WO2006068185A1 - エポキシ樹脂、エポキシ樹脂組成物及びその硬化物 - Google Patents

エポキシ樹脂、エポキシ樹脂組成物及びその硬化物 Download PDF

Info

Publication number
WO2006068185A1
WO2006068185A1 PCT/JP2005/023505 JP2005023505W WO2006068185A1 WO 2006068185 A1 WO2006068185 A1 WO 2006068185A1 JP 2005023505 W JP2005023505 W JP 2005023505W WO 2006068185 A1 WO2006068185 A1 WO 2006068185A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
resin composition
formula
parts
epoxy
Prior art date
Application number
PCT/JP2005/023505
Other languages
English (en)
French (fr)
Inventor
Yasumasa Akatsuka
Katsuhiko Oshimi
Masataka Nakanishi
Shigeru Moteki
Original Assignee
Nippon Kayaku Kabushki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Kabushki Kaisha filed Critical Nippon Kayaku Kabushki Kaisha
Priority to JP2006549030A priority Critical patent/JP5196625B2/ja
Priority to CN2005800440373A priority patent/CN101084252B/zh
Priority to US11/722,415 priority patent/US20080153976A1/en
Publication of WO2006068185A1 publication Critical patent/WO2006068185A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • C08G59/06Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0326Organic insulating material consisting of one material containing O

