, Inc.), “Lonzacure (registered trademark)” M-MIPA (Lonza, Inc.), and the like.
  • Seika Cure S manufactured by Wakayama Seika Kogyo Co., Ltd.
  • 3,3′-DAS manufactured by Mitsui Chemicals
  • dicyandiamide examples include DICY-7 and DICY-15 (manufactured by Mitsubishi Chemical Corporation).
  • the dicyandiamide derivative is obtained by bonding various compounds to dicyandiamide, and includes a reaction product with an epoxy resin, a reaction product with a vinyl compound or an acrylic compound.
  • Each curing agent may be used in combination with a curing accelerator or other epoxy resin curing agent.
  • the curing accelerator to be combined include ureas, imidazoles, and Lewis acid catalysts.
  • urea compounds include N, N-dimethyl-N ′-(3,4-dichlorophenyl) urea, toluene bis (dimethylurea), 4,4′-methylenebis (phenyldimethylurea), and 3-phenyl-1 , 1-dimethylurea and the like can be used.
  • urea compounds examples include DCMU99 (manufactured by Hodogaya Chemical Co., Ltd.), “Omicure (registered trademark)” 24, 52, and 94 (manufactured by CVC Specialty Chemicals, Inc.).
  • Lewis acid catalysts include boron trifluoride / piperidine complex, boron trifluoride / monoethylamine complex, boron trifluoride / triethanolamine complex, boron trichloride / octylamine complex, etc. Is mentioned.
  • organic acid hydrazide compound examples include 3-hydroxy-2-naphthoic acid hydrazide, 2,6-naphthalenedicarbodihydrazide, salicylic acid hydrazide, terephthalic acid dihydrazide, isophthalic acid dihydrazide and the like from the viewpoint of curing acceleration and storage stability. be able to.
  • organic acid hydrazide compounds may be used by mixing and mixing two or more kinds as necessary.
  • organic acid hydrazide compounds examples include 2,6-naphthalenedicarbodihydrazide (manufactured by Nippon Finechem Co., Ltd.) and isophthalic acid dihydrazide (manufactured by Otsuka Chemical Co., Ltd.).
  • these epoxy resins and curing agents can be blended in the epoxy resin composition. This method may be effective for viscosity adjustment and storage stability improvement.
  • the minimum viscosity at 130 ° C. to 150 ° C. of the epoxy resin composition containing the components [B] and [C] is preferably in the range of 0.1 to 10.0 Pa ⁇ s, more preferably , Preferably in the range of 0.1 to 2.0 Pa ⁇ s.
  • a carbon fiber reinforced composite material that sufficiently reacts with the sizing agent applied to the surface of the component [A] and has excellent adhesion between the resin and the carbon fiber is obtained. It is done.
  • the prepreg of the present invention can be expected to significantly improve the mode I interlayer toughness and the mode II interlayer toughness only with the components [A] to [C], but further, the component [D] should be arranged at the position described later.
  • the mode II interlayer toughness is greatly improved.
  • the prepreg is impregnated with the epoxy resin composition containing the components [B], [C] and [D] in the component [A], and the component [D] is localized in the vicinity of one or both surfaces.
  • Has a structured structure. Localization in the vicinity of the surface here means that 90% or more of the constituent element [D] exists within a range of a depth of 20% of the prepreg thickness from the prepreg surface.
  • This presence rate can be evaluated by, for example, the following method. That is, the prepreg is sandwiched between two smooth polytetrafluoroethylene resin plates having a smooth surface, and the temperature is gradually increased to the curing temperature over 7 days to gel and cure to cure the plate-shaped prepreg. Make a thing. A micrograph of the cross section of the obtained cured product is taken. Using this cross-sectional photograph, when component [D] is present on both sides of the prepreg, 20% depth position when the prepreg thickness is 100% from the prepreg cured product surface on both sides of the prepreg cured product Draw a total of two lines parallel to the surface of the prepreg.
  • the total area of the component [D] existing between the surface of the prepreg and the above line and the total area of the component [D] existing over the thickness of the prepreg are respectively obtained, and the prepreg thickness 100 %,
  • the abundance of the component [D] existing in the range of 20% depth from both surfaces of the prepreg is calculated. Further, in the case of a prepreg in which the component [D] is present on one side, a line parallel to the prepreg surface is drawn at a depth position of 20% of the thickness from the surface of the prepreg cured product on one side of the prepreg cured product.
  • the total area of the component [D] existing between the surface of the prepreg and the above line and the total area of the component [D] existing over the thickness of the prepreg are respectively obtained, and the prepreg thickness is 100%.
  • the abundance ratio of the component [D] existing in the range of 20% depth from the surface of the prepreg is calculated.
  • the area of the component [D] is obtained by cutting out the component [D] portion from the cross-sectional photograph and converting from the area. It is also possible to measure using commonly used image processing software.
  • the carbon fiber reinforced composite material obtained by laminating and curing the prepreg is a cured product of the epoxy resin composition including the components [B] and [C] and the component [ A], and a cured product of the epoxy resin composition including the components [B] and [C] and an interlayer resin layer including the component [D], disposed between adjacent carbon fiber layers.
  • the carbon fiber reinforced composite material has at least two or more carbon fiber layers, and the carbon fiber layers and the interlayer resin layers are alternately arranged.
  • the uppermost surface and the lowermost surface may be a carbon fiber layer or a resin layer made of a cured product of the resin composition.
  • the interlayer resin layer means a region having an appropriate interlayer thickness uniformly between adjacent carbon fiber layers, and the component [A] is not included in this region.
  • uniformly having an appropriate interlayer resin layer thickness means that there is no region where the thickness is too thin or too thick, and in particular, the interlayer resin layer thickness is less than 1 ⁇ m, and the interlayer resin layer is not substantially secured. The ratio is 30% or less.
  • the component [D] contained in the carbon fiber reinforced composite material is localized in the interlayer resin layer in the carbon fiber reinforced composite material obtained by laminating and curing the prepreg. It has a structured configuration. Localization means that 90% or more of the component [D] 100% blended in the prepreg is present in the interlayer resin layer.
  • the localization of the component [D] can be confirmed by the following method. The carbon fiber reinforced composite material is cut from the direction perpendicular to the carbon fibers, and the cross section is polished, and then magnified 200 times or more with an optical microscope and photographed.
  • the carbon fiber volume content (showing the area content here for the cross section) is 50%, averaged over a length of 1000 ⁇ m drawn parallel to the fiber layer. This line is defined as the boundary between the fiber layer region and the interlayer resin layer region.
  • the component [D] in the fiber layer region on the photograph and the component [D] in the interlayer resin layer region are cut out by image processing to calculate each area. From the area ratio, the localization rate of the constituent element [D] contained in the carbon fiber reinforced composite material can be obtained.
  • the lower limit of the average thickness of the interlayer resin layer is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more.
  • the upper limit of the average thickness of the interlayer resin layer is preferably 100 ⁇ m or less, and more preferably 70 ⁇ m or less. If the thickness of the interlayer resin layer is too thin, the effect on improving the mode II interlayer toughness may be reduced. If it is too thick, the volume content of the carbon fiber is relatively lowered, and the mechanical properties are reduced. May decrease.
  • Such an interlayer resin layer thickness can be measured, for example, by the following procedure. The carbon fiber reinforced composite material is cut from the direction perpendicular to the carbon fibers, and the cross section is polished, and then magnified 200 times or more with an optical microscope and photographed.
  • the carbon fiber volume content (showing the area content here because of the cross section) is 50%.
  • the line drawn parallel to the fiber layer is the fiber layer region and the interlayer resin.
  • As the boundary of the layer region a boundary line averaged over a length of 1000 ⁇ m is drawn, and the distance therebetween is defined as the thickness of the interlayer resin layer.
  • Component [D] is a component necessary for forming an interlayer resin layer when a carbon fiber reinforced composite material is manufactured using components [A], [B], and [C]. As long as it plays a role as a spacer for forming the interlayer resin layer, the form and the kind of the substance such as an inorganic substance or an organic substance are not particularly limited.
  • the carbon fiber reinforced composite material of the present invention has a very high interlayer toughness.
  • the constituent element [D] is insoluble in the constituent element [B] because the interlayer resin layer can be stably formed even if various molding conditions and curing temperatures are used.
  • Insoluble in component [B] means that [D] does not substantially dissolve when the epoxy resin composition comprising component [B] in which component [D] is dispersed is heat-cured. For example, using an optical microscope or a transmission electron microscope, a clear interface between the epoxy resin composition and the corresponding component is not substantially reduced from the original size in the cured epoxy resin. Indicates that it can be observed.
  • the volume ratio of the constituent element [D] per layer of the interlayer resin layer is preferably 10 to 80% from the viewpoint of mechanical properties. 15 to 70% is more preferable, and 20 to 60% is still more preferable.
  • the volume ratio of the constituent element [D] occupying one interlayer resin layer is a value calculated by the following method. The carbon fiber reinforced composite material is cut from the direction perpendicular to the carbon fibers, and the cross section is polished, and then magnified 200 times or more with an optical microscope and photographed.
  • the layer [D] region and other regions (components [B] and [C], etc.) over the length of 200 ⁇ m in the in-plane direction of one interlayer resin layer randomly. And the area of the component [D] is cut out. From the area ratio in each region, the area ratio of the component [D] per one interlayer resin layer is calculated. The average value for the 20 operations is defined as the volume ratio of the constituent element [D] per one interlayer resin layer.
  • the form of the constituent element [D] can take various forms such as particles, nonwoven fabrics, short fibers, knitted fabrics, knits, films, and veils. From the viewpoint of providing stable adhesive strength and impact resistance when a carbon fiber reinforced composite material is obtained, it is particularly preferable that the shape is maintained with particles.
  • the shape of the particles may be a spherical shape as shown in JP-A-1-110537, or a non-spherical shape as shown in JP-A-1-110536.
  • the particles may be porous particles as disclosed in JP-A-5-115, but the spherical shape is excellent in viscoelasticity because it does not deteriorate the flow characteristics of the resin, and there is no origin of stress concentration, and high impact resistance.
  • the epoxy resin composition should contain 3 to 40% by mass of particles, preferably 4 to 30% by mass, and preferably 5 to 20% by mass. % Content is more preferable.
  • mass% refers to mass percentage.
  • the number average particle size of the particles is preferably in the range of 1 ⁇ m to 100 ⁇ m, more preferably in the range of 5 ⁇ m to 40 ⁇ m.
  • the number average particle size is in the range of 10 ⁇ m to 30 ⁇ m. If the number average particle size is too small, particles may enter between the fibers of the carbon fiber, which may reduce impact resistance and other mechanical properties. If the number average particle diameter is too large, the arrangement of the carbon fibers is disturbed due to the presence of the large diameter particles, and the thickness of the carbon fiber reinforced composite material obtained by laminating the prepreg is increased, so that the fibers May decrease volume fraction and reduce its mechanical properties.
  • the number average particle diameter is observed by enlarging the constituent element [D] 200 times or more with a laser microscope (ultra-deep color 3D shape measurement microscope VK-9510: manufactured by Keyence Corporation).
  • the average value is used after measuring the diameter of the circumscribed circle of the particles as the particle size.
  • the material may be inorganic particles or organic particles, for example, thermoplastic resin particles, thermosetting resin particles, thermosetting rubber particles, crosslinked particles, silica particles, carbon black particles, carbon nanotubes. Metal particles can be used.
  • thermoplastic resin particles are particularly preferable from the viewpoint of a high toughness material.
  • crosslinked polyethersulfone-polyetherethersulfone particles obtained by crosslinking the above-described resin are also effective.
  • two or more kinds of the above-described resin particles can be used in combination.
  • polyamide is preferably used because of its high elongation, toughness, and adhesiveness to the matrix resin.
  • the polyamide include a polyamide obtained by polycondensation of a lactam having three or more members, a polymerizable aminocarboxylic acid, a dibasic acid and a diamine or a salt thereof, or a mixture thereof.
  • Polyamides having a glass transition temperature in the range of 40 ° C to 300 ° C are preferred.
  • polyamides having a glass transition temperature in the range of 40 ° C. to 300 ° C. examples include polycapramide (nylon 6), polyhexamethylene terephthalamide (nylon 6T), polynonane terephthalamide (nylon 9T), polydodecamide (nylon 12), Polyhexamethylene adipamide (nylon 66), poly-m-xylene adipamide (nylon MXD), 3,3'-dimethyl-4,4'-diaminodicyclohexylmethane, isophthalic acid and 1,2-amizododecanoic acid Copolymer ("Grillamide (trade name)" TR55, manufactured by Mzavelke), 3,3'-dimethyl-4,4'-diaminodicyclohexylmethane and dodecadioic acid ("Grillamide (trade name)” TR90 , Manufactured by Mzavelke), 3,3′-dimethyl-4,4′-diam
  • Nonwoven fabric production methods can be broadly classified into two types, that is, direct spinning and post-fabrication, and can be obtained by these methods.
  • direct spinning fabrics there are a spunbond method, a melt blow method, a flash spinning method, and the like, and these are properly used according to the resin viscosity.
  • the epoxy resin composition needs to contain 3 to 40% by mass of nonwoven fabric, preferably 4 to 30% by mass, and preferably 5 to 20% by mass. More preferably, it is contained.
  • the material of the nonwoven fabric may be an organic material such as a thermoplastic resin fiber, or an inorganic material such as glass fiber, carbon fiber, or silicon carbide fiber. As in the case of the particles, a thermoplastic resin is preferable from the viewpoint of a high toughness material.
  • polyimide polyamide, polyamideimide, polyphthalamide, polyetherimide, polyetherketone, polyetheretherketone, polyetherketoneketone, polyaryletherketone, polyethersulfone, polyphenylenesulfide, liquid crystalline polymer, And derivatives thereof.
  • Two or more of the above-mentioned resins can be used in combination.
  • polyamide is preferably used because of its high elongation, toughness, and high adhesion to the matrix resin.
  • the polyamide include a polyamide obtained by polycondensation of a lactam having three or more members, a polymerizable aminocarboxylic acid, a dibasic acid and a diamine or a salt thereof, or a mixture thereof.
  • the short fiber here means a fiber having an average fiber length of 30 mm or less.
  • the specific fiber length of the short fibers is preferably in the range of 1 mm to 20 mm, and more preferably in the range of 2 mm to 15 mm. In the case of 1 mm or less, the fiber network structure is not sufficiently obtained, and the strength between the layers is lowered, so that a weak layer is formed, and the mechanical properties of the obtained carbon fiber reinforced composite material are lowered.
  • the average fiber length of short fibers is a value calculated from an average value obtained by randomly selecting 400 fibers and measuring the length with an optical microscope.
  • the diameter of the short fiber is preferably 40 ⁇ m or less, and more preferably 20 ⁇ m or less.
  • the epoxy resin composition needs to contain 3 to 40% by mass of short fiber, preferably 4 to 30% by mass. More preferably, it is contained in an amount of ⁇ 20 mass%.
  • the content of the component [D] is small, the interlayer resin layer is not sufficiently formed in the carbon fiber reinforced composite material obtained by laminating and curing the prepreg, and the effect for improving the mode II interlayer toughness cannot be obtained.
  • the content of the constituent element [D] is large, the interlayer resin layer becomes thick, and the content ratio of the carbon fiber is relatively lowered, so that the mechanical properties of the obtained carbon fiber reinforced composite material are lowered. .
  • a short fiber may be used as the method similar to particle
  • the short fiber material may be organic fiber or inorganic fiber.
  • organic fibers include so-called engineering plastics and super engineering plastics such as polyaramide, polyester, polyacetal, polycarbonate, polyphenylene oxide, polyphenylene sulfide, polyarylate, polybenzimidazole, polyimide, polyetherimide, polysulfone, polyamide, and polyamideimide.
  • Particularly preferred are those having a functional group capable of reacting with an epoxy resin such as an amino group, an amide group or a phenolic hydroxyl group in the molecular chain.
  • examples of the inorganic fiber include carbon fiber, glass fiber, and silicon carbide fiber.
  • carbon fiber sizing-treated fiber is preferably used.
  • a sizing agent comprising a component having at least one functional group selected from an epoxy group, a hydroxyl group, an acrylate group, a methacrylate group, an amide group, a carboxyl group, and a carboxylic acid anhydride is preferably used.
  • the component [D] as described above may be used alone or in combination.
  • the prepreg of the present invention can be produced in several ways.
  • an epoxy resin composition is formed from both sides or one side of a sheet-like carbon fiber using a film obtained by coating an epoxy resin composition containing the constituent elements [B] and [C] on a release paper or the like.
  • the primary prepreg is made to impregnate and component [D] is sprayed or stuck on both sides or one side.
  • component [D] is a sheet-like material that can be impregnated with a resin such as a porous film, a woven fabric, a mat, a nonwoven fabric, or a knitted fabric, it can be impregnated with an epoxy resin composition in advance. It is.
  • the second method uses an epoxy resin composition from both sides or one side of a sheet-like carbon fiber using a film obtained by coating an epoxy resin composition containing the constituent elements [B] and [C] on a release paper or the like.
  • a primary prepreg is made by impregnating with a component, and the component [D] is spread or pasted on the surface of another film coated with an epoxy resin composition containing the components [B] and [C] on a release paper or the like This is a method of adhering to the both sides or one side of the primary prepreg.
  • an epoxy resin composition is formed from both sides or one side of a sheet-like carbon fiber using a film obtained by coating an epoxy resin composition containing constituent elements [B] and [C] on a release paper or the like.
  • a primary prepreg was prepared by impregnating the film, and a film in which an epoxy resin composition kneaded with the constituent elements [B], [C], and [D] was coated on a release paper or the like was attached to both sides or one side of the primary prepreg. It is a method to do.
  • the fourth method is a method in which the epoxy resin composition containing the constituent elements [B] and [C] and [D] are simultaneously bonded to both or one side of the sheet-like carbon fiber, and the constituent element [D] is a sheet.
  • This method can be applied in the case of a shape (film, woven fabric, mat, knitted fabric, non-woven fabric, etc.) or a thread shape (long fiber, spun yarn, tape-shaped film).
  • a carbon fiber reinforced composite material obtained by laminating and curing a prepreg when [D] is arranged in a prescribed position in addition to the constituent elements [A] to [C] Since the interlayer resin layer is formed of a cured product of the epoxy resin composition containing the constituent elements [B] and [C], which has high resin toughness due to formation of a higher order structure (smectic structure) therein, a particularly remarkable mode II Interlayer toughness improvement effect is seen. At this time, if the cured product of the epoxy resin composition containing the constituent elements [B] and [C] forms a higher order structure (smectic structure), a remarkable effect can be expected.
  • the nematic-isotropic phase is more than the condition [I].
  • the lower limit temperature of the transition may be as low as about 20 ° C., specifically, the resin composition containing the constituent elements [B] and [C] by satisfying the condition [I ′] that the temperature is between 110 ° C. and 180 ° C.
  • a cured product of the product forms a higher order structure, and in addition to high mode I interlayer toughness, a significant improvement in mode II interlayer toughness can be expected.
  • thermoplastic resin may be dissolved in the epoxy resin composition containing the above-described constituent elements [B] and [C].
  • Use of the thermoplastic resin is preferred because it can control the tackiness of the resulting prepreg and the fluidity of the epoxy resin composition when molding the carbon fiber reinforced composite material.
  • Such thermoplastic resins are generally selected from the group consisting of a carbon-carbon bond, amide bond, imide bond, ester bond, ether bond, carbonate bond, urethane bond, thioether bond, sulfone bond and carbonyl bond in the main chain.
  • a thermoplastic resin having a selected bond is preferred.
  • the thermoplastic resin may have a partially crosslinked structure, and may be crystalline or amorphous.
  • the glass transition temperature (Tg) of the thermoplastic resin is at least 150 ° C. or higher, and preferably 170 ° C. or higher. If the glass transition temperature of the thermoplastic resin to be blended is less than 150 ° C., it may be easily deformed by heat when used as a molded body. Furthermore, as a terminal functional group of this thermoplastic resin, things, such as a hydroxyl group, a carboxyl group, a thiol group, and an acid anhydride, can react with a cationically polymerizable compound, and are used preferably.
  • polyethersulfone and polyetherethersulfone copolymer oligomers as described in JP-T-2004-506789, and “Ultem (registered trademark)” 1000, which is a commercially available product of polyetherimide, “Ultem (Registered trademark) ”1010,“ Ultem (registered trademark) ”1040 (above, manufactured by Solvay Advanced Polymers Co., Ltd.), etc.
  • An oligomer is a relatively molecular weight in which a finite number of monomers of about 10 to 100 are bonded. Refers to a low polymer.
  • an elastomer may be further blended with the epoxy resin composition containing the constituent elements [B] and [C].
  • Such an elastomer is blended for the purpose of forming a fine elastomer phase in the epoxy matrix phase after curing.
  • the plane strain that occurs when stress is applied to the cured epoxy resin can be eliminated by fracture voiding (cavitation) of the elastomer phase, which induces plastic deformation of the epoxy matrix phase, resulting in large energy absorption.
  • Elastomer is a polymer material having a domain having a glass transition temperature lower than 20 ° C.
  • examples thereof include a block copolymer.
  • the elastomer is preferably selected from a block copolymer containing a block having a glass transition temperature of 20 ° C. or less and rubber particles. This makes it possible to introduce a fine elastomer phase while minimizing the compatibility of the elastomer with the epoxy resin, greatly reducing interlaminar toughness as a carbon fiber reinforced composite material while suppressing a decrease in heat resistance and elastic modulus. Can be made.
  • cross-linked rubber particles and core-shell rubber particles obtained by graft polymerization of a different polymer on the surface of the cross-linked rubber particles are preferably used from the viewpoint of handling properties.
  • the primary particle diameter of such rubber particles is preferably in the range of 50 to 300 nm, particularly preferably in the range of 80 to 200 nm.
  • Such rubber particles preferably have good affinity with the epoxy resin used and do not cause secondary aggregation during resin preparation or molding and curing.
  • crosslinked rubber particles include FX501P (manufactured by Nippon Synthetic Rubber Industry Co., Ltd.) consisting of a crosslinked product of carboxyl-modified butadiene-acrylonitrile copolymer, and CX-MN series (Nippon Shokubai Co., Ltd.) consisting of fine acrylic rubber particles.
  • YR-500 series manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., etc. can be used.
  • core-shell rubber particles include, for example, “Paraloid (registered trademark)” EXL-2655 (manufactured by Kureha Co., Ltd.) consisting of a butadiene / alkyl methacrylate / styrene copolymer, an acrylic ester / methacrylic ester copolymer "STAPHYLOID (registered trademark)” AC-3355 composed of coalescence, TR-2122 (manufactured by Takeda Pharmaceutical Co., Ltd.), “PARALOID (registered trademark)” EXL-2611 composed of butyl acrylate / methyl methacrylate copolymer EXL-3387 (manufactured by Rohm & Haas), “Kane Ace (registered trademark)” MX series (manufactured by Kaneka Corporation), and the like can be used.
  • Paraloid (registered trademark)” EXL-2655 manufactured by Kureha Co., Ltd.
  • the carbon fiber mass fraction of the prepreg of the present invention is preferably 40 to 90% by mass, more preferably 50 to 80% by mass. If the carbon fiber mass fraction is too low, the mass of the resulting carbon fiber reinforced composite material becomes excessive, and the advantages of the carbon fiber reinforced composite material having excellent specific strength and specific elastic modulus may be impaired. If the fraction is too high, poor impregnation of the epoxy resin composition occurs, and the resulting carbon fiber reinforced composite material tends to have many voids, and its mechanical properties may be greatly deteriorated.
  • the prepreg of the present invention comprises a wet method in which an epoxy resin composition comprising the constituent elements [B] and [C] is dissolved in a solvent such as methyl ethyl ketone and methanol to lower the viscosity and impregnate the carbon fiber, and an epoxy resin composition
  • the product can be suitably manufactured by a hot melt method or the like in which a product is reduced in viscosity by heating and impregnated into carbon fiber.
  • the wet method is a method for obtaining a prepreg by immersing carbon fiber in a solution of an epoxy resin composition, then pulling it up and evaporating the solvent using an oven or the like.
  • a carbon fiber is directly impregnated with an epoxy resin composition whose viscosity has been reduced by heating, or a resin film in which an epoxy resin composition is coated on release paper or the like is prepared.
  • This is a method of obtaining a prepreg by transferring and impregnating an epoxy resin composition by overlapping the resin film from both sides or one side of the film and applying heat and pressure.
  • This hot melt method is a preferred embodiment because substantially no solvent remains in the prepreg.
  • the viscosity of the epoxy resin composition is preferably 0.01 to 30 Pa ⁇ s as the minimum viscosity measured by the method described later.
  • the minimum viscosity of the epoxy resin composition is an angular frequency while using a dynamic viscoelasticity measuring apparatus (ARES, manufactured by TA Instruments) using a parallel plate and increasing the temperature at a rate of 2 ° C./min. 3. The lowest value in the temperature range of 40 to 180 ° C. for the complex viscosity ⁇ * measured under the conditions of 3.14 rad / s and a plate interval of 1 mm.
  • the prepreg preferably has a carbon fiber amount per unit area of 50 to 1000 g / m 2 .
  • the amount of carbon fiber is less than 50 g / m 2, it is necessary to increase the number of laminated layers in order to obtain a predetermined thickness when forming the carbon fiber reinforced composite material, and the work may be complicated.
  • the carbon fiber amount exceeds 1000 g / m 2 , the prepreg drapability tends to deteriorate.
  • the carbon fiber reinforced composite material of the present invention can be manufactured by taking, as an example, a method in which the above-described prepreg of the present invention is laminated in a predetermined form, and pressed and heated.
  • a method for applying heat and pressure a press molding method, an autoclave molding method, a bagging molding method, a wrapping tape method, an internal pressure molding method, and the like are used.
  • a wrapping tape method and an internal pressure molding method are preferably used for molding sports equipment.
  • the wrapping tape method is a method of winding a prepreg on a mandrel or other core metal to form a tubular body made of a carbon fiber reinforced composite material, and is a suitable method for producing a rod-shaped body such as a golf shaft or fishing rod. is there. More specifically, the prepreg was wound around a mandrel, and a wrapping tape made of a thermoplastic resin film was wound outside the prepreg for fixing and applying pressure, and the epoxy resin composition was heated and cured in an oven. Thereafter, the core bar is removed to obtain a tubular body.
  • the internal pressure molding method is to set a preform in which a prepreg is wound on an internal pressure applying body such as a tube made of a thermoplastic resin in a mold, and then apply a pressure by introducing a high-pressure gas into the internal pressure applying body. At the same time, the mold is heated to form a tubular body.
  • This internal pressure molding method is particularly preferably used when molding a complicated shape such as a golf shaft, a bat, and a racket such as tennis or badminton.
  • the viscosity at 30 ° C. of the epoxy resin composition is preferably 1.0 ⁇ 10 5 Pa ⁇ s or more from the viewpoint of prepreg handling. If the viscosity at 30 ° C. is too low, a resin film required for producing a prepreg cannot be produced. On the other hand, if the viscosity at 30 ° C.
  • the epoxy resin composition has a minimum viscosity of 110 ° C. or more, preferably 0.1 to 15 Pa ⁇ s, 3 to 10 Pa ⁇ s is more preferable.
  • the minimum viscosity is too low, the flow of the epoxy resin becomes too large, and the resin flows out of the prepreg when the prepreg is cured.
  • the target resin ratio cannot be achieved in the obtained carbon fiber reinforced composite material.
  • the minimum viscosity is too high, it will not be possible to ensure a resin viscosity that will allow water vapor released from the matrix resin and air trapped during lamination to be removed outside the molded panel during curing, and The impregnation of the epoxy resin composition into the unimpregnated fiber part during molding is not sufficient, and the unimpregnated fiber part becomes voids, and many voids are formed in the resulting carbon fiber reinforced composite material.
  • the softening point of the epoxy resin composition is preferably below the curing temperature, more preferably 90 ° C. or less. desirable.
  • the epoxy resin composition can be prevented from sinking into the fiber-impregnated part during storage at room temperature, and the continuity of the unimpregnated part for removing volatiles during molding is ensured. As a result, voids in the carbon fiber reinforced composite material are hardly formed. In addition, since the continuity of the unimpregnated portion is maintained, the carbon fiber is less restrained and the drape property is easily secured.
  • the softening point is defined as the temperature at the intersection where two linear portions are extended with respect to the complex viscosity change curve obtained from the viscosity measurement of the epoxy resin composition.
  • the first straight line is drawn by extending the straight line portion before the complex viscosity first drops sharply to the high temperature side.
  • the intermediate straight line after the complex viscosity first suddenly decreases is extended to the low temperature side, and a second straight line is drawn.
  • a vertical line at the intersection of both lines is drawn on the temperature axis of the abscissa, and the temperature is obtained as a softening point.
  • the softening point of the epoxy resin composition containing the constituent elements [B] and [C] is preferably derived from liquid crystal transition.
  • the prepreg may not follow the curved shape of the mold when the prepreg is rigid.
  • the softening point of the epoxy resin composition is derived from the glass transition point, the glass prepreg is rigid and inferior in drapability.
  • the softening point of the epoxy resin composition is derived from the transition point of the liquid crystal, the epoxy resin composition in the liquid crystal state in the prepreg has excellent followability with respect to deformation that conforms to the curved surface shape. Excellent draping properties for prepregs.
  • the prepreg used in the deautoclave method is preferably in a form in which only one surface of a sheet-like carbon fiber is coated with an epoxy resin composition that is a matrix resin.
  • One surface contains a carbon fiber that is not impregnated with a matrix resin to serve as a degassing path.
  • the prepreg used in the deautoclave method is preferably in a form in which an epoxy resin composition is impregnated in a part of carbon fiber.
  • the degree of impregnation of the epoxy resin composition into the carbon fiber in the prepreg is preferably 1 to 15%, more preferably 3 to 15%, more preferably 5 to 12%. % Is more preferable.
