WO2018070053A1 - エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料 - Google Patents

エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料 Download PDF

Info

Publication number
WO2018070053A1
WO2018070053A1 PCT/JP2016/080631 JP2016080631W WO2018070053A1 WO 2018070053 A1 WO2018070053 A1 WO 2018070053A1 JP 2016080631 W JP2016080631 W JP 2016080631W WO 2018070053 A1 WO2018070053 A1 WO 2018070053A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy
epoxy resin
epoxy compound
compound
resin
Prior art date
Application number
PCT/JP2016/080631
Other languages
English (en)
French (fr)
Inventor
優香 吉田
福田 和真
竹澤 由高
丸山 直樹
智子 東内
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to PCT/JP2016/080631 priority Critical patent/WO2018070053A1/ja
Priority to EP17859394.3A priority patent/EP3527604B1/en
Priority to US16/341,587 priority patent/US10920010B2/en
Priority to CN201780063285.5A priority patent/CN109843967B/zh
Priority to PCT/JP2017/037268 priority patent/WO2018070535A1/ja
Priority to JP2018545084A priority patent/JP6635201B2/ja
Priority to KR1020197011417A priority patent/KR102426535B1/ko
Priority to CA3040451A priority patent/CA3040451A1/en
Priority to TW106135137A priority patent/TWI753027B/zh
Publication of WO2018070053A1 publication Critical patent/WO2018070053A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/226Mixtures of di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/504Amines containing an atom other than nitrogen belonging to the amine group, carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Definitions

