WO2016098717A1 - 吸湿性芯鞘複合糸 - Google Patents

吸湿性芯鞘複合糸 Download PDF

Info

Publication number
WO2016098717A1
WO2016098717A1 PCT/JP2015/084892 JP2015084892W WO2016098717A1 WO 2016098717 A1 WO2016098717 A1 WO 2016098717A1 JP 2015084892 W JP2015084892 W JP 2015084892W WO 2016098717 A1 WO2016098717 A1 WO 2016098717A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
sheath
washing
composite yarn
sheath composite
Prior art date
Application number
PCT/JP2015/084892
Other languages
English (en)
French (fr)
Inventor
健太郎 ▲たか▼木
佳史 佐藤
大輔 吉岡
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015005878A external-priority patent/JP2016132828A/ja
Priority claimed from JP2015088675A external-priority patent/JP2016204784A/ja
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to ES15869922T priority Critical patent/ES2867529T3/es
Priority to EP15869922.3A priority patent/EP3235932B1/en
Priority to AU2015364882A priority patent/AU2015364882A1/en
Priority to CA2970766A priority patent/CA2970766A1/en
Priority to CN201580060733.7A priority patent/CN107002304A/zh
Priority to KR1020177010017A priority patent/KR20170095806A/ko
Priority to US15/534,266 priority patent/US20170342606A1/en
Publication of WO2016098717A1 publication Critical patent/WO2016098717A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • D02G3/04Blended or other yarns or threads containing components made from different materials
    • D02G3/045Blended or other yarns or threads containing components made from different materials all components being made from artificial or synthetic material
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/34Core-skin structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/12Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyamide as constituent
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/242Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads inorganic, e.g. basalt
    • D03D15/25Metal
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/283Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/40Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads
    • D03D15/44Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads with specific cross-section or surface shape
    • D03D15/46Flat yarns, e.g. tapes or films
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/40Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads
    • D03D15/47Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads multicomponent, e.g. blended yarns or threads
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/14Dyeability