  • the WPU of the present invention is the water absorption rate of the prepreg calculated by the water absorption test, and the degree of impregnation of the carbon fiber of the component [A] with the epoxy resin composition containing the components [B] and [C]. It is an index to represent.
  • the fiber unimpregnated part for removing the water vapor released from the matrix resin and the air trapped during the lamination to the outside of the molded panel during curing functions as a flow path, and voids are generated. It becomes easy to suppress.
  • WPU is 15% or less, when the prepreg is laminated, cracking in the out-of-plane direction of the prepreg is suppressed, and handling of the prepreg becomes easy.
  • the measurement of the water absorption WPU of the prepreg is performed as follows. First, a 100 mm ⁇ 100 mm prepreg in which carbon fibers are arranged in one direction is prepared, and the mass is measured. The mass at that time is defined as W1.
  • the prepared prepreg is gripped with a thin aluminum plate so that the prepreg protrudes 5 mm from both sides. At this time, the protruding prepreg has a fiber direction of 5 mm and a surface orthogonal to the fiber of 100 mm. Hold the aluminum plate with a clamp. The 5 mm protrusion is immersed in water at a temperature of 23 ° C. for 5 minutes.
  • the carbon fiber reinforced composite material of the present invention can also be produced by a method not using a prepreg, using the above-described epoxy resin composition.
  • a method for example, a method in which an epoxy resin composition containing the constituent elements [B] and [C] is directly impregnated into the carbon fibers of the constituent element [A] and then heat-cured, that is, hand lay-up.
  • Method, filament winding method, pultrusion method, resin film infusion method, resin injection molding method and resin in which an epoxy resin composition is impregnated and cured on a continuous carbon fiber substrate previously shaped into a member shape -Transfer molding (RTM) method or the like is used.
  • the epoxy resin composition according to the present invention includes VARTM (Vaccum-assisted Resin Transfer Molding) and VIMP (Variable Infusion Molding Process) listed in the review on RTM method (SAMPE Journal, Vol. 34, No. 6, pp7-19). ), TERTM (Thermal Expansion RTM), RARTM (Rubber-Assisted RTM), RIRM (Resin Injection Recycling Molding), CRTM (Continuousous RTM), CIRTMRimR (Co-InjectionRim) id Infusion), suitably used in molding method such as SCRIMP (Seeman's Composite Resin Infusion Molding Process).
  • VARTM Volcum-assisted Resin Transfer Molding
  • VIMP Very Infusion Molding Process
  • the unit “part” of the composition ratio means part by mass unless otherwise specified.
  • Various characteristics (physical properties) were measured in an environment of a temperature of 23 ° C. and a relative humidity of 50% unless otherwise specified.
  • the carbon fiber subjected to the electrolytic surface treatment was subsequently washed with water and dried in heated air at a temperature of 150 ° C. to obtain a carbon fiber as a raw material.
  • the surface oxygen concentration O / C was 0.16.
  • a water dispersion emulsion consisting of “jER (registered trademark)” 152 (manufactured by Mitsubishi Chemical Corporation), polyglycerin polyglycidyl ether, and emulsifier was prepared to prepare a sizing agent. After this sizing agent was applied to the carbon fiber surface-treated by the dipping method, a drying treatment was performed to obtain a sizing agent-coated carbon fiber bundle.
  • the adhesion amount of the sizing agent was adjusted to 0.6% by mass with respect to the sizing agent-coated carbon fiber.
  • the sizing agent adhesion amount after washing was 0.16% by mass, which was a preferable adhesion amount.
  • the interfacial shear strength measured by the method described in (11) described later was 44 MPa.
  • Carbon fiber 2 Acrylonitrile copolymer is dried and wet-spun, fired, and carbon fiber having a total filament number of 12,000, a total fineness of 1,000 tex, a specific gravity of 1.8, a strand tensile strength of 4.9 GPa and a strand tensile modulus of 230 GPa. Obtained.
  • the carbon fiber was subjected to electrolytic surface treatment with an aqueous solution of ammonium hydrogen carbonate having a concentration of 0.1 mol / l as an electrolytic solution at an electric quantity of 80 coulomb per gram of carbon fiber.
  • the carbon fiber subjected to the electrolytic surface treatment was subsequently washed with water and dried in heated air at a temperature of 150 ° C.
  • the surface oxygen concentration O / C was 0.15.
  • a sizing agent-coated carbon fiber bundle was obtained in the same manner as in the carbon fiber 1.
  • the adhesion amount of the sizing agent was adjusted to 0.6% by mass with respect to the sizing agent-coated carbon fiber.
  • the adhesion amount of the sizing agent after washing was 0.17% by mass, which was a preferable adhesion amount.
  • the interface adhesive strength was 43 MPa.
  • Carbon fiber 3 Acrylonitrile copolymer is dry-wet-spun, fired, and carbon fiber having a total filament number of 24,000, a total fineness of 1,000 tex, a specific gravity of 1.8, a strand tensile strength of 5.9 GPa, and a strand tensile elastic modulus of 294 GPa. Obtained. Subsequently, the carbon fiber was subjected to an electrolytic surface treatment using an aqueous solution of ammonium hydrogen carbonate having a concentration of 0.1 mol / l as an electrolytic solution at an electric charge of 120 coulomb per 1 g of the carbon fiber.
  • the carbon fiber subjected to the electrolytic surface treatment was subsequently washed with water and dried in heated air at a temperature of 150 ° C. to obtain a carbon fiber as a raw material.
  • the surface oxygen concentration O / C was 0.20.
  • a sizing agent-coated carbon fiber bundle was obtained in the same manner as in the carbon fiber 1.
  • the adhesion amount of the sizing agent was adjusted to 0.6% by mass with respect to the sizing agent-coated carbon fiber.
  • the adhesion amount of the sizing agent after washing was 0.19% by mass, which was a preferable adhesion amount.
  • the interface adhesive strength was 45 MPa.
  • Carbon fiber 4 A sizing agent-coated carbon fiber bundle was obtained in the same manner as the carbon fiber 3 except that the amount of electricity was subjected to electrolytic surface treatment at 80 coulomb per 1 g of carbon fiber.
  • the surface oxygen concentration O / C was 0.15.
  • the adhesion amount of the sizing agent was adjusted to 0.6% by mass with respect to the sizing agent-coated carbon fiber.
  • the adhesion amount of the sizing agent after washing was 0.16% by mass, which was a preferable adhesion amount.
  • the interface adhesive strength was 43 MPa.
  • Carbon fiber 5 A sizing agent-coated carbon fiber bundle was obtained in the same manner as the carbon fiber 3 except that the amount of electricity was subjected to electrolytic surface treatment at 40 coulomb per 1 g of carbon fiber.
  • the surface oxygen concentration O / C was 0.13.
  • the adhesion amount of the sizing agent was adjusted to 0.6% by mass with respect to the sizing agent-coated carbon fiber.
  • the adhesion amount of the sizing agent after washing was 0.12% by mass, which was a preferable adhesion amount.
  • the interface adhesive strength was 29 MPa.
  • Carbon fiber 6 In the same manner as the carbon fiber 3, a raw material carbon fiber subjected to electrolytic surface treatment was obtained. Using this carbon fiber, a sizing agent-coated carbon fiber bundle having a sizing agent adhesion amount of 0.2 mass% with respect to the sizing agent-coated carbon fiber was obtained in the same manner as the carbon fiber 1. The adhesion amount of the sizing agent after washing was 0.08%, which was a preferable adhesion amount. The interface adhesive strength was 25 MPa.
  • Carbon fiber other than constituent element [A] Carbon fiber 7 Acrylonitrile copolymer is dry-wet-spun, fired, and carbon fiber having a total filament number of 24,000, a total fineness of 1,000 tex, a specific gravity of 1.8, a strand tensile strength of 5.9 GPa, and a strand tensile elastic modulus of 294 GPa. Obtained. The surface oxygen concentration O / C was 0.15. This carbon fiber was used without applying a sizing agent. The amount of sizing agent adhered after washing was 0% by mass. The interfacial adhesive strength was 22 MPa.
  • Epoxy resin 1 Compound name: 2-methyl-1,4-phenylene-bis ⁇ 4- (2,3-epoxypropoxy) benzoate ⁇ , see JP 2010-241797, epoxy equivalent: 245 g / eq) heated to 200 ° C. Then, resorcinol (hydroxyl equivalent: 55 g / eq) as a prepolymerizing agent was added thereto so that the number of epoxy equivalents: the number of hydroxyl equivalents was 100: 25, and heated at 200 ° C. for 3 hours in a nitrogen atmosphere. Resin 1 was obtained.
  • the content of the prepolymer is 53 parts by mass with respect to 100 parts by mass in total of 2-methyl-1,4-phenylene-bis ⁇ 4- (2,3-epoxypropoxy) benzoate and the prepolymer, and JIS K7236
  • the epoxy equivalent was measured in accordance with the above and found to be 353 g / eq.
  • Epoxy resin 2 Compound name: 4- ⁇ 4- (2,3-epoxypropoxy) phenyl ⁇ cyclohexyl 4- (2,3-epoxypropoxy) benzoate, see Japanese Patent No. 5471975, epoxy equivalent: 213 g / eq) heated to 200 ° C. Melting and adding resorcinol (hydroxyl equivalent: 55 g / eq) as a prepolymerizing agent to the epoxy equivalent number: hydroxyl equivalent number of 100: 25 and heating at 200 ° C. for 3 hours in a nitrogen atmosphere. Epoxy resin 2 was obtained.
  • the prepolymer content was 53 parts by mass with respect to a total of 100 parts by mass of 4- ⁇ 4- (2,3-epoxypropoxy) phenyl ⁇ cyclohexyl 4- (2,3-epoxypropoxy) benzoate and the prepolymer.
  • the epoxy equivalent measured according to JIS K7236 was 320 g / eq.
  • Epoxy resin 3 Compound name: 4- ⁇ 4- (2,3-epoxypropoxy) phenyl ⁇ cyclohexyl 4- (2,3-epoxypropoxy) benzoate, see Japanese Patent No. 5471975, epoxy equivalent: 213 g / eq) heated to 200 ° C. Melt and add bisphenol F (hydroxyl equivalent: 100 g / eq) as a prepolymerizing agent to the epoxy equivalent number: hydroxyl equivalent number of 100: 15, and heat at 200 ° C. for 3 hours in a nitrogen atmosphere. Thus, an epoxy resin 3 was obtained.
  • the prepolymer content was 38 parts by mass with respect to a total of 100 parts by mass of 4- ⁇ 4- (2,3-epoxypropoxy) phenyl ⁇ cyclohexyl 4- (2,3-epoxypropoxy) benzoate and the prepolymer.
  • the epoxy equivalent measured according to JIS K7236 was 309 g / eq.
  • Epoxy resin other than constituent element [B] Epoxy resin in liquid form at 25 ° C.
  • “Araldite (registered trademark)” MY0610 triglycidyl-m-aminophenol, manufactured by Huntsman Japan KK)
  • JER (registered trademark)” 604 tetraglycidyldiaminodiphenylmethane, manufactured by Mitsubishi Chemical Corporation
  • "Epiclon (registered trademark)” 830 bisphenol A type epoxy resin, manufactured by Mitsubishi Chemical Corporation
  • JER (registered trademark)” 828 bisphenol A type epoxy resin, manufactured by Mitsubishi Chemical Corporation.
  • Epoxy resin of general formula (2) “jER (registered trademark)” YX4000 (biphenyl type epoxy resin, manufactured by Mitsubishi Chemical Corporation)
  • the obtained uniform solution was sprayed in the form of a mist toward the liquid surface of 3000 parts of n-hexane being stirred using a spray gun for coating to precipitate a solute.
  • the precipitated solid was separated by filtration and washed well with n-hexane, followed by vacuum drying at a temperature of 100 ° C. for 24 hours to obtain particles A made of epoxy-modified nylon having a spherical semi-IPN structure.
  • Particle B “Or gazeole (registered trademark)” 1002D (manufactured by Arkema Co., Ltd.)
  • Particle C “ULTEM (registered trademark)” 1000F3SP-1000 (manufactured by SABIC Japan LLC).
  • the fiber was repaired by drawing and spreading using an aspirator with an impact plate provided at the tip of the wire mesh and air compression.
  • the fiber sheet repaired on the wire mesh was thermally bonded using a heating press to obtain the following two types of “Grillamide (registered trademark)” TR55 nonwoven fabrics 1 and 2 having different basis weights (spunbond method).
  • Nonwoven fabrics 3 and 4 obtained by the following production method Nylon 6 and nylon 12 melted in an extruder are blown out from a die having a die at a high temperature and a high-speed air stream, and the resin centrifuged in a fibrous form is collected on a belt conveyor to collect the following nylon 6 and nylon 12 Nonwoven fabrics 3 and 4 were prepared (melt blow method).
  • Nonwoven fabric 4 nylon 12, basis weight 19 g / m 2 .
  • Short fiber web form-Short fiber web 1, 2, 3, 4 obtained by the following manufacturing method
  • Carbon fiber “Torayca (registered trademark)” T700S-12K, manufactured by Toray Industries, Inc. was cut to a predetermined length with a cartridge cutter to produce chopped carbon fiber (carbon short fiber).
  • Short fiber web 1 (CF1); average fiber length 3 mm, basis weight 6 g / m 2 Short fiber web 2 (CF2); average fiber length 6 mm, basis weight 6 g / m 2 Short fiber web 3 (CF3); average fiber length 12 mm, basis weight 6 g / m 2 Short fiber web 4 (CF4); average fiber length 6 mm, basis weight 12 g / m 2 .
  • the surface oxygen concentration (O / C) of carbon fiber was determined by X-ray photoelectron spectroscopy according to the following procedure. First, the carbon fiber from which the dirt adhering to the surface with a solvent was removed was cut to about 20 mm and spread on a copper sample support. Next, the sample support was set in the sample chamber, and the inside of the sample chamber was kept at 1 ⁇ 10 ⁇ 8 Torr. Subsequently, measurement was performed using AlK ⁇ 1 and 2 as an X-ray source and a photoelectron escape angle of 90 °.
  • the binding energy value of the main peak (peak top) of C1s was adjusted to 284.6 eV as a correction value for the peak accompanying charging during measurement.
  • the C 1s main area was determined by drawing a straight base line in the range of 282 to 296 eV.
  • the O 1s peak area was determined by drawing a straight base line in the range of 528 to 540 eV.
  • the surface oxygen concentration is calculated as an atomic ratio by using a sensitivity correction value unique to the apparatus from the ratio of the O 1s peak area to the C 1s peak area.
  • ESCA-1600 manufactured by ULVAC-PHI Co., Ltd. was used, and the sensitivity correction value unique to the apparatus was 2.33.
  • the sizing agent adhesion amount of the sizing coated carbon fiber was determined according to the following procedure. First, 2 ⁇ 0.5 g of sizing coated carbon fiber was sampled and heat-treated at 450 ° C. in a nitrogen atmosphere for 15 minutes. The mass% of the value obtained by dividing the mass change amount before and after the heat treatment by the mass before the heat treatment was defined as the sizing agent adhesion amount.
  • the sizing agent adhesion after washing was measured as follows. First, 2 ⁇ 0.5 g of sizing agent-coated carbon fiber was immersed in 10 ml of a mixture of acetonitrile and chloroform in a volume ratio of 9: 1, ultrasonic cleaning was performed for 20 minutes, and the sizing agent was eluted from the fiber. And dried to measure the mass. Furthermore, after this washing, the carbon fiber was heat-treated at 450 ° C. in a nitrogen atmosphere for 15 minutes. The mass% of the value obtained by dividing the mass change before and after the heat treatment by the mass before the heat treatment was defined as the adhesion amount of the sizing agent after washing.
  • IFSS interfacial shear strength
  • jER registered trademark
  • metaphenylenediamine manufactured by Sigma-Aldrich Japan GK
  • Interfacial shear strength IFSS (MPa) ⁇ (MPa) ⁇ d ( ⁇ m) / (2 ⁇ lc) ( ⁇ m).
  • prepreg when component [D] is a particle including component [D]
  • a prepreg was prepared by the following method. (Preparation of epoxy resin composition 1) Components [B] listed in Tables 3 and 4 and other resin components were put into a kneading apparatus, and the temperature was raised to 160 ° C. while kneading, and kneading was performed at 160 ° C. for 1 hour. After the temperature was lowered to 80 ° C. while kneading, the component [C] was added and kneaded to obtain an epoxy resin composition 1.
  • the epoxy resin composition 2 obtained above was applied onto release paper to prepare two resin films 2 having a resin basis weight of 23 g / m 2 .
  • two obtained resin films 1 are stacked from both sides of the carbon fiber, and heated and pressed to form an epoxy resin composition.
  • the product was impregnated to obtain a prepreg precursor having a carbon fiber basis weight of 192 g / m 2 .
  • two resin films 2 were stacked from both sides of the prepreg precursor, and heated and pressurized to obtain a prepreg.
  • Tables 3 and 4 the composition ratio of the epoxy resin composition in the final prepreg is described.
  • prepreg when component [D] is a nonwoven fabric
  • a prepreg was prepared by the following method.
  • (Preparation of epoxy resin composition) The component [B] shown in Table 5 and other resin components were put into a kneading apparatus, and the temperature was raised to 160 ° C. while kneading, and kneading was performed at 160 ° C. for 1 hour. After the temperature was lowered to 80 ° C. while kneading, the component [C] was added and kneaded to obtain an epoxy resin composition.
  • the short fiber web having a basis weight within 6g / m 2, 12g / m for 2, each resin basis weight was produced in the same manner the resin film 2 of 40g / m 2, 32g / m 2.
  • the carbon fiber which is the constituent element [A] arranged in one direction so as to form a sheet two obtained resin films 1 are stacked from both sides of the carbon fiber, and heated and pressed to form an epoxy resin composition.
  • the product was impregnated to obtain a prepreg precursor having a carbon fiber basis weight of 192 g / m 2 .
  • one short fiber web of the component [D] shown in Table 6 is overlaid on the upper surface of the prepreg precursor, and further, one resin film 2 is overlaid from the upper surface, and heated and pressed.
  • a prepreg was obtained.
  • the area occupied by the isotropic phase (region where no interference pattern is observed) and the area occupied by the nematic phase were calculated by binarizing the image.
  • the nematic phase refers to a region where the observed interference pattern is a schlieren structure, a filamentous structure, a sandy structure, or a droplet structure, and the isotropic phase is an optically isotropic, although a resin composition exists. Therefore, it refers to an area where light is not transmitted and the visual field is dark.
  • the lowest temperature (nematic-isotropic phase transition temperature) at which the proportion of the area occupied by the isotropic phase is 40% or more of the total area of the resin composition including the nematic phase and the isotropic phase was determined.
  • (B) The laminated prepreg was covered with a nylon film so that there was no gap, and cured by heating and pressurizing at an internal pressure of 0.59 MPa at 180 ° C. for 2 hours in an autoclave to form a unidirectional carbon fiber reinforced composite material.
  • (C) The unidirectional carbon fiber reinforced composite material obtained in (b) was cut into a width of 20 mm and a length of 195 mm. The fiber direction was cut so as to be parallel to the length side of the test piece.
  • a notch with a length of 1 mm was placed at both ends in the width direction at a position 4 mm from the end of the test piece (the side sandwiching the fluororesin film), and a triangular grip was hooked.
  • a load was applied to the test piece by pulling a triangular jig with a crosshead of an Instron universal testing machine (Instron).
  • Instron Instron universal testing machine
  • a white paint was applied to both sides of the test piece in order to make it easier to observe the crack growth.
  • G IC measurement was performed in accordance with JIS K7086 (1993) Annex 1, a test was performed using an Instron universal testing machine (Instron).
  • the crosshead speed was 0.5 mm / min until the crack growth reached 20 mm, and 1 mm / min after reaching 20 mm. Testing crack performed until the evolution 100 mm, load obtained during the test - was calculated G IC from the area of the displacement diagram.
  • Mode II were produced in the same manner as in specimen G IC test from (a) and (c) measuring (18) the interlayer toughness (G IIC), to obtain a test piece of width 20 mm, length 195 mm. According to this test piece JIS K7086 (1993) Annex 2, it was subjected to G IIC test.
  • ⁇ Device D8 DISCOVER; manufactured by BRUKER AXS ⁇ X-ray source: CuK ⁇ ray (tube voltage 50 kV, tube current 22 mA) ⁇ Detector: Vantec500 Temperature controller: FP82; manufactured by Mettler Toledo Co., Ltd. A peak having a diffraction angle of 2 ⁇ in the range of 1.0 to 6.0 ° was determined as “A”, and a peak was not determined as “B”.
  • Polarized Raman spectroscopy is measured by changing the direction of polarization from 0 ° to 150 at 30 ° intervals, with the measured specimen being set to 0 °.
  • the polarization directions 0 ° to 150 ° when the fluctuation range was 20% or less, it was determined as “B” as no molecular anisotropy.
  • Tables 1-6 The results are shown in Tables 1-6.
  • the laminated prepreg is made of nylon film so that there is no gap. Covered and cured in an autoclave by heating and pressing at 180 ° C. for 2 hours at an internal pressure of 0.59 MPa to form a unidirectional carbon fiber reinforced composite material.
  • the molded carbon fiber reinforced composite material was cut into a length of 40 mm and a width of 10 mm to obtain a test piece. The measurement was performed with respect to the carbon fiber axis in the carbon fiber reinforced composite material parallel (0 °), vertical (90 °), and 45 ° under the following conditions.
  • ⁇ Device X 'PertPro (Spectris Co., Ltd. PANalytical Division)
  • X-ray source CuK ⁇ ray (tube voltage 45 kV, tube current 40 mA)
  • Detector Goniometer + Monochromator + Scintillation counter
  • Scanning range: 2 ⁇ 1 ⁇ 90 °
  • Scan mode Step scan, step unit 0.1 °, counting time 40 seconds Peaks of diffraction angle 2 ⁇ in the range of 1 to 10 ° are shown in Tables 1 to 6. Moreover, when there was no peak, it described as "B".
  • the intervals between the polytetrafluoroethylene resin plates were measured at five locations in the lateral direction of the cross-sectional photograph, and the average value was taken as the thickness of the prepreg.
  • a line parallel to the surface of the prepreg was drawn from the surface of the prepreg at a position at a depth of 20% of the thickness.
  • the total area of the component [D] existing between the surface of the prepreg and the above line and the total area of the component [D] existing over the prepreg thickness are obtained, and the thickness of the prepreg is 100%.
  • the abundance ratio of the component [D] existing in the range of 20% depth from the surface of the prepreg was calculated.
  • the total area of the constituent element [D] was obtained by cutting out the constituent element [D] portion from the cross-sectional photograph and converting from the mass.
  • Epoxy resin compositions for carbon fiber reinforced composite materials were prepared according to the procedure for preparing the above (12) epoxy resin composition according to the mixing ratios in Tables 1 and 2. Using the obtained epoxy resin composition, the nematic-isotropic phase transition temperature of the resin composition containing the constituent elements [B] and [C] is measured by the procedure of (17) above, and (13) Preparation of a prepreg The prepreg was obtained by the procedure.
  • Comparative Example 1 uses the components [A] and [C] in the present invention, but does not include the component [B] and does not satisfy the conditions [I] and [III]. Comparative Example 1 has significantly lower mode I interlaminar toughness G IC and mode II interlaminar toughness G IIC compared to Example 2 using the same components [A] and [C].
  • Comparative Example 2 is a case where carbon fibers that satisfy the conditions [I] to [III] but do not satisfy the constituent element [A] in the present invention are used. Comparative Example 2 has lower interfacial shear strength, mode I interlaminar toughness G IC and mode II interlaminar toughness G IIC compared to Example 2 using the same resin composition containing components [B] and [C]. From this, it is understood that it is important that the sizing agent is applied to the surface of the carbon fiber.
  • the constituent elements [A], [B] and [C] of the present invention are used, but the nematic-isotropic phase transition temperature requirement of the condition [I] is not satisfied.
  • the mode I interlayer toughness G IC is higher than that in the case of non-higher order structure formation.
  • mode II Interlaminar toughness G IIC is low. It can be seen that the mode II interlayer toughness G IIC is improved when the nematic-isotropic phase transition temperature satisfies the condition [I].
  • Comparative Examples 5 to 7 are cases where the condition [I] is not satisfied. It can be seen that the mode I interlayer toughness G IC and the mode II interlayer toughness G IIC are lower than those of Example 4 and Example 2 using the same components [A] and [C]. It can be seen that the filling improves the mode I interlayer toughness G IC and the mode II interlayer toughness G IIC . Comparative Examples 8 and 9 are cases where the conditions [I] and [III] are not satisfied. It can be understood that the mode I interlayer toughness G IC and the mode II interlayer toughness G IIC are lowered because the cured product of the epoxy resin composition cannot form a smectic structure.
  • Comparative Example 10 is a case where the conditions [I] and [II] are not satisfied. It can be seen that the mode I interlayer toughness G IC and the mode II interlayer toughness G IIC are significantly lower compared to Example 2 using the same components [A], [B]. Since the resin viscosity was not sufficiently lowered during the curing process, the sizing agent present on the surface of the component [A] and the epoxy resin composition did not sufficiently react, and as a result, the adhesion between the resin and the carbon fiber. Seems to have gotten worse. In Comparative Example 11, similarly to Comparative Example 10, since the curing reaction after the component [C] is dissolved in the component [B] is high, an epoxy resin composition containing the components [B] and [C] is formed.
  • the nematic-isotropic phase transition does not occur between 130 and 180 ° C., and the viscosity cannot be lowered sufficiently. Therefore, it can be seen that the mode I interlayer toughness G IC and the mode II interlayer toughness G IIC are significantly lower than those of Example 5 using the same components [A] and [B].
  • the prepreg could not be prepared because the curing reaction when the component [C] was dissolved in the component [B] was very fast and the viscosity increased significantly.
  • prepregs were obtained by the procedure (14). Using the obtained prepreg, (28) the abundance ratio of the constituent element [D] existing in the depth range of 20% of the prepreg thickness, (18) the composite material for the mode I interlaminar toughness (G IC ) test Preparation and G IC measurements manufactured flat, (19) mode II interlayer toughness (G IIC) Preparation and G IIC measurements of the test composite made flat, (23) a polarizing microscope observation of the carbon fiber reinforced composite material, (24) a prepreg (25) Measurement of anisotropy in resin composition by polarized Raman spectroscopy, (20) Production and measurement of composite flat plate for 0 ° tensile strength test, (29) Carbon fiber reinforced composite Measurement of the interlayer resin layer thickness of the material, (23) observation with a polarizing microscope, and (27) measurement of a diffraction angle 2 ⁇ by X-ray d
  • the mode II interlaminar toughness G IIC is lower than those in Examples 12, 13, 16 to 19 and 20, 21 using the same components [B] and [C], and the prepreg of the present invention has a mode It can be seen that the II interlaminar toughness G IIC is dramatically improved.
  • the constituent element [D] is arranged so as to satisfy the condition [I], and the cured product of the resin composition including the constituent elements [B] and [C] forms a higher order structure.
  • the content ratio of [D] in the epoxy resin composition is small and an interlayer resin layer having a sufficient thickness is not formed. In this case, the mode II interlayer toughness G IIC improvement effect was not seen.
  • Comparative Examples 20 to 23 the cured product of the epoxy resin composition does not form a higher order structure, and an interlayer resin layer having a sufficient thickness is formed by the presence of the constituent element [D].
  • the comparison between Comparative Example 20 and Examples 10 and 16, Comparison between Comparative Example 21 and Examples 11 and 17, and Comparison between Comparative Example 22 and Examples 12 and 18 reveals the same components [A] and [D].
  • the mode I interlayer toughness G IC , the mode II interlayer toughness G IIC , and the tensile strength are low compared with each of the examples using the prepreg, and the prepreg of the present invention particularly has the mode I interlayer toughness G IC and the mode II interlayer toughness G IIC. It can be seen that there is a dramatic improvement.
  • the comparative example 23 is a case where the hardened
  • the cured product of the epoxy resin composition forming a higher order structure has a dramatic increase in Mode I interlayer toughness G IC and Mode II interlayer toughness G IIC. Can be confirmed.
  • the nematic-isotropic phase transition temperature of the epoxy resin composition containing the constituent elements [B] and [C] is lower than 110 ° C., and the cured product does not form a higher order structure (smectic structure). It is. In this case, it is understood that the mode I interlayer toughness G IC is not sufficiently improved.
  • a prepreg was obtained by the procedure (15). Using the obtained prepreg, (28) the abundance ratio of the constituent element [D] existing in the depth range of 20% of the prepreg thickness, (18) the composite material for the mode I interlaminar toughness (G IC ) test Preparation and G IC measurements manufactured flat, (19) mode II interlayer toughness (G IIC) Preparation and G IIC measurements of the test composite made flat, (23) a polarizing microscope observation of the carbon fiber reinforced composite material, (24) a prepreg (25) Measurement of anisotropy in epoxy resin composition by polarized Raman spectroscopy, (20) Production and measurement of composite flat plate for 0 ° tensile strength test, (29) Carbon fiber reinforcement Measurement of the interlayer resin layer thickness of the composite material, (23) observation with a polarizing microscope, and (27) measurement of the diffraction angle 2 ⁇ by X-ray diffraction were performed
  • the nematic-isotropic phase transition temperature of the epoxy resin composition containing the components [B] and [C] is measured.
  • the viscosity of the epoxy resin composition containing the components [B] and [C] is also measured. went.
  • the various measurement results of the examples are as shown in Table 5.
  • the interlaminar resin layer having a higher order structure using the nonwoven fabric as a spacer is disposed between the carbon fiber layers, which is excellent. Mode I interlayer toughness G IC , mode II interlayer toughness G IIC , and tensile strength were obtained.
  • Comparative Examples 24 to 27 the cured product of the epoxy resin composition does not form a higher order structure, and an interlayer resin layer having a sufficient thickness is formed using a nonwoven fabric as a spacer.
  • the comparative example 25 with the examples 23 and 25 the comparative example 26 with the example 26
  • the comparative example 27 with the example 28 the respective examples using the components [A], [C], [D]
  • Mode II interlayer toughness G IIC is effectively obtained by disposing an interlayer resin layer in which a cured product of the epoxy resin composition forms a higher order structure.
  • Comparative Example 24 is a case where the nematic-isotropic phase transition temperature of the epoxy resin composition containing the constituent elements [B] and [C] is lower than 110 ° C., and the cured product does not form a higher order structure (smectic structure). Is the case. In this case, it is understood that the mode I interlayer toughness G IC is not sufficiently improved.
  • a prepreg was obtained by the procedure (16). Using the obtained prepreg, (28) the abundance ratio of the constituent element [D] existing in the depth range of 20% of the prepreg thickness, (18) the composite material for the mode I interlaminar toughness (G IC ) test Preparation and G IC measurements manufactured flat, (19) mode II interlayer toughness (G IIC) Preparation and G IIC measurements of the test composite made flat, (23) a polarizing microscope observation of the carbon fiber reinforced composite material, (24) a prepreg (25) Measurement of anisotropy in epoxy resin composition by polarized Raman spectroscopy, (20) Production and measurement of composite flat plate for 0 ° tensile strength test, (29) Carbon fiber reinforcement Measurement of the interlayer resin layer thickness of the composite material, (23) observation with a polarizing microscope, and (27) measurement of the diffraction angle 2 ⁇ by X-ray diffraction were
  • the nematic-isotropic phase transition temperature of the epoxy resin composition containing the components [B] and [C] is measured.
  • the viscosity of the epoxy resin composition containing the components [B] and [C] is also measured. went.
  • Various measurement results of the examples are as shown in Table 6.
  • Comparative Examples 28 to 32 the cured product of the epoxy resin composition does not form a higher order structure, and an interlayer resin layer having a sufficient thickness is formed using the short fiber web as a spacer.
  • Comparative Example 29 and Examples 29 and 33, Comparative Example 30 and Examples 30 and 34, Comparative Example 31 and Examples 31 and 35, Comparative Example 32 and Examples 32 and 36, and in particular according to the present invention Mode I It can be confirmed that the interlayer toughness G IC and the mode II interlayer toughness G IIC are dramatically improved.
  • Comparative Example 28 is a case where the nematic-isotropic phase transition temperature of the epoxy resin composition containing the constituent elements [B] and [C] is lower than 110 ° C., and the cured product does not form a higher order structure (smectic structure). Is the case. In this case, it is understood that the mode I interlayer toughness G IC is not sufficiently improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Epoxy Resins (AREA)