Definitions

  • the present invention relates to an epoxy resin having a high molecular orientation, an epoxy resin having an excellent property of toughness and thermal conductivity in the cured product, an epoxy resin composition, and a cured product thereof.
  • Patent Document 1 describes that an epoxy resin having a mesogenic group in the molecule exhibits high thermal conductivity in the cured product.
  • Patent Document 2 describes an epoxy resin having a mesogenic group. It has been reported that a cured product having excellent thermal conductivity can be obtained by applying a magnetic field to the resin and orienting it after orientation.
  • Patent Document 3 describes that a polymer having liquid crystallinity can be processed at a temperature higher than the melting point to obtain a molded product having excellent mechanical strength.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-268070
  • Patent Document 2 Japanese Unexamined Patent Application Publication No. 2004-175926
  • Patent Document 3 Japanese Patent No. 2664405
  • epoxy resins having mesogenic groups described in the above documents generally have a drawback that their molecular structure is complicated and production is difficult.
  • thermoplastic liquid crystal polymers have a melting point of 250 to 350 ° C. Therefore, the molding conditions are generally very strict as compared with thermosetting resins.
  • the present invention is an epoxy resin that is easy to manufacture and can easily realize a state in which molecules are oriented, and the cured product exhibits optical anisotropy, and further has toughness, It is an object of the present invention to provide an epoxy resin that gives a cured product having excellent thermal conductivity.
  • the present invention provides
  • nf is an average straightness 0.:! To 20, preferably ⁇ to 0.2 to 15 and particularly preferably to ⁇ 0.5 to 5.
  • a phenolic compound represented by the formula (1) is reacted in the presence of epihalohydrin and an alkali metal hydroxide to obtain a low molecular weight epoxy resin, and the epoxy resin and the following formula (3)
  • the epoxy resin of the present invention is an epoxy resin having a very high molecular orientation and has excellent properties of toughness and thermal conductivity in its hardened material, such as composite materials, electrical and electronic materials, It is particularly useful for printed wiring boards, solder resists, semiconductor encapsulants, retardation films, molding materials, adhesives, and the like.
  • the epoxy resin of the present invention has the following formula (2)
  • the phenolic compound of the formula (2) is a crystal having a melting point of around 163 ° C., and a commercially available product can be purchased as, for example, p, p′_BPF (manufactured by Honshu Chemical Co., Ltd.).
  • a method for producing the crystalline epoxy resin of the present invention a method in which the reaction product of the compound of formula (3) and epi-halohydrin is chain-extended with the compound of formula (2) can be adopted.
  • the reaction product of Epihaguchi hydrin is inferior in work efficiency compared with the above-mentioned method because of its high crystallinity.
  • epichlorohydrin and epibromohydrin can be used as the epihalohydrin.
  • the amount of epihalohydrin is usually 2 to 15 moles, preferably 3 to 12 moles per mole of the hydroxyl group of the compound of the formula (2).
  • Examples of the alkali metal hydroxide include sodium hydroxide and potassium hydroxide.
  • an aqueous solution that is solid or an aqueous solution that is acceptable may be used, the alkali metal hydroxide is continuously added to the reaction system and simultaneously reduced in pressure.
  • a method may be employed in which sewage under normal pressure or atmospheric pressure and epihalohydrin are distilled and further separated, water is removed, and epihalohydrin is continuously returned to the reaction system.
  • the amount of the alkali metal hydroxide to be used is usually 0.9 to: 1.2 monole, preferably 0.95 to 1.15 monole, per 1 equivalent of the hydroxyl group of the compound of formula (2).
  • the reaction temperature is usually 20 to 110 ° C, preferably 25 to 100 ° C.
  • the reaction time is usually 0.5 to 15 hours, preferably 1 to 10 hours.
  • Addition of an alcohol such as methanol, ethanol, propanol or butanol, or an aprotic polar solvent such as dimethyl sulfoxide or dimethyl sulfone is preferable for promoting the reaction.
  • the amount used is usually 3 to 30% by weight, preferably 5 to 20% by weight, based on the amount of epichlorohydrin.
  • the amount used is usually 10 to 150% by weight, preferably 15 to 120% by weight, based on the amount of epihalohydrin.
  • reaction of epihalohydrin with the compound of formula (2) is added to the mixture of both as a quaternary ammonium salt catalyst such as tetramethyl ammonium chloride, tetramethyl ammonium bromide, trimethylbenzyl ammonium chloride, etc. 30 to: Add a solid or aqueous solution of an alkali metal hydroxide to a halohydrin ether compound of the formula (2) obtained by reacting at 110 ° C. for 0.5 to 8 hours 20 to: 100 ° It may be a method of reacting with C for 1 to 10 hours and dehydrohalogenating (ring closure).
  • a quaternary ammonium salt catalyst such as tetramethyl ammonium chloride, tetramethyl ammonium bromide, trimethylbenzyl ammonium chloride, etc. 30 to: Add a solid or aqueous solution of an alkali metal hydroxide to a halohydrin ether compound of the formula (2) obtained by reacting at 110 ° C.
  • the reaction product of these epoxidation reactions is washed with water or without washing with water, excess epihalohydrin and solvent are removed under reduced pressure by heating.
  • the recovered epoxy resin is dissolved in toluene, methyl isobutyl ketone, etc., and an aqueous solution of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide is added to perform ring closure.
  • an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide is added to perform ring closure.
  • the amount of alkali metal hydroxide used is usually 0.01 to 0.3 mol, preferably 0.05 to 0.2 mol, per mol of the hydroxyl group of the compound of formula (2).
  • the reaction temperature is usually 50 to 120 ° C, and the reaction time is usually 0.5 to 2 hours.
  • the low-molecular weight epoxy resin (A) is obtained by removing the produced salt by filtration, washing with water, and removing the solvent under reduced pressure by heating.
  • the epoxy equivalent of the epoxy resin (A) is usually 160 to 200 g / eq, and bis (4-oxyglycidylphenyl) methane is the main component.
  • the charge ratio of epoxy resin (A) to 4, 4'-biphenol is The amount of the hydroxyl group of the compound of the formula (3) is usually from 0.05 to 0.95 monole, preferably from 0.1 to 0.9 monole per 1 mol of the epoxy group of the epoxy resin (A). .
  • the non-reaction can be carried out without a catalyst, but it is preferable to use a catalyst in order to accelerate the reaction.
  • Catalysts that can be used include triphenylphosphine, tetramethylammonium chloride, sodium hydroxide, potassium hydroxide, benzyltriphenylphosphonium chloride, butyltriphenylphosphonium, ethyltriphenylphosphonium. Examples thereof include dydo and etyltriphenyl phosphonium bromide.
  • the amount of the catalyst used is usually 0.01 to 10 parts by weight, preferably 0.05 to 5 parts by weight, based on 1 mol of the epoxy group of the epoxy resin (A).
  • a solvent for controlling the reaction temperature examples include cyclopentanone, cyclohexanone, methylisobutylketone, methylethylketone, acetone, toluene, N-methylpyrrolidone, N, N-dimethylsulfoxide, N, N-dimethylformamide, and the like.
  • the amount of the solvent used is usually 5 to 150% by weight, preferably 10 to 100% by weight, based on the total weight of the epoxy resin (A) and the compound of the formula (3).
  • the reaction temperature is usually from 60 to 180 ° C, preferably from 70 to 160 ° C.
  • the progress of the reaction can be traced by GPC (gel permeation chromatography) and so on until the compound of formula (3) is not completely detected.
  • the reaction time is usually 0.5 to 15 hours, preferably 1 to 10 hours.
  • the ability to obtain the epoxy resin (B) of the present invention by distilling off the solvent used as necessary from the reaction mixture thus obtained. Obtaining crystalline powder as follows depending on the use of the epoxy resin. Can do.
  • crystals of the epoxy resin of the present invention are precipitated by adding a poor solvent and cooling.
  • the poor solvent include methyl isobutyl ketone, methyl ethyl ketone, acetone, toluene, methanol, ethanol and water.
  • the amount of the poor solvent to be added is usually 50 to 400% by weight, preferably 100 to 300% by weight, based on the total weight of the epoxy resin (A) and the compound of formula (3).
  • the crystalline epoxy resin (B) of the present invention can be obtained by filtering and drying.
  • the resinous epoxy resin (B) can be crystallized by heating it above its melting point and gradually cooling it. It is a matter of making it a lunar month lumps.
  • the reaction is carried out without a solvent, after completion of the reaction, the product is dissolved in a good solvent such as N-methylpyrrolidone, dimethyl sulfoxide, N, N-dimethylformamide, and then methanol, ethanol
  • a good solvent such as N-methylpyrrolidone, dimethyl sulfoxide, N, N-dimethylformamide, and then methanol, ethanol
  • the epoxy resin of the present invention can be obtained in good yield by adding a water-soluble poor solvent such as isopropanol, acetone, methyl ethyl ketone, and further adding water.