Definitions

  • the present invention relates to a hygroscopic core-sheath composite yarn excellent in washing durability.
  • Synthetic fibers made of a thermoplastic resin such as polyamide or polyester are excellent in strength, chemical resistance, heat resistance, etc., and thus are widely used in clothing and industrial applications.
  • polyamide fiber has excellent hygroscopicity in addition to its unique softness, high tensile strength, color development during dyeing, and high heat resistance, and is widely used for applications such as innerwear and sportswear.
  • polyamide fibers are not sufficiently hygroscopic compared to natural fibers such as cotton, and have problems such as stuffiness and stickiness, and are inferior to natural fibers in terms of comfort. .
  • Patent Document 1 proposes a method for improving moisture absorption performance by blending and spinning poly (vinyl pyrrolidone) as a hydrophilic polymer in polyamide.
  • Patent Document 2 discloses a polyether block amide copolymer, which is a core-sheath composite fiber having a core part and a sheath part, the core part not being exposed on the fiber surface, and whose hard segment is 6-nylon. And a core-sheath composite fiber having a sheath part of 6-nylon resin and having an area ratio of the core part to the sheath part in the fiber cross section of 3/1 to 1/5 is disclosed.
  • Patent Document 3 discloses a core-sheath type composite fiber having a thermoplastic resin as a core part and a fiber-forming polyamide resin as a sheath part, and the main component of the thermoplastic resin forming the core part is a polyether ester.
  • a core-sheath type composite fiber that is an amide and has an excellent hygroscopicity in which the ratio of the core part is 5 to 50% by weight of the total weight of the composite fiber.
  • Patent Document 4 discloses a composite fiber having moisture absorption / release characteristics, characterized in that polyamide or polyester is used as a sheath component, and a thermoplastic water-absorbing resin composed of a crosslinked product of polyethylene oxide is used as a core component.
  • Patent Document 5 a polyether block amide copolymer is used as a core part, and a fiber-forming polymer such as polyamide or polyester is used as a sheath part, and the core part is exposed in an exposure angle range of 5 ° to 90 °.
  • a core-sheath composite cross-section fiber excellent in antistatic performance, water absorption performance, and cooling feeling of contact is described.
  • Patent Document 6 discloses hydrophilicity such as a polyetheresteramide compound or a polyetherester compound.
  • a flat core-sheath composite fiber having a flatness of 1.05 to 3.0 and having excellent hygroscopicity is described in which a component is a core and a fiber-forming polymer such as polyester is a sheath.
  • a method of attaching a hydrophilic compound to the fiber surface by post-processing and infiltrating the inside is also proposed, but the method of improving the hygroscopic performance by post-processing is based on washing. There is a problem that the hydrophilic compound falls off and the hygroscopic performance is lowered.
  • Patent Document 1 has moisture absorption / release properties close to those of natural fibers, its performance is not fully satisfactory, and achieving higher moisture absorption / release properties is a problem.
  • the core-sheath composite fibers of Patent Documents 2 to 6 have a moisture absorption / release property equal to or higher than that of natural fibers, the core part deteriorates by repeated actual use, and the moisture absorption performance decreases by repeated use. Is an issue. Moreover, since the high moisture absorption / release polymer in the core has a polymer structure in which the dye can easily enter and exit, there is a drawback that the dyeing fastness is inferior.
  • the core-sheath conjugate fiber described in Patent Document 2 uses nylon 6 as the sheath for contact cooling, there is no difference from general nylon 6, and achieving further contact cooling is a problem. It is.
  • the core-sheath composite fiber described in Patent Document 5 uses a water-insoluble polyethylene oxide-modified product for the contact cooling feeling in the core portion, but has a low cooling feeling due to the polymer moisture absorption performance of the core portion, and the sheath. Since it is covered with a part of polyamide, it is not different from general polyamide, and the achievement of further contact cooling feeling is a problem.
  • the core-sheath composite fiber described in Patent Document 6 has a novel dry texture due to a synergistic effect of increasing the contact area with the skin and moisture absorption performance by flattening the cross section of the fiber in terms of contact cooling.
  • a contact cooling feeling was obtained as compared with general polyester, but it was inferior to general polyamide.
  • the present invention overcomes the above-mentioned problems of the prior art, has a high moisture absorption performance and contact cooling sensitivity, and exceeds the comfort of natural fibers, and has a moisture absorption performance that can withstand actual use, washing durability, dyeing fastness and contact cooling.
  • An object of the present invention is to provide a core-sheath composite yarn having sensitive washing durability.
  • the present invention has the following configuration.
  • the sheath polymer is polyamide
  • the core is a thermoplastic polymer
  • the moisture absorption / release property ( ⁇ MR) is 5.0% or more
  • the ⁇ MR retention after 20 washings is 90% or more and 100% or less.
  • Core-sheath composite yarn (2)
  • the sheath polymer is polyamide in which the ⁇ crystal orientation parameter is 1.9 or more and 2.7 or less
  • the thermoplastic polymer in the core is a polyether ester amide copolymer The core-sheath composite yarn described.
  • a sheath composite yarn can be provided.
  • FIG. 1 It is a schematic diagram showing a core-sheath composite yarn having an I-shaped cross-section that is a preferred embodiment of the present invention. It is a schematic diagram which shows the core-sheath composite yarn of the convex lens type
  • the sheath polymer is polyamide
  • the core is a thermoplastic polymer
  • the moisture absorption / release property ( ⁇ MR) is 5.0% or more
  • the ⁇ MR retention after 20 washings is 90%.
  • the core-sheath composite yarn is 100% or less.
  • the core-sheath composite yarn of the present invention uses polyamide for the sheath and a thermoplastic polymer for the core.
  • thermoplastic polymer a known polymer can be used, but a thermoplastic polymer having a particularly high hygroscopic performance is preferable.
  • a thermoplastic polymer having a high moisture absorption performance in the core means a polymer having a moisture absorption / release property ( ⁇ MR) of 10% or more measured in a pellet shape, such as a polyetheresteramide copolymer, polyvinyl alcohol, or a cellulose-based thermoplastic resin. Etc.
  • polyether ester amide copolymers are preferable from the viewpoint of good thermal stability and compatibility with the polyamide in the sheath and excellent peel resistance.
  • the polyether ester amide copolymer is a block copolymer having an ether bond, an ester bond and an amide bond in the same molecular chain. More specifically, one or two or more polyamide components (A) selected from lactam, aminocarboxylic acid, diamine and dicarboxylic acid salt, and polyetherester component consisting of dicarboxylic acid and poly (alkylene oxide) glycol ( It is a block copolymer polymer obtained by subjecting B) to a polycondensation reaction.
  • A polyamide components selected from lactam, aminocarboxylic acid, diamine and dicarboxylic acid salt, and polyetherester component consisting of dicarboxylic acid and poly (alkylene oxide) glycol
  • examples of the polyamide component (A) include lactams such as ⁇ -caprolactam, dodecanolactam and undecanolactam, ⁇ -aminocarboxylic acids such as aminocaproic acid, 11-aminoundecanoic acid and 12-aminododecanoic acid, nylon 66, nylon 610, nylon 612, and the like, and diamine-dicarboxylic acid nylon salts, and a preferred polyamide-forming component is ⁇ -caprolactam.
  • the polyetherester component (B) is composed of a dicarboxylic acid having 4 to 20 carbon atoms and poly (alkylene oxide) glycol.
  • the dicarboxylic acid having 4 to 20 carbon atoms include aliphatic dicarboxylic acids such as succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, sebacic acid, and dodecadic acid, terephthalic acid, isophthalic acid, and 2,6-naphthalenedicarboxylic acid.
  • An aromatic dicarboxylic acid such as alicyclic dicarboxylic acid such as 1,4-cyclohexanedicarboxylic acid can be used, and one or a mixture of two or more can be used.
  • Preferred dicarboxylic acids are adipic acid, sebacic acid, dodecadiic acid, terephthalic acid and isophthalic acid.
  • poly (alkylene oxide) glycols include polyethylene glycol, poly (1,2- and 1,3-propylene oxide) glycol, poly (tetramethylene oxide) glycol, poly (hexamethylene oxide) glycol, and the like. Polyethylene glycol having good moisture absorption performance is preferred.
  • the number average molecular weight of poly (alkylene oxide) glycol is preferably 300 to 10,000, more preferably 500 to 5,000. It is preferable for the molecular weight to be 300 or more because the fiber is less likely to splash out of the system during the polycondensation reaction and the moisture absorption performance is stable. Moreover, it is preferable that it is 10000 or less because a uniform block copolymer is obtained and the spinning property is stabilized.
  • the constituent ratio of the polyether ester component (B) in the polyether ester amide copolymer is preferably 20 to 80% in the entire copolymer in terms of mol ratio. When it is 20% or more, good hygroscopicity is obtained, which is preferable. Moreover, it is preferable that it is 80% or less because good dyeing fastness and washing durability can be obtained.
  • polyamide in the sheath examples include nylon 6, nylon 66, nylon 46, nylon 9, nylon 610, nylon 11, nylon 12, nylon 612 and the like, or compounds having an amide-forming functional group such as laurolactam, sebacic acid, Examples thereof include copolymer polyamides containing copolymer components such as terephthalic acid, isophthalic acid, and 5-sodium sulfoisophthalic acid.
  • nylon 6, Nylon 11, Nylon 12, Nylon 610, Nylon 612 have a small difference in melting point from the polyether ester amide copolymer, and can suppress thermal deterioration of the polyether ester amide copolymer during melt spinning. From the viewpoint of yarn-making property, it is preferable.
  • nylon 6 having a high dyeability is preferable.
  • a hygroscopic agent in the polyamide of the sheath portion of the present invention in order to enhance hygroscopicity.
  • the hygroscopic agent include polyvinyl pyrrolidone, polyether amide, polyalkylene glycol, polyether ester amide and the like, and polyvinyl pyrrolidone is particularly preferable.
  • the degree of polymerization of polyvinylpyrrolidone is preferably in the range of 20 to 70 as the K value.
  • the K value here is the relative viscosity number obtained by capillary viscometer measurement using the relative viscosity of the aqueous polyvinyl pyrrolidone solution, and is the so-called Fickencher K value (DIN 53726). This value correlates with the molecular weight of polyvinyl pyrrolidone and is conventionally used to measure the molecular weight of polyvinyl pyrrolidone.
  • a K value of 20 or more is preferable because the entanglement with the polyamide molecular chain becomes strong and the moisture absorption and desorption performance is stable.
  • the K value is 60 or less, the thickening at the time of kneading into polyamide is suppressed, which is preferable from the viewpoint of yarn production. More preferably, it is in the range of 20-60.
  • the content of polyvinylpyrrolidone is preferably 3 to 7% by weight with respect to the sheath polyamide. By setting it to 3% by weight or more, moisture can be quickly transferred from the skin to the fiber side during wearing, and a smooth texture can be imparted. By setting the content to 7% by weight or less, it is possible to provide clothing having excellent fastness to washing and strength enough to withstand actual use.
  • various additives such as matting agents, flame retardants, antioxidants, ultraviolet absorbers, infrared absorbers, crystal nucleating agents, fluorescent whitening agents, antistatic agents, Carbon or the like may be copolymerized or mixed as necessary with a total additive content of 0.001 to 10% by weight.
  • the core-sheath composite yarn of the present invention has a function of adjusting the humidity in the clothes in order to obtain good comfort when worn.
  • the temperature in the clothes represented by 30 ° C x 90% RH and the outside air temperature represented by 20 ° C x 65% RH when performing light to medium work or light to medium exercise
  • the moisture absorption / release property ( ⁇ MR) expressed by the difference in moisture absorption rate is used.
  • a larger ⁇ MR corresponds to higher moisture absorption performance and better comfort when worn.
  • the core-sheath composite yarn of the present invention preferably has a ⁇ MR of 5.0% or more. More preferably, it is 7.0% or more, More preferably, it is 10.0% or more, More preferably, it is 15.0% or more. By setting it as this range, the stuffiness and stickiness at the time of wear can be suppressed, and it becomes possible to provide the clothing excellent in comfort.
  • the level of ⁇ MR that can be achieved by the present invention is about 17.0%.
  • the core-sheath composite yarn of the present invention preferably has a ⁇ MR retention of 90% or more and 100% or less after 20 washings. More preferably, it is 95% or more and 100% or less. By setting it as this range, since the washing durability which can endure actual use is obtained, the clothing which hold
  • the core-sheath composite yarn of the present invention By setting the ⁇ MR of the core-sheath composite yarn of the present invention within such a range, it becomes possible to exhibit antistatic performance with little lashing and dust adhesion when worn by static electricity. That is, since the core is a yarn in which a thermoplastic polymer having a high moisture absorption performance is continuously arranged in the fiber axis direction, it develops an antistatic mechanism using moisture in the air, under a low temperature and low humidity environment (for example, Good antistatic performance can be obtained even at 20 ° C. ⁇ 40% RH).
  • the core-sheath composite yarn of the present invention preferably has a friction band voltage of 0 V or more and 1500 V or less when the friction cloth in a 20 ° C. ⁇ 40% RH environment is cotton. More preferably, it is 0 or more and 1000V or less. The lower the frictional voltage is, the better the antistatic performance is. However, the frictional band voltage of cotton in a general polyamide fiber under a 20 ° C. ⁇ 40% RH environment is about 4500-5500V. By setting it as such a range, it is possible to provide clothing that is excellent in antistatic performance with less dusting and dust adhesion during wearing due to static electricity, that is, excellent in comfort.
  • the core-sheath composite yarn of the present invention preferably has a fastness to washing (discoloration, discoloration) of 3 or more and 5 or less. By setting it as such a range, since the washing durability which can endure actual use is obtained, the clothing excellent in dyeing fastness can be provided.
  • the fastness to washing is from 3 to 5 by adjusting the ⁇ crystal orientation parameter of the polyamide in the sheath and the amino terminal group amount of the sheath polymer to be optimal values described later. Is possible.
  • the ⁇ crystal orientation parameter of the polyamide in the sheath is 1.9 or more and 2.7 or less, and the thermoplastic polymer in the core is a polyether ester amide copolymer.
  • the polyamide in the sheath is preferably an ⁇ crystal that is a stable crystal type, and the ⁇ crystal is formed when a high stress is applied.
  • the drawing force during spinning is concentrated on the polyamide in the sheath, and the crystallization of the thermoplastic polymer having a high hygroscopic performance in the core is suppressed, so that the hygroscopic performance of the core-sheath composite yarn can be enhanced, which is preferable.
  • thermoplastic polymer of the core portion is a polyether ester amide copolymer
  • the thermoplastic polymer of the core portion is a polyether ester amide copolymer
  • the ⁇ crystal orientation parameter of the polyamide in the sheath is set to such a range and suppressing the crystallization of the polyether ester amide copolymer in the core, it is possible to develop a hygroscopic washing durability that can withstand actual use. It becomes.
  • the ⁇ crystal orientation parameter is 1.9 or more, crystallization of the polyamide in the sheath proceeds, the fastness to dyeing as a composite yarn is good, and the core thermoplastic polymer having high moisture absorption performance in the core The crystallization does not proceed and the moisture absorption performance is good. Furthermore, in the case of the polyether ester amide copolymer, since crystallization does not proceed, the washing durability of the moisture absorption performance that can withstand actual use becomes good.
  • the ⁇ crystal orientation parameter is 2.7 or less, the crystallization of the polyamide in the sheath portion does not proceed and the occurrence of yarn breakage and fluff can be suppressed during spinning, thereby improving productivity. More preferably, it is 2.00 or more and 2.60 or less, More preferably, it is 2.05 or more and 2.60 or less.
  • the amount of amino terminal groups of the sheath polymer is preferably 3.5 ⁇ 10 ⁇ 5 mol / g or more and 8.0 ⁇ 10 ⁇ 5 mol / g or less.
  • the amount of amino end groups rich in hydrophilicity is 3.5 ⁇ 10 ⁇ 5 mol / g or more, the hygroscopic performance is improved, and the amino end groups are dye-sitting, so that the coloring property and dyeing fastness suitable for clothing use are increased. Degree is obtained.
  • the amino terminal group amount is 8.0 ⁇ 10 ⁇ 5 mol / g or less
  • it is preferable because it becomes a fiber that does not easily become dyed spots at the time of dyeing. More preferably, it is 4.2 ⁇ 10 ⁇ 5 mol / g or more and 8.0 ⁇ 10 ⁇ 5 mol / g or less, more preferably 4.5 ⁇ 10 ⁇ 5 mol / g or more and 8.0 ⁇ 10 ⁇ 5 mol / g. g or less.
  • the core-sheath composite yarn of the present invention uses a thermoplastic polymer having high moisture absorption performance in the core portion, the thermal conductivity can be increased, and a cool contact feeling can be more easily developed than a polyamide single yarn.
  • the cool feeling of contact depends on the heat flow rate per unit area in which the amount of heat stored on the skin side moves to the low temperature side fiber immediately after the fiber touches the skin.
  • Polyamide is an organic substance and has a relatively low thermal conductivity, and even if it is directly worn on the skin as a garment, it does not feel the cold feeling of contact.
  • the core-sheath composite yarn of the present invention preferably has a flat cross-sectional shape of the core-sheath composite yarn and a flatness of 1.5 to 5.0.
  • the flatness is preferably 1.5 or more.
  • flatness means the ratio of the circumscribed circle diameter (R in FIGS. 1 and 2) and the inscribed circle diameter (r in FIGS. 1 and 2). The higher the flatness, the more effective the contact cooling feeling, and the flatness is more preferably 2.0 or more. On the other hand, as the flatness increases, the yarn strength tends to decrease, and the flatness needs to be 5.0 or less.
  • the core-sheath composite yarn of the present invention preferably contains 0.1 to 5% by weight of inorganic particles as a whole. Immediately after the fiber touches the skin, the amount of heat stored on the skin side moves to the fiber on the low temperature side, so an inorganic compound with higher thermal conductivity and lower heat capacity than polyamide is used for the entire fiber.
  • the content is preferably 0.1 to 5% by weight.
  • the reason why the inorganic compound is selected in the present invention is that it does not adversely affect the production of the core-sheath composite yarn or dyeing, keeps the physical properties of the yarn, and does not cause coloring or the like in the polymer during use such as light resistance.
  • the inorganic compound is not particularly limited as long as it does not give such an adverse effect to the core-sheath composite yarn.
  • Examples of inorganic compounds with higher thermal conductivity and lower heat capacity than polyamide are barium sulfate, titanium oxide, aluminum oxide, zirconium oxide, calcium oxide, magnesium oxide, aluminum nitride, boron nitride, zirconium metal nitride, aluminum silicate, carbonized Examples include zirconium and the like.
  • barium sulfate, titanium oxide, magnesium oxide, and aluminum oxide are preferable in consideration of fiber physical properties, color developability, ease of handling of inorganic particles, and high-order processability.
  • the thermal conductivity cannot be increased, so that it is difficult to increase the feeling of contact cooling, and it is preferably 0.1% by weight or more for the entire fiber.
  • the contact cooling feeling can be increased as the amount increases, it is preferable to be 5% by weight or less because the tensile strength, which is a physical property of the yarn, is lowered and the high-order workability is lowered. More preferably, it is 0.3 to 3% by weight. More preferably, it is 0.3 to 2.0% by weight.
  • the cold feeling of contact depends on the heat flow rate at which the stored heat amount on the skin side moves to the low temperature side fiber immediately after the fiber touches the skin.
  • the amount of heat stored on the skin side moves to the sheath portion of the core-sheath composite yarn on the low temperature side, followed by low temperature It is preferable to move to the sheath portion of the core-sheath composite yarn on the side. Since the polyamide in the sheath has low thermal conductivity, it does not feel the cold feeling when worn directly on the skin as clothing, and the heat transfer to the polyetheresteramide copolymer polymer in the core is smooth. Not done.
  • the polyamide in the sheath portion contains 0.2 to 6% by weight of an inorganic compound having a higher thermal conductivity and a lower heat capacity than the polyamide.
  • the core-sheath composite yarn containing 0.1 to 5% by weight of the inorganic particles of the present invention preferably has an ⁇ -type crystal orientation parameter of polyamide in the sheath part of 1.7 to 2.6.
  • the ⁇ -type crystal of the polyamide in the sheath is a stable crystal type, and when the core-sheath composite yarn is produced, the ⁇ -type crystal is formed when a high stress is applied.
  • the ⁇ crystal orientation parameter of the polyamide in the sheath By setting the ⁇ crystal orientation parameter of the polyamide in the sheath to such a range, the dyeing strength after dyeing of the core-sheath composite yarn is increased, the fastness to dyeing is improved, and the drawing force at the time of spinning is Concentrating on polyamide, crystallization of the polyetheresteramide copolymer polymer in the core is suppressed, and a core-sheath composite yarn excellent in moisture absorption performance and contact cooling feeling is obtained. Furthermore, the crystallization of the polyether ester amide copolymer in the core can be suppressed, the formation of localized structures due to the crystallization of the polyether ester component in the core can be suppressed, and the durability to alkaline liquid can be improved. It becomes possible to maintain the moisture absorption performance and the feeling of cool contact even after washing.
  • the crystallization of the polyamide in the sheath advances, the dyeing fastness of the core-sheath composite yarn is improved, and the polyether ester amide in the core is co-polymerized.
  • the crystallization of the polymer does not proceed, and the moisture absorption performance and the feeling of contact cooling are improved.
  • the crystallization of the polyether ester amide copolymer in the core does not proceed, it is possible to maintain the moisture absorption performance and the feeling of cool contact even after washing.
  • the ⁇ -type crystal orientation parameter of the polyamide in the sheath is 2.6 or less, the crystallization of the polyamide in the sheath does not progress, and the occurrence of yarn breakage and fluff can be suppressed during high-order processing. Will improve. More preferably, it is 1.8 to 2.5, and more preferably 1.85 to 2.5.
  • the core-sheath composite yarn of the present invention preferably has a tensile strength of 2.5 cN / dtex or more. More preferably, it is 3.0 cN / dtex or more. By setting it as such a range, it becomes possible to provide the clothing excellent in the intensity
  • the core-sheath composite yarn of the present invention preferably has an elongation of 35% or more. More preferably, it is 40 to 65%. By setting it as this range, the process passability in the high-order processes, such as weaving, knitting, and false twisting, becomes favorable.
  • the total fineness and the number of filaments of the core-sheath composite yarn of the present invention are not particularly limited, and considering the use as a long fiber material for clothing, the total fineness as a multifilament is 5 dtex or more and 235 dtex or less, and the number of filaments is 1 It is preferably 144 filaments or less.
  • the core-sheath composite yarn of the present invention can be obtained by known melt spinning and composite spinning techniques. Examples thereof are as follows.
  • polyamide (sheath part) and thermoplastic polymer (core part) with high moisture absorption performance are melted separately, measured and transported with a gear pump, and a composite flow is formed so that a core-sheath structure is formed as it is.
  • the yarn is discharged from the spinneret and cooled by blowing air with a cooling device such as chimney to cool the yarn to room temperature.
  • the yarn is supplied with the oil supply device, converged, entangled with the first fluid entanglement nozzle device, and taken up. It passes through the roller and the drawing roller, and in that case, it is drawn according to the ratio of the peripheral speeds of the take-up roller and the drawing roller. Further, the yarn is heat-set by a drawing roller and wound by a winder (winding device).
  • ⁇ -type crystal orientation parameter of the sheath portion of the core-sheath composite yarn of the present invention in such a range can be achieved by controlling the core-sheath composite ratio, core-sheath polymer viscosity, drawing process, etc. in addition to polymer selection. Is possible.
  • the ratio of the core portion of the core-sheath composite yarn of the present invention needs to be 20 to 80 parts by weight with respect to 100 parts by weight of the composite yarn. More preferably, it is 30 to 70 parts by weight. By setting it as such a range, it becomes possible to add suitable extending
  • the polyamide chip used for the sheath of the present invention needs to have a relative viscosity of sulfuric acid of 2.3 or more and 3.3 or less. Preferably, it is 2.6 or more and 3.3 or less. By setting it as such a range, it becomes possible to add suitable extending
  • the relative viscosity of sulfuric acid is 2.3 or more, not only the practical yarn strength can be obtained, but the optimum stretching is added, so that the crystallization of the polyamide in the sheath advances, and the ⁇ -type crystal orientation parameter has an appropriate value. Thus, the dyeing fastness is improved, which is preferable.
  • the melt viscosity is suitable for spinning, which is preferable because it can be produced at a spinning temperature suitable for a thermoplastic polymer having high moisture absorption performance in the core.
  • the thermoplastic polymer chip having high hygroscopic performance used for the core of the present invention preferably has an orthochlorophenol relative viscosity of 1.2 or more and 2.0 or less.
  • the orthochlorophenol relative viscosity is 1.2 or more, optimum stretching is applied to the sheath, crystallization of the polyamide in the sheath proceeds, the ⁇ -type crystal orientation parameter becomes an appropriate value, and thread breakage and fluff are generated. This is preferable.
  • the orthochlorophenol relative viscosity is 2.0 or less, excessive stretching is not applied to the core, crystallization of the polyamide in the sheath proceeds, the ⁇ -type crystal orientation parameter becomes an appropriate value, and the fastness to dyeing Is preferable.
  • the product of the draw ratio which is the value of the peripheral speed ratio between the take-up roller and the drawing roller, is 3300 m / min or more and 4500 m / min or less to the yarn speed (spinning speed) taken up by the take-up roller. It is preferable to set spinning conditions. More preferably, it is 3500 m / min or more and 4500 m / min or less, More preferably, it is 4000 m / min or more and 4500 m / min or less.
  • This numerical value represents the total amount of stretching of the polymer discharged from the die from the die discharge linear speed to the peripheral speed of the take-up roller, and further from the peripheral speed of the take-off roller to the peripheral speed of the drawing roller.
  • the spinning oil applied by the oil supply device is preferably a non-hydrous oil.
  • Thermoplastic polymer with high moisture absorption performance at the core is excellent in moisture absorption performance with a polymer with ⁇ MR of 10% or more.
  • swelling occurs because water is gradually absorbed in the air. This is preferable because it is difficult to perform, and stable winding is possible.
  • the inorganic particle content is preferably 0.1 to 5% by weight based on the entire fiber.
  • the inorganic particles can be contained in one or both of the polyamide in the sheath and the polyether ester amide copolymer in the core.
  • the amount of heat stored on the skin side moves to the sheath part of the core-sheath composite yarn on the low temperature side, and then the low temperature side
  • the polyamide in the sheath preferably contains 0.2 to 6% by weight of inorganic particles.
  • thermoplastic polymer such as polyamide (sheath portion) or polyether ester amide copolymer
  • a method of blending and melting inorganic particles into pellets A method of blending and melting master pellets containing high concentration of inorganic particles into pellets, a method of adding and kneading inorganic particles to a molten polymer, and an inorganic material or reaction system before or during polymerization of the polymer
  • grains etc. are mentioned, In order to suppress the secondary aggregation of the inorganic particle added to high concentration and to disperse
  • the core-sheath composite yarn of the present invention is excellent in moisture absorption performance and contact cooling feeling, it can be preferably used for clothing.
  • the form of the fabric can be selected according to the purpose, such as a woven fabric, a knitted fabric or a non-woven fabric.
  • a fabric having at least a portion of the core-sheath composite yarn of the present invention is a garment having excellent comfort by adjusting the mixing ratio of the core-sheath composite yarn of the present invention so that ⁇ MR is 5.0% or more.
  • the feeling of cold contact corresponds to the smooth movement of heat immediately after the fibers touch the skin. Therefore, it is possible to provide a garment having excellent comfort by designing a fabric that contacts the skin with the core-sheath composite yarn of the present invention.
  • As clothing it can be set as various clothing products, such as innerwear and sportswear.
  • Relative viscosity of sulfuric acid 0.25 g of a sample was dissolved so as to be 1 g with respect to 100 ml of sulfuric acid having a concentration of 98 wt%, and the flow time (T1) at 25 ° C. was measured using an Ostwald viscometer. Subsequently, the flow time (T2) of only sulfuric acid having a concentration of 98 wt% was measured.
  • the ratio of T1 to T2, that is, T1 / T2 was defined as sulfuric acid relative viscosity.
  • K value Polyvinyl pyrrolidone is used as an aqueous solution with a concentration of 1%, the relative viscosity is measured, and determined by the Fikentscher equation.
  • logZ C [75 k 2 /(1+1.5 kC) + k]
  • Z Relative viscosity of aqueous solution of concentration C
  • k K value ⁇ 10 ⁇ 3
  • C concentration of aqueous solution (%).
  • Fineness 1. Set a fiber sample on a 125 m / round measuring instrument, rotate it 200 times to create a looped skein, and dry it with a hot air dryer (105 ⁇ 2 ° C. ⁇ 60 minutes). The fineness was calculated from the value obtained by measuring the skein mass and multiplying by the official moisture content. The official moisture content of the core-sheath composite yarn was 4.5%.
  • Sectional shape Dissolving a packing agent composed of paraffin, stearic acid, and ethyl cellulose, introducing a core-sheath composite yarn, solidifying it by standing at room temperature, and cutting the raw yarn in the packing agent in the cross-sectional direction of Tokyo
  • the cross section of the fiber was photographed with a CCD camera (CS5270) manufactured by Electronic Co., Ltd., and 10 core-sheath composite yarns arbitrarily selected from the single yarn (all when the number of single yarns is 10 or less)
  • the flatness of all single yarns was calculated according to the following method from a cross-sectional photograph printed at 400 times with a color video processor (SCT-CP710) manufactured by Denki, and the average value was defined as the flatness of the yarn.
  • Flatness diameter of circumscribed circle (R) / diameter of inscribed circle (r).
  • the sample for orientation measurement was sectioned by a microtome after embedding resin (bisphenol-based epoxy resin, curing for 24 hours).
  • the section thickness was 2.0 ⁇ m.
  • the section sample was cut by being slightly tilted from the fiber axis so that the cut surface was elliptical, and a portion where the thickness of the elliptical short axis was constant was selected and measured.
  • the measurement is performed in the microscopic mode, and the laser spot diameter at the sample position is 1 ⁇ m.
  • the orientation of the core and sheath layer center was analyzed, and the orientation was measured under polarization conditions.
  • Laser Raman Spectroscopy System T-64000 (Jobin Yvon / Ehime Bussan) Condition: Measurement mode; Microscopic Raman objective lens; x100 Beam diameter: 1 ⁇ m Light source: Ar + Laser / 514.5nm Laser power: 50mW Diffraction grating; Single 600gr / mm Slit; 100 ⁇ m Detector; CCD / Jobin Yvon 1024 ⁇ 256.
  • the cross section of the fiber was photographed with a CCD camera (CS5270) manufactured by Tokyo Denki Co., Ltd., and 10 core-sheath composite yarns arbitrarily selected in the single yarn (all when the number of single yarns is 10 or less),