Abstract

モードI層間靱性とモードII層間靱性に優れた炭素繊維強化複合材料が得られるプリプレグ、および炭素繊維強化複合材料を提供するため、下記構成要素[A]~[C]を含み、かつ条件[I]~[III]を満たすプリプレグとする。 [A]:サイジング剤塗布炭素繊維 [B]:特定の構造を有するエポキシ樹脂 [C]:[B]の硬化剤 [I]:構成要素[B]および[C]を含むエポキシ樹脂組成物が、ネマチック-等方相転移温度を130~180℃の温度範囲に有する。 [II]:100℃、30分間等温保持した後のプリプレグが、100℃における広角X線回折によって測定される回折角度2θ=1.0~6.0°に由来する高次構造を有さない。 [III]:180℃、2時間等温保持した後のプリプレグが、180℃における広角X線回折によって測定される回折角度2θ=1.0~6.0°に由来する高次構造を有する。

Description

プリプレグおよび炭素繊維強化複合材料
 本発明は、優れたモードI層間靱性、モードII層間靱性を兼ね備えた炭素繊維強化複合材料が得られるプリプレグ、および炭素繊維強化複合材料に関するものである。
 従来、炭素繊維、ガラス繊維などの強化繊維と、エポキシ樹脂、フェノール樹脂などの熱硬化性樹脂からなる繊維強化複合材料は、軽量でありながら、強度や剛性などの力学特性や耐熱性、また耐食性に優れているため、航空・宇宙、自動車、鉄道車両、船舶、土木建築およびスポーツ用品などの数多くの分野に応用されてきた。特に、高性能が要求される用途では、連続した強化繊維を用いた繊維強化複合材料が用いられ、強化繊維としては比強度、比弾性率に優れた炭素繊維が、そしてマトリックス樹脂としては熱硬化性樹脂、中でも特に炭素繊維との接着性に優れたエポキシ樹脂が多く用いられている。
 炭素繊維強化複合材料は、炭素繊維とマトリックス樹脂を必須の構成要素とする不均一材料であり、そのため炭素繊維の配列方向の物性とそれ以外の方向の物性に大きな差が存在する。例えば、炭素繊維層間破壊の進行し難さを示す層間靱性は、炭素繊維の強度を向上させるのみでは、抜本的な改良に結びつかないことが知られている。特に、熱硬化性樹脂をマトリックス樹脂とする炭素繊維強化複合材料は、マトリックス樹脂の低い靭性を反映し、炭素繊維の配列方向以外からの応力に対し、破壊され易い性質を持っている。そのため、航空機構造材のように高い強度と信頼性を必要とする用途に向けては、繊維方向強度を確保しつつ、層間靭性を始めとする炭素繊維の配列方向以外からの応力に対応することができる複合材料物性の改良を目的に、種々の技術が提案されている。
 近年、航空機構造材への炭素繊維強化複合材料の適用部位が拡大していることに加えて、発電効率やエネルギー変換効率の向上を目指した風車ブレードや各種タービンへの炭素繊維強化複合材料の適用も進んでおり、肉厚な部材、また3次元的な曲面形状を有する部材への適用検討が進められている。このような肉厚部材、あるいは曲面部材に引っ張りや圧縮の応力が負荷された場合、プリプレグ繊維層間への面外方向への引き剥がし応力が発生し、層間に開口モードによる亀裂が生じ、その亀裂の進展により部材全体の強度、剛性が低下し、全体破壊に到る場合がある。この応力に対抗するための、開口モード、すなわちモードIでの層間靱性が必要になる。高いモードI層間靱性を有する炭素繊維強化複合材料を得るには、マトリックス樹脂自体の高い靱性が必要となる。マトリックス樹脂の靱性を改良するため、マトリックス樹脂にゴム成分を配合する方法(特許文献1参照。)、熱可塑性樹脂を配合する方法(特許文献2参照。)が知られていた。また、インターリーフと呼ばれる一種の接着層ないしは衝撃吸収層を層間に挿入する方法(特許文献3参照)、および粒子により層間を強化(特許文献4参照)する方法が提案されている。
特開2001-139662号公報 特開平7-278412号公報 特開昭60-231738号公報 特公平6-94515号公報
 しかし、特許文献1や特許文献2に記載の方法では、マトリックス樹脂の靱性改良効果は十分なものではなかった。また、特許文献3や特許文献4に記載の方法では、モードII層間靱性に対しては効果があるものの、モードI層間靱性に対しては、十分な効果が得られるものではなかった。そこで、本発明の目的は、モードI層間靱性およびモードII層間靱性ともに優れた炭素繊維強化複合材料が得られるプリプレグ、および炭素繊維強化複合材料を提供することにある。
 上記課題を解決する本発明のプリプレグは、下記構成要素[A]~[C]を含み、かつ条件[I]~[III]を満たすプリプレグである。
[A]:サイジング剤塗布炭素繊維
[B]:一般式(1)で示される構造を有するエポキシ樹脂
Figure JPOXMLDOC01-appb-C000008
 一般式(1)中Q、Q、Qはそれぞれ群(I)より選択される1種の構造を含む。一般式(1)中のR、Rはそれぞれ炭素数1~6のアルキレン基を示す。群(I)中のZは各々独立に、炭素数1~8の脂肪族炭化水素基、炭素数1~8の脂肪族アルコキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基、又はアセチル基を示す。nは各々独立に0~4の整数を示す。一般式(1)および群(I)中のY、Y、Yは、単結合もしくは群(II)から1つ選択される。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
[C]:[B]の硬化剤
[I]:構成要素[B]および[C]を含むエポキシ樹脂組成物が、ネマチック-等方相転移温度を130~180℃の温度範囲に有する。
[II]:100℃、30分間等温保持した後のプリプレグが、100℃における広角X線回折によって測定される回折角度2θ=1.0~6.0°に由来する高次構造を有さない。
[III]:180℃、2時間等温保持した後のプリプレグが、180℃における広角X線回折によって測定される回折角度2θ=1.0~6.0°に由来する高次構造を有する。
 また、本発明の炭素繊維強化複合材料は、上記プリプレグが硬化されてなる。
 本発明によれば、モードI層間靱性とモードII層間靱性ともに優れた炭素繊維強化複合材料が得られる。
モードI層間靭性(GIC)の測定方法を示す図である。
 本発明の構成要素[A]サイジング剤塗布炭素繊維は、サイジング剤の効果によりハンドリング性が優れるとともに、炭素繊維表面に存在するサイジング剤とマトリックス樹脂が反応することで、炭素繊維とマトリックス樹脂との界面接着性が優れた炭素繊維強化複合材料が得られる。本発明の構成要素[A]は連続繊維であり、ここでいう連続繊維とは、平均繊維長が100mm以上であることを意味する。
 本発明の構成要素[A]におけるサイジング剤の付着量は、サイジング剤塗布炭素繊維100質量部に対して、0.1質量部以上であることが好ましく、より好ましくは0.1~3.0質量部、さらに好ましくは0.2~3.0質量部の範囲である。サイジング剤の付着率の測定方法は、サイジング塗布炭素繊維を2±0.5g採取し、窒素雰囲気中450℃にて加熱処理を15分間行ったときの該加熱処理前後の質量変化量を加熱処理前の質量で除した値の質量%である。
 本発明の構成要素[A]は、アセトニトリルとクロロホルムを体積比9対1で混合した溶液で洗浄した後に洗浄後炭素繊維に残留するサイジング剤付着率がサイジング剤塗布炭素繊維に対して0.08質量%以上であることが好ましい。より好ましくは0.08~3.0質量%、さらに好ましくは0.14~0.30質量%の範囲である。洗浄後のサイジング剤の付着率がかかる範囲であると、炭素繊維とサイジング剤の界面接着が良好となり、炭素繊維強化複合材料とした際に高い剪断靱性を発現させることができる。ここで言う「洗浄後のサイジング剤付着率」とは、次のように測定されて算出されるものである。サイジング剤塗布炭素繊維2±0.5gをアセトニトリルとクロロホルムを体積比9対1で混合した溶液10mlに浸漬し、超音波洗浄を20分間行うことで炭素繊維からサイジング剤を溶出させた後、十分に乾燥させて洗浄後炭素繊維の質量を測定する。さらにこの洗浄後炭素繊維を窒素雰囲気中450℃にて加熱処理を15分間行う。このときの該加熱処理前後の質量変化量を、加熱処理前のサイジング剤塗布炭素繊維の質量で除した値の質量%を洗浄後のサイジング剤付着率とする。
 本発明において、サイジング剤はエポキシ化合物を含むことが好ましい。サイジング剤に含まれるエポキシ化合物としては、例えば脂肪族エポキシ化合物、芳香族エポキシ化合物があり、これらを単独で用いてもよいし、併用してもよい。
 脂肪族エポキシ化合物のみからなるサイジング剤が塗布されてなる炭素繊維はマトリックス樹脂との接着性が高いことが確認されている。そのメカニズムは確かではないが、脂肪族エポキシ化合物は柔軟な骨格および自由度が高い構造に由来して、炭素繊維表面のカルボキシル基および水酸基との官能基と脂肪族エポキシ化合物が強い相互作用を形成することが可能であると考えられる。
 芳香族エポキシ化合物のみからなるサイジング剤が塗布されてなる炭素繊維は、サイジング剤とマトリックス樹脂との反応性が低く、プリプレグを長期保管した場合の物性変化が小さいという利点がある。また、剛直な界面層を形成することができるという利点もある。
 脂肪族エポキシ化合物と芳香族エポキシ化合物を混合した場合、より極性の高い脂肪族エポキシ化合物が炭素繊維側に多く偏在し、炭素繊維と逆側のサイジング層の最外層に極性の低い芳香族エポキシ化合物が偏在しやすいという現象が見られる。このサイジング層の傾斜構造の結果として、脂肪族エポキシ化合物は炭素繊維近傍で炭素繊維と強い相互作用を有することで炭素繊維とマトリックス樹脂の接着性を高めることができる。また、外層に多く存在する芳香族エポキシ化合物は、サイジング剤塗布炭素繊維をプリプレグにした場合には脂肪族エポキシ化合物をマトリックス樹脂から遮断する役割を果たす。このことにより、脂肪族エポキシ化合物とマトリックス樹脂中の反応性の高い成分との反応が抑制されるため、長期保管時の安定性が発現される。
 サイジング剤塗布炭素繊維とマトリックス樹脂とからなる炭素繊維強化複合材料において、炭素繊維近傍のいわゆる界面層は、炭素繊維あるいはサイジング剤の影響を受け、マトリックス樹脂とは異なる特性を有する場合がある。サイジング剤に含まれるエポキシ化合物が芳香環を1個以上有すると、剛直な界面層が形成され、炭素繊維とマトリックス樹脂との間の応力伝達能力が向上し、炭素繊維強化複合材料の0°引張強度等の力学特性が向上する。また、芳香環により疎水性が向上することにより、脂肪族エポキシ化合物に比べて炭素繊維との相互作用が弱く、脂肪族エポキシ化合物を覆い、サイジング層外層に存在することができる。このことにより、サイジング剤塗布炭素繊維をプリプレグに用いた場合、長期間保管した場合の経時変化を抑制することができ好ましい。エポキシ化合物が芳香環を2個以上有することで、芳香環による長期安定性の向上するため好ましい。エポキシ化合物が有する芳香環の数の上限は特にないが、10個あれば力学特性およびマトリックス樹脂との反応の抑制の観点から十分である。
 本発明において、炭素繊維に塗布されたサイジング剤のエポキシ当量は350~550g/molであることが好ましい。550g/mol以下であることで、サイジング剤が塗布されてなる炭素繊維とマトリックス樹脂の接着性が向上するため好ましい。また、350g/mol以上であることで、プリプレグに該サイジング剤塗布炭素繊維を用いた場合に、プリプレグに用いている樹脂成分とサイジング剤との反応を抑制することができるため、プリプレグを長期保管した場合にも得られた炭素繊維強化複合材料の物性が良好になるため好ましい。本発明におけるサイジング剤が塗布されてなる炭素繊維のエポキシ当量とは、サイジング剤塗布繊維をN,N-ジメチルホルムアミドに代表される溶媒中に浸漬し、超音波洗浄を行うことで繊維から溶出させたのち、塩酸でエポキシ基を開環させ、酸塩基滴定で求めることができる。エポキシ当量は360g/mol以上が好ましく、380g/mol以上がより好ましい。また、530g/mol以下が好ましく、500g/mol以下がより好ましい。なお、炭素繊維に塗布されたサイジング剤のエポキシ当量は、塗布に用いるサイジング剤のエポキシ当量および塗布後の乾燥での熱履歴などにより、制御することができる。
 本発明の構成要素[A]の繊維形態や配列については限定されず、例えば、一方向に引き揃えられた長繊維、単一のトウ、織物、ニット、および組紐などの繊維構造物が用いられる。2種類以上の炭素繊維や、ガラス繊維、アラミド繊維、ボロン繊維、PBO繊維、高強力ポリエチレン繊維、アルミナ繊維および炭化ケイ素繊維などの他の強化繊維と組み合わせて用いても構わない。
 炭素繊維としては、具体的にはアクリル系、ピッチ系およびレーヨン系等の炭素繊維が挙げられ、特に引張強度の高いアクリル系の炭素繊維が好ましく用いられる。
 かかるアクリル系の炭素繊維は、例えば、次に述べる工程を経て製造することができる。アクリロニトリルを主成分とするモノマーから得られるポリアクリロニトリルを含む紡糸原液を、湿式紡糸法、乾湿式紡糸法、乾式紡糸法、または溶融紡糸法により紡糸する。紡糸後の凝固糸は、製糸工程を経て、プリカーサーとし、続いて耐炎化および炭化などの工程を経て炭素繊維を得ることができる。
 炭素繊維の形態としては、有撚糸、解撚糸および無撚糸等を使用することができるが、有撚糸の場合は炭素繊維を構成するフィラメントの配向が平行ではないため、得られる炭素繊維強化複合材料の力学特性の低下の原因となることから、炭素繊維強化複合材料の成形性と強度特性のバランスが良い解撚糸または無撚糸が好ましく用いられる。
 本発明の構成要素[A]は、表面に存在するサイジング剤との接着性を向上させるために、通常、酸化処理が施され、酸素含有官能基が導入されることが好ましい。酸化処理方法としては、気相酸化、液相酸化および液相電解酸化が用いられるが、生産性が高く、均一処理ができるという観点から、液相電解酸化が好ましく用いられる。
 本発明において、液相電解酸化で用いられる電解液としては、酸性電解液およびアルカリ性電解液が挙げられる。接着性の観点からアルカリ性電解液中で液相電解酸化した後、サイジング剤を塗布することがより好ましい。
 酸性電解液としては、例えば、硫酸、硝酸、塩酸、燐酸、ホウ酸、および炭酸等の無機酸、酢酸、酪酸、シュウ酸、アクリル酸、およびマレイン酸等の有機酸、または硫酸アンモニウムや硫酸水素アンモニウム等の塩が挙げられる。なかでも、強酸性を示す硫酸と硝酸が好ましく用いられる。
 アルカリ性電解液としては、具体的には、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウムおよび水酸化バリウム等の水酸化物の水溶液、炭酸ナトリウム、炭酸カリウム、炭酸マグネシウム、炭酸カルシウム、炭酸バリウムおよび炭酸アンモニウム等の炭酸塩の水溶液、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素マグネシウム、炭酸水素カルシウム、炭酸水素バリウムおよび炭酸水素アンモニウム等の炭酸水素塩の水溶液、アンモニア、水酸化テトラアルキルアンモニウムおよびヒドラジンの水溶液等が挙げられる。なかでも、マトリックス樹脂の硬化阻害を引き起こすアルカリ金属を含まないという観点から、炭酸アンモニウムおよび炭酸水素アンモニウムの水溶液、あるいは、強アルカリ性を示す水酸化テトラアルキルアンモニウムの水溶液が好ましく用いられる。
 本発明において用いられる電解液の濃度は、0.01~5モル/リットルの範囲内であることが好ましく、より好ましくは0.1~1モル/リットルの範囲内である。電解液の濃度が0.01モル/リットル以上であると、電解処理電圧が下げられ、運転コストに有利になる。一方、電解液の濃度が5モル/リットル以下であると、安全性の観点から有利になる。
 本発明において用いられる電解液の温度は、10~100℃の範囲内であることが好ましく、より好ましくは10~40℃の範囲内である。電解液の温度が10℃以上であると、電解処理の効率が向上し、運転コストに有利になる。一方、電解液の温度が100℃以下であると、安全性の観点から有利になる。
 本発明において、液相電解酸化における電気量は、炭素繊維の炭化度に合わせて最適化することが好ましく、高弾性率の炭素繊維に処理を施す場合、より大きな電気量が必要である。
 本発明において、液相電解酸化における電流密度は、電解処理液中の炭素繊維の表面積1m当たり1.5~1000アンペアの範囲内であることが好ましく、より好ましくは3~500アンペア/mの範囲内である。電流密度が1.5アンペア/m以上であると、電解処理の効率が向上し、運転コストに有利になる。一方、電流密度が1000アンペア/m以下であると、安全性の観点から有利になる。
 また、本発明において、電解処理で採用する電解電気量の総量は、炭素繊維1g当たり3~300クーロンであることが好ましい。電解電気量の総量が3クーロン/g以上とすることで、炭素繊維表面に十分に官能基を付与でき、マトリックス樹脂と炭素繊維の界面接着性が優れたものとなる。一方、電解電気量の総量が300クーロン/g以下とすることで炭素繊維単繊維表面の欠陥拡大を抑制し、炭素繊維の強度低下を低減できる。
 本発明で用いる構成要素[A]は、引張弾性率が200~440GPaの範囲であることが好ましい。炭素繊維の引張弾性率は、炭素繊維を構成する黒鉛構造の結晶度に影響され、結晶度が高いほど弾性率は向上する。この範囲であると炭素繊維強化複合材料に剛性、強度のすべてが高いレベルでバランスするために好ましい。より好ましい弾性率は、230~400GPaの範囲内であり、さらに好ましくは260~370GPaの範囲内である。ここで、炭素繊維の引張弾性率は、JIS R7601(2006)に従い測定された値である。
 炭素繊維の市販品としては、“トレカ(登録商標)”T800G-24K、“トレカ(登録商標)”T300-3K、“トレカ(登録商標)”T700G-12K、および“トレカ(登録商標)”T1100G-24K(以上東レ(株)製)などが挙げられる。
 本発明において用いられる構成要素[A]は、単繊維繊度が0.2~2.0dtexであることが好ましく、より好ましくは0.4~1.8dtexである。単繊維繊度が0.2dtex以上であると、撚糸時においてガイドローラーとの接触による炭素繊維の損傷が起こり難く、またエポキシ樹脂組成物の含浸処理工程においても同様の損傷を抑制することができる。単繊維繊度が2.0dtex以下であると、炭素繊維にエポキシ樹脂組成物を充分に含浸することができ、耐疲労性の低下を防止することができる。
 本発明において用いられる構成要素[A]は、一つの繊維束中のフィラメント数が2500~50000本の範囲であることが好ましい。フィラメント数が2500本以上であると、繊維配列の蛇行が起こり難く、強度低下を抑制することができる。また、フィラメント数が50000本以下であると、プリプレグ作製時あるいは成形時にエポキシ樹脂組成物の含浸が容易となる。フィラメント数は、より好ましくは2800~40000本の範囲である。
 本発明の構成要素[A]は、X線光電子分光法により測定される繊維表面の酸素(O)と炭素(C)の原子数の比である表面酸素濃度(O/C)が、0.10以上であることが好ましい。より好ましくは0.10~0.50の範囲内のものであり、さらに好ましくは0.14~0.30の範囲内のものであり、特に好ましくは0.14~0.20の範囲内ものである。表面酸素濃度(O/C)が0.10以上であることにより、炭素繊維表面の酸素含有官能基を確保し、マトリックス樹脂との強固な接着を得ることができる。また、表面酸素濃度(O/C)が0.50以下であることにより、酸化による炭素繊維自体の強度の低下を抑えることができるため好ましい。
 炭素繊維の表面酸素濃度は、X線光電子分光法により、次の手順に従って求められるものである。まず、溶剤で炭素繊維表面に付着している汚れなどを除去した炭素繊維を20mmにカットして、銅製の試料支持台に拡げて並べた後、X線源としてAlKα1、2を用い、試料チャンバー中を1×10-8Torrに保ち、光電子脱出角度90°で測定した。測定時の帯電に伴うピークの補正値としてC1sのメインピーク(ピークトップ)の結合エネルギー値を284.6eVに合わせる。C1sピーク面積は、282~296eVの範囲で直線のベースラインを引くことにより求め、O1sピーク面積は、528~540eVの範囲で直線のベースラインを引くことにより求められる。表面酸素濃度(O/C)は、上記O1sピーク面積の比を装置固有の感度補正値で割ることにより算出した原子数比で表す。X線光電子分光法装置として、アルバック・ファイ(株)製ESCA-1600を用いる場合、上記装置固有の感度補正値は2.33である。
 本発明における構成要素[A]について、次の方法で規定される界面剪断強度(IFSS)は25MPa以上であることが好ましく、より好ましくは29MPa以上、さらに好ましくは40MPa以上である。界面剪断強度が高いと、炭素繊維とエポキシ樹脂との接着性も高い傾向があり、高いモードI層間靱性およびモードII層間靱性を発現する。ここで、本発明における「界面剪断強度」は、炭素繊維の単繊維とビスフェノールA型エポキシ樹脂との界面剪断強度のことであり、次のように測定して算出される値である。
 以下、界面剪断強度の測定方法について説明する。測定にあたっては、Drzal,L.T.,Master,Sci,Eng.A126,289(1990)を参考にして行う。
 すなわち、ビスフェノールA型エポキシ化合物“jER(登録商標)”828(三菱ケミカル(株)製)100質量部とメタフェニレンジアミン(シグマアルドリッチジャパン(株)製)14.5質量部を、それぞれ容器に入れ、その後、上記のjER828の粘度低下とメタフェニレンジアミンの溶解のため、75℃の温度で15分間加熱する。その後、両者をよく混合し、80℃の温度で約15分間真空脱泡を行う。
 次に、炭素繊維束から単繊維を抜き取り、ダンベル型モールドの長手方向に単繊維に一定張力を与えた状態で両端を接着剤で固定する。その後、炭素繊維およびモールドに付着した水分を除去するため、80℃の温度で30分間以上真空乾燥を行う。ダンベル型モールドはシリコーンゴム製で、注型部分の形状は、中央部分巾5mm、長さ25mm、両端部分巾10mm、全体長さ150mmとする。
 上記の真空乾燥後のモールド内に、調製した樹脂を流し込み、オーブンを用いて、昇温速度1.5℃/分で75℃の温度まで上昇し2時間保持後、昇温速度1.5℃/分で125℃の温度まで上昇し2時間保持後、降温速度2.5℃/分で30℃の温度まで降温する。その後、脱型して試験片を得る。
 上記の手順で得られた試験片に繊維軸方向(長手方向)に歪速度0.3%/秒で引張力を与え、歪みを12%生じさせた後、偏光顕微鏡により試験片中心部22mmの範囲における繊維破断数N(個)を測定する。次に、平均破断繊維長laを、la(μm)=22×1000(μm)/N(個)の式により計算する。次に、平均破断繊維長laから臨界繊維長lcを、lc(μm)=(4/3)×la(μm)の式により計算する。さらに、ストランド引張強度σと炭素繊維単糸の直径dを測定し、次式より算出した値を本発明における「界面剪断強度」とする。
・界面剪断強度IFSS(MPa)=σ(MPa)×d(μm)/(2×lc)(μm)。 
 本発明のプリプレグを硬化させてなる炭素繊維強化複合材料は、エポキシ樹脂組成物の硬化物が高次構造を有することで、驚くべきことに優れたモードI層間靱性、モードII層間靱性を発現する。これは、炭素繊維強化複合材料内にクラックが進展する際、エポキシ樹脂組成物の硬化物中に存在する高次構造を崩すのにエネルギーを多く必要とするためと考えられる。
 ここでいう高次構造とは、エポキシ樹脂組成物の硬化後又は半硬化後に分子が配向配列している状態を意味し、例えば、硬化物中に結晶構造又は液晶構造が存在する状態を意味する。
 エポキシ樹脂組成物の硬化物中の高次構造の有無についても、前記したように偏光顕微鏡を用いた光学的異方性の有無を調べることで確かめることができる。光学的異方性を有する構造のサイズが可視光波長オーダー同等以上の場合には、クロスニコル状態での偏光顕微鏡にて干渉模様が観察される。高次構造を形成していない、もしくは形成された高次構造のサイズが可視光波長オーダーより小さい場合には、光学的異方性を有しないため干渉模様は観察されない。高次構造としてスメクチック構造形成の場合には、バトネ組織、フォーカルコニックファン組織、オイリーストリーク組織といった干渉模様が偏光顕微鏡により観察される。
 以下、本発明のプリプレグが充足する条件[II]、[III]について説明する。本発明のプリプレグは、100℃、30分間の等温保持の条件では、エポキシ樹脂組成物中にスメクチック構造を形成せず(条件[II])、180℃、2時間の等温保持の条件では、エポキシ樹脂組成物中にスメクチック構造を形成する(条件[III])。エポキシ樹脂組成物が100℃でスメクチック構造を形成してしまう場合には、粘度が十分に低下せず、構成要素[A]との濡れ性が悪化したり、構成要素[A]の表面に存在するサイジング剤との反応が難しくなる。その結果、エポキシ樹脂と炭素繊維の接着性が低い炭素繊維強化複合材料となる。エポキシ樹脂組成物の粘度を十分に低下させ、構成要素[A]表面のサイジングと反応させるという観点から、エポキシ樹脂組成物は、100℃、30分間等温保持条件でスメクチック構造を形成しないことが重要である。
 また、本発明のプリプレグは、180℃、2時間保持の条件で、エポキシ樹脂組成物中にスメクチック構造を形成することで、高いモードI層間靱性、モードII層間靱性を発現する。エポキシ樹脂組成物がスメクチック構造を形成している場合には、X線回折測定において一般的には回折角度2θ≦10°の領域にピークが観測される。この範囲のピークの有無により、エポキシ樹脂組成物中のスメクチック構造の有無を確認することができる。このピークは、構成要素[B]中、または、構成要素[C]中または、構成要素[B]、[C]両方中に存在するメソゲン構造(ビフェニル基、ターフェニル基、ターフェニル類縁基、アントラセン基、これらがアゾメチン基、又はエステル基で接続された基等)に基づく周期構造(高次構造)に起因する。
 本発明のプリプレグが、条件[II]、[III]を充足することを確かめる具体的な手法について説明する。本発明のプリプレグ1プライを長さ20mm、幅10mmにカットした測定試料を用意する。広角X線回折装置(D8 DISCOVER;BRUKER AXS社製)に取り付けられた温度制御装置(FP82;メトラートレド社製)内に測定試料をセットし、2次元での広角X線回折測定を行う。条件[II]は、温度制御装置を用いて40℃から2℃/分で100℃まで測定試料を昇温し、100℃到達から30分間保持し、30分間経過直後の広角X線回折測定によって得られた回折パターンについて、2θ=1.0°~6.0°の間のピークの有無を確認する。条件[III]は、温度制御装置を用いて40℃から2℃/分で180℃まで測定試料を昇温し、180℃到達から2時間保持し、経過直後の広角X線回折測定によって得られた回折パターンについて、2θ=1.0°~6.0°の間のピークの有無を確認する。
 条件[III]について、エポキシ樹脂組成物の高次構造は構成要素[A]の炭素繊維に対していずれの方向を向いても良いが、炭素繊維軸に対して垂直な方向のみ周期構造を有する場合、炭素繊維由来の強いピークにより、X線回折ではエポキシ樹脂組成物由来のピークが観測できないことがある。その場合、炭素繊維を除いた樹脂組成物にてX線回折により測定を行うことで、周期構造の有無の確認できる。別の確認手法としては、放射光の利用も有効である。ビーム径を数μm程度まで絞りこむことにより、構成要素[A]を除いた、構成要素[B]および[C]を含むエポキシ樹脂組成物の硬化物のみの測定が可能となり、高次構造形成の有無を確認することが可能となる。
 本発明のプリプレグおよび炭素繊維強化複合材料は、エポキシ樹脂組成物の硬化物が、分子異方性を示す樹脂領域を含むことが好ましい。ここでいう分子異方性を有する樹脂領域とは、1μm径以上の大きさで分子が一方向配列した配向ドメインを示す。確認方法としては、例えば、炭素繊維強化複合材料中の樹脂領域の5~10箇所について、任意の方位を0°とし、偏光方位を0°~150°まで30°間隔で変化させて偏光IRあるいは偏光ラマン分光を測定し、偏光方位に対して信号強度の変化の有無をみることで確認することができる。分子異方性を持たないエポキシ樹脂組成物では、偏光方位に対して強度変化は見られない。
 X線回折によって観測される回折角度2θ=1.0°~6.0°に由来する高次構造を、硬化後に樹脂組成物が有する範囲において本発明の炭素繊維強化複合材料の成形条件は特に限定されないが、成形温度が高すぎると、使用する装置や副資材に高い耐熱性が必要となり、炭素繊維強化複合材料の製造コストが高額となる。また、成形温度が低すぎると、構成要素[B][C]の反応に長時間を要し、これも製造コストの増加をまねく恐れがある。成形に用いる最高温度は、100~220℃が好ましく、120~200℃がさらに好ましい。
 本発明のプリプレグにおける構成要素[B]および[C]を含むエポキシ樹脂組成物は、条件[I]として、130℃~180℃の範囲にネマチック-等方相転移温度を有する。一般的に、エポキシ樹脂組成物単独での熱伝導性や樹脂靭性は、エポキシ樹脂組成物の硬化物中に占める前記高次構造の割合が増えるに伴い向上する。硬化物中に占める高次構造の割合を増やすためには、硬化不良を引き起こさない温度範囲で、液晶状態を維持したまま非液晶構造(等方的な構造)部分をなるべく含まないように硬化させることが有効である。多くの場合はネマチック相(液晶状態)から硬化開始しスメクチック相へと構造形成を進行させる。言い換えれば、樹脂靭性、熱伝導性向上のためには、ネマチック-等方相転移が起きず硬化後も液晶構造を維持するエポキシ樹脂組成物や、ネマチック-等方相転移温度がより高いエポキシ樹脂組成物の方が好ましいことになる。これに対して本発明では、エポキシ樹脂組成物単独ではなく、炭素繊維強化複合材料の特に、モードI層間靭性やモードII層間靭性といった力学試験の場合には、硬化物中に前記高次構造を十分大きな割合で存在させることに加えて、炭素繊維界面との接着性を向上させることの両方を同時に成立させると、エポキシ樹脂組成物の硬化物の高い樹脂物性が十分に生かされ、顕著に、モードI層間靭性やモードII層間靭性が向上することを見出した。条件[I]は、その両方を満たすための条件である。条件[I]を満たせば、硬化物が高い樹脂靭性を発現するとともに、ネマチック相から等方相への相転移に伴い、樹脂粘度が低下することで構成要素[A]との濡れ性が良くなり、構成要素[A]表面に存在するサイジング剤と十分に反応が可能となる。結果として、本発明のプリプレグを硬化して得られる炭素繊維強化複合材料において、樹脂と炭素繊維の界面接着性が向上する。ネマチック-等方相転移温度を180℃より高い温度にもつ場合には、樹脂粘度低下が十分にせず、構成要素[A]表面に存在するサイジング剤と樹脂との反応が十分に起こらないため、構成要素[A]とエポキシ樹脂組成物との界面接着性が十分に向上しない。その結果、条件[I]を満たすエポキシ樹脂組成物と比較してモードII層間靭性は低くなる。また、ネマチック-等方相転移温度が130℃より低い場合には、構成要素[B]および[C]を含むエポキシ樹脂組成物の硬化物中に含まれる高次構造の割合が減り、樹脂靭性自体が低下してしまうため、条件[I]を満たす場合と比較してモードI層間靭性およびモードII層間靭性は低くなる。
 ネマチック-等方相転移温度は、構成要素[B]および[C]を含むエポキシ樹脂組成物について昇温過程におけるクロスニコル状態での偏光顕微鏡観察により決定できる。クロスニコル状態での偏光顕微鏡観察では、エポキシ樹脂組成物がネマチック相を形成している場合、シュリーレン組織、糸状組織、砂状組織、ドロプレット組織等の干渉模様が観察される。一方で、ネマチック相を形成していない場合(等方相の場合)には、樹脂の光学的等方性により光が透過せず、前記干渉模様は観察されない。等方相である場合、視野は暗い領域として観察される。本発明の構成要素[B]および[C]を含むエポキシ樹脂組成物は、昇温に伴い、ネマチック相から等方相へ相転移していく様子が観察される。この時、ネマチック相から等方相への相転移が急激には起こらず、ネマチック相と等方相の共存状態を経ることがある。以下、ネマチック-等方相転移温度を決定する具体的な手法を示す。構成要素[B]と[C]を含むエポキシ樹脂組成物の倍率300倍の偏光顕微鏡観察画像を40℃~190℃まで、昇温速度2℃/分の昇温過程を5℃刻みで取得し、取得した画像の中で、等方相(干渉模様が観察されない領域)の占有する面積の割合が、ネマチック相と等方相を合わせたエポキシ樹脂組成物全体の面積の40%以上となる最低温度を本発明の条件[I]におけるネマチック-等方相転移温度と定義する。ここでは、ネマチック相もしくは等方相以外の領域、例えば、構成要素[B]および[C]に不溶な成分を含む場合には、前記面積の算出にはそれら不溶な成分は関与しない。また、各面積は画像を二値化することで算出できる。
 構成要素[B]は、本発明のプリプレグおよび炭素繊維強化複合材料中のエポキシ樹脂組成物の硬化物が高次構造を有するために、メソゲン構造を分子内に有したエポキシ樹脂である。メソゲン構造(ビフェニル基、ターフェニル基、ターフェニル類縁基、アントラセン基、これらがアゾメチン基、又はエステル基で接続された基等)を有することで、その構造に由来する高次構造(周期構造ともいう)が形成される。
 構成要素[B]は、下記一般式(1)で表される構造を有するエポキシ樹脂である。
Figure JPOXMLDOC01-appb-C000011
 一般式(1)中、Q、Q、Qはそれぞれ群(I)より選択される1種の構造を含む。一般式(1)中のR、Rはそれぞれ炭素数1~6のアルキレン基を示す。一般式(1)中のZは各々独立に、炭素数1~8の脂肪族炭化水素基、炭素数1~8の脂肪族アルコキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基、又はアセチル基を示す。nは各々独立に0~4の整数を示す。一般式(1)および群(I)中のY、Y、Yは、単結合もしくは群(II)より1つ選択される。
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
 群(I)におけるZは、各々独立に、炭素数1~4の脂肪族炭化水素基、炭素数1~4の脂肪族アルコキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基、又はアセチル基であることが好ましく、メチル基、エチル基、メトキシ基、エトキシ基、又は塩素原子であることがより好ましく、メチル基又はエチル基であることが更に好ましい。群(I)におけるnは、各々独立に、0~2の整数であることが好ましく、0又は1であることがより好ましい。
 構成要素[B]が液晶性エポキシ樹脂である場合、エポキシ樹脂中のメソゲン構造の割合が多い方が硬化後に高次構造を形成し易いが、メソゲン構造の割合が多過ぎると軟化点が高くなり、ハンドリング性が低下する。そのため、一般式(1)中のメソゲン構造の数は2つが特に好ましい。ここで、本発明における軟化点とは、JIS-K7234(1986)規定の環球法により、リングに注型した試料を浴槽中にて昇温し、試料にセットした球が光センサーを横切ったときの温度を示す。
 一般式(1)中のQ、Q、Qがベンゼン環を含むと、構成要素[B]の構造が剛直になるため高次構造形成し易くなり、靱性向上に有利となるため好ましい。また、一般式(1)中のQ、Q、Qが脂環式炭化水素を含むと、軟化点が低くなりハンドリング性が向上するため、これも好ましい態様となる。構成要素[B]のエポキシ樹脂は、1種類単独で用いても良く、2種類以上を併用しても良い。
