WO2017221811A1 - エポキシ樹脂組成物、硬化物及び複合材料 - Google Patents

エポキシ樹脂組成物、硬化物及び複合材料 Download PDF

Info

Publication number
WO2017221811A1
WO2017221811A1 PCT/JP2017/022174 JP2017022174W WO2017221811A1 WO 2017221811 A1 WO2017221811 A1 WO 2017221811A1 JP 2017022174 W JP2017022174 W JP 2017022174W WO 2017221811 A1 WO2017221811 A1 WO 2017221811A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
epoxy
compound
resin composition
mass
Prior art date
Application number
PCT/JP2017/022174
Other languages
English (en)
French (fr)
Inventor
優香 吉田
福田 和真
竹澤 由高
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2018524005A priority Critical patent/JP6775737B2/ja
Priority to EP17815279.9A priority patent/EP3476879B1/en
Priority to CN201780038849.XA priority patent/CN109415490A/zh
Priority to US16/311,966 priority patent/US11149109B2/en
Publication of WO2017221811A1 publication Critical patent/WO2017221811A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5033Amines aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/504Amines containing an atom other than nitrogen belonging to the amine group, carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/10Reinforcing macromolecular compounds with loose or coherent fibrous material characterised by the additives used in the polymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements

Definitions

  • the present invention relates to an epoxy resin composition, a cured product, and a composite material.
  • Epoxy resin is widely used as a matrix resin for fiber reinforced plastic (FRP). Recently, epoxy resins have also been used as matrix resins for FRP used in aerospace applications that require high levels of physical properties such as fracture toughness, elasticity, and heat resistance. However, thermosetting resins such as epoxy resins tend to be inferior in fracture toughness while being excellent in heat resistance as compared to thermoplastic resins.
  • the glass transition temperature (Tg) of the cured product of the prepared epoxy resin is lowered, so that the heat resistance of FRP using this as a matrix resin is lowered. is there.
  • the method of introducing a mesogenic group into the molecule of the epoxy resin is said to exhibit excellent fracture toughness and heat resistance if it can be brought into an ideal cured state, but generally a mesogen-containing epoxy resin is Due to the strong crystallinity, high melting point and high viscosity, there is a problem that it is difficult to obtain an ideal cured state in which molecules are arranged. Therefore, development of an epoxy resin that exhibits excellent fracture toughness and heat resistance in a cured state is awaited.
  • An object of the present invention is to provide an epoxy resin composition exhibiting excellent fracture toughness and heat resistance in a cured state, a cured product thereof, and a composite material containing the cured product.
  • Means for solving the above problems include the following embodiments. ⁇ 1> containing an epoxy resin and a curing agent,
  • the epoxy resin includes an epoxy compound having two or more structural units represented by the following general formula (I) in one molecule and having two or more epoxy groups,
  • R 1 ⁇ R 4 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • ⁇ 2> The epoxy resin composition according to ⁇ 1>, wherein the epoxy compound includes an epoxy compound having two structural units represented by the general formula (I).
  • ⁇ 3> The epoxy resin composition according to ⁇ 1> or ⁇ 2>, wherein the epoxy resin composition can form a smectic structure when cured.
  • ⁇ 4> A cured product of the epoxy resin composition according to any one of ⁇ 1> to ⁇ 3>.
  • ⁇ 5> A composite material comprising the cured product according to ⁇ 4> and a reinforcing material.
  • ⁇ 6> The composite material according to claim 5, wherein the reinforcing material includes a carbon material.
  • an epoxy resin composition exhibiting excellent fracture toughness and heat resistance in a cured state, a cured product thereof, and a composite material including the cured product are provided.
  • the numerical values indicated by using “to” include numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
  • the content rate or content of each component in the composition is such that when there are a plurality of substances corresponding to each component in the composition, the plurality of kinds present in the composition unless otherwise specified. It means the total content or content of substances.
  • the epoxy resin composition of this embodiment contains an epoxy resin and a curing agent, and the epoxy resin has two or more structural units represented by the following general formula (I) in one molecule, And an epoxy compound having two or more epoxy groups (hereinafter also referred to as a specific epoxy compound), and the curing agent is a compound having two or more amino groups directly bonded to an aromatic ring (hereinafter also referred to as a specific curing agent).
  • an epoxy compound having two or more epoxy groups hereinafter also referred to as a specific epoxy compound
  • the curing agent is a compound having two or more amino groups directly bonded to an aromatic ring (hereinafter also referred to as a specific curing agent).
  • R 1 to R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • R 1 to R 4 are each independently preferably a hydrogen atom or an alkyl group having 1 to 2 carbon atoms, more preferably a hydrogen atom or a methyl group, and even more preferably a hydrogen atom.
  • 2 to 4 of R 1 to R 4 are preferably hydrogen atoms, more preferably 3 or 4 are hydrogen atoms, and all 4 are further hydrogen atoms. preferable.
  • any of R 1 to R 4 is an alkyl group having 1 to 3 carbon atoms
  • at least one of R 1 and R 4 is preferably an alkyl group having 1 to 3 carbon atoms.
  • the epoxy resin composition of the present embodiment exhibits excellent fracture toughness and heat resistance in a cured state.
  • the reason for this is not necessarily clear, but is presumed as follows. First, by using an epoxy compound having two or more structural units represented by the general formula (I) in one molecule as an epoxy resin and having two or more epoxy groups, an epoxy having another mesogenic skeleton It is considered that the melting point and the viscosity can be lowered as compared with the resin, and a smectic structure can be formed in the cured product even under curing conditions within a normal range, and excellent fracture toughness is achieved.
  • a smectic structure is more easily formed in the resulting cured product than when other curing agents are used, It is believed that better fracture toughness is achieved.
  • the structural unit represented by the general formula (I) in the molecule of the specific epoxy compound is a kind of mesogenic skeleton.
  • the mesogen skeleton refers to a skeleton structure that facilitates the expression of crystallinity or liquid crystallinity by the action of intermolecular interaction.
  • Specific examples of the mesogen skeleton include a biphenyl skeleton, a phenylbenzoate skeleton, an azobenzene skeleton, a stilbene skeleton, and derivatives thereof.
  • the higher order structure means a structure including a higher order structure in which constituent elements are arranged to form a micro ordered structure, and corresponds to, for example, a crystal phase and a liquid crystal phase.
  • the presence or absence of such a higher order structure can be determined by observation with a polarizing microscope. In other words, in the observation in the crossed Nicols state, it can be determined by seeing interference fringes due to depolarization.
  • This higher order structure usually exists in an island shape in the cured product of the epoxy resin composition to form a domain structure, and one of the islands corresponds to one higher order structure.
  • the constituent elements of this higher order structure are formed by covalent bonds.
  • the highly ordered higher order structure derived from the mesogenic structure there are a nematic structure and a smectic structure.
  • Each of the nematic structure and the smectic structure is a kind of liquid crystal structure.
  • the nematic structure is a liquid crystal structure in which the molecular long axis is oriented in a uniform direction and has only alignment order.
  • the smectic structure is a liquid crystal structure having a one-dimensional positional order in addition to the orientation order and having a layer structure. The order is higher in the smectic structure than in the nematic structure.
  • an epoxy compound having a structural unit represented by formula (I) as a mesogen skeleton tends to form a smectic structure when cured.
  • Whether or not a smectic structure is formed in the cured product of the epoxy resin composition can be determined by performing X-ray diffraction measurement of the cured product using, for example, an X-ray diffractometer manufactured by Rigaku Corporation. .
  • an X-ray diffractometer manufactured by Rigaku Corporation.
  • a diffraction peak appears in the range of.
  • the epoxy resin contains a specific epoxy compound.
  • the specific epoxy compound is not particularly limited as long as it has two or more structural units represented by the general formula (I) in one molecule and two or more epoxy groups.
  • the specific epoxy compound contained in the epoxy resin composition may be only one type or a combination of two or more types having different structures.
  • the number of structural units represented by the general formula (I) in one molecule is not particularly limited as long as it is 2 or more. From the viewpoint of heat resistance, the average value of the entire specific epoxy compound is preferably 5 or less, and more preferably 3 or less. From the viewpoint of heat resistance, the specific epoxy compound preferably includes a specific epoxy compound in which the number of structural units represented by the general formula (I) in one molecule is two.
  • multimeric compound a specific epoxy compound in which the number of structural units represented by the general formula (I) in one molecule is 2 or more is referred to as “multimeric compound”, and among the multimeric compounds, the general formula in one molecule A compound in which the number of structural units represented by (I) is 2 may be referred to as a “dimer compound”.
  • the specific epoxy compound may be a multimeric compound having at least one selected from the group consisting of a structural unit represented by the following general formula (IA) and a structural unit represented by the general formula (IB).
  • R 1 to R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms
  • R 5 each independently represents one having 1 to 8 carbon atoms.
  • An alkyl group is shown.
  • n represents an integer of 0 to 4.
  • R 1 to R 4 in general formula (IA) and general formula (IB) are the same as the specific examples of R 1 to R 4 in general formula (I), and preferred ranges thereof are also the same.