  • a cross-sectional photograph printed out at a magnification of 1500 times with a color video processor (SCT-CP710) manufactured by Mitsubishi Electric was cut out at the sheath and the core, measured for weight, and calculated by the following formula.
  • Weight ratio of sheath portion (weight of sheath portion / (weight of sheath portion + weight of core portion)) ⁇ 100
  • Amino end group concentration of sheath polymer amino end group amount of core-sheath composite yarn ⁇ sheath weight ratio / 100.
  • Acid dye Erionyl Blue AR 2.0% by mass
  • Dyeing aid Acetic acid 1.5% After dyeing in a dyeing bath containing an acid dye and a dyeing assistant at a normal pressure of 98 ° C. for 45 minutes, it was washed with running water for 20 minutes, dehydrated with a dehydrator and air-dried.
  • ⁇ MR retention after washing As a change index of ⁇ MR before and after washing, ⁇ MR retention after washing was calculated by the following formula. ⁇ MR after washing process / ⁇ MR before washing process ⁇ 100 When the ⁇ MR retention rate was 90% or more, it was judged that there was washing durability.
  • the dyed cylinder knitted fabric (10) C was measured under the A-2 condition in Table 7 according to JIS L0844 (2011), Section 7.1, Method A. The determination was made according to JIS L0801 (2011), item 10 (a), and grade determination was made for fading and discoloration. When both the color fading and the color fading judgment were grade 3 or higher, the selection degree was passed, and when at least one of the color fading or color fading judgment was grade 2-3 or lower, the dyeing fastness was rejected.
  • the cylindrical knitted fabric (10) A and the device (KES-F7 THERMO LABO IIB TYPE (manufactured by Kato Tech Co., Ltd.)) are left for one day in a room where the room temperature is adjusted to 20 ° C. and the relative humidity is adjusted to 60%.
  • T-BOX temperature detection and heat storage plate
  • T-BOX temperature detection and heat storage plate
  • the hot plate G-BT which keeps the temperature around the BT is set to 20.3 ° C. and stabilized.
  • a cylinder knitting with the back side of the fabric (skin side when worn) faced up was placed, and T-BOX was quickly placed on the cylinder knitting to measure q-max.
  • the basis weight (g / cm 2 ) of the tube knitting was calculated by cutting the tube knitting of the measurement unit into a 10 cm square and measuring the weight.
  • Anti-static Tube knitted fabric (10) A is measured according to JIS L1094 (Charging test method for woven and knitted fabrics, 2014) A method (half-life measurement method), B method (friction band voltage measurement method) did. The environmental conditions were 20 ° C. ⁇ 40% RH, the friction cloth was cotton (gold width 3), and the vertical direction was measured.
  • Example 1 Polyether ester amide copolymer in which the polyamide component is nylon 6, the polyether component (poly (alkylene oxide) glycol) is polyethylene glycol having a molecular weight of 1500, and the constituent ratio of the polyether component is about 76% by mole ratio ( Made of Arkema, MH1657, orthochlorophenol relative viscosity: 1.69), nylon 6 having a sulfuric acid relative viscosity of 2.71 and an amino end group amount of 5.95 ⁇ 10 ⁇ 5 mol / g as a sheath And melted at 270 ° C.
  • the rotation speed of the gear pump was selected so that the total fineness of the obtained core-sheath composite yarn was 56 dtex, and the discharge rate was 22 g / min. Then, the yarn is cooled and solidified by the yarn cooling device, and the non-hydrous oil agent is supplied by the oil supply device, and then entanglement is given by the first fluid entanglement nozzle device, and the peripheral speed of the take-up roller as the first roll is 3368 m / min.
  • the second roll the stretching roller, was stretched at a peripheral speed of 4210 m / min, heat-set by a stretching roller 150 ° C., and wound at a winding speed of 4000 m / min to obtain a 56 dtex 24-filament core-sheath composite yarn. It was. Table 1 shows the physical properties of the obtained fiber.
  • the obtained core-sheath composite yarn had an extremely high hygroscopic performance with ⁇ MR of 12.4%. Furthermore, the fastness to washing color change and the color fading judgment were both grade 4, ⁇ MR after washing was 12.4%, and ⁇ MR retention after washing was 100%, which was very good. That is, the fabric and the clothing using the obtained core-sheath composite yarn were able to be a comfortable clothing excellent in washing durability that can withstand actual use.
  • the q-max was 0.170 W / cm 2
  • the q-max after washing was 0.170 W / cm 2
  • the q-max retention after washing was 100%.
  • the friction band voltage under 20 ° C x 40% RH environment is 800V
  • the friction band voltage after washing is 800V. Excellent comfort clothing was obtained.
  • Example 2 In the same manner as in Example 1 except that the take-up roller as the first roll was wound at 2381 m / min, the draw roller as the second roll was wound at 3571 m / min, and the take-up speed was 3500 m / min. A core-sheath composite yarn of 56 dtex 24 filaments was obtained. Table 1 shows the physical properties of the obtained fiber.
  • the obtained core-sheath composite yarn had an extremely high moisture absorption performance with ⁇ MR of 11.6%.
  • both the fastness to washing color change and the color fading determination were grade 3-4, ⁇ MR after washing was 11.1%, and ⁇ MR retention after washing was 95.7%, which was good.
  • Example 3 In the same manner as in Example 1, except that the take-up roller as the first roll was wound at 2245 m / min, the draw roller as the second roll was wound at 3367 m / min, and the take-up speed was 3300 m / min. A core-sheath composite yarn of 56 dtex 24 filaments was obtained. Table 1 shows the physical properties of the obtained fiber.
  • the obtained core-sheath composite yarn had an extremely high hygroscopic performance with ⁇ MR of 10.8%. Further, the fastness to washing color change and the color fading judgment were both grade 3, ⁇ MR after washing was 9.9%, and ⁇ MR retention after washing was 91.7%, which was good.
  • Example 4 The same method as in Example 1 except that the winding speed as the first roll was 4474 m / min, the winding speed as the second roll was 4474 m / min, and the winding speed was 4250 m / min.
  • the core-sheath composite yarn of 56 dtex 24 filaments was obtained. Table 1 shows the physical properties of the obtained fiber.
  • the obtained core-sheath composite yarn had an extremely high moisture absorption performance of ⁇ MR of 13.1%.
  • the fastness to washing color change and the color fading determination were both grades 4-5, ⁇ MR after washing was 13.1%, and ⁇ MR retention after washing was 100%, which was very good.
  • the obtained core-sheath composite yarn had a high moisture absorption performance with a ⁇ MR of 7.5%.
  • the fastness to washing color change and the color fading judgment were both grades 3-4, ⁇ MR after washing was 7.2%, and ⁇ MR retention after washing was 96.0%, which was good.
  • the friction band voltage in a 20 ° C x 40% RH environment is 850V
  • the friction band voltage after washing is 850V, so it has excellent anti-static performance. Excellent comfort clothing was obtained.
  • the obtained core-sheath composite yarn had a sufficient hygroscopic performance with ⁇ MR of 5.9%. Further, the fastness to washing color change and the color fading judgment were both grades 3-4, ⁇ MR after washing was 5.5%, and ⁇ MR retention after washing was 93.2%, which was good.
  • the obtained core-sheath composite yarn had an extremely high hygroscopic performance with ⁇ MR of 15.1%.
  • both the fastness to washing color change and the color fading determination were grade 3-4, ⁇ MR after washing was 15.0%, and ⁇ MR retention after washing was as good as 99.3%.
  • Table 2 shows the physical properties of the obtained fiber.
  • the obtained core-sheath composite yarn had an extremely high hygroscopic performance with ⁇ MR of 16.9%. Further, both the fastness to washing color change and the color fading judgment were both grade 3, ⁇ MR after washing was 16.7%, and ⁇ MR retention after washing was 99.4%, which was good.
  • Example 9 A core sheath of 56 dtex 24 filaments in the same manner as in Example 1, except that nylon 6 having a relative viscosity of sulfuric acid of 2.40 and an amino terminal group amount of 3.95 ⁇ 10 ⁇ 5 mol / g was used as a sheath. A composite yarn was obtained. Table 2 shows the physical properties of the obtained fiber.
  • the obtained core-sheath composite yarn had an extremely high moisture absorption performance of ⁇ MR of 11.1%. Further, the fastness to washing color change and the color fading judgment were both grade 3, ⁇ MR after washing was 10.1%, and ⁇ MR retention after washing was 90.1%.
  • Example 10 A core sheath of 56 dtex 24 filaments in the same manner as in Example 1, except that nylon 6 having a relative viscosity of sulfuric acid of 2.63 and an amino terminal group amount of 5.20 ⁇ 10 ⁇ 5 mol / g was used as a sheath. A composite yarn was obtained. Table 2 shows the physical properties of the obtained fiber.
  • the obtained core-sheath composite yarn had an extremely high moisture absorption performance with ⁇ MR of 12.0%.
  • the fastness to washing color change and the color fading judgment were both grade 4, ⁇ MR after washing was 11.6%, and ⁇ MR retention after washing was 96.7%, which was very good.
  • Example 11 A core sheath of 56 dtex 24 filaments in the same manner as in Example 1 except that nylon 6 having a relative viscosity of sulfuric acid of 3.30 and an amino terminal group amount of 4.78 ⁇ 10 ⁇ 5 mol / g was spun as a sheath. A composite yarn was obtained. Table 3 shows the physical properties of the obtained fiber.
  • the obtained core-sheath composite yarn had an extremely high moisture absorption performance of ⁇ MR of 13.1%.
  • the fastness to washing color change and the color fading determination were both grades 4-5, ⁇ MR after washing was 13.1%, and ⁇ MR retention after washing was 100%, which was very good.
  • Example 12 A core sheath of 56 dtex 24 filaments in the same manner as in Example 1, except that nylon 6 having a relative viscosity of sulfuric acid of 2.63 and an amino terminal group amount of 7.40 ⁇ 10 ⁇ 5 mol / g was used as a sheath. A composite yarn was obtained. Table 3 shows the physical properties of the obtained fiber.
  • the obtained core-sheath composite yarn had a very high moisture absorption performance with ⁇ MR of 12.7%.
  • the fastness to washing color change and the color fading determination were both grades 4-5, ⁇ MR after washing was 12.2%, and ⁇ MR retention after washing was 96.1%, which was very good.
  • Example 13 A core sheath of 56 dtex 24 filaments in the same manner as in Example 1, except that nylon 6 having a relative viscosity of sulfuric acid of 2.63 and an amino terminal group amount of 4.15 ⁇ 10 ⁇ 5 mol / g was used as the sheath. A composite yarn was obtained. Table 3 shows the physical properties of the obtained fiber.
  • the obtained core-sheath composite yarn had an extremely high moisture absorption performance of ⁇ MR of 11.5%. Further, the fastness to washing color change and the color fading determination were both grade 3, ⁇ MR after washing was 10.5%, and ⁇ MR retention after washing was 91.3%.
  • Example 14 A core / sheath composite yarn of 56 dtex 68 filaments was obtained in the same manner as in Example 1 except that the concentric core / sheath composite base was 68 holes and the take-up roller as the first roll had a peripheral speed of 3508 m / min. Table 3 shows the physical properties of the obtained fiber.
  • the obtained core-sheath composite yarn had an extremely high hygroscopic performance with ⁇ MR of 13.6%. Further, the fastness to washing color change and the color fading judgment were both grade 4, ⁇ MR after washing was 13.6%, and ⁇ MR retention after washing was 100%, which was good.
  • Example 15 A core-sheath composite yarn of 56 dtex 68 filaments was obtained in the same manner as in Example 5 except that the concentric core-sheath composite base was 68 holes and the peripheral speed of the take-up roller as the first roll was 3508 m / min. Table 3 shows the physical properties of the obtained fiber.
  • the obtained core-sheath composite yarn had an extremely high moisture absorption performance of ⁇ MR of 8.3%.
  • the fastness to washing color change and the color fading judgment were both grades 3-4, ⁇ MR after washing was 7.9%, and ⁇ MR retention after washing was 95.2%, good.
  • Nylon 6 having a relative viscosity of 2.71 and polyvinyl pyrrolidone ("Lubicol" K30SP, K value 30, manufactured by BASF) 20% by weight of nylon 6 having a relative viscosity of 1.71, not containing additives, was 1: 5
  • the core-sheath composite yarn of 56 dtex 24 filaments was obtained in the same manner as in Example 1 except that the nylon 6 blend polymer, which was chip-blended so that the addition ratio of polyvinylpyrrolidone was 3.3% by weight, was spun into the sheath. It was.
  • Table 4 shows the physical properties of the obtained fiber.
  • the obtained core-sheath composite yarn had an extremely high moisture absorption performance with ⁇ MR of 13.3%. Further, the fastness to washing color change and the color fading judgment were both grade 4, ⁇ MR after washing was 13.3%, and ⁇ MR retention after washing was 100%, which was very good. That is, the fabric and clothing using the obtained core-sheath composite yarn can provide comfort clothing excellent in washing durability that can withstand actual use.
  • the inclusion of polyvinyl pyrrolidone as a hygroscopic agent in the sheath part not only improved the hygroscopic performance, but also quickly moved moisture from the skin to the fiber sheath side when worn, making it smooth compared to Example 1. A texture was obtained.
  • a core-sheath composite yarn of 56 dtex 24 filaments was obtained in the same manner as in Example 1 except that the chip blending was performed so that the addition ratio of polyvinylpyrrolidone was 6.7% by weight.
  • Table 4 shows the physical properties of the obtained fiber.
  • the obtained core-sheath composite yarn had an extremely high hygroscopic performance with ⁇ MR of 13.6%.
  • the fastness to washing color change and the color fading determination were both grade 4, ⁇ MR after washing was 13.6%, and ⁇ MR retention after washing was 100%, which was extremely good.
  • Example 1 A core of 56 dtex 24 filament in the same manner as in Example 1 except that nylon 6 having a relative viscosity of sulfuric acid of 2.15 and an amino terminal group amount of 4.70 ⁇ 10 ⁇ 5 mol / g was spun as a sheath component. A sheath composite yarn was obtained. Table 5 shows the physical properties of the obtained fiber.
  • the obtained core-sheath composite yarn had a very high hygroscopic performance of 10.5%, but the ⁇ MR retention after washing was 73.3%, and the hygroscopic washing durability that can withstand actual use. Did not have.
  • both the fastness to washing color change and the color fading judgment were grades 2-3, and the dyeing fastness was inferior. That is, it can be seen that the fabric and clothing using the obtained core-sheath composite yarn do not have washing durability (moisture absorption performance, dyeability) that can withstand actual use.
  • the friction band voltage in a 20 ° C. ⁇ 40% RH environment was 1000 V, but the friction band voltage after washing was 1700 V, which was inferior in antistatic performance. That is, it can be seen that the fabric and clothing using the obtained core-sheath composite yarn are easily inferior in comfort and dusty when worn in a low-temperature and low-humidity environment.
  • the core-sheath composite yarn thus obtained had good washing fastness and dyeing fastness both in terms of color fastness and color fading. Further, ⁇ MR was 4.2% and did not have sufficient moisture absorption performance. Further, the ⁇ MR retention after washing was 84.4%, and it did not have a hygroscopic washing durability that could withstand actual use. That is, it can be seen that the fabric and clothing using the obtained core-sheath composite yarn cannot provide comfort exceeding that of natural fibers.
  • the obtained core-sheath composite yarn has a very high moisture absorption performance of 17.8, and has a ⁇ MR retention rate of 92.7% after washing, and has a moisture absorption performance that can withstand actual use. It was. However, both the fastness to washing color change and the color fading judgment were grades 2-3, which were inferior in dyeing fastness. That is, it can be seen that the fabric and clothing using the obtained core-sheath composite yarn do not have washing durability (dyeability) that can withstand actual use.
  • Example 4 In the same manner as in Example 1 except that the take-up roller as the first roll was wound at 2020 m / min, the draw roller as the second roll was wound at 3030 m / min, and the take-up speed was 3000 m / min. A core-sheath composite yarn of 56 dtex 24 filaments was obtained. Table 5 shows the physical properties of the obtained fiber.
  • the obtained core-sheath composite yarn had a very high hygroscopic performance of 10.0%, but the ⁇ MR retention after washing was 88.0%, and the hygroscopic washing durability that can withstand actual use. Did not have.
  • both the fastness to washing color change and the color fading judgment were second grade and inferior to the fastness to dyeing. That is, it can be seen that the fabric and clothing using the obtained core-sheath composite yarn do not have washing durability (moisture absorption performance, dyeability) that can withstand actual use.
  • the rotation speed of the gear pump was selected so that the total fineness of the obtained core-sheath composite yarn was 56 dtex, and the discharge rate was 22 g / min. Then, the yarn is cooled and solidified by the yarn cooling device, and the non-hydrous oil agent is supplied by the oil supply device, and then entanglement is given by the first fluid entanglement nozzle device, and the peripheral speed of the take-up roller as the first roll is 3368 m / min.
  • the obtained core-sheath composite yarn had an extremely high moisture absorption performance of ⁇ MR of 12.4%. Furthermore, the fastness to washing color change and the color fading judgment were both grade 4, ⁇ MR after washing was 12.4%, and ⁇ MR retention after washing was 100%, which was very good. Furthermore, q-max was 0.183 W / cm 2 , q-max after washing was 0.183 W / cm 2 , and q-max retention after washing was 100%, which was extremely good. That is, the fabric and clothing using the obtained core-sheath composite yarn are excellent in hygroscopic performance and cool contact feeling, and comfortable clothing excellent in washing durability that can withstand actual use is obtained.
  • Example 19 It was melted and spun at 275 ° C., the peripheral speed of the take-up roller as the first roll was 2381 m / min, the peripheral speed of the draw roller as the second roll was 3571 m / min, and the take-up speed was 3500 m / min.
  • a core-sheath composite yarn having an I-shaped cross section with a flatness of 2.5 and 56 dtex 24 filaments was obtained in the same manner as in Example 18.
  • Table 6 shows the physical properties of the obtained fiber.
  • the obtained core-sheath composite yarn had an extremely high moisture absorption performance of ⁇ MR of 11.9%. Further, the fastness to washing color change and the color fading judgment were both grade 3, ⁇ MR after washing was 11.5%, and ⁇ MR retention after washing was as good as 97%. Furthermore, q-max was 0.178 W / cm 2 , q-max after washing was 0.178 W / cm 2 , and q-max retention after washing was 100%, which was very good.
  • Example 20 A core-sheath composite yarn having a flatness of 4.8 and a 56-decitex 24-filament I-shaped section was obtained in the same manner as in Example 18 except that it was melted and spun at 265 ° C. Table 6 shows the physical properties of the obtained fiber.
  • the obtained core-sheath composite yarn had an extremely high hygroscopic performance with ⁇ MR of 12.8%. Further, the fastness to washing color change and the color fading judgment were both grade 4, ⁇ MR after washing was 12.8%, and ⁇ MR retention after washing was 100%, which was very good. Furthermore, q-max was 0.186 W / cm 2 , q-max after washing was 0.186 W / cm 2 , and q-max retention after washing was 100%, which was extremely good.
  • the obtained core-sheath composite yarn had an extremely high moisture absorption performance of ⁇ MR of 7.5%. Further, both the fastness to washing color change and the color fading judgment were both grade 4-5, ⁇ MR after washing was 7.2%, and ⁇ MR retention after washing was 96%, which was very good. Furthermore, q-max was 0.177 W / cm 2 , q-max after washing was 0.177 W / cm 2 , and q-max retention after washing was 100%, which was extremely good.
  • the obtained core-sheath composite yarn had an extremely high moisture absorption performance of ⁇ MR of 5.9%.
  • the fastness to washing color change and color fading judgment were both grade 4-5, ⁇ MR after washing was 5.5%, and ⁇ MR retention after washing was 93%.
  • q-max was 0.175 W / cm 2
  • q-max after washing was 0.175 W / cm 2
  • q-max retention after washing was 100%, which was extremely good.
  • the obtained core-sheath composite yarn had an extremely high moisture absorption performance of ⁇ MR of 15.2%.
  • the fastness to washing color change and the color fading judgment were both grades 3-4, ⁇ MR after washing was 15.0%, and ⁇ MR retention after washing was as good as 99%.
  • q-max was 0.186 W / cm 2
  • q-max after washing was 0.185 W / cm 2
  • q-max retention after washing was 99%, which was extremely good.
  • the obtained core-sheath composite yarn had an extremely high hygroscopic performance with ⁇ MR of 17.0%. Further, the fastness to washing color change and the color fading judgment were both grade 3, ⁇ MR after washing was 16.9%, and ⁇ MR retention after washing was as good as 99%. Furthermore, q-max was 0.188 W / cm 2 , q-max after washing was 0.186 W / cm 2 , and q-max retention after washing was 99%, which was extremely good.
  • Example 25 A flatness of 2.0, 56 was obtained in the same manner as in Example 18 except that nylon 6 having a relative viscosity of sulfuric acid of 2.40 and an amino terminal group amount of 3.95 ⁇ 10 ⁇ 5 mol / g was spun as a sheath. A core-sheath composite yarn having an I-shaped cross section of decitex 24 filament was obtained. Table 7 shows the physical properties of the obtained fiber.
  • the obtained core-sheath composite yarn had an extremely high moisture absorption performance of ⁇ MR of 11.1%. Further, the fastness to washing color change and the color fading determination were both grade 3, ⁇ MR after washing was 10.2%, and ⁇ MR retention after washing was 92%, which was good. Furthermore, q-max was 0.178 W / cm 2 , q-max after washing was 0.166 W / cm 2 , and q-max retention after washing was 93%, which was very good.
  • Example 26 A flatness of 3.0, 56 was obtained in the same manner as in Example 18 except that nylon 6 having a relative viscosity of sulfuric acid of 2.63 and an amino terminal group amount of 7.40 ⁇ 10 ⁇ 5 mol / g was used as a sheath. A core-sheath composite yarn having an I-shaped cross section of decitex 24 filament was obtained. Table 7 shows the physical properties of the obtained fiber.
  • the obtained core-sheath composite yarn had an extremely high moisture absorption performance of ⁇ MR of 12.1%. Further, the fastness to washing color change and the color fading judgment were both grade 3-4, ⁇ MR after washing was 11.5%, and ⁇ MR retention after washing was as good as 95%.
  • q-max was 0.180 W / cm 2
  • q-max after washing was 0.171 W / cm 2
  • q-max retention after washing was 95%, which was extremely good.
  • Example 27 Spinning with nylon 6 having a relative viscosity of sulfuric acid of 3.30 and an amino terminal group amount of 4.78 ⁇ 10 ⁇ 5 mol / g as a sheath, a core-sheath composite die having a convex lens-shaped discharge hole was used. Except for this, a core-sheath composite yarn having a convex lens type cross section with a flatness of 4.5 and 56 dtex 24 filaments was obtained in the same manner as in Example 18. Table 7 shows the physical properties of the obtained fiber.
  • the obtained core-sheath composite yarn had an extremely high hygroscopic performance with ⁇ MR of 13.0%.
  • both the fastness to washing color change and the color fading judgment were 4-5 grade, ⁇ MR after washing was 13.0%, and ⁇ MR retention after washing was 100%, which was very good.
  • q-max was 0.183 W / cm 2
  • q-max after washing was 0.183 W / cm 2
  • q-max retention after washing was 100%, which was extremely good.
  • Example 5 A flatness of 1.3, in the same manner as in Example 18, except that nylon 6 having a sulfuric acid relative viscosity of 2.15 and an amino terminal group amount of 4.70 ⁇ 10 ⁇ 5 mol / g was spun as a sheath component. A core-sheath composite yarn having an I-shaped cross section of 56 dtex 24 filaments was obtained. Table 8 shows the physical properties of the obtained fiber.
  • the obtained core-sheath composite yarn had an extremely high hygroscopic performance of 10.6%, but the ⁇ MR retention after washing was 76%, and had a hygroscopic washing durability that could withstand actual use. I did not.
  • both the fastness to washing color change and the color fading judgment were grades 2-3, and the dyeing fastness was inferior.
  • the q-max is 0.165 W / cm 2
  • the q-max after washing is 0.139 W / cm 2
  • the q-max retention after washing is 84%
  • the fabric and clothing using the obtained core-sheath composite yarn do not have washing durability (moisture absorption performance, dyeability, contact cooling sensitivity) that can withstand actual use.
  • Example 6 In the same manner as in Example 18, except that nylon 6 having a sulfuric acid relative viscosity of 3.45 and an amino terminal group amount of 4.50 ⁇ 10 ⁇ 5 mol / g was used as a sheath, melted and spun at 280 ° C. A core-sheath composite yarn having an I-shaped cross section with a flatness of 5.5 and 56 dtex 24 filaments was obtained. Table 8 shows the physical properties of the obtained fiber.
  • the obtained core-sheath composite yarn had an extremely high hygroscopic performance of 13.1%, but the ⁇ MR retention after washing was 80%, and had a hygroscopic washing durability that could withstand actual use. I did not. Further, the color fastness and color fading of washing were 3-4 and 2-3, and the washing fastness was inferior.
  • the q-max is 0.188 W / cm 2
  • the q-max after washing is 0.147 W / cm 2
  • the q-max retention after washing is 78%
  • a washing with a contact cooling feeling that can withstand actual use It was not durable.
  • Example 7 Flatness in the same manner as in Example 18 except that nylon 6 having a relative viscosity of sulfuric acid of 2.71 and an amino terminal group amount of 5.95 ⁇ 10 ⁇ 5 mol / g was used as a core and a single component yarn. A core-sheath composite yarn having an I-shaped cross section of 4.0, 56 dtex 24 filaments was obtained. Table 8 shows the physical properties of the obtained fiber.
  • the obtained single component yarn did not have excellent moisture absorption performance with ⁇ MR of 2.4%. Moreover, the fastness to washing color change and the color fading judgment were both grade 5, ⁇ MR after washing was 2.4%, and ⁇ MR retention after washing was 100%, which was good.
  • the polyether ester amide copolymer does not contain titanium oxide, the polyamide component is nylon 6, the polyether component (poly (alkylene oxide) glycol) is polyethylene glycol having a molecular weight of 1500, and the composition ratio of the polyether component is mol ratio.
  • a polyether ester amide copolymer manufactured by Arkema, MH1657, orthochlorophenol relative viscosity: 1.69) chip of about 76% was used for the core.
  • polyamide a nylon 6 chip having 0.3% by weight of titanium oxide, a relative viscosity of sulfuric acid of 2.63, and an amino terminal group amount of 5.10 ⁇ 10 ⁇ 5 mol / g was used as the sheath. Titanium oxide was added during polymerization, and the amount of amino end groups was adjusted with hexamethylenediamine and acetic acid during polymerization.
  • the gear pump rotation speed which measures molten polymer.
  • the yarn is cooled and solidified by the yarn cooling device, and the non-hydrous oil agent is supplied by the oil supply device.
  • the yarn is entangled by the first fluid entanglement nozzle device, and the peripheral speed of the take-up roller as the first roll is 3368 m / min, stretched at a peripheral speed of 4210 m / min as a second roll, and heat-set by a stretch roller at 150 ° C., wound up at a winding speed of 4000 m / min, and obtained a core-sheath composite fiber of 56 dtex 24 filaments. Obtained.
  • the obtained core-sheath composite fiber had an amount of titanium oxide of 0.15% by weight.
  • Table 9 shows the physical properties of the fibers.
  • Example 29 Example 28 except that a nylon 6 chip having 1.8% by weight of titanium oxide, a relative viscosity of sulfuric acid of 2.63, and an amino terminal group amount of 5.10 ⁇ 10 ⁇ 5 mol / g was used as the polyamide as the polyamide.
  • a core-sheath composite fiber of 56 dtex 24 filaments was obtained in the same manner as above.
  • the amount of titanium oxide in the obtained core-sheath composite fiber was 0.9% by weight.
  • Table 9 shows the physical properties of the fibers.
  • Example 30 Example 28, except that a nylon 6 chip having 5.0% by weight of titanium oxide, a relative viscosity of sulfuric acid of 2.40, and an amino terminal group amount of 5.90 ⁇ 10 ⁇ 5 mol / g was used as the polyamide for the sheath.
  • a core-sheath composite fiber of 56 dtex 24 filaments was obtained in the same manner as above.
  • the amount of titanium oxide in the obtained core-sheath composite fiber was 2.5% by weight.
  • Table 9 shows the physical properties of the fibers.
  • the amount of titanium oxide in the obtained core-sheath composite fiber was 3.5% by weight.
  • Table 9 shows the physical properties of the fibers.
  • Example 32 As the polyamide, a nylon 6 chip containing no titanium oxide, 1.0% by weight of barium sulfate, a relative viscosity of sulfuric acid of 2.60, and an amino terminal group amount of 5.98 ⁇ 10 ⁇ 5 mol / g was used for the sheath. A core / sheath composite fiber of 56 dtex 24 filaments was obtained in the same manner as in Example 28 except for the above.
  • the barium sulfate content of the obtained core-sheath composite fiber was 0.5% by weight.
  • Table 9 shows the physical properties of the fibers.
  • Example 33 As the polyamide, a nylon 6 chip having no titanium oxide, 1.0% by weight of magnesium oxide, a relative viscosity of sulfuric acid of 2.60, and an amino terminal group amount of 5.98 ⁇ 10 ⁇ 5 mol / g was used as the sheath. A core / sheath composite fiber of 56 dtex 24 filaments was obtained in the same manner as in Example 28 except for the above.
  • the amount of magnesium oxide in the obtained core-sheath composite fiber was 0.5% by weight.
  • Table 9 shows the physical properties of the fibers.
  • Comparative Example 8 As a polyamide, a nylon 6 tip having no titanium oxide, a relative viscosity of sulfuric acid of 2.71, and an amino terminal group amount of 5.95 ⁇ 10 ⁇ 5 mol / g was melted at 260 ° C. to obtain a round hole spinneret. A nylon 6 fiber of 56 dtex 24 filaments was obtained in the same manner as in Example 28 except that it was melted and discharged. Table 9 shows the physical properties of the fibers. Since Comparative Example 8 is a general nylon 6 fiber, it was inferior in moisture absorption performance and contact cooling feeling.
  • Example 34 Example 28 except that a nylon 6 chip having 0.1% by weight of titanium oxide, a relative viscosity of sulfuric acid of 2.63, and an amino terminal group amount of 5.10 ⁇ 10 ⁇ 5 mol / g was used as the sheath as the polyamide.
  • a core-sheath composite fiber of 56 dtex 24 filaments was obtained in the same manner as above. Table 9 shows the physical properties of the fibers.
  • Example 35 The same as Example 28, except that a nylon 6 tip having 20% by weight of titanium oxide, a relative viscosity of sulfuric acid of 2.30, and an amino terminal group amount of 5.21 ⁇ 10 ⁇ 5 mol / g was used for the sheath.
  • the core-sheath composite fiber of 56 dtex 24 filaments was obtained by the method described above.
  • Table 10 shows the physical properties of the fibers.
  • Example 36 The same method as in Example 29, except that the take-up roller as the first roll was wound at 2381 m / min, the draw roller as the second roll was wound at 3571 m / min, and the take-up speed was 3500 m / min.
  • the core-sheath composite fiber of 56 dtex 24 filaments was obtained. Table 10 shows the physical properties of the fibers.
  • Example 37 In the same manner as in Example 29 except that the take-up roller as the first roll was wound at 2245 m / min, the draw roller as the second roll was wound at 3367 m / min, and the take-up speed was 3300 m / min. A core-sheath composite fiber of 56 dtex 24 filaments was obtained. Table 10 shows the physical properties of the fibers.
  • Example 38 The same method as in Example 29 except that the take-up roller as the first roll was wound at 4474 m / min, the draw roller as the second roll was wound at 4474 m / min, and the take-up speed was 4250 m / min.
  • the core-sheath composite fiber of 56 dtex 24 filaments was obtained. Table 10 shows the physical properties of the fibers.
  • the core-sheath composite fiber that maintains moisture absorption performance and cool contact feeling even after washing and has excellent dyeing fastness can be obtained. It was.
  • the ⁇ -crystal orientation parameter of the sheath part is controlled, and even when washed, moisture absorption performance and cool feeling of contact are maintained, and a core-sheath composite fiber excellent in dyeing fastness can be obtained. It was.
  • the ⁇ -crystal orientation parameter of the sheath part is controlled, and even when washed, moisture absorption performance and cool feeling of contact are maintained, and a core-sheath composite fiber excellent in dyeing fastness can be obtained. It was.
  • the ⁇ -crystal orientation parameter of the sheath part is controlled, and even when washed, moisture absorption performance and cool feeling of contact are maintained, and a core-sheath composite fiber excellent in dyeing fastness can be obtained. It was.
  • Example 42 A core-sheath composite fiber of 56 dtex 24 filaments was obtained in the same manner as in Example 29 except that the core-sheath ratio (parts by weight) was 80/20.
  • Table 10 shows the physical properties of the obtained fiber.
  • the ⁇ -crystal orientation parameter of the sheath part is controlled, and even when washed, moisture absorption performance and cool feeling of contact are maintained, and a core-sheath composite fiber excellent in dyeing fastness can be obtained. It was.
  • the core-sheath composite yarn of the present invention can provide a core-sheath composite yarn having high moisture absorption performance and comfort exceeding natural fibers, and having hygroscopic performance washing durability and dyeing fastness that can withstand actual use. .