 構成要素[B]は公知の方法により製造することができ、特許第4619770号公報、特開2005-206814、特開2010-241797、特開2011-98952号公報、特開2011-74366号公報、Journal of Polymer Science: Part A:Polymer Chemistry,Vol.42,3631(2004)等に記載の製造方法を参照することができる。
 構成要素[B]の具体例としては、1,4-ビス{4-(オキシラニルメトキシ)フェニル}シクロヘキサン、1-{3-メチル-4-(オキシラニルメトキシ)フェニル-4-{4-(オキシラニルメトキシ)フェニル}シクロヘキサン、1,4-ビス{4-(オキシラニルメトキシ)フェニル}-1-シクロヘキセン、1-{3-メチル-4-(オキシラニルメトキシ)フェニル}-4-{4-(オキシラニルメトキシ)フェニル}-1-シクロヘキセン、1-{2-メチル-4-(オキシラニルメトキシ)フェニル}-4-{4-(オキシラニルメトキシ)フェニル}-1-シクロヘキセン、1-{3-エチル-4-(オキシラニルメトキシ)フェニル}-4-{4-(オキシラニルメトキシ)フェニル}-1-シクロヘキセン、1-{2-エチル-4-(オキシラニルメトキシ)フェニル}-4-{4-(オキシラニルメトキシ)フェニル}-1-シクロヘキセン、1-{3-n-プロピル-4-(オキシラニルメトキシ)フェニル}-4-{4-(オキシラニルメトキシ)フェニル}-1-シクロヘキセン、1-{3-イソプロピル-4-(オキシラニルメトキシ)フェニル}-4-{4-(オキシラニルメトキシ)フェニル}-1-シクロヘキセン、1,4-ビス{4-(オキシラニルメトキシ)フェニル}-2-シクロヘキセン、1-{3-メチル-4-(オキシラニルメトキシ)フェニル}-4-{4-(オキシラニルメトキシ)フェニル}-2-シクロヘキセン、1,4-ビス{4-(オキシラニルメトキシ)フェニル}-2,5-シクロヘキサジエン、1-{3-メチル-4-(オキシラニルメトキシ)フェニル}-4-{4-(オキシラニルメトキシ)フェニル}-2,5-シクロヘキサジエン、1,4-ビス{4-(オキシラニルメトキシ)フェニル}-1,5-シクロヘキサジエン、1-{3-メチル-4-(オキシラニルメトキシ)フェニル}-4-{4-(オキシラニルメトキシ)フェニル}-1,5-シクロヘキサジエン、1,4-ビス{4-(オキシラニルメトキシ)フェニル}-1,4-シクロヘキサジエン、1-{3-メチル-4-(オキシラニルメトキシ)フェニル}-4-{4-(オキシラニルメトキシ)フェニル}-1,4-シクロヘキサジエン、1,4-ビス{4-(オキシラニルメトキシ)フェニル}-1,3-シクロヘキサジエン、1-{3-メチル-4-(オキシラニルメトキシ)フェニル}-4-{4-(オキシラニルメトキシ)フェニル}-1,3-シクロヘキサジエン、1,4-ビス{4-(オキシラニルメトキシ)フェニル}ベンゼン、1-{3-メチル-4-(オキシラニルメトキシ)フェニル}-4-{4-(オキシラニルメトキシ)フェニル}ベンゼン、1,4-フェニレン-ビス{4-(2,3-エポキシプロポキシ)ベンゾエート}、1,4-フェニレン-ビス{4-(2,3-エポキシプロポキシ)-2-メチルベンゾエート}、1,4-フェニレン-ビス{4-(2,3-エポキシプロポキシ)-3-メチルベンゾエート}、1,4-フェニレン-ビス{4-(2,3-エポキシプロポキシ)-3,5-ジメチルベンゾエート}、1,4-フェニレン-ビス{4-(2,3-エポキシプロポキシ)-2,6-ジメチルベンゾエート}、2-メチル-1,4-フェニレン-ビス{4-(2,3-エポキシプロポキシ)ベンゾエート}、2-メトキシ-1,4-フェニレン-ビス(4-ヒドロキシベンゾエート)、2-メチル-1,4-フェニレン-ビス{4-(2,3-エポキシプロポキシ)-2-メチルベンゾエート}、2-メチル-1,4-フェニレン-ビス{4-(2,3-エポキシプロポキシ)-3-メチルベンゾエート}、2-メチル-1,4-フェニレン-ビス{4-(2,3-エポキシプロポキシ)-3,5-ジメチルベンゾエート}、2-メチル-1,4-フェニレン-ビス{4-(2,3-エポキシプロポキシ)-2,6-ジメチルベンゾエート}、2,6-ジメチル-1,4-フェニレン-ビス{4-(2,3-エポキシプロポキシ)ベンゾエート}、2,6-ジメチル-1,4-フェニレン-ビス{4-(2,3-エポキシプロポキシ)-3-メチルベンゾエート}、2,6-ジメチル-1,4-フェニレン-ビス{4-(2,3-エポキシプロポキシ)-3,5-ジメチルベンゾエート}、2,3,6-トリメチル-1,4-フェニレン-ビス{4-(2,3-エポキシプロポキシ)ベンゾエート}、2,3,6-トリメチル-1,4-フェニレン-ビス{4-(2,3-エポキシプロポキシ)-2,6-ジメチルベンゾエート}、2,3,5,6-テトラメチル-1,4-フェニレン-ビス{4-(2,3-エポキシプロポキシ)ベンゾエート}、2,3,5,6-テトラメチル-1,4-フェニレン-ビス{4-(2,3-エポキシプロポキシ)-3-メチルベンゾエート}および2,3,5,6-テトラメチル-1,4-フェニレン-ビス{4-(2,3-エポキシプロポキシ)-3,5-ジメチルベンゾエート}、2-メチル-1,4-フェニレン-ビス{4-(3-オキサ-5,6-エポキシヘキシルオキシ)ベンゾエート}4-{4-(2,3-エポキシプロポキシ)フェニル}シクロヘキシル 4-(2,3-エポキシプロポキシ)ベンゾエート、4-{4-(2,3-エポキシプロポキシ)フェニル}シクロヘキシル 4-(2,3-エポキシプロポキシ)-2-メチルベンゾエート、4-{4-(2,3-エポキシプロポキシ)フェニル}シクロヘキシル 4-(2,3-エポキシプロポキシ)-3-メチルベンゾエート、4-{4-(2,3-エポキシプロポキシ)フェニル}シクロヘキシル 4-(2,3-エポキシプロポキシ)-3-エチルベンゾエート、4-{4-(2,3-エポキシプロポキシ)フェニル}シクロヘキシル 4-(2,3-エポキシプロポキシ)-2-イソプロピルベンゾエートおよび4-{4-(2,3-エポキシプロポキシ)フェニル}シクロヘキシル 4-(2,3-エポキシプロポキシ)-3,5-ジメチルベンゾエート、1,4-ビス{4-(3-オキサ-5,6-エポキシヘキシルオキシ)フェニル}-1-シクロヘキセン、1-{4-(3-オキサ-5,6-エポキシヘキシルオキシ)-3-メチルフェニル}-4-{4-(3-オキサ-5,6-エポキシヘキシルオキシ)フェニル}-1-シクロヘキセン、1,4-ビス{4-(5-メチル-3-オキサ-5,6-エポキシヘキシルオキシ)フェニル}-1-シクロヘキセン、1-{4-(5-メチル-3-オキサ-5,6-エポキシヘキシルオキシ)-3-メチルフェニル}-4-{4-(5-メチル-3-オキサ-5,6-エポキシヘキシルオキシ)フェニル}-1-シクロヘキセン、1,4-ビス{4-(4-メチル-4,5-エポキシペンチルオキシ)フェニル}-1-シクロヘキセン、1,4-ビス{4-(3-オキサ-5,6-エポキシヘキシルオキシ)フェニル}ベンゼン、1-{4-(3-オキサ-5,6-エポキシヘキシルオキシ)-3-メチルフェニル}-4-{4-(3-オキサ-5,6-エポキシヘキシルオキシ)フェニル}ベンゼン、1,4-ビス{4-(5-メチル-3-オキサ-5,6-エポキシヘキシルオキシ)フェニル}ベンゼン、1-{4-(5-メチル-3-オキサ-5,6-エポキシヘキシルオキシ)-3-メチルフェニル}-4-{4-(5-メチル-3-オキサ-5,6-エポキシヘキシルオキシ)フェニル}ベンゼン、1,4-ビス{4-(4-メチル-4,5-エポキシペンチルオキシ)フェニル}ベンゼン、1,4-ビス{4-(3-オキサ-5,6-エポキシヘキシルオキシ)フェニル}シクロヘキサン、1-{4-(3-オキサ-5,6-エポキシヘキシルオキシ)-3-メチルフェニル}-4-{4-(3-オキサ-5,6-エポキシヘキシルオキシ)フェニル}シクロヘキサン、1,4-ビス{4-(5-メチル-3-オキサ-5,6-エポキシヘキシルオキシ)フェニル}シクロヘキサン、1-{4-(5-メチル-3-オキサ-5,6-エポキシヘキシルオキシ)-3-メチルフェニル}-4-{4-(5-メチル-3-オキサ-5,6-エポキシヘキシルオキシ)フェニル}シクロヘキサン、1,4-ビス{4-(4-メチル-4,5-エポキシペンチルオキシ)フェニル}シクロヘキサンなどが挙げられ、中でも、硬化後の高次構造の形成、ハンドリング性、原料の入手容易性から、1-(3-メチル-4-オキシラニルメトキシフェニル)-4-(4-オキシラニルメトキシフェニル)-1-シクロヘキセン、2-メチル-1,4-フェニレン-ビス{4-(2,3-エポキシプロポキシ)ベンゾエート}、4-{4-(2,3-エポキシプロポキシ)フェニル}シクロヘキシル4-(2,3-エポキシプロポキシ)ベンゾエート、4-{4-(2,3-エポキシプロポキシ)フェニル}シクロヘキシル4-(2,3-エポキシプロポキシ)-3-メチルベンゾエートが特に好ましい。
 構成要素[B]は、一般式(1)で表される構造を有するエポキシ樹脂の一部が硬化剤等により重合したプレポリマーを含んでもよい。一般式(1)で表される構造を有するエポキシ樹脂は一般に結晶化し易く、炭素繊維に含浸させるためには高温を必要とするものが多い。構成要素[B]として一般式(1)で表される構造を有するエポキシ樹脂の一部を重合させたプレポリマーを含むことは、結晶化が抑制される傾向にあるためハンドリング性が良くなり、好ましい態様である。
 一般式(1)で表される構造を有するエポキシ樹脂を部分的に重合する方法としては、エポキシ樹脂を三級アミン類やイミダゾール類といったアニオン重合触媒や、三フッ化ホウ素-アミン錯体等のルイス酸といったカチオン重合触媒により重合させても良いし、エポキシと反応可能な官能基を有するプレポリマー化剤を用いてもよい。エポキシ樹脂を部分的に重合する場合、製造するプレポリマーの分子量を制御し易いことから、プレポリマー化剤を用いた方法が好ましい。プレポリマーの分子量が大き過ぎると、炭素繊維強化複合材料内の樹脂の架橋密度が下がり、耐熱性や力学特性を損なう恐れがある。
 一般式(1)で表される構造を有するエポキシ樹脂を部分的に重合するプレポリマー化剤としては、エポキシ樹脂と反応可能な活性水素を2~4個有する化合物であれば特に限定されない。例えば、フェノール化合物、アミン化合物、アミド化合物、スルフィド化合物、酸無水物が挙げられる。ここで、活性水素とは有機化合物において窒素、酸素、硫黄と結合していて、反応性の高い水素原子をいう。活性水素が1個の場合、プレポリマーを用いたエポキシ樹脂の硬化物の架橋密度が低下するため、耐熱性や力学特性が低くなる恐れがある。活性水素基が5個以上になると、エポキシ樹脂をプレポリマー化する際に反応の制御が困難となり、ゲル化する恐れがある。プレポリマー化剤として、2~3個の活性水素を有するフェノール化合物は、プレポリマー化反応中のゲル化抑制と、プレポリマーの貯蔵安定性から特に好適である。
 2~4個の活性水素を有するフェノール化合物の中でも、ベンゼン環を1~2個有するフェノール化合物は、プレポリマー化したエポキシ樹脂の構造が剛直になるため高次構造形成し易くなり、靱性向上する傾向があることに加えて、プレポリマー、および一般式(1)で表される構造を有するエポキシ樹脂を含む構成要素[B]、構成要素[C]の硬化剤を含むエポキシ樹脂組成物の粘度を低く抑えることができ、ハンドリング性が良くなるため好適である。
 2~3個の活性水素を有するフェノール化合物としては、例えば、カテコール、レゾルシノール、ヒドロキノン、ビスフェノールA、ビスフェノールF、ビスフェノールG、ビスフェノールZ、トリス(4-ヒドロキシフェニル)メタン及びこれらの誘導体が挙げられる。誘導体としては、ベンゼン環に炭素数1~8のアルキル基等が置換した化合物が挙げられる。これらのフェノール化合物は、1種類単独で用いてもよく、2種類以上を併用してもよい。
 構成要素[B]に含まれるプレポリマーの分子量は特に制限されない。エポキシ樹脂組成物の流動性の観点から、数平均分子量は15000以下であることが好ましく、10000以下であることが好ましく、350-5000であることがさらに好ましい。本発明の数平均分子量は、GPC(ゲル浸透クロマトグラフィー、SEC:size exclusion chromatographyともいう)により、標準ポリスチレンを用いた換算分子量を示す。
 一般式(1)で表される構造を有するエポキシ樹脂を部分的に重合してプレポリマー化する方法としては、特に制限はないが、例えば、合成溶媒中にエポキシ樹脂、上記プレポリマー化剤を溶解し、熱をかけながら撹持して合成することができる。プレポリマー化反応時にゲル化をしない範囲において、触媒を用いても良い。溶媒を使用せずに合成することは可能であるが、構成要素[B]は融点が高く、無溶媒ではプレポリマー化反応に高温を必要とするため、安全性の観点から合成溶媒を使用した合成法が好ましい。
 構成要素[B]がプレポリマーを含むと結晶化が抑制される傾向にあるためハンドリング性が良くなるが、プレポリマーの含有量が多すぎると、構成要素[B]と[C]とを含むエポキシ樹脂組成物の溶融粘度が高くなり過ぎてしまい、炭素繊維への含浸が難しくなる恐れがある。構成要素[B]がプレポリマーを含む場合、その含有量は、構成要素[B]に含まれるプレポリマーおよび一般式(1)で表される構造を有するエポキシ樹脂の合計100質量部に対して、好ましくは80質量部以下、より好ましくは5~60質量部の範囲である。前述のGPCあるいはHPLC(High performance Liquid chromatography)測定における全エポキシ樹脂由来ピークの面積に占めるプレポリマー由来のピーク面積の割合(プレポリマー由来のピーク面積/全エポキシ樹脂由来のピーク面積)では、好ましくは0.80以下であり、より好ましくは0.05~0.60の範囲である。
 本発明のプリプレグは、構成要素[B]以外のエポキシ樹脂、エポキシ樹脂以外の熱硬化性樹脂、エポキシ樹脂と熱硬化性樹脂の共重合体等を含んでも良い。上記の熱硬化性樹脂としては、例えば、不飽和ポリエステル樹脂、ビニルエステル樹脂、エポキシ樹脂、ベンゾオキサジン樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂およびポリイミド樹脂等が挙げられる。これらの樹脂組成物や化合物は、単独で用いてもよいし適宜配合して用いてもよい。少なくとも液晶性を示さないエポキシ樹脂や熱硬化性樹脂を配合することは、樹脂の流動性と硬化後の耐熱性を兼ね備えるものとする。
 構成要素[B]以外のエポキシ樹脂として、室温(25℃)で液状のエポキシ樹脂が好適に用いられる。ここでいう液状とは、測定される熱硬化性樹脂と同じ温度状態にある比重7以上の金属片を、該熱硬化性樹脂の上に置き、重力で瞬時に埋没するとき、その熱硬化性樹脂は液状であると定義する。比重7以上の金属片としては、例えば、鉄(鋼)、鋳鉄、銅などが挙げられる。
 構成要素[B]以外のエポキシ樹脂のうち、2官能のエポキシ樹脂としては、フェノールを前駆体とするグリシジルエーテル型エポキシ樹脂が好ましく用いられる。このようなエポキシ樹脂として、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ウレタン変性エポキシ樹脂、ヒダントイン型およびレゾルシノール型エポキシ樹脂等が挙げられる。
 構成要素[B]以外のエポキシ樹脂のうち、3官能以上のグリシジルアミン型エポキシ樹脂としては、例えば、ジアミノジフェニルメタン型、ジアミノジフェニルスルホン型、アミノフェノール型、メタキシレンジアミン型、1,3-ビスアミノメチルシクロヘキサン型、イソシアヌレート型等のエポキシ樹脂が挙げられる。中でも物性のバランスが良いことから、ジアミノジフェニルメタン型とアミノフェノール型のエポキシ樹脂が特に好ましく用いられる。
 また、3官能以上のグリシジルエーテル型エポキシ樹脂としては、例えば、フェノールノボラック型、オルソクレゾールノボラック型、トリスヒドロキシフェニルメタン型およびテトラフェニロールエタン型等のエポキシ樹脂が挙げられる。
 構成要素[B]以外のエポキシ樹脂として、25℃で液状のエポキシ樹脂を含む場合、構成要素[B]をプリプレグ中のエポキシ樹脂全体100質量部に対して80~99質量部の範囲で含み、25℃で液状のエポキシ樹脂をプリプレグ中のエポキシ樹脂全体100質量部に対して1~20質量部含むことが好ましい。この範囲であれば、エポキシ樹脂組成物の硬化物中のスメクチック構造形成阻害を起こしづらく、加えて、エポキシ樹脂組成物の粘度を下げられることで、樹脂と構成要素[A]表面に存在するサイジング剤との反応性が向上し優れた接着強度をもつ炭素繊維強化複合材料が得られる。
 また、次の一般式(2)で示される構造を有するエポキシ樹脂を用いることも好ましい。ビフェニル構造を分子内にもつことで、構成要素[B]と相溶しやすく、エポキシ樹脂組成物中およびエポキシ樹脂組成物の硬化物中における相分離を引き起こしにくい特徴がある。
Figure JPOXMLDOC01-appb-C000014
 一般式(2)中のR、Rはそれぞれ炭素数1~6のアルキレン基を示す。Zは各々独立に、炭素数1~8の脂肪族炭化水素基、炭素数1~8の脂肪族アルコキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基、又はアセチル基を示す。nは各々独立に0~4の整数を示す。
 エポキシ樹脂組成物が、一般式(2)で表されるエポキシ樹脂を含有する場合、その配合量は、一般式(1)で表される構造を有するエポキシ樹脂、プレポリマー、その他のエポキシ樹脂の合計100質量部に対して、1~30質量部含むことが好ましく、1~20質量部含むことが更に好ましい。
 本発明の構成要素[C]の硬化剤は、エポキシ樹脂の硬化剤であり、エポキシ基と反応し得る活性基を有する化合物である。硬化剤としては、具体的には、例えば、ジシアンジアミド、芳香族ポリアミン、アミノ安息香酸エステル類、各種酸無水物、フェノールノボラック樹脂、クレゾールノボラック樹脂、ポリフェノール化合物、イミダゾール誘導体、脂肪族アミン、テトラメチルグアニジン、チオ尿素付加アミン、メチルヘキサヒドロフタル酸無水物のようなカルボン酸無水物、カルボン酸アミド、有機酸ヒドラジド、ポリメルカプタンおよび三フッ化ホウ素エチルアミン錯体のようなルイス酸錯体などが挙げられる。これらの硬化剤は、単独で使用しても複数を併用してもよい。
 本発明の構成要素[C]の硬化剤は、構成要素[B]と構成要素[C]を含むエポキシ樹脂組成物が、ネマチック-等方相転移温度を130-180℃の範囲に有するという観点から、構成要素[B]との組み合わせを考慮して選択することが好ましい。例えば、構成要素[B]単独でネマチック-等方相転移温度が130-180℃の範囲に入っていたとしても、構成要素[C]硬化剤の反応が速すぎる場合には、構成要素[B]と構成要素[C]を含むエポキシ樹脂組成物は、ネマチック-等方相転移温度を130-180℃の範囲に有するとは限らない。それは、構成要素[C]が構成要素[B]へ溶解もしくは反応開始温度に到達した瞬間に、瞬時に硬化反応が進行し、構成要素[B]と[C]を含むエポキシ樹脂組成物が形成するネマチック相(液晶構造)が維持され、エポキシ樹脂組成物としてのネマチック-等方相転移温度が上昇する場合があるためである。その結果、樹脂粘度が十分低下せず、構成要素[A]表面のサイジング剤と十分に反応できず、エポキシ樹脂組成物と炭素繊維との界面接着性が向上しない。
 構成要素[C]として芳香族ポリアミンを用いることは、耐熱性の良好なエポキシ樹脂硬化物が得られるため好ましい。また、芳香族ポリアミンは、エポキシ樹脂の硬化剤の中でも硬化反応が遅いため、構成要素[B]と[C]を含むエポキシ樹脂組成物の前記した硬化進行に伴う液晶形成する時間が長くなり、高次構造を形成しやすいため好適である。芳香族ポリアミンの中でも、ジアミノジフェニルスルホンの各種異性体は、耐熱性の良好なエポキシ樹脂硬化物を得られることに加えて、他の芳香族ポリアミンと比べて硬化反応が遅いため、構成要素[B]と[C]を含むエポキシ樹脂組成物の前記した硬化進行に伴う液晶形成が起こりやすい。そのため、硬化後の樹脂硬化物中に占める高次構造の割合を大きくすることができ、特に好適である。
 また、ジシアンジアミドと尿素化合物、例えば、3,4-ジクロロフェニル-1,1-ジメチルウレアとの組合せ、あるいはイミダゾール類を硬化剤として用いることにより、比較的低温で硬化しながら高い耐熱耐水性が得られる。酸無水物を用いてエポキシ樹脂を硬化することは、アミン化合物硬化に比べ吸水率の低い硬化物を与える。その他、これらの硬化剤を潜在化したもの、例えば、マイクロカプセル化したものを用いることにより、プリプレグの保存安定性、特にタック性やドレープ性が室温放置しても変化しにくい。
 構成要素[C]としての硬化剤の添加量の最適値は、エポキシ樹脂と硬化剤の種類により異なる。例えば、芳香族ポリアミン硬化剤では、化学量論的に当量となるように添加することが好ましいが、エポキシ樹脂のエポキシ基量に対する芳香族ポリアミン硬化剤の活性水素量の比を0.7~1.0とすることにより、当量で用いた場合より高弾性率樹脂が得られることがあり、好ましい態様である。一方、エポキシ樹脂のエポキシ基量に対する芳香族ポリアミン硬化剤の活性水素量の比を1.0~1.6とすると、硬化速度の向上に加えて、高伸度樹脂が得られることがあり、これも好ましい態様である。したがって、エポキシ樹脂のエポキシ基量に対する硬化剤の活性水素量の比は、0.7~1.6の範囲が好ましい。
 芳香族ポリアミン硬化剤の市販品としては、セイカキュアS(和歌山精化工業(株)製)、および3,3’-DAS(三井化学(株)製)、“Lonzacure(登録商標)”M-DEA(Lonza(株)製)、“Lonzacure(登録商標)”M-DIPA(Lonza(株)製)、“Lonzacure(登録商標)”M-MIPA(Lonza(株)製)などが挙げられる。 
 ジシアンジアミドの市販品としては、DICY-7、DICY-15(以上、三菱ケミカル(株)製)などが挙げられる。ジシアンジアミドの誘導体は、ジシアンジアミドに各種化合物を結合させたものであり、エポキシ樹脂との反応物、ビニル化合物やアクリル化合物との反応物などが挙げられる。
 各硬化剤は、硬化促進剤や、その他のエポキシ樹脂の硬化剤と組み合わせて用いても良い。組み合わせる硬化促進剤としては、ウレア類、イミダゾール類、ルイス酸触媒などが挙げられる。
 かかるウレア化合物としては、例えば、N,N-ジメチル-N’-(3,4-ジクロロフェニル)ウレア、トルエンビス(ジメチルウレア)、4,4’-メチレンビス(フェニルジメチルウレア)、3-フェニル-1,1-ジメチルウレアなどを使用することができる。かかるウレア化合物の市販品としては、DCMU99(保土ヶ谷化学(株)製)、“Omicure(登録商標)”24、52、94(以上CVC SpecialtyChemicals,Inc.製)などが挙げられる。
 イミダゾール類の市販品としては、2MZ、2PZ、2E4MZ(以上、四国化成(株)製)などが挙げられる。ルイス酸触媒としては、三フッ化ホウ素・ピペリジン錯体、三フッ化ホウ素・モノエチルアミン錯体、三フッ化ホウ素・トリエタノールアミン錯体、三塩化ホウ素・オクチルアミン錯体などの、ハロゲン化ホウ素と塩基の錯体が挙げられる。
 有機酸ヒドラジド化合物としては、硬化促進性と保存安定性から3-ヒドロキシ-2-ナフトエ酸ヒドラジド、2,6-ナフタレンジカルボジヒドラジド、サリチル酸ヒドラジド、テレフタル酸ジヒドラジド、および、イソフタル酸ジヒドラジド等を好ましく挙げることができる。これらの有機酸ヒドラジド化合物は、必要に応じて2種類以上を混合して配合して使用してもよい。有機酸ヒドラジド化合物の市販品としては、2,6-ナフタレンジカルボジヒドラジド((株)日本ファインケム製)、イソフタル酸ジヒドラジド(大塚化学(株)製)などが挙げられる。
 また、これらエポキシ樹脂と硬化剤、あるいはそれらの一部を予備反応させた物をエポキシ樹脂組成物中に配合することもできる。この方法は、粘度調節や保存安定性向上に有効な場合がある。
 本発明において、構成要素[B]と[C]を含むエポキシ樹脂組成物の130℃~150℃における最低粘度が、0.1~10.0Pa・sの範囲に入ることが好ましく、更に好ましくは、0.1~2.0Pa・sの範囲に入ることが好ましい。最低粘度がこの範囲に入ることで、構成要素[A]表面に塗布されたサイジング剤と十分に反応し、樹脂と炭素繊維との間で優れた接着性を有した炭素繊維強化複合材料が得られる。
 本発明のプリプレグは、構成要素[A]~[C]だけでも、モードI層間靭性およびモードII層間靭性の顕著な向上が見込めるが、更に、構成要素[D]を後述する位置に配置させることにより、特にモードII層間靭性が大幅に向上する。この際のプリプレグは、構成要素[A]に、構成要素[B]、[C]および[D]を含むエポキシ樹脂組成物が含浸され、構成要素[D]が片面または両面の表面近傍に局在化された構成をしている。ここでいう表面近傍に局在化とは、構成要素[D]の90%以上が、プリプレグ表面からプリプレグ厚さの20%の深さの範囲内に存在していることを意味している。この存在率については、例えば、下記の方法で評価することができる。すなわち、プリプレグを2枚の表面の平滑なポリ四フッ化エチレン樹脂板の間に挟持して密着させ、7日間かけて徐々に硬化温度まで温度を上昇させてゲル化、硬化させて板状のプリプレグ硬化物を作製する。得られた硬化物の、断面の顕微鏡写真を撮影する。この断面写真を用いて、構成要素[D]がプリプレグの両面に存在している場合、プリプレグ硬化物の両面に、プリプレグ硬化物表面からプリプレグ厚さを100%とした時の20%深さ位置にプリプレグの表面と平行な線をそれぞれ、計2本引く。次に、プリプレグの表面と上記線との間に存在する構成要素[D]の合計面積と、プリプレグの厚さに渡って存在する構成要素[D]の合計面積をそれぞれ求め、プリプレグ厚さ100%に対して、プリプレグの表面両方から20%の深さの範囲に存在する構成要素[D]の存在率を計算する。また、構成要素[D]が片面に存在するプリプレグの場合、プリプレグ硬化物の片面にプリプレグ硬化物の表面から、厚さの20%の深さ位置にプリプレグ表面と平行な線を引く。次に、プリプレグ表面と上記線との間に存在する構成要素[D]の合計面積と、プリプレグの厚みに渡って存在する構成要素[D]の合計面積をそれぞれ求め、プリプレグ厚さ100%に対して、プリプレグの表面から20%の深さの範囲に存在する構成要素[D]の存在率を計算する。ここで、構成要素[D]の面積は、断面写真から構成要素[D]部分をくり抜き、その面積から換算して求める。また、一般に用いられる画像処理ソフトを用いて測定することも可能である。
 本発明のプリプレグとして構成要素[D]を含む場合、プリプレグを積層、硬化させた炭素繊維強化複合材料は、構成要素[B]および[C]を含むエポキシ樹脂組成物の硬化物ならびに構成要素[A]を含む炭素繊維層と、隣接する炭素繊維層間に配置され、構成要素[B]および[C]を含むエポキシ樹脂組成物の硬化物ならびに構成要素[D]を含む層間樹脂層とを有する。炭素繊維強化複合材料は、少なくとも2層以上の炭素繊維層を有し、炭素繊維層と層間樹脂層が交互に配置された構成をしている。前記積層構成において、最上面および最下面は、炭素繊維層であっても、樹脂組成物の硬化物からなる樹脂層であっても構わない。
 ここでいう層間樹脂層とは、隣接する炭素繊維層間に一様に適切な層間厚みを有する領域のことを意味し、この領域には構成要素[A]は含まれない。なお、一様に適切な層間樹脂層厚みを有するとは、厚みが薄すぎたり、厚すぎたりする領域がなく、特に層間樹脂層厚みが1μm未満となり、実質的に層間樹脂層が確保されない領域の割合が30%以下であることをいう。
 本発明のプリプレグとして構成要素[D]を含む場合、プリプレグを積層、硬化させた炭素繊維強化複合材料は、炭素繊維強化複合材料中に含まれる構成要素[D]が層間樹脂層中に局在化した構成をしている。局在化とは、プリプレグに配合された構成要素[D]100%のうち90%以上が層間樹脂層中に存在していることを意味する。構成要素[D]の局在化は以下の手法により確かめることができる。炭素繊維強化複合材料を炭素繊維に直交する方向から切断し、その断面を研磨後、光学顕微鏡で200倍以上に拡大し写真撮影する。写真上の無作為に選んだ領域について、炭素繊維の体積含有率(断面のためここでは面積含有率を示す)が50%となる、繊維層と平行に引いた1000μmの長さに渡り平均化したラインを繊維層領域と層間樹脂層領域の境界とする。写真上における繊維層領域にある構成要素[D]と、層間樹脂層領域にある構成要素[D]を画像処理により切り抜き各面積を算出する。面積の比から炭素繊維強化複合材料中に含まれる構成要素[D]の局在化率を求めることができる。
 層間樹脂層の平均厚みの下限は、好ましくは5μm以上、より好ましくは10μm以上である。層間樹脂層の平均厚みの上限は、好ましくは100μm以下、さらに70μm以下であることが好ましい。層間樹脂層の厚みが薄すぎる場合には、モードII層間靭性向上への効果は小さくなることがあり、また、厚すぎる場合には、相対的に炭素繊維の体積含有率を下げ、力学特性を低下させることがある。かかる層間樹脂層厚みは、例えば、以下の手順で測定することができる。炭素繊維強化複合材料を炭素繊維に直交する方向から切断し、その断面を研磨後、光学顕微鏡で200倍以上に拡大し写真撮影する。写真上の無作為に選んだ領域について、炭素繊維の体積含有率(断面のためここでは面積含有率を示す)が50%となる、繊維層と平行に引いたラインを繊維層領域と層間樹脂層領域の境界として、1000μmの長さに渡り平均化した境界ラインを引き、その間の距離を層間樹脂層厚みとする。
 構成要素[D]は、構成要素[A]、[B]、[C]を用いて炭素繊維強化複合材料を製造する際に、層間樹脂層を形成するために必要な成分である。層間樹脂層を形成するスペーサーとしての役割を果たしていれば、その形態や、無機物、有機物といった物質の種類は、特に限定しない。構成要素[B]、[C]を含む高靱性な層間樹脂層を形成することによって、本発明の炭素繊維強化複合材料は、非常に高い層間靱性を有する。
 構成要素[D]が構成要素[B]に不溶であると、様々な成型条件や硬化温度を用いても、層間樹脂層を安定的に形成することができるため好ましい。構成要素[B]に不溶であるとは、構成要素[D]を分散した構成要素[B]からなるエポキシ樹脂組成物を加熱硬化した際に、[D]が実質的に溶解しないことを意味しており、例えば、光学顕微鏡や透過型電子顕微鏡を用い、エポキシ樹脂硬化物の中で、該当成分が元のサイズから実質的に縮小することなく、エポキシ樹脂組成物との間に明確な界面を観察できるものであることを指す。
 本発明のプリプレグを積層、硬化させた炭素繊維強化複合材料は、力学物性の観点から層間樹脂層1層当たりに占める、構成要素[D]の体積割合が、10~80%であることが好ましく、15~70%であることがより好ましく、20~60%であることが更に好ましい。層間樹脂層1層当たりに占める構成要素[D]の体積割合は、以下の手法により算出した値とする。炭素繊維強化複合材料を炭素繊維に直交する方向から切断し、その断面を研磨後、光学顕微鏡で200倍以上に拡大し写真撮影する。写真上、前記した定義に従って無作為に層間樹脂層1層について面内方向に200μmの長さに渡り、構成要素[D]領域とそれ以外の領域(構成要素[B]および[C]等)を二色化し、構成要素[D]領域をくり抜き、面積を計算する。各領域における面積比から、構成要素[D]の層間樹脂層1層当たりに占める面積割合を算出する。前記操作20回分の平均値を層間樹脂層1層当たりに占める構成要素[D]の体積割合と定義する。
 構成要素[D]の形態は、具体的には、粒子、不織布、短繊維、編物、ニット、フィルム、ベール、などのさまざまな形態をとることができる。炭素繊維強化複合材料とした時に安定した接着強度や耐衝撃性を与える観点から、粒子で形態を保持するものであることが特に好ましい。
 例えば、構成要素[D]が粒子形態の場合、粒子の形状は、特開平1-110537号公報に示されるような球状形状でも、特開平1-110536号公報に示されているような非球状粒子でも、特開平5-115号公報に示されるような多孔質粒子でも良いが、球状が、樹脂の流動特性を低下させないため粘弾性に優れ、また応力集中の起点がなく、高い耐衝撃性を与えるという点で好ましい形態である。構成要素[D]が粒子形態である場合、エポキシ樹脂組成物中に粒子が3~40質量%含有されることが必要であり、4~30質量%含有されるのが好ましく、5~20質量%含有されるのがさらに好ましい。本明細書において、「質量%」とは質量百分率のことを言う。構成要素[D]の含有量が少ない場合には、該プリプレグを積層、硬化して得られる炭素繊維強化複合材料において層間樹脂層が十分に形成されず、モードII層間靭性向上への効果はあまり得られない。一方、40質量%よりも多い場合、層間接着強度が低下して機能を果たすことができない場合がある。構成要素[D]が粒子形態である場合、本明細書で開示した目的のためには、粒子の数平均粒径は1μmから100μmの範囲であるのが好ましく、より好ましくは5μmから40μmの範囲、さらに好ましくは10μmから30μmの範囲である。数平均粒径が小さすぎると、炭素繊維の繊維間に粒子が入り込み、耐衝撃性やその他の力学特性を低下させることがある。また、数平均粒径が大きすぎると、大径の粒子の存在により炭素繊維の配列が乱れ、また、プリプレグを積層して得られる炭素繊維強化複合材料の厚さが厚くなり相対的に繊維の体積分率を下げ、その力学特性を低下させることがある。ここで、数平均粒径は構成要素[D]をレーザー顕微鏡(超深度カラー3D形状測定顕微鏡VK-9510:(株)キーエンス製)にて200倍以上に拡大して観察を行い、任意の粒子50個以上の粒子について、その粒子の外接する円の直径を粒径として計測後、平均した値が用いられる。また、素材は、無機物粒子であっても有機物粒子であっても良く、例えば、熱可塑性樹脂粒子、熱硬化性樹脂粒子、熱硬化性ゴム粒子、架橋粒子、シリカ粒子、カーボンブラック粒子、カーボンナノチューブ、金属粒子を用いることができる。
 中でも、高靭性材料という観点から熱可塑性樹脂粒子は特に好ましい。具体的には、ポリイミド、ポリアミド、ポリアミドイミド、ポリフタルアミド、ポリエーテルイミド、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルケトンケトン、ポリアリールエーテルケトン、ポリエーテルスルホン、ポリエーテルエーテルスルホン、ポリフェニレンスルフィド、液晶性ポリマー、及びこれらの誘導体、が挙げられる。また、上記に示した樹脂を架橋させた、例えば、架橋ポリエーテルスルホン-ポリエーテルエーテルスルホン粒子なども有効である。また、上記した樹脂粒子は2種類以上併用して用いることもできる。
 これらの中で、ポリアミドが伸度、靭性、およびマトリックス樹脂との接着性が高いことから好ましく用いられる。ポリアミドとしては、3員環以上のラクタム、重合可能なアミノカルボン酸、二塩基酸とジアミンまたはそれらの塩、あるいはこれらの混合物の重縮合によって得られるポリアミドが挙げられる。ガラス転移温度が40℃~300℃の範囲にあるポリアミドが好ましい。