  • R 5 each independently represents an alkyl group having 1 to 8 carbon atoms, preferably an alkyl group having 1 to 3 carbon atoms, and preferably a methyl group. More preferred.
  • n represents an integer of 0 to 4, preferably an integer of 0 to 2, more preferably an integer of 0 to 1, and 0. Is more preferable. That is, in the general formula (IA) and the general formula (IB), the benzene ring to which R 5 is attached preferably has 2 to 4 hydrogen atoms, and preferably has 3 or 4 hydrogen atoms. More preferably, it has 4 hydrogen atoms.
  • the structure when the specific epoxy compound is a dimer compound containing two structural units represented by the general formula (I) in one molecule is represented by the following general formulas (II-A) to (II to C). And at least one selected from the group consisting of the represented compounds.
  • Formula (II-A) ⁇ (II ⁇ C) the definition of R 1 ⁇ R 5 and n in may be the same as R 1 ⁇ R 5 and n in the general formula (IA) and Formula (IB) The preferred range is also the same.
  • the dimer compounds represented by the general formulas (II-A) to (II to C) are selected from the group consisting of compounds represented by the following general formulas (II-A ′) to (II-I ′) At least one kind.
  • the content of the specific epoxy compound is preferably 10% by mass or more of the entire epoxy resin, more preferably 20% by mass or more, and further preferably 30% by mass or more. . From the viewpoint of heat resistance, it is preferably 80% by mass or less, more preferably 75% by mass or less, and still more preferably 70% by mass or less, based on the entire epoxy resin.
  • the content of the dimer compound is preferably 10% by mass or more of the entire epoxy resin, more preferably 15% by mass or more, and further preferably 20% by mass or more. preferable.
  • the content of the dimer compound is preferably 60% by mass or less, more preferably 55% by mass or less, and further preferably 50% by mass or less of the entire epoxy resin. preferable.
  • the epoxy resin composition may contain a compound represented by the following general formula (M) (hereinafter also referred to as a specific epoxy monomer) as an epoxy resin.
  • M general formula
  • R 1 to R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • Definition of R 1 ⁇ R 4 in the general formula (M) may be the same as R 1 ⁇ R 4 in formula (I), is the same preferred ranges thereof.
  • the content of the specific epoxy monomer is preferably 30% by mass or more of the entire epoxy resin, more preferably 35% by mass or more, and further preferably 40% by mass or more. . From the viewpoint of handleability, it is preferably 90% by mass or less, more preferably 80% by mass or less, and further preferably 70% by mass or less.
  • the epoxy resin composition may contain other epoxy resin components other than the specific epoxy compound and the specific epoxy monomer as an epoxy resin.
  • the content is preferably less than 15% by mass, more preferably 10% by mass or less, and further preferably 8% by mass or less, It is particularly preferred that substantially no other epoxy resin component is contained.
  • the content of the specific epoxy compound, the specific epoxy monomer, and other epoxy resin components in the epoxy resin is measured by reverse phase chromatography (Reverse Phase Liquid Chromatography, RPLC).
  • RPLC Reverse Phase Liquid Chromatography
  • the flow rate is 1.0 ml / min.
  • the absorbance at a wavelength of 280 nm is detected, the total area of all detected peaks is defined as 100, the ratio of the area of each corresponding peak is determined, and the value is the content of each compound in the entire epoxy resin. [Mass%].
  • the epoxy equivalent of the epoxy resin is not particularly limited. From the viewpoint of achieving both the fluidity of the epoxy resin composition and the thermal conductivity of the cured product, it is preferably 245 g / eq to 500 g / eq, more preferably 250 g / eq to 450 g / eq, and 260 g / eq. More preferably, it is eq to 400 g / eq. If the epoxy equivalent of the epoxy resin is 245 g / eq or more, the crystallinity of the epoxy resin does not become too high, and the fluidity of the epoxy resin composition tends not to decrease.
  • the epoxy equivalent of the epoxy resin is 300 g / eq or less, the crosslink density of the epoxy resin is unlikely to decrease, and the thermal conductivity of the molded product tends to increase.
  • the epoxy equivalent of the epoxy resin is measured by a perchloric acid titration method.
  • the number average molecular weight (Mn) in the gel permeation chromatography (GPC) measurement of the epoxy resin is preferably 400 to 1400 from the viewpoint of achieving both the fluidity of the epoxy resin composition and the thermal conductivity of the cured product. 450 to 1300 is more preferable, and 500 to 1200 is more preferable. If the Mn of the epoxy resin is 400 or more, the crystallinity of the epoxy resin does not become too high, so that the fluidity of the epoxy resin composition tends not to decrease. If Mn of an epoxy resin is 800 or less, since the crosslinking density of an epoxy resin is hard to fall, it exists in the tendency for the heat conductivity of hardened
  • GPC measurement uses “G2000HXL” and “3000HXL” manufactured by Tosoh Corporation as analytical GPC columns, tetrahydrofuran is used for the mobile phase, the sample concentration is 0.2 mass%, and the flow rate is 1. Measurement is performed at 0 ml / min. A calibration curve is prepared using a polystyrene standard sample, and Mn is calculated as a polystyrene equivalent value.
  • the method for synthesizing the specific epoxy compound is not particularly limited. For example, you may synthesize
  • a specific epoxy monomer, a compound having a functional group capable of reacting with an epoxy group of the specific epoxy monomer, and a reaction catalyst used as necessary are dissolved in a solvent, and stirred while heating.
  • Specific epoxy compounds can be synthesized.
  • the specific epoxy monomer may be melted and reacted without using a solvent. From the viewpoint of safety, a method using a solvent that does not need to be elevated to a temperature at which the specific epoxy monomer melts is preferable.
  • the solvent is a solvent that can dissolve the specific epoxy monomer and the compound having a functional group capable of reacting with the epoxy group of the specific epoxy monomer and can be heated up to a temperature necessary for the reaction of both compounds, in particular, Not limited.
  • Specific examples include cyclohexanone, cyclopentanone, ethyl lactate, propylene glycol monomethyl ether, N-methylpyrrolidone and the like.
  • the amount of the solvent is not particularly limited as long as it can dissolve the specific epoxy monomer, the compound having a functional group capable of reacting with the epoxy group of the specific epoxy monomer, and the reaction catalyst used as necessary at the reaction temperature.
  • solubility varies depending on the type of raw material before the reaction, the type of solvent, etc., the viscosity of the solution after the reaction tends to be in a preferable range if the charged solid content concentration is, for example, 20% by mass to 60% by mass. It is in.
  • the compound having a functional group capable of reacting with the epoxy group of the specific epoxy monomer is not particularly limited.
  • a compound having a functional group capable of reacting with an epoxy group of a specific epoxy monomer is a compound having a structure in which two hydroxyl groups are bonded to a benzene ring (hereinafter, divalent phenol compound). (It is also referred to as “also”).
  • the structural unit represented by the general formula (IA) and the structural unit represented by the general formula (IB) are selected. Compounds having at least one can be synthesized.
  • Divalent phenol compounds include catechol (two hydroxyl groups on the benzene ring are in the ortho position), resorcinol (two hydroxyl groups on the benzene ring are in the meta position), hydroquinone (on the benzene ring) Of these two hydroxyl groups are in the para-position), and derivatives thereof.
  • the derivatives include compounds further having a substituent such as an alkyl group having 1 to 8 carbon atoms on the benzene ring of catechol, resorcinol or hydroquinone.
  • the dihydric phenol compound is preferably catechol, resorcinol or hydroquinone, more preferably hydroquinone. Since hydroquinone has a positional relationship between two hydroxyl groups on the benzene ring, a specific epoxy compound obtained by reacting this with a specific epoxy monomer tends to have a linear structure. For this reason, it is considered that the stacking property of the molecule is high and it is easy to form a smectic structure in the cured product.
  • a dihydric phenol compound may be used individually by 1 type, and may use 2 or more types together.
  • reaction catalyst is not particularly limited, and an appropriate one can be selected from the viewpoint of reaction rate, reaction temperature, storage stability, and the like. Specific examples include imidazole compounds, organophosphorus compounds, tertiary amines, and quaternary ammonium salts.
  • a reaction catalyst may be used individually by 1 type, and may use 2 or more types together.
  • an organic phosphorus compound is preferable as the reaction catalyst.
  • the organic phosphorus compound include an organic phosphine compound, a compound having an intramolecular polarization formed by adding a compound having a ⁇ bond such as maleic anhydride, a quinone compound, diazophenylmethane, and a phenol resin to an organic phosphine compound, organic And a complex of a phosphine compound and an organic boron compound.
  • organic phosphine compound examples include triphenylphosphine, diphenyl (p-tolyl) phosphine, tris (alkylphenyl) phosphine, tris (alkoxyphenyl) phosphine, tris (alkylalkoxyphenyl) phosphine, tris (dialkylphenyl) phosphine, Tris (trialkylphenyl) phosphine, tris (tetraalkylphenyl) phosphine, tris (dialkoxyphenyl) phosphine, tris (trialkoxyphenyl) phosphine, tris (tetraalkoxyphenyl) phosphine, trialkylphosphine, dialkylarylphosphine, alkyldiaryl A phosphine etc. are mentioned.
  • quinone compound examples include 1,4-benzoquinone, 2,5-toluquinone, 1,4-naphthoquinone, 2,3-dimethylbenzoquinone, 2,6-dimethylbenzoquinone, 2,3-dimethoxy-5-methyl- Examples include 1,4-benzoquinone, 2,3-dimethoxy-1,4-benzoquinone, and phenyl-1,4-benzoquinone.
  • organic boron compound examples include tetraphenyl borate, tetra-p-tolyl borate, and tetra-n-butyl borate.
  • the amount of the reaction catalyst is not particularly limited. From the viewpoint of the reaction rate and storage stability, 0.1 to 1.5 parts by mass with respect to 100 parts by mass of the total mass of the specific epoxy monomer and the compound having a functional group capable of reacting with the epoxy group of the specific epoxy monomer.
  • the amount is preferably part by mass, more preferably 0.2 part by mass to 1 part by mass.