Abstract

 鞘部ポリマーがポリアミド、芯部が熱可塑性ポリマーであり、吸放湿性(ΔMR)が5.0%以上、かつ、洗濯20回後のΔMR保持率が90%以上100%以下である洗濯耐久性に優れた吸湿性芯鞘複合糸。 高い吸湿性を有し、天然繊維を超える快適性、実使用に耐えうる吸湿性の洗濯耐久性と染色堅牢性とを有する芯鞘複合繊維を提供する。

Description

吸湿性芯鞘複合糸
 本発明は、洗濯耐久性に優れた吸湿性芯鞘複合糸に関する。
 ポリアミドやポリエステルなどの熱可塑性樹脂から成る合成繊維は、強度、耐薬品性、耐熱性などに優れるために、衣料用途や産業用途などに幅広く用いられている。
 特にポリアミド繊維はその独特な柔らかさ、高い引っ張り強度、染色時の発色性、高い耐熱性等の特性に加え、吸湿性に優れており、インナーウエア、スポーツウエアなどの用途に広く使用されている。しかしながら、ポリアミド繊維は綿などの天然繊維と比べると吸湿性は十分とはいえず、また、ムレやべたつきといった問題点を有し、快適性の面で天然繊維に劣ることが問題となっている。
 そのような背景からムレやべたつきを防ぐための優れた吸放湿性を示し、天然繊維に近い快適性を有する合成繊維が、主にインナー用途やスポーツ衣料用途において要望されている。
 そこで、ポリアミド繊維に親水性化合物を添加する方法が一般には最も多く検討されてきた。例えば、特許文献1には、親水性ポリマーとしてポリビニルピロリドンをポリアミドにブレンドして紡糸することで吸湿性能を向上させる方法が提案されている。
 一方、繊維の構造を芯鞘構造とし、高吸湿性の熱可塑性樹脂を芯部に、力学特性に優れた熱可塑性樹脂を鞘部とする芯鞘構造とすることで、吸湿性能と、力学特性を両立させる検討が盛んに行われている。
 例えば、特許文献2には、芯部と鞘部からなり芯部が繊維表面に露出しない形状の芯鞘複合繊維であり、ハードセグメントが6-ナイロンであるポリエーテルブロックアミド共重合物を芯部とし、6-ナイロン樹脂を鞘部とした、繊維横断面における芯部と鞘部の面積比率が3/1~1/5である芯鞘複合繊維が開示されている。
 また、特許文献3には、熱可塑性樹脂を芯部とし繊維形成性ポリアミド樹脂を鞘部とする芯鞘型複合繊維であって、該芯部を形成する熱可塑性樹脂の主成分がポリエーテルエステルアミドであり、かつ芯部の比率が複合繊維全重量の5~50重量%である吸湿性に優れた芯鞘型複合繊維が開示されている。
 また、特許文献4には、ポリアミド又はポリエステルを鞘成分、ポリエチレンオキサイドの架橋物からなる熱可塑性吸水性樹脂を芯成分としたことを特徴とする吸放湿性を有する複合繊維が開示されている。
 また、特許文献5には、ポリエーテルブロックアミド共重合体を芯部とし、ポリアミドやポリエステル等の繊維形成性ポリマーを鞘部とした、芯部を露出角度で5°~90°の範囲で露出させている制電性能、吸水性能、接触冷感に優れた芯鞘複合断面繊維が記載されている
 また、特許文献6には、ポリエーテルエステルアミド系化合物またはポリエーテルエステル系化合物等の親水性成分を芯部とし、ポリエステル等の繊維形成性重合体を鞘部とした、扁平度1.05~3.0の吸湿性に優れた扁平芯鞘複合繊維が記載されている。
 なお、ポリアミド繊維に吸湿性能を向上する技術として、後加工により親水性化合物を繊維表面に付着、内部に浸透させる方法も提案されているが、後加工により吸湿性能を向上させる方法は、洗濯により親水性化合物が脱落し、吸湿性能の低下の問題がある。
  