 ガラス転移温度が40℃~300℃の範囲にあるポリアミドの例としては、ポリカプラミド(ナイロン6)、ポリヘキサメチレンテレフタルアミド(ナイロン6T)、ポリノナンテレフタルアミド(ナイロン9T)、ポリドデカミド(ナイロン12)、ポリヘキサメチレンアジパミド(ナイロン66)、ポリ-m-キシレンアジパミド(ナイロンMXD)、3,3’-ジメチル-4,4’-ジアミノジシクロヘキシルメタンとイソフタル酸と1,2-アミゾドデカン酸の共重合体(“グリルアミド(商標名)”TR55、エムザベルケ社製)、3,3’-ジメチル-4,4’-ジアミノジシクロヘキシルメタンとドデカ二酸の共重合体(“グリルアミド(商標名)”TR90、エムザベルケ社製)、3,3’-ジメチル-4,4’-ジアミノジシクロヘキシルメタンとイソフタル酸と1,2-アミゾドデカン酸の共重合体と3,3’-ジメチル-4,4’-ジアミノジシクロヘキシルメタンとドデカ二酸の共重合体との混合物(“グリルアミド(商標名)”TR70LX、エムザベルケ社製)、4,4’-ジアミノジシクロヘキシルメタンとドデカ二酸の共重合体(“トロガミド(商標名)”CX7323、デグサ社製)などが挙げられる。中でも、炭素繊維強化複合材料とした際の耐衝撃性、モードI層間靭性とモードII層間靭性に加えて、耐湿熱性、耐溶剤性にも優れた炭素繊維強化複合材料が得られる点で、3,3’-ジメチル-4,4’-ジアミノジシクロヘキシルメタンとイソフタル酸と1,2-アミゾドデカン酸の共重合体(“グリルアミド(商標名)”TR55、エムザベルケ社製)、3,3’-ジメチル-4,4’-ジアミノジシクロヘキシルメタンとドデカ二酸の共重合体(“グリルアミド(商標名)”TR90、エムザベルケ社製)、3,3’-ジメチル-4,4’-ジアミノジシクロヘキシルメタンとイソフタル酸と1,2-アミゾドデカン酸の共重合体と3,3’-ジメチル-4,4’-ジアミノジシクロヘキシルメタンとドデカ二酸の共重合体との混合物(“グリルアミド(商標名)”TR70LX、エムザベルケ社製)、4,4’-ジアミノジシクロヘキシルメタンとドデカ二酸の共重合体(“トロガミド(商標名)”CX7323、デグサ社製)などのポリアミドが好ましい。
 次に、構成要素[D]の形態が不織布の場合について説明する。不織布の製法は紡糸直接製布と後加工製布の2つに大別でき、これらの手法で得ることができる。また、紡糸直接製布のうち、スパンボンド法とメルトブロー法、フラッシュ紡糸法などがあり、樹脂粘度に応じてこれらは使い分けられる。構成要素[D]が不織布である場合、エポキシ樹脂組成物中に不織布が3~40質量%含有されることが必要であり、4~30質量%含有されるのが好ましく、5~20質量%含有されるのがさらに好ましい。構成要素[D]の含有量が少ない場合、該プリプレグを積層、硬化して得られる炭素繊維強化複合材料において層間樹脂層が十分に形成されず、モードII層間靭性向上への効果は得られない。一方で、構成要素[D]の含有量が多い場合には、層間樹脂層が厚くなり、相対的に炭素繊維の含有割合を下げてしまうため得られる炭素繊維強化複合材料の力学物性が低下する。不織布の素材は、熱可塑性樹脂繊維のような有機物、ガラス繊維、炭素繊維、炭化ケイ素繊維のような無機物でもよい。粒子の場合と同様に、高靭性材料という観点からは熱可塑性樹脂が好ましい。具体的には、ポリイミド、ポリアミド、ポリアミドイミド、ポリフタルアミド、ポリエーテルイミド、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルケトンケトン、ポリアリールエーテルケトン、ポリエーテルスルホン、ポリフェニレンスルフィド、液晶性ポリマー、及びこれらの誘導体、が挙げられる。上記した樹脂は2種類以上併用して用いることもできる。これらの中で、ポリアミドが伸度、靭性、およびマトリックス樹脂との接着性が高いことから好ましく用いられる。ポリアミドとしては、3員環以上のラクタム、重合可能なアミノカルボン酸、二塩基酸とジアミンまたはそれらの塩、あるいはこれらの混合物の重縮合によって得られるポリアミドが挙げられる。
 次に、構成要素[D]の形態が短繊維の場合について説明する。短繊維は、モノフィラメントあるいはそれらを束にしたものを切断して短繊維化したものが好適に用いられ、繊維長を一定にしたものが好ましいが、必ずしもそれらに限定されるものではない。ここでいう短繊維とは、平均繊維長が30mm以下である繊維を意味する。短繊維の具体的な繊維長としては、平均繊維長が1mm以上、20mm以下の範囲が好ましく、2mm以上、15mm以下の範囲がより好ましい。1mm以下の場合には、繊維のネットワーク構造が十分に得られず、層間の強度が低下するため、脆弱層を有することとなり、得られる炭素繊維強化複合材料の力学物性が低下する。一方で、平均繊維長が長くなると層間が厚くなり、炭素繊維強化複合材料の力学物性が低下する。ここでいう短繊維の平均繊維長とは、繊維を無作為に400本選び出し、その長さを光学顕微鏡にて測定し、それらの平均値から算出される値である。短繊維の直径としては40μm以下が好ましく、20μm以下がより好ましい。
 構成要素[D]が短繊維である場合には、エポキシ樹脂組成物中に短繊維が3~40質量%含有されることが必要であり、4~30質量%含有されるのが好ましく、5~20質量%含有されるのがさらに好ましい。構成要素[D]の含有量が少ない場合、該プリプレグを積層、硬化して得られる炭素繊維強化複合材料において層間樹脂層が十分に形成されず、モードII層間靭性向上への効果は得られない。一方で、構成要素[D]の含有量が多い場合には、層間樹脂層が厚くなり、相対的に炭素繊維の含有割合を下げてしまうため得られる炭素繊維強化複合材料の力学物性が低下する。また、プリプレグを作製する際、短繊維は、粒子と同様な手法として用いても、あらかじめマット状(短繊維ウェブ)にしたものを用いても良い。短繊維の素材としては、有機繊維、無機繊維であっても良い。有機繊維としては、例えば、ポリアラミド、ポリエステル、ポリアセタール、ポリカーボネート、ポリフェニレンオキシド、ポリフェニレンスルフィド、ポリアリレート、ポリベンズイミダゾール、ポリイミド、ポリエーテルイミド、ポリスルホン、ポリアミド、ポリアミドイミド等のいわゆるエンジニアリングプラスチック、スーパーエンジニアリングプラスチックが好ましいが、分子鎖中にアミノ基、アミド基、フェノール性水酸基等のエポキシ樹脂と反応しうる官能基を有するものが特に好ましい。また、無機繊維としては、炭素繊維、ガラス繊維、炭化ケイ素繊維が挙げられ、特に炭素繊維としては、サイジング処理されたものが好ましく用いられる。サイジング剤としては、エポキシ基、水酸基、アクリレート基、メタクリレート基、アミド基、カルボキシル基、カルボン酸無水物から選ばれる少なくとも1種類の官能基をもつ成分からなるサイジング剤が、好ましく用いられる。
 本発明のプリプレグにおいて、上記したような構成要素[D]は、1種類を用いても、複数を併用しても良い。
 本発明のプリプレグはいくつかの方法で製造することができる。
 第一の方法は、構成要素[B]と[C]を含むエポキシ樹脂組成物を離型紙などの上にコーティングしたフィルムを用いて、シート状にした炭素繊維の両側あるいは片側からエポキシ樹脂組成物を含浸させて一次プリプレグを作製し、構成要素[D]をその両面、または片面に散布または貼着する方法である。ここで、構成要素[D]が多孔質フィルム、織物、マット、不織布、編物などの樹脂が含浸可能なシート状物である場合は、あらかじめエポキシ樹脂組成物を含浸させて貼着させることも可能である。
 第二の方法は、構成要素[B]と[C]を含むエポキシ樹脂組成物を離型紙などの上にコーティングしたフィルムを用いて、シート状にした炭素繊維の両側あるいは片側からエポキシ樹脂組成物を含浸させて一次プリプレグを作製し、構成要素[B]と[C]を含むエポキシ樹脂組成物を離型紙などの上にコーティングした別のフィルムの表面に構成要素[D]を散布または貼り付けしたものを一次プリプレグの両面または片面に貼着する方法である。
 第三の方法は、構成要素[B]と[C]を含むエポキシ樹脂組成物を離型紙などの上にコーティングしたフィルムを用いて、シート状にした炭素繊維の両側あるいは片側からエポキシ樹脂組成物を含浸させて一次プリプレグを作製し、構成要素[B]、[C]、[D]を混練したエポキシ樹脂組成物を離型紙などの上にコーティングしたフィルムを一次プリプレグの両面または片面に貼着する方法である。
 第四の方法は、シート状にした炭素繊維の両面あるいは片面に構成要素[B]、[C]を含むエポキシ樹脂組成物および[D]を同時に貼り合わせる方法で、構成要素[D]がシート状(フィルム、織物、マット、編物、不織布など)あるいは、糸状(長繊維、紡績糸、テープ状フィルム)の場合に適用できる方法である。
 本発明のプリプレグにおいて、構成要素[A]~[C]に加えて、更に[D]が規定された位置に配置されている場合には、プリプレグを積層、硬化してなる炭素繊維強化複合材料中に高次構造(スメクチック構造)の形成により樹脂靭性が高い、構成要素[B]および[C]を含むエポキシ樹脂組成物の硬化物で層間樹脂層が形成されるため、特に、顕著なモードII層間靭性向上効果が見られる。このとき、構成要素[B]および[C]を含むエポキシ樹脂組成物の硬化物が高次構造(スメクチック構造)形成すれば顕著な効果が見込めるため、条件[I]よりもネマチック-等方相転移の下限温度が20℃程度低くてもよく、具体的には、110℃~180℃の間にもつという条件[I’]を満たすことで構成要素[B]および[C]を含む樹脂組成物の硬化物が高次構造を形成し、高いモードI層間靭性に加えて、顕著なモードII層間靭性向上が期待できる。
 本発明においては、上記の構成要素[B]と[C]を含むエポキシ樹脂組成物に、熱可塑性樹脂を溶解させて用いることもできる。熱可塑性樹脂を用いることで、得られるプリプレグのタック性の制御、炭素繊維強化複合材料を成形する時のエポキシ樹脂組成物の流動性の制御することができるため、好ましく用いられる。このような熱可塑性樹脂としては、一般に、主鎖に、炭素-炭素結合、アミド結合、イミド結合、エステル結合、エーテル結合、カーボネート結合、ウレタン結合、チオエーテル結合、スルホン結合およびカルボニル結合からなる群から選ばれた結合を有する熱可塑性樹脂であることが好ましい。また、この熱可塑性樹脂は、部分的に架橋構造を有していても差し支えなく、結晶性を有していても非晶性であってもよい。特に、ポリアミド、ポリカーボナート、ポリアセタール、ポリフェニレンオキシド、ポリフェニレンスルフィド、ポリアリレート、ポリエステル、ポリアミドイミド、ポリイミド、ポリエーテルイミド、フェニルトリメチルインダン構造を有するポリイミド、ポリスルホン、ポリエーテルスルホン、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリアラミド、ポリエーテルニトリルおよびポリベンズイミダゾールからなる群から選ばれた少なくとも1種の樹脂が、上記のエポキシ樹脂組成物に含まれるいずれかのエポキシ樹脂に混合または溶解していることが好適である。
 中でも、良好な耐熱性を得るためには、熱可塑性樹脂のガラス転移温度(Tg)が少なくとも150℃以上であり、170℃以上であることが好ましい。配合する熱可塑性樹脂のガラス転移温度が、150℃未満であると、成形体として用いた時に熱による変形を起こしやすくなる場合がある。さらに、この熱可塑性樹脂の末端官能基としては、水酸基、カルボキシル基、チオール基、酸無水物などのものがカチオン重合性化合物と反応することができ、好ましく用いられる。具体的には、ポリエーテルスルホンの市販品である“スミカエクセル(登録商標)”PES3600P、“スミカエクセル(登録商標)”PES5003P、“スミカエクセル(登録商標)”PES5200P、“スミカエクセル(登録商標)”PES7600P(以上、住友化学工業(株)製)、Virantage(登録商標)”VW-10200RFP、“Virantage(登録商標)”VW-10700RFP(以上、ソルベイアドバンストポリマーズ(株)製)などを使用することができ、また、特表2004-506789号公報に記載されるようなポリエーテルスルホンとポリエーテルエーテルスルホンの共重合体オリゴマー、さらにポリエーテルイミドの市販品である“ウルテム(登録商標)”1000、“ウルテム(登録商標)”1010、“ウルテム(登録商標)”1040(以上、ソルベイアドバンストポリマーズ(株)製)などが挙げられる。オリゴマーとは10個から100個程度の有限個のモノマーが結合した比較的分子量が低い重合体を指す。
 また、本発明においては、上記の構成要素[B]、[C]を含むエポキシ樹脂組成物に、さらにエラストマーを配合してもよい。かかるエラストマーは、硬化後のエポキシマトリックス相内に微細なエラストマー相を形成させる目的で配合される。これにより、エポキシ樹脂硬化物への応力負荷時に生じる平面歪みを、エラストマー相の破壊空隙化(キャビテーション)により解消することができ、エポキシマトリックス相の塑性変形が誘発される結果、大きなエネルギー吸収を引き起こし、炭素繊維強化複合材料としての更なる層間靭性の向上に繋がる。
 エラストマーとは、ガラス転移温度が20℃より低いドメインを有するポリマー材料のことであり、液状ゴム、固形ゴム、架橋ゴム粒子、コアシェルゴム粒子、熱可塑性エラストマー、ガラス転移温度が20℃より低いブロックを有するブロック共重合体などが挙げられる。中でも、エラストマーとしては、ガラス転移温度が20℃以下のブロックを含むブロック共重合体およびゴム粒子から選ばれたものが好ましい。これにより、エポキシ樹脂へのエラストマーの相溶を最小限に抑えつつ、微細なエラストマー相を導入できることから、耐熱性や弾性率の低下を抑えつつ、炭素繊維強化複合材料としての層間靭性を大きく向上させることができる。
 ゴム粒子としては、架橋ゴム粒子、および架橋ゴム粒子の表面に異種ポリマーをグラフト重合したコアシェルゴム粒子が、取り扱い性等の観点から好ましく用いられる。かかるゴム粒子の一次粒子径は、50~300nmの範囲にあることが好ましく、特に80~200nmの範囲にあることが好ましい。また、かかるゴム粒子は使用するエポキシ樹脂との親和性が良好であり、樹脂調製や成形硬化の際に二次凝集を生じないものであることが好ましい。
 架橋ゴム粒子の市販品としては、カルボキシル変性のブタジエン-アクリロニトリル共重合体の架橋物からなるFX501P(日本合成ゴム工業(株)製)、アクリルゴム微粒子からなるCX-MNシリーズ(日本触媒(株)製)、YR-500シリーズ(新日鐵住金化学(株)製)等を使用することができる。
 コアシェルゴム粒子の市販品としては、例えば、ブタジエン・メタクリル酸アルキル・スチレン共重合物からなる“パラロイド(登録商標)”EXL-2655((株)クレハ製)、アクリル酸エステル・メタクリル酸エステル共重合体からなる“スタフィロイド(登録商標)”AC-3355、TR-2122(武田薬品工業(株)製)、アクリル酸ブチル・メタクリル酸メチル共重合物からなる“PARALOID(登録商標)”EXL-2611、EXL-3387(Rohm&Haas社製)、“カネエース(登録商標)”MXシリーズ(カネカ(株)製)等を使用することができる。
 本発明のプリプレグは、その炭素繊維質量分率は好ましくは40~90質量%であり、より好ましくは50~80質量%である。炭素繊維質量分率が低すぎると、得られる炭素繊維強化複合材料の質量が過大となり、比強度および比弾性率に優れる炭素繊維強化複合材料の利点が損なわれることがあり、また、炭素繊維質量分率が高すぎると、エポキシ樹脂組成物の含浸不良が生じ、得られる炭素繊維強化複合材料がボイドの多いものとなり易く、その力学特性が大きく低下することがある。
 本発明のプリプレグは、構成要素[B]と[C]等からなるエポキシ樹脂組成物を、メチルエチルケトンやメタノール等の溶媒に溶解して低粘度化し、炭素繊維に含浸させるウェット法と、エポキシ樹脂組成物を加熱により低粘度化し、炭素繊維に含浸させるホットメルト法等によって好適に製造することができる。
 ウェット法は、炭素繊維をエポキシ樹脂組成物の溶液に浸漬した後、引き上げ、オーブン等を用いて溶媒を蒸発せしめ、プリプレグを得る方法である。
 ホットメルト法は、加熱により低粘度化したエポキシ樹脂組成物を直接炭素繊維に含浸させる方法、またはエポキシ樹脂組成物を離型紙等の上にコーティングした樹脂フィルムを作製しておき、次に炭素繊維の両側または片側からその樹脂フィルムを重ね、加熱加圧することによりエポキシ樹脂組成物を転写含浸せしめ、プリプレグを得る方法である。このホットメルト法では、プリプレグ中に残留する溶媒が実質的に皆無となるため好ましい態様である。
 ホットメルト法でプリプレグを作製する場合、エポキシ樹脂組成物の粘度としては、後述する方法で測定される最低粘度で0.01~30Pa・sとすることが好ましい。ここでいうエポキシ樹脂組成物の最低粘度とは、パラレルプレートを使用した動的粘弾性測定装置(ARES,TA Instruments製)を使用し、温度を2℃/分の速度で昇温させながら角周波数3.14rad/s、およびプレート間隔1mmの条件で測定した複素粘度ηについて、40~180℃の温度範囲での最も低い値を示す。
 プリプレグは、単位面積あたりの炭素繊維量が50~1000g/mであることが好ましい。かかる炭素繊維量が50g/m未満では、炭素繊維強化複合材料を成形する際に所定の厚みを得るために積層枚数を多くする必要があり、作業が繁雑となることがある。一方で、炭素繊維量が1000g/mを超えると、プリプレグのドレープ性が悪くなる傾向にある。
 本発明の炭素繊維強化複合材料は、上述した本発明のプリプレグを所定の形態で積層し、加圧・加熱して成形する方法を一例として製造することができる。熱および圧力を付与する方法としては、プレス成形法、オートクレーブ成形法、バッギング成形法、ラッピングテープ法および内圧成形法等が使用される。特にスポーツ用品の成形には、ラッピングテープ法と内圧成形法が好ましく用いられる。
 ラッピングテープ法は、マンドレル等の芯金にプリプレグを捲回して、炭素繊維強化複合材料製の管状体を成形する方法であり、ゴルフシャフトや釣り竿等の棒状体を作製する際に好適な方法である。より具体的には、マンドレルにプリプレグを捲回し、プリプレグの固定および圧力付与のため、プリプレグの外側に熱可塑性樹脂フィルムからなるラッピングテープを捲回し、オーブン中でエポキシ樹脂組成物を加熱硬化させた後、芯金を抜き去って管状体を得る方法である。
 また、内圧成形法は、熱可塑性樹脂製のチューブ等の内圧付与体にプリプレグを捲回したプリフォームを金型中にセットし、次いでその内圧付与体に高圧の気体を導入して圧力を付与すると同時に金型を加熱せしめ、管状体を成形する方法である。この内圧成形法は、ゴルフシャフト、バット、およびテニスやバトミントン等のラケットのような複雑な形状物を成形する際に、特に好ましく用いられる。
 本発明のプリプレグの積層体を硬化させて炭素繊維強化複合材料を得る場合、上記の製造方法以外に、オートクレーブ等の高価な加圧設備を使用せず、真空ポンプとオーブンのみで行う脱オートクレーブ法を用いることもできる。脱オートクレーブ法を用いる場合には、エポキシ樹脂組成物の30℃における粘度は、プリプレグの取扱性の観点から、1.0×10Pa・s以上であることが好ましい。30℃における粘度が低すぎると、プリプレグの作製に必要とされる樹脂フィルムが作製され得ない。また、30℃における粘度が低すぎると、保管時にエポキシ樹脂組成物がプリプレグ中の繊維未含浸部に沈み込みやすくなり、タック性が失われることに加え、揮発分除去のための未含浸部の連続性が確保し辛く、揮発分を効率的に除去することが困難であり、脱オートクレーブ成形の際に、炭素繊維強化複合材料中に多数のボイドが発生する恐れがある。
 さらに、本発明のプリプレグを脱オートクレーブ法により硬化させて炭素繊維強化複合材料を得る場合、エポキシ樹脂組成物の最低粘度は110℃以上に存在し、0.1~15Pa・sが好ましく、0.3~10Pa・sがより好ましい。最低粘度が低すぎると、エポキシ樹脂のフローが多くなりすぎるために、プリプレグの硬化の際に樹脂がプリプレグから流出してしまう。また、得られる炭素繊維強化複合材料において目的の樹脂比率が達成されえない。最低粘度が高すぎると、マトリックス樹脂中から放出される水蒸気、および積層時に閉じ込められた空気を硬化中に成形パネル外部に除去することを可能にする樹脂粘度を確保することが可能でなくなり、また成形中の未含浸繊維部へのエポキシ樹脂組成物の含浸が十分でなく、未含浸繊維部が空隙となり、得られる炭素繊維強化複合材料中に多くのボイドが形成される。
 また、本発明のプリプレグを脱オートクレーブ法により硬化させて炭素繊維強化複合材料を得る場合、エポキシ樹脂組成物の軟化点は硬化温度以下にあることが好ましく、より好ましくは90℃以下であることが望ましい。軟化点が硬化温度以下にあることにより、室温保管時の繊維未含浸部へのエポキシ樹脂組成物の沈み込みを防ぐことができ、成形時に揮発分除去のための未含浸部の連続性が確保され、炭素繊維強化複合材料中のボイドが形成されにくくなる。加えて、未含浸部の連続性が保持されることにより、炭素繊維の拘束が少なくなり、ドレープ性が確保されやすくなる。軟化点か硬化温度以上であると、マトリックス樹脂の流動性が低く、成形過程における未含浸繊維領域への樹脂の流入が起こらず、未含浸繊維が成形体中に残存し、得られる炭素繊維強化複合材料中に多くのボイドが形成されやすくなる。ここでいう軟化点とは、エポキシ樹脂組成物の粘度測定より得られる複素粘度の変化曲線に対する2つの直線部を延長した交点の温度とする。複素粘度の最初に急激に低下する前の直線部を高温側に延長して、1本目の直線を引く。複素粘度が最初に急激に低下した後の中間部の直線部を低温側に延長して、2本目の直線を引く。両線の交点における垂直線を横座標の温度軸に引き、その温度を軟化点として求める。
 前記構成要素[B]および[C]を含むエポキシ樹脂組成物の軟化点は、液晶転移に由来することが好ましい。曲面形状を有するような炭素繊維強化複合材料を成形する際、プリプレグが剛直である場合に、成形型の曲面形状にプリプレグが追従しない場合がある。エポキシ樹脂組成物の軟化点がガラス転移点に由来する場合、ガラス状態のプリプレグは剛直であり、ドレープ性に劣る。一方、エポキシ樹脂組成物の軟化点が液晶の転移点に由来する場合、プリプレグ中の液晶状態のエポキシ樹脂組成物は曲面形状に沿わせるような変形に対して追従性に優れるために、ガラス状態のプリプレグに対し、ドレープ性に優れる。
 脱オートクレーブ法に用いるプリプレグは、シート状の炭素繊維の一方の面のみにマトリックス樹脂であるエポキシ樹脂組成物が被覆された形態であることが好ましい。一方の面がマトリックス樹脂で含浸されていない炭素繊維を含むことで脱気パスの機能を果たす。特にオーブン等の低圧力下で加熱成形する際に、得られる炭素繊維強化複合材料中のボイドを低減させる効果がある。
 脱オートクレーブ法に用いるプリプレグは、エポキシ樹脂組成物が炭素繊維中の一部に含浸された形態が好ましい。プリプレグ中の炭素繊維へのエポキシ樹脂組成物の含浸の度合いは、吸水試験により算出されるプリプレグの吸水率WPUが1~15%であることが好ましく、3~15%がより好ましく、5~12%がさらに好ましい。本発明のWPUとは、吸水試験により算出されるプリプレグの吸水率であり、構成要素[B]および[C]を含むエポキシ樹脂組成物が、構成要素[A]の炭素繊維に含浸した度合いを表す指標である。WPUが1%以上であると、マトリックス樹脂中から放出される水蒸気および積層時に閉じ込められた空気を硬化中に成形パネル外部に除去するための繊維未含浸部が流路として機能し、ボイドの発生を抑制しやすくなる。またWPUが15%以下であると、プリプレグを積層する際に、プリプレグの面外方向への割れを抑制し、プリプレグの取り扱い性が容易となる。
 プリプレグの吸水率WPUの測定は以下のように行われる。まず、一方向に炭素繊維を配列した100mm×100mmのプリプレグを準備し、質量を計測する。そのときの質量をW1とする。用意したプリプレグの両面から薄板のアルミ板で、プリプレグが5mm突出するように把持する。このとき突出したプリプレグは繊維方向が5mm、繊維に直交する面が100mmとなる。アルミ板をクランプで把持する。5mmの突出部を23℃の温度の水に、5分間浸漬する。浸漬後、プリプレグを取り出し、プリプレグ表層の水をすべて取り除き、吸水したプリプレグの質量を測定する。このときの質量をW2とする。吸水率WPUは以下の式で計算される。
 WPU(%)= (W2-W1)/W1×100 
 本発明の炭素繊維強化複合材料は、前記したエポキシ樹脂組成物を用いて、プリプレグを経由しない方法によっても製造することができる。
 このような方法としては、例えば、構成要素[B]、[C]を含むエポキシ樹脂組成物を直接構成要素[A]の炭素繊維に含浸させた後加熱硬化する方法、即ち、ハンド・レイアップ法、フィラメント・ワインディング法、プルトルージョン法や、あらかじめ部材形状に賦形した連続炭素繊維基材にエポキシ樹脂組成物を含浸および硬化させるレジン・フィルム・インフュージョン法、レジン・インジェクション・モールディング法およびレジン・トランスファー・モールディング(RTM)法等が用いられる。
 本発明によるエポキシ樹脂組成物は、RTM法に関する総説(SAMPE Journal,Vol.34,No.6,pp7-19)に挙げられている、VARTM(Vaccum-assisted ResinTransfer Molding)、VIMP(Variable Infusion Molding Process)、TERTM(Thermal Expansion RTM)、RARTM(Rubber-Assisted RTM)、RIRM(Resin Injection Recirculation Molding)、CRTM(Continuous RTM)、CIRTM(Co-injection Resin Transfer Molding)、RLI(Resin Liquid Infusion)、SCRIMP(Seeman’s Composite Resin Infusion Molding Process)等の成形法にも好適に用いられる。
 以下、本発明を実施例により詳細に説明する。ただし、本発明の範囲はこれらの実施例に限定されるものでは無い。なお、組成比の単位「部」は、特に注釈のない限り質量部を意味する。また、各種特性(物性)の測定は、特に注釈のない限り温度23℃、相対湿度50%の環境下で行った。
 <実施例および比較例で用いられた原材料>
 (1)構成要素[A]
 ・炭素繊維1
 アクリロニトリル系共重合体を乾湿式紡糸し、焼成し、総フィラメント数24,000本、総繊度1,000テックス、比重1.8、ストランド引張強度6.6GPa、ストランド引張弾性率324GPaの炭素繊維を得た。次いで、その炭素繊維を、濃度0.1モル/lの炭酸水素アンモニウム水溶液を電解液として、電気量を炭素繊維1g当たり80クーロンで電解表面処理した。この電解表面処理を施された炭素繊維を続いて水洗し、150℃の温度の加熱空気中で乾燥し、原料となる炭素繊維を得た。後述の(8)に記載の方法に従って測定したところ、表面酸素濃度O/Cは、0.16であった。
 “jER(登録商標)”152(三菱化学(株)製)、ポリグリセリンポリグリシジルエーテル、乳化剤からなる水分散エマルジョンを調整しサイジング剤とした。このサイジング剤を浸漬法により表面処理された炭素繊維に塗布した後、乾燥処理をして、サイジング剤塗布炭素繊維束を得た。サイジング剤の付着量は、サイジング剤塗布炭素繊維に対して0.6質量%となるように調整した。
 このように作製したサイジング剤塗布炭素繊維を、後述の(10)に記載の方法に従って測定したところ、洗浄後のサイジング剤付着量は0.16質量%であり、好ましい付着量であった。また、後述の(11)に記載の方法で測定した界面剪断強度は44MPaであった。
 ・炭素繊維2
 アクリロニトリル系共重合体を乾湿式紡糸し、焼成し、総フィラメント数12,000本、総繊度1,000テックス、比重1.8、ストランド引張強度4.9GPa、ストランド引張弾性率230GPaの炭素繊維を得た。次いで、その炭素繊維を、濃度0.1モル/lの炭酸水素アンモニウム水溶液を電解液として、電気量を炭素繊維1g当たり80クーロンで電解表面処理した。この電解表面処理を施された炭素繊維を続いて水洗し、150℃の温度の加熱空気中で乾燥し、原料となる炭素繊維を得た。このとき表面酸素濃度O/Cは、0.15であった。
 この炭素繊維を用い、炭素繊維1と同様の手法でサイジング剤塗布炭素繊維束を得た。サイジング剤の付着量は、サイジング剤塗布炭素繊維に対して0.6質量%となるように調整した。洗浄後のサイジング剤付着量は0.17質量%であり、好ましい付着量であった。また、界面接着強度は43MPaであった。
 ・炭素繊維3
 アクリロニトリル系共重合体を乾湿式紡糸し、焼成し、総フィラメント数24,000本、総繊度1,000テックス、比重1.8、ストランド引張強度5.9GPa、ストランド引張弾性率294GPaの炭素繊維を得た。次いで、その炭素繊維を、濃度0.1モル/lの炭酸水素アンモニウム水溶液を電解液として、電気量を炭素繊維1g当たり120クーロンで電解表面処理した。この電解表面処理を施された炭素繊維を続いて水洗し、150℃の温度の加熱空気中で乾燥し、原料となる炭素繊維を得た。このとき表面酸素濃度O/Cは、0.20であった。
 この炭素繊維を用い、炭素繊維1と同様の手法でサイジング剤塗布炭素繊維束を得た。サイジング剤の付着量は、サイジング剤塗布炭素繊維に対して0.6質量%となるように調整した。洗浄後のサイジング剤付着量は0.19質量%であり、好ましい付着量であった。また、界面接着強度は45MPaであった。
 ・炭素繊維4
 電気量を炭素繊維1g当たり80クーロンで電解表面処理した以外は炭素繊維3と同様にして、サイジング剤塗布炭素繊維束を得た。表面酸素濃度O/Cは、0.15であった。サイジング剤の付着量は、サイジング剤塗布炭素繊維に対して0.6質量%となるように調整した。洗浄後のサイジング剤付着量は0.16質量%であり、好ましい付着量であった。また、界面接着強度は43MPaであった。
 ・炭素繊維5
 電気量を炭素繊維1g当たり40クーロンで電解表面処理した以外は炭素繊維3と同様にして、サイジング剤塗布炭素繊維束を得た。表面酸素濃度O/Cは、0.13であった。サイジング剤の付着量は、サイジング剤塗布炭素繊維に対して0.6質量%となるように調整した。洗浄後のサイジング剤付着量は0.12質量%であり、好ましい付着量であった。また、界面接着強度は29MPaであった。
 ・炭素繊維6
 炭素繊維3と同様にして、電解表面処理が施された原料の炭素繊維を得た。この炭素繊維を用い、炭素繊維1と同様の手法で、サイジング剤の付着量がサイジング剤塗布炭素繊維に対して0.2質量%となるサイジング剤塗布炭素繊維束を得た。洗浄後のサイジング剤付着量は0.08%であり、好ましい付着量であった。また界面接着強度は25MPaであった。
 (2)構成要素[A]以外の炭素繊維
 ・炭素繊維7
 アクリロニトリル系共重合体を乾湿式紡糸し、焼成し、総フィラメント数24,000本、総繊度1,000テックス、比重1.8、ストランド引張強度5.9GPa、ストランド引張弾性率294GPaの炭素繊維を得た。表面酸素濃度O/Cは、0.15であった。この炭素繊維はサイジング剤を塗付しないで用いた。洗浄後のサイジング剤付着量は0質量%であった。また界面接着強度は22MPaであった。
 (3)構成要素[B]
 ・エポキシ樹脂1
 化合物名:2-メチル-1,4-フェニレン-ビス{4-(2,3-エポキシプロポキシ)ベンゾエート}、特開2010-241797号公報参照、エポキシ当量:245g/eq)を200℃に加熱融解し、そこへプレポリマー化剤としてレゾルシノール(水酸基当量:55g/eq)をエポキシ当量数:水酸基当量数が100:25になるように加え、窒素雰囲気下、200℃で3時間加熱することでエポキシ樹脂1を得た。プレポリマーの含有量は、2-メチル-1,4-フェニレン-ビス{4-(2,3-エポキシプロポキシ)ベンゾエートとそのプレポリマーの合計100質量部に対して53質量部であり、JIS K7236に従いエポキシ当量を測定したところ353g/eqであった。
 ・エポキシ樹脂2
 化合物名:4-{4-(2,3-エポキシプロポキシ)フェニル}シクロヘキシル4-(2,3-エポキシプロポキシ)ベンゾエート、特許第5471975号公報参照、エポキシ当量:213g/eq)を200℃に加熱融解し、そこへプレポリマー化剤としてレゾルシノール(水酸基当量:55g/eq)をエポキシ当量数:水酸基当量数が100:25になるように加え、窒素雰囲気下、200℃で3時間加熱することでエポキシ樹脂2を得た。プレポリマーの含有量は、4-{4-(2,3-エポキシプロポキシ)フェニル}シクロヘキシル4-(2,3-エポキシプロポキシ)ベンゾエートとそのプレポリマーの合計100質量部に対して53質量部であり、JIS K7236に従いエポキシ当量を測定したところ320g/eqであった。
 ・エポキシ樹脂3
 化合物名:4-{4-(2,3-エポキシプロポキシ)フェニル}シクロヘキシル4-(2,3-エポキシプロポキシ)ベンゾエート、特許第5471975号公報参照、エポキシ当量:213g/eq)を200℃に加熱融解し、そこへプレポリマー化剤としてビスフェノールF(水酸基当量:100g/eq)を、エポキシ当量数:水酸基当量数が100:15になるように加え、窒素雰囲気下、200℃で3時間加熱することでエポキシ樹脂3を得た。プレポリマーの含有量は、4-{4-(2,3-エポキシプロポキシ)フェニル}シクロヘキシル4-(2,3-エポキシプロポキシ)ベンゾエートとそのプレポリマーの合計100質量部に対して38質量部であり、JIS K7236に従いエポキシ当量を測定したところ309g/eqであった。
 (4)構成要素[B]以外のエポキシ樹脂
 25℃で液状のエポキシ樹脂
 ・“アラルダイト(登録商標)”MY0610(トリグリシジル-m-アミノフェノール、ハンツマン・ジャパン(株)製)
 ・“jER(登録商標)”604(テトラグリシジルジアミノジフェニルメタン、三菱ケミカル(株)製)
 ・“エピクロン(登録商標)”830(ビスフェノールA型エポキシ樹脂、三菱ケミカル(株)製)
 ・“jER(登録商標)”828(ビスフェノールA型エポキシ樹脂、三菱ケミカル(株)製)。
一般式(2)のエポキシ樹脂
 ・“jER(登録商標)”YX4000(ビフェニル型エポキシ樹脂、三菱ケミカル(株)製) 
 (5)構成要素[C]
 ・3,3’-DAS(3,3’-ジアミノジフェニルスルホン、三井化学ファイン(株)製)
・“セイカキュア”(商標登録)-S(4,4’-ジアミノジフェニルスルホン、和歌山精化工業(株)製)
 ・Lonzacure(登録商標)”DETDA80(Lonza(株)製)。
 ・KAYAHARD A‐A(4,4’‐ジアミノ‐3,3’‐ジエチルジフェニルメタン、日本化薬(株)製)
 ・MEH-7500(フェノール樹脂、明和化成(株)製)
(6)構成要素[D]
 粒子形態
 ・下記の製造方法で得られた粒子A(数平均粒径:13μm)
 透明ポリアミド(“グリルアミド(登録商標)”TR55、エムスケミー・ジャパン(株)製)90部、エポキシ樹脂(“jER(登録商標)”828、三菱ケミカル(株)製)7.5部および硬化剤(“トーマイド(登録商標)”#296、(株)ティーアンドケイ東華製)2.5部を、クロロホルム300部とメタノール100部の混合溶媒中に添加して均一溶液を得た。次に、得られた均一溶液を塗装用のスプレーガンを用い、撹拌している3000部のn-ヘキサンの液面に向かって霧状に吹き付けて溶質を析出させた。析出した固体を濾別し、n-ヘキサンで良く洗浄した後に、100℃の温度で24時間の真空乾燥を行い、球状のセミIPN構造を有するエポキシ改質ナイロンからなる粒子Aを得た。
 ・粒子B:“オルガゾール(登録商標)”1002D(アルケマ(株)製)。
 ・粒子C:“ULTEM(登録商標)”1000F3SP-1000(SABICジャパン合同会社製、)。