  • the amount of the good solvent used is usually 5 to 200% by weight, preferably 10 to 150% by weight, based on the total weight of the epoxy resin (A) and the compound of the formula (3).
  • the amount of the water-soluble poor solvent used is usually 5 to 200% by weight, preferably 10 to 150% by weight, based on the theoretical yield of the epoxy resin.
  • the amount of water used is usually 50 to 400% by weight, preferably 100 to 300% by weight, based on the total weight of the epoxy resin (A) and the compound of formula (3).
  • the epoxy resin (B) thus obtained is a crystalline one, usually having a melting point of 70 to 180.
  • the epoxy equivalent of the epoxy resin (B) of the present invention is usually 200 to 2000 g / eq, preferably 250 to 1500 g / eq, particularly preferably 250 to 1000 g / eq.
  • DSC differential thermal analyzer
  • endothermic peaks are often observed at two or more locations. This phenomenon indicates that the epoxy resin (B) has liquid crystallinity.
  • the temperature range in which the epoxy resin (B) exhibits optical anisotropy is 100 to 200 ° C.
  • n in the formula (1) of the obtained epoxy resin is usually a force representing an average value of 0.:! To 20, preferably 0.3 to 5, particularly preferably 0.5 to 2.
  • the value of n can be estimated for the obtained resin by GPC, NMR measurements or calculations from epoxy equivalents.
  • the obtained epoxy resin (B) can be used even in the crystalline state in the preparation of the epoxy resin composition. Can be used. In the resin state, the softening point is usually 45 to 100 ° C.
  • the epoxy resin of the present invention is By combining with a curing agent, curing accelerator, cyanate resin, etc., it can be used as a curable resin composition.
  • Specific examples of applications include printed wiring boards, sono-redder resists, semiconductor encapsulants, retardation films, molding materials, and adhesives.
  • the epoxy resin composition of the present invention contains the epoxy resin of the present invention and a curing agent as essential components.
  • the epoxy resin of the present invention can be used alone or in combination with other epoxy resins.
  • the proportion of the epoxy resin of the present invention in the total epoxy resin is preferably 30% by weight or more, especially 40% by weight or more.
  • Examples of the curing agent contained in the epoxy resin composition of the present invention include amine compounds, acid anhydride compounds, amide compounds, and phenol compounds.
  • Specific examples of curing agents that can be used include polyamides synthesized from diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophorone diamine, dicyandiamide, linolenic acid dimer and ethylene diamine.
  • Resin phthalic anhydride, anhydrous trimellitic acid, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyl tetrahydrophthalic anhydride, methyl nadic anhydride, hexahydrophthalic anhydride, methyl hexahydrophthalic anhydride, Examples include, but are not limited to, phenol novolacs, modified products thereof, imidazoles, BF-amine complexes, guanidine derivatives, and the like.
  • the amount of the curing agent used in the epoxy resin composition of the present invention is preferably 0.7 to 1.2 equivalents relative to 1 equivalent of epoxy group of the epoxy resin. If it is less than 0.7 equivalent to 1 equivalent of epoxy group, or exceeds 1.2 equivalent, curing may be incomplete and good cured properties may not be obtained.
  • a curing accelerator can also be used in the epoxy resin composition of the present invention.
  • curing accelerators that can be used include imidazoles such as 2-methylimidazole, 2_ethylimidazole, 2_ethyl_4-methylimidazole, 2- (dimethylenoreaminomethyl) phenol, 1,8_diazabicyclo ( 5, 4, 0) tertiary amines such as undecene_7, phosphines such as triphenylphosphine, and metal compounds such as tin octylate.
  • the curing accelerator is used in an amount of 0.:! To 5.0 parts by weight based on 100 parts by weight of the epoxy resin as necessary.
  • the epoxy resin composition of the present invention may optionally contain an inorganic filler.
  • the inorganic filler that can be used include silica, alumina, and talc.
  • the inorganic filler is used in an amount of 0 to 90% by weight in the epoxy resin composition of the present invention.
  • various compounding agents such as a silane coupling agent, a release agent such as stearic acid, palmitic acid, zinc stearate and calcium stearate, and a pigment can be added to the epoxy resin composition of the present invention.
  • the epoxy resin composition of the present invention can be obtained by uniformly mixing the respective components.
  • the epoxy resin composition of the present invention can be easily hardened by a method similar to a conventionally known method.
  • the epoxy resin composition of the present invention, a curing agent and, if necessary, a curing accelerator, an inorganic filler, and a compounding agent are mixed thoroughly as required using an extruder, kneader, roll, etc.
  • a cured product can be obtained by melting the epoxy resin composition after melting and molding it using a casting or transfer molding machine, and further heating at 80 to 200 ° C. for 2 to 10 hours.
  • An organic solvent can be added to the epoxy resin composition of the present invention to form a varnish-like composition (hereinafter simply referred to as varnish).
  • Solvents used include, for example, ⁇ -butyrate ratatones, ⁇ ⁇ ⁇ -methylpyrrolidone, ⁇ , ⁇ -dimethylformamide, ⁇ , ⁇ -dimethylacetamide, ⁇ , ⁇ -dimethylimidazolidinone, and other amide-based homozygous 1J , Selephones such as tetramethylene sulphone, diethylene glycol dimethyl ether, diethylene glycol jetyl etherol, propylene glycol nore, propylene glycol nole monomethino ethenore, propylene glycol nole mono methino ethenore monoacetate, propylene glycol nore mono butino rea Ether solvents such as tellurium, ketone solvents such as methyl ethyl ketone,
  • the epoxy resin composition of the present invention is obtained by drying the above varnish on a planar support by various coating methods such as a gravure coating method, screen printing, metal mask method, and spin coating method known per se. It is possible to obtain a sheet by drying after coating so that the thickness becomes a predetermined thickness, for example, 5 to 100 ⁇ m. In this case, which coating method is used is appropriately selected depending on the type, shape, size, and thickness of the coating film.
  • the base material examples include various polymers such as polyamide, polyamidoimide, polyarylate, polyethylene terephthalate, polybutylene terephthalate, polyether ether ketone, polyetheroleimide, polyetherenoketone, polyketone, polyethylene, and polypropylene, and / or It is a metal foil such as a finolome made of the copolymer or a copper foil, and particularly preferably a polyimide or a metal foil. Further, a sheet-like cured product can be obtained by further heating.
  • the epoxy resin composition of the present invention is dissolved in a solvent such as toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, etc., and glass fiber, carbon fiber, polyester fiber, polyamide fiber, alumina fiber, paper, etc. It is also possible to obtain a cured product by hot press-molding a pre-preda obtained by impregnating the substrate with heat and drying.
  • the solvent is used in an amount of 10 to 70% by weight, preferably 15 to 70% by weight in the mixture of the epoxy resin composition of the present invention and the solvent.
  • the crystals were filtered and dried to obtain 103 parts of a white powdery epoxy resin (B1) of the present invention.
  • the epoxy equivalent of this epoxy resin (B1) was 443 g / eq (n 1 ⁇ 09 of formula (1) (average value; calculated from epoxy equivalent)).
  • DSC differential thermal analyzer
  • the DSC measurement results showed two peak tops, 125 ° C and 160 ° C.
  • the epoxy resin (B) was observed at a temperature rising rate of 1 ° C per minute using a polarizing microscope, it was confirmed that the epoxy resin exhibited optical anisotropy at 140 to 160 ° C. .
  • Epoxy resin (B1) obtained in Example 1 as Example 2 8. 9 parts phenol alcohol resin XLC-3L (Mitsui Chemicals, softening point 71 ° C, hydroxyl equivalent) 174 g / eq) 3.5 parts, 2PHZ-PW (manufactured by Shikoku Kasei Co., Ltd.) as a curing accelerator, 0.1 part, and 5.4 parts of cyclopentanone as a solvent were mixed uniformly to prepare a varnish.
  • phenol alcohol resin XLC-3L Mitsubishi Chemicals, softening point 71 ° C, hydroxyl equivalent
  • 2PHZ-PW manufactured by Shikoku Kasei Co., Ltd.
  • the epoxy resin (B2) of the present invention obtained in Example 3 as Example 4 and the high molecular weight bisphenol F-type epoxy resin as Comparative Example 1 (YDF-2001, Epoxy equivalent 471 g / eq. Manufactured by Tohto Kasei Co., Ltd.)
  • phenol novolak Maywa Kasei Kogyo Co., Ltd., H_l, hydroxyl group equivalent 105gZeq.
  • TPP triphenylphosphine
  • Table 2 shows the results of measuring the physical properties of the cured product thus obtained.
  • the physical property values were measured by the following methods.
  • the epoxy resin of the present invention provides a cured product excellent in fracture toughness and thermal conductivity as compared with known bisphenol F-type epoxy resins.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は、製造が容易であり、しかも簡単に分子が配向した状態を実現することが可能なエポキシ樹脂であって、その硬化物が光学的な異方性を示し、更に強靭性、熱伝導率性にすぐれた硬化物を与えるエポキシ樹脂を提供することを目的とする。本発明のエポキシ樹脂は、下記式(1) (式中、nは平均値であり0.1~20を表す。) で表される。本発明のエポキシ樹脂は、4,4’-ビスフェノールFのエポキシ化物を4,4’-ビフェノールで鎖延長して得ることができる。