  • the specific epoxy compound can be synthesized using a reaction vessel such as a flask (for example, made of glass) for a small scale, or a synthetic kettle (for example, made of stainless steel) for a large scale.
  • a specific synthesis method is as follows, for example. First, a specific epoxy monomer is put into a reaction vessel, a solvent is added, and the temperature is raised to a reaction temperature with an oil bath or a heat medium to dissolve the specific epoxy monomer. A compound having a functional group capable of reacting with an epoxy group of a specific epoxy monomer (for example, a divalent phenol compound) is added thereto, and after confirming that the compound is dissolved in a solvent, a reaction catalyst is added to start the reaction.
  • a reaction vessel such as a flask (for example, made of glass) for a small scale, or a synthetic kettle (for example, made of stainless steel) for a large scale.
  • a specific synthesis method is as follows, for example. First, a specific epoxy monomer is put
  • reaction solution is taken out after a predetermined time, and a solution containing the specific epoxy compound is obtained. Furthermore, a solid specific epoxy compound is obtained under room temperature (25 degreeC) by distilling a solvent off from the solution containing a specific epoxy compound under pressure reduction under heating conditions in reaction container.
  • the reaction temperature is not particularly limited as long as the reaction proceeds between the epoxy group and a functional group capable of reacting with the epoxy group (for example, a phenolic hydroxyl group) in the presence of a reaction catalyst, and is, for example, 100 ° C. to 180 ° C. Is preferable, and a range of 100 ° C. to 150 ° C. is more preferable.
  • the compounding ratio of the specific epoxy monomer used for the synthesis of the specific epoxy compound and the compound having a functional group (for example, phenolic hydroxyl group) capable of reacting with the epoxy group of the specific epoxy monomer is not particularly limited.
  • the ratio (A / B) between the number of equivalents of epoxy groups (A) and the number of equivalents of functional groups capable of reacting with epoxy groups (A / B) is in the range of 100/100 to 100/1. Good.
  • a blending ratio in which A / B is in the range of 100/50 to 100/1 is preferable.
  • the structure of the specific epoxy compound is, for example, the molecular weight of the compound estimated to be obtained from the reaction of the specific epoxy monomer used in the synthesis and the compound having a functional group capable of reacting with the epoxy group of the specific epoxy monomer, and UV. And it can determine by collating with the molecular weight of the target compound calculated
  • the curing agent includes a specific curing agent.
  • the specific curing agent is not particularly limited as long as it is a compound having two or more amino groups directly bonded to an aromatic ring.
  • the specific curing agent contained in the epoxy resin composition may be one type or two or more types.
  • the specific curing agent examples include 3,3′-diaminodiphenylsulfone, 4,4′-diaminodiphenylsulfone, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenyl ether, 4,4′-diamino- 3,3′-dimethoxybiphenyl, 4,4′-diaminophenylbenzoate, 1,5-diaminonaphthalene, 1,3-diaminonaphthalene, 1,4-diaminonaphthalene, 1,8-diaminonaphthalene, m-phenylenediamine, Examples thereof include p-phenylenediamine, 4,4-diaminobenzanilide, trimethylene-bis-4-aminobenzoate and the like.
  • 4,4′-diaminodiphenylsulfone, m-phenylenediamine, p-phenylenediamine, 4,4-diaminobenzanilide, 1,5-diaminonaphthalene, 4,4 ′ -Diaminodiphenylmethane and trimethylene-bis-4-aminobenzoate are preferred, and 4,4'-diaminodiphenylsulfone and 4,4-diaminobenzanilide are more preferred from the viewpoint of obtaining a cured product having a high Tg.
  • the content of the curing agent in the epoxy resin composition is not particularly limited. From the viewpoint of the efficiency of the curing reaction, the ratio of the active hydrogen equivalent (amine equivalent) of the curing agent contained in the epoxy resin composition to the epoxy equivalent of the epoxy resin (amine equivalent / epoxy equivalent) is 0.3 to The amount is preferably 3.0, and more preferably 0.5 to 2.0.
  • An epoxy resin composition may contain other components other than an epoxy resin and a hardening
  • a curing catalyst may be included.
  • Specific examples of the curing catalyst include compounds exemplified as reaction catalysts that can be used for the synthesis of a specific epoxy compound.
  • the cured product of the present embodiment is obtained by curing the epoxy resin composition of the present embodiment.
  • the cured product of this embodiment is excellent in both fracture toughness and heat resistance. Therefore, it is suitable as a cured product used in a field that requires both high fracture toughness and heat resistance.
  • the composite material of the present embodiment includes a cured product of the epoxy resin composition of the present embodiment and a reinforcing material.
  • the material of the reinforcing material included in the composite material is not particularly limited, and can be selected according to the use of the composite material.
  • Specific examples of the reinforcing material include carbon materials, glass, aromatic polyamide resins (for example, Kevlar (registered trademark)), ultrahigh molecular weight polyethylene, alumina, boron nitride, aluminum nitride, mica, silicon, and the like.
  • the shape of the reinforcing material is not particularly limited, and examples thereof include fibrous and particulate (filler). From the viewpoint of the strength of the composite material, the reinforcing material is preferably a carbon material, and more preferably a carbon fiber.
  • the reinforcing material contained in the composite material may be one type or two or more types.
  • the composite material of this embodiment includes the cured product of this embodiment, it is excellent in both fracture toughness and heat resistance. Therefore, it is suitable as an FRP used in the fields of aircraft, spacecraft, and the like that are required to have both high fracture toughness and heat resistance.
  • hydroquinone (2) as a dihydric phenol compound so that the equivalent ratio (A / B) of the epoxy group and the phenolic hydroxyl group derived from hydroquinone was 100/13. Wako Pure Chemical Industries, Ltd., hydroxyl equivalent: 55 g / eq) was added, 0.5 g of triphenylphosphine was added as a reaction catalyst, and heating was continued at an oil bath temperature of 120 ° C.
  • the mass spectrum detector detected an ionization voltage of 2700V. As a result, the molecular weight of at least one compound represented by the following structure was 959 with one proton added.
  • the contents of the dimer compound having the above structure and the unreacted specific epoxy monomer in the entire epoxy resin contained in the resin 1 were measured by reverse phase chromatography (RPLC).
  • RPLC reverse phase chromatography
  • Mightysil RP-18 manufactured by Kanto Chemical Co., Inc. was used as an RPLC column for analysis.
  • the measurement was carried out while changing continuously (35 minutes from the start).
  • the flow rate was 1.0 ml / min. Absorbance at a wavelength of 280 nm was detected. When the total area of all detected peaks is 100, the content obtained from the ratio of the area in the peak corresponding to the dimer compound and the specific epoxy monomer is 20% by mass for the dimer compound. The epoxy monomer was 66% by mass.
  • Resin 1 81.3 parts by weight and 4,4′-diaminodiphenylsulfone: 18.7 parts by weight as a curing agent were placed in a stainless steel petri dish and heated to 180 ° C. with a hot plate. After the resin in the stainless steel dish was melted, it was heated at 180 ° C. for 1 hour. After cooling to room temperature, the resin was removed from the stainless steel dish and heated in an oven at 230 ° C. for 1 hour to complete the curing. The cured product was cut into a 3.75 mm ⁇ 7.5 mm ⁇ 33 mm rectangular parallelepiped, and a test piece for fracture toughness evaluation was produced. Furthermore, the cured product was cut into a 2 mm ⁇ 0.5 mm ⁇ 40 mm strip to prepare a test piece for glass transition temperature evaluation.
  • Example 2 A test piece was prepared in the same manner as in Example 1 except that 91.6 parts by mass of the resin and 8.4 parts by mass of m-phenylenediamine were used as the curing agent.
  • Example 3 A test piece was prepared in the same manner as in Example 1 except that 91.6 parts by mass of the resin and 8.4 parts by mass of p-phenylenediamine were used as the curing agent.
  • Example 4 A test piece was prepared in the same manner as in Example 1 except that 91.9 parts by mass of the resin and 7.1 parts by mass of 4,4-diaminobenzanilide were used as the curing agent.
  • Example 5 A test piece was prepared in the same manner as in Example 1 except that 87.2 parts by mass of the resin and 12.8 parts by mass of 1,5-diaminonaphthalene were used as the curing agent.
  • Example 6 A test piece was prepared in the same manner as in Example 1 except that 84.5 parts by mass of the resin and 15.5 parts by mass of 4,4′-diaminodiphenylmethane were used as the curing agent.
  • Example 7 A test piece was prepared in the same manner as in Example 1, except that 77.8 parts by mass of the resin and 22.2 parts by mass of trimethylene-bis-4-aminobenzoate were used as the curing agent.
  • Example 3 A test piece was prepared in the same manner as in Example 1 except that 86.5 parts by mass of the resin and 13.5 parts by mass of sulfanilamide were used as the curing agent.
  • test pieces of Examples 1 to 8 and Comparative Examples 1 to 4 were subjected to X-ray diffraction measurement (using an X-ray diffractometer manufactured by Rigaku Corporation) to confirm the formation of a liquid crystal structure.
  • the fracture toughness value was used as an index indicating the fracture toughness of the test piece.
  • the fracture toughness value of the test piece was calculated by performing a three-point bending measurement based on ASTM D5045. Instron 5948 (manufactured by Instron) was used as an evaluation apparatus.
  • the glass transition temperature was used as an index indicating the heat resistance of the test piece.
  • the glass transition temperature of the test piece was calculated by performing dynamic viscoelasticity measurement in a tensile mode. The measurement conditions were vibration frequency: 10 Hz, temperature increase rate: 5 ° C./min, and strain: 0.1%. The peak of the obtained tan ⁇ chart was regarded as the glass transition temperature.
  • RSA-G2 manufactured by TA Instruments
  • Table 1 shows the liquid crystal structure of each test piece (whether a smectic structure was formed), the fracture toughness value, and the glass transition temperature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Epoxy Resins (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