 不織布形態
 ・下記の製造方法で得られた不織布1、2
 オリフィス(φ=0.5mm)を1個もうけた口金から吐出した非晶質ポリアミド“グリルアミド(登録商標)”TR55(エムスケミー・ジャパン(株)製、非晶性ポリアミド、ガラス転移温度157℃)の繊維を、金網上に先端に衝撃板を設けたアスピレータと空気圧縮を用いて延伸、散布して補修した。金網上に補修した繊維シートを加熱プレス機を用いて熱接着し、目付の異なる以下の2種類の“グリルアミド(登録商標)”TR55の不織布1、2を得た(スパンボンド法)。
 不織布1;TR55、目付13g/m
 不織布2;TR55、目付6g/m
 ・下記の製造方法で得られた不織布3、4
 押出機で溶融したナイロン6、ナイロン12を口金をもつダイから、高温、高速の気流で糸状に吹き出し、繊維状に遠心された樹脂をベルトコンベアー上で集積することにより以下のナイロン6、ナイロン12の不織布3、4をそれぞれ作製した(メルトブロー法)。
 不織布3;ナイロン6、目付17g/m
 不織布4;ナイロン12、目付19g/m
 短繊維ウェブ形態
 ・下記の製造方法で得られた短繊維ウェブ1、2、3、4
 炭素繊維“トレカ(登録商標)”T700S-12K、(株)東レ製をカートリッジカッターで所定の長さにカットし、チョップド炭素繊維(炭素短繊維)を作製した。水と界面活性剤(ポリオキシエチレンラウリルアーテル(商品名)、ナカライタスク(株)製)からなる界面活性剤の濃度が0.1質量%の分散液を作製した。この分散液と上記のチョップド炭素繊維とから、炭素短繊維ウェブの製造装置を用いて以下の5種類の炭素短繊維ウェブを作製した。
 短繊維ウェブ1(CF1);平均繊維長3mm、目付6g/m
 短繊維ウェブ2(CF2);平均繊維長6mm、目付6g/m
 短繊維ウェブ3(CF3);平均繊維長12mm、目付6g/m
 短繊維ウェブ4(CF4);平均繊維長6mm、目付12g/m
 (7)その他の成分
 ・熱可塑性樹脂“スミカエクセル(登録商標)”5003P(ポリエーテルスルホン、住友化学(株)製)。
 ・“Virantage(登録商標)”VW-10700RFP(ポリエーテルスルホン、ソルベイスペシャルティポリマーズジャパン(株)製)。
 ・添加剤 “TPP”(トリフェニルホスフィン、北興化学工業(株)製)。
 <各種評価法>
 (8)炭素繊維の表面酸素濃度O/Cの測定
 炭素繊維の表面酸素濃度(O/C)は、次の手順に従いX線光電子分光法により求めた。まず、溶媒で表面に付着している汚れを除去した炭素繊維を、約20mmにカットし、銅製の試料支持台に拡げた。次に、試料支持台を試料チャンバー内にセットし、試料チャンバー中を1×10-8Torrに保った。続いて、X線源としてAlKα1、2を用い、光電子脱出角度を90°として測定を行った。なお、測定時の帯電に伴うピークの補正値としてC1sのメインピーク(ピークトップ)の結合エネルギー値を284.6eVに合わせた。C1sメイン面積は、282~296eVの範囲で直線のベースラインを引くことにより求めた。また、O1sピーク面積は、528~540eVの範囲で直線のベースラインを引くことにより求めた。ここで、表面酸素濃度とは、上記のO1sピーク面積とC1sピーク面積の比から装置固有の感度補正値を用いて原子数比として算出したものである。X線光電子分光法装置として、アルバック・ファイ(株)製ESCA-1600を用い、上記装置固有の感度補正値は2.33であった。
 (9)サイジング剤付着量の測定
 サイジング塗布炭素繊維のサイジング剤の付着量は、次の手順に従い求めた。まず、サイジング塗布炭素繊維を2±0.5g採取し、窒素雰囲気中450℃にて加熱処理を15分間行った。このときの加熱処理前後の質量変化量を加熱処理前の質量で除した値の質量%をサイジング剤の付着量とした。
 (10)洗浄後のサイジング剤付着量の測定
 洗浄後のサイジング剤の付着量は次のように測定した。まず、サイジング剤塗布炭素繊維2±0.5gをアセトニトリルとクロロホルムを体積比9対1で混合した溶液10mlに浸漬し、超音波洗浄を20分間行い、繊維からサイジング剤を溶出させた後、十分に乾燥させて質量を測定した。さらにこの洗浄後炭素繊維を窒素雰囲気中450℃にて加熱処理を15分間行った。このときの加熱処理前後の質量変化量を、加熱処理前の質量で除した値の質量%を洗浄後のサイジング剤の付着量とした。
 (11)界面剪断強度(IFSS)の測定
 界面剪断強度(IFSS)の測定は、次の(イ)~(ニ)の手順で行った。
 (イ)樹脂の調製
 ビスフェノールA型エポキシ化合物“jER(登録商標)”828(三菱ケミカル(株)製)100質量部とメタフェニレンジアミン(シグマアルドリッチジャパン合同会社製)14.5質量部を、それぞれ容器に入れた。その後、上記のjER828の粘度低下とメタフェニレンジアミンの溶解のため、75℃の温度で15分間加熱した。その後、両者をよく混合し、80℃の温度で約15分間真空脱泡を行った。
 (ロ)炭素繊維単糸を専用モールドに固定
 炭素繊維束から単繊維を抜き取り、ダンベル型モールドの長手方向に単繊維に一定張力を与えた状態で両端を接着剤で固定した。その後、炭素繊維およびモールドに付着した水分を除去するため、80℃の温度で30分間以上真空乾燥を行った。ダンベル型モールドはシリコーンゴム製で、注型部分の形状は、中央部分巾5mm、長さ25mm、両端部分巾10mm、全体長さ150mmであった。 
 (ハ)樹脂注型から硬化まで
 上記(ロ)の手順の真空乾燥後のモールド内に、上記(イ)の手順で調整した樹脂を流し込み、オーブンを用いて、昇温速度1.5℃/分で75℃の温度まで上昇し2時間保持後、昇温速度1.5℃/分で125℃の温度まで上昇し2時間保持後、降温速度2.5℃/分で30℃の温度まで降温した。その後、脱型して試験片を得た。
 (ニ)界面剪断強度(IFSS)の測定
 上記(ハ)の手順で得られた試験片に繊維軸方向(長手方向)に歪速度0.3%/秒で引張力を与え、歪みを12%生じさせた後、偏光顕微鏡により試験片中心部22mmの範囲における繊維破断数N(個)を測定した。次に、平均破断繊維長laを、la(μm)=22×1000(μm)/N(個)の式により計算した。次に、平均破断繊維長laから臨界繊維長lcを、lc(μm)=(4/3)×la(μm)の式により計算した。ストランド引張強度σと炭素繊維単糸の直径dを測定し、炭素繊維と樹脂界面の接着強度の指標である界面剪断強度IFSSを、次式で算出した。実施例では、測定数n=5の平均を試験結果とした。
・界面剪断強度IFSS(MPa)=σ(MPa)×d(μm)/(2×lc)(μm)。
 (12)エポキシ樹脂組成物の調製(構成要素[D]を含まない場合)
 ニーダー中に、表1、2に示す配合比(質量部)で、硬化剤、添加剤以外の成分を所定量加え、混練しつつ、160℃まで昇温し、160℃で1時間混練することで、透明な粘調液を得た。混練しつつ90℃まで降温させた後、硬化剤、添加剤を所定量添加え、さらに混練し、エポキシ樹脂組成物を得た。
 (13)プリプレグの作製(構成要素[D]を含まない場合)
 (12)で調製したエポキシ樹脂組成物を、ナイフコーターを用いて離型紙上に塗布して樹脂フィルムを作製した。次に、シート状に一方向に配列させた構成要素[A]の炭素繊維に、樹脂フィルム2枚を炭素繊維の両面から重ね、加熱加圧により樹脂を炭素繊維に含浸させ、炭素繊維の目付が190g/m、エポキシ樹脂組成物の質量分率が35%の一方向プリプレグを得た。
 (14)構成要素[D]を含み、構成要素[D]が粒子である場合のプリプレグの作製
 次の手法にて、プリプレグを作製した。
 (エポキシ樹脂組成物1の調合)
 混練装置中に、表3、4に記載の構成要素[B]、その他樹脂成分を投入して、混練しつつ、160℃まで昇温し、160℃で1時間混練した。混練しつつ80℃まで降温させた後、構成要素[C]を投入、混練してエポキシ樹脂組成物1を得た。
 (エポキシ樹脂組成物2の調合)
 混練装置中に、表3、4に記載の構成要素[B]、その他樹脂成分を投入して、混練しつつ、160℃まで昇温し、160℃で1時間混練した。混練しつつ80℃まで降温させた後、構成要素[D]、[C]の順に投入、混練してエポキシ樹脂組成物2を得た。
 (プリプレグの作製)
 前記にて得られたエポキシ樹脂組成物1を、ナイフコーターを用いて離型紙上に塗布して、樹脂目付が30g/mの樹脂フィルム1を2枚作製した。同様に前記にて得られたエポキシ樹脂組成物2を離型紙上に塗布して、樹脂目付が23g/mの樹脂フィルム2を2枚作製した。
 次に、シート状となるように一方向に配列させた構成要素[A]である炭素繊維に、得られた樹脂フィルム1を2枚、炭素繊維の両面から重ね、加熱加圧してエポキシ樹脂組成物を含浸させて炭素繊維目付が192g/mのプリプレグ前駆体を得た。
 得られたプリプレグ前駆体に、樹脂フィルム2を2枚プリプレグ前駆体の両面から重ね、加熱加圧してプリプレグを得た。ここで、表3、4中には、最終的なプリプレグ中におけるエポキシ樹脂組成物の組成割合を記載してある。
 (15)構成要素[D]が不織布である場合のプリプレグの作製
 次の手法にて、プリプレグを作製した。
 (エポキシ樹脂組成物の調合)
 混練装置中に、表5に記載の構成要素[B]、その他樹脂成分を投入して、混練しつつ、160℃まで昇温し、160℃で1時間混練した。混練しつつ80℃まで降温させた後、構成要素[C]を投入、混練してエポキシ樹脂組成物を得た。
 (プリプレグの作製)
 前記にて得られたエポキシ樹脂組成物を、ナイフコーターを用いて離型紙上に塗布して、樹脂目付が30g/mの樹脂フィルム1を作製した。また、不織布の目付が6g/m、12g/m、17g/m、19g/m用に、それぞれ樹脂目付が40g/m、34g/m、29g/m、27g/mの樹脂フィルム2も同様に作製した。
 次に、シート状となるように一方向に配列させた構成要素[A]である炭素繊維に、得られた樹脂フィルム1を2枚、炭素繊維の両面から重ね、加熱加圧してエポキシ樹脂組成物を含浸させて炭素繊維目付が192g/mのプリプレグ前駆体を得た。
 得られたプリプレグ前駆体に、表5に記載の構成要素[D]の不織布1枚をプリプレグ前駆体の上面に重ね、さらにその上面から、樹脂フィルム2を1枚重ね、加熱加圧してプリプレグを得た。
 (16)構成要素[D]が短繊維ウェブである場合のプリプレグの作製
 (エポキシ樹脂組成物の調合)
 混練装置中に、表6記載の構成要素[B]、その他樹脂成分を投入して、混練しつつ、160℃まで昇温し、160℃で1時間混練した。混練しつつ80℃まで降温させた後、構成要素[C]を投入、混練してエポキシ樹脂組成物を得た。
 (プリプレグの作製)
 前記にて得られたエポキシ樹脂組成物を、ナイフコーターを用いて離型紙上に塗布して、樹脂目付が30g/mの樹脂フィルム1を作製した。また、短繊維ウェブの目付が6g/m、12g/m用に、それぞれ樹脂目付が40g/m、32g/mの樹脂フィルム2も同様に作製した。
 次に、シート状となるように一方向に配列させた構成要素[A]である炭素繊維に、得られた樹脂フィルム1を2枚、炭素繊維の両面から重ね、加熱加圧してエポキシ樹脂組成物を含浸させて炭素繊維目付が192g/mのプリプレグ前駆体を得た。
 得られたプリプレグ前駆体に、表6に記載の構成要素[D]の短繊維ウェブ1枚をプリプレグ前駆体の上面に重ね、さらにその上面から、樹脂フィルム2を1枚重ね、加熱加圧してプリプレグを得た。
 (17)構成要素[B]と[C]を含むエポキシ樹脂組成物のネマチック-等方相転移温度の測定
 プリプレグから構成要素[B]と[C]を含む樹脂組成物を採取して、約1mg薄膜ガラス上に薄く広げた。それを温度制御装置(ジャパンハイテク(株)製;TH-600PM)加熱部分にセットした。構成要素[B]と[C]を含む樹脂組成物の倍率300倍の偏光顕微鏡観察画像を40℃~190℃まで、昇温速度2℃/分、5℃刻みで取得した。取得した画像について、等方相(干渉模様が観察されない領域)の占有する面積、ネマチック相が占有する面積についてそれぞれ、画像を二値化することにより算出した。ネマチック相は、観察される干渉模様が、シュリーレン組織、糸状組織、砂状組織、ドロプレット組織である領域のことを指し、等方相は、樹脂組成物は存在するが、光学的等方性のため光が透過せず、視野が暗い領域を指す。等方相の占有する面積の割合が、ネマチック相と等方相を合わせた樹脂組成物全体の面積の40%以上となる最低温度(ネマチック-等方相転移温度)を決定した。
 (18)モードI層間靭性(GIC)試験用複合材料製平板の作製とGIC測定
 JIS K7086(1993)に準じ、次の(a)~(e)の操作によりGIC試験用複合材料製平板を作製した。
 (a)(13)~(16)で作製した一方向プリプレグを、繊維方向を揃えて20ply積層した。ただし、積層中央面(10ply目と11ply目の間)に、繊維配列方向と直角に、幅40mm、厚み50μmのフッ素樹脂製フィルムをはさんだ。
 (b)積層したプリプレグをナイロンフィルムで隙間のないように覆い、オートクレーブ中で180℃2時間、内圧0.59MPaで加熱加圧して硬化し、一方向炭素繊維強化複合材料を成形した。
 (c)(b)で得た一方向炭素繊維強化複合材料を、幅20mm、長さ195mmにカットした。繊維方向は、試験片の長さ側と平行になるようにカットした。
 (d)JIS K7086(1993)に記載のピン負荷用ブロック(長さ25mm、アルミ製)では試験時に接着部が剥がれてしまったため、代わりにトライアングル状グリップを使用した(図1)。試験片端(フッ素樹脂製フィルムを挟んだ側)から4mmの位置に幅方向両端に1mm長さのノッチを入れ、トライアングル状グリップを引っかけた。試験はトライアングル状の治具をインストロン万能試験機(インストロン社製)のクロスヘッドで引っ張ることで試験片に荷重を与えた。
 (e)亀裂進展を観察しやすくするため、試験片の両側面に白色塗料を塗った。
 作製した複合材料製平板を用いて、以下の手順により、GIC測定を行った。JIS K7086(1993)附属書1に従い、インストロン万能試験機(インストロン社製)を用いて試験を行った。クロスヘッドスピードは、亀裂進展が20mmに到達するまでは0.5mm/分、20mm到達後は1mm/分とした。試験は亀裂が100mm進展するまで行い、試験中に取得した荷重-変位線図の面積からGICを算出した。
 (19)モードII層間靱性(GIIC)の測定
 (18)のGIC試験の(a)から(c)と同様に試験片を作製し、幅20mm、長さ195mmの試験片を得た。この試験片をJIS K7086(1993)附属書2に従って、GIIC試験を行った。
 (20)0°引張強度試験用複合材料製平板の作製と測定
 (13)~(16)で作製した一方向プリプレグを所定の大きさにカットし、一方向に6枚積層した後、真空バッグを行い、オートクレーブを用いて、180℃2時間、内圧0.59MPaで加熱加圧して硬化し、一方向炭素繊維強化複合材料を得た。この一方向炭素繊維強化複合材料を幅12.7mm、長さ230mmでカットし、両端に1.2mm、長さ50mmのガラス繊維強化プラスチック製のタブを接着し試験片を得た。この試験片はインストロン万能試験機を用いて、JIS K7073(1988)の規格に準じて0゜引張試験を行った。
 (21)プレス成形によるモードI層間靭性(GIC)およびモードII層間靱性(GIIC)試験用複合材料製平板成形方法と測定
 (a)(13)~(16)で作製したプリプレグを、繊維方向を揃えて20ply積層した。ただし、積層中央面(10ply目と11ply目の間)に、繊維配列方向と直角に、幅40mm、厚み50μmのフッ素樹脂製フィルムをはさんだ。
 (b)積層したプリプレグを金型上に配置した後、加熱型プレス成形機により、1.0MPaの加圧下、180℃4時間で流動・成形せしめ、一方向炭素繊維強化複合材料を成形した。
 (c)(18)のGIC試験の(c)~(e)と同様にしてGIC測定を、(19)のGIIC試験と同様にしてGIIC測定を行った。
 (22)プレス成形による0°引張強度試験用複合材料製平板の作製と測定
 (13)~(16)で作製したプリプレグを所定の大きさにカットし、一方向に6枚積層した後、それを金型上に配置し、加熱型プレス成形機により、1.0MPaの加圧下、180℃4時間で流動・成形させることで、一方向炭素繊維強化複合材料を得た。この一方向炭素繊維強化複合材料を幅12.7mm、長さ230mmでカットし、両端に1.2mm、長さ50mmのガラス繊維強化プラスチック製のタブを接着し試験片を得た。この試験片はインストロン万能試験機を用いて、JIS K7073(1988)の規格に準じて0゜引張試験を行った。
 (23)炭素繊維強化複合材料の偏光顕微鏡観察
 (13)~(16)で作製した一方向プリプレグを幅50mm、長さ50mmにカットし、プリプレグが幅80mm以上となるように繊維間隔を手で広げた後、オーブンにて180℃2時間の条件で硬化し、観察用の炭素繊維強化複合材料の試験体を得た。試験体の樹脂領域を偏光顕微鏡(キーエンス(株)製;VHX-5000、偏光フィルター付き)により観察を行った。ファンシェイプ組織やフォーカルコニック組織といった高次構造形成が観察された場合を「A」、高次構造が観察されなかった場合を「B」と判定した。
 (24)プリプレグの広角X線回折測定
 (13)~(16)で作製したプリプレグを長さ20mm、幅10mmにカットした測定試料を用意した。広角X線回折装置(D8 DISCOVER;BRUKER AXS社製)に取り付けられた温度制御装置(FP82;メトラートレド社製)内に測定試料をセットし、2次元での広角X線回折測定を行った。条件[II]は、温度制御装置を用いて40℃から2℃/分で100℃まで測定試料を昇温し、100℃到達から30分間保持し、30分間経過直後の広角X線回折測定によって得られた回折パターンについて、2θ=1.0°~6.0°の間のピークの有無を確認した。条件[III]は、温度制御装置を用いて40℃から2℃/分で180℃まで測定試料を昇温し、180℃到達から2時間保持し、経過直後の広角X線回折測定によって得られた回折パターンについて、2θ=1.0°~6.0°の間のピークの有無を確認した。
・装置:D8 DISCOVER;BRUKER AXS社製
・X線源:CuKα線(管電圧50kV、管電流22mA)
・検出器:Vantec500
・温度制御装置:FP82;メトラートレド社製
 1.0~6.0°範囲における回折角度2θのピークを有する場合は「A」、ピークを有さない場合は「B」と判定した。
 (25)偏光ラマン分光による樹脂硬化物中の分子異方性の測定
 (13)~(16)で作製したプリプレグを硬化して得た炭素繊維強化複合材料から2cm角を切り出すことで、試験片を得た。測定は、炭素繊維強化複合材料内の樹脂部分について任意の5箇所に対して、以下の条件により行った。
・装置:PDP320((株)PHOTO Design製)
・ビーム径:1μm
・光源:YAGレーザー/1064nm
・回折格子:Single 300gr/mm
・スリット:100μm
・検出器:CCD:Jobin Yvon 1024×256
・対物レンズ:×100。
 測定した試験片の任意の方向を0°とし、偏光方向を0°~150まで30°間隔で変化させて偏光ラマン分光を測定。芳香環のC=C伸縮振動に由来する1600cm-1付近のラマンバンド強度について、±20%以上変動した偏光方位を有する場合は分子異方性ありとして「A」と判定し、測定した5箇所について偏光方位0°~150°のいずれも変動幅が20%以下だった場合は分子異方性なしとして「B」と判定した。結果を表1~6に示す。 
 (26)構成要素[B]と[C]を含むエポキシ樹脂組成物の粘度測定
 構成要素[B]と[C]を含むエポキシ樹脂組成物の粘度挙動の評価を、動的粘弾性測定装置(ARES-G2、TAインスツルメント社製)を用いて行った。測定には、直径40mmのパラレルプレートを用い、測定条件は、角周波数3.14rad/s、ギャップ1.0mmとした。測定は、エポキシ樹脂組成物を90℃で3分間溶解させ、ギャップ1mmに設定した後、エポキシ樹脂の温度を40℃まで降温し、40℃から160℃まで2℃/分の速度で上昇させた。130~150℃における最低粘度の結果を、表1~6に示した。
 (27)X線回折による回折角度2θの測定
 (13)~(16)で作製した一方向プリプレグを厚さ約1mmとなるように積層した後、積層したプリプレグをナイロンフィルムで隙間のないように覆い、オートクレーブ中で180℃2時間、内圧0.59MPaで加熱加圧して硬化し、一方向炭素繊維強化複合材料を成形した。成形した炭素繊維強化複合材料を用いて、長さ40mm、幅10mmにカットし、試験片を得た。測定は以下の条件により、炭素繊維強化複合材料内の炭素繊維軸に対して平行(0°)、垂直(90°)、45°に対して行った。
・装置:X’ PertPro(スペクトリス(株)PANalytical事業部製)
・X線源:CuKα線(管電圧45kV、管電流40mA)
・検出器:ゴニオメーター+モノクロメーター+シンチレーションカウンター
・走査範囲:2θ=1~90°
・走査モード:ステップスキャン、ステップ単位0.1°、計数時間40秒
 1~10°範囲における回折角度2θのピークを表1~6に記載した。また、ピークを有さない場合は「B」と記載した。
 (28)プリプレグの厚み20%の深さの範囲に存在する構成要素[D]の存在率
 (13)~(16)で作製した一方向プリプレグを、2枚の表面の平滑なポリ四フッ化エチレン樹脂板間に挟持して密着させ、7日間かけて徐々に180℃まで温度を上昇させてゲル化、硬化させて板状の樹脂硬化物を作製する。硬化後、密着面と垂直な方向から切断し、その断面を研磨後、光学顕微鏡で200倍以上に拡大しプリプレグの上下面が視野内におさまるようにして写真を撮影した。断面写真の横方向の5カ所でポリ四フッ化エチレン樹脂板間の間隔を測定し、その平均値をプリプレグの厚さとした。プリプレグの表面から、厚さの20%深さ位置にプリプレグの表面と平行な線を引いた。次に、プリプレグの表面と上記線との間に存在する構成要素[D]の合計面積と、プリプレグ厚みに渡って存在する構成要素[D]の合計面積を求め、プリプレグの厚さ100%に対して、プリプレグの表面から20%の深さの範囲に存在する構成要素[D]の存在率を計算した。ここで、構成要素[D]の合計面積は、断面写真から構成要素[D]部分をくり抜き、その質量から換算して求めた。
 (29)炭素繊維強化複合材料の層間樹脂層厚みの測定
 (18)で作製した炭素繊維強化複合材料を炭素繊維に直交する方向から切断し、その断面を研磨後、光学顕微鏡で200倍以上に拡大し写真撮影した。写真上の無作為に選んだ繊維層領域について、炭素繊維の体積含有率が50%となる、炭素繊維層と平行に引いたラインを繊維層領域と層間樹脂層領域の境界ラインとして、1000μmの長さに渡り平均化した境界ラインを引き、その間の距離を層間樹脂層の厚みとした。同様の操作を計5箇所の層間樹脂層領域について実施し、その平均値を採用した。
 (30)示差走査熱量分析による高次構造の相転移の測定
 (13)~(16)で作製した一方向プリプレグを厚さ約1mmとなるように積層した後、積層したプリプレグをナイロンフィルムで隙間のないように覆い、オートクレーブ中で180℃2時間、内圧0.59MPaで加熱加圧して硬化し、一方向炭素繊維強化複合材料を成形した。成形し得られた炭素繊維強化複合材料5mgをサンプルパンに量り取り、示差走査熱量分析計(Q-2000:TAインスツルメント社製)を用い、窒素雰囲気下で昇温速度5℃/分として50℃から400℃まで昇温した。熱流量の変化を記録し、250℃以上の温度域の吸熱ピークの有無を確認した。250℃以上のピークを有する場合は「A」、ピークを有さない場合は「B」と判定し、結果を表1~6に記載した。
 (実施例1~9、比較例1~12)
 表1、2の配合比に従って上記(12)エポキシ樹脂組成物の調製の手順で炭素繊維強化複合材料用エポキシ樹脂組成物を作製した。得られたエポキシ樹脂組成物を用いて、上記(17)の手順で構成要素[B]と[C]を含む樹脂組成物のネマチック-等方相転移温度を測定し、(13)プリプレグの作製の手順でプリプレグを得た。得られたプリプレグを用いて、上記の(18)モードI層間靭性(GIC)試験用複合材料製平板の作製とGIC測定、(19)モードII層間靭性(GIIC)試験用複合材料製平板の作製とGIIC測定、(23)炭素繊維強化複合材料の偏光顕微鏡観察、(24)プリプレグの広角X線回折測定、(25)偏光ラマン分光による樹脂組成物中の異方性の測定、(26)構成要素[B]と[C]を含むエポキシ樹脂組成物の粘度測定を行った。結果を表1、2に示す。
 実施例の各種測定結果は表1に示す通りであり、実施例1~9のように、サイジング剤が塗布された炭素繊維と、条件[I]~[III]を満たす、好ましいエポキシ樹脂組成物との組合せにより、モードI層間靱性GIC、モードII層間靱性GIICに優れる炭素繊維強化複合材料が得られた。
 比較例1は、本発明における構成要素[A]、[C]を用いているが、構成要素[B]を含まず、条件[I]、[III]を満たしていない場合である。比較例1は、同じ構成要素[A]および[C]を用いた実施例2と比較して大幅にモードI層間靱性GICおよびモードII層間靱性GIICは低く、本発明のプリプレグは、特にモードI層間靱性GICおよびモードII層間靱性GIICが飛躍的に向上することが分かる。
 比較例2は、条件[I]~[III]を満たしているが、本発明における構成要素[A]を満たさない炭素繊維を使用した場合である。比較例2は構成要素[B]および[C]を含む同じ樹脂組成物を用いた実施例2と比較して、界面剪断強度、モードI層間靱性GICおよびモードII層間靱性GIICが低い。このことから炭素繊維の表面にサイジング剤が塗布されていることが重要であると分かる。
 比較例3および4は、本発明の構成要素[A]、[B]、[C]を用いているが、条件[I]のネマチック-等方相転移温度の要件を満たさない場合である。エポキシ樹脂組成物の硬化物中にスメクチック構造形成していることにより、モードI層間靱性GICは、非高次構造形成の場合と比較して高い値である。しかし、ネマチック-等方相転移温度を条件[I]の範囲内にもち、比較例3および4と構成要素[A]および[C]が同一な実施例4および2と比較すると、特にモードII層間靱性GIICが低い。ネマチック-等方相転移温度が条件[I]を満たすことでモードII層間靭性GIICが向上すると分かる。
 比較例5~7は、条件[I]を満たさない場合である。同じ構成要素[A]、[C]を用いた実施例4、実施例2と比較して、モードI層間靱性GICおよびモードII層間靱性GIIC低いことが分かり、条件[I]の要件を満たすことによりモードI層間靱性GICおよびモードII層間靱性GIICが向上すると分かる。
 比較例8および9は、条件[I]、[III]を満たさない場合である。エポキシ樹脂組成物の硬化物がスメクチック構造形成できないことで、モードI層間靱性GICおよびモードII層間靱性GIICが低くなることが分かる。
 比較例10は、条件[I]および[II]を満たさない場合である。同じ構成要素[A]、[B]を使用した、実施例2と比較して、大幅にモードI層間靱性GICおよびモードII層間靱性GIICが低くなることが分かる。硬化過程において樹脂粘度が十分に低下しなかったことで、構成要素[A]表面に存在するサイジング剤とエポキシ樹脂組成物とが十分に反応せず、その結果、樹脂と炭素繊維との接着性が悪くなったと考えられる。比較例11も比較例10と同様に、構成要素[C]が構成要素[B]へ溶解した後の硬化反応が高いため、構成要素[B]および[C]を含むエポキシ樹脂組成物が形成するネマチック相が維持されることでネマチック-等方相転移を130~180℃の間にもたず、十分に粘度を低下させることができない。そのため、同じ構成要素[A]、[B]を使用した、実施例5と比較して大幅にモードI層間靱性GICおよびモードII層間靱性GIICが低くなることが分かる。また、比較例12は、構成要素[C]が構成要素[B]への溶解した際の硬化反応が非常に速く、顕著に増粘するため、プリプレグを作製することができなかった。
 (実施例10~22、比較例13~23)
 表3および表4の配合比に従って上記(14)の手順でプリプレグを得た。得られたプリプレグを用いて、上記の(28)プリプレグの厚み20%の深さの範囲に存在する構成要素[D]の存在率、(18)モードI層間靭性(GIC)試験用複合材料製平板の作製とGIC測定、(19)モードII層間靭性(GIIC)試験用複合材料製平板の作製とGIIC測定、(23)炭素繊維強化複合材料の偏光顕微鏡観察、(24)プリプレグの広角X線回折測定、(25)偏光ラマン分光による樹脂組成物中の異方性の測定、(20)0°引張強度試験用複合材料製平板の作製と測定、(29)炭素繊維強化複合材料の層間樹脂層厚みの測定、(23)偏光顕微鏡による観察、(27)X線回折による回折角度2θの測定を行った。加えて、上記構成要素[B]と[C]を含む樹脂組成物のネマチック-等方相転移温度、(26)構成要素[B]と[C]を含む樹脂組成物の粘度測定も行った。
 実施例の各種測定結果は表3に示す通りであり、比較例の各種測定結果は表4に示す通りであった。実施例10~22のように炭素繊維層間に粒子をスペーサーとする層間樹脂層が配置されることにより、優れたモードI層間靱性GIC、モードII層間靱性GIIC、引張強度が得られた。
 比較例13、14はいずれも、構成要素[B]および[C]を含むエポキシ樹脂組成物の硬化物が高次構造を形成し、かつ構成要素[D]を含まず、層間樹脂層を形成していない場合である。比較例13、14は、同じ構成要素[B]、[C]を用いた実施例12、13、16~19および20、21よりもモードII層間靱性GIICは低く、本発明のプリプレグはモードII層間靱性GIICが飛躍的に向上していることがわかる。また、比較例15は、条件[I]を満たすように構成要素[D]が配置されており、なおかつ構成要素[B]および[C]を含む樹脂組成物の硬化物が高次構造を形成するが、[D]のエポキシ樹脂組成物中での含有割合が少なく十分な厚さの層間樹脂層を形成していない場合である。この場合、モードII層間靱性GIIC向上効果が見られなかった。比較例20~23は、エポキシ樹脂組成物の硬化物が高次構造を形成せず、構成要素[D]の存在により十分な厚みの層間樹脂層を形成する場合である。比較例20と実施例10、16との比較、比較例21と実施例11、17との比較,比較例22と実施例12、18との比較により、同じ構成要素[A]、[D]を用いた各実施例と比較してモードI層間靱性GIC、モードII層間靱性GIIC、引張強度はいずれも低く、本発明のプリプレグは特にモードI層間靱性GICとモードII層間靱性GIICが飛躍的に向上していることが分かる。また、比較例23はエポキシ樹脂組成物の硬化物が高次構造を形成せず、構成要素[D]を含まず、層間樹脂層を形成しない場合である。比較例23を実施例10~22および、比較例13、14と比較すると、高次構造を形成するエポキシ樹脂組成物の硬化物は、モードI層間靱性GICとモードII層間靱性GIICが飛躍的に向上していることが確認できる。比較例17、18は、構成要素[B]および[C]を含むエポキシ樹脂組成物のネマチック-等方相転移温度が110℃より低く、硬化物が高次構造(スメクチック構造)を形成しない場合である。この場合、モードI層間靱性GICが十分に向上しないことが分かる。
 (実施例23~28、比較例24~27)
 表5の配合比に従って上記(15)の手順でプリプレグを得た。得られたプリプレグを用いて、上記の(28)プリプレグの厚み20%の深さの範囲に存在する構成要素[D]の存在率、(18)モードI層間靭性(GIC)試験用複合材料製平板の作製とGIC測定、(19)モードII層間靭性(GIIC)試験用複合材料製平板の作製とGIIC測定、(23)炭素繊維強化複合材料の偏光顕微鏡観察、(24)プリプレグの広角X線回折測定、(25)偏光ラマン分光によるエポキシ樹脂組成物中の異方性の測定、(20)0°引張強度試験用複合材料製平板の作製と測定、(29)炭素繊維強化複合材料の層間樹脂層厚みの測定、(23)偏光顕微鏡による観察、(27)X線回折による回折角度2θの測定を行った。加えて、上記構成要素[B]と[C]を含むエポキシ樹脂組成物のネマチック-等方相転移温度、(26)構成要素[B]と[C]を含むエポキシ樹脂組成物の粘度測定も行った。実施例の各種測定結果は表5に示す通りであり、実施例23~28のように炭素繊維層間に不織布をスペーサーとする高次構造形成をした層間樹脂層が配置されることにより、優れたモードI層間靱性GIC、モードII層間靱性GIIC、引張強度が得られた。
 比較例24~27はいずれも、エポキシ樹脂組成物の硬化物が高次構造を形成せず、不織布をスペーサーとして十分な厚みの層間樹脂層を形成している場合である。比較例25と実施例23および25、比較例26と実施例26、比較例27と実施例28との比較により、構成要素[A]、[C]、[D]を用いた各実施例と比較して本発明により特にモードI層間靱性GICとモードII層間靱性GIICが飛躍的に向上していることが分かる。また、実施例27、実施例28と比較例27との比較からも、エポキシ樹脂組成物の硬化物が高次構造を形成した層間樹脂層を配置することにより効果的にモードII層間靱性GIICを向上させることが可能と分かる。比較例24は、構成要素[B]および[C]を含むエポキシ樹脂組成物のネマチック-等方相転移温度が110℃より低い場合であり、硬化物が高次構造(スメクチック構造)を形成しない場合である。この場合、モードI層間靱性GICが十分に向上しないことが分かる。
 (実施例29~37、比較例28~32)
 表6の配合比に従って上記(16)の手順でプリプレグを得た。得られたプリプレグを用いて、上記の(28)プリプレグの厚み20%の深さの範囲に存在する構成要素[D]の存在率、(18)モードI層間靭性(GIC)試験用複合材料製平板の作製とGIC測定、(19)モードII層間靭性(GIIC)試験用複合材料製平板の作製とGIIC測定、(23)炭素繊維強化複合材料の偏光顕微鏡観察、(24)プリプレグの広角X線回折測定、(25)偏光ラマン分光によるエポキシ樹脂組成物中の異方性の測定、(20)0°引張強度試験用複合材料製平板の作製と測定、(29)炭素繊維強化複合材料の層間樹脂層厚みの測定、(23)偏光顕微鏡による観察、(27)X線回折による回折角度2θの測定を行った。加えて、上記構成要素[B]と[C]を含むエポキシ樹脂組成物のネマチック-等方相転移温度、(26)構成要素[B]と[C]を含むエポキシ樹脂組成物の粘度測定も行った。実施例の各種測定結果は表6に示す通りであり、実施例29~37のように炭素繊維層間に短繊維ウェブをスペーサーとする高次構造形成をした層間樹脂層が配置されることにより、優れたモードI層間靱性GIC、モードII層間靱性GIIC、引張強度が得られた。
 比較例28~32はいずれも、エポキシ樹脂組成物の硬化物が高次構造を形成せず、短繊維ウェブをスペーサーとして十分な厚みの層間樹脂層を形成している場合である。比較例29と実施例29および33、比較例30と実施例30および34、比較例31と実施例31および35、比較例32と実施例32および36、の比較により、本発明により特にモードI層間靱性GICとモードII層間靱性GIICが飛躍的に向上していることが確認できる。比較例28は、構成要素[B]および[C]を含むエポキシ樹脂組成物のネマチック-等方相転移温度が110℃より低い場合であり、硬化物が高次構造(スメクチック構造)を形成しない場合である。この場合、モードI層間靱性GICが十分に向上しないことが分かる。 
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020