  • the present invention relates to an epoxy resin, an epoxy resin composition, a cured epoxy resin, and a composite material.
  • Epoxy resins are used in various applications by taking advantage of their excellent heat resistance. In recent years, in response to the increase in the actual use temperature of power devices using epoxy resins, studies on epoxy resins having excellent thermal conductivity have been underway.
  • mesogen-containing epoxy resin An epoxy resin containing an epoxy compound having a mesogenic structure in the molecule (mesogen-containing epoxy resin) is known as an epoxy resin excellent in thermal conductivity.
  • mesogen-containing epoxy resins generally have a higher viscosity than other epoxy resins, and sufficient fluidity may not be obtained during operation.
  • an object of the present invention is to provide an epoxy resin and an epoxy resin composition excellent in handleability, and an epoxy resin cured product and a composite material obtained using these.
  • Means for solving the above problems include the following embodiments. ⁇ 1> An epoxy resin comprising a first epoxy compound having a mesogenic structure and a second epoxy compound having two or more mesogenic structures having the same structure as the mesogenic structure, wherein the epoxy resin is obtained by liquid chromatography. The epoxy resin whose ratio of a 1st epoxy compound is 50% or less of the said whole epoxy resin.
  • R 1 to R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • R 1 ⁇ R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • the second epoxy compound includes an epoxy compound having at least one selected from the group consisting of structures represented by the following general formulas (II-A) to (II-D): > The epoxy resin of any one of>.
  • R 1 to R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms
  • R 5 and R 6 each independently represent An alkyl group having 1 to 8 carbon atoms is shown.
  • n and m each independently represents an integer of 0 to 4.
  • Each X independently represents —O— or —NH—.
  • An epoxy resin composition comprising the epoxy resin according to any one of ⁇ 1> to ⁇ 5> and a curing agent.
  • An epoxy resin cured product which is a cured product of the epoxy resin composition according to ⁇ 6> or ⁇ 7>.
  • a composite material comprising the cured epoxy resin according to ⁇ 8> and a reinforcing material.
  • an epoxy resin and an epoxy resin composition excellent in handleability and an epoxy resin cured product and a composite material obtained by using these.
  • the numerical values indicated by using “to” include numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range. Good.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
  • the content rate or content of each component in the composition is such that when there are a plurality of substances corresponding to each component in the composition, the plurality of kinds present in the composition unless otherwise specified. It means the total content or content of substances.
  • the “epoxy compound” means a compound having an epoxy group in the molecule.
  • the “epoxy resin” is a concept that captures a plurality of epoxy compounds as an aggregate, and means an uncured state.
  • the epoxy resin of the present embodiment is an epoxy resin comprising a first epoxy compound having a mesogenic structure and a second epoxy compound having two or more mesogenic structures having the same structure as the mesogenic structure,
  • the ratio of the first epoxy compound obtained by lithography is 50% or less of the entire epoxy resin.
  • an epoxy resin in which the ratio of the first epoxy compound obtained by liquid chromatography is 50% or less of the entire epoxy resin is 50% of the total epoxy resin. It has been found that the viscosity is likely to decrease at the time of temperature rise compared to the epoxy resin exceeding, and the handling property is excellent. The reason is not clear, but when the proportion of the first epoxy compound is 50% or less of the whole epoxy resin, the proportion of the epoxy resin is larger than the case where the proportion of the first epoxy compound exceeds 50% of the whole epoxy resin. This is presumably because the precipitation of crystals at a temperature below the melting temperature is suppressed.
  • Liquid chromatography is performed at a sample concentration of 0.5% by mass, tetrahydrofuran as the mobile phase, and a flow rate of 1.0 ml / min.
  • the measurement can be performed using, for example, a high performance liquid chromatograph “L6000” manufactured by Hitachi, Ltd. and a data analysis apparatus “C-R4A” manufactured by Shimadzu Corporation.
  • As the column for example, “G2000HXL” and “G3000HXL” which are GPC columns manufactured by Tosoh Corporation can be used.
  • the proportion of the first epoxy compound obtained by liquid chromatography is preferably 50% or less of the total epoxy resin, more preferably 49% or less, and 48% or less. More preferably it is.
  • the ratio of the first epoxy compound obtained by liquid chromatography is preferably 35% or more, more preferably 37% or more of the entire epoxy resin. More preferably, it is 40% or more.
  • the epoxy resin may contain other epoxy compounds other than the first epoxy compound and the second epoxy compound.
  • the ratio obtained by liquid chromatography of other epoxy compounds is preferably 10% or less of the entire epoxy resin.
  • the epoxy resin of this embodiment includes an epoxy compound having a mesogenic structure. Therefore, a higher order structure is formed in the cured product obtained by reacting the epoxy resin with the curing agent. Therefore, the cured product has excellent thermal conductivity.
  • the higher order structure means a structure including a higher order structure in which constituent elements are arranged to form a micro ordered structure, and corresponds to, for example, a crystal phase and a liquid crystal phase.
  • the presence or absence of such a higher order structure can be determined by a polarizing microscope. That is, in the observation in the crossed Nicols state, it can be distinguished by seeing interference fringes due to depolarization.
  • This higher order structure usually exists in an island shape in the cured product of the epoxy resin composition to form a domain structure, and one of the islands corresponds to one higher order structure.
  • the constituent elements of this higher order structure are formed by covalent bonds.
  • Examples of the higher order structure formed in the cured product include a nematic structure and a smectic structure.
  • Each of the nematic structure and the smectic structure is a kind of liquid crystal structure.
  • the nematic structure is a liquid crystal structure in which the molecular long axis is oriented in a uniform direction and has only an alignment order.
  • the smectic structure is a liquid crystal structure having a one-dimensional positional order in addition to the orientation order and having a layer structure. The order is higher in the smectic structure than in the nematic structure. Therefore, from the viewpoint of thermal conductivity of the cured product, it is more preferable to form a higher order structure having a smectic structure.
  • Whether a smectic structure is formed in the cured product obtained using the epoxy resin of the present embodiment can be determined by X-ray diffraction measurement of the cured product.
  • X-ray diffraction measurement can be performed, for example, using an X-ray diffraction apparatus manufactured by Rigaku Corporation.
  • the first epoxy compound is not particularly limited as long as it is an epoxy compound having a mesogenic structure.
  • the mesogen structure include a biphenyl structure, a phenylbenzoate structure, an azobenzene structure, a stilbene structure, a terphenyl structure, an anthracene structure, derivatives thereof, and a structure in which two or more of these mesogenic structures are bonded via a bonding group.
  • the first epoxy compound contained in the epoxy resin may be one kind or two or more kinds having different molecular structures.
  • the molecular weight of the first epoxy compound is not particularly limited.
  • it is preferably 800 or less, and 600 or less. More preferably. From the viewpoint of forming a higher order structure of the cured product, it is preferably 300 or more, and more preferably 350 or more.
  • Preferred examples of the first epoxy compound include compounds represented by the following general formula (M).
  • the compound represented by the general formula (M) reacts with the curing agent to form a smectic liquid crystal structure in the cured product.
  • the first epoxy compound is a compound represented by the general formula (M)
  • the compound represented by the general formula (M) may be one kind or two or more kinds.
  • R 1 to R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • R 1 to R 4 are each independently preferably a hydrogen atom or an alkyl group having 1 to 2 carbon atoms, more preferably a hydrogen atom or a methyl group, and even more preferably a hydrogen atom.
  • 2 to 4 of R 1 to R 4 are hydrogen atoms, more preferably 3 or 4 are hydrogen atoms, and more preferably that all 4 are hydrogen atoms.
  • any of R 1 to R 4 is an alkyl group having 1 to 3 carbon atoms
  • at least one of R 1 and R 4 is preferably an alkyl group having 1 to 3 carbon atoms.
  • the second epoxy compound is not particularly limited as long as it is an epoxy compound having two or more mesogenic structures having the same structure as the mesogenic structure of the first epoxy compound.
  • the viscosity below the melting point of the epoxy compound tends to be lower than when the epoxy resin contains only the first epoxy compound. is there.
  • the second epoxy compound is obtained by a reaction between the first epoxy compound and a compound having a functional group capable of reacting with the epoxy group of the first epoxy compound, Even those obtained by self-polymerization may be obtained by other methods.
  • the number of mesogenic structures having the same structure as the mesogenic structure of the first epoxy compound contained in the second epoxy compound is not particularly limited. From the viewpoint of the intrinsic viscosity (melt viscosity), it is preferable that the number of mesogenic structures of the second epoxy compound that has the largest proportion obtained by liquid chromatography is 2.
  • the second epoxy compound is obtained by a reaction between the first epoxy compound and a compound having a functional group capable of reacting with the epoxy group of the first epoxy compound, as the second epoxy compound.
  • the compound which has a structure represented by the following general formula (A) or (B) is mentioned.
  • * represents a bonding position with an adjacent atom.
  • Adjacent atoms include oxygen and nitrogen atoms.
  • R 1 to R 3 each independently represents an alkyl group having 1 to 8 carbon atoms.
  • n, m and l each independently represents an integer of 0 to 4.
  • n, m and l are each independently preferably an integer of 0 to 2, more preferably an integer of 0 to 1, and even more preferably 0.
  • the structure represented by the general formula (A) or (B) is preferable.
  • An epoxy compound having such a structure tends to have a linear molecular structure. For this reason, it is considered that the stacking property of molecules is high and higher-order structures are more easily formed.
  • R 1 ⁇ R 3, n, m and l are * in formula (A) and (B), R 1 ⁇ R 3, n, The definition and preferred examples of m and l are the same.
  • the second epoxy compound may be an epoxy compound having two or more structures represented by the following general formula (I).
  • the second epoxy compound may be an epoxy compound having at least one selected from the group consisting of structures represented by the following general formulas (II-A) to (II-D).
  • R 1 to R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and R 5 and R 6 each independently represent carbon.
  • n and m each independently represents an integer of 0 to 4.
  • X independently represents -0- or -NH-.
  • R 1 to R 4 in general formulas (II-A) to (II-D) are the same as the specific examples of R 1 to R 4 in general formula (M), and preferred ranges thereof are also the same. .
  • R 5 and R 6 each independently represents an alkyl group having 1 to 8 carbon atoms, preferably an alkyl group having 1 to 3 carbon atoms, More preferably, it is a group.
  • n and m each independently represent an integer of 0 to 4, preferably an integer of 0 to 2, and preferably an integer of 0 to 1. Is more preferred and 0 is even more preferred. That is, the benzene ring to which R 5 or R 6 is attached in the general formulas (II-A) to (II-D) preferably has 2 to 4 hydrogen atoms, and preferably 3 or 4 hydrogen atoms. More preferably, it has an atom, and further preferably has 4 hydrogen atoms.
  • Formula (II-a) ⁇ R 1 ⁇ R 6 in (II-d), n, definition and preferred examples of m and X have the general formula (II-A) R 1 in the ⁇ (II-D) ⁇ R 6 , N, m and X are the same as defined and preferred examples.
  • Examples of the case where the second epoxy compound is an epoxy compound (dimer compound) having two structures represented by the general formula (I) include the following general formulas (III-A) to (III to F). ) And at least one selected from the group consisting of epoxy compounds represented by:
  • Formula (III-A) ⁇ R 1 in (III ⁇ F) ⁇ R 6 , n, the definition of m and X have the general formula (II-A) R 1 in the ⁇ (II-D) ⁇ R 6, n , M and X are the same, and the preferred range is also the same.
  • Formula (III-a) ⁇ R 1 in (III ⁇ f) ⁇ R 6 , n, the definition of m and X have the general formula (III-A) R 1 in the ⁇ (III-F) ⁇ R 6, n , M and X are the same, and the preferred range is also the same.
  • the method for synthesizing the second epoxy compound by reacting the first epoxy compound with a compound having a functional group capable of reacting with the epoxy group of the first epoxy compound is not particularly limited. Specifically, for example, a first epoxy compound, a compound having a functional group capable of reacting with the epoxy group of the first epoxy compound, and a reaction catalyst used as necessary are dissolved in a solvent and heated.
  • the second epoxy compound can be synthesized by stirring while stirring.
  • the first epoxy compound and the compound having a functional group capable of reacting with the epoxy group of the first epoxy compound are mixed without using a reaction catalyst and a solvent as necessary, and stirred while heating. By doing so, the second epoxy compound can be synthesized.
  • the solvent is a solvent that can dissolve the first epoxy compound and the compound having a functional group capable of reacting with the epoxy group of the first epoxy compound and can be heated to a temperature necessary for the reaction of both compounds. If there is, there is no particular limitation. Specific examples include cyclohexanone, cyclopentanone, ethyl lactate, propylene glycol monomethyl ether, N-methylpyrrolidone, methyl cellosolve, ethyl cellosolve, propylene glycol monopropyl ether and the like.
  • the quantity of a solvent is the quantity which can melt
  • the solubility differs depending on the type of raw material before the reaction, the type of solvent, etc., for example, if the charged solid content concentration is 20% by mass to 60% by mass, the viscosity of the solution after the reaction is in a preferred range. There is a tendency.
  • the compound having a functional group capable of reacting with the epoxy group of the first epoxy compound is not particularly limited. From the viewpoint of forming a smectic structure in the cured product, the compound having a functional group capable of reacting with the epoxy group of the first epoxy compound is a dihydroxybenzene compound having a structure in which two hydroxyl groups are bonded to one benzene ring, A diaminobenzene compound having a structure in which two amino groups are bonded to one benzene ring, a dihydroxybiphenyl compound having a structure in which one hydroxyl group is bonded to each of two benzene rings forming a biphenyl structure, and two forming a biphenyl structure It is preferably at least one selected from the group consisting of diaminobiphenyl compounds each having a structure in which one amino group is bonded to the benzene ring (hereinafter also referred to as a specific aromatic compound).
  • a second epoxy compound having at least one can be synthesized.
  • Examples of the dihydroxybenzene compound include 1,2-dihydroxybenzene (catechol), 1,3-dihydroxybenzene (resorcinol), 1,4-dihydroxybenzene (hydroquinone), and derivatives thereof.
  • Examples of the diaminobenzene compound include 1,2-diaminobenzene, 1,3-diaminobenzene, 1,4-diaminobenzene, and derivatives thereof.
  • Examples of the dihydroxybiphenyl compound include 3,3′-dihydroxybiphenyl, 3,4′-dihydroxybiphenyl, 4,4′-dihydroxybiphenyl, and derivatives thereof.