エポキシ樹脂と、硬化剤と、を含有し、前記エポキシ樹脂は、1分子中に下記一般式(I)で表される構造単位を2つ以上有し、かつエポキシ基を2つ以上有するエポキシ化合物を含み、前記硬化剤は、芳香環に直接結合しているアミノ基を2つ以上有する化合物を含む、エポキシ樹脂組成物。一般式(I)中、R~Rはそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を示す。

Description

エポキシ樹脂組成物、硬化物及び複合材料
 本発明は、エポキシ樹脂組成物、硬化物及び複合材料に関する。
 エポキシ樹脂は、繊維強化プラスチック(FRP)のマトリックス樹脂として広く利用されている。最近では、破壊靭性、弾性、耐熱性等の諸物性に高い水準が要求される航空宇宙用途で使用するFRPのマトリックス樹脂としてもエポキシ樹脂が使用されている。しかし、エポキシ樹脂等の熱硬化性樹脂は、熱可塑性樹脂に比べて耐熱性に優れる一方、破壊靱性に劣る傾向にある。
 エポキシ樹脂の硬化物の破壊靱性を向上する手法として、高分子量のエポキシ樹脂又は高分子量の硬化剤を用いる方法、分子内にメソゲン基を導入して分子を配向させたエポキシ樹脂硬化物とする方法(例えば、特許文献1及び特許文献2参照)等が提案されている。
特開2004-225034号公報 特開2014-122337号公報
 高分子量のエポキシ樹脂又は硬化剤を用いる方法では、作製されたエポキシ樹脂の硬化物のガラス転移温度(Tg)が低下するため、これをマトリックス樹脂として用いたFRPの耐熱性が低下するという問題がある。また、エポキシ樹脂の分子内にメソゲン基を導入する手法では、理想的な硬化状態とすることができれば優れた破壊靱性と耐熱性とを示すとされているが、一般的にメソゲン含有エポキシ樹脂は結晶性が強く、高融点かつ高粘度であるために、分子が配列した理想的な硬化状態とすることが困難であるという問題がある。従って、硬化した状態で優れた破壊靭性と耐熱性とを示すエポキシ樹脂の開発が待たれている。
 本発明は、硬化した状態で優れた破壊靭性と耐熱性とを示すエポキシ樹脂組成物、その硬化物、及びこの硬化物を含む複合材料を提供することを目的とする。
 上記課題を解決するための手段には、以下の実施態様が含まれる。
<1>エポキシ樹脂と、硬化剤と、を含有し、
 前記エポキシ樹脂は、1分子中に下記一般式(I)で表される構造単位を2つ以上有し、かつエポキシ基を2つ以上有するエポキシ化合物を含み、
 前記硬化剤は、芳香環に直接結合しているアミノ基を2つ以上有する化合物を含む、エポキシ樹脂組成物。
Figure JPOXMLDOC01-appb-C000002
[一般式(I)中、R~Rはそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を示す。]
<2>前記エポキシ化合物は、前記一般式(I)で表される構造単位を2つ有するエポキシ化合物を含む、<1>に記載のエポキシ樹脂組成物。
<3>前記エポキシ樹脂組成物は、硬化させた場合にスメクチック構造を形成可能である、<1>又は<2>に記載のエポキシ樹脂組成物。
<4><1>~<3>のいずれか1項に記載のエポキシ樹脂組成物の硬化物。
<5><4>に記載の硬化物と、強化材と、を含む複合材料。
<6>前記強化材が炭素材料を含む、請求項5に記載の複合材料。
 本発明によれば、硬化した状態で優れた破壊靭性と耐熱性とを示すエポキシ樹脂組成物、その硬化物、及びこの硬化物を含む複合材料が提供される。
 以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
 本明細書において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本明細書中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本明細書において組成物中の各成分の含有率又は含有量は、組成物中に各成分に該当する物質が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
<エポキシ樹脂組成物>
 本実施形態のエポキシ樹脂組成物は、エポキシ樹脂と、硬化剤と、を含有し、前記エポキシ樹脂は、1分子中に下記一般式(I)で表される構造単位を2つ以上有し、かつエポキシ基を2つ以上有するエポキシ化合物(以下、特定エポキシ化合物ともいう)を含み、前記硬化剤は、芳香環に直接結合しているアミノ基を2つ以上有する化合物(以下、特定硬化剤ともいう)を含む。
Figure JPOXMLDOC01-appb-C000003
 一般式(I)中、R~Rはそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を示す。R~Rはそれぞれ独立に、水素原子又は炭素数1~2のアルキル基であることが好ましく、水素原子又はメチル基であることがより好ましく、水素原子であることがさらに好ましい。さらに、R~Rの内の2個~4個が水素原子であることが好ましく、3個又は4個が水素原子であることがより好ましく、4個全てが水素原子であることがさらに好ましい。R~Rのいずれかが炭素数1~3のアルキル基である場合は、R及びRの少なくとも一方が炭素数1~3のアルキル基であることが好ましい。
 本実施形態のエポキシ樹脂組成物は、硬化した状態で優れた破壊靭性と耐熱性とを示す。その理由は必ずしも明らかではないが、以下のように推察される。
 まず、エポキシ樹脂として1分子中に一般式(I)で表される構造単位を2つ以上有し、かつエポキシ基を2つ以上有するエポキシ化合物を用いることで、その他のメソゲン骨格を含有するエポキシ樹脂よりも融点及び粘度を下げることができ、通常の範囲内の硬化条件でも硬化物中にスメクチック構造が形成でき、優れた破壊靱性が達成されると考えられる。
 さらに、芳香環に直接結合しているアミノ基を2つ以上有する化合物を硬化剤として用いることで、その他の硬化剤を用いる場合に比べ、得られる硬化物中にスメクチック構造がより形成され易く、より優れた破壊靭性が達成されると考えられる。
 特定エポキシ化合物の分子中における、一般式(I)で表される構造単位はメソゲン骨格の1種である。ここで、メソゲン骨格とは、分子間相互作用の働きにより結晶性又は液晶性を発現し易くするような骨格構造のことを指す。メソゲン骨格として具体的には、ビフェニル骨格、フェニルベンゾエート骨格、アゾベンゼン骨格、スチルベン骨格、これらの誘導体等が挙げられる。
 分子構造中にメソゲン骨格を有するエポキシ化合物は、硬化して樹脂マトリックスを形成した際に高次構造を形成し易く、硬化物を作製した場合により高い熱伝導率を達成できる傾向にある。ここで、高次構造とは、その構成要素が配列してミクロな秩序構造を形成した高次構造体を含む構造を意味し、例えば、結晶相及び液晶相が相当する。このような高次構造体の存在の有無は、偏光顕微鏡観察によって判断することができる。即ち、クロスニコル状態での観察において、偏光解消による干渉縞が見られることで判別可能である。この高次構造体は、通常はエポキシ樹脂組成物の硬化物中に島状に存在してドメイン構造を形成しており、その島の一つが一つの高次構造体に対応する。この高次構造体の構成要素自体は、一般には共有結合により形成されている。
 メソゲン構造に由来する規則性の高い高次構造としては、ネマチック構造とスメクチック構造とが挙げられる。ネマチック構造とスメクチック構造はそれぞれ液晶構造の一種である。ネマチック構造は分子長軸が一様な方向を向いており、配向秩序のみを持つ液晶構造である。これに対し、スメクチック構造は配向秩序に加えて一次元の位置の秩序を持ち、層構造を有する液晶構造である。秩序性はネマチック構造よりもスメクチック構造の方が高い。メソゲン骨格を有するエポキシ化合物の中でも、一般式(I)で表される構造単位をメソゲン骨格として有するエポキシ化合物は、硬化させるとスメクチック構造を形成しやすい傾向にある。
 なお、エポキシ樹脂組成物の硬化物中にスメクチック構造が形成されているか否かは、硬化物のX線回折測定を、例えば、株式会社リガク製のX線回折装置を用いて行うことで判断できる。CuKα1線を用い、管電圧40kV、管電流20mA、2θ=2°~30°の範囲で測定を行うと、樹脂がスメクチック構造を有している硬化物であれば、2θ=2°~10°の範囲に回折ピークが現れる。
(エポキシ樹脂)
 エポキシ樹脂は、特定エポキシ化合物を含む。特定エポキシ化合物は、1分子中に一般式(I)で表される構造単位を2つ以上有し、かつエポキシ基を2つ以上有するものであれば、その構造は特に制限されない。エポキシ樹脂組成物に含まれる特定エポキシ化合物は、1種のみであっても構造の異なる2種以上の組み合わせであってもよい。
 特定エポキシ化合物における、1分子中の一般式(I)で表される構造単位の数は、2以上であれば特に制限されない。耐熱性の観点からは、特定エポキシ化合物全体の平均値として5以下であることが好ましく、3以下であることがより好ましい。
 耐熱性の観点からは、特定エポキシ化合物は、1分子中の一般式(I)で表される構造単位の数が2である特定エポキシ化合物を含むことが好ましい。
 本明細書において、1分子中の一般式(I)で表される構造単位の数が2以上である特定エポキシ化合物を「多量体化合物」と称し、多量体化合物の中でも1分子中の一般式(I)で表される構造単位の数が2であるものを「二量体化合物」と称する場合がある。
 特定エポキシ化合物は、下記一般式(IA)で表される構造単位及び一般式(IB)で表される構造単位からなる群より選択される少なくとも1つを有する多量体化合物であってよい。
Figure JPOXMLDOC01-appb-C000004