特開平9-188917号公報 国際公開第2014/10709号 特開平6-136618号公報 特開平8-209450号公報 国際公開第2008/123586号 特開2000-239918号公報
 しかしながら、特許文献1に記載の繊維は、天然繊維に近い吸放湿性を有しているものの、その性能は十分に満足できるものでなく、更なる高い吸放湿性の達成が課題である。
 また、特許文献2~6の芯鞘複合繊維は、天然繊維と同等かそれ以上の吸放湿性を有しているものの、芯部が繰り返しの実使用によって劣化し、繰り返し使用による吸湿性能の低下が課題である。また、芯部の高吸放湿性ポリマーは染料の出入りが容易な高分子構造であるため、染色堅牢性が劣る欠点がある。
 なお、特許文献2に記載の芯鞘複合繊維は、接触冷感に関して、鞘部にナイロン6を用いるとしているが、一般的なナイロン6と何ら変わりはなく、更なる接触冷感の達成が課題である。特許文献5に記載の芯鞘複合繊維は、接触冷感に関して、非水溶性ポリエチレンオキシド変性物を芯部に用いているが、芯部のポリマー吸湿性能に起因する冷感が低く、かつ、鞘部のポリアミドに覆われているので、一般的なポリアミドと何ら変わりはなく、更なる接触冷感の達成が課題である。特許文献6に記載の芯鞘複合繊維は、接触冷感に関して、繊維断面を扁平化することで、肌との接触面積を高くすることと吸湿性能との相乗効果によって新規ドライ風合いが得られているものの、鞘部のポリエステルに覆われているので、一般的なポリエステルと比較して接触冷感は得られるものの、一般的なポリアミドよりも劣っていた。鞘部をポリアミドとした場合でも、肌との接触面積を高くすることと吸湿性能との相乗効果によって新規ドライ風合いが得られるものの、その性能は十分に満足できるものではなく、更なる接触冷感の達成が課題である。
 本発明は、前記従来技術の問題点を克服し、高い吸湿性能および接触冷感性を有し天然繊維を超える快適性と、実使用に耐えうる吸湿性能の洗濯耐久性と染色堅牢性および接触冷感性の洗濯耐久性を有する芯鞘複合糸を提供することを目的とする。
 本発明は、上記課題を解決するために、下記の構成からなる。
(1)鞘部ポリマーがポリアミド、芯部が熱可塑性ポリマーであり、吸放湿性(ΔMR)が5.0%以上、かつ、洗濯20回後のΔMR保持率が90%以上100%以下である芯鞘複合糸。
(2)洗濯堅牢度が3級以上5級以下である(1)に記載の芯鞘複合糸。
(3)鞘部ポリマーがポリアミドのα結晶配向パラメーターが1.9以上2.7以下であり、かつ芯部の熱可塑性ポリマーがポリエーテルエステルアミド共重合体である(1)または(2)に記載の芯鞘複合糸。
(4)芯鞘複合糸の鞘部ポリマーのアミノ末端基量が3.5×10-5mol/g以上8.0×10-5mol/g以下である(1)~(3)のいずれかに記載の芯鞘複合糸。
(5)扁平度が1.5以上5.0以下である(1)~(4)のいずれか1項に記載の芯鞘複合糸。
(6)無機粒子を繊維全体で0.1~5重量%含有する(1)、(2)、(4)いずれかに記載の芯鞘複合糸。
(7)鞘部のポリマーのα結晶配向パラメーターが1.7以上2.6以下である(6)に記載の芯鞘複合糸。
(8)鞘部ポリマーが、無機粒子を0.2~6重量%含有する(6)または(7)のいずれかに記載の芯鞘複合糸。
(9)前記無機粒子が酸化チタンであることを特徴とする(6)~(8)のいずれか1項に記載の芯鞘複合糸。
(10)(1)~(9)のいずれか1項に記載の芯鞘複合糸を少なくとも一部に有する布帛。
 本発明によれば、高い吸湿性能および接触冷感性を有し天然繊維を超える快適性と、実使用に耐えうる吸湿性能の洗濯耐久性と染色堅牢性および接触冷感性の洗濯耐久性を有する芯鞘複合糸を提供することができる。
本発明の好ましい一態様であるI型断面形状の芯鞘複合糸を示す模式図である。 本発明の好ましい一態様である凸レンズ型断面形状の芯鞘複合糸を示す模式図である。
 本発明の芯鞘複合糸は、鞘部ポリマーがポリアミド、芯部が熱可塑性ポリマーであり、吸放湿性(ΔMR)が5.0%以上、かつ、洗濯20回後のΔMR保持率が90%以上100%以下である芯鞘複合糸である。
 本発明の芯鞘複合糸は、鞘部にポリアミド、芯部に熱可塑性ポリマーを用いる。
 熱可塑性ポリマーとしては、周知のポリマーを用いることが可能であるが、特に高い吸湿性能を有する熱可塑性ポリマーが好ましい。芯部の高い吸湿性能を有する熱可塑性ポリマーとは、ペレット形状で測定した吸放湿性(ΔMR)が10%以上のポリマーを指し、ポリエーテルエステルアミド共重合体やポリビニルアルコール、セルロース系熱可塑性樹脂等があげられる。その中でも、熱安定性や鞘部のポリアミドとの相溶性が良く耐剥離性に優れる観点から、ポリエーテルエステルアミド共重合体が好ましい。
 ポリエーテルエステルアミド共重合体とは、同一分子鎖内にエーテル結合、エステル結合およびアミド結合を持つブロック共重合体である。より具体的にはラクタム、アミノカルボン酸、ジアミンとジカルボン酸の塩から選ばれた1種もしくは2種以上のポリアミド成分(A)およびジカルボン酸とポリ(アルキレンオキシド)グリコールからなるポリエーテルエステル成分(B)を重縮合反応させて得られるブロック共重合体ポリマーである。
 ここで、ポリアミド成分(A)としては、ε-カプロラクタム、ドデカノラクタム、ウンデカノラクタム等のラクタム類、アミノカプロン酸,11-アミノウンデカン酸、12-アミノドデカン酸などのω-アミノカルボン酸、ナイロン66、ナイロン610、ナイロン612等の前駆体であるジアミン-ジカルボン酸のナイロン塩類があり、好ましいポリアミド形成性成分はε-カプロラクタムである。
 ここで、ポリエーテルエステル成分(B)は、炭素数4~20のジカルボン酸とポリ(アルキレンオキシド)グリコールとからなるものである。炭素数4~20のジカルボン酸としてはコハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、セバシン酸、ドデカジ酸等の脂肪族ジカルボン酸、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸等の芳香族ジカルボン酸、1,4-シクロヘキサンジカルボン酸等の脂環式ジカルボン酸をあげることができ、1種または2種以上混合して用いることができる。好ましいジカルボン酸はアジピン酸、セバシン酸、ドデカジ酸、テレフタル酸、イソフタル酸である。またポリ(アルキレンオキシド)グリコールとしては、ポリエチレングリコール、ポリ(1,2-および1,3-プロピレンオキシド)グリコール、ポリ(テトラメチレンオキシド)グリコール、ポリ(ヘキサメチレンオキシド)グリコール等があげられ、特に良好な吸湿性能を有するポリエチレングリコールが好ましい。
 ポリ(アルキレンオキシド)グリコールの数平均分子量は300~10000が好ましく、より好ましくは500~5000である。分子量が300以上であると、重縮合反応中に系外に飛散しにくく、吸湿性能が安定した繊維となるため好ましい。また、10000以下であると、均一なブロック共重合体が得られ製糸性が安定するため好ましい。
 ポリエーテルエステルアミド共重合体中のポリエーテルエステル成分(B)の構成比率はmol比にて、全体の共重合体中20~80%であることが好ましい。20%以上であると、良好な吸湿性が得られるため好ましい。また、80%以下であると、良好な染色堅牢性や洗濯耐久性が得られるため好ましい。
 このようなポリエーテルエステルアミド共重合体として、アルケマ社製“MH1657”や“MV1074”等が市販されている。
 鞘部のポリアミドには、ナイロン6、ナイロン66、ナイロン46、ナイロン9、ナイロン610、ナイロン11、ナイロン12、ナイロン612等、あるいはそれらとアミド形成官能基を有する化合物、例えばラウロラクタム、セバシン酸、テレフタル酸、イソフタル酸、5-ナトリウムスルホイソフタル酸等の共重合成分を含有する共重合ポリアミドがあげられる。中でも、ナイロン6および、ナイロン11、ナイロン12、ナイロン610、ナイロン612が、ポリエーテルエステルアミド共重合体との融点の差が小さく、溶融紡糸時にポリエーテルエステルアミド共重合体の熱劣化が抑制でき、製糸性の観点から好ましい。中でも好ましくは、染色性に富むナイロン6である。
 本発明の鞘部のポリアミドに、吸湿剤を含有することが吸湿性を高める上でさらに好ましい。吸湿剤を例示すると、ポリビニルピロリドン、ポリエーテルアミド、ポリアルキルレングリコール、ポリエーテルエステルアミド等が用いられ、特にポリビニルピロリドンが好ましい。ポリビニルピロリドンの重合度は、K値として20~70の範囲が好ましい。ここでいうK値とはポリビニルピロリドン水溶液の相対粘度を用いた、毛細管粘度計測定により得られる相対粘度数であり、いわゆるフィッケンチャーのK値である(DIN53726)。この値はポリビニルピロリドンの分子量と相関し、従来からポリビニルピロリドンの分子量を測定するのに使用されている。K値が20以上であると、ポリアミド分子鎖との絡み合いが強固となり、吸放湿性能が安定した繊維となるため好ましい。一方、K値が60以下であると、ポリアミドに練り込む際の増粘を抑制し、製糸性の観点から好ましい。さらに好ましくは20~60の範囲である。
 また、ポリビニルピロリドンの含有量は、鞘部ポリアミドに対し3~7重量%含有することが好ましい。3重量%以上とすることにより、着用時に肌から水分を繊維側に素早く移動させ、サラッとした風合いを付与することができる。7重量%以下とすることにより、洗濯堅牢度、実使用に耐えうる強度に優れた衣料を提供可能となる。
 本発明の鞘部のポリアミドには、各種の添加剤、たとえば、艶消剤、難燃剤、酸化防止剤、紫外線吸収剤、赤外線吸収剤、結晶核剤、螢光増白剤、帯電防止剤、カーボンなどを、総添加物含有量が0.001~10重量%の間で必要に応じて共重合または混合していてもよい。
 本発明の芯鞘複合糸は、着用時に良好な快適性を得るため、衣服内の湿度を調節する機能を有する。湿度調整の指標として、軽~中作業あるいは軽~中運動を行った際の30℃×90%RHに代表される衣服内温湿度と、20℃×65%RHに代表される外気温湿度における吸湿率の差で表される吸放湿性(ΔMR)を用いる。ΔMRは大きければ大きいほど吸湿性能が高く、着用時の快適性が良好であることに対応する。
 本発明の芯鞘複合糸は、ΔMRが5.0%以上であることが好ましい。より好ましくは7.0%以上、更に好ましくは10.0%以上、一層好ましくは15.0%以上である。かかる範囲とすることで、着用時のムレやベタツキを抑制でき、快適性に優れる衣料を提供可能となる。なお、本発明で達成できるΔMRのレベルは17.0%程度である。
 吸放湿性(ΔMR)を5.0%以上とすることはペレット形状で測定したΔMRが10%以上のポリマーを使用することにより可能である。
 本発明の芯鞘複合糸は、洗濯20回後のΔMRの保持率が90%以上100%以下であることが好ましい。より好ましくは95%以上100%以下である。かかる範囲とすることで、実使用に耐えうる洗濯耐久性が得られるため、優れた快適性を保持した衣料を提供可能となる。更には、ΔMRが5.0%以上かつ洗濯20回後のΔMRの保持率が90%以上を満たすことが、実使用に耐えうる洗濯耐久性を持った快適性に優れる衣料を提供することが可能となる。
 洗濯20回後のΔMRの保持率を90%以上100%以下とすることは、後に述べる鞘部のポリアミドのα結晶配向パラメーターを最適な値とすることにより可能である。
 本発明の芯鞘複合糸のΔMRをかかる範囲とすることにより、静電気による着用時のまつわり付きやほこり付着の少ない制電性能を発現することが可能となる。すなわち、芯部に高い吸湿性能を有する熱可塑性ポリマーを繊維軸方向に連続的に配置した糸であるため、空気中の水分を利用した制電機構を発現し、低温低湿度の環境下(例えば20℃×40%RH)においても良好な制電性能が得られる。
 本発明の芯鞘複合糸は、20℃×40%RH環境下での摩擦布が綿の摩擦帯電圧が0V以上1500V以下であることが好ましい。さらに好ましくは、0以上1000V以下であることが好ましい。摩擦帯電圧が低くなるほど制電性能に優れるということであるが、一般的なポリアミド繊維の20℃×40%RH環境下での摩擦布が綿の摩擦帯電圧は、4500~5500V程度である。かかる範囲とすることにより静電気による着用時のまつわり付きやほこり付着の少ない制電性能に優れる、すなわち、快適性に優れる衣料が提供可能となる。
 本発明の芯鞘複合糸は、洗濯堅牢度(変退色、色落ち)が3級以上5級以下であることが好ましい。かかる範囲とすることで、実使用に耐えうる洗濯耐久性が得られるため、染色堅牢性に優れた衣料を提供可能となる。
 洗濯堅牢度(変退色、色落ち)を3級以上5級以下とすることは、後に述べる鞘部のポリアミドのα結晶配向パラメーターと鞘部ポリマーのアミノ末端基量を最適な値とすることにより可能である。
 本発明の芯鞘複合糸は、鞘部のポリアミドのα結晶配向パラメーターが1.9以上2.7以下であり、かつ芯部の熱可塑性ポリマーがポリエーテルエステルアミド共重合体であることが好ましい。鞘部のポリアミドは安定した結晶型であるα結晶であることが好ましく、α結晶は高い応力が加わった際に形成される。かかる範囲とするには、後述するように特定条件(芯鞘の組成比や粘度比など)で紡糸して、鞘部のポリアミドに紡糸から引取時の延伸および引取りローラー間で鞘部の延伸を優先的に加えることにより、安定した結晶型であるα型結晶を鞘部に存在させることが可能となる。その結果、芯鞘複合糸の染色後の染着強度が上昇し、染色堅牢度が良化する。また、紡糸時の延伸力が鞘部のポリアミドに集中し、芯部の高い吸湿性能を有する熱可塑性ポリマーの結晶化が抑制され、芯鞘複合糸の吸湿性能を高めることが出来、好ましい。
 芯部の熱可塑性ポリマーがポリエーテルエステルアミド共重合体のときは、結晶化によりポリエーテルエステル成分が局在化した構造を形成し易く、局在部はアルカリ性液体への耐久性が劣るため、鞘部のポリアミドのα結晶配向パラメーターをかかる範囲とし、芯部のポリエーテルエステルアミド共重合体の結晶化を抑制することで、実使用に耐えうる吸湿性能の洗濯耐久性を発現させることが可能となる。
 α結晶配向パラメーターが1.9以上であると、鞘部のポリアミドの結晶化が進み、複合糸としての染色堅牢度も良好であり、かつ芯部の高い吸湿性能を有する芯部の熱可塑性ポリマーの結晶化が進まず、吸湿性能が良好である。更に、ポリエーテルエステルアミド共重合体の場合は、結晶化が進まないため、実使用に耐えうる吸湿性能の洗濯耐久性が良好となる。一方、α結晶配向パラメーターが2.7以下であると、鞘部のポリアミドの結晶化が進まず、紡糸の際に糸切れや毛羽の発生を抑制できるので生産性が向上する。さらに好ましくは2.00以上2.60以下、さらに好ましくは2.05以上2.60以下である。
 本発明の芯鞘複合糸は、鞘部ポリマーのアミノ末端基量が3.5×10-5mol/g以上8.0×10-5mol/g以下であることが好ましい。親水性に富むアミノ末端基量が3.5×10-5mol/g以上であると、吸湿性能が高まり好ましく、またアミノ末端基は染料着座となるため衣料用途に適した発色性や染色堅牢度が得られる。一方、アミノ末端基量が8.0×10-5mol/g以下であると、染色時に染め斑になり難い繊維となり好ましい。さらに好ましくは、4.2×10-5mol/g以上8.0×10-5mol/g以下、一層好ましくは4.5×10-5mol/g以上8.0×10-5mol/g以下である。
 本発明の芯鞘複合糸は、芯部に高い吸湿性能を有する熱可塑性ポリマーを用いていることから、熱伝導性を高めることができ、ポリアミド単独糸よりも接触冷感を発現し易くなる。接触冷感は、繊維が肌に触れた直後に、肌側の貯えられた熱量が、低温側の繊維に移動する単位面積当たりの熱流速に依存する。ポリアミドは有機物であり比較的熱伝導率が低く、衣服として肌に直接着用しても接触冷感は実感しない。接触冷感をより実感できるように高めるには、接触面積の大きい断面形状とする、熱伝導率の高い添加剤を含有するなどで、吸湿性能に加えて接触冷感にも優れ、より優れた快適性を保持した衣料を提供可能となる。
 本発明の芯鞘複合糸は、その芯鞘複合糸横断面形状が扁平であって扁平度が1.5以上5.0以下であることが好ましい。
 接触冷感は、単位面積あたりの熱流速に依存するので、移動する熱量は接触面積に依存することになり、接触面積の大きい断面形状であるI型(図1)や凸レンズ断面形状(図2)、またはそれに類する断面形状において、扁平度が1.5以上であることが好ましい。ここで扁平度とは外接円直径(図1、図2中のR)と内接円直径(図1、図2中のr)の比を意味する。扁平度は高いほど接触冷感に効果があり、扁平度2.0以上であることがより好ましい。一方、扁平度が高くなるに従い、糸強度は低下する傾向にあり、扁平度が5.0以下である必要がある。
 本発明の芯鞘複合糸は、無機粒子を繊維全体で0.1~5重量%含有することが好ましい。接触冷感は、繊維が肌に触れた直後に、肌側の貯えられた熱量が、低温側の繊維に移動するので、ポリアミドに比べて熱伝導率が高く、熱容量の低い無機化合物を繊維全体で0.1~5重量%含有させることが好ましい。
 本発明において無機化合物を選択する理由としては、芯鞘複合糸製造時や染色時に悪影響を及ぼさないこと、糸物性を保つこと、さらに耐光性など使用時にポリマーに着色等を発生させないためである。このような悪影響を芯鞘複合糸に与えない無機化合物であれば特に限定されるものではない。ポリアミドに比べて熱伝導率が高く、熱容量の低い無機化合物を例示すると、硫酸バリウム、酸化チタン、酸化アルミニウム、酸化ジルコニウム、酸化カルシウム、酸化マグネシウム、窒化アルミニウム、窒化ホウ素、窒化ジリコニウム、珪酸アルミニウム、炭化ジリコニウム等があげられる。これら無機化合物の中でも、繊維物性、発色性、無機粒子の取り扱いの容易性、高次加工性を勘案すると、硫酸バリウム、酸化チタン、酸化マグネシウム、酸化アルミニウムが好ましい。
 無機化合物の含有量としては、少ないと熱伝導性を高めることができないため、接触冷感を高くすることは難しく、繊維全体で0.1重量%以上とすることが好ましい。また、多いほど接触冷感を高くすることができるが、糸物性である引張強度が低下すること、高次加工性が低下するため5重量%以下にすることが好ましい。より好ましくは0.3~3重量%である。さらに好ましくは0.3~2.0重量%である。
 接触冷感は前述したとおり、繊維が肌に触れた直後に、肌側の貯えられた熱量が、低温側の繊維に移動する熱流速に依存する。本発明の芯鞘複合糸の場合においては、芯鞘複合糸が肌に触れた直後に、肌側の貯えられた熱量が、低温側の芯鞘複合糸の鞘部に移動し、続いて低温側の芯鞘複合糸の鞘部に移動することが好ましい。鞘部のポリアミドは熱伝導率が低いため、衣服として肌に直接着用しても接触冷感は実感しないことに加えて、芯部のポリエーテルエステルアミド共重合体ポリマーへの熱移動がスムーズに行われない。
 そこで、鞘部のポリアミドがポリアミドに比べて熱伝導率が高く、熱容量の低い無機化合物を0.2~6重量%含有していることが好ましい。かかる構成とすることにより、着用時に肌からの熱を芯鞘複合糸側に素早く移動させ、さらに、芯鞘複合糸の鞘部のポリアミドから芯部の芯部のポリエーテルエステルアミド共重合体ポリマーへの熱移動がスムーズに行われ、接触冷感を得られる。無機化合物の含有量は多いほど接触冷感を高めることができるが、接触冷感の効果と製糸性、糸物性等を勘案すると、さらに好ましくは0.2~3重量%である。
 本発明の無機粒子を繊維全体で0.1~5重量%含有する芯鞘複合糸は、鞘部のポリアミドのα型結晶配向パラメーターが1.7~2.6であることが好ましい。鞘部のポリアミドのα型結晶は安定した結晶型であり、芯鞘複合糸の製造時、高い応力が加わった際にα型結晶が形成される。かかる範囲とするには、後述するように特定条件(芯鞘の組成比や粘度比など)で紡糸して、鞘部のポリアミドに紡糸から引取時の延伸および引取りローラー間で鞘部の延伸を優先的に加えることにより、安定した結晶型であるα型結晶を鞘部に存在させることが可能となる。
 鞘部のポリアミドのα結晶配向パラメーターをかかる範囲とすることにより、芯鞘複合糸の染色後の染着強度が上昇し、染色堅牢度が良好になると共に、紡糸時の延伸力が鞘部のポリアミドに集中し、芯部のポリエーテルエステルアミド共重合体ポリマーの結晶化が抑制され、吸湿性能、接触冷感に優れる芯鞘複合糸となる。さらに、芯部のポリエーテルエステルアミド共重合体の結晶化を抑制することができ、芯部のポリエーテルエステル成分の結晶化による局在化構造の生成を抑制でき、アルカリ性液体への耐久性を保持することが可能となり、洗濯しても吸湿性能や接触冷感を維持させることが可能となる。
 鞘部のポリアミドのα結晶配向パラメーターが1.7以上であると、鞘部のポリアミドの結晶化が進み、芯鞘複合糸の染色堅牢度が良好となり、かつ、芯部のポリエーテルエステルアミド共重合体の結晶化が進まず、吸湿性能、接触冷感が良好となる。さらに、芯部のポリエーテルエステルアミド共重合体の結晶化が進まないため、洗濯しても吸湿性能や接触冷感を維持することが可能となる。一方、鞘部のポリアミドのα型結晶配向パラメーターが2.6以下であると、鞘部のポリアミドの結晶化が進まず、高次加工の際に糸切れや毛羽の発生を抑制できるので生産性が向上する。さらに好ましくは1.8~2.5、一層好ましくは1.85~2.5である。
 本発明の芯鞘複合糸は、引っ張り強度が2.5cN/dtex以上であることが好ましい。より好ましくは3.0cN/dtex以上である。かかる範囲とすることで、主にインナー衣料用途やスポーツ衣料用途である衣料用途において、実使用に耐えうる強度に優れた衣料を提供可能となる。
 本発明の芯鞘複合糸は、伸度が35%以上であることが好ましい。より好ましくは40~65%である。かかる範囲とすることで、製織、製編、仮撚りといった高次工程での工程通過性が良好となる。
 本発明の芯鞘複合糸の総繊度、フィラメント数も特に限定はなく、衣料用長繊維素材として使用することを考慮すると、マルチフィラメントとしての総繊度は5デシテックス以上235デシテックス以下、フィラメント数は1以上144フィラメント以下が好ましい。
 本発明の芯鞘複合糸は、公知の溶融紡糸、複合紡糸の手法により得ることができるが、例示すると以下のとおりである。
 例えば、ポリアミド(鞘部)と高い吸湿性能を有する熱可塑性ポリマー(芯部)を別々に溶融しギヤポンプにて計量・輸送し、そのまま通常の方法で芯鞘構造をとるように複合流を形成して紡糸口金から吐出し、チムニー等の糸条冷却装置によって冷却風を吹き当てることにより糸条を室温まで冷却し、給油装置で給油するとともに集束し、第1流体交絡ノズル装置で交絡し、引き取りローラー、延伸ローラーを通過し、その際引き取りローラーと延伸ローラーの周速度の比に従って延伸する。さらに、糸条を延伸ローラーにより熱セットし、ワインダー(巻取装置)で巻き取る。
 本発明の芯鞘複合糸の鞘部のα型結晶配向パラメーターをかかる範囲とすることは、ポリマー選択に加えて、紡糸の際の芯鞘複合比率、芯鞘ポリマー粘度、延伸工程等の制御により可能である。
 本発明の芯鞘複合糸の芯部の比率は、複合糸100重量部に対して20重量部~80重量部であることが必要である。更に好ましくは、30重量部~70重量部である。かかる範囲とすることにより、鞘部のポリアミドに適切な延伸を加えることが可能となる。また、良好な染色堅牢性、吸湿性能が得られる。20重量部未満であると、十分な吸湿性能が得られない。一方、80重量部を越えると染色のような熱水雰囲気下で膨潤による繊維表面の割れが発生し易くなるばかりか、鞘部のポリアミドに過度な延伸が加わり、目標とするα型結晶配向パラメーターとすることができなくなる。また、過度な張力を発生させる紡糸、延伸は糸切れや毛羽の発生に繋がり目的とする繊維を安定的に製造するために好ましくない。
 本発明の鞘部に使用するポリアミドチップは、硫酸相対粘度にて2.3以上3.3以下とする必要がある。好ましくは、2.6以上3.3以下である。かかる範囲とすることにより、鞘部のポリアミドに適切な延伸を加えることが可能となる。硫酸相対粘度が2.3以上であると、実用可能な原糸強度が得られるばかりか、最適な延伸が加わるため、鞘部のポリアミドの結晶化が進み、α型結晶配向パラメーターが適切な値となり、染色堅牢度が向上するため、好ましい。一方、硫酸相対粘度が3.3以下であると、紡糸に適した溶融粘度であるため、芯部の高い吸湿性能を有する熱可塑性ポリマーに適した紡糸温度にて生産が可能であり、好ましい。
 本発明の芯部に使用する高い吸湿性能を有する熱可塑性ポリマーのチップは、オルトクロロフェノール相対粘度にて1.2以上2.0以下であることが好ましい。オルトクロロフェノール相対粘度が1.2以上であると、鞘部に最適な延伸が加わり、鞘部のポリアミドの結晶化が進み、α型結晶配向パラメーターが適切な値となり、糸切れや毛羽が発生し難くなり好ましい。一方、オルトクロロフェノール相対粘度が2.0以下であると、過度な延伸が芯部に加わらず、鞘部のポリアミドの結晶化が進み、α型結晶配向パラメーターが適切な値となり、染色堅牢度が向上し好ましい。
 延伸工程において、引き取りローラーによって引き取られる糸条の速度(紡糸速度)に、引き取りローラーと延伸ローラーの周速度比の値である延伸倍率の積が、3300m/min以上4500m/min以下となるように紡糸条件を設定することが好ましい。さらに好ましくは3500m/min以上4500m/min以下、さらに好ましくは4000m/min以上4500m/min以下である。この数値は口金より吐出されたポリマーが、口金吐出線速度から引き取りローラーの周速度まで、さらに引き取りローラーの周速度から延伸ローラーの周速度まで延伸される総延伸量を表している。かかる範囲とすることにより、鞘部のポリアミドに適切な延伸を加えることが可能となる。3300m/min以上であると鞘部のポリアミドの結晶化が進み、染色堅牢度が向上するばかりでなく、芯部の高い吸湿性能を有する熱可塑性ポリマーの結晶化が進まず、吸湿性能が向上し易くなる。一方、4500m/min以下であると鞘部のポリアミドの結晶化が適度に進行し、所定の結晶化度とすることが可能となるばかりではなく、製糸の際に糸切れや毛羽の発生が少なく、好ましい。
 給油工程において、給油装置によって付与される紡糸油剤は非含水系油剤であることが好ましい。芯部の高い吸湿性能を有する熱可塑性ポリマーは、ΔMRが10%以上のポリマーで吸湿性能に優れるため、非含水系油剤を付与した場合、徐々に空気中の水分を吸収するため、膨潤が発生し難く、安定した巻き取りが可能なため好ましい。
 本発明の芯鞘複合糸において、無機粒子含有量は、繊維全体で0.1~5重量%含有させることが好ましい。無機粒子をかかる範囲に制御するためには、鞘部のポリアミド、芯部のポリエーテルエステルアミド共重合体のどちらか一方もしくは両方に無機粒子を含有させて制御することができる。
 接触冷感を高くするためには、芯鞘複合糸が肌に触れた直後に、肌側の貯えられた熱量が、低温側の芯鞘複合糸の鞘部に移動し、続いて低温側の芯鞘複合糸の芯部に移動することでより接触冷感を高めることが好ましい。すなわち、鞘部のポリアミドに無機粒子を含有させることが好ましい。この場合、鞘部のポリアミドが無機粒子を0.2~6重量%含有することが好ましい。かかる範囲とすることにより、着用時に肌からの熱を芯鞘複合糸側に素早く移動させ、さらに、芯鞘複合糸の鞘部のポリアミドから、芯部のポリエーテルエステルアミド共重合体ポリマーへの熱移動がスムーズに行われ、接触冷感、洗濯しても接触冷感を維持することが可能となる。芯部の無機粒子の含有量は多いほど接触冷感を高くすることができるが、接触冷感の効果と高次加工性、糸物性等から、さらに好ましくは0.2~3重量%である。
 また、ポリアミド(鞘部)やポリエーテルエステルアミド共重合体等の熱可塑性ポリマー(芯部)に無機粒子を高濃度かつ均一に含有せしめる方法としては、ペレットへ無機粒子をブレンドし溶融する方法、高濃度の無機粒子を含有するマスタペレットをペレットにブレンドして溶融する方法、溶融状態のポリマーへ無機粒子を添加し混練する方法、ポリマーの重合前あるいは重合中の段階で原料あるいは反応系へ無機粒子を添加する方法などが挙げられるが、高濃度に添加した無機粒子の二次凝集を抑え、均一に分散させるためには、ポリマーの重合中に無機粒子を添加する方法が特に好ましい。
 本発明の芯鞘複合糸は、吸湿性能、接触冷感に優れているので衣料品に好ましく用いることができる。布帛の形態としては、織物、編物、不織布など目的に応じて選択できる。前述したとおり、ΔMRは大きければ大きいほど吸湿性能が高く、着用時の快適性が良好であることに対応する。従って、本発明の芯鞘複合糸を少なくとも一部に有する布帛は、ΔMRが5.0%以上となるように本発明の芯鞘複合糸の混率を調整することで、快適性に優れた衣料を提供することができる。また、前述したとおり、接触冷感は繊維が肌に触れた直後に熱移動がスムーズに行われることに対応する。従って、本発明の芯鞘複合糸を肌に接触する布帛設計をすることで、快適性に優れる衣料が提供可能となる。衣料品としては、インナーウエア、スポーツウエアなどの各種衣料用製品とすることができる。
 以下、実施例を挙げて本発明をさらに具体的に説明する。なお実施例における特性値の測定法等は次のとおりである。
 (1)硫酸相対粘度
 試料0.25gを濃度98wt%の硫酸100mlに対して1gになるように溶解し、オストワルド型粘度計を用いて25℃での流下時間(T1)を測定した。引き続き、濃度98wt%の硫酸のみの流下時間(T2)を測定した。T2に対するT1の比、すなわちT1/T2を硫酸相対粘度とした。
 (2)オルトクロロフェノール相対粘度
 試料0.5gをオルトクロロフェノール100mlに対して1gになるように溶解し、オストワルド型粘度計を用いて25℃での流下時間(T1)を測定した。引き続き、オルトクロロフェノールのみの流下時間(T2)を測定した。T2に対するT1の比、すなわちT1/T2を硫酸相対粘度とした。
 (3)K値 
 ポリビニルピロリドンを濃度1%の水溶液とし、その相対粘度を測定し、Fikentscherの式により求める。  
logZ=C[75k2 /(1+1.5kC)+k]  
但し、Z:濃度Cの水溶液の相対粘度、k:K値×10-3、C:水溶液濃度(%)である。
 (4)繊度
 1.125m/周の検尺器に繊維試料をセットし、200回転させて、ループ状かせを作成し、熱風乾燥機にて乾燥後(105±2℃×60分)、天秤にてかせ質量を量り、公定水分率を乗じた値から繊度を算出した。なお、芯鞘複合糸の公定水分率は、4.5%とした。
 (5)強度・伸度
 繊維試料を、オリエンテック(株)製“TENSILON”(登録商標)、UCT-100でJIS L1013(化学繊維フィラメント糸試験方法、2010年)に示される定速伸長条件で測定した。伸度は、引張強さ-伸び曲線における最大強力を示した点の伸びから求めた。また、強度は、最大強力を繊度で除した値を強度とした。測定は10回行い、平均値を強度および伸度とした。
 (6)断面形状
 パラフィン、ステアリン酸、エチルセルロースからなる包理剤を溶解し、芯鞘複合糸を導入後室温放置により固化させ、包理剤中の原糸を横断面方向に切断したものを東京電子(株)製のCCDカメラ(CS5270)にて繊維横断面を撮影し、その単糸中で任意に選定した10本(単糸数が10以下の場合は全て)の芯鞘複合糸について、三菱電機製のカラービデオプロセッサー(SCT-CP710)にて400倍でプリントアウトした断面写真から、全単糸について下記方法に従い扁平度を算出し、その平均値を糸条の扁平度とした。
扁平度=外接円の直径(R)/内接円の直径(r)   。
 (7)α結晶配向パラメーター
 繊維試料を、レーザーラマン分光法にて測定し、1120cm-1付近に認められるナイロンのα結晶に由来するラマンバンドの平行偏光での強度比(I1120)平行)と、垂直偏光での強度比(I1120)垂直)の比をとることで、配向度評価のパラメーターとした。また、配向に対する異方性が小さいCH変角バンド(1440cm-1付近)のラマンバンド強度を基準とし、各偏光条件(平行/垂直)の散乱強度を規格化した。
α結晶配向パラメーター=(I1120/I1440)平行/(I1120/I1440)垂直  。
 なお、配向測定用の試料は樹脂包埋後(ビスフェノール系エポキシ樹脂、24時間硬化)、ミクロトームにより切片化した。切片厚みは2.0μmとした。切片試料は切断面が楕円形になるように繊維軸から僅かに傾けて切断し、楕円形の短軸の厚みが一定厚になる箇所を選択して測定した。測定は顕微モードで行い、試料位置におけるレーザーのスポット径は1μmである。 芯、鞘層中心部の配向性解析を行い、配向の測定は偏光条件下で行った。偏光方向が繊維軸と一致する場合を平行条件、直行する場合を垂直条件として、それぞれ得られるラマンバンド強度の比から配向の程度を評価した。なお、各測定点につきn=3の測定を行った。詳細条件を以下に示す。
レーザーラマン分光法
装置:T-64000(Joobin Yvon/愛宕物産)
条件:測定モード;顕微ラマン
対物レンズ;×100
ビーム径;1μm
光源;Ar+レーザー/514.5nm
レーザーパワー;50mW
回折格子;Single 600gr/mm
スリット;100μm
検出器;CCD/Jobin Yvon 1024×256   。
 (8)鞘部ポリマーチップのアミノ末端基量
 試料1gを50mLのフェノール/エタノール混合溶液(フェノール/エタノール=80/20)に、30℃で振とう溶解させて溶液とし、この溶液を0.02Nの塩酸で中和滴定し要した0.02N塩酸量を求めた。また、上記フェノール/エタノール混合溶媒(上記と同量)のみを0.02N塩酸で中和滴定し要した0.02N塩酸の量を求めた。そしてその差から試料1gあたりのアミノ末端基量を求めた。
 (9)芯鞘複合糸の鞘部ポリマーのアミノ末端基量
A.鞘部の重量比率測定
 パラフィン、ステアリン酸、エチルセルロースからなる包理剤を溶解し、芯鞘複合糸を導入後室温放置により固化させ、包理剤中の原糸を横断面方向に切断したものを東京電子(株)製のCCDカメラ(CS5270)にて繊維横断面を撮影し、その単糸中で任意に選定した10本(単糸数が10以下の場合は全て)の芯鞘複合糸について、三菱電機製のカラービデオプロセッサー(SCT-CP710)にて1500倍でプリントアウトした断面写真を鞘部および芯部に切り抜き、重量測定後、以下の式にて算出した。
 鞘部の重量比率=(鞘部の重量/(鞘部の重量+芯部の重量))×100
B.芯鞘複合糸のアミノ末端基量
 上記(8)記載の方法にてアミノ末端基量を求めた。
C.鞘部ポリマーのアミノ末端基量
 上記Bで得られたアミノ末端基量を、上記Aで得られた鞘部の重量比率にて乗し、算出した。
 鞘部ポリマーのアミノ末端基濃度
=芯鞘複合糸のアミノ末端基量×鞘部の重量比率/100   。
 (10)筒編み地作製
A.筒編み地の作製
 筒編機にて度目が50となるように調整して作製した。繊維の正量繊度が低い場合は、筒編機に給糸する繊維の総繊度が50~100dtexとなるように適宜合糸し、総繊度が100dtexを超える場合は、筒編機への給糸を1本で行い、前記同様度目が50となるように調整して作製した。
B.筒編み地の精錬
 上記Aで得られた筒編み地をノニオン界面活性剤(第一工業製薬社製、ノイゲンSS)2g/l水溶液を編み地1gに対し100ml用意し、60℃にて30分洗浄した後、流水にて20分水洗し、脱水機にて脱水、風乾した。
C.筒編み地の染色
 上記A,Bで得られた筒編み地を、以下の染料及び染色助剤を用いて染色した。
酸性染料:Erionyl Blue A-R 2.0質量%
染色助剤:酢酸 1.5%
酸性染料、染色助剤を含む染色浴に常圧98℃設定で45分間染色した後、流水にて20分水洗し、脱水機にて脱水、風乾した。
 (11)発色性
 筒編み地(10)Cにて得られた、染色後の筒編み地の発色性について、以下の4段階で評価した。
S:均一に全体が濃色に着色。
A:均一に全体が中色(淡~濃色)~濃色に着色
B:均一に全体が淡色~中色(淡~濃色)に着色
C:均一に全体が淡色に着色  。
 (12)吸放湿性(ΔMR)
 筒編み地(10)Aを、秤量瓶に1~2g程度はかり取り、110℃に2時間保ち乾燥させ重量を測定し(W0)、次に対象物質を20℃、相対湿度65%に24時間保持した後重量を測定する(W65)。そして、これを30℃、相対湿度90%に24時間保持した後重量を測定する(W90)。そして、以下の式にしたがい計算した。
MR1=[(W65-W0)/W0]×100% ・・・・・ (1)
MR2=[(W90-W0)/W0]×100% ・・・・・ (2)
ΔMR=MR2-MR1   ・・・・・・・・・・・・・・ (3)   。
 (13)洗濯後ΔMR
 筒編み地(10)Aを、JIS L0217(1995)付表1記載の番号103記載の方法にて、繰り返し20回洗濯を実施した後、上記記載の吸放湿性を測定し算出した。
ΔMRが5.0%以上の場合、着用時に良好な快適性が得られると判断した。
 (14)洗濯後ΔMR保持率
 洗濯前後のΔMRの変化指標として、洗濯後のΔMR保持率を下記式にて算出した。
洗濯処理後のΔMR/洗濯処理前のΔMR × 100
ΔMR保持率が90%以上の場合は、洗濯耐久性有りと判断した。
 (15)洗濯堅牢度
 染色筒編み地(10)Cを、JIS L0844(2011)7.1項A法に従い、表7中のA-2条件にて測定した。判定はJIS L0801(2011)10項(a)の視感法に従って、変退色および色落ちについて級判定を実施した。変退色および色落ち判定のいずれもが3級以上の場合は選択牢度は合格、少なくとも変退色か色落ち判定の1つが2-3級以下の場合は染色堅牢度は不合格とした。
 (16)総合評価