  • Examples of the diaminobiphenyl compound include 3,3′-diaminobiphenyl, 3,4′-diaminobiphenyl, 4,4′-diaminobiphenyl, and derivatives thereof.
  • Examples of the derivative of the specific aromatic compound include a compound in which a substituent such as an alkyl group having 1 to 8 carbon atoms is bonded to the benzene ring of the specific aromatic compound.
  • a specific aromatic compound may be used individually by 1 type, and may use 2 or more types together.
  • 1,4-dihydroxybenzene, 1,4-diaminobenzene, 4,4′-dihydroxybiphenyl and 4,4 are used as specific aromatic compounds.
  • '-Diaminobiphenyl is preferred.
  • the second epoxy compound obtained by reacting this with the first epoxy compound tends to have a linear structure. . For this reason, it is considered that the stacking property of the molecule is high and it is easy to form a smectic structure in the cured product.
  • reaction catalyst is not particularly limited, and an appropriate one can be selected from the viewpoint of reaction rate, reaction temperature, storage stability, and the like. Specific examples include imidazole compounds, organophosphorus compounds, tertiary amines, and quaternary ammonium salts.
  • a reaction catalyst may be used individually by 1 type, and may use 2 or more types together.
  • an organic phosphorus compound is preferable as the reaction catalyst.
  • the organic phosphorus compound include an organic phosphine compound, a compound having an intramolecular polarization formed by adding a compound having a ⁇ bond such as maleic anhydride, a quinone compound, diazophenylmethane, and a phenol resin to an organic phosphine compound, organic And a complex of a phosphine compound and an organic boron compound.
  • organic phosphine compound examples include triphenylphosphine, diphenyl (p-tolyl) phosphine, tris (alkylphenyl) phosphine, tris (alkoxyphenyl) phosphine, tris (alkylalkoxyphenyl) phosphine, tris (dialkylphenyl) phosphine, Tris (trialkylphenyl) phosphine, tris (tetraalkylphenyl) phosphine, tris (dialkoxyphenyl) phosphine, tris (trialkoxyphenyl) phosphine, tris (tetraalkoxyphenyl) phosphine, trialkylphosphine, dialkylarylphosphine, alkyldiaryl A phosphine etc. are mentioned.
  • quinone compound examples include 1,4-benzoquinone, 2,5-toluquinone, 1,4-naphthoquinone, 2,3-dimethylbenzoquinone, 2,6-dimethylbenzoquinone, 2,3-dimethoxy-5-methyl- Examples include 1,4-benzoquinone, 2,3-dimethoxy-1,4-benzoquinone, and phenyl-1,4-benzoquinone.
  • organic boron compound examples include tetraphenyl borate, tetra-p-tolyl borate, and tetra-n-butyl borate.
  • the amount of the reaction catalyst is not particularly limited. From the viewpoint of reaction rate and storage stability, 0.1 part by mass with respect to 100 parts by mass of the total of the first epoxy compound and the compound having a functional group capable of reacting with the epoxy group of the first epoxy compound.
  • the content is preferably 1.5 parts by mass, more preferably 0.2 parts by mass to 1 part by mass.
  • the synthesis of the second epoxy compound can be performed using a reaction vessel such as a flask for a small scale and a synthesis kettle for a large scale.
  • a specific synthesis method is as follows, for example. First, a 1st epoxy compound is thrown into reaction container, a solvent is put as needed, and it heats to reaction temperature with an oil bath or a heat medium, and melt
  • the reaction temperature is not particularly limited as long as the reaction proceeds between the epoxy group of the first epoxy compound and the functional group capable of reacting with the epoxy group, and is preferably in the range of 100 ° C. to 180 ° C., for example. More preferably, the temperature is in the range of 100 ° C to 150 ° C.
  • the compounding ratio of the first epoxy compound used for the synthesis of the second epoxy compound and the compound having a functional group capable of reacting with the epoxy group is not particularly limited.
  • the ratio (A / B) between the number of equivalents of epoxy groups (A) and the number of equivalents of functional groups capable of reacting with epoxy groups (A / B) is in the range of 100/100 to 100/1. Good. From the viewpoint of fracture toughness and heat resistance of the cured product, a blending ratio in which A / B is in the range of 100/50 to 100/1 is preferable.
  • the structure of the second epoxy compound is, for example, the molecular weight of the second epoxy compound estimated to be obtained from the reaction between the first epoxy compound used for the synthesis and the compound having a functional group capable of reacting with the epoxy group. And the molecular weight of the target compound determined by liquid chromatography carried out using a liquid chromatograph equipped with UV and mass spectrum detectors.
  • the epoxy equivalent of the epoxy resin is not particularly limited. From the viewpoint of achieving both the fluidity of the epoxy resin and the thermal conductivity of the cured product, it is preferably 245 g / eq to 500 g / eq, more preferably 250 g / eq to 450 g / eq, and more preferably 260 g / eq to More preferably, it is 400 g / eq. If the epoxy equivalent of the epoxy resin is 245 g / eq or more, the crystallinity of the epoxy resin does not become too high, and the fluidity of the epoxy resin tends not to decrease.
  • the epoxy equivalent of the epoxy resin is 500 g / eq or less, the crosslinking density of the epoxy resin is unlikely to decrease, and the thermal conductivity of the molded product tends to increase.
  • the epoxy equivalent of the epoxy resin is measured by a perchloric acid titration method.
  • the number average molecular weight (Mn) and the weight average molecular weight (Mw) of the epoxy resin are not particularly limited and can be selected according to desired properties of the epoxy resin. From the viewpoint of viscosity, the weight average molecular weight (Mw) of the epoxy resin is preferably selected from the range of 1200 to 1550.
  • the number average molecular weight (Mn) and the weight average molecular weight (Mw) of the epoxy resin are values obtained by liquid chromatography.
  • Liquid chromatography is performed at a sample concentration of 0.5% by mass, tetrahydrofuran as the mobile phase, and a flow rate of 1.0 ml / min.
  • a calibration curve is prepared using a polystyrene standard sample, and Mn and Mw are measured in terms of polystyrene using the calibration curve.
  • the measurement can be performed using, for example, a high performance liquid chromatograph “L6000” manufactured by Hitachi, Ltd. and a data analysis apparatus “C-R4A” manufactured by Shimadzu Corporation.
  • As the column for example, “G2000HXL” and “G3000HXL” which are GPC columns manufactured by Tosoh Corporation can be used.
  • the epoxy resin composition of the present embodiment includes the epoxy resin of the above-described embodiment and a curing agent.
  • the curing agent is not particularly limited as long as it is a compound capable of causing a curing reaction with the epoxy resin contained in the epoxy resin composition of the present embodiment.
  • Specific examples of the curing agent include amine curing agents, phenol curing agents, acid anhydride curing agents, polymercaptan curing agents, polyaminoamide curing agents, isocyanate curing agents, and blocked isocyanate curing agents.
  • curing agent may be used individually by 1 type, or may use 2 or more types together.
  • the curing agent is preferably an amine curing agent or a phenol curing agent, and from the viewpoint of forming a higher-order structure of the cured product, an amine curing agent is more preferable.
  • a compound having two or more amino groups directly bonded to the aromatic ring is more preferable.
  • amine curing agents include 3,3′-diaminodiphenylsulfone, 4,4′-diaminodiphenylsulfone, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenyl ether, 4,4′-diamino- 3,3′-dimethoxybiphenyl, 4,4′-diaminophenylbenzoate, 1,5-diaminonaphthalene, 1,3-diaminonaphthalene, 1,4-diaminonaphthalene, 1,8-diaminonaphthalene, 1,3-diamino Examples include benzene, 1,4-diaminobenzene, 4,4′-diaminobenzanilide, trimethylene-bis-4-aminobenzoate, and the like.
  • Examples of the phenol curing agent include a low molecular phenol compound and a phenol novolac resin obtained by connecting a low molecular phenol compound with a methylene chain to form a novolac.
  • Low molecular phenol compounds include monofunctional phenol compounds such as phenol, o-cresol, m-cresol, and p-cresol, bifunctional phenol compounds such as catechol, resorcinol, hydroquinone, 1,2,3-trihydroxybenzene, 1 , 2,4-trihydroxybenzene, trifunctional phenol compounds such as 1,3,5-trihydroxybenzene and the like.
  • the content of the curing agent in the epoxy resin composition is not particularly limited. From the viewpoint of the efficiency of the curing reaction, the ratio between the number of active hydrogen equivalents (amine equivalent number) of the curing agent contained in the epoxy resin composition and the epoxy equivalent number of epoxy resin (amine equivalent number / epoxy equivalent number). Is preferably in an amount of 0.3 to 3.0, more preferably in an amount of 0.5 to 2.0.
  • An epoxy resin composition may contain other components other than an epoxy resin and a hardening
  • a curing catalyst and a filler may be included.
  • Specific examples of the curing catalyst include compounds exemplified as reaction catalysts that can be used for the synthesis of multimers.
  • the use of the epoxy resin composition of this embodiment is not particularly limited, it can be suitably used for a processing method involving relatively rapid heating of the epoxy resin composition.
  • a processing method involving relatively rapid heating of the epoxy resin composition.
  • suitable for the manufacture of FRP involving the step of impregnating the epoxy resin composition while heating the gap between the fibers, and the production of a sheet-like material involving the step of spreading the epoxy resin composition with a squeegee etc.
  • the epoxy resin composition of this embodiment can also be suitably used in a processing method in which it is desired to omit or reduce the addition of a solvent for decreasing the viscosity from the viewpoint of suppressing the generation of voids in the cured product.
  • the epoxy resin cured product of the present embodiment is obtained by curing the epoxy resin composition of the present embodiment.
  • the composite material of this embodiment includes the epoxy resin cured product of this embodiment and a reinforcing material.
  • the material of the reinforcing material included in the composite material is not particularly limited and can be selected according to the use of the composite material.
  • Specific examples of the reinforcing material include carbon materials, glass, aromatic polyamide resins (for example, Kevlar (registered trademark)), ultrahigh molecular weight polyethylene, alumina, boron nitride, aluminum nitride, mica, silicon, and the like.
  • the shape of the reinforcing material is not particularly limited, and examples thereof include fibrous and particulate (filler). Only one type or two or more types of reinforcing materials may be included in the composite material.
  • the first epoxy compound used in the synthesis is powdery (crystalline phase) at room temperature, and transitions to a nematic phase at 150 ° C. and to an isotropic phase at 210 ° C.
  • Japanese Patent No. 5471975 can be referred to for the production method and the like.
  • the ratio of the peak area derived from the first epoxy compound to the entire epoxy resin was found to be 45%. Moreover, the number average molecular weight (Mn) of the resin 1 was 766, and the weight average molecular weight (Mw) was 1557.
  • the first epoxy compound used for producing the epoxy resin had a peak top at 27.7 minutes.
  • Liquid chromatography uses a liquid chromatograph equipped with UV and mass spectrum detectors (high performance liquid chromatograph “L6000” manufactured by Hitachi, Ltd.) and a data analysis device “C-R4A” manufactured by Shimadzu Corporation. went.
  • As the column “G2000HXL” and “G3000HXL”, which are GPC columns manufactured by Tosoh Corporation, were used.
  • the ratio of the first epoxy compound in the resin 6 was determined in the same manner as in the case of the resin 1, it was 51%. Further, the Mn of the resin 5 was 712, and the Mw was 1220.
  • the viscosity behavior of the resins 1 to 6 was evaluated by measuring the dynamic shear viscosity (Pa ⁇ s).
  • the dynamic shear viscosity (Pa ⁇ s) was measured in a vibration mode with a rheometer (MCR-301, manufactured by Anton Paar) in accordance with the standard of JIS K 7244-10.
  • a parallel plate with a diameter of 12 mm was used, and the measurement conditions were a frequency of 1 Hz, a gap of 0.2 mm, and a strain of 2%.
  • the epoxy resin is allowed to stand and melt at 150 ° C. for 3 minutes or more, and then the temperature is decreased from 150 ° C. to 30 ° C.
  • Example 1 1.90 g of resin 1 and 1.90 g of 4,4′-diaminodiphenylsulfone (hereinafter referred to as DDS) as a curing agent were weighed and placed in a stainless steel dish. At this time, the blending amount was calculated so that the equivalent ratio of the epoxy group and the amino group derived from DDS was 1/1. It was heated to 180 ° C. with a hot plate, and the resin 1 and DDS in the stainless steel petri dish were melted while stirring with a spatula and heated for 1 hour. Furthermore, the temperature of the hot plate was raised to 230 ° C. and heated for 1 hour to obtain a cured product.
  • DDS 4,4′-diaminodiphenylsulfone
  • the cured product was taken out from the stainless steel petri dish, heated in an oven at 230 ° C. for 1 hour to complete the curing, and an epoxy resin cured product was obtained.
  • This cured epoxy resin was cut into a 3.75 mm ⁇ 7.5 mm ⁇ 33 mm rectangular parallelepiped, and a test piece for fracture toughness evaluation was produced. Furthermore, the cured epoxy resin was cut into a 2 mm ⁇ 0.5 mm ⁇ 40 mm strip to prepare a test piece for glass transition temperature evaluation.
  • Example 2 A cured epoxy resin was prepared in the same manner as in Example 1 except that the resin 1 was the same amount of the resin 2 and the DDS was 1.94 g, and test pieces for evaluation were prepared.
  • Example 3 A cured epoxy resin was prepared in the same manner as in Example 1 except that the resin 1 was the same amount of the resin 3 and the DDS was 1.95 g, and test pieces for evaluation were prepared.
  • Example 4 A cured epoxy resin was prepared in the same manner as in Example 1 except that the resin 1 was the same amount of resin 4 and the DDS was 1.81 g, and test pieces for evaluation were prepared.
  • Example 1 A cured epoxy resin was prepared in the same manner as in Example 1 except that the resin 1 was the same amount of resin 5 and the DDS was 2.30 g, and test pieces for evaluation were prepared.
  • ⁇ Comparative example 2> A cured epoxy resin was prepared in the same manner as in Example 1 except that the resin 1 was the same amount of the resin 6 and the DDS was 1.97 g, and test pieces for evaluation were prepared.
  • the fracture toughness value was used as an index indicating the fracture toughness of the test piece.
  • the fracture toughness value of the test piece was calculated by performing a three-point bending measurement based on ASTM D5045. Instron 5948 (manufactured by Instron) was used as an evaluation apparatus. The results are shown in Table 1.
  • the glass transition temperature was used as an index indicating the heat resistance of the test piece.
  • the glass transition temperature of the test piece was calculated by performing dynamic viscoelasticity measurement in a tensile mode. The measurement conditions were vibration frequency: 10 Hz, temperature increase rate: 5 ° C./min, and strain: 0.1%. The peak of the obtained tan ⁇ chart was regarded as the glass transition temperature.
  • RSA-G2 manufactured by TA Instruments
  • the viscosity of the epoxy resin of the example in which the ratio of the first epoxy compound is 50% or less of the whole epoxy resin is temporarily increased in the temperature rising process in the measurement of the dynamic shear viscosity.
  • the epoxy resin of the comparative example in which the proportion of the first epoxy compound exceeds 50% of the total epoxy resin showed a behavior in which the viscosity temporarily increased during the temperature rising process.
  • the dynamic shear viscosity measured at 70 degreeC was also lower than the comparative example in the Example. As a cause of these results, it is conceivable that the precipitation of crystals caused by the temperature decrease of the epoxy resin was suppressed in the example as compared with the comparative example. As mentioned above, it turned out that the epoxy resin of this embodiment is excellent in the handleability.
  • the cured epoxy resins produced in Examples 1 to 4 all exhibited high fracture toughness values and high glass transition temperatures.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)