 
 一般式(IA)及び一般式(IB)中、R~Rはそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を示し、Rはそれぞれ独立に、炭素数1~8のアルキル基を示す。nは0~4の整数を示す。
 一般式(IA)及び一般式(IB)におけるR~Rの具体例は、一般式(I)におけるR~Rの具体例と同様であり、その好ましい範囲も同様である。
 一般式(IA)及び一般式(IB)中、Rはそれぞれ独立に炭素数1~8のアルキル基を表し、炭素数1~3のアルキル基であることが好ましく、メチル基であることがより好ましい。
 一般式(IA)及び一般式(IB)中、nは0~4の整数を示し、0~2の整数であることが好ましく、0~1の整数であることがより好ましく、0であることがさらに好ましい。つまり、一般式(IA)及び一般式(IB)においてRを付されたベンゼン環は、2個~4個の水素原子を有することが好ましく、3個又は4個の水素原子を有することがより好ましく、4個の水素原子を有することがさらに好ましい。
 特定エポキシ化合物が1分子中に一般式(I)で表される構造単位を2つ含む二量体化合物である場合の構造としては、下記一般式(II-A)~(II~C)で表される化合物からなる群より選択される少なくとも1種が挙げられる。一般式(II-A)~(II~C)におけるR~R及びnの定義は、一般式(IA)及び一般式(IB)におけるR~R及びnの定義と同様であり、その好ましい範囲も同様である。
Figure JPOXMLDOC01-appb-C000005

 
 一般式(II-A)~(II~C)で表される二量体化合物としては、下記一般式(II-A’)~(II-I’)で表される化合物からなる群より選択される少なくとも1種類が挙げられる。一般式(II-A’)~(II-I’)におけるR~R及びnの定義は、一般式(IA)及び一般式(IB)におけるR~R及びnの定義と同様であり、その好ましい範囲も同様である。
Figure JPOXMLDOC01-appb-C000006

 
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008

 
 取り扱い性の観点からは、特定エポキシ化合物の含有率は、エポキシ樹脂全体の10質量%以上であることが好ましく、20質量%以上であることがより好ましく、30質量%以上であることがさらに好ましい。耐熱性の観点からは、エポキシ樹脂全体の80質量%以下であることが好ましく、75質量%以下であることがより好ましく、70質量%以下であることがさらに好ましい。
 エポキシ樹脂組成物が、特定エポキシ化合物として二量体化合物を含む場合、その含有率は特に制限されない。取り扱い性の観点からは、二量体化合物の含有率は、エポキシ樹脂全体の10質量%以上であることが好ましく、15質量%以上であることがより好ましく、20質量%以上であることがさらに好ましい。耐熱性の観点からは、二量体化合物の含有率は、エポキシ樹脂全体の60質量%以下であることが好ましく、55質量%以下であることがより好ましく、50質量%以下であることがさらに好ましい。
 エポキシ樹脂組成物は、下記一般式(M)で表される化合物(以下、特定エポキシモノマーとも称する)をエポキシ樹脂として含んでもよい。
Figure JPOXMLDOC01-appb-C000009
 一般式(M)中、R~Rはそれぞれ独立に水素原子又は炭素数1~3のアルキル基を示す。一般式(M)におけるR~Rの定義は、一般式(I)におけるR~Rの定義と同様であり、その好ましい範囲も同様である。
 エポキシ樹脂組成物が特定エポキシモノマーを含む場合、その含有率は特に制限されない。耐熱性の観点からは、特定エポキシモノマーの含有率は、エポキシ樹脂全体の30質量%以上であることが好ましく、35質量%以上であることがより好ましく、40質量%以上であることがさらに好ましい。取り扱い性の観点からは、90質量%以下であることが好ましく、80質量%以下であることがより好ましく、70質量%以下であることがさらに好ましい。
 エポキシ樹脂組成物は、特定エポキシ化合物及び特定エポキシモノマー以外のその他のエポキシ樹脂成分をエポキシ樹脂として含んでいてもよい。エポキシ樹脂組成物がその他のエポキシ樹脂成分を含む場合、その含有率は15質量%未満であることが好ましく、10質量%以下であることがより好ましく、8質量%以下であることがさらに好ましく、実質的にその他のエポキシ樹脂成分を含まないことが特に好ましい。
 本実施形態においてエポキシ樹脂中の特定エポキシ化合物、特定エポキシモノマー及びその他のエポキシ樹脂成分の含有率は、逆相クロマトグラフィー(Reversed Phase Liquid Chromatography、RPLC)により測定する。RPLC測定は、分析用RPLCカラムとして関東化学株式会社の「Mightysil RP-18」を使用し、グラジエント法を用いて、溶離液の混合比(体積基準)をアセトニトリル/テトラヒドロフラン/水=20/5/75からアセトニトリル/テトラヒドロフラン=80/20(開始から20分)を経てアセトニトリル/テトラヒドロフラン=50/50(開始から35分)に連続的に変化させて行う。また、流速を1.0ml/minとする。本明細書では、280nmの波長における吸光度を検出し、検出された全てのピークの総面積を100とし、それぞれ該当するピークにおける面積の比率を求め、その値をエポキシ樹脂全体における各化合物の含有率[質量%]とする。
 エポキシ樹脂のエポキシ当量は、特に制限されない。エポキシ樹脂組成物の流動性と硬化物の熱伝導率を両立する観点からは、245g/eq~500g/eqであることが好ましく、250g/eq~450g/eqであることがより好ましく、260g/eq~400g/eqであることがさらに好ましい。エポキシ樹脂のエポキシ当量が245g/eq以上であれば、エポキシ樹脂の結晶性が高くなりすぎないためエポキシ樹脂組成物の流動性が低下しにくい傾向にある。一方、エポキシ樹脂のエポキシ当量が300g/eq以下であれば、エポキシ樹脂の架橋密度が低下しにくいため、成形物の熱伝導率が高くなる傾向にある。本実施形態において、エポキシ樹脂のエポキシ当量は、過塩素酸滴定法により測定する。
 エポキシ樹脂のゲルパーミエーションクロマトグラフィー(GPC)測定における数平均分子量(Mn)は、エポキシ樹脂組成物の流動性と硬化物の熱伝導率を両立する観点からは、400~1400であることが好ましく、450~1300であることがより好ましく、500~1200であることがさらに好ましい。エポキシ樹脂のMnが400以上であれば、エポキシ樹脂の結晶性が高くなりすぎないためエポキシ樹脂組成物の流動性が低下しにくい傾向にある。エポキシ樹脂のMnが800以下であれば、エポキシ樹脂の架橋密度が低下しにくいため、硬化物の熱伝導率が高くなる傾向にある。
 本明細書におけるGPC測定は、分析用GPCカラムとして東ソー株式会社の「G2000HXL」及び「3000HXL」を使用し、移動相にはテトラヒドロフランを用い、試料濃度を0.2質量%とし、流速を1.0ml/minとして測定を行う。ポリスチレン標準サンプルを用いて検量線を作成し、ポリスチレン換算値でMnを計算する。
 特定エポキシ化合物の合成方法は、特に制限されない。例えば、特定エポキシモノマーと、特定エポキシモノマーのエポキシ基と反応しうる官能基を有する化合物と、を反応させて合成してもよい。このとき、両化合物の種類、配合比等の条件を制御することによって、所望の構造を有する特定エポキシ化合物を得ることができる。
 具体的には、例えば、特定エポキシモノマーと、特定エポキシモノマーのエポキシ基と反応しうる官能基を有する化合物と、必要に応じて用いる反応触媒とを溶媒中に溶解し、加熱しながら撹拌して特定エポキシ化合物を合成することができる。または、溶媒を使用せずに特定エポキシモノマーを溶融して反応させる方法で合成してもよい。安全性の観点からは、特定エポキシモノマーが溶融する温度まで高温にする必要のない溶媒を使用する方法が好ましい。
 溶媒は、特定エポキシモノマーと、特定エポキシモノマーのエポキシ基と反応しうる官能基を有する化合物とを溶解でき、かつ両化合物が反応するのに必要な温度にまで加温できる溶媒であれば、特に制限されない。具体的には、シクロヘキサノン、シクロペンタノン、乳酸エチル、プロピレングリコールモノメチルエーテル、N-メチルピロリドン等が挙げられる。
 溶媒の量は、特定エポキシモノマーと、特定エポキシモノマーのエポキシ基と反応しうる官能基を有する化合物と、必要に応じて用いる反応触媒とを反応温度において溶解できる量であれば特に制限されない。反応前の原料の種類、溶媒の種類等によって溶解性が異なるものの、仕込み固形分濃度が例えば20質量%~60質量%となる量であれば、反応後の溶液の粘度が好ましい範囲となる傾向にある。
 特定エポキシモノマーのエポキシ基と反応しうる官能基を有する化合物は、特に制限されない。硬化物中にスメクチック構造を形成する観点からは、特定エポキシモノマーのエポキシ基と反応しうる官能基を有する化合物は、2つの水酸基がベンゼン環に結合した構造を有する化合物(以下、2価フェノール化合物とも称する)であることが好ましい。
 特定エポキシモノマーのエポキシ基と2価フェノール化合物の水酸基とを反応させることで、一般式(IA)で表される構造単位及び一般式(IB)で表される構造単位からなる群より選択される少なくとも1つを有する化合物を合成することができる。
 2価フェノール化合物としては、カテコール(ベンゼン環上の2つの水酸基がオルト位の位置関係にある)、レゾルシノール(ベンゼン環上の2つの水酸基がメタ位の位置関係にある)、ヒドロキノン(ベンゼン環上の2つの水酸基がパラ位の位置関係にある)、及びこれらの誘導体が挙げられる。誘導体としては、カテコール、レゾルシノール又はヒドロキノンのベンゼン環に炭素数1~8のアルキル基等の置換基をさらに有する化合物が挙げられる。
 硬化物中におけるスメクチック構造の形成し易さの観点からは、2価フェノール化合物としては、カテコール、レゾルシノール及びヒドロキノンが好ましく、ヒドロキノンがより好ましい。ヒドロキノンはベンゼン環上の2つの水酸基がパラ位の位置関係となっているため、これを特定エポキシモノマーと反応させて得られる特定エポキシ化合物は直線構造となり易い。このため、分子のスタッキング性が高く、硬化物中にスメクチック構造を形成し易いと考えられる。2価フェノール化合物は、1種を単独で用いてもよく、2種以上を併用してもよい。
 反応触媒の種類は特に限定されず、反応速度、反応温度、貯蔵安定性等の観点から適切なものを選択できる。具体的には、イミダゾール化合物、有機リン化合物、第3級アミン、第4級アンモニウム塩等が挙げられる。反応触媒は1種を単独で用いてもよく、2種以上を併用してもよい。
 硬化物の耐熱性の観点からは、反応触媒としては有機リン化合物が好ましい。
 有機リン化合物の好ましい例としては、有機ホスフィン化合物、有機ホスフィン化合物に無水マレイン酸、キノン化合物、ジアゾフェニルメタン、フェノール樹脂等のπ結合をもつ化合物を付加してなる分子内分極を有する化合物、有機ホスフィン化合物と有機ボロン化合物との錯体などが挙げられる。
 有機ホスフィン化合物として具体的には、トリフェニルホスフィン、ジフェニル(p-トリル)ホスフィン、トリス(アルキルフェニル)ホスフィン、トリス(アルコキシフェニル)ホスフィン、トリス(アルキルアルコキシフェニル)ホスフィン、トリス(ジアルキルフェニル)ホスフィン、トリス(トリアルキルフェニル)ホスフィン、トリス(テトラアルキルフェニル)ホスフィン、トリス(ジアルコキシフェニル)ホスフィン、トリス(トリアルコキシフェニル)ホスフィン、トリス(テトラアルコキシフェニル)ホスフィン、トリアルキルホスフィン、ジアルキルアリールホスフィン、アルキルジアリールホスフィン等が挙げられる。
 キノン化合物として具体的には、1,4-ベンゾキノン、2,5-トルキノン、1,4-ナフトキノン、2,3-ジメチルベンゾキノン、2,6-ジメチルベンゾキノン、2,3-ジメトキシ-5-メチル-1,4-ベンゾキノン、2,3-ジメトキシ-1,4-ベンゾキノン、フェニル-1,4-ベンゾキノン等が挙げられる。
 有機ボロン化合物として具体的には、テトラフェニルボレート、テトラ-p-トリルボレート、テトラ-n-ブチルボレート等が挙げられる。
 反応触媒の量は特に制限されない。反応速度及び貯蔵安定性の観点からは、特定エポキシモノマーと、特定エポキシモノマーのエポキシ基と反応しうる官能基を有する化合物との合計質量100質量部に対し、0.1質量部~1.5質量部であることが好ましく、0.2質量部~1質量部であることがより好ましい。
 特定エポキシモノマーを用いて特定エポキシ化合物を合成する場合、特定エポキシモノマーのすべてが反応して特定エポキシ化合物となっていても、特定エポキシモノマーの一部が反応せずにモノマーの状態で残存していてもよい。
 特定エポキシ化合物は、少量スケールであればフラスコ(例えば、ガラス製)、大量スケールであれば合成釜(例えば、ステンレス製)等の反応容器を使用して合成できる。具体的な合成方法は、例えば以下の通りである。
 まず、特定エポキシモノマーを反応容器に投入し、溶媒を入れ、オイルバス又は熱媒により反応温度まで加温し、特定エポキシモノマーを溶解する。そこに特定エポキシモノマーのエポキシ基と反応しうる官能基を有する化合物(例えば、2価フェノール化合物)を投入し、溶媒中に溶解したことを確認した後に反応触媒を投入し、反応を開始する。所定時間の後に反応溶液を取り出して、特定エポキシ化合物を含む溶液が得られる。さらには、反応容器内において、加温条件のもと減圧下で特定エポキシ化合物を含む溶液から溶媒を留去することで、室温(25℃)下で固体の特定エポキシ化合物が得られる。
 反応温度は、反応触媒の存在下でエポキシ基と、エポキシ基と反応しうる官能基(例えば、フェノール性水酸基)との反応が進行する温度であれば特に制限されず、例えば100℃~180℃の範囲であることが好ましく、100℃~150℃の範囲であることがより好ましい。反応温度を100℃以上とすることで、反応が完結するまでの時間をより短くできる傾向にある。一方、反応温度を180℃以下とすることで、ゲル化する可能性を低減できる傾向にある。
 特定エポキシ化合物の合成に用いる特定エポキシモノマーと、特定エポキシモノマーのエポキシ基と反応しうる官能基(例えば、フェノール性水酸基)を有する化合物の配合比は特に制限されない。例えば、エポキシ基の当量数(A)と、エポキシ基と反応しうる官能基の当量数(B)との比率(A/B)が100/100~100/1の範囲となる配合比としてもよい。硬化物の破壊靭性及び耐熱性の観点からは、A/Bが100/50~100/1の範囲となる配合比が好ましい。
 特定エポキシ化合物の構造は、例えば、合成に使用した特定エポキシモノマーと、特定エポキシモノマーのエポキシ基と反応しうる官能基を有する化合物と、の反応より得られると推定される化合物の分子量と、UV及びマススペクトル検出器を備える液体クロマトグラフを用いて実施される液体クロマトグラフィーにより求めた目的化合物の分子量とを照合させることで決定することができる。
 液体クロマトグラフィーは、例えば、株式会社日立製作所製の「LaChrom II C18」を分析用カラムとして使用し、グラジエント法を用いて、溶離液の混合比(体積基準)をアセトニトリル/テトラヒドロフラン/10mmol/l酢酸アンモニウム水溶液=20/5/75からアセトニトリル/テトラヒドロフラン=80/20(開始から20分)を経てアセトニトリル/テトラヒドロフラン=50/50(開始から35分)と連続的に変化させて測定を行う。また、流速を1.0ml/minとして行う。UVスペクトル検出器では280nmの波長における吸光度を検出し、マススペクトル検出器ではイオン化電圧を2700Vとして検出する。
(硬化剤)
 硬化剤は、特定硬化剤を含む。特定硬化剤は、芳香環に直接結合しているアミノ基を2つ以上有する化合物であれば特に制限されない。エポキシ樹脂組成物に含まれる特定硬化剤は、1種のみであっても2種以上であってもよい。
 特定硬化剤として具体的には、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノ-3,3’-ジメトキシビフェニル、4,4’-ジアミノフェニルベンゾエート、1,5-ジアミノナフタレン、1,3-ジアミノナフタレン、1,4-ジアミノナフタレン、1,8-ジアミノナフタレン、m-フェニレンジアミン、p-フェニレンジアミン、4,4-ジアミノベンズアニリド、トリメチレン-ビス-4-アミノベンゾアート等が挙げられる。
 硬化物中にスメクチック構造を形成する観点からは4,4’-ジアミノジフェニルスルホン、m-フェニレンジアミン、p-フェニレンジアミン、4,4-ジアミノベンズアニリド、1,5-ジアミノナフタレン、4,4’-ジアミノジフェニルメタン及びトリメチレン-ビス-4-アミノベンゾアートが好ましく、高Tgの硬化物を得る観点からは4,4’-ジアミノジフェニルスルホン及び4,4-ジアミノベンズアニリドがより好ましい。
 エポキシ樹脂組成物における硬化剤の含有量は特に制限されない。硬化反応の効率性の観点からは、エポキシ樹脂組成物に含まれる硬化剤の活性水素の当量(アミン当量)と、エポキシ樹脂のエポキシ当量との比(アミン当量/エポキシ当量)が0.3~3.0となる量であることが好ましく、0.5~2.0となる量であることがより好ましい。
(その他の成分)
 エポキシ樹脂組成物は、必要に応じてエポキシ樹脂と硬化剤以外のその他の成分を含んでもよい。例えば、硬化触媒を含んでもよい。硬化触媒の具体例としては、特定エポキシ化合物の合成に使用しうる反応触媒として例示した化合物が挙げられる。
<硬化物及び複合材料>
 本実施形態の硬化物は、本実施形態のエポキシ樹脂組成物を硬化して得られる。本実施形態の硬化物は、破壊靱性と耐熱性の両方に優れている。従って、破壊靱性と耐熱性の両方が高い水準で求められる分野に用いる硬化物として好適である。
 本実施形態の複合材料は、本実施形態のエポキシ樹脂組成物の硬化物と、強化材と、を含む。複合材料に含まれる強化材の材質は特に制限されず、複合材料の用途等に応じて選択できる。強化材として具体的には、炭素材料、ガラス、芳香族ポリアミド系樹脂(例えば、ケブラー(登録商標))、超高分子量ポリエチレン、アルミナ、窒化ホウ素、窒化アルミニウム、マイカ、シリコン等が挙げられる。強化材の形状は特に制限されず、繊維状、粒子状(フィラー)等が挙げられる。複合材料の強度の観点からは、強化材は炭素材料であることが好ましく、炭素繊維であることがより好ましい。複合材料に含まれる強化材は、1種でも2種以上であってもよい。
 本実施形態の複合材料は、本実施形態の硬化物を含むため、破壊靱性と耐熱性の両方に優れている。従って、破壊靱性と耐熱性の両方が高い水準で求められる航空機、宇宙船等の分野に用いるFRPとして好適である。
 以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。なお、特に断りのない限り、「部」及び「%」は質量基準である。
<樹脂1の合成法>
 500mLの三口フラスコに、特定エポキシモノマーとして下記式で表される化合物(4-{4-(2,3-エポキシプロポキシ)フェニル}シクロヘキシル=4-(2,3-エポキシプロポキシ)ベンゾエート)を50g(0.118mol)量り取り、そこにプロピレングリコールモノメチルエーテルを80g添加した。三口フラスコに冷却管及び窒素導入管を設置し、溶媒に漬かるように撹拌羽を取り付けた。この三口フラスコを120℃のオイルバスに浸漬し、撹拌を開始した。エポキシモノマーが溶解し、透明な溶液になったことを確認した後、エポキシ基とヒドロキノン由来のフェノール性水酸基の当量比(A/B)が100/13となるように2価フェノール化合物としてヒドロキノン(和光純薬工業株式会社製、水酸基当量:55g/eq)を添加し、さらに反応触媒としてトリフェニルホスフィンを0.5g添加し、120℃のオイルバス温度で加熱を継続した。5時間加熱を継続した後に、反応溶液からプロピレングリコールモノメチルエーテルを減圧留去し、残渣を室温(25℃)まで冷却することにより、上記化合物の一部がプレポリマー化された樹脂1を得た。
Figure JPOXMLDOC01-appb-C000010