 洗濯堅牢度、洗濯後ΔMR、洗濯後ΔMR保持率の評価を行い、以下の3段階で評価した。
S:洗濯堅牢度変退色および汚染判定いずれも4級以上、洗濯後ΔMRが7.0%以上、洗濯後ΔMR保持率が95%以上の3項目のうち、すべてが当てはまる。
A:洗濯堅牢度変退色および汚染判定いずれも3級以上、洗濯後ΔMRが5.0%、洗濯後ΔMR保持率が90%以上の3項目のうち、すべてが当てはまる。
C:洗濯堅牢度変退色および汚染判定いずれも2-3級以下、洗濯後ΔMRが5.0%未満、洗濯後ΔMR保持率が90%未満の3項目のうち、1項目以上当てはまる。
SとAは、天然繊維を超える快適性と、実使用に耐えうる洗濯耐久性に優れ合格とした。
 (17)接触冷感性(q-max)
 接触冷感性は、サーモラボIIB型精密迅速熱物性測定装置 KES-F7(カトーテック株式会社製)を用いた冷温感測定により得られる冷温感評価値(q-max)により評価した。q-max値とは、純銅板に熱を貯え、これが試料表面に接触した直後、貯えられた熱量が低温側の試料物体に移動する熱流のピーク値を測定した値(単位:W/cm)である。
 室温を20℃、相対湿度を60%に調整した室内に筒編み地(10)Aと装置(KES-F7 THERMO LABO IIB TYPE(カトーテック(株)製))を1昼夜放置しておく。筒編みに接触させて熱の移動量を測定するT-BOX(温度検出および貯熱板)を室温より10℃高くするために蓄温する熱板BTプレートを30℃に設定し、BTプレートを暖めるためにBTの回りを保温している熱板G-BTを20.3℃に設定し、安定させる。生地の裏(着用時に肌側になる)面を上に向けた筒編みを置き、T-BOXを筒編みの上に素早くのせてq-maxを測定した。なお、筒編みの目付け(g/cm)は測定部の筒編みを10cm四方に切断し、重量を測定して算出した。
 本測定方法において、q-maxが0.175(W/cm)以上の場合、着用時に良好な快適性が得られると判断した。
 (18)洗濯後の接触冷感性(q-max)保持率
 筒編み地(10)Aを、JIS L0217(1995)付表1記載の番号103記載の方法にて、繰り返し20回洗濯を実施したのち、上記記載の接触冷感性を測定した。洗濯前後の接触冷感性の変化指標として、洗濯後のq-max保持率を下記式にて算出した。
(洗濯後のq-max)/(洗濯処理前のq-max)×100
q-max保持率が90%以上の場合は、洗濯耐久性有りと判断した。
 (19)制電性
 筒編み地(10)Aを、JIS L1094(織物及び編物の帯電性試験方法、2014年)A法(半減期測定法)、B法(摩擦帯電圧測定法)に従い測定した。尚、環境条件は20℃×40%RH、摩擦布は綿(金巾3号)、たて方向で測定した。
 摩擦耐電圧が1500V以下の場合、着用時に良好な制電性能が得られると判断した。
 (20)洗濯後制電性
 筒編み地(10)Aを、JIS L0217(1995)付表1記載の番号103記載の方法にて、繰り返し20回洗濯を実施した後、上記記載の制電性を測定した。
 [実施例1]
 ポリアミド成分がナイロン6、ポリエーテル成分(ポリ(アルキレンオキシド)グリコール)が分子量1500のポリエチレングリコールであり、ポリエーテル成分の構成比率がmol比にて約76%であるポリエーテルエステルアミド共重合体(アルケマ社製、MH1657、オルトクロロフェノール相対粘度:1.69)を芯部とし、硫酸相対粘度が2.71、アミノ末端基量が5.95×10-5mol/gであるナイロン6を鞘部とし、270℃にて溶融し、同心円芯鞘複合用口金(24ホール)から芯/鞘比率(重量部)=50/50になるように紡糸した。なお、アミノ末端基量は重合時にヘキサメチレンジアミンおよび酢酸にて調整した。
 この時、得られる芯鞘複合糸の総繊度が56デシテックスとなるようにギヤポンプの回転数を選定し、それぞれ22g/minの吐出量とした。そして糸条冷却装置で糸条を冷却固化し、給油装置により非含水油剤を給油したのち、第1流体交絡ノズル装置で交絡を付与し、第1ロールである引き取りローラーの周速度を3368m/min、第2ロールである延伸ローラーの周速度を4210m/minで延伸、延伸ローラー150℃により熱セットを行い、巻き取り速度を4000m/minで巻き取り、56デシテックス24フィラメントの芯鞘複合糸を得た。得られた繊維の物性を表1に示す。
 得られた芯鞘複合糸は、ΔMRは12.4%と極めて高い吸湿性能を有していた。また、洗濯堅牢度変退色および色落ち判定はいずれも4級、洗濯後ΔMRは12.4%、洗濯後ΔMR保持率は100%と極めて良好であった。すなわち、得られた芯鞘複合糸を用いた布帛および衣料品は、実使用に耐えうる洗濯耐久性に優れた快適性衣料が得らた。
 さらに、q-maxは0.170W/cm、洗濯後q-maxは0.170W/cm、洗濯後のq-max保持率は100%と、接触冷感にも優れていた。
 また、20℃×40%RH環境下での摩擦帯電圧は800V、洗濯後摩擦帯電圧は800Vと優れた制電性能を有し、実使用に耐えうる洗濯耐久性を持った制電性能に優れた快適衣料が得られた。
 [実施例2]
 第1ロールである引き取りローラーの周速度を2381m/min、第2ロールである延伸ローラーの周速度を3571m/min、巻き取り速度を3500m/minで巻き取った以外実施例1と同様の方法で56デシテックス24フィラメントの芯鞘複合糸を得た。得られた繊維の物性を表1に示す。
 得られた芯鞘複合糸は、ΔMRは11.6%と極めて高い吸湿性能を有していた。また、洗濯堅牢度変退色および色落ち判定はいずれも3-4級、洗濯後ΔMRは11.1%であり、洗濯後ΔMR保持率は95.7%と良好であった。
 [実施例3]
 第1ロールである引き取りローラーの周速度を2245m/min、第2ロールである延伸ローラーの周速度を3367m/min、巻き取り速度を3300m/minで巻き取った以外実施例1と同様の方法で56デシテックス24フィラメントの芯鞘複合糸を得た。得られた繊維の物性を表1に示す。
 得られた芯鞘複合糸は、ΔMRは10.8%と極めて高い吸湿性能を有していた。また、洗濯堅牢度変退色および色落ち判定はいずれも3級、洗濯後ΔMRは9.9%であり、洗濯後ΔMR保持率は91.7%と良好であった。
 [実施例4]
 第1ロールである引き取りローラーの周速度を4474m/min、第2ロールである延伸ローラーの周速度を4474m/min、巻き取り速度を4250m/min、で巻き取った以外実施例1と同様の方法で56デシテックス24フィラメントの芯鞘複合糸を得た。得られた繊維の物性を表1に示す。
 得られた芯鞘複合糸は、ΔMRは13.1%と極めて高い吸湿性能を有していた。また、洗濯堅牢度変退色および色落ち判定はいずれも4-5級、洗濯後ΔMRは13.1%であり、洗濯後ΔMR保持率は100%と極めて良好であった。
 [実施例5]
 芯/鞘比率(重量部)=30/70になるように紡糸した以外、実施例1と同様の方法で56デシテックス24フィラメントの芯鞘複合糸を得た。得られた繊維の物性を表1に示す。
 得られた芯鞘複合糸は、ΔMRは7.5%と高い吸湿性能を有していた。また、洗濯堅牢度変退色および色落ち判定はいずれも3-4級、洗濯後ΔMRは7.2%であり、洗濯後ΔMR保持率は96.0%と良好であった。
 また、20℃×40%RH環境下での摩擦帯電圧は850V、洗濯後摩擦帯電圧は850Vと優れた制電性能を有し、実使用に耐えうる洗濯耐久性を持った制電性能に優れた快適衣料が得られた。
 [実施例6]
 芯/鞘比率(重量部)=20/80になるように紡糸した以外、実施例1と同様の方法で56デシテックス24フィラメントの芯鞘複合糸を得た。得られた繊維の物性を表2に示す。
 得られた芯鞘複合糸は、ΔMRは5.9%と十分な吸湿性能を有していた。また、洗濯堅牢度変退色および色落ち判定はいずれも3-4級、洗濯後ΔMRは5.5%であり、洗濯後ΔMR保持率は93.2%と良好であった。
 [実施例7]
 芯/鞘比率(重量部)=70/30になるように紡糸した以外、実施例1と同様の方法で56デシテックス24フィラメントの芯鞘複合糸を得た。得られた繊維の物性を表2に示す。
 得られた芯鞘複合糸は、ΔMRは15.1%と極めて高い吸湿性能を有していた。また、洗濯堅牢度変退色および色落ち判定はいずれも3-4級、洗濯後ΔMRは15.0%であり、洗濯後ΔMR保持率は99.3%と良好であった。
 [実施例8]
 芯/鞘比率(重量部)=80/20になるように紡糸した以外、実施例1と同様の方法で56デシテックス24フィラメントの芯鞘複合糸を得た。
 得られた繊維の物性を表2に示す。
 得られた芯鞘複合糸は、ΔMRは16.9%と極めて高い吸湿性能を有していた。また、洗濯堅牢度変退色および色落ち判定いずれも3級、洗濯後ΔMRは16.7%であり、洗濯後ΔMR保持率が99.4%と良好であった。
 [実施例9]
 硫酸相対粘度が2.40、アミノ末端基量が3.95×10-5mol/gであるナイロン6を鞘部とし紡糸した以外、実施例1と同様の方法で56デシテックス24フィラメントの芯鞘複合糸を得た。得られた繊維の物性を表2に示す。
 得られた芯鞘複合糸は、ΔMRは11.1%と極めて高い吸湿性能を有していた。また、洗濯堅牢度変退色および色落ち判定はいずれも3級、洗濯後ΔMRは10.1%であり、洗濯後ΔMR保持率は90.1%と良好であった。
 [実施例10]
 硫酸相対粘度が2.63、アミノ末端基量が5.20×10-5mol/gであるナイロン6を鞘部とし紡糸した以外、実施例1と同様の方法で56デシテックス24フィラメントの芯鞘複合糸を得た。得られた繊維の物性を表2に示す。
 得られた芯鞘複合糸は、ΔMRは12.0%と極めて高い吸湿性能を有していた。また、洗濯堅牢度変退色および色落ち判定はいずれも4級、洗濯後ΔMRは11.6%であり、洗濯後ΔMR保持率は96.7%と極めて良好であった。
 [実施例11]
 硫酸相対粘度が3.30、アミノ末端基量が4.78×10-5mol/gであるナイロン6を鞘部とし紡糸した以外、実施例1と同様の方法で56デシテックス24フィラメントの芯鞘複合糸を得た。得られた繊維の物性を表3に示す。
 得られた芯鞘複合糸は、ΔMRは13.1%と極めて高い吸湿性能を有していた。また、洗濯堅牢度変退色および色落ち判定はいずれも4-5級、洗濯後ΔMRは13.1%であり、洗濯後ΔMR保持率は100%と極めて良好であった。
 [実施例12]
 硫酸相対粘度が2.63、アミノ末端基量が7.40×10-5mol/gであるナイロン6を鞘部とし紡糸した以外、実施例1と同様の方法で56デシテックス24フィラメントの芯鞘複合糸を得た。得られた繊維の物性を表3に示す。
 得られた芯鞘複合糸は、ΔMRは12.7%と極めて高い吸湿性能を有していた。また、洗濯堅牢度変退色および色落ち判定はいずれも4-5級、洗濯後ΔMRは12.2%であり、洗濯後ΔMR保持率は96.1%と極めて良好であった。
 [実施例13]
 硫酸相対粘度が2.63、アミノ末端基量が4.15×10-5mol/gであるナイロン6を鞘部とし紡糸した以外、実施例1と同様の方法で56デシテックス24フィラメントの芯鞘複合糸を得た。得られた繊維の物性を表3に示す。
 得られた芯鞘複合糸は、ΔMRは11.5%と極めて高い吸湿性能を有していた。また、洗濯堅牢度変退色および色落ち判定はいずれも3級、洗濯後ΔMRは10.5%であり、洗濯後ΔMR保持率は91.3%と良好であった。
 [実施例14]
 同心円芯鞘複合用口金を68ホールとしたこと、第1ロールである引き取りローラーの周速度を3508m/min以外実施例1と同様の方法で56デシテックス68フィラメントの芯鞘複合糸を得た。得られた繊維の物性を表3に示す。
 得られた芯鞘複合糸は、ΔMRは13.6%と極めて高い吸湿性能を有していた。また、洗濯堅牢度変退色および色落ち判定はいずれも4級、洗濯後ΔMRは13.6%であり、洗濯後ΔMR保持率は100%と良好であった。
 [実施例15]
 同心円芯鞘複合用口金を68ホールとしたこと、第1ロールである引き取りローラーの周速度を3508m/min以外実施例5と同様の方法で56デシテックス68フィラメントの芯鞘複合糸を得た。得られた繊維の物性を表3に示す。
 得られた芯鞘複合糸は、ΔMRは8.3%と極めて高い吸湿性能を有していた。また、洗濯堅牢度変退色および色落ち判定はいずれも3-4級、洗濯後ΔMRは7.9%であり、洗濯後ΔMR保持率は95.2%と良好であった。
 [実施例16]
 添加物を含まない相対粘度2.71のナイロン6とポリビニルピロリドン(BASF社製“ルビスコール”K30SP,K値=30)を20重量%添加した相対粘度2.71のナイロン6を1:5の比率で、ポリビニルピロリドン添加率3.3重量%となるようにチップブレンドしたナイロン6ブレンドポリマーを鞘部とし紡糸した以外、実施例1と同様の方法で56デシテックス24フィラメントの芯鞘複合糸を得た。得られた繊維の物性を表4に示す。
 得られた芯鞘複合糸は、ΔMRは13.3%と極めて高い吸湿性能を有していた。また、洗濯堅牢度変退色および色落ち判定はいずれも4級、洗濯後ΔMRは13.3%、洗濯後ΔMR保持率は100%と極めて良好であった。すなわち、得られた芯鞘複合糸を用いた布帛および衣料品は、実使用に耐えうる洗濯耐久性に優れた快適性衣料が得られる。また、鞘部に吸湿剤としてポリビニルピロリドンを含有させたことにより、吸湿性能が向上しただけでなく、着用時に肌から水分を繊維鞘側に素早く移動させ、実施例1と比較してサラッとした風合いが得られた。
 [実施例17]
 添加物を含まない相対粘度2.71のナイロン6とポリビニルピロリドン(BASF社製“ルビスコール”K30SP,K値=30)を20重量%添加した相対粘度2.71のナイロン6を1:2の比率で、ポリビニルピロリドン添加率6.7重量%となるようにチップブレンドした以外は実施例1と同様の方法で56デシテックス24フィラメントの芯鞘複合糸を得た。得られた繊維の物性を表4に示す。
 得られた芯鞘複合糸は、ΔMRは13.6%と極めて高い吸湿性能を有していた。また、洗濯堅牢度変退色および色落ち判定はいずれも4級、洗濯後ΔMRは13.6%、洗濯後ΔMR保持率は100%と極めて良好であった。
 [比較例1]
 硫酸相対粘度が2.15、アミノ末端基量が4.70×10-5mol/gであるナイロン6を鞘部成分とし紡糸した以外、実施例1と同様の方法で56デシテックス24フィラメントの芯鞘複合糸を得た。得られた繊維の物性を表5に示す。
 また得られた芯鞘複合糸のΔMRは10.5%と極めて高い吸湿性能を有していたが、洗濯後ΔMR保持率は73.3%で、実使用に耐えうる吸湿性能の洗濯耐久性を有していなかった。また、洗濯堅牢度変退色および色落ち判定はいずれも2-3級で、染色堅牢性に劣っていた。すなわち、得られた芯鞘複合糸を用いた布帛および衣料品は、実使用に耐えうる洗濯耐久性(吸湿性能、染色性)を有していないことがわかる。また、20℃×40%RH環境下での摩擦帯電圧は1000Vであったが、洗濯後摩擦帯電圧は1700Vと制電性能に劣っていた。すなわち、得られた芯鞘複合糸を用いた布帛および衣料品は、低温低湿度の環境下において着用時のまつわり付きやほこり付着しやすく快適性に劣ることがわかる。
 [比較例2]
 芯/鞘比率(重量部)=10/90になるように紡糸した以外、実施例1と同様の方法で56デシテックス24フィラメントの芯鞘複合糸を得た。得られた繊維の物性を表5に示す。
 また得られた芯鞘複合糸の洗濯堅牢度変退色および色落ち判定いずれも3-4級と染色堅牢性は良好であった。また、ΔMRは4.2%であり、十分な吸湿性能を有していなかった。また、洗濯後ΔMR保持率は84.4%で実使用に耐えうる吸湿性能の洗濯耐久性を有していなかった。すなわち、得られた芯鞘複合糸を用いた布帛および衣料品は、天然繊維を超える快適性は得られないことがわかる。
 [比較例3]
 芯/鞘比率(重量部)=90/10になるように紡糸した以外、実施例1と同様の方法で56デシテックス24フィラメントの芯鞘複合糸を得た。得られた繊維の物性を表5に示す。
 また得られた芯鞘複合糸のΔMRは17.8と極めて高い吸湿性能を有し、洗濯後ΔMR保持率は92.7%で、実使用に耐えうる吸湿性能の洗濯耐久性を有していた。しかし、洗濯堅牢度変退色および色落ち判定はいずれも2-3級で、染色堅牢性に劣っていた。すなわち、得られた芯鞘複合糸を用いた布帛および衣料品は、実使用に耐えうる洗濯耐久性(染色性)を有していないことがわかる。
 さらに、原糸の採取中、糸切れが多発し、安定した紡糸が困難であった。また、巻き取られた繊維パッケージを観察すると毛羽の発生が見られ不良品が多く発生し、生産性に劣っていた。
 [比較例4]
 第1ロールである引き取りローラーの周速度を2020m/min、第2ロールである延伸ローラーの周速度を3030m/min、巻き取り速度を3000m/minで巻き取った以外実施例1と同様の方法で56デシテックス24フィラメントの芯鞘複合糸を得た。得られた繊維の物性を表5に示す。
 また得られた芯鞘複合糸のΔMRは10.0%と極めて高い吸湿性能を有していたが、洗濯後ΔMR保持率は88.0%で、実使用に耐えうる吸湿性能の洗濯耐久性を有していなかった。また、洗濯堅牢度変退色および色落ち判定はいずれも2級で、染色堅牢性に劣っていた。すなわち、得られた芯鞘複合糸を用いた布帛および衣料品は、実使用に耐えうる洗濯耐久性(吸湿性能、染色性)を有していないことがわかる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 [実施例18]
 ポリアミド成分がナイロン6、ポリエーテル成分(ポリ(アルキレンオキシド)グリコール)が分子量1500のポリエチレングリコールであり、ポリエーテル成分の構成比率がmol比にて約76%であるポリエーテルエステルアミド共重合体(アルケマ社製、MH1657、オルトクロロフェノール相対粘度:1.69)を芯部とし、硫酸相対粘度が2.71、アミノ末端基量が5.95×10-5mol/gであるナイロン6を鞘部とし、270℃にて溶融し、ダンベル状の吐出孔を有する芯鞘複合用口金から芯/鞘比率(重量部)=50/50になるように紡糸した。
 この時、得られる芯鞘複合糸の総繊度が56デシテックスとなるようにギヤポンプの回転数を選定し、それぞれ22g/minの吐出量とした。そして糸条冷却装置で糸条を冷却固化し、給油装置により非含水油剤を給油したのち、第1流体交絡ノズル装置で交絡を付与し、第1ロールである引き取りローラーの周速度を3368m/min、第2ロールである延伸ローラーの周速度を4210m/minで延伸、延伸ローラー150℃により熱セットを行い、巻き取り速度を4000m/minで巻き取り、扁平度4.0、56デシテックス24フィラメントのI型断面を有する芯鞘複合糸を得た。得られた繊維の物性を表6に示す。
 得られた芯鞘複合糸は、ΔMRは12.4%と極めて高い吸湿性能を有していた。また、洗濯堅牢度変退色および色落ち判定はいずれも4級、洗濯後ΔMRは12.4%、洗濯後ΔMR保持率は100%と極めて良好であった。さらに、q-maxは0.183W/cm、洗濯後q-maxは0.183W/cm、洗濯後のq-max保持率は100%と極めて良好であった。すなわち、得られた芯鞘複合糸を用いた布帛および衣料品は、吸湿性能および接触冷感に優れ、実使用に耐えうる洗濯耐久性に優れた快適性衣料が得られる。
 [実施例19]
 275℃にて溶融し紡糸したこと、第1ロールである引き取りローラーの周速度を2381m/min、第2ロールである延伸ローラーの周速度を3571m/min、巻き取り速度を3500m/minで巻き取った以外、実施例18と同様の方法で扁平度2.5、56デシテックス24フィラメントのI型断面を有する芯鞘複合糸を得た。得られた繊維の物性を表6に示す。
 得られた芯鞘複合糸は、ΔMRは11.9%と極めて高い吸湿性能を有していた。また、洗濯堅牢度変退色および色落ち判定はいずれも3級、洗濯後ΔMRは11.5%であり、洗濯後ΔMR保持率は97%と良好であった。さらに、q-maxは0.178W/cm、洗濯後q-maxは0.178W/cm、洗濯後のq-max保持率は100%と極めて良好であった。
 [実施例20]
 265℃にて溶融し紡糸したこと以外、実施例18と同様の方法で扁平度4.8、56デシテックス24フィラメントのI型断面を有する芯鞘複合糸を得た。得られた繊維の物性を表6に示す。
 得られた芯鞘複合糸は、ΔMRは12.8%と極めて高い吸湿性能を有していた。また、洗濯堅牢度変退色および色落ち判定はいずれも4級、洗濯後ΔMRは12.8%であり、洗濯後ΔMR保持率は100%と極めて良好であった。さらに、q-maxは0.186W/cm、洗濯後q-maxは0.186W/cm、洗濯後のq-max保持率は100%と極めて良好であった。
 [実施例21]
 凸レンズ状の吐出孔を有する芯鞘複合用口金を用いたこと、芯/鞘比率(重量部)=30/70になるように紡糸した以外、実施例18と同様の方法で扁平度4.0、56デシテックス24フィラメントの凸レンズ型断面を有する芯鞘複合糸を得た。得られた繊維の物性を表6に示す。
 得られた芯鞘複合糸は、ΔMRは7.5%と極めて高い吸湿性能を有していた。また、洗濯堅牢度変退色および色落ち判定いずれも4-5級、洗濯後ΔMRは7.2%であり、洗濯後ΔMR保持率は96%と極めて良好であった。さらに、q-maxは0.177W/cm、洗濯後q-maxは0.177W/cm、洗濯後のq-max保持率は100%と極めて良好であった。
 [実施例22]
 芯/鞘比率(重量部)=20/80になるように紡糸した以外、実施例18と同様の方法で扁平度4.0、56デシテックス24フィラメントのI型断面を有する芯鞘複合糸を得た。得られた繊維の物性を表6に示す。
 得られた芯鞘複合糸は、ΔMRは5.9%と極めて高い吸湿性能を有していた。また、洗濯堅牢度変退色および色落ち判定はいずれも4-5級、洗濯後ΔMRは5.5%であり、洗濯後ΔMR保持率は93%と良好であった。さらに、q-maxは0.175W/cm、洗濯後q-maxは0.175W/cm、洗濯後のq-max保持率は100%と極めて良好であった。
 [実施例23]
 凸レンズ状の吐出孔を有する芯鞘複合用口金を用いたこと、芯/鞘比率(重量部)=70/30になるように紡糸した以外、実施例18と同様の方法で扁平度4.0、56デシテックス24フィラメントの凸レンズ型断面を有する芯鞘複合糸を得た。得られた繊維の物性を表7に示す。
 得られた芯鞘複合糸は、ΔMRは15.2%と極めて高い吸湿性能を有していた。また、洗濯堅牢度変退色および色落ち判定はいずれも3-4級、洗濯後ΔMRは15.0%であり、洗濯後ΔMR保持率は99%と良好であった。さらに、q-maxは0.186W/cm、洗濯後q-maxは0.185W/cm、洗濯後のq-max保持率は99%と極めて良好であった。
 [実施例24]
 芯/鞘比率(重量部)=80/20になるように紡糸した以外、実施例18と同様の方法で扁平度4.0、56デシテックス24フィラメントのI型断面を有する芯鞘複合糸を得た。得られた繊維の物性を表7に示す。
 得られた芯鞘複合糸は、ΔMRは17.0%と極めて高い吸湿性能を有していた。また、洗濯堅牢度変退色および色落ち判定はいずれも3級、洗濯後ΔMRは16.9%であり、洗濯後ΔMR保持率は99%と良好であった。さらに、q-maxは0.188W/cm、洗濯後q-maxは0.186W/cm、洗濯後のq-max保持率は99%と極めて良好であった。
 [実施例25]
 硫酸相対粘度が2.40、アミノ末端基量が3.95×10-5mol/gであるナイロン6を鞘部とし紡糸した以外、実施例18と同様の方法で扁平度2.0、56デシテックス24フィラメントのI型断面を有する芯鞘複合糸を得た。得られた繊維の物性を表7に示す。
 得られた芯鞘複合糸は、ΔMRは11.1%と極めて高い吸湿性能を有していた。また、洗濯堅牢度変退色および色落ち判定はいずれも3級、洗濯後ΔMRは10.2%であり、洗濯後ΔMR保持率は92%と良好であった。さらに、q-maxは0.178W/cm、洗濯後q-maxは0.166W/cm、洗濯後のq-max保持率は93%と極めて良好であった。
 [実施例26]
 硫酸相対粘度が2.63、アミノ末端基量が7.40×10-5mol/gであるナイロン6を鞘部とし紡糸した以外、実施例18と同様の方法で扁平度3.0、56デシテックス24フィラメントのI型断面を有する芯鞘複合糸を得た。得られた繊維の物性を表7に示す。
 得られた芯鞘複合糸は、ΔMRは12.1%と極めて高い吸湿性能を有していた。また、洗濯堅牢度変退色および色落ち判定はいずれも3-4級、洗濯後ΔMRは11.5%であり、洗濯後ΔMR保持率は95%と良好であった。
 さらに、q-maxは0.180W/cm、洗濯後q-maxは0.171W/cm、洗濯後のq-max保持率は95%と極めて良好であった。
 [実施例27]
 硫酸相対粘度が3.30、アミノ末端基量が4.78×10-5mol/gであるナイロン6を鞘部とし紡糸したこと、凸レンズ状の吐出孔を有する芯鞘複合用口金を用いたこと以外、実施例18と同様の方法で扁平度4.5、56デシテックス24フィラメントの凸レンズ型断面を有する芯鞘複合糸を得た。得られた繊維の物性を表7に示す。
 得られた芯鞘複合糸は、ΔMRが13.0%と極めて高い吸湿性能を有していた。また、洗濯堅牢度変退色および色落ち判定はいずれも4-5級、洗濯後ΔMRは13.0%であり、洗濯後ΔMR保持率は100%と極めて良好であった。さらに、q-maxは0.183W/cm、洗濯後q-maxは0.183W/cm、洗濯後のq-max保持率は100%と極めて良好であった。
 [比較例5]
 硫酸相対粘度が2.15、アミノ末端基量が4.70×10-5mol/gであるナイロン6を鞘部成分とし紡糸した以外、実施例18と同様の方法で扁平度1.3、56デシテックス24フィラメントのI型断面を有する芯鞘複合糸を得た。得られた繊維の物性を表8に示す。
 また得られた芯鞘複合糸のΔMRは10.6%と極めて高い吸湿性能を有していたが、洗濯後ΔMR保持率は76%で、実使用に耐えうる吸湿性能の洗濯耐久性を有していなかった。また、洗濯堅牢度変退色および色落ち判定はいずれも2-3級で、染色堅牢性に劣っていた。
 さらに、q-maxは0.165W/cm、洗濯後q-maxは0.139W/cm、洗濯後のq-max保持率は84%で、実使用に耐えうる接触冷感性能の洗濯耐久性を有していなかった。
 すなわち、得られた芯鞘複合糸を用いた布帛および衣料品は、実使用に耐えうる洗濯耐久性(吸湿性能、染色性、接触冷感性)を有していないことがわかる。
 [比較例6]
 硫酸相対粘度が3.45、アミノ末端基量が4.50×10-5mol/gであるナイロン6を鞘部とし、280℃にて溶融し紡糸した以外、実施例18と同様の方法で扁平度5.5、56デシテックス24フィラメントのI型断面を有する芯鞘複合糸を得た。 得られた繊維の物性を表8に示す。
 また得られた芯鞘複合糸のΔMRは13.1%と極めて高い吸湿性能を有していたが、洗濯後ΔMR保持率は80%で、実使用に耐えうる吸湿性能の洗濯耐久性を有していなかった。また、洗濯堅牢度変退色および色落ち判定は3-4級および2-3級で、洗濯堅牢性に劣っていた。
 さらに、q-maxは0.188W/cm、洗濯後q-maxは0.147W/cm、洗濯後のq-max保持率は78%で、実使用に耐えうる接触冷感性能の洗濯耐久性を有していなかった。
 [比較例7]
 硫酸相対粘度が2.71、アミノ末端基量が5.95×10-5mol/gであるナイロン6を芯部とし、単独成分糸としたこと以外、実施例18と同様の方法で扁平度4.0、56デシテックス24フィラメントのI型断面を有する芯鞘複合糸を得た。得られた繊維の物性を表8に示す。
 得られた単独成分糸は、ΔMRは2.4%と優れた吸湿性能を有していなかった。また、洗濯堅牢度変退色および色落ち判定はいずれも5級、洗濯後ΔMRは2.4%であり、洗濯後ΔMR保持率は100%と良好であった。
 しかし、q-maxは0.157W/cm、洗濯後q-maxは0.157W/cm、洗濯後のq-max保持率は100%であったが、優れた接触冷感性能を有していなかった。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 [実施例28]
 ポリエーテルエステルアミド共重合体として、酸化チタンを含まない、ポリアミド成分がナイロン6、ポリエーテル成分(ポリ(アルキレンオキシド)グリコール)が分子量1500のポリエチレングリコールであり、ポリエーテル成分の構成比率がmol比にて約76%であるポリエーテルエステルアミド共重合体(アルケマ社製、MH1657、オルトクロロフェノール相対粘度:1.69)チップを芯部に用いた。
 ポリアミドとして、酸化チタン0.3重量%、硫酸相対粘度が2.63、アミノ末端基量が5.10×10-5mol/gであるナイロン6チップを鞘部に用いた。なお、酸化チタンは重合時に添加、アミノ末端基量は重合時にヘキサメチレンジアミンおよび酢酸にて調整した。
 チップ水分率が0.03重量%以下になるまで乾燥したポリエーテルエステルアミド共重合体(アルケマ社製、MH1657)を芯部とし、チップ水分率が0.03重量%以下になるまで乾燥したナイロン6を鞘部とし、芯部260℃、鞘部260℃で別々に溶融し、同心円芯鞘型複合繊維用紡糸口金を用いて、芯鞘比率(重量部)=50/50となるように溶融吐出した。なお、芯鞘比率については、溶融ポリマーを計量するギヤポンプ回転数によって調整した。
 そして、糸条冷却装置で糸条を冷却固化し、給油装置により非含水油剤を給油した後、第1流体交絡ノズル装置で交絡を付与し、第1ロールである引き取りローラーの周速度を3368m/min、第2ロールである延伸ローラーの周速度を4210m/minで延伸、延伸ローラー150℃により熱セットを行い、巻取速度を4000m/minで巻き取り、56デシテックス24フィラメントの芯鞘複合繊維を得た。
得られた芯鞘複合繊維の酸化チタン量は0.15重量%であった。繊維の物性を表9に示す。
 吸湿性能、接触冷感に優れ、さらには、洗濯しても吸湿性能や接触冷感を維持し、染色堅牢度に優れていることがわかる。
 [実施例29]
 ポリアミドとして、酸化チタン1.8重量%、硫酸相対粘度が2.63、アミノ末端基量が5.10×10-5mol/gであるナイロン6チップを鞘部に用いた以外は実施例28と同様の方法で56デシテックス24フィラメントの芯鞘複合繊維を得た。
 得られた芯鞘複合繊維の酸化チタン量は0.9重量%であった。繊維の物性を表9に示す。
 吸湿性能、接触冷感に優れ、さらには、鞘部のポリアミドに適切な延伸を加え、芯鞘比率を適切な比率とすることにより鞘部のα型結晶配向パラメーターを制御し、洗濯しても吸湿性能や接触冷感を維持し、染色堅牢度に優れた芯鞘複合繊維が得られることがわかる。
 [実施例30]
 ポリアミドとして、酸化チタン5.0重量%、硫酸相対粘度が2.40、アミノ末端基量が5.90×10-5mol/gであるナイロン6チップを鞘部に用いた以外は実施例28と同様の方法で56デシテックス24フィラメントの芯鞘複合繊維を得た。
 得られた芯鞘複合繊維の酸化チタン量は2.5重量%であった。繊維の物性を表9に示す。
 吸湿性能、接触冷感に優れ、さらには、洗濯しても吸湿性能や接触冷感を維持し、染色堅牢度に優れていることがわかる。
 [実施例31]
 ポリアミドとして、酸化チタン5.0重量%、硫酸相対粘度が2.40、アミノ末端基量が5.90×10-5mol/gであるナイロン6チップを鞘部に用い、芯鞘比率(重量部)=30/70とした以外は実施例28と同様の方法で56デシテックス24フィラメントの芯鞘複合繊維を得た。
 得られた芯鞘複合繊維の酸化チタン量は3.5重量%であった。繊維の物性を表9に示す。
 吸湿性能、接触冷感に優れ、さらには、洗濯しても吸湿性能や接触冷感を維持し、染色堅牢度に優れていることがわかる。
 [実施例32]
 ポリアミドとして、酸化チタンを含まない、硫酸バリウム1.0重量%、硫酸相対粘度2.60、アミノ末端基量が5.98×10-5mol/gであるナイロン6チップを鞘部に用いた以外は実施例28と同様の方法で56デシテックス24フィラメントの芯鞘複合繊維を得た。
 得られた芯鞘複合繊維の硫酸バリウム量は0.5重量%であった。繊維の物性を表9に示す。
 吸湿性能、接触冷感に優れ、さらには、洗濯しても吸湿性能や接触冷感を維持し、染色堅牢度に優れていることがわかる。
 [実施例33]
 ポリアミドとして、酸化チタンを含まず、酸化マグネシウム1.0重量%、硫酸相対粘度2.60、アミノ末端基量が5.98×10-5mol/gであるナイロン6チップを鞘部に用いた以外は実施例28と同様の方法で56デシテックス24フィラメントの芯鞘複合繊維を得た。
 得られた芯鞘複合繊維の酸化マグネシウム量は0.5重量%であった。繊維の物性を表9に示す。
 吸湿性能、接触冷感に優れ、さらには、洗濯しても吸湿性能や接触冷感を維持し、染色堅牢度に優れていることがわかる。
 [比較例8]
 ポリアミドとして、酸化チタンを含まず、硫酸相対粘度2.71、アミノ末端基量が5.95×10-5mol/gであるナイロン6チップを用い、260℃で溶融し、丸孔紡糸口金を用いて溶融吐出した以外は、実施例28と同様の方法で56デシテックス24フィラメントのナイロン6繊維を得た。繊維の物性を表9に示す。比較例8は一般的なナイロン6繊維であるため、吸湿性能、接触冷感に劣っていた。
  [実施例34]
 ポリアミドとして、酸化チタン0.1重量%、硫酸相対粘度が2.63、アミノ末端基量が5.10×10-5mol/gであるナイロン6チップを鞘部に用いた以外は実施例28と同様の方法で56デシテックス24フィラメントの芯鞘複合繊維を得た。繊維の物性を表9に示す。
 [実施例35]
 ポリアミドとして、酸化チタン20重量%、硫酸相対粘度が2.30、アミノ末端基量が5.21×10-5mol/gであるナイロン6チップを鞘部に用いた以外は実施例28と同様の方法で56デシテックス24フィラメントの芯鞘複合繊維を得た。
 紡糸時に糸切れが多発した。繊維の物性を表10に示す。
 吸湿性能、接触冷感に優れ、さらには、洗濯しても吸湿性能や接触冷感を維持し、染色堅牢度に優れていることがわかる。但し、酸化チタン量が多すぎることから、紡糸糸切れが多発し、引張強度が1.7cN/dtexと低く、強度不足による生産性、高次通過性、製品耐久性が悪く実用的では無かった。
 [実施例36]
 第1ロールである引き取りローラーの周速度を2381m/min、第2ロールである延伸ローラーの周速度を3571m/min、巻き取り速度を3500m/minで巻き取った以外は実施例29と同様の方法で56デシテックス24フィラメントの芯鞘複合繊維を得た。繊維の物性を表10に示す。
 鞘部のポリアミドに適切な延伸を加えることにより鞘部のα結晶配向パラメーターを制御し、洗濯しても吸湿性能や接触冷感を良好に維持し、染色堅牢度に優れた芯鞘複合繊維が得られた。
 [実施例37]
 第1ロールである引き取りローラーの周速度を2245m/min、第2ロールである延伸ローラーの周速度を3367m/min、巻き取り速度を3300m/minで巻き取った以外実施例29と同様の方法で56デシテックス24フィラメントの芯鞘複合繊維を得た。繊維の物性を表10に示す。
 鞘部のポリアミドに適切な延伸を加えることにより鞘部のα結晶配向パラメーターを制御し、洗濯しても吸湿性能や接触冷感を維持し、染色堅牢度に優れた芯鞘複合繊維が得られるた。
 [実施例38]
 第1ロールである引き取りローラーの周速度を4474m/min、第2ロールである延伸ローラーの周速度を4474m/min、巻き取り速度を4250m/minで巻き取った以外は実施例29と同様の方法で56デシテックス24フィラメントの芯鞘複合繊維を得た。繊維の物性を表10に示す。
 鞘部のポリアミドに適切な延伸を加えることにより鞘部のα結晶配向パラメーターを制御したので、洗濯しても吸湿性能や接触冷感を維持し、染色堅牢度に優れた芯鞘複合繊維が得られた。
 [実施例39]
 芯鞘比率(重量部)=30/70になるように紡糸した以外実施例29と同様の方法で56デシテックス24フィラメントの芯鞘複合繊維を得た。得られた繊維の物性を表10に示す。
 芯鞘比率を適切な比率とすることにより、鞘部のα結晶配向パラメーターを制御し、洗濯しても吸湿性能や接触冷感を維持し、染色堅牢度に優れた芯鞘複合繊維が得られた。
 [実施例40]
 芯鞘比率(重量部)=20/80になるように紡糸した以外は実施例29と同様の方法で56デシテックス24フィラメントの芯鞘複合繊維を得た。得られた繊維の物性を表10に示す。
 芯鞘比率を適切な比率とすることにより、鞘部のα結晶配向パラメーターを制御し、洗濯しても吸湿性能や接触冷感を維持し、染色堅牢度に優れた芯鞘複合繊維が得られた。
 [実施例41]
 芯鞘比率(重量部)=70/30になるように紡糸した以外は実施例29と同様の方法で56デシテックス24フィラメントの芯鞘複合繊維を得た。得られた繊維の物性を表10に示す。
 芯鞘比率を適切な比率とすることにより、鞘部のα結晶配向パラメーターを制御し、洗濯しても吸湿性能や接触冷感を維持し、染色堅牢度に優れた芯鞘複合繊維が得られた。
 [実施例42]
 芯鞘比率(重量部)=80/20になるように紡糸した以外実施例29と同様の方法で56デシテックス24フィラメントの芯鞘複合繊維を得た。
 得られた繊維の物性を表10に示す。
 芯鞘比率を適切な比率とすることにより、鞘部のα結晶配向パラメーターを制御し、洗濯しても吸湿性能や接触冷感を維持し、染色堅牢度に優れた芯鞘複合繊維が得られた。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 本発明の芯鞘複合糸は、高い吸湿性能を有し天然繊維を超える快適性と、実使用に耐えうる吸湿性能の洗濯耐久性と染色堅牢性を有する芯鞘複合糸を提供することができる。
 

Claims (10)

  1. 鞘部ポリマーがポリアミド、芯部が熱可塑性ポリマーであり、吸放湿性(ΔMR)が5.0%以上、かつ、洗濯20回後のΔMR保持率が90%以上100%以下である芯鞘複合糸。
  2. 洗濯堅牢度が3級以上5級以下である請求項1に記載の芯鞘複合糸。
  3. 鞘部のポリマーのα結晶配向パラメーターが1.9以上2.7以下であり、かつ芯部の熱可塑性ポリマーがポリエーテルエステルアミド共重合体である請求項1または2に記載の芯鞘複合糸。
  4. 芯鞘複合糸の鞘部ポリマーのアミノ末端基量が3.5×10-5mol/g以上8.0×10-5mol/g以下である請求項1~3のいずれか1項に記載の芯鞘複合糸。
  5. 扁平度が1.5以上5.0以下である請求項1~4のいずれか1項に記載の芯鞘複合糸。
  6. 無機粒子を繊維全体で0.1~5重量%含有する請求項1または請求項2または請求項4のいずれか1項に記載の芯鞘複合糸。
  7. 鞘部のポリマーのα結晶配向パラメーターが1.7以上2.6以下である請求項6に記載の芯鞘複合糸。
  8. 鞘部ポリマーが、無機粒子を0.2~6重量%含有する請求項6または請求項7のいずれかに記載の芯鞘複合糸。
  9. 前記無機粒子が酸化チタンであることを特徴とする請求項6~8のいずれか1項に記載の芯鞘複合糸。
  10. 請求項1~9のいずれか1項に記載の芯鞘複合糸を少なくとも一部に有する布帛。
     
PCT/JP2015/084892 2014-12-18 2015-12-14 吸湿性芯鞘複合糸 WO2016098717A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
ES15869922T ES2867529T3 (es) 2014-12-18 2015-12-14 Hilo compuesto de funda/núcleo absorbente de humedad
EP15869922.3A EP3235932B1 (en) 2014-12-18 2015-12-14 Moisture absorbent core sheath composite yarn
AU2015364882A AU2015364882A1 (en) 2014-12-18 2015-12-14 Moisture absorbent core sheath composite yarn
CA2970766A CA2970766A1 (en) 2014-12-18 2015-12-14 Moisture absorbent core sheath composite yarn
CN201580060733.7A CN107002304A (zh) 2014-12-18 2015-12-14 吸湿性芯鞘复合丝
KR1020177010017A KR20170095806A (ko) 2014-12-18 2015-12-14 흡습성 심초 복합사
US15/534,266 US20170342606A1 (en) 2014-12-18 2015-12-14 Moisture absorbent core sheath composite yarn

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014-256315 2014-12-18
JP2014256315 2014-12-18
JP2015005878A JP2016132828A (ja) 2015-01-15 2015-01-15 吸湿性芯鞘複合糸
JP2015-005878 2015-01-15
JP2015088675A JP2016204784A (ja) 2015-04-23 2015-04-23 吸湿性、接触冷感に優れたポリアミド系芯鞘複合繊維およびそれを用いた布帛
JP2015-088675 2015-04-23

Publications (1)

Publication Number Publication Date
WO2016098717A1 true WO2016098717A1 (ja) 2016-06-23

Family

ID=56126606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084892 WO2016098717A1 (ja) 2014-12-18 2015-12-14 吸湿性芯鞘複合糸

Country Status (9)

Country Link
US (1) US20170342606A1 (ja)
EP (1) EP3235932B1 (ja)
KR (1) KR20170095806A (ja)
CN (1) CN107002304A (ja)
AU (1) AU2015364882A1 (ja)
CA (1) CA2970766A1 (ja)
ES (1) ES2867529T3 (ja)
TW (1) TWI668342B (ja)
WO (1) WO2016098717A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018085061A1 (en) * 2016-11-07 2018-05-11 Brrr! Inc. Systems and articles of manufacture employing long-term cooling material in woven and non-woven fabrics
CN110983537A (zh) * 2020-01-08 2020-04-10 张明礼 一种吸湿面料的制作工艺

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111918990B (zh) * 2018-04-25 2022-10-25 东丽株式会社 聚酰胺纤维及机织针织物、和聚酰胺纤维的制造方法
US10597798B1 (en) * 2018-12-28 2020-03-24 Brrr! Inc. Methods and compositions for cooling yarns and fabrics, and articles comprising same
JPWO2021014936A1 (ja) * 2019-07-25 2021-01-28
EP4035549A4 (en) * 2019-09-26 2023-09-13 Toray Industries, Inc. CLOTHING
CN114481426A (zh) * 2022-01-12 2022-05-13 浙江柯恩实业股份有限公司 一种再生纤维针织面料生产工艺

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06306709A (ja) * 1993-04-23 1994-11-01 Asahi Chem Ind Co Ltd 鞘芯型複合繊維
JPH0941221A (ja) * 1995-07-28 1997-02-10 Toray Ind Inc 快適性に優れた合成繊維
JPH111825A (ja) * 1997-04-09 1999-01-06 Unitika Ltd 吸放湿性ポリアミド複合繊維の製造法
JPH1121724A (ja) * 1997-07-01 1999-01-26 Kuraray Co Ltd 改質された複合繊維
JPH11158728A (ja) * 1997-11-25 1999-06-15 Unitika Ltd 抗菌性を有する吸放湿性複合繊維
WO1999049111A1 (fr) * 1998-03-24 1999-09-30 Unitika Ltd. Fibre synthetique capable d'absorber et de desorber l'humidite, melange de fils entremeles utilisant cette fibre, articles tricotes et tisses utilisant cette fibre et non-tisse utilisant cette fibre
JP2001055633A (ja) * 1999-08-09 2001-02-27 Unitika Ltd 抗菌性を有する吸放湿性複合繊維
JP2004107809A (ja) * 2002-09-17 2004-04-08 Toray Ind Inc ポリアミドマルチフィラメントおよびストッキングおよびインナーウエアー

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3144092B2 (ja) * 1992-10-26 2001-03-07 東レ株式会社 吸湿性に優れた芯鞘型複合繊維
JPH0941204A (ja) * 1995-07-31 1997-02-10 Toray Ind Inc 吸湿性に優れたストッキング
TW550313B (en) * 2000-05-22 2003-09-01 Toray Industries Process for producing polyester fiber and polyester composition
JP2004091988A (ja) * 2002-09-02 2004-03-25 Toray Ind Inc ポリアミド繊維およびその製造方法
JP5297331B2 (ja) * 2008-10-17 2013-09-25 Kbセーレン株式会社 芯鞘型複合繊維
CN103827363B (zh) * 2011-09-30 2016-05-25 东丽株式会社 芯鞘复合纤维及其制造方法
WO2016190102A1 (ja) * 2015-05-22 2016-12-01 東レ株式会社 吸湿性芯鞘複合糸およびその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06306709A (ja) * 1993-04-23 1994-11-01 Asahi Chem Ind Co Ltd 鞘芯型複合繊維
JPH0941221A (ja) * 1995-07-28 1997-02-10 Toray Ind Inc 快適性に優れた合成繊維
JPH111825A (ja) * 1997-04-09 1999-01-06 Unitika Ltd 吸放湿性ポリアミド複合繊維の製造法
JPH1121724A (ja) * 1997-07-01 1999-01-26 Kuraray Co Ltd 改質された複合繊維
JPH11158728A (ja) * 1997-11-25 1999-06-15 Unitika Ltd 抗菌性を有する吸放湿性複合繊維
WO1999049111A1 (fr) * 1998-03-24 1999-09-30 Unitika Ltd. Fibre synthetique capable d'absorber et de desorber l'humidite, melange de fils entremeles utilisant cette fibre, articles tricotes et tisses utilisant cette fibre et non-tisse utilisant cette fibre
JP2001055633A (ja) * 1999-08-09 2001-02-27 Unitika Ltd 抗菌性を有する吸放湿性複合繊維
JP2004107809A (ja) * 2002-09-17 2004-04-08 Toray Ind Inc ポリアミドマルチフィラメントおよびストッキングおよびインナーウエアー

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018085061A1 (en) * 2016-11-07 2018-05-11 Brrr! Inc. Systems and articles of manufacture employing long-term cooling material in woven and non-woven fabrics
CN110983537A (zh) * 2020-01-08 2020-04-10 张明礼 一种吸湿面料的制作工艺

Also Published As

Publication number Publication date
EP3235932A1 (en) 2017-10-25
EP3235932A4 (en) 2018-06-27
US20170342606A1 (en) 2017-11-30
CA2970766A1 (en) 2016-06-23
TW201634770A (zh) 2016-10-01
TWI668342B (zh) 2019-08-11
ES2867529T3 (es) 2021-10-20
AU2015364882A1 (en) 2017-06-22
CN107002304A (zh) 2017-08-01
EP3235932B1 (en) 2021-02-24
KR20170095806A (ko) 2017-08-23

Similar Documents

Publication Publication Date Title
WO2016098717A1 (ja) 吸湿性芯鞘複合糸
JP5741434B2 (ja) 吸湿性繊維およびその製造方法
JP2016204784A (ja) 吸湿性、接触冷感に優れたポリアミド系芯鞘複合繊維およびそれを用いた布帛
JP6090546B1 (ja) 吸湿性芯鞘複合糸およびその製造方法
AU2016366016A1 (en) Moisture-absorbing core-sheath composite yarn, and fabric
KR102575877B1 (ko) 흡습성, 주름방지성이 우수한 심초 복합 단면섬유
JP6600969B2 (ja) 吸放湿性能に優れた芯鞘複合断面繊維
JP6690160B2 (ja) 耐久性に優れた制電性ポリアミド芯鞘複合繊維
JP2016117979A (ja) 洗濯耐久性に優れた吸湿性芯鞘複合糸
JP2016132828A (ja) 吸湿性芯鞘複合糸
JP2015067923A (ja) カチオン可染ポリアミド繊維および織編物、縫製品
JP2006124851A (ja) 高吸湿性ポリアミド異収縮混繊糸およびその製造方法
JP2006111991A (ja) 耐熱性に優れた高吸湿性ポリアミド繊維およびその製造方法
JP2017214672A (ja) 吸湿性芯鞘複合糸が巻かれた繊維パッケージ
JP2006111990A (ja) 伸長回復率に優れた高吸湿性ポリアミド繊維およびその製造方法
JP2006111992A (ja) 高吸湿性ポリアミド繊維およびその製造方法
JP2006111989A (ja) 染色性に優れた高吸湿性ポリアミド繊維およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15869922

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177010017

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15534266

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2970766

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2015869922

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015364882

Country of ref document: AU

Date of ref document: 20151214

Kind code of ref document: A