Abstract

メソゲン構造を有する第一のエポキシ化合物と、前記メソゲン構造と同じ構造のメソゲン構造を2つ以上有する第二のエポキシ化合物と、を含むエポキシ樹脂であって、液体クロマトグラフィーにより得られる前記第一のエポキシ化合物の割合が、前記エポキシ樹脂全体の50%以下である、エポキシ樹脂。

Description

エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
 本発明は、エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料に関する。
 エポキシ樹脂は、その優れた耐熱性を活かして種々の用途に用いられている。近年では、エポキシ樹脂を用いたパワーデバイスの実使用温度の高温化等を受けて、熱伝導性に優れるエポキシ樹脂の検討が進められている。
 分子内にメソゲン構造を有するエポキシ化合物を含むエポキシ樹脂(メソゲン含有エポキシ樹脂)は、熱伝導性に優れるエポキシ樹脂として知られている。しかしながら、メソゲン含有エポキシ樹脂は一般に他のエポキシ樹脂に比べて粘度が高く、作業時に充分な流動性が得られない場合がある。
 メソゲン含有エポキシ樹脂の流動性を向上する方法としては、溶剤を添加して粘度を下げることが考えられる。また、流動性及び熱伝導性に優れるメソゲン含有エポキシ樹脂として、メソゲン構造を有するエポキシモノマーと2価フェノール化合物とを反応させて得られ、特定範囲の分子量を有するエポキシ樹脂が提案されている(例えば、特許文献1参照)。
国際公開第2016-104772号
 メソゲン含有エポキシ樹脂に溶剤を添加する方法では、硬化の際に溶剤に起因するボイドが発生して製品の品質に影響を及ぼすおそれがある。また、特許文献1に記載されたメソゲン含有エポキシ樹脂では軟化点の低下が達成されているが、粘度が高く取り扱い性の観点から改善の余地がある。
 本発明は上記状況に鑑み、取り扱い性に優れるエポキシ樹脂及びエポキシ樹脂組成物、並びにこれらを用いて得られるエポキシ樹脂硬化物及び複合材料を提供することを課題とする。
 上記課題を解決するための手段には、以下の実施態様が含まれる。
<1>メソゲン構造を有する第一のエポキシ化合物と、前記メソゲン構造と同じ構造のメソゲン構造を2つ以上有する第二のエポキシ化合物と、を含むエポキシ樹脂であって、液体クロマトグラフィーにより得られる前記第一のエポキシ化合物の割合が、前記エポキシ樹脂全体の50%以下である、エポキシ樹脂。
<2>前記第一のエポキシ化合物が、下記一般式(M)で表されるエポキシ化合物を含む、<1>に記載のエポキシ樹脂。
Figure JPOXMLDOC01-appb-C000004
[一般式(M)中、R~Rはそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を示す。]
<3>前記第二のエポキシ化合物が、下記一般式(I)で表される構造を2つ以上有するエポキシ化合物を含む、<1>又は<2>に記載のエポキシ樹脂。
Figure JPOXMLDOC01-appb-C000005
[一般式(I)中、R~Rはそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を示す。]
<4>前記第二のエポキシ化合物が、前記一般式(I)で表される構造を2つ有するエポキシ化合物を含む、<3>に記載のエポキシ樹脂。
 前記第二のエポキシ化合物が、下記一般式(II-A)~(II-D)で表される構造からなる群より選択される少なくとも1つを有するエポキシ化合物を含む、<1>~<4>のいずれか1項に記載のエポキシ樹脂。
Figure JPOXMLDOC01-appb-C000006
[一般式(II-A)~(II-D)中、R~Rはそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を表し、R及びRはそれぞれ独立に、炭素数1~8のアルキル基を示す。n及びmはそれぞれ独立に、0~4の整数を表す。Xはそれぞれ独立に、-O-又は-NH-を表す。]
<6><1>~<5>のいずれか1項に記載のエポキシ樹脂と、硬化剤と、を含む、エポキシ樹脂組成物。
<7>硬化させた際にスメクチック構造を形成可能である、<6>に記載のエポキシ樹脂組成物。
<8><6>又は<7>に記載のエポキシ樹脂組成物の硬化物である、エポキシ樹脂硬化物。
<9><8>に記載のエポキシ樹脂硬化物と、強化材と、を含む複合材料。
 本発明によれば、取り扱い性に優れるエポキシ樹脂及びエポキシ樹脂組成物、並びにこれらを用いて得られるエポキシ樹脂硬化物及び複合材料が提供される。
 以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
 本明細書において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本明細書中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本明細書において組成物中の各成分の含有率又は含有量は、組成物中に各成分に該当する物質が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本明細書において「エポキシ化合物」とは、分子中にエポキシ基を有する化合物を意味する。「エポキシ樹脂」とは、複数のエポキシ化合物を集合体として捉える概念であって硬化していない状態のものを意味する。
<エポキシ樹脂>
 本実施形態のエポキシ樹脂は、メソゲン構造を有する第一のエポキシ化合物と、前記メソゲン構造と同じ構造のメソゲン構造を2つ以上有する第二のエポキシ化合物と、を含むエポキシ樹脂であって、液体クロマトグラフィーにより得られる前記第一のエポキシ化合物の割合が、前記エポキシ樹脂全体の50%以下である。
 本発明者らの検討により、液体クロマトグラフィーにより得られる第一のエポキシ化合物の割合がエポキシ樹脂全体の50%以下であるエポキシ樹脂は、第一のエポキシ化合物の割合がエポキシ樹脂全体の50%を超えるエポキシ樹脂に比べて昇温時に粘度が下がりやすく、取り扱い性に優れていることがわかった。その理由は明らかではないが、第一のエポキシ化合物の割合がエポキシ樹脂全体の50%以下であると、第一のエポキシ化合物の割合がエポキシ樹脂全体の50%を超える場合に比べ、エポキシ樹脂の溶融温度以下の温度での結晶の析出が抑制されるためと推測される。
 本実施形態において、液体クロマトグラフィーにより得られる第一のエポキシ化合物の割合は、液体クロマトグラフにより得られるチャートにおける、全てのエポキシ化合物に由来するピークの合計面積に占める第一のエポキシ化合物に由来するピークの面積の割合(%)である。具体的には、測定対象のエポキシ樹脂の280nmの波長における吸光度を検出し、検出された全てのピークの合計面積と、第一のエポキシ化合物に相当するピークの面積とから、下記式により算出する。
 第一のエポキシ化合物に由来するピークの面積の割合(%)=(第一のエポキシ化合物に由来するピークの面積/全てのエポキシ化合物に由来するピークの合計面積)×100
 液体クロマトグラフィーは、試料濃度を0.5質量%とし、移動相にテトラヒドロフランを用い、流速を1.0ml/minとして行う。測定は、例えば、株式会社日立製作所製の高速液体クロマトグラフ「L6000」と、株式会社島津製作所製のデータ解析装置「C-R4A」を用いて行うことができる。カラムとしては、例えば、東ソー株式会社製のGPCカラムである「G2000HXL」及び「G3000HXL」を用いることができる。
 取り扱い性向上の観点からは、液体クロマトグラフィーにより得られる第一のエポキシ化合物の割合は、エポキシ樹脂全体の50%以下であることが好ましく、49%以下であることがより好ましく、48%以下であることがさらに好ましい。
 固有粘度(溶融時の粘度)の観点からは、液体クロマトグラフィーにより得られる第一のエポキシ化合物の割合は、エポキシ樹脂全体の35%以上であることが好ましく、37%以上であることがより好ましく、40%以上であることがさらに好ましい。
 エポキシ樹脂は、第一のエポキシ化合物と第二のエポキシ化合物以外のその他のエポキシ化合物を含んでいてもよい。ただし、その他のエポキシ化合物の液体クロマトグラフィーにより得られる割合は、エポキシ樹脂全体の10%以下であることが好ましい。
 本実施形態のエポキシ樹脂は、メソゲン構造を有するエポキシ化合物を含む。そのため、エポキシ樹脂が硬化剤と反応して得られる硬化物中に高次構造が形成される。そのため、硬化物の熱伝導性に優れている。
 ここで、高次構造とは、その構成要素が配列してミクロな秩序構造を形成した高次構造体を含む構造を意味し、例えば結晶相及び液晶相が相当する。このような高次構造体の存在の有無は、偏光顕微鏡によって判断することができる。すなわち、クロスニコル状態での観察において、偏光解消による干渉縞が見られることで判別可能である。この高次構造体は、通常はエポキシ樹脂組成物の硬化物中に島状に存在してドメイン構造を形成しており、その島の一つが一つの高次構造体に対応する。この高次構造体の構成要素自体は、一般には共有結合により形成されている。
 硬化物中に形成される高次構造としては、ネマチック構造とスメクチック構造とが挙げられる。ネマチック構造とスメクチック構造はそれぞれ液晶構造の一種である。ネマチック構造は分子長軸が一様な方向を向いており、配向秩序のみをもつ液晶構造である。これに対し、スメクチック構造は配向秩序に加えて一次元の位置の秩序を持ち、層構造を有する液晶構造である。秩序性はネマチック構造よりもスメクチック構造の方が高い。従って、硬化物の熱伝導性の観点からは、スメクチック構造の高次構造を形成することがより好ましい。
 本実施形態のエポキシ樹脂を用いて得られる硬化物中にスメクチック構造が形成されているか否かは、硬化物のX線回折測定により判断できる。X線回折測定は、例えば、株式会社リガク製のX線回折装置を用いて行うことができる。CuKα1線を用い、管電圧40kV、管電流20mA、2θ=2°~30°の範囲で測定すると、スメクチック構造を有している硬化物であれば、2θ=2°~10°の範囲に回折ピークが現れる。
(第一のエポキシ化合物)
 第一のエポキシ化合物は、メソゲン構造を有するエポキシ化合物であれば特に制限されない。メソゲン構造としては、例えば、ビフェニル構造、フェニルベンゾエート構造、アゾベンゼン構造、スチルベン構造、ターフェニル構造、アントラセン構造、これらの誘導体、及びこれらのメソゲン構造の2つ以上が結合基を介して結合した構造が挙げられる。エポキシ樹脂に含まれる第一のエポキシ化合物は、1種のみでも分子構造の異なる2種以上であってもよい。
 第一のエポキシ化合物の分子量は、特に制限されない。第一のエポキシ化合物を用いて第二のエポキシ化合物を溶剤を用いて合成する場合、各種溶剤への溶解性等の合成しやすさの観点からは、800以下であることが好ましく、600以下であることがより好ましい。硬化物の高次構造形成の観点からは、300以上であることが好ましく、350以上であることがより好ましい。
 第一のエポキシ化合物の好ましい例としては、下記一般式(M)で表される化合物が挙げられる。一般式(M)で表される化合物は、硬化剤と反応して硬化物中にスメクチック液晶構造を形成する。第一のエポキシ化合物が一般式(M)で表される化合物である場合、一般式(M)で表される化合物は1種のみでも2種以上であってもよい。
Figure JPOXMLDOC01-appb-C000007