Description

明 細 書
エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
技術分野
[0001] 本発明は分子配向性の高いエポキシ樹脂であって、その硬化物において強靭性、 熱伝導率性に優れた特性を有するエポキシ樹脂、エポキシ樹脂組成物及びその硬 化物に関する。
背景技術
[0002] —般にエポキシ樹脂組成物は架橋反応によってランダムな網目構造を形成し、耐 熱性、耐水性、絶縁性などに優れた硬化物となることが知られている。更に近年では エポキシ樹脂組成物を硬化させる際、外部から物理的な力を加えエポキシ樹脂組成 物を特定の方向に配向させることによって、硬化物の特性を向上させる試みがなされ ている。例えば、特許文献 1においては分子内にメソゲン基を有するエポキシ樹脂が 、その硬化物において高い熱伝導率を示すことが記されているが、特許文献 2にお レ、てはメソゲン基を有するエポキシ樹脂に磁場を印加して配向させた後に硬化させ ることにより熱伝導性に優れた硬化物が得られることが報告されている。また、熱可塑 性樹脂の分野においては、液晶性を有する高分子は融点以上の温度において加工 することにより機械強度に優れた成型物が得られることが特許文献 3などに記されて いる。
[0003] 特許文献 1 :特開 2003— 268070号公報
特許文献 2 :特開 2004— 175926号公報
特許文献 3:特許 2664405号公報
発明の開示
発明が解決しょうとする課題
[0004] しかしながら上記文献に記載されてレ、るようなメソゲン基を有するエポキシ樹脂は、 一般に分子構造が複雑であり、製造が困難であるという欠点を有する。また、ェポキ シ樹脂組成物全体に磁場などを印加する場合、大掛カ^な装置が必要になるといつ た問題点がある。また、通常熱可塑性の液晶高分子はその融点が 250〜350°Cであ り、成型条件が熱硬化性樹脂に比べて非常に厳しいのが一般的である。本発明は、 製造が容易であり、し力も簡単に分子が配向した状態を実現することが可能なェポキ シ樹脂であって、その硬化物が光学的な異方性を示し、更に強靭性、熱伝導率性に すぐれた硬化物を与えるエポキシ樹脂を提供することを目的とする。
課題を解決するための手段
[0005] 本発明者らはこうした実状に鑑み、製造が容易であり、し力も簡単に分子が配向し た状態を実現することが可能なエポキシ樹脂組成物を求めて鋭意研究した結果、本 発明を完成させるに到った。
[0006] すなわち本発明は
(1)下記式(1)
[0007] [化 1]
Figure imgf000003_0001
[0008] (式中、 nfま平均ィ直であり 0.:!〜 20、好ましく ίま 0. 2〜: 15、特に好ましく ίま 0. 5〜5.
0を表す。 ηはエポキシ当量から算出することができる。 )
で表されるエポキシ樹脂、
(2)上記(1)記載のエポキシ樹脂及び硬化剤を含有するエポキシ樹脂組成物、
(3)硬化促進剤を含有する上記(2)記載のエポキシ樹脂組成物、
(4)有機溶剤を含有する上記(2)乃至(4)のレ、ずれ力 1項に記載のエポキシ樹脂組 成物、
(5)無機充填剤を含有する上記(2)乃至(4)のレ、ずれ力 1項に記載のエポキシ樹脂 組成物、 (6)上記(2)乃至(5)のレ、ずれ力 1項に記載のエポキシ樹脂組成物を硬化してなる 硬化物、
(7)下記式 (2)
[0009] [化 2]
Figure imgf000004_0001
[0010] で表されるフエノール系化合物をェピハロヒドリンとアルカリ金属水酸化物の存在下 で反応させて、低分子量のエポキシ樹脂を得、該エポキシ樹脂と下記式(3)
[0011] [化 3]
Figure imgf000004_0002
[0012] で表される 4, 4'—ビフエノールを反応させ、次いで貧溶媒を添加しで結晶を析出さ せることを特徴とする上記(1)記載のエポキシ樹脂の製造方法
を、提供するものである。
発明の効果
[0013] 本発明のエポキシ樹脂は分子配向性が非常に高いエポキシ樹脂であって、その硬 化物において強靭性、熱伝導率性に優れた特性を有し、コンポジット材料や、電気, 電子材料、特にプリント配線基板、ソルダーレジスト、半導体封止材、位相差フィルム 、成形材料、接着剤などに有用である。
発明を実施するための最良の形態
[0014] 本発明のエポキシ樹脂は、下記式(2)
[0015] [化 4]
Figure imgf000005_0001
[0016] で表されるフヱノール系化合物をェピハロヒドリンとアルカリ金属水酸化物の存在下 で反応させて、低分子量のエポキシ樹脂を得、このエポキシ樹脂と下記式(3)
[0017] [化 5]
Figure imgf000005_0002
[0018] で表される 4, 4'—ビフエノールを反応させ、溶剤中で結晶を析出させることにより得 ることが出来る。式(2)のフエノール系化合物は、融点が 163°C前後の結晶であり、 例えば p, p' _BPF (本州化学株式会社製)として市販品が購入できる。なお、本発 明の結晶性エポキシ樹脂の製法として、式(3)の化合物とェピハロヒドリンの反応生 成物を式(2)の化合物で鎖延長する方法も採用できるが、式(3)の化合物とェピハ口 ヒドリンの反応生成物は、結晶性が高いため前記した方法に比べ作業効率に劣る。
[0019] 本発明のエポキシ樹脂の製法においてェピハロヒドリンとしてはェピクロルヒドリンや ェピブロムヒドリンを用いることが出来る。ェピハロヒドリンの量は式(2)の化合物の水 酸基 1モルに対し通常 2〜 15モノレ、好ましくは 3〜 12モルである。
[0020] アルカリ金属水酸化物としては水酸化ナトリウム、水酸化カリウム等が挙げられ固体 でも、その水溶液を使用しても良ぐ水溶液を使用する場合は連続的に反応系内に 添加すると同時に減圧下、または常圧下水及びェピハロヒドリンを留出させ更に分液 し、水は除去しェピハロヒドリンは反応系内に連続的に戻す方法でもよい。アルカリ金 属水酸化物の使用量は式(2)の化合物の水酸基 1当量に対して、通常 0. 9〜: 1. 2 モノレ、好ましく ίま 0. 95〜: 1. 15モノレである。反応温度 ίま通常 20〜: 110°C、好ましく は 25〜: 100°Cである。反応時間は通常 0. 5〜15時間、好ましくは 1〜: 10時間である [0021] メタノーノレ、エタノール、プロパノール、ブタノールなどのアルコール類、或いはジメ チルスルホキシド、ジメチルスルホンなどの非プロトン性極性溶媒を添カ卩することは反 応を促進させる上で好ましレヽ。
[0022] アルコール類を使用する場合、その使用量はェピクロルヒドリンの量に対し通常 3〜 30重量%、好ましくは 5〜20重量%である。非プロトン性極性溶媒を使用する場合、 その使用量はェピハロヒドリンの量に対して通常 10〜150重量%、好ましくは 15〜1 20重量%である。
[0023] また、ェピハロヒドリンと式(2)の化合物の反応は、両者の混合物にテトラメチルアン モニゥムクロライド、テトラメチルアンモニゥムブロマイド、トリメチルベンジルアンモニゥ ムクロライドなどの 4級アンモニゥム塩触媒として添加し 30〜: 110°Cで 0. 5〜8時間反 応させて得られる、式(2)の化合物のハロヒドリンエーテル化合物にアルカリ金属水 酸化物の固体または水溶液を加え 20〜: 100°Cで 1〜: 10時間反応させ脱ハロゲン化 水素(閉環)させる方法でもよい。
[0024] 次いで、これらのエポキシ化反応の反応物を水洗後、或いは水洗無しに加熱減圧 下で過剰のェピハロヒドリン及び溶剤などを除去する。また更に加水分解性ハロゲン の少ないエポキシ樹脂とするために、回収したエポキシ樹脂をトルエン、メチルイソブ チルケトンなどに溶解させ、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸 化物の水溶液を加えて閉環を確実にすることも出来る。この場合、アルカリ金属水酸 化物の使用量は式(2)化合物の水酸基 1モルに対して、通常 0. 01-0. 3モル、好 ましくは 0. 05-0. 2モルである。反応温度は通常 50〜: 120°C、反応時間は通常 0. 5〜2時間である。
[0025] 反応終了後、生成した塩を濾過、水洗などにより除去し加熱減圧下で溶剤を除去 することにより低分子量のエポキシ樹脂 (A)が得られる。エポキシ樹脂 (A)のェポキ シ当量は通常 160〜200g/eqであり、ビス(4—ォキシグリシジルフエニル)メタンを 主成分とする。
[0026] 次にエポキシ樹脂 (A)と前記式(3)で表される 4, 4'—ビフヱノールとを不可反応さ せ、高分子量化を行う。エポキシ樹脂 (A)と 4, 4'—ビフエノールとの仕込み比率は、 エポキシ樹脂 (A)のエポキシ基 1モルに対し、式(3)の化合物の水酸基が通常 0. 0 5〜0. 95モノレ、好ましくは 0. 1 ~0. 9モノレとなる害 ij合である。
[0027] 不可反応は無触媒で行うことも出来るが、反応を促進させる上では触媒を用いるこ とが好ましい。用い得る触媒としてはトリフエニルホスフィン、テトラメチルアンモニゥム クロライド、水酸化ナトリウム、水酸化カリウム、ベンジルトリフエニルホスフォニゥムクロ ライド、ブチルトリフエニルホスフォニゥム、ェチルトリフエニルホスフォニゥムョーダイド 、ェチルトリフエニルホスフォニゥムブロマイドなどが挙げられる。触媒の使用量として はエポキシ樹脂 (A)のエポキシ基 1モルに対して通常 0. 01〜: 10重量部、好ましくは 0. 05〜5重量部である。
[0028] 不可反応においては反応温度を制御する上で溶剤を用いることが好ましい。用い 得る溶剤としてはシクロペンタノン、シクロへキサノン、メチルイソプチルケトン、メチル ェチルケトン、アセトン、トルエン、 N—メチルピロリドン、 N, N—ジメチルスルホキシド 、 N, N—ジメチルホルムアミドなどが挙げられる。溶剤の使用量としてはエポキシ樹 脂 (A)と式(3)の化合物の合計重量に対して、通常 5〜: 150重量%、好ましくは 10〜 100重量%である。
[0029] 反応温度は通常 60〜: 180°C、好ましくは 70〜: 160°Cである。反応の進行は GPC ( ゲルパーミエイシヨンクロマトグラフィー)などで追跡することが出来、式(3)の化合物 が完全に検出されなくなるまで行う。反応時間は通常 0. 5〜: 15時間、好ましくは 1〜 10時間である。こうして得られた反応混合物から必要により使用した溶媒を留去する ことで、本発明のエポキシ樹脂(B)を得ることができる力 エポキシ樹脂の用途により 下記のようにして結晶性の粉末を得ることができる。
[0030] すなわち、反応終了後、貧溶媒を加え冷却することにより本発明のエポキシ樹脂の 結晶を析出させる。貧溶媒としてはメチルイソプチルケトン、メチルェチルケトン、ァセ トン、トルエン、メタノーノレ、エタノール、水などが挙げられる。加える貧溶媒の使用量 としてはエポキシ樹脂 (A)と式(3)の化合物の合計重量に対して、通常 50〜400重 量%、好ましくは 100〜300重量%である。結晶を析出させた後、濾別し乾燥させる ことにより結晶状の本発明のエポキシ樹脂 (B)を得ることが出来る。また、樹脂状のェ ポキシ樹脂(B)をその融点以上に加熱して、徐々に冷却することでも結晶性を有す る樹月旨塊とすることちでさる。
[0031] また、無溶媒で不可反応を行った場合は、反応終了後、 N—メチルピロリドン、ジメ チルスルホキシド、 N, N—ジメチルホルムアミドなどの良溶媒に生成物を溶解させ、 次いでメタノール、エタノール、イソプロパノール、アセトン、メチルェチルケトンなどの 水溶性の貧溶媒を加え、更に水を加えることによって収率良く本発明のエポキシ樹 脂を得ることが出来る。この場合、良溶媒の使用量はエポキシ樹脂 (A)と式 (3)の化 合物の合計重量に対して、通常 5〜200重量%、好ましくは 10〜: 150重量%である 。水溶性貧溶媒の使用量としてはエポキシ樹脂の理論収量に対して、通常 5〜200 重量%であり、好ましくは 10〜150重量%である。水の使用量はエポキシ樹脂 (A)と 式(3)の化合物の合計重量に対して、通常 50〜400重量%、好ましくは 100〜300 重量%である。
[0032] こうして得られるエポキシ樹脂(B)は結晶状のものでは、通常その融点が 70〜: 180
°Cになる。
本発明のエポキシ樹脂(B)のエポキシ当量は通常 200〜2000g/eq、好ましくは 250〜: 1500g/eq、特に好ましぐは 250〜1000g/eqである。エポキシ樹脂(B)を DSC (示差熱分析装置)で測定を行うと、二箇所以上に、吸熱ピークが見られることが 多い。この現象はエポキシ樹脂(B)が液晶性を有することを示すものである。更に偏 光顕微鏡を用いて昇温しながら観察することによりエポキシ樹脂(B)が光学的に異 方性を示す温度領域を特定することが可能である。一般にエポキシ樹脂 (B)が光学 的異方性を示す温度領域は 100〜200°Cである。なお、得られたエポキシ樹脂の式 (1)における nは通常、平均値で 0.:!〜 20を表す力 好ましくは 0. 3〜5、特に好ま しくは 0. 5〜2である。 nの値は得られた樹脂につき、 GPCや NMR測定またはェポ キシ当量からの計算で推定できる。
[0033] 得られたエポキシ樹脂(B)はそのエポキシ樹脂組成物の調製において結晶状態で も用いることが出来る力 一度融点以上に加熱して溶融状態にし、次いで過冷却して 得られる樹脂状態でも使用することが出来る。樹脂状態の場合、軟化点は通常 45〜 100°Cである。
[0034] 以下、本発明のエポキシ樹脂組成物について説明する。本発明のエポキシ樹脂は 硬化剤、硬化促進剤、シァネート樹脂などと組み合わせることにより、硬化性樹脂組 成物として使用することが出来る。具体的な用途例としては、プリント配線基板、ソノレ ダーレジスト、半導体封止材、位相差フィルム、成形材料、接着剤などが挙げられる。
[0035] 本発明のエポキシ樹脂組成物は、本発明のエポキシ樹脂及び硬化剤を必須成分 として含有する。本発明のエポキシ樹脂組成物において、本発明のエポキシ樹脂は 単独で、または他のエポキシ樹脂と併用して用レ、ることが出来る。併用する場合、本 発明のエポキシ樹脂の全エポキシ樹脂中に占める割合は 30重量%以上が好ましぐ 特に 40重量%以上が好ましレ、。
[0036] 本発明のエポキシ樹脂と併用し得る他のエポキシ樹脂の具体例としては、ビスフエ ノール A型エポキシ樹脂、フエノールノボラック型樹脂、ビフエノール型エポキシ樹脂 、トリフエニルメタン型エポキシ樹脂、ジシクロペンタジェンフエノール縮合型エポキシ 樹脂、ビフエ二ルノボラック型エポキシ樹脂、脂環式エポキシ樹脂等が挙げられるが 、これらは単独で使用してもよぐ 2種以上併用してもよい。
[0037] 本発明のエポキシ樹脂組成物が含有する硬化剤としては、例えばアミン系化合物、 酸無水物系化合物、アミド系化合物、フエノール系化合物などが挙げられる。使用で きる硬化剤の具体例としては、ジアミノジフエ二ルメタン、ジエチレントリァミン、トリェチ レンテトラミン、ジアミノジフエニルスルホン、イソホロンジァミン、ジシアンジアミド、リノ レン酸の 2量体とエチレンジァミンとより合成されるポリアミド樹脂、無水フタル酸、無 水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチル テトラヒドロ無水フタル酸、無水メチルナジック酸、へキサヒドロ無水フタル酸、メチル へキサヒドロ無水フタル酸、フエノ一ルノボラック、及びこれらの変性物、イミダゾ一ル 、 BF—アミン錯体、グァニジン誘導体などが挙げられるがこれらに限定されるもので
3
はない。これらは単独で用いてもよぐ 2種以上併用してもよい。
[0038] 本発明のエポキシ樹脂組成物において硬化剤の使用量は、エポキシ樹脂のェポ キシ基 1当量に対して 0. 7〜: 1. 2当量が好ましい。エポキシ基 1当量に対して 0. 7当 量に満たない場合、或いは 1. 2当量を越える場合、いずれも硬化が不完全になり、 良好な硬化物性が得られなレ、恐れがある。
[0039] また本発明のエポキシ樹脂組成物においては硬化促進剤を使用することも出来る 。使用できる硬化促進剤の例としては 2—メチルイミダゾール、 2 _ェチルイミダゾー ノレ、 2 _ェチル _4—メチルイミダゾールなどのイミダゾール類、 2—(ジメチノレアミノメ チル)フエノール、 1 , 8 _ジァザ一ビシクロ(5, 4, 0)ゥンデセン _ 7等の第 3級ァミン 類、トリフエニルホスフィンなどのホスフィン類、ォクチル酸スズ等の金属化合物が挙 げられる。硬化促進剤はエポキシ樹脂 100重量部に対して 0. :!〜 5. 0重量部が必 要に応じ用いられる。
[0040] 本発明のエポキシ樹脂組成物は必要により無機充填剤を含有し得る。用い得る無 機充填剤の具体例としてはシリカ、アルミナ、タルク等が挙げられる。無機充填剤は 本発明のエポキシ樹脂組成物において 0〜90重量%を占める量が用いられる。更に 本発明のエポキシ樹脂組成物には、シランカップリング剤、ステアリン酸、パルチミン 酸、ステアリン酸亜鉛、ステアリン酸カルシウム等の離型剤、顔料などの種々の配合 剤を添加することが出来る。
[0041] 本発明のエポキシ樹脂組成物は、各成分を均一に混合することにより得られる。本 発明のエポキシ樹脂組成物は従来知られている方法と同様の方法で容易にその硬 化物とすることが出来る。例えば本発明のエポキシ樹脂と硬化剤ならびに必要により 硬化促進剤、無機充填剤及び配合剤とを必要に応じて押出機、ニーダ、ロールなど を用いて均一になるまで十分に混合してエポキシ樹脂組成物を得、そのエポキシ榭 脂組成物を溶融後注型あるいはトランスファー成型機などを用いて成型し、更に 80 〜200°Cで 2〜: 10時間加熱することにより硬化物を得ることが出来る。