 
 UV及びマススペクトル検出器を備える液体クロマトグラフを用いて実施された液体クロマトグラフィーにより求めた目的化合物の分子量を照合させることにより、特定エポキシ化合物として下記構造(エポキシモノマーの二量体化合物に相当)で表される化合物少なくとも1つが樹脂1に含まれていることを確認した。
 具体的には、液体クロマトグラフィーは、分析用カラムとして株式会社日立製作所「LaChrom II C18」を使用し、グラジエント法を用いて、溶離液の混合比(体積基準)をアセトニトリル/テトラヒドロフラン/10mmol/l酢酸アンモニウム水溶液=20/5/75からアセトニトリル/テトラヒドロフラン=80/20(開始から20分)を経てアセトニトリル/テトラヒドロフラン=50/50(開始から35分)と連続的に変化させて測定を行った。流速を1.0ml/minとして行った。UVスペクトル検出器では、280nmの波長における吸光度を検出し、このとき、下記構造で表される化合物の少なくとも1つは17.4分の位置に、また、エポキシ樹脂モノマーは14.9分の位置にピークが見られた。また、マススペクトル検出器ではイオン化電圧を2700Vとして検出した。その結果、下記構造で表される化合物の少なくとも1つの分子量はプロトンが一つ付加した状態で959であった。
Figure JPOXMLDOC01-appb-C000011

 
 樹脂1の固形分量は加熱減量法により測定した。具体的には、試料をアルミ製カップに1.0g~1.1g量り取り、180℃の温度に設定した乾燥機内に30分間放置した後の計測量と加熱前の計測量とに基づき、次式により算出した。その結果、99.6%であった。
 固形分量(%)=(30分間放置した後の計測量/加熱前の計測量)×100
 樹脂1のエポキシ当量を過塩素酸滴定法により測定したところ、275g/eqであった。
 樹脂1に含まれる、エポキシ樹脂全体に占める上記構造からなる二量体化合物及び未反応の特定エポキシモノマーの含有率を、逆相クロマトグラフィー(RPLC)によって測定した。分析用RPLCカラムとしては、関東化学株式会社製Mightysil RP-18を使用した。グラジエント法を用いて、溶離液の混合比(体積基準)をアセトニトリル/テトラヒドロフラン/水=20/5/75からアセトニトリル/テトラヒドロフラン=80/20(開始から20分)を経てアセトニトリル/テトラヒドロフラン=50/50(開始から35分)に連続的に変化させて測定を行った。流速は1.0ml/minとした。280nmの波長における吸光度を検出した。検出された全てのピークの総面積を100としたときに二量体化合物と特定エポキシモノマーに該当するピークにおける面積の比率から求められる含有率は、二量体化合物が20質量%であり、特定エポキシモノマーが66質量%であった。
<実施例1>
 樹脂1:81.3質量部と、硬化剤として4,4’-ジアミノジフェニルスルホン:18.7質量部をステンレスシャーレに入れ、ホットプレートで180℃に加熱した。ステンレスシャーレ内の樹脂が溶融した後に、180℃で1時間加熱した。常温に冷やした後にステンレスシャーレから樹脂を取り出し、オーブンにて230℃で1時間加熱して硬化を完了させた。硬化物を3.75mm×7.5mm×33mmの直方体に切り出し、破壊靱性評価用の試験片を作製した。さらに、硬化物を2mm×0.5mm×40mmの短冊状に切り出し、ガラス転移温度評価用の試験片を作製した。
<実施例2>
 樹脂1:91.6質量部と、硬化剤としてm-フェニレンジアミン:8.4質量部を使用した以外は実施例1と同様にして、試験片を作製した。
<実施例3>
 樹脂1:91.6質量部と、硬化剤としてp-フェニレンジアミン:8.4質量部を使用した以外は実施例1と同様にして、試験片を作製した。
<実施例4>
 樹脂1:92.9質量部と、硬化剤として4,4-ジアミノベンズアニリド:7.1質量部を使用した以外は実施例1と同様にして、試験片を作製した。
<実施例5>
 樹脂1:87.2質量部と、硬化剤として1,5-ジアミノナフタレン:12.8質量部を使用した以外は実施例1と同様にして、試験片を作製した。
<実施例6>
 樹脂1:84.5質量部と、硬化剤として4,4’-ジアミノジフェニルメタン:15.5質量部を使用した以外は実施例1と同様にして、試験片を作製した。
<実施例7>
 樹脂1:77.8質量部と、硬化剤としてトリメチレン-ビス-4-アミノベンゾアート:22.2質量部を使用した以外は実施例1と同様にして、試験片を作製した。
<比較例1>
 エポキシ樹脂(YL6121H、三菱化学株式会社製):73.8質量部と、硬化剤として4,4’-ジアミノジフェニルスルホン:26.2質量部を使用した以外は実施例1と同様にして、試験片を作製した。
<比較例2>
 エポキシ樹脂(YL980、三菱化学株式会社製):75.0質量部と、硬化剤として4,4’-ジアミノジフェニルスルホン:25.0質量部を使用した以外は実施例1と同様にして、試験片を作製した。
<比較例3>
 樹脂1:86.5質量部と、硬化剤としてスルファニルアミド:13.5質量部を使用した以外は実施例1と同様にして、試験片を作製した。
[スメクチック構造の確認]
 実施例1~8、比較例1~4の試験片について、X線回折測定(株式会社リガク製のX線回折装置を使用)することにより、液晶構造の形成を確認した。試験条件は、CuKα1線を用い、管電圧50kV、管電流300mA、走査速度を1°/分、2θ=2°~30°の範囲で行った。
[破壊靱性値の測定]
 試験片の破壊靱性を示す指標として、破壊靱性値を用いた。試験片の破壊靱性値は、ASTM D5045に基づいて3点曲げ測定を行って算出した。評価装置としてはインストロン5948(インストロン社製)を用いた。
[耐熱性の評価]
 試験片の耐熱性を示す指標として、ガラス転移温度を用いた。試験片のガラス転移温度は、引張りモードによる動的粘弾性測定を行って算出した。測定条件は、振動数:10Hz、昇温速度:5℃/min、歪み:0.1%とした。得られたtanδチャートのピークをガラス転移温度とみなした。評価装置としてはRSA-G2(ティー・エイ・インスツルメント社製)を用いた。
 各試験片の液晶構造(スメクチック構造形成の有無)と、破壊靱性値及びガラス転移温度の測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000012

 
 表1に示すように、特定エポキシ化合物と、特定硬化剤とを含むエポキシ樹脂組成物を用いた実施例では硬化物中にスメクチック構造が形成され、破壊靱性値とガラス転移温度がともに高かった。
 特定エポキシ化合物を含まないエポキシ樹脂組成物を用いた比較例1、2では、硬化物中にスメクチック構造が形成されておらず、破壊靱性値が実施例よりも低かった。
 特定硬化剤の代わりに芳香環に直接結合しているアミノ基の数が1つである化合物を用いた比較例3では、硬化物中にスメクチック構造が形成されておらず、ガラス転移温度が実施例よりも低かった。
 日本国特許出願第2016-123976号の開示はその全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書に参照により取り込まれる。

Claims (6)

  1.  エポキシ樹脂と、硬化剤と、を含有し、
     前記エポキシ樹脂は、1分子中に下記一般式(I)で表される構造単位を2つ以上有し、かつエポキシ基を2つ以上有するエポキシ化合物を含み、
     前記硬化剤は、芳香環に直接結合しているアミノ基を2つ以上有する化合物を含む、エポキシ樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001

    [一般式(I)中、R~Rはそれぞれ独立に、水素原子又は炭素数1~3のアルキル基を示す。]
  2.  前記エポキシ化合物は、前記一般式(I)で表される構造単位を2つ有するエポキシ化合物を含む、請求項1に記載のエポキシ樹脂組成物。
  3.  前記エポキシ樹脂組成物は、硬化させた場合にスメクチック構造を形成可能である、請求項1又は請求項2に記載のエポキシ樹脂組成物。
  4.  請求項1~請求項3のいずれか1項に記載のエポキシ樹脂組成物の硬化物。
  5.  請求項4に記載の硬化物と、強化材と、を含む複合材料。
  6.  前記強化材が炭素材料を含む、請求項5に記載の複合材料。
PCT/JP2017/022174 2016-06-22 2017-06-15 エポキシ樹脂組成物、硬化物及び複合材料 WO2017221811A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018524005A JP6775737B2 (ja) 2016-06-22 2017-06-15 エポキシ樹脂組成物、硬化物及び複合材料
EP17815279.9A EP3476879B1 (en) 2016-06-22 2017-06-15 Epoxy resin composition, cured product and composite material
CN201780038849.XA CN109415490A (zh) 2016-06-22 2017-06-15 环氧树脂组合物、固化物和复合材料
US16/311,966 US11149109B2 (en) 2016-06-22 2017-06-15 Epoxy resin composition, cured product and composite material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016123976 2016-06-22
JP2016-123976 2016-06-22

Publications (1)

Publication Number Publication Date
WO2017221811A1 true WO2017221811A1 (ja) 2017-12-28

Family

ID=60784728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/022174 WO2017221811A1 (ja) 2016-06-22 2017-06-15 エポキシ樹脂組成物、硬化物及び複合材料

Country Status (6)

Country Link
US (1) US11149109B2 (ja)
EP (1) EP3476879B1 (ja)
JP (1) JP6775737B2 (ja)
CN (1) CN109415490A (ja)
TW (1) TWI749020B (ja)
WO (1) WO2017221811A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019159368A1 (ja) * 2018-02-19 2019-08-22 日立化成株式会社 エポキシ樹脂組成物、エポキシ樹脂硬化物、熱伝導フィルム、及びエポキシ樹脂硬化物の製造方法
US20190284332A1 (en) * 2016-10-14 2019-09-19 Hitachi Chemical Company, Ltd. Epoxy resin, epoxy resin composition, epoxy resin cured product, and composite material
JPWO2020054137A1 (ja) * 2018-09-10 2021-08-30 昭和電工マテリアルズ株式会社 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017221810A1 (ja) * 2016-06-22 2019-04-11 日立化成株式会社 ガスバリア材料、樹脂組成物、ガスバリア材、硬化物、及び複合材料
WO2018070053A1 (ja) * 2016-10-14 2018-04-19 日立化成株式会社 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
CN109843964B (zh) * 2016-10-14 2021-12-31 昭和电工材料株式会社 环氧树脂、环氧树脂组合物、环氧树脂固化物和复合材料

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011074366A (ja) * 2009-09-03 2011-04-14 Sumitomo Chemical Co Ltd ジエポキシ化合物、該化合物を含む組成物及び該組成物を硬化して得られる硬化物
WO2015125674A1 (ja) * 2014-02-20 2015-08-27 住友化学株式会社 ジエポキシ化合物及び、該化合物を含む組成物
WO2016104772A1 (ja) * 2014-12-26 2016-06-30 日立化成株式会社 エポキシ樹脂、エポキシ樹脂組成物、無機フィラー含有エポキシ樹脂組成物、樹脂シート、硬化物、及びエポキシ化合物

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004010762A (ja) * 2002-06-07 2004-01-15 Hitachi Ltd エポキシ樹脂,エポキシ樹脂組成物,エポキシ樹脂硬化物及びそれらの製造方法
JP2004225034A (ja) 2002-11-27 2004-08-12 Polymatech Co Ltd 異方性エポキシ樹脂成形体
CN103755921B (zh) * 2009-09-29 2017-06-23 日立化成工业株式会社 树脂组合物、树脂片以及树脂固化物及其制造方法
JP5637019B2 (ja) * 2010-04-27 2014-12-10 Jsr株式会社 液晶配向剤
WO2013027687A1 (ja) * 2011-08-24 2013-02-28 住友化学株式会社 ジヒドロキシ化合物の製造方法
CN103906785A (zh) * 2011-11-02 2014-07-02 日立化成株式会社 环氧树脂组合物、半固化环氧树脂组合物、固化环氧树脂组合物、树脂片、预浸料坯、层叠板、金属基板、配线板、半固化环氧树脂组合物的制造方法以及固化环氧树脂组合物的制造方法
CN109293883A (zh) * 2011-11-02 2019-02-01 日立化成株式会社 树脂组合物及树脂片、预浸料坯、层叠板、金属基板、印刷配线板和功率半导体装置
KR101896963B1 (ko) * 2012-04-30 2018-09-11 엘지이노텍 주식회사 에폭시 수지 조성물 및 이를 이용한 방열회로기판
JP6356409B2 (ja) 2012-11-22 2018-07-11 旭化成株式会社 新規液晶性エポキシ樹脂およびその組成物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011074366A (ja) * 2009-09-03 2011-04-14 Sumitomo Chemical Co Ltd ジエポキシ化合物、該化合物を含む組成物及び該組成物を硬化して得られる硬化物
WO2015125674A1 (ja) * 2014-02-20 2015-08-27 住友化学株式会社 ジエポキシ化合物及び、該化合物を含む組成物
WO2016104772A1 (ja) * 2014-12-26 2016-06-30 日立化成株式会社 エポキシ樹脂、エポキシ樹脂組成物、無機フィラー含有エポキシ樹脂組成物、樹脂シート、硬化物、及びエポキシ化合物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3476879A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190284332A1 (en) * 2016-10-14 2019-09-19 Hitachi Chemical Company, Ltd. Epoxy resin, epoxy resin composition, epoxy resin cured product, and composite material
US10800872B2 (en) * 2016-10-14 2020-10-13 Hitachi Chemical Company, Ltd. Epoxy resin, epoxy resin composition, epoxy resin cured product, and composite material
WO2019159368A1 (ja) * 2018-02-19 2019-08-22 日立化成株式会社 エポキシ樹脂組成物、エポキシ樹脂硬化物、熱伝導フィルム、及びエポキシ樹脂硬化物の製造方法
JPWO2020054137A1 (ja) * 2018-09-10 2021-08-30 昭和電工マテリアルズ株式会社 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP7439761B2 (ja) 2018-09-10 2024-02-28 株式会社レゾナック エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料

Also Published As

Publication number Publication date
CN109415490A (zh) 2019-03-01
EP3476879A1 (en) 2019-05-01
US11149109B2 (en) 2021-10-19
EP3476879B1 (en) 2022-09-21
US20200002464A1 (en) 2020-01-02
JP6775737B2 (ja) 2020-10-28
TW201815867A (zh) 2018-05-01
TWI749020B (zh) 2021-12-11
EP3476879A4 (en) 2019-12-04
JPWO2017221811A1 (ja) 2019-03-14

Similar Documents

Publication Publication Date Title
JP7160058B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP6891901B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP6775737B2 (ja) エポキシ樹脂組成物、硬化物及び複合材料
JP6988882B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP6635201B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP6866939B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP7003999B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JPWO2020054137A1 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
WO2019043843A1 (ja) エポキシ樹脂硬化物、エポキシ樹脂組成物、成形体及び複合材料
JP7003998B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP7243091B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP7243093B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP7243092B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
WO2019198703A1 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JPWO2020053937A1 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
WO2019198158A1 (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP2019065126A (ja) エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
JP2020143191A (ja) エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018524005

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17815279

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017815279

Country of ref document: EP

Effective date: 20190122