 一般式(M)中、R~Rはそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を示す。R~Rはそれぞれ独立に、水素原子又は炭素数1~2のアルキル基であることが好ましく、水素原子又はメチル基であることがより好ましく、水素原子であることがさらに好ましい。また、R~Rのうちの2個~4個が水素原子であることが好ましく、3個又は4個が水素原子であることがより好ましく、4個すべてが水素原子であることがさらに好ましい。R~Rのいずれかが炭素数1~3のアルキル基である場合、R及びRの少なくとも一方が炭素数1~3のアルキル基であることが好ましい。
 一般式(M)で表される化合物としては、特開2011-74366号公報に記載されている化合物が挙げられる。具体的には、4-{4-(2,3-エポキシプロポキシ)フェニル}シクロヘキシル=4-(2,3-エポキシプロポキシ)ベンゾエート及び4-{4-(2,3-エポキシプロポキシ)フェニル}シクロヘキシル=4-(2,3-エポキシプロポキシ)-3-メチルベンゾエートからなる群より選択される少なくとも1種の化合物が挙げられる。
(第二のエポキシ化合物)
 第二のエポキシ化合物は、第一のエポキシ化合物が有するメソゲン構造と同じ構造のメソゲン構造を2つ以上有するエポキシ化合物であれば特に制限されない。
 エポキシ樹脂が第一のエポキシ化合物に加えて第二のエポキシ化合物を含む場合は、エポキシ樹脂が第一のエポキシ化合物のみを含む場合に比べてエポキシ化合物の溶融点以下での粘度が低くなる傾向にある。
 第二のエポキシ化合物は、第一のエポキシ化合物と、第一のエポキシ化合物のエポキシ基と反応しうる官能基を有する化合物との反応により得られるものであっても、第一のエポキシ化合物同士の自己重合により得られるものであっても、その他の方法により得られるものであってもよい。
 第二のエポキシ化合物に含まれる、第一のエポキシ化合物が有するメソゲン構造と同じ構造のメソゲン構造の数は、特に制限されない。固有粘度(溶融粘度)の観点からは、第二のエポキシ化合物のうち、液体クロマトグラフィーにより得られる割合が最も大きいもののメソゲン構造の数が2であることが好ましい。
 第二のエポキシ化合物が、第一のエポキシ化合物と、第一のエポキシ化合物のエポキシ基と反応しうる官能基を有する化合物との反応により得られるものである場合、第二のエポキシ化合物としては、下記一般式(A)又は(B)で表される構造を有する化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000008
 一般式(A)及び(B)において、*は隣接する原子との結合位置を表す。隣接する原子としては酸素原子及び窒素原子が挙げられる。R~Rはそれぞれ独立に炭素数1~8のアルキル基を表す。n、m及びlはそれぞれ独立に0~4の整数を表す。n、m及びlはそれぞれ独立に、0~2の整数であることが好ましく、0~1の整数であることがより好ましく、0であることがさらに好ましい。
 一般式(A)又は(B)で表される構造の中でも、下記一般式(a)又は(a)で表される構造が好ましい。このような構造を有するエポキシ化合物は、分子構造が直線的になりやすい。このため、分子のスタッキング性が高く、高次構造をより形成し易いと考えられる。
Figure JPOXMLDOC01-appb-C000009
 一般式(a)及び(b)における*、R~R、n、m及びlの定義及び好ましい例は、一般式(A)及び(B)における*、R~R、n、m及びlの定義及び好ましい例と同様である。
 第二のエポキシ化合物は、下記一般式(I)で表される構造を2つ以上有するエポキシ化合物であってもよい。
Figure JPOXMLDOC01-appb-C000010
[一般式(I)におけるR~Rの具体例は、一般式(M)におけるR~Rの具体例と同様であり、その好ましい範囲も同様である。]
 第二のエポキシ化合物は、下記一般式(II-A)~(II-D)で表される構造からなる群より選択される少なくとも1つを有するエポキシ化合物であってもよい。
Figure JPOXMLDOC01-appb-C000011
 一般式(II-A)~(II-D)中、R~Rはそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を示し、R及びRはそれぞれ独立に、炭素数1~8のアルキル基を示す。n及びmはそれぞれ独立に、0~4の整数を示す。Xはそれぞれ独立に、-0-又は-NH-を表す。
 一般式(II-A)~(II-D)におけるR~Rの具体例は、一般式(M)におけるR~Rの具体例と同様であり、その好ましい範囲も同様である。
 一般式(II-A)~(II-D)中、R及びRはそれぞれ独立に炭素数1~8のアルキル基を表し、炭素数1~3のアルキル基であることが好ましく、メチル基であることがより好ましい。
 一般式(II-A)~(II-D)中、n及びmはそれぞれ独立に、0~4の整数を示し、0~2の整数であることが好ましく、0~1の整数であることがより好ましく、0であることがさらに好ましい。つまり、一般式(II-A)~(II-D)においてR又はRを付されたベンゼン環は、2個~4個の水素原子を有することが好ましく、3個又は4個の水素原子を有することがより好ましく、4個の水素原子を有することがさらに好ましい。
 高次構造形成の観点からは、一般式(II-A)~(II-D)で表される構造の中でも下記一般式(II-a)~(II-d)で表される構造を有するエポキシ化合物が好ましい。
Figure JPOXMLDOC01-appb-C000012
 一般式(II-a)~(II-d)におけるR~R、n、m及びXの定義及び好ましい例は一般式(II-A)~(II-D)におけるR~R、n、m及びXの定義及び好ましい例と同様である。
 第二のエポキシ化合物が、一般式(I)で表される構造を2つ有するエポキシ化合物(二量体化合物)である場合の例としては、下記一般式(III-A)~(III~F)で表されるエポキシ化合物からなる群より選択される少なくとも1種が挙げられる。
Figure JPOXMLDOC01-appb-C000013
 一般式(III-A)~(III~F)におけるR~R、n、m及びXの定義は、一般式(II-A)~(II-D)におけるR~R、n、m及びXの定義と同様であり、その好ましい範囲も同様である。
 高次構造形成の観点からは、一般式(III-A)~(III~F)で表されるエポキシ化合物の中でも下記一般式式(III-a)~(III~f)で表されるエポキシ化合物が好ましい。
Figure JPOXMLDOC01-appb-C000014
 一般式(III-a)~(III~f)におけるR~R、n、m及びXの定義は、一般式(III-A)~(III-F)におけるR~R、n、m及びXの定義と同様であり、その好ましい範囲も同様である。
 第一のエポキシ化合物と、第一のエポキシ化合物のエポキシ基と反応しうる官能基を有する化合物とを反応させて第二のエポキシ化合物を合成する方法は、特に制限されない。具体的には、例えば、第一のエポキシ化合物と、第一のエポキシ化合物のエポキシ基と反応しうる官能基を有する化合物と、必要に応じて用いる反応触媒とを溶媒中に溶解し、加熱しながら撹拌することで、第二のエポキシ化合物を合成することができる。
 あるいは、例えば、第一のエポキシ化合物と、第一のエポキシ化合物のエポキシ基と反応しうる官能基を有する化合物を、必要に応じて用いる反応触媒と溶媒を用いずに混合し、加熱しながら撹拌することで、第二のエポキシ化合物を合成することができる。
 溶媒は、第一のエポキシ化合物と、第一のエポキシ化合物のエポキシ基と反応しうる官能基を有する化合物とを溶解でき、かつ両化合物が反応するのに必要な温度にまで加温できる溶媒であれば、特に制限されない。具体的には、シクロヘキサノン、シクロペンタノン、乳酸エチル、プロピレングリコールモノメチルエーテル、N-メチルピロリドン、メチルセロソルブ、エチルセロソルブ、プロピレングリコールモノプロピルエーテル等が挙げられる。
 溶媒の量は、第一のエポキシ化合物と、第一のエポキシ化合物のエポキシ基と反応しうる官能基を有する化合物と、必要に応じて用いる反応触媒とを反応温度において溶解できる量であれば特に制限されない。反応前の原料の種類、溶媒の種類等によって溶解性が異なるものの、例えば、仕込み固形分濃度が20質量%~60質量%となる量であれば、反応後の溶液の粘度が好ましい範囲となる傾向にある。
 第一のエポキシ化合物のエポキシ基と反応しうる官能基を有する化合物は、特に制限されない。硬化物中にスメクチック構造を形成する観点からは、第一のエポキシ化合物のエポキシ基と反応しうる官能基を有する化合物は、2つの水酸基が1つのベンゼン環に結合した構造を有するジヒドロキシベンゼン化合物、2つのアミノ基が1つのベンゼン環に結合した構造を有するジアミノベンゼン化合物、ビフェニル構造を形成する2つのベンゼン環にそれぞれ1つの水酸基が結合した構造を有するジヒドロキシビフェニル化合物及びビフェニル構造を形成する2つのベンゼン環にそれぞれ1つのアミノ基が結合した構造を有するジアミノビフェニル化合物からなる群より選択される少なくとも1種(以下、特定芳香族化合物とも称する)であることが好ましい。
 第一のエポキシ化合物のエポキシ基と特定芳香族化合物の水酸基又はアミノ基とを反応させることで、一般式(II-A)~(II-D)で表される構造からなる群より選択される少なくとも1つを有する第二のエポキシ化合物を合成することができる。
 ジヒドロキシベンゼン化合物としては、1,2-ジヒドロキシベンゼン(カテコール)、1,3-ジヒドロキシベンゼン(レゾルシノール)、1,4-ジヒドロキシベンゼン(ヒドロキノン)、これらの誘導体等が挙げられる。
 ジアミノベンゼン化合物としては、1,2-ジアミノベンゼン、1,3-ジアミノベンゼン、1,4-ジアミノベンゼン、これらの誘導体等が挙げられる。
 ジヒドロキシビフェニル化合物としては、3,3’-ジヒドロキシビフェニル、3,4’-ジヒドロキシビフェニル、4,4’-ジヒドロキシビフェニル、これらの誘導体等が挙げられる。
 ジアミノビフェニル化合物としては、3,3’-ジアミノビフェニル、3,4’-ジアミノビフェニル、4,4’-ジアミノビフェニル、これらの誘導体等が挙げられる。
 特定芳香族化合物の誘導体としては、特定芳香族化合物のベンゼン環に炭素数1~8のアルキル基等の置換基が結合した化合物が挙げられる。特定芳香族化合物は、1種を単独で用いてもよく、2種以上を併用してもよい。
 エポキシ樹脂の硬化物中におけるスメクチック構造の形成し易さの観点からは、特定芳香族化合物としては1,4-ジヒドロキシベンゼン、1,4-ジアミノベンゼン、4,4’-ジヒドロキシビフェニル及び4,4’-ジアミノビフェニルが好ましい。これらの化合物は、ベンゼン環上の2つの水酸基又はアミノ基がパラ位の位置関係となっているため、これを第一のエポキシ化合物と反応させて得られる第二のエポキシ化合物は直線構造となり易い。このため、分子のスタッキング性が高く、硬化物中にスメクチック構造を形成し易いと考えられる。
 反応触媒の種類は特に限定されず、反応速度、反応温度、貯蔵安定性等の観点から適切なものを選択できる。具体的には、イミダゾール化合物、有機リン化合物、第3級アミン、第4級アンモニウム塩等が挙げられる。反応触媒は1種を単独で用いてもよく、2種以上を併用してもよい。
 硬化物の耐熱性の観点からは、反応触媒としては有機リン化合物が好ましい。
 有機リン化合物の好ましい例としては、有機ホスフィン化合物、有機ホスフィン化合物に無水マレイン酸、キノン化合物、ジアゾフェニルメタン、フェノール樹脂等のπ結合をもつ化合物を付加してなる分子内分極を有する化合物、有機ホスフィン化合物と有機ボロン化合物との錯体などが挙げられる。