Claims (19)

  1.  下記構成要素[A]~[C]を含み、かつ条件[I]~[III]を満たすプリプレグ。
    [A]:サイジング剤塗布炭素繊維
    [B]:一般式(1)で示される構造を有するエポキシ樹脂
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)中Q、Q、Qはそれぞれ群(I)より選択される1種の構造を含む。一般式(1)中のR、Rはそれぞれ炭素数1~6のアルキレン基を示す。群(I)中のZは各々独立に、炭素数1~8の脂肪族炭化水素基、炭素数1~8の脂肪族アルコキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基、又はアセチル基を示す。nは各々独立に0~4の整数を示す。一般式(1)および群(I)中のY、Y、Yは、単結合もしくは群(II)から1つ選択される。)
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    [C]:[B]の硬化剤
    [I]:構成要素[B]および[C]を含むエポキシ樹脂組成物が、ネマチック-等方相転移温度を130~180℃の温度範囲に有する。
    [II]:100℃、30分間等温保持した後のプリプレグが、100℃における広角X線回折によって測定される回折角度2θ=1.0~6.0°に由来する高次構造を有さない。
    [III]:180℃、2時間等温保持した後のプリプレグが、180℃における広角X線回折によって測定される回折角度2θ=1.0~6.0°に由来する高次構造を有する。
  2.  下記構成要素[A]~[D]を含み、かつ条件[I’]、[II]、[III]、[IV]および[V]を満たすプリプレグ。
    [A]:サイジング剤塗布炭素繊維
    [B]:一般式(1)で示される構造を有するエポキシ樹脂
    Figure JPOXMLDOC01-appb-C000004
    (一般式(1)中Q、Q、Qはそれぞれ群(I)より選択される1種の構造を含む。一般式(1)中のR、Rはそれぞれ炭素数1~6のアルキレン基を示す。群(I)中のZは各々独立に、炭素数1~8の脂肪族炭化水素基、炭素数1~8の脂肪族アルコキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基、又はアセチル基を示す。nは各々独立に0~4の整数を示す。一般式(1)および群(I)中のY、Y、Yは、単結合もしくは群(II)から1つ選択される。)
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    [C]:[B]の硬化剤
    [D]:スペーサー材
    [I’]:構成要素[B]および[C]を含むエポキシ樹脂組成物が、ネマチック-等方相転移温度を110~180℃の温度範囲に有する。
    [II]:100℃、30分間等温保持した後のプリプレグが、100℃における広角X線回折によって測定される回折角度2θ=1.0~6.0°に由来する高次構造を有さない。
    [III]:180℃、2時間等温保持した後のプリプレグが、180℃における広角X線回折によって測定される回折角度2θ=1.0~6.0°に由来する高次構造を有する。
    [IV]:構成要素[D]の90%以上がプリプレグ表面からプリプレグの厚さの20%の深さ以内に存在する。
    [V]:エポキシ樹脂組成物中の構成要素[D]の含有割合が3~40質量%である。
  3.  下記条件[VI]を満たす、請求項1または2に記載のプリプレグ。
    [VI]:明細書に規定する方法で測定される、サイジング剤塗布炭素繊維を洗浄後の炭素繊維のサイジング剤付着率が、サイジング塗布炭素繊維に対して0.08質量%以上である。
  4.  前記構成要素[B]が、前記一般式(1)で示される構造を有するエポキシ樹脂の一部が重合したプレポリマーを含む、請求項1~3のいずれかに記載のプリプレグ。
  5.  下記条件[VII]を満たす、請求項1~4のいずれかに記載のプリプレグ。
    [VII]:前記構成要素[B]および[C]を含むエポキシ樹脂組成物を40℃から2℃/分での昇温過程における角周波数3.14rad/sで測定した130~150℃における最低粘度が、0.1~10.0Pa・sの範囲にある。
  6.  前記プリプレグは、前記一般式(1)で示される構造を有するエポキシ樹脂以外の25℃で液状のエポキシ樹脂を含み、
     前記構成要素[B]および前記25℃で液状のエポキシ樹脂の合計である樹脂100質量部に対して、前記構成要素[B]を80~99質量部の範囲で含み、前記25℃で液状のエポキシ樹脂を1~20質量部の範囲で含む、請求項1~5のいずれかに記載のプリプレグ。
  7.  前記プリプレグは、前記一般式(1)で示される構造を有するエポキシ樹脂以外の一般式(2)で示される構造を有するエポキシ樹脂を含み、
     前記構成要素[B]および前記一般式(2)で示される構造を有するエポキシ樹脂の合計である樹脂100質量部に対して、前記構成要素[B]を80~99質量部の範囲で含み、前記一般式(2)で示される構造を有するエポキシ樹脂を1~20質量部の範囲で含む、請求項1~5のいずれかに記載のプリプレグ。
    Figure JPOXMLDOC01-appb-C000007
    (一般式(2)中のR、Rはそれぞれ炭素数1~6のアルキレン基を示す。Zは各々独立に、炭素数1~8の脂肪族炭化水素基、炭素数1~8の脂肪族アルコキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、シアノ基、ニトロ基、又はアセチル基を示す。nは各々独立に0~4の整数を示す。)
  8.  前記構成要素[C]が芳香族ポリアミンである、請求項1~7のいずれかに記載のプリプレグ。
  9.  下記条件[VIII]を満たす、請求項2~8のいずれかに記載のプリプレグ。
    [VIII]:該プリプレグを2つ積層し、加熱硬化して得られる炭素繊維強化複合材料において隣接する炭素繊維層間に配置された層間樹脂層を含み、前記層間樹脂層の平均厚みが5~100μmの範囲にある。
  10.  前記構成要素[D]が、前記構成要素[B]に不溶である、請求項2~9のいずれかに記載のプリプレグ。
  11.  前記構成要素[D]の形態が粒子である、請求項2~10のいずれかに記載のプリプレグ。
  12.  前記構成要素[D]の形態が不織布である、請求項2~10のいずれかに記載のプリプレグ。
  13.  前記構成要素[D]の形態が短繊維ウェブである、請求項2~10のいずれかに記載のプリプレグ。
  14.  前記粒子の平均粒径が1~100μmである、請求項11に記載のプリプレグ。
  15.  前記粒子が熱可塑性樹脂からなる、請求項11または14に記載のプリプレグ。
  16.  前記不織布が熱可塑性樹脂からなる、請求項12に記載のプリプレグ。
  17.  前記粒子が、ポリイミド、ポリアミド、ポリアミドイミド、ポリフタルアミド、ポリエーテルイミド、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルケトンケトン、ポリアリールエーテルケトン、ポリエーテルスルホン、ポリフェニルスルフィド、液晶性ポリマー、およびこれらの誘導体、からなる群から選択される樹脂を含むことを特徴とする請求項11、14または15に記載のプリプレグ。
  18.  前記短繊維ウェブを構成する短繊維の平均繊維長が2~20mmの範囲である、請求項13に記載のプリプレグ。
  19.  請求項1~18のいずれかに記載のプリプレグを硬化させてなる炭素繊維強化複合材料。
PCT/JP2019/015807 2018-04-27 2019-04-11 プリプレグおよび炭素繊維強化複合材料 WO2019208242A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980027718.0A CN112041380A (zh) 2018-04-27 2019-04-11 预浸料坯以及碳纤维增强复合材料
EP19791841.0A EP3763774A4 (en) 2018-04-27 2019-04-11 PREPREGNATE AND COMPOSITE MATERIAL REINFORCED WITH CARBON FIBERS
US17/047,789 US20210115208A1 (en) 2018-04-27 2019-04-11 Prepreg and carbon fiber reinforced material
JP2019521837A JP7264050B2 (ja) 2018-04-27 2019-04-11 プリプレグおよび炭素繊維強化複合材料
KR1020207029040A KR20210005852A (ko) 2018-04-27 2019-04-11 프리프레그 및 탄소섬유강화 복합재료