[0042] 本発明のエポキシ樹脂組成物に有機溶剤を添加しワニス状の組成物(以下、単に ワニスという)とすることができる。用いられる溶剤としては、例えば γ—ブチ口ラタトン 類、 Ν—メチルピロリドン、 Ν, Ν—ジメチルホルムアミド、 Ν, Ν—ジメチルァセトアミド 、 Ν, Ν—ジメチルイミダゾリジノン等のアミド系溶斉 1J、テトラメチレンスルフォン等のス ノレフォン類、ジエチレングリコールジメチルエーテル、ジエチレングリコールジェチル エーテノレ、プロピレングリコーノレ、プロピレングリコーノレモノメチノレエーテノレ、プロピレ ングリコーノレモノメチノレエーテノレモノアセテート、プロピレングリコーノレモノブチノレエー テル等のエーテル系溶剤、メチルェチルケトン、メチルイソブチルケトン、シクロペンタ ノン、シクロへキサノン等のケトン系溶剤、トルエン、キシレンなどの芳香族系溶剤が 挙げられる。溶剤は、得られたワニス中の溶剤を除く固形分濃度が通常 10〜80重量 %、好ましくは 20〜70重量%となる範囲で使用する。
[0043] 本発明のエポキシ樹脂組成物は上記のワニスをそれ自体公知のグラビアコート法、 スクリーン印刷、メタルマスク法、スピンコート法などの各種塗工方法により平面状支 持体上に乾燥後の厚さが所定の厚さ、例えば 5〜100 μ mになるように塗布後乾燥 してシート状物を得ることもできる。この場合、どの塗工法を用いるかは基材の種類、 形状、大きさ、塗膜の膜厚により適宜選択される。基材としては、例えばポリアミド、ポ リアミドイミド、ポリアリレート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、 ポリエーテルエーテルケトン、ポリエーテノレイミド、ポリエーテノレケトン、ポリケトン、ポリ エチレン、ポリプロピレン等の各種高分子及び/またはその共重合体からなるフィノレ ム、或いは銅箔等の金属箔であり、特に好ましくは、ポリイミド又は金属箔である。また 更に加熱することによりシート状の硬化物を得ることが出来る。
[0044] また本発明のエポキシ樹脂組成物をトルエン、キシレン、アセトン、メチルェチルケト ン、メチルイソプチルケトン等の溶剤に溶解させ、ガラス繊維、カーボン繊維、ポリエ ステル繊維、ポリアミド繊維、アルミナ繊維、紙などの基材に含浸させ加熱乾燥して得 たプリプレダを熱プレス成形して硬化物を得ることもできる。この際の溶剤は、本発明 のエポキシ樹脂組成物と該溶剤の混合物中で通常 10〜70重量%、好ましくは 15〜 70重量%を占める量を用いる。
実施例
[0045] 次に本発明を更に実施例により、更に具体的に説明するが、以下において部は特 に断わりのない限り重量部である。
[0046] 実施例 1
温度計、冷却管、分留管、撹拌機を取り付けたフラスコに窒素パージを施しながら、 前記式(2)で表されるフエノール系化合物(商品名 p, p' -BPF 本州化学株式会 社製) 100部に対しェピクロルヒドリン 370部、メタノール 26部を仕込み撹拌下で 65 〜70°Cまで昇温し、完全に溶解させた後、還流条件化でフレーク状水酸化ナトリウム 40. 4部を 100分かけて分割添加した。その後、更に 70°Cで 1時間、後反応を行った 。次いで水を 150部加えて水洗を 2回行レ、、加熱減圧下で油層から過剰のェピクロ ルヒドリンなどを除去した。残留分にメチルイソプチルケトン 312部をカ卩えて溶解し、 7 0°Cで 30%水酸化ナトリウム水溶液 10部をカ卩えて 1時間反応を行った。反応後、水 洗を 3回行い生成塩などを除去した。加熱減圧下でメチルイソプチルケトンを留去し 、エポキシ樹脂 (A1) 150部を得た。得られたエポキシ樹脂のエポキシ当量は 170g /eq、 25°Cにおける粘度は 1000mP ' s、全塩素量は 1200ppmであった。次いでこ のエポキシ樹脂 (A1) 85部及び前記式(3)で表される化合物 23部をカ卩えて撹拌下 で溶解させ、ベンジルトリフエニルホスフォニゥムクロライド 0. 08部を添カロした。 160 °Cで 4時間反応させ GPCにおいて 4, 4'ービフエノールが完全に消滅した後、更に 反応を続け合計 6時間反応させた後で 100°Cまで冷却しジメチルスルホキシド 108部 を加えて得られた樹脂を完全に溶解させた。更に 60°Cまで冷却し撹拌下でメタノー ル 108部をカ卩えた。次いで 30°Cにまで冷却し水 208部を加えて結晶を析出させた。 この結晶を濾過後乾燥させ白色粉末状の本発明のエポキシ樹脂 (B1) 103部を得た 。このエポキシ樹脂(B1)のエポキシ当量は 443g/eq (式(1)の n 1 · 09 (平均値; エポキシ当量から計算) )であった。得られたエポキシ樹脂(B1)の融点を DSC (示差 熱分析計)で測定したところ、 li eであった。また DSCの測定結果ではピークトップ が二つ現れ、 125°Cと 160°Cであった。更にエポキシ樹脂(B)を偏光顕微鏡を用い て毎分 1°Cの昇温速度で観察したところ、 140〜: 160°Cにおいて該エポキシ樹脂が 光学的な異方性を示すことが確認された。
[0047] 実施例 2
実施例 2として実施例 1で得られたエポキシ樹脂(B1) 8. 9部に対し硬化剤としてフ エノールァラルキル型樹脂 XLC— 3L (三井化学株式会社製、軟化点 71°C、水酸基 当量 174g/eq) 3. 5部、硬化促進剤として 2PHZ— PW (四国化成株式会社製) 0. 1部、溶剤としてシクロペンタノン 5. 4部を用い、均一に混合してワニスを調製した。
[0048] 前記ワニスを PETフィルム上に乾燥後の厚さが 20 μになるようにアプリケーターを 用いて塗布し 140°Cで 1時間加熱して溶剤を除去し硬化させ、 PETフィルムを除去し たところ、無色透明でフレキシブルなフィルム状の硬化物が得られた。このフィルム状 の硬化物を折り曲げたり、皺くちゃにしてもひび割れたりすることはなかった。このフィ ルムを、偏光顕微鏡を用いて観察したところ光学的な異方性を示すことが確認された [0049] 実施例 3
温度計、冷却管、分留管、撹拌機を取り付けたフラスコに窒素パージを施しながら、 前記式 (2)で表されるフエノール系化合物(商品名 p, p' -BPF 本州化学株式会 社製) 100部に対しェピクロルヒドリン 370部、メタノール 26部を仕込み撹拌下で 65 〜75°Cまで昇温し、完全に溶解させた後、還流条件化でフレーク状水酸化ナトリウム 41. 6部を 100分かけて分割添加した。その後、更に 70°Cで 1時間、後反応を行った 。次いで水を 150部加えて水洗を 2回行レ、、加熱減圧下で油層から過剰のェピクロ ルヒドリンなどを除去した。残留分にメチルイソプチルケトン 312部をカ卩えて溶解し、 7 0°Cで 30%水酸化ナトリウム水溶液 10部を加えて 1時間反応を行った。反応後、水 洗を 3回行い生成塩などを除去した。加熱減圧下でメチルイソプチルケトンを留去し 、エポキシ樹脂 (A2) 154部を得た。得られたエポキシ樹脂のエポキシ当量は 164g /eqであった。次レ、でこのエポキシ樹脂 (A2) 87部及び前記式(3)で表される化合 物 23. 3部を加えて撹拌下で溶解させ、トリフエニルホスフィン 0. 08部を添加した。 1 60°Cで 4時間反応させ GPCにおいて 4, 4'ービフエノールが完全に消滅した後、更 に反応を続け合計 6時間反応させた後でロータリーエバポレーターにて加熱減圧下 、溶剤を留去し、本発明のエポキシ樹脂 (B2)を樹脂状固体として 110部得た。この エポキシ樹脂(B2)のエポキシ当量は 410g/eq (式(1)の η^Ο. 96 (平均値;ェポ キシ当量から計算))であった。得られたエポキシ樹脂(B2)を 100°Cに加熱し、徐々 に冷却することで白濁し、結晶性を有する樹脂塊となった。
[0050] 実施例 4、比較例 1
実施例 4として実施例 3で得られた本発明のエポキシ樹脂(B2)、比較例 1として高 分子量ビスフエノール F型エポキシ樹脂 (YDF— 2001 東都化成株式会社製 ェポ キシ当量 471g/eq. )を用いてフエノールノボラック(明和化成工業株式会社製、 H_ l、水酸基当量 105gZeq. )を硬化剤とし、硬化促進剤としてトリフヱニルホスフ イン (TPP)を下記表 1に示す配合比(重量部)で配合し、組成物を調製し、トランスフ ァー成型により樹脂成形体を得、 140°Cで 8時間かけて硬化させた。
[0051] 表 1 実施例 4 比較例 1
エポキシ樹脂 B2 41. 0
YDF- 2001 47. 1
硬化剤 フエノールノボラック 10. 5 10. 5
硬化促進剤 TPP 0. 6 0. 6
[0052] このようして得られた硬化物の物性を測定した結果を表 2に示す。なお、物性値の 測定は以下の方法で行った。
破壊靭性(K1C) :ASTM E— 399
熱伝導率: ASTM E— 1530
[0053] 表 2
実施例 4 比較例 1
破壊靭性(K1C) (MPa) 95 32
熱伝導率(W/mK) 0. 41 0. 20
[0054] このように本発明のエポキシ樹脂は、公知のビスフエノール F型エポキシ樹脂にくら ベ、破壊靭性及び熱伝導率に優れた硬化物を与えるものである。

Claims

請求の範囲 下記式(1)
[化 1]
Figure imgf000015_0001
(式中、 nは平均値であり 0.:!〜 20を表す。 )
で表されるエポキシ樹脂。
[2] 請求項 1記載のエポキシ樹脂及び硬化剤を含有するエポキシ樹脂組成物。
[3] 硬化促進剤を含有する請求項 2記載のエポキシ樹脂組成物。
[4] 無機充填剤を含有する請求項 2または 3記載のエポキシ樹脂組成物。
[5] 有機溶剤を含有する請求項 2乃至 4のいずれか 1項に記載のエポキシ樹脂組成物。
[6] 請求項 2乃至 5のいずれ力 1項に記載のエポキシ樹脂組成物を硬化してなる硬化物
[7] 下記式 (2)
[化 2]
Figure imgf000015_0002
で表されるフエノール系化合物をェピハロヒドリンとアルカリ金属水酸化物の存在下 で反応させて、低分子量のエポキシ樹脂を得、該エポキシ樹脂と下記式(3)
[化 3]
Figure imgf000016_0001
で表される 4, 4' ビフヱノールを反応させ、次いで貧溶媒を添加し結晶を析出させ ることを特徴とする請求項 1記載のエポキシ樹脂の製造方法。
PCT/JP2005/023505 2004-12-21 2005-12-21 エポキシ樹脂、エポキシ樹脂組成物及びその硬化物 WO2006068185A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006549030A JP5196625B2 (ja) 2004-12-21 2005-12-21 エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
CN2005800440373A CN101084252B (zh) 2004-12-21 2005-12-21 环氧树脂、环氧树脂组合物及其固化物
US11/722,415 US20080153976A1 (en) 2004-12-21 2005-12-21 Epoxy Resin, Epoxy Resin Composition, And Cured Material Thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004369304 2004-12-21
JP2004-369304 2004-12-21

Publications (1)

Publication Number Publication Date
WO2006068185A1 true WO2006068185A1 (ja) 2006-06-29

Family

ID=36601782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/023505 WO2006068185A1 (ja) 2004-12-21 2005-12-21 エポキシ樹脂、エポキシ樹脂組成物及びその硬化物

Country Status (6)

Country Link
US (1) US20080153976A1 (ja)
JP (1) JP5196625B2 (ja)
KR (1) KR101217385B1 (ja)
CN (1) CN101084252B (ja)
TW (1) TWI397540B (ja)
WO (1) WO2006068185A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019208242A1 (ja) * 2018-04-27 2019-10-31 東レ株式会社 プリプレグおよび炭素繊維強化複合材料

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4433368B2 (ja) 2003-04-08 2010-03-17 ジャパンエポキシレジン株式会社 エポキシ樹脂粒状化物及びその製造方法
KR101597390B1 (ko) * 2009-09-29 2016-02-24 히타치가세이가부시끼가이샤 다층 수지 시트 및 그 제조 방법, 다층 수지 시트 경화물의 제조 방법, 그리고, 고열전도 수지 시트 적층체 및 그 제조 방법
UA118255C2 (uk) * 2012-12-07 2018-12-26 Санофі Композиція, яка містить антитіло до cd38 і леналідомід
CN104356355B (zh) * 2014-11-14 2017-11-03 宏昌电子材料股份有限公司 一种高韧性环氧树脂及其制备方法和应用
JP7119583B2 (ja) * 2018-05-29 2022-08-17 Tdk株式会社 プリント配線板およびその製造方法
KR20230095527A (ko) * 2021-12-22 2023-06-29 주식회사 포스코 전기강판 절연 피막 조성물, 전기강판, 및 이의 제조 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08109242A (ja) * 1994-10-07 1996-04-30 Yuka Shell Epoxy Kk 半導体封止用エポキシ樹脂組成物
JPH09227653A (ja) * 1996-02-23 1997-09-02 Asahi Chiba Kk 新規エポキシ樹脂およびエポキシ樹脂組成物
JP2001261790A (ja) * 2000-03-21 2001-09-26 Sumitomo Bakelite Co Ltd エポキシ樹脂組成物及び半導体装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4354015A (en) * 1981-02-05 1982-10-12 The Dow Chemical Company Phosphonium bicarbonate catalysts for promoting reaction of epoxides with phenols
JPS6330520A (ja) * 1986-07-25 1988-02-09 Yuka Shell Epoxy Kk 積層板用エポキシ樹脂組成物
US5310854A (en) * 1989-08-23 1994-05-10 The Dow Chemical Company Epoxy resin composition and process therefor
US4981926A (en) * 1990-02-06 1991-01-01 The Dow Chemical Company Composition of epoxy resin, amino group-containing phosphonium catalyst and curing agent
US5147905A (en) * 1991-05-01 1992-09-15 The Dow Chemical Company Advanced and unadvanced compositions, nucleophilic derivatives thereof and curable and coating compositions thereof
JP3026372B2 (ja) * 1991-05-16 2000-03-27 三菱レイヨン株式会社 複合材料中間体
JPH05160301A (ja) * 1991-12-10 1993-06-25 Hitachi Ltd 樹脂封止型半導体装置
JP3428695B2 (ja) * 1993-08-20 2003-07-22 ジャパンエポキシレジン株式会社 変性液状エポキシ樹脂組成物
JP3657720B2 (ja) * 1996-12-11 2005-06-08 ジャパンエポキシレジン株式会社 高分子エポキシ樹脂の製造方法
KR100414698B1 (ko) * 1999-04-01 2004-01-13 미쯔이카가쿠 가부시기가이샤 액정밀봉제 조성물
JP2002212268A (ja) * 2001-01-19 2002-07-31 Japan Epoxy Resin Kk 半導体封止用エポキシ樹脂組成物
JP3876709B2 (ja) * 2001-12-25 2007-02-07 三菱電機株式会社 液状熱硬化性樹脂組成物、並びに液状熱硬化性樹脂組成物の製造方法と絶縁コイルの製造方法
JP2004137328A (ja) * 2002-10-16 2004-05-13 Japan U-Pica Co Ltd 光硬化性化合物及び感光性熱硬化性樹脂組成物並びにその硬化物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08109242A (ja) * 1994-10-07 1996-04-30 Yuka Shell Epoxy Kk 半導体封止用エポキシ樹脂組成物
JPH09227653A (ja) * 1996-02-23 1997-09-02 Asahi Chiba Kk 新規エポキシ樹脂およびエポキシ樹脂組成物
JP2001261790A (ja) * 2000-03-21 2001-09-26 Sumitomo Bakelite Co Ltd エポキシ樹脂組成物及び半導体装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019208242A1 (ja) * 2018-04-27 2019-10-31 東レ株式会社 プリプレグおよび炭素繊維強化複合材料
JPWO2019208242A1 (ja) * 2018-04-27 2021-03-25 東レ株式会社 プリプレグおよび炭素繊維強化複合材料
JP7264050B2 (ja) 2018-04-27 2023-04-25 東レ株式会社 プリプレグおよび炭素繊維強化複合材料

Also Published As

Publication number Publication date
CN101084252B (zh) 2012-06-13
TWI397540B (zh) 2013-06-01
US20080153976A1 (en) 2008-06-26
KR101217385B1 (ko) 2012-12-31
JPWO2006068185A1 (ja) 2008-06-12
JP5196625B2 (ja) 2013-05-15
CN101084252A (zh) 2007-12-05
TW200640975A (en) 2006-12-01
KR20070098814A (ko) 2007-10-05

Similar Documents

Publication Publication Date Title
JP5156233B2 (ja) エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
JP5348740B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、およびその硬化物
KR101314785B1 (ko) 폴리아미드 수지, 에폭시 수지 조성물 및 그 경화물
WO2006068185A1 (ja) エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
JP4616771B2 (ja) 難燃性エポキシ樹脂組成物及びその硬化物
TWI425019B (zh) Liquid epoxy resin, epoxy resin composition and hardened product
JP5127164B2 (ja) 変性エポキシ樹脂、エポキシ樹脂組成物、およびその硬化物
JP5142180B2 (ja) エポキシ樹脂組成物、およびその硬化物
JP5153081B2 (ja) エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
JP5127160B2 (ja) エポキシ樹脂、硬化性樹脂組成物、およびその硬化物
JP3894628B2 (ja) 変性エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
JP5220488B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、およびその硬化物
JP4363048B2 (ja) エポキシ樹脂組成物及びその硬化物
JP4509539B2 (ja) エポキシ樹脂組成物シート
JP3995244B2 (ja) エポキシ樹脂、エポキシ樹脂の製法、エポキシ樹脂組成物及びその硬化物
JP5579300B2 (ja) エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
JP5681152B2 (ja) エポキシ樹脂組成物および成形物
JP3729472B2 (ja) エポキシ樹脂の製造方法
JP4311587B2 (ja) エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
JP4776446B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、およびその硬化物
JP2007045978A (ja) エポキシ樹脂、エポキシ樹脂組成物、およびその硬化物
CN118591574A (zh) 环氧树脂、多元羟基树脂、环氧树脂组合物及环氧树脂硬化物以及多元羟基树脂的制造方法
JP4623484B2 (ja) エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
JP2022097063A (ja) 芳香族エーテルエーテルケトン系重合体及びその製造方法並びに当該重合体を用いた樹脂組成物及び樹脂硬化物
CN118829674A (zh) 环氧树脂、环氧树脂组合物及环氧树脂硬化物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006549030

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580044037.3

Country of ref document: CN

Ref document number: 1020077014137

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11722415

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 05819437

Country of ref document: EP

Kind code of ref document: A1