 有機ホスフィン化合物として具体的には、トリフェニルホスフィン、ジフェニル(p-トリル)ホスフィン、トリス(アルキルフェニル)ホスフィン、トリス(アルコキシフェニル)ホスフィン、トリス(アルキルアルコキシフェニル)ホスフィン、トリス(ジアルキルフェニル)ホスフィン、トリス(トリアルキルフェニル)ホスフィン、トリス(テトラアルキルフェニル)ホスフィン、トリス(ジアルコキシフェニル)ホスフィン、トリス(トリアルコキシフェニル)ホスフィン、トリス(テトラアルコキシフェニル)ホスフィン、トリアルキルホスフィン、ジアルキルアリールホスフィン、アルキルジアリールホスフィン等が挙げられる。
 キノン化合物として具体的には、1,4-ベンゾキノン、2,5-トルキノン、1,4-ナフトキノン、2,3-ジメチルベンゾキノン、2,6-ジメチルベンゾキノン、2,3-ジメトキシ-5-メチル-1,4-ベンゾキノン、2,3-ジメトキシ-1,4-ベンゾキノン、フェニル-1,4-ベンゾキノン等が挙げられる。
 有機ボロン化合物として具体的には、テトラフェニルボレート、テトラ-p-トリルボレート、テトラ-n-ブチルボレート等が挙げられる。
 反応触媒の量は特に制限されない。反応速度及び貯蔵安定性の観点からは、第一のエポキシ化合物と、第一のエポキシ化合物のエポキシ基と反応しうる官能基を有する化合物との合計質量100質量部に対し、0.1質量部~1.5質量部であることが好ましく、0.2質量部~1質量部であることがより好ましい。
 第一のエポキシ化合物を用いて第二のエポキシ化合物を合成する場合、第一のエポキシのすべてが反応して第二のエポキシ化合物の状態になっていても、第一のエポキシ化合物の一部が反応せずに第一のエポキシ化合物の状態で残存していてもよい。
 第二のエポキシ化合物の合成は、少量スケールであればフラスコ、大量スケールであれば合成釜等の反応容器を使用して行うことができる。具体的な合成方法は、例えば以下の通りである。
 まず、第一のエポキシ化合物を反応容器に投入し、必要に応じて溶媒を入れ、オイルバス又は熱媒により反応温度まで加温し、第一のエポキシ化合物を溶解する。そこに第一のエポキシ化合物のエポキシ基と反応しうる官能基を有する化合物を投入し、次いで必要に応じて反応触媒を投入し、反応を開始させる。次いで、必要に応じて減圧下で溶媒を留去することで、第二のエポキシ化合物が得られる。
 反応温度は、第一のエポキシ化合物のエポキシ基と、エポキシ基と反応しうる官能基との反応が進行する温度であれば特に制限されず、例えば100℃~180℃の範囲であることが好ましく、100℃~150℃の範囲であることがより好ましい。反応温度を100℃以上とすることで、反応が完結するまでの時間をより短くできる傾向にある。一方、反応温度を180℃以下とすることで、ゲル化する可能性を低減できる傾向にある。
 第二のエポキシ化合物の合成に用いる第一のエポキシ化合物と、エポキシ基と反応しうる官能基を有する化合物の配合比は、特に制限されない。例えば、エポキシ基の当量数(A)と、エポキシ基と反応しうる官能基の当量数(B)との比率(A/B)が100/100~100/1の範囲となる配合比としてもよい。硬化物の破壊靭性及び耐熱性の観点からは、A/Bが100/50~100/1の範囲となる配合比が好ましい。
 第二のエポキシ化合物の構造は、例えば、合成に使用した第一のエポキシ化合物と、エポキシ基と反応しうる官能基を有する化合物との反応より得られると推定される第二のエポキシ化合物の分子量と、UV及びマススペクトル検出器を備える液体クロマトグラフを用いて実施される液体クロマトグラフィーにより求めた目的化合物の分子量とを照合させることで決定することができる。
 エポキシ樹脂のエポキシ当量は、特に制限されない。エポキシ樹脂の流動性と硬化物の熱伝導率を両立する観点からは、245g/eq~500g/eqであることが好ましく、250g/eq~450g/eqであることがより好ましく、260g/eq~400g/eqであることがさらに好ましい。エポキシ樹脂のエポキシ当量が245g/eq以上であれば、エポキシ樹脂の結晶性が高くなりすぎないためエポキシ樹脂の流動性が低下しにくい傾向にある。一方、エポキシ樹脂のエポキシ当量が500g/eq以下であれば、エポキシ樹脂の架橋密度が低下しにくいため、成形物の熱伝導率が高くなる傾向にある。本実施形態において、エポキシ樹脂のエポキシ当量は、過塩素酸滴定法により測定する。
 エポキシ樹脂の数平均分子量(Mn)と重量平均分子量(Mw)は、特に制限されず、エポキシ樹脂の所望の特性に応じて選択できる。粘度の観点からは、エポキシ樹脂の重量平均分子量(Mw)は1200~1550の範囲から選択されることが好ましい。
 本実施形態において、エポキシ樹脂の数平均分子量(Mn)と重量平均分子量(Mw)は液体クロマトグラフィーにより得られる値とする。
 液体クロマトグラフィーは、試料濃度を0.5質量%とし、移動相にテトラヒドロフランを用い、流速を1.0ml/minとして行う。検量線はポリスチレン標準サンプルを用いて作成し、それを用いてポリスチレン換算値でMn及びMwを測定する。
 測定は、例えば、株式会社日立製作所製の高速液体クロマトグラフ「L6000」と、株式会社島津製作所製のデータ解析装置「C-R4A」を用いて行うことができる。カラムとしては、例えば、東ソー株式会社製のGPCカラムである「G2000HXL」及び「G3000HXL」を用いることができる。
<エポキシ樹脂組成物>
 本実施形態のエポキシ樹脂組成物は、上述した実施形態のエポキシ樹脂と、硬化剤と、を含む。
(硬化剤)
 硬化剤は、本実施形態のエポキシ樹脂組成物に含まれるエポキシ樹脂と硬化反応を生じることができる化合物であれば、特に制限されない。硬化剤の具体例としては、アミン硬化剤、フェノール硬化剤、酸無水物硬化剤、ポリメルカプタン硬化剤、ポリアミノアミド硬化剤、イソシアネート硬化剤、ブロックイソシアネート硬化剤等が挙げられる。硬化剤は、1種を単独で用いても2種以上を併用してもよい。
 エポキシ樹脂組成物の硬化物中に高次構造を形成する観点からは、硬化剤としては、アミン硬化剤又はフェノール硬化剤が好ましく、硬化物の高次構造形成の観点からはアミン硬化剤がより好ましく、硬化に要する時間の観点からは芳香環に直接結合しているアミノ基を2つ以上有する化合物であることがさらに好ましい。
 アミン硬化剤として具体的には、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノ-3,3’-ジメトキシビフェニル、4,4’-ジアミノフェニルベンゾエート、1,5-ジアミノナフタレン、1,3-ジアミノナフタレン、1,4-ジアミノナフタレン、1,8-ジアミノナフタレン、1,3-ジアミノベンゼン、1,4-ジアミノベンゼン、4,4’-ジアミノベンズアニリド、トリメチレン-ビス-4-アミノベンゾアート等が挙げられる。
 エポキシ樹脂組成物の硬化物中にスメクチック構造を形成する観点からは4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、1,3-ジアミノベンゼン、1,4-ジアミノベンゼン、4,4-ジアミノベンズアニリド、1,5-ジアミノナフタレン、4,4’-ジアミノジフェニルメタン及びトリメチレン-ビス-4-アミノベンゾアートが好ましく、高Tgの硬化物を得る観点からは4,4’-ジアミノジフェニルスルホン及び4,4’-ジアミノベンズアニリドがより好ましい。
 フェノール硬化剤としては、低分子フェノール化合物、及び低分子フェノール化合物をメチレン鎖等で連結してノボラック化したフェノールノボラック樹脂が挙げられる。低分子フェノール化合物としては、フェノール、o-クレゾール、m-クレゾール、p-クレゾール等の単官能フェノール化合物、カテコール、レゾルシノール、ハイドロキノン等の2官能フェノール化合物、1,2,3-トリヒドロキシベンゼン、1,2,4-トリヒドロキシベンゼン、1,3,5-トリヒドロキシベンゼン等の3官能フェノール化合物などが挙げられる。
 エポキシ樹脂組成物における硬化剤の含有量は特に制限されない。硬化反応の効率性の観点からは、エポキシ樹脂組成物に含まれる硬化剤の活性水素の当量数(アミン当量数)と、エポキシ樹脂のエポキシ当量数との比(アミン当量数/エポキシ当量数)が0.3~3.0となる量であることが好ましく、0.5~2.0となる量であることがより好ましい。
(その他の成分)
 エポキシ樹脂組成物は、必要に応じてエポキシ樹脂と硬化剤以外のその他の成分を含んでもよい。例えば、硬化触媒、フィラー等を含んでもよい。硬化触媒の具体例としては、多量体の合成に使用しうる反応触媒として例示した化合物が挙げられる。
(用途)
 本実施形態のエポキシ樹脂組成物の用途は特に制限されないが、エポキシ樹脂組成物の比較的急速な加温を伴う加工方法にも好適に用いることができる。例えば、繊維間の空隙にエポキシ樹脂組成物を加温しながら含浸する工程を伴うFRPの製造、エポキシ樹脂組成物を加温しながらスキージ等で広げる工程を伴うシート状物の製造などにも好適に用いることができる。
 本実施形態のエポキシ樹脂組成物は、硬化物中のボイドの発生を抑制する観点から粘度低下のための溶剤の添加を省略又は低減することが望まれる加工方法にも好適に用いることができる。
<エポキシ樹脂硬化物及び複合材料>
 本実施形態のエポキシ樹脂硬化物は、本実施形態のエポキシ樹脂組成物を硬化して得られる。本実施形態の複合材料は、本実施形態のエポキシ樹脂硬化物と、強化材と、を含む。
 複合材料に含まれる強化材の材質は特に制限されず、複合材料の用途等に応じて選択できる。強化材として具体的には、炭素材料、ガラス、芳香族ポリアミド系樹脂(例えば、ケブラー(登録商標))、超高分子量ポリエチレン、アルミナ、窒化ホウ素、窒化アルミニウム、マイカ、シリコン等が挙げられる。強化材の形状は特に制限されず、繊維状、粒子状(フィラー)等が挙げられる。複合材料に含まれる強化材は、1種のみでも2種以上であってもよい。
 以下、本発明の実施例を示し具体的に説明するが、本発明はこれらに限定されるものではない。
[樹脂1の合成]
 500mLの三口フラスコに、第一のエポキシ化合物(4-{4-(2,3-エポキシプロポキシ)フェニル}シクロヘキシル=4-(2,3-エポキシプロポキシ)ベンゾエート、下記構造、エポキシ当量:224g/eq)を50g量り取り、そこにプロピレングリコールモノメチルエーテル(和光純薬工業株式会社製)を100g添加した。三口フラスコに冷却管及び窒素導入管を設置し、溶媒に漬かるように撹拌羽を取り付けた。この三口フラスコを120℃のオイルバスに浸漬し、撹拌を開始した。エポキシモノマーが溶解し、透明な溶液になったことを確認した後、ヒドロキノン(和光純薬工業株式会社製、水酸基当量:55g/eq)をエポキシ基(A)とヒドロキノン由来のフェノール性水酸基(B)の当量比(A/B)が100/25となるように添加(3.07g)し、さらに反応触媒としてトリフェニルホスフィン(和光純薬工業株式会社製)を0.5g添加し、120℃のオイルバス温度で加熱を継続した。3時間加熱を継続した後に、反応溶液からプロピレングリコールモノメチルエーテルを減圧留去し、残渣を室温(25℃)まで冷却することにより、第一のエポキシ化合物の一部がヒドロキノンと反応して得られた第二のエポキシ化合物を含む樹脂1を得た。
 合成に使用した第一のエポキシ化合物は室温では粉末状(結晶相)であり、150℃でネマチック相へ、210℃で等方相へと転移する。製造方法等については特許第5471975号を参照できる。
Figure JPOXMLDOC01-appb-C000015
 