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018086158 2018-04-27
JP2018-086158 2018-04-27
JP2018173427 2018-09-18
JP2018-173427 2018-09-18

Publications (1)

Publication Number Publication Date
WO2019208242A1 true WO2019208242A1 (ja) 2019-10-31

Family

ID=68295434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/015807 WO2019208242A1 (ja) 2018-04-27 2019-04-11 プリプレグおよび炭素繊維強化複合材料

Country Status (7)

Country Link
US (1) US20210115208A1 (ja)
EP (1) EP3763774A4 (ja)
JP (1) JP7264050B2 (ja)
KR (1) KR20210005852A (ja)
CN (1) CN112041380A (ja)
TW (1) TW201945451A (ja)
WO (1) WO2019208242A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020041050A (ja) * 2018-09-10 2020-03-19 日立化成株式会社 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
WO2023140271A1 (ja) * 2022-01-20 2023-07-27 東レ株式会社 プリプレグの製造方法、プリプレグテープの製造方法、プリプレグ積層体の製造方法および炭素繊維強化複合材料の製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018173953A1 (ja) * 2017-03-24 2018-09-27 東レ株式会社 プリプレグおよび炭素繊維強化複合材料
EP3660081A4 (en) * 2017-07-28 2021-04-21 Toray Industries, Inc. PREPREG AND CARBON FIBER REINFORCED COMPOSITE
CN109853242B (zh) * 2019-01-12 2022-01-04 珠海锦帛复合材料有限公司 一种碳纤维上浆剂及其制备方法
KR102616752B1 (ko) * 2021-12-24 2023-12-22 재단법인 한국섬유기계융합연구원 유전물질의 유도발열을 활용한 고분자 복합재 성형용 몰드

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60231738A (ja) 1984-03-30 1985-11-18 アメリカン・サイアナミド・カンパニ− 中間層含有繊維樹脂マトリツクスプリプレグ織物の製造方法
JPH01110536A (ja) 1987-10-22 1989-04-27 Toray Ind Inc 非球状微粒子を有するプリプレグ
JPH01110537A (ja) 1987-10-22 1989-04-27 Toray Ind Inc 球状微粒子を有するプリプレグ
JPH04233935A (ja) * 1990-08-01 1992-08-21 Bayer Ag エポキシド網目構造の製造用熱硬化性組成物、それらの製造方法およびそれらの使用
JPH05115A (ja) 1991-06-24 1993-01-08 Toyota Motor Corp 車両用シート
JPH0694515A (ja) 1992-09-11 1994-04-05 Olympus Optical Co Ltd 光発散特性測定装置
JPH07278412A (ja) 1994-02-17 1995-10-24 Toray Ind Inc エポキシ樹脂組成物、プリプレグおよび繊維強化プラスチック
JP2001139662A (ja) 1999-11-12 2001-05-22 Mitsubishi Rayon Co Ltd エポキシ樹脂組成物、プリプレグ及びゴルフシャフト
JP2005206814A (ja) 2003-12-24 2005-08-04 Sumitomo Chemical Co Ltd エポキシ化合物および該エポキシ化合物を硬化せしめてなるエポキシ樹脂硬化物
CN1762686A (zh) * 2005-11-14 2006-04-26 浙江大学 自增强层间剪切强度树脂基纤维增强复合材料的制备方法
WO2006068185A1 (ja) * 2004-12-21 2006-06-29 Nippon Kayaku Kabushki Kaisha エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
JP2010241797A (ja) 2009-03-17 2010-10-28 Sumitomo Chemical Co Ltd ジエポキシ化合物の製造方法
JP2011074366A (ja) 2009-09-03 2011-04-14 Sumitomo Chemical Co Ltd ジエポキシ化合物、該化合物を含む組成物及び該組成物を硬化して得られる硬化物
JP2011084557A (ja) * 2009-09-17 2011-04-28 Sumitomo Chemical Co Ltd ジエポキシ化合物、該化合物を含む組成物及び該組成物を硬化して得られる硬化物
JP2011098952A (ja) 2009-10-06 2011-05-19 Sumitomo Chemical Co Ltd ジエポキシ化合物の製造方法
JP2013227451A (ja) * 2012-04-26 2013-11-07 Hitachi Chemical Co Ltd エポキシ樹脂組成物、半硬化エポキシ樹脂組成物、硬化エポキシ樹脂組成物、樹脂シート、プリプレグ、積層板、金属基板、及びプリント配線板
WO2016190323A1 (ja) * 2015-05-25 2016-12-01 日立化成株式会社 樹脂組成物、樹脂シート、プリプレグ、絶縁物、樹脂シート硬化物及び放熱部材
WO2017221810A1 (ja) * 2016-06-22 2017-12-28 日立化成株式会社 ガスバリア材料、樹脂組成物、ガスバリア材、硬化物、及び複合材料
WO2018070053A1 (ja) * 2016-10-14 2018-04-19 日立化成株式会社 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP2018162451A (ja) * 2017-03-24 2018-10-18 東レ株式会社 プリプレグおよび炭素繊維強化複合材料
WO2019021613A1 (ja) * 2017-07-28 2019-01-31 東レ株式会社 プリプレグおよび炭素繊維強化複合材料

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI354002B (en) * 2003-12-24 2011-12-11 Sumitomo Chemical Co Epoxy compounds and cured epoxy resin obtained by
TW200804449A (en) * 2006-06-07 2008-01-16 Sumitomo Chemical Co Epoxy resin composition and epoxy resin hardened material
JP2008266594A (ja) * 2007-03-26 2008-11-06 Sumitomo Chemical Co Ltd エポキシ樹脂組成物
JP2008239679A (ja) * 2007-03-26 2008-10-09 Sumitomo Chemical Co Ltd エポキシ樹脂組成物
WO2018173953A1 (ja) * 2017-03-24 2018-09-27 東レ株式会社 プリプレグおよび炭素繊維強化複合材料

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60231738A (ja) 1984-03-30 1985-11-18 アメリカン・サイアナミド・カンパニ− 中間層含有繊維樹脂マトリツクスプリプレグ織物の製造方法
JPH01110536A (ja) 1987-10-22 1989-04-27 Toray Ind Inc 非球状微粒子を有するプリプレグ
JPH01110537A (ja) 1987-10-22 1989-04-27 Toray Ind Inc 球状微粒子を有するプリプレグ
JPH04233935A (ja) * 1990-08-01 1992-08-21 Bayer Ag エポキシド網目構造の製造用熱硬化性組成物、それらの製造方法およびそれらの使用
JPH05115A (ja) 1991-06-24 1993-01-08 Toyota Motor Corp 車両用シート
JPH0694515A (ja) 1992-09-11 1994-04-05 Olympus Optical Co Ltd 光発散特性測定装置
JPH07278412A (ja) 1994-02-17 1995-10-24 Toray Ind Inc エポキシ樹脂組成物、プリプレグおよび繊維強化プラスチック
JP2001139662A (ja) 1999-11-12 2001-05-22 Mitsubishi Rayon Co Ltd エポキシ樹脂組成物、プリプレグ及びゴルフシャフト
JP2005206814A (ja) 2003-12-24 2005-08-04 Sumitomo Chemical Co Ltd エポキシ化合物および該エポキシ化合物を硬化せしめてなるエポキシ樹脂硬化物
JP4619770B2 (ja) 2003-12-24 2011-01-26 住友化学株式会社 エポキシ化合物および該エポキシ化合物を硬化せしめてなるエポキシ樹脂硬化物
WO2006068185A1 (ja) * 2004-12-21 2006-06-29 Nippon Kayaku Kabushki Kaisha エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
CN1762686A (zh) * 2005-11-14 2006-04-26 浙江大学 自增强层间剪切强度树脂基纤维增强复合材料的制备方法
JP2010241797A (ja) 2009-03-17 2010-10-28 Sumitomo Chemical Co Ltd ジエポキシ化合物の製造方法
JP2011074366A (ja) 2009-09-03 2011-04-14 Sumitomo Chemical Co Ltd ジエポキシ化合物、該化合物を含む組成物及び該組成物を硬化して得られる硬化物
JP5471975B2 (ja) 2009-09-03 2014-04-16 住友化学株式会社 ジエポキシ化合物、該化合物を含む組成物及び該組成物を硬化して得られる硬化物
JP2011084557A (ja) * 2009-09-17 2011-04-28 Sumitomo Chemical Co Ltd ジエポキシ化合物、該化合物を含む組成物及び該組成物を硬化して得られる硬化物
JP2011098952A (ja) 2009-10-06 2011-05-19 Sumitomo Chemical Co Ltd ジエポキシ化合物の製造方法
JP2013227451A (ja) * 2012-04-26 2013-11-07 Hitachi Chemical Co Ltd エポキシ樹脂組成物、半硬化エポキシ樹脂組成物、硬化エポキシ樹脂組成物、樹脂シート、プリプレグ、積層板、金属基板、及びプリント配線板
WO2016190323A1 (ja) * 2015-05-25 2016-12-01 日立化成株式会社 樹脂組成物、樹脂シート、プリプレグ、絶縁物、樹脂シート硬化物及び放熱部材
WO2017221810A1 (ja) * 2016-06-22 2017-12-28 日立化成株式会社 ガスバリア材料、樹脂組成物、ガスバリア材、硬化物、及び複合材料
WO2018070053A1 (ja) * 2016-10-14 2018-04-19 日立化成株式会社 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP2018162451A (ja) * 2017-03-24 2018-10-18 東レ株式会社 プリプレグおよび炭素繊維強化複合材料
WO2019021613A1 (ja) * 2017-07-28 2019-01-31 東レ株式会社 プリプレグおよび炭素繊維強化複合材料

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Polymer Chemistry", JOURNAL OF POLYMER SCIENCE, vol. 42, 2004, pages 3631
SAMPE JOURNAL, vol. 34, no. 6, pages 7 - 19
See also references of EP3763774A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020041050A (ja) * 2018-09-10 2020-03-19 日立化成株式会社 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP7119801B2 (ja) 2018-09-10 2022-08-17 昭和電工マテリアルズ株式会社 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
WO2023140271A1 (ja) * 2022-01-20 2023-07-27 東レ株式会社 プリプレグの製造方法、プリプレグテープの製造方法、プリプレグ積層体の製造方法および炭素繊維強化複合材料の製造方法

Also Published As

Publication number Publication date
JP7264050B2 (ja) 2023-04-25
KR20210005852A (ko) 2021-01-15
EP3763774A1 (en) 2021-01-13
US20210115208A1 (en) 2021-04-22
TW201945451A (zh) 2019-12-01
JPWO2019208242A1 (ja) 2021-03-25
EP3763774A4 (en) 2021-12-15
CN112041380A (zh) 2020-12-04

Similar Documents

Publication Publication Date Title
WO2019208242A1 (ja) プリプレグおよび炭素繊維強化複合材料
JP6516066B2 (ja) プリプレグおよび炭素繊維強化複合材料
RU2605424C2 (ru) Композиция на основе эпоксидных смол и пленка, препрег и армированный волокнами пластик, полученные с использованием такой композиции
JP5785112B2 (ja) 繊維強化複合材料
JP7206910B2 (ja) プリプレグおよび炭素繊維強化複合材料
JP5739361B2 (ja) 繊維強化複合材料
JPWO2007060833A1 (ja) 炭素繊維束、プリプレグおよび炭素繊維強化複合材料
JP6384487B2 (ja) 硬質界面相を有する繊維強化ポリマー複合材料
KR101836960B1 (ko) 탄소 섬유 강화 복합 재료제 관상체 및 골프 클럽 샤프트
WO2014112180A1 (ja) エポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料
WO2013046434A1 (ja) ベンゾオキサジン樹脂組成物及び繊維強化複合材料
JP7063021B2 (ja) プリプレグおよび炭素繊維強化複合材料
JP6051987B2 (ja) サイジング剤塗布炭素繊維の製造方法
JP5516768B2 (ja) プリプレグおよび炭素繊維強化複合材料
JP7287171B2 (ja) プリプレグおよび炭素繊維強化複合材料
JP5561390B2 (ja) プリプレグおよび炭素繊維強化複合材料
JP2019210335A (ja) プリプレグ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019521837

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19791841

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019791841

Country of ref document: EP

Effective date: 20201008

NENP Non-entry into the national phase

Ref country code: DE