 上述した方法に従って液体クロマトグラフィーにより得られた樹脂1のチャートより、第一のエポキシ化合物に由来するピーク面積のエポキシ樹脂全体における割合を求めたところ、45%であった。また、樹脂1の数平均分子量(Mn)は766、重量平均分子量(Mw)は1557であった。
 なお、エポキシ樹脂の作製に用いた第一のエポキシ化合物は、27.7分のところにピークトップを有していた。
 液体クロマトグラフィーは、UV及びマススペクトル検出器を備える液体クロマトグラフ(株式会社日立製作所製の高速液体クロマトグラフ「L6000」)と、株式会社島津製作所製のデータ解析装置「C-R4A」を用いて行った。カラムとしては、東ソー株式会社製のGPCカラムである「G2000HXL」及び「G3000HXL」を使用した。
 樹脂1の固形分量を、加熱減量法により測定した。具体的には、試料をアルミ製カップに2.0g~2.1g量り取り、180℃の温度に設定した乾燥機内に30分間放置した後の計測量と加熱前の計測量とに基づき、次式により算出した。その結果、樹脂1の固形分量は99.7%であった。
 固形分量(%)=(30分間放置した後の計測量/加熱前の計測量)×100
 樹脂1のエポキシ当量を過塩素酸滴定法により測定したところ、326g/eqであった。
[樹脂2の合成]
 ヒドロキノンの代わりにレゾルシノール(和光純薬工業株式会社製、水酸基当量:55g/eq)を、エポキシ基(A)とレゾルシノール由来のフェノール性水酸基(B)の当量比(A/B)が100/25となるように添加(3.07g)したこと以外は実施例1と同様にして、第一のエポキシ化合物の一部がレゾルシノールと反応して得られた第二のエポキシ化合物を含む樹脂2を得た。
 樹脂1の場合と同様にして樹脂2における第一のエポキシ化合物の割合を求めたところ、48%であった。また、樹脂2のMnは726、Mwは1301であった。
 樹脂2の固形分量を樹脂1の場合と同様に測定したところ、99.7%であった。また、樹脂2のエポキシ当量を樹脂1と同様に測定したところ、320g/eqであった。
[樹脂3の合成]
 ヒドロキノンの代わりに、カテコール(東京化成工業株式会社製、水酸基当量:55g/eq)をエポキシ基(A)とカテコール由来のフェノール性水酸基(B)の当量比(A/B)が100/25となるように添加(3.07g)したこと以外は実施例1と同様にして、第一のエポキシ化合物の一部がカテコールと反応して得られた第二のエポキシ化合物を含む樹脂3を得た。
 樹脂1の場合と同様にして樹脂3における第一のエポキシ化合物の割合を求めたところ、47%であった。また、樹脂3のMnは712、Mwは1220であった。
 樹脂3の固形分量を樹脂1の場合と同様に測定したところ、99.7%であった。また、樹脂3のエポキシ当量を樹脂1と同様に測定したところ、318g/eqであった。
[樹脂4の合成]
 第一のエポキシ化合物の量を35gに、プロピレングリコールモノメチルエーテルの量を70gに、トリフェニルホスフィンの量を0.35gにそれぞれ変更したことと、ヒドロキノンの代わりに4,4’-ジヒドロキシビフェニル(和光純薬工業株式会社製、水酸基当量:93g/eq)をエポキシ基(A)と4,4’-ジヒドロキシビフェニル由来のフェノール性水酸基(B)の当量比(A/B)が100/25となるように添加(3.64g)したこと以外は実施例1と同様にして、第一のエポキシ化合物の一部が4,4’-ジヒドロキシビフェニルと反応して得られた第二のエポキシ化合物を含む樹脂4を得た。
 樹脂1の場合と同様にして樹脂4における第一のエポキシ化合物の割合を求めたところ、44%であった。また、樹脂4のMnは778、Mwは1589であった。
 樹脂4の固形分量を樹脂1の場合と同様に測定したところ、99.6%であった。また、樹脂4のエポキシ当量を樹脂1と同様に測定したところ、342g/eqであった。
[樹脂5の合成]
 ヒドロキノンを、エポキシ基(A)とヒドロキノン由来のフェノール性水酸基(B)の当量比(A/B)が100/13となるように添加(1.60g)した以外は実施例1と同様にして、第一のエポキシ化合物の一部がヒドロキノンと反応して得られた第二のエポキシ化合物を含む樹脂5を得た。
 樹脂1の場合と同様にして樹脂5における第一のエポキシ化合物の割合を求めたところ、66%であった。また、樹脂5のMnは584、Mwは1013であった。
 樹脂5の固形分量を樹脂1の場合と同様に測定したところ、99.7%であった。また、樹脂5のエポキシ当量を樹脂1と同様に測定したところ、270g/eqであった。
[樹脂6の合成]
 プロピレングリコールモノメチルエーテルの代わりにシクロヘキサノン(和光純薬工業株式会社製)を80g添加したことと、ヒドロキノンを、エポキシ基(A)とヒドロキノン由来のフェノール性水酸基(B)の当量比(A/B)が100/25となるように添加(3.07g)したことと、オイルバスの加熱温度を150℃としたこと以外は実施例1と同様にして、第一のエポキシ化合物の一部がヒドロキノンと反応して得られた第二のエポキシ化合物を含む樹脂6を得た。
 樹脂1の場合と同様にして樹脂6における第一のエポキシ化合物の割合を求めたところ、51%であった。また、樹脂5のMnは712、Mwは1220であった。
 樹脂6の固形分量を樹脂1の場合と同様に測定したところ、99.6%であった。また、樹脂6のエポキシ当量を樹脂1と同様に測定したところ、314g/eqであった。
[樹脂の粘度挙動の評価]
 樹脂1~6の粘度挙動の評価を、動的せん断粘度(Pa・s)を測定することにより行った。動的せん断粘度(Pa・s)は、JIS K 7244-10の規格に従い、レオメータ(MCR-301、アントンパール社製)により振動モードで測定した。測定には直径12mmの平行平板プレートを用い、測定条件は、周波数1Hz、ギャップ0.2mm、ひずみ2%とした。
 具体的には、エポキシ樹脂を150℃で3分以上放置して溶融させた後、150℃から30℃まで2℃/分の速度で降温させ、続けて30℃から150℃まで2℃/分の速度で昇温させ、その間の動的せん断粘度を1点/℃以上の間隔で測定した。
 30℃から150℃までの昇温過程において、粘度が一時的に増加する挙動が認められた場合は「有」、粘度が一時的に増加することなく粘度が低下した場合は「無」として評価した。結果を表1に示す。また、昇温過程において70℃で測定された動的せん断粘度(Pa・s)の値を表1に示す。
<実施例1>
 樹脂1を10gと、硬化剤として4,4’-ジアミノジフェニルスルホン(以下、DDSと記す)とを1.90g量り取り、ステンレスシャーレに入れた。このとき、配合量はエポキシ基とDDS由来のアミノ基の当量比が1/1となるように計算した。それをホットプレートで180℃に加熱し、ステンレスシャーレ内の樹脂1とDDSとをスパチュラでかき混ぜながら溶融させ、そのまま1時間加熱した。さらにホットプレートの温度を230℃に上げ、1時間加熱し、硬化物を得た。常温(25℃)まで冷却した後、ステンレスシャーレから硬化物を取り出し、オーブンにて230℃で1時間加熱して硬化を完了させて、エポキシ樹脂硬化物を得た。このエポキシ樹脂硬化物を3.75mm×7.5mm×33mmの直方体に切り出し、破壊靱性評価用の試験片を作製した。さらに、エポキシ樹脂硬化物を2mm×0.5mm×40mmの短冊状に切り出し、ガラス転移温度評価用の試験片を作製した。
<実施例2>
 樹脂1を同量の樹脂2とし、DDSを1.94gとした以外は実施例1と同様にしてエポキシ樹脂硬化物を作製し、評価用の試験片をそれぞれ作製した。
<実施例3>
 樹脂1を同量の樹脂3とし、DDSを1.95gとした以外は実施例1と同様にしてエポキシ樹脂硬化物を作製し、評価用の試験片をそれぞれ作製した。
<実施例4>
 樹脂1を同量の樹脂4とし、DDSを1.81gとした以外は実施例1と同様にしてエポキシ樹脂硬化物を作製し、評価用の試験片をそれぞれ作製した。
<比較例1>
 樹脂1を同量の樹脂5とし、DDSを2.30gとした以外は実施例1と同様にしてエポキシ樹脂硬化物を作製し、評価用の試験片をそれぞれ作製した。
<比較例2>
 樹脂1を同量の樹脂6とし、DDSを1.97gとした以外は実施例1と同様にしてエポキシ樹脂硬化物を作製し、評価用の試験片をそれぞれ作製した。
[スメクチック構造形成の有無]
 硬化物にスメクチック構造が形成されているか否かの確認をX線回折測定(株式会社リガク製のX線回折装置を使用)することにより行った。測定は、CuKα1線を用い、管電圧50kV、管電流300mA、走査速度を1°/分、2θ=2°~30°の範囲で行った。2θ=2°~10°の範囲に回折ピークが現れた場合はスメクチック構造が形成されていると判断した。結果を表1に示す。
[破壊靱性値の測定]
 試験片の破壊靱性を示す指標として、破壊靱性値を用いた。試験片の破壊靱性値は、ASTM D5045に基づいて3点曲げ測定を行って算出した。評価装置としてはインストロン5948(インストロン社製)を用いた。結果を表1に示す。
[耐熱性の評価]
 試験片の耐熱性を示す指標として、ガラス転移温度を用いた。試験片のガラス転移温度は、引張りモードによる動的粘弾性測定を行って算出した。測定条件は、振動数:10Hz、昇温速度:5℃/min、歪み:0.1%とした。得られたtanδチャートのピークをガラス転移温度とみなした。評価装置としてはRSA-G2(ティー・エイ・インスツルメント社製)を用いた。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000016
 表1に示すように、第一のエポキシ化合物の割合がエポキシ樹脂全体の50%以下である実施例のエポキシ樹脂は、動的せん断粘度の測定の際の昇温過程において粘度が一時的に増加することなく低下したのに対し、第一のエポキシ化合物の割合がエポキシ樹脂全体の50%を超える比較例のエポキシ樹脂は、昇温過程において粘度が一時的に増加する挙動を示した。また、70℃で測定された動的せん断粘度も実施例は比較例よりも低かった。これらの結果の原因としては、エポキシ樹脂の温度低下に伴って生じる結晶の析出が実施例では比較例よりも抑制されていたことが考えられる。
 以上より、本実施形態のエポキシ樹脂は、取り扱い性に優れていることがわかった。
 また、実施例1~4で作製したエポキシ樹脂の硬化物は、いずれも高い破壊じん性値と高いガラス転移温度を示した。

Claims (9)

  1.  メソゲン構造を有する第一のエポキシ化合物と、前記メソゲン構造と同じ構造のメソゲン構造を2つ以上有する第二のエポキシ化合物と、を含むエポキシ樹脂であって、液体クロマトグラフィーにより得られる前記第一のエポキシ化合物の割合が、前記エポキシ樹脂全体の50%以下である、エポキシ樹脂。
  2.  前記第一のエポキシ化合物が、下記一般式(M)で表されるエポキシ化合物を含む、請求項1に記載のエポキシ樹脂。
    Figure JPOXMLDOC01-appb-C000001

    [一般式(M)中、R~Rはそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を示す。]
  3.  前記第二のエポキシ化合物が、下記一般式(I)で表される構造を2つ以上有するエポキシ化合物を含む、請求項1又は請求項2に記載のエポキシ樹脂。
    Figure JPOXMLDOC01-appb-C000002

    [一般式(I)中、R~Rはそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を示す。]
  4.  前記第二のエポキシ化合物が、前記一般式(I)で表される構造を2つ有するエポキシ化合物を含む、請求項3に記載のエポキシ樹脂。
  5.  前記第二のエポキシ化合物が、下記一般式(II-A)~(II-D)で表される構造からなる群より選択される少なくとも1つを有するエポキシ化合物を含む、請求項1~請求項4のいずれか1項に記載のエポキシ樹脂。
    Figure JPOXMLDOC01-appb-C000003

    [一般式(II-A)~(II-D)中、R~Rはそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を表し、R及びRはそれぞれ独立に、炭素数1~8のアルキル基を示す。n及びmはそれぞれ独立に、0~4の整数を表す。Xはそれぞれ独立に、-O-又は-NH-を表す。]
  6.  請求項1~請求項5のいずれか1項に記載のエポキシ樹脂と、硬化剤と、を含む、エポキシ樹脂組成物。
  7.  硬化させた際にスメクチック構造を形成可能である、請求項6に記載のエポキシ樹脂組成物。
  8.  請求項6又は請求項7に記載のエポキシ樹脂組成物の硬化物である、エポキシ樹脂硬化物。
  9.  請求項8に記載のエポキシ樹脂硬化物と、強化材と、を含む複合材料。
PCT/JP2016/080631 2016-10-14 2016-10-14 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料 WO2018070053A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
PCT/JP2016/080631 WO2018070053A1 (ja) 2016-10-14 2016-10-14 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
EP17859394.3A EP3527604B1 (en) 2016-10-14 2017-10-13 Epoxy resin, epoxy resin composition, epoxy resin cured object, and composite material
US16/341,587 US10920010B2 (en) 2016-10-14 2017-10-13 Epoxy resin, epoxy resin composition, epoxy resin cured product, and composite material
CN201780063285.5A CN109843967B (zh) 2016-10-14 2017-10-13 环氧树脂、环氧树脂组合物、环氧树脂固化物和复合材料
PCT/JP2017/037268 WO2018070535A1 (ja) 2016-10-14 2017-10-13 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP2018545084A JP6635201B2 (ja) 2016-10-14 2017-10-13 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
KR1020197011417A KR102426535B1 (ko) 2016-10-14 2017-10-13 에폭시 수지, 에폭시 수지 조성물, 에폭시 수지 경화물 및 복합 재료
CA3040451A CA3040451A1 (en) 2016-10-14 2017-10-13 Epoxy resin, epoxy resin composition, epoxy resin cured product, and composite material
TW106135137A TWI753027B (zh) 2016-10-14 2017-10-13 環氧樹脂、環氧樹脂組成物、環氧樹脂硬化物及複合材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/080631 WO2018070053A1 (ja) 2016-10-14 2016-10-14 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料

Publications (1)

Publication Number Publication Date
WO2018070053A1 true WO2018070053A1 (ja) 2018-04-19

Family

ID=61905431

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2016/080631 WO2018070053A1 (ja) 2016-10-14 2016-10-14 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
PCT/JP2017/037268 WO2018070535A1 (ja) 2016-10-14 2017-10-13 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037268 WO2018070535A1 (ja) 2016-10-14 2017-10-13 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料

Country Status (8)

Country Link
US (1) US10920010B2 (ja)
EP (1) EP3527604B1 (ja)
JP (1) JP6635201B2 (ja)
KR (1) KR102426535B1 (ja)
CN (1) CN109843967B (ja)
CA (1) CA3040451A1 (ja)
TW (1) TWI753027B (ja)
WO (2) WO2018070053A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019160143A1 (ja) * 2018-02-19 2019-08-22 日立化成株式会社 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
WO2019198158A1 (ja) * 2018-04-10 2019-10-17 日立化成株式会社 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
WO2019208242A1 (ja) * 2018-04-27 2019-10-31 東レ株式会社 プリプレグおよび炭素繊維強化複合材料
WO2020053937A1 (ja) * 2018-09-10 2020-03-19 日立化成株式会社 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109843964B (zh) * 2016-10-14 2021-12-31 昭和电工材料株式会社 环氧树脂、环氧树脂组合物、环氧树脂固化物和复合材料
WO2018070051A1 (ja) * 2016-10-14 2018-04-19 日立化成株式会社 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
EP3696208B1 (en) * 2017-09-29 2023-08-09 Resonac Corporation Epoxy resin, epoxy resin composition, epoxy resin cured product, and composite material
EP3757148A4 (en) * 2018-02-22 2021-07-07 Hitachi Chemical Company, Ltd. EPOXY RESINS, EPOXY RESIN COMPOSITION, CURED EPOXY RESIN AND THEIR PRODUCTION PROCESS, COMPOSITE MATERIAL, INSULATION ELEMENT, ELECTRONIC APPARATUS, STRUCTURAL MATERIAL AND MOVABLE OBJECT
WO2019198703A1 (ja) * 2018-04-10 2019-10-17 日立化成株式会社 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016113540A (ja) * 2014-12-15 2016-06-23 日立化成株式会社 エポキシ樹脂組成物、樹脂シート、半硬化エポキシ樹脂組成物、硬化エポキシ樹脂組成物及び金属基板
WO2016104772A1 (ja) * 2014-12-26 2016-06-30 日立化成株式会社 エポキシ樹脂、エポキシ樹脂組成物、無機フィラー含有エポキシ樹脂組成物、樹脂シート、硬化物、及びエポキシ化合物

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2951778A (en) * 1958-06-05 1960-09-06 Grace W R & Co High temperature adhesive containing polyepoxide resin mixture
US4594291A (en) * 1984-07-17 1986-06-10 The Dow Chemical Company Curable, partially advanced epoxy resins
JP5019272B2 (ja) 2008-09-30 2012-09-05 Tdk株式会社 エポキシプレポリマー、並びに、これを用いたエポキシ樹脂組成物、硬化物、半硬化物、プリプレグ及び複合基板
US9242948B2 (en) 2009-09-03 2016-01-26 Sumitomo Chemical Company, Limited Diepoxy compound, process for producing same, and composition containing the diepoxy compound
JP6680351B2 (ja) * 2016-02-25 2020-04-15 日立化成株式会社 エポキシ樹脂組成物、半硬化エポキシ樹脂組成物、硬化エポキシ樹脂組成物、成形物及び成形硬化物
EP3476879B1 (en) * 2016-06-22 2022-09-21 Showa Denko Materials Co., Ltd. Epoxy resin composition, cured product and composite material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016113540A (ja) * 2014-12-15 2016-06-23 日立化成株式会社 エポキシ樹脂組成物、樹脂シート、半硬化エポキシ樹脂組成物、硬化エポキシ樹脂組成物及び金属基板
WO2016104772A1 (ja) * 2014-12-26 2016-06-30 日立化成株式会社 エポキシ樹脂、エポキシ樹脂組成物、無機フィラー含有エポキシ樹脂組成物、樹脂シート、硬化物、及びエポキシ化合物

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019160143A1 (ja) * 2018-02-19 2019-08-22 日立化成株式会社 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
US11919995B2 (en) 2018-02-19 2024-03-05 Resonac Corporation Epoxy resin, epoxy resin composition, epoxy resin cured product, and composite material
WO2019198158A1 (ja) * 2018-04-10 2019-10-17 日立化成株式会社 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
WO2019208242A1 (ja) * 2018-04-27 2019-10-31 東レ株式会社 プリプレグおよび炭素繊維強化複合材料
JPWO2019208242A1 (ja) * 2018-04-27 2021-03-25 東レ株式会社 プリプレグおよび炭素繊維強化複合材料
JP7264050B2 (ja) 2018-04-27 2023-04-25 東レ株式会社 プリプレグおよび炭素繊維強化複合材料
WO2020053937A1 (ja) * 2018-09-10 2020-03-19 日立化成株式会社 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
CN112673040A (zh) * 2018-09-10 2021-04-16 昭和电工材料株式会社 环氧树脂、环氧树脂组合物、环氧树脂固化物及复合材料
CN112673040B (zh) * 2018-09-10 2024-05-28 株式会社力森诺科 环氧树脂、环氧树脂组合物、环氧树脂固化物及复合材料

Also Published As

Publication number Publication date
EP3527604A1 (en) 2019-08-21
KR102426535B1 (ko) 2022-07-27
US20190338068A1 (en) 2019-11-07
EP3527604A4 (en) 2020-06-10
TW201817760A (zh) 2018-05-16
EP3527604B1 (en) 2024-04-10
KR20190069440A (ko) 2019-06-19
JP6635201B2 (ja) 2020-01-22
US10920010B2 (en) 2021-02-16
TWI753027B (zh) 2022-01-21
CN109843967B (zh) 2022-10-28
CN109843967A (zh) 2019-06-04
WO2018070535A1 (ja) 2018-04-19
CA3040451A1 (en) 2018-04-19
JPWO2018070535A1 (ja) 2019-06-24

Similar Documents

Publication Publication Date Title
JP7160058B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP6635201B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP6891901B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP6988882B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP6775737B2 (ja) エポキシ樹脂組成物、硬化物及び複合材料
JP7003999B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP6866939B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP7004000B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP7003998B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
WO2019043843A1 (ja) エポキシ樹脂硬化物、エポキシ樹脂組成物、成形体及び複合材料
JP7243093B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP7243091B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP2019065126A (ja) エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP2020143191A (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP2020041048A (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16918987

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16918987

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP