WO2016088641A1 - ポリイミドフィルムとその製造方法、フレキシブルプリント基板、フレキシブルディスプレイ用基材、フレキシブルディスプレイ用前面板、led照明装置及び有機エレクトロルミネッセンス表示装置 - Google Patents

ポリイミドフィルムとその製造方法、フレキシブルプリント基板、フレキシブルディスプレイ用基材、フレキシブルディスプレイ用前面板、led照明装置及び有機エレクトロルミネッセンス表示装置 Download PDF

Info

Publication number
WO2016088641A1
WO2016088641A1 PCT/JP2015/083202 JP2015083202W WO2016088641A1 WO 2016088641 A1 WO2016088641 A1 WO 2016088641A1 JP 2015083202 W JP2015083202 W JP 2015083202W WO 2016088641 A1 WO2016088641 A1 WO 2016088641A1
Authority
WO
WIPO (PCT)
Prior art keywords
bis
film
fluorene
polyimide
polyimide film
Prior art date
Application number
PCT/JP2015/083202
Other languages
English (en)
French (fr)
Inventor
康敏 伊藤
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2016562403A priority Critical patent/JP6638654B2/ja
Publication of WO2016088641A1 publication Critical patent/WO2016088641A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light

Definitions

  • the present invention relates to a polyimide film and a method for producing the same, and a flexible printed circuit board, a flexible display substrate, a flexible display front plate, an LED illumination device, and an organic electroluminescence display device including the polyimide film. More specifically, a polyimide film with improved light transmission, coloring resistance and low-temperature bending resistance suitable for a flexible printed circuit board of an LED lighting device, a method for producing the same, a flexible printed circuit board including the polyimide film, and a substrate for flexible display The present invention relates to a flexible display front plate, an LED illumination device, and an organic electroluminescence display device.
  • a flexible substrate or a flexible printed circuit is also demanded for lighting applications.
  • a polyimide film having excellent heat resistance is widely used as a film for a general flexible substrate for LED (Light Emitting Diode) lighting device applications.
  • Polyimide film has excellent heat resistance, but it is easy to be colored brown or yellow due to its high aromatic ring density, has low light transmittance in the visible light region, and requires transparency. It was difficult to apply to.
  • a method has been proposed in which polyamic acid or polyimide having a fluorene skeleton is used for forming a polyimide film (for example, see Patent Document 1).
  • a polyimide resin having a fluorene skeleton has been proposed as a novel polyimide resin that can provide a polyimide molded body excellent in transparency, flexibility, folding resistance, and toughness (see, for example, Patent Document 2). .
  • the present invention has been made in view of the above-mentioned problems and situations, and the problem to be solved is that light transmittance, coloring resistance, solder reflow suitability and bending resistance, which are suitable for flexible printed circuit boards of LED lighting devices, have been improved. It is providing a polyimide film, its manufacturing method, a flexible printed circuit board using the said polyimide film, a base material for flexible displays, a front plate for flexible displays, an LED lighting device, and an organic electroluminescence display device.
  • the present inventor forms a fluorene skeleton having either a fluorene skeleton or a derivative thereof and an acid anhydride or a derivative thereof in the course of studying the cause of the problem. It has polyamic acid or polyimide, is conditioned for 12 hours in an environment of 23 ° C. and 55% RH, then immersed in pure water at 23 ° C., and an elongation rate S of the film 2 minutes after the immersion is 0.01 It has been found that a polyimide film having improved light transmittance, coloring resistance, solder reflow suitability and bending resistance can be obtained by a polyimide film characterized by being in the range of ⁇ 0.10% / min.
  • an amide solvent such as ⁇ -butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, or N-methyl-2-pyrrolidone is often used as a solvent for forming a polyimide film. It was. In this case, it is considered that the surface becomes a film-like shape, and polyimide resin molecules are entangled randomly inside and gradually dry to form a film. Further, the film part is cured and rigidity is increased, and as a result, low-temperature bending resistance is not good. It was enough. Since such a film has a film, it was a film in which water hardly enters.
  • a resin having a polyamic acid or polyimide formed by a diamine or derivative thereof, and an acid anhydride or derivative thereof, and dichloromethane is used as a main solvent
  • the resin In the middle of drying by forming a film by the solution casting method, the resin is oriented on the metal belt for film formation, the polyimide resin molecules are aligned in a certain direction, and a certain degree of uniformity is achieved between the molecules. And it is estimated that it is difficult to break.
  • the stretching treatment is performed, the above-described effect is easily exhibited. It has been found that by performing film formation under the above conditions, the film elongation rate S within 2 minutes after immersion is within the range of 0.01 to 0.1% / min, and the object effect of the present invention is achieved. Is.
  • the film elongation rate S in the range of 0.01 to 0.1% / min, it is possible to prevent water contained at a low temperature from solidifying and acting as a defect, and to improve low-temperature bending resistance.
  • polyimide according to item 1 or 2 wherein the polyamic acid or polyimide has a fluorene skeleton derived from at least one compound selected from aromatic diamines, isocyanates, and carboxylic anhydrides. the film.
  • the diamine having the fluorene skeleton includes 9,9-bis (4-aminophenyl) fluorene, 9,9-bis (4-amino-3-methylphenyl) fluorene and 9,9-bis (3-fluoro-4-).
  • the acid anhydride having a fluorene skeleton is 9,9-bis (3,4-dicarboxyphenyl) fluorenic dianhydride or 9,9-bis [4- (3,4-dicarboxyphenoxy) phenyl] fluorene.
  • the polyimide film according to any one of Items 1 to 4, which is an acid dianhydride.
  • a method for producing a polyimide film comprising producing the polyimide film according to any one of items 1 to 5 by a solution casting method, Having a step of preparing a dope containing polyamic acid or polyimide and an organic solvent,
  • the polyamic acid or polyimide is formed from a diamine or derivative thereof, one of which has a fluorene skeleton, and an acid anhydride or derivative thereof,
  • the method for producing a polyimide film, wherein the organic solvent is a mixed solvent containing 50% by mass or more of dichloromethane.
  • a flexible printed circuit board comprising the polyimide film according to any one of items 1 to 5.
  • a substrate for a flexible display comprising the polyimide film according to any one of items 1 to 5.
  • a front panel for a flexible display comprising the polyimide film according to any one of items 1 to 5.
  • An LED lighting device comprising the polyimide film according to any one of Items 1 to 5 or the flexible printed circuit board according to Item 8.
  • It comprises the polyimide film according to any one of Items 1 to 5, the substrate for flexible display according to Item 9, or the front plate for flexible display according to Item 10.
  • the present invention it is possible to provide a polyimide film with improved light transmittance, coloring resistance, solder reflow suitability and bending resistance suitable for a flexible printed circuit board of an LED lighting device, and a method for producing the same. Moreover, the flexible printed circuit board using the said polyimide film, the base material for flexible displays, the front plate for flexible displays, LED lighting apparatus, and an organic electroluminescent display apparatus can be provided.
  • the polyimide film of the present invention has a polyamic acid or polyimide formed by a diamine or derivative thereof having a fluorene skeleton and an acid anhydride or derivative thereof, and has an environment of 23 ° C. and 55% RH. After adjusting the humidity for 12 hours and then immersing in pure water at 23 ° C., the film elongation rate S in the range of 0.01 to 0.10% / min after 2 minutes immediately after immersion is characterized by To do.
  • This feature is a technical feature common to the inventions according to claims 1 to 12.
  • the weight average molecular weight of the polyamic acid or polyimide is in the range of 30,000 to 1,000,000.
  • the effect of improving is high and preferable.
  • the polyamic acid or polyimide preferably has a fluorene skeleton derived from at least one compound selected from aromatic diamines, isocyanates, and carboxylic anhydrides, and the diamine or derivative thereof having the fluorene skeleton is , 9,9-bis (4-aminophenyl) fluorene, 9,9-bis (4-amino-3-methylphenyl) fluorene and 9,9-bis (3-fluoro-4-aminophenyl) fluorene
  • the acid anhydride having at least one kind or the fluorene skeleton or a derivative thereof is 9,9-bis (3,4-dicarboxyphenyl) fluorenic dianhydride or 9,9-bis [4- (3 , 4-dicarboxyphenoxy) phenyl] fluorenic dianhydride, Permeability, high effect of improving the coloring resistance and bending resistance, preferred.
  • the polyimide film of the present invention is suitably included in a flexible printed circuit board, a flexible display substrate, a flexible display front plate, an LED lighting device, and an organic electroluminescence display device.
  • flexible refers to a polyimide film, a flexible printed circuit board, and a visual check after repeated winding and releasing 10 times on a rod made of ABS resin (acrylonitrile-butadiene-styrene copolymer resin) having a diameter of 5 mm. It refers to the characteristic that the substrate for flexible display and the front plate for flexible display are not damaged such as cracks and chips.
  • ABS resin acrylonitrile-butadiene-styrene copolymer resin
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • Polyimide film of the present invention has a polyamic acid or a polyimide formed by a diamine or derivative thereof and an acid anhydride or derivative thereof, one of which has a fluorene skeleton, After humidity conditioning for 12 hours in an environment of 23 ° C. and 55% RH, the film was immersed in pure water at 23 ° C., and the elongation rate S of the film 2 minutes after the immersion was 0.01 to 0.10% / min. It is within the range.
  • polyamic acid or polyimide is formed from a diamine or derivative thereof having either a fluorene skeleton and an acid anhydride or derivative thereof, and dichloromethane is used as an organic solvent in an amount of 50% by mass. It can obtain by the manufacturing method which applies the mixed solvent contained above.
  • the amount of dimensional change due to the moisture content of the polyimide film depends on the moisture content rate (initial elongation rate S) and the moisture content (elongation amount).
  • FIG. 1 is a schematic diagram showing an example of the relationship between the film elongation amount L and the immersion time when the film is immersed in water.
  • the graph shown in FIG. 1 shows that the polyimide film was conditioned at 23 ° C. and 55% RH for 12 hours, then immersed in pure water at 23 ° C., and the horizontal axis represents the immersion time (minutes). It is the graph which plotted elongation amount L of the polyimide film with respect to immersion time on the vertical axis
  • the film is soaked in pure water at 23 ° C., and the elongation rate S of the film 2 minutes after the immersion is in the range of 0.01 to 0.10% / minute.
  • the elongation (%) in the present invention is obtained by the following formula (1).
  • Elongation amount L1 (%) of film [(dimension after immersion T minutes ⁇ dimension when not immersed) / dimension when not immersed] ⁇ 100
  • the elongation rate S of the film referred to in the present invention is determined by the following formula (2).
  • Film elongation rate S1 (% / min) film elongation L (%) / immersion time T (min)
  • the elongation rate S of the film is defined as 2 minutes after immersion, and therefore, the equations (3) and (4) are obtained.
  • Elongation amount L2 (%) of film [(dimension after 2 minutes of immersion ⁇ dimension when not immersed) / dimension when not immersed] ⁇ 100
  • Film elongation rate S2 (% / min) film elongation L2 (%) / immersion time 2 (min)
  • the elongation rate S2 is in the range of 0.01 to 0.10%.
  • the initial elongation rate S of the polyimide film is preferably in the range of 0.03 to 0.10% / min, more preferably in the range of 0.04 to 0.09% / min. A range of 0.04 to 0.08% / min is particularly preferable.
  • the initial elongation rate S of the polyimide film is 0.10% / min or less, the moisture content rate of the film is not too high, so that the flexibility of the film at a low temperature can be obtained.
  • the initial elongation rate S of the polyimide film is 0.03% / min or more, the film can be given flexibility by entering a suitable amount of water in a low temperature environment, and deterioration of low temperature bending resistance can be prevented. Can do.
  • ⁇ Measurement method of elongation amount L and elongation rate S> The polyimide film (film thickness 40 ⁇ m) to be measured was conditioned for 12 hours in an environment of 23 ° C. and 55% RH. Next, in the same environment, the polyimide film equipped with the water immersion attachment is immersed in pure water at 23 ° C. using a thermomechanical analyzer TMA / SS7100 manufactured by Hitachi High-Tech Science Co. And the film elongation L (%) was measured. The amount of elongation L (%) was measured in the MD direction of the film (longitudinal direction during film formation). And the elongation amount L1 (%) of the film 30 minutes after the immersion start was calculated
  • the obtained measurement data was plotted with the immersion time T (minutes) on the horizontal axis and the film elongation L (%) on the vertical axis to obtain a graph as shown in FIG.
  • the elongation amount L2 (%) of the film from the start of immersion to 2 minutes later was calculated according to the equation (3), and the elongation rate S2 (% / min) of the film was determined according to the equation (4). .
  • the moisture content of the polyimide film corresponds to the initial film elongation rate S, and the moisture content of the film corresponds to the elongation L of the film after a certain period of time.
  • the film elongation rate S and the elongation amount L when the polyimide film is impregnated with water it is preferable to adjust the film elongation rate S and the elongation amount L when the polyimide film is impregnated with water to a predetermined range as indicated by the hatched portion in FIG.
  • the polyimide film is preferably 0.4% or less as the elongation Lmax, which is the maximum value of the elongation L after 30 minutes of immersion in water at 23 ° C., 0.35% Or less, more preferably 0.3% or less. It is preferable that the elongation amount L of the polyimide film is not more than a certain value because the film has a small water content and therefore the dimensional change of the film is small. On the other hand, the minimum value Lmin of the elongation amount L is preferably 0.2% or more from the viewpoint of imparting appropriate flexibility to the film.
  • the polyamic acid or polyimide having a weight average molecular weight in the range of 30000 to 1000000.
  • the weight average molecular weight of the polyamic acid or polyimide to be applied is 30000 or more, a film having high physical properties such as strength of the film and high optical uniformity can be obtained.
  • the viscosity during casting film formation does not increase excessively, and uniform film formation becomes possible.
  • it is in the range of 80,000 to 500,000, more preferably in the range of 100,000 to 300,000.
  • the weight average molecular weight referred to in the present invention can be measured by gel permeation chromatography.
  • An example of the measurement conditions is as follows.
  • Condition 1 The glass transition temperature is 260 ° C. or more
  • Condition 2 The yellow index is 2.0 or less
  • Condition 3 The total light transmittance is 80% or more
  • Condition 4 The folding endurance of the MIT folding endurance test in a -20 ° C environment according to JIS P 8115 is 1000 times or more.
  • the glass transition temperature is preferably 260 ° C. or higher, more preferably in the range of 260 to 350 ° C.
  • the glass transition temperature Tg (° C.) of the polyimide film of the present invention can be determined by measuring using a differential scanning calorimeter DSC220 manufactured by Seiko Instruments Inc. according to JIS K7121.
  • the temperature is raised from room temperature to 250 ° C. at 20 ° C./min for 10 minutes under the condition of a nitrogen flow rate of 50 ml / min (1st scan).
  • the temperature was lowered to 30 ° C. at a rate of 20 ° C./min, held for 10 minutes (2nd scan), further raised to 250 ° C. at 20 ° C./min (3rd scan), a DSC curve was created, and the obtained 3rd scan
  • the glass transition temperature Tg is obtained from the DSC curve.
  • the yellow index (YI) at a thickness of 40 ⁇ m is preferably 2.0 or less, more preferably in the range of 0.3 to 2.0, still more preferably 0.3. Within the range of ⁇ 1.6.
  • the yellow index can be obtained according to the YI (yellow index: yellowness index) of the film defined in JIS K 7103.
  • a specific yellow index value measurement method is defined in JIS Z8701 using a spectrophotometer U-3200 manufactured by Hitachi, Ltd. and an attached saturation calculation program, etc., by preparing a sample having a thickness of 25 ⁇ m.
  • the tristimulus values X, Y, and Z of the light source color are obtained, and the yellow index value is obtained according to the following formula.
  • the total light transmittance is preferably 80% or more, preferably in the range of 80 to 95%, more preferably in the range of 85 to 95%.
  • the total light transmittance according to the present invention was adjusted for the polyamide film in a 23 ° C. and 55% RH environment for 24 hours, and then in accordance with JIS K 7136, a haze meter (NDH2000 type, manufactured by Nippon Denshoku Industries Co., Ltd.) ) Can be used to measure the total light transmittance.
  • a haze meter NH2000 type, manufactured by Nippon Denshoku Industries Co., Ltd.
  • MIT folding resistance test> In the polyimide film of the present invention, it is a preferable characteristic that the number of foldings by the MIT folding resistance test in a ⁇ 20 ° C. environment according to JIS P 8115 is 1000 times or more.
  • MIT fold resistance test is measured by the following method based on JIS P 8115.
  • a 20 mass% Cr chromium-nickel alloy layer having an average thickness of 23 nm is formed as a metal thin film on one side of a polyimide film by a direct current sputtering method using a sputtering equipment comprising an unwinder, a sputtering device, and a winder. To do. Further, similarly, a copper thin film having an average thickness of 1000 mm was formed on the metal thin film.
  • the copper plating bath used was a copper sulfate plating bath with a copper concentration of 23 g / L, and the bath temperature during plating was 27 ° C.
  • the plating tank is a multi-structure tank in which a plurality of plating tanks are connected so that a polyimide film provided with a metal thin film on one side is continuously immersed in each tank by an unwinder and a winder. Electroplating was performed while being conveyed. The conveyance speed is 75 m / h, and the average cathode current density of the plating tank is adjusted to 1.0 to 2.5 A / dm 2 to perform copper plating.
  • a COF (Chip on film) having a wiring interval of 30 ⁇ m and a total wiring width of 15000 ⁇ m is prepared by a subtractive method.
  • An IC chip is mounted on this, and the electrode on the surface of the IC chip and the lead portion of the wiring are wire-bonded at 400 ° C. under a bonding process condition of 0.5 seconds using a wire bonding apparatus to produce a flexible printed circuit board. did.
  • the temperature of the flexible printed circuit board produced above was set to ⁇ 20 ° C. in a low-temperature constant temperature and humidity chamber (PL-4 manufactured by ESPEC Corp.), and measured with an MIT tester.
  • a bending test is performed with a MIT tester under the conditions of a load of 500 g, a refraction angle of 135 °, a refraction cycle of 175 cpm, a refractive part locality radius of 0.38 mm, Measure the number of bendings until the energized state is cut off due to circuit breakage.
  • the polyimide film of the present invention has a diamine or derivative thereof as a first component and an acid anhydride or a second component thereof, as one of the components having a fluorene skeleton.
  • a polyamic acid or polyimide having a fluorene skeleton formed from a derivative and having a weight average molecular weight in the range of 30,000 to 1,000,000 is a constituent element.
  • the polyimide film of the present invention needs to contain a polyamic acid or a polyimide having a fluorene skeleton according to the present invention in order to improve the coloring unique to the polyimide.
  • the polyamic acid or polyimide having a fluorene skeleton according to the present invention is a compound formed from a diamine or a derivative thereof and an acid anhydride or a derivative thereof, and either the diamine or the acid anhydride has a fluorene skeleton.
  • the fluorene skeleton as used in the present invention refers to the following structure.
  • polyimide films have a problem that they are colored from yellow to brown due to absorption in the visible light region derived from intermolecular or intramolecular charge transfer interactions. Moreover, when the said film is shape
  • the problem of coloring is improved by using a polyamic acid or polyimide having a fluorene skeleton.
  • the polyimide or polyamic acid used in the present invention is particularly represented by a polyimide having a repeating unit represented by the following general formula (I) (hereinafter referred to as polyimide (A)) or the following general formula (I ′).
  • polyimide (A) a polyimide having a repeating unit represented by the following general formula (I)
  • I ′ The polyamic acid having a repeating unit (hereinafter referred to as polyamic acid (A ′)) is preferred.
  • R represents an aromatic hydrocarbon ring or an aromatic heterocyclic ring, a tetravalent aliphatic hydrocarbon group having 4 to 39 carbon atoms or an alicyclic carbon ring. It is a hydrogen group.
  • is a group composed of a divalent aliphatic hydrocarbon group having 2 to 39 carbon atoms, an alicyclic hydrocarbon group, an aromatic hydrocarbon group, or a combination thereof, and —O—, At least selected from the group consisting of —SO 2 —, —CO—, —CH 2 —, —C (CH 3 ) 2 —, —OSi (CH 3 ) 2 —, —C 2 H 4 O— and —S—.
  • One group may be contained.
  • Examples of the aromatic hydrocarbon ring represented by R include fluorene ring, benzene ring, biphenyl ring, naphthalene ring, azulene ring, anthracene ring, phenanthrene ring, pyrene ring, chrysene ring, naphthacene ring, triphenylene ring, o- Terphenyl ring, m-terphenyl ring, p-terphenyl ring, acenaphthene ring, coronene ring, fluoranthrene ring, naphthacene ring, pentacene ring, perylene ring, pentaphen ring, picene ring, pyrene ring, pyranthrene ring, anthraanthre Ring.
  • examples of the aromatic heterocycle represented by R include a silole ring, a furan ring, a thiophene ring, an oxazole ring, a pyrrole ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, a triazine ring, and an oxadiene ring.
  • Azole ring triazole ring, imidazole ring, pyrazole ring, thiazole ring, indole ring, benzimidazole ring, benzthiazole ring, benzoxazole ring, quinoxaline ring, quinazoline ring, phthalazine ring, thienothiophene ring, carbazole ring, azacarbazole ring ( Any one of the carbon atoms constituting the dicarbosyl ring, dibenzofuran ring, dibenzothiophene ring, benzothiophene ring or dibenzofuran ring.
  • Examples of the tetravalent aliphatic hydrocarbon group having 4 to 39 carbon atoms represented by R include a butane-1,1,4,4-triyl group, an octane-1,1,8,8-triyl group, Examples include decane-1,1,10,10-triyl group.
  • Examples of the tetravalent alicyclic hydrocarbon group having 4 to 39 carbon atoms represented by R include cyclobutane-1,2,3,4-tetrayl group, cyclopentane-1,2,4,5. -Tetrayl group, cyclohexane-1,2,4,5-tetrayl group, bicyclo [2.2.2] oct-7-ene-2,3,5,6-tetrayl group, bicyclo [2.2.2] Octane-2,3,5,6-tetrayl group, 3,3 ′, 4,4′-dicyclohexyltetrayl group, 3,6-dimethylcyclohexane-1,2,4,5-tetrayl group, 3,6- And groups such as diphenylcyclohexane-1,2,4,5-tetrayl group.
  • Examples of the divalent aliphatic hydrocarbon group having 2 to 39 carbon atoms with or without the bonding group represented by ⁇ include groups represented by the following structural formula.
  • n represents the number of repeating units, preferably 1 to 5, and more preferably 1 to 3.
  • X is an alkanediyl group having 1 to 3 carbon atoms, that is, a methylene group, an ethylene group, a trimethylene group, or a propane-1,2-diyl group, and a methylene group is preferable.
  • Examples of the divalent alicyclic hydrocarbon group having 2 to 39 carbon atoms with or without the above-described bonding group represented by ⁇ include groups represented by the following structural formula.
  • Examples of the divalent aromatic hydrocarbon group having 2 to 39 carbon atoms with or without the above-described bonding group represented by ⁇ include groups represented by the following structural formulas.
  • Examples of the group composed of a combination of an aliphatic hydrocarbon group, an alicyclic hydrocarbon group and an aromatic hydrocarbon group represented by ⁇ include groups represented by the following structural formula.
  • the group represented by ⁇ is preferably a divalent aromatic hydrocarbon group having 2 to 39 carbon atoms having a linking group, or a combination of the aromatic hydrocarbon group and an aliphatic hydrocarbon group.
  • a group represented by the following structural formula is preferred.
  • the polyamic acid (A ′) corresponds to a structure in which a part of the imide bond of the polyimide (A) is dissociated, and the detailed description of the polyamic acid (A ′) can be considered corresponding to the polyimide (A). Therefore, the polyimide (A) will be typically described in detail below.
  • the repeating unit represented by the general formula (I) is preferably 10 to 100 mol%, more preferably 50 to 100 mol%, still more preferably 80 to 100 mol%, particularly preferably all the repeating units. 90 to 100 mol%.
  • the number of repeating units of the general formula (I) in one molecule of polyimide (A) is 10 to 2000, preferably 20 to 200, and within this range, the glass transition temperature is 230 to 350 ° C. Is more preferable, and 250 to 330 ° C. is more preferable.
  • the polyimide (A) is a compound that is formed from a diamine or a derivative thereof and an acid anhydride or a derivative thereof, and either the diamine or the acid anhydride has a fluorene skeleton.
  • the diamine or derivative thereof, or the fluorene skeleton derived from an acid anhydride or derivative thereof is preferably contained in an amount of 50 mol% or less, in order to exhibit the effect of reducing coloring. More preferably, it is in the range of 20 to 50 mol%, and more preferably in the range of 30 to 50 mol%.
  • the acid anhydride having no fluorene skeleton is a carboxylic acid anhydride, and is preferably a derivative of an aliphatic or alicyclic tetracarboxylic acid.
  • examples thereof include cyclic tetracarboxylic acid esters, aliphatic or alicyclic tetracarboxylic dianhydrides.
  • alicyclic tetracarboxylic dianhydrides are preferred.
  • the derivative is a compound that can be changed to an aliphatic or alicyclic tetracarboxylic acid.
  • a compound having two carboxyl groups instead of the anhydride A compound in which one or both of these two carboxyl groups is an esterified product, or an acid chloride in which one or both of these two carboxyl groups are chlorinated is preferably used.
  • Examples of the aliphatic tetracarboxylic acid include 1,2,3,4-butanetetracarboxylic acid.
  • Examples of the alicyclic tetracarboxylic acid include 1,2,3,4-cyclobutanetetracarboxylic acid, 1,2,4,5-cyclopentanetetracarboxylic acid, 1,2,4,5-cyclohexanetetracarboxylic acid.
  • Bicyclo [2.2.2] oct-7-ene-2,3,5,6-tetracarboxylic acid, bicyclo [2.2.2] octane-2,3,5,6-tetracarboxylic acid, etc. Can be mentioned.
  • Examples of the aliphatic tetracarboxylic acid esters include monoalkyl esters, dialkyl esters, trialkyl esters, and tetraalkyl esters of the above aliphatic tetracarboxylic acids.
  • Examples of the alicyclic tetracarboxylic acid esters include monoalkyl esters, dialkyl esters, trialkyl esters, and tetraalkyl esters of the above alicyclic tetracarboxylic acids.
  • the alkyl group site is preferably an alkyl group having 1 to 5 carbon atoms, and more preferably an alkyl group having 1 to 3 carbon atoms.
  • Examples of the aliphatic tetracarboxylic dianhydride include 1,2,3,4-butanetetracarboxylic dianhydride.
  • Examples of the alicyclic tetracarboxylic dianhydride include 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,4,5-cyclopentanetetracarboxylic dianhydride, , 4,5-cyclohexanetetracarboxylic dianhydride, bicyclo [2.2.2] oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, bicyclo [2.2.2] And octane-2,3,5,6-tetracarboxylic dianhydride.
  • 1,2,4,5-cyclohexanetetracarboxylic dianhydride is particularly preferred.
  • a polyimide having an aliphatic diamine as a constituent component forms a strong salt between the polyamic acid, which is an intermediate product, and the diamine. Therefore, in order to increase the molecular weight, a solvent having a relatively high salt solubility (for example, cresol).
  • a solvent having a relatively high salt solubility for example, cresol.
  • N, N-dimethylacetamide, ⁇ -butyrolactone, N-methyl-2-pyrrolidone, etc. are preferably used.
  • Aromatic, aliphatic or alicyclic tetracarboxylic acids or their derivatives may be used alone or in combination of two or more. Further, other tetracarboxylic acids or derivatives thereof (particularly dianhydrides) may be used in combination as long as the solvent solubility of the polyimide, the flexibility of the film, the thermocompression bonding property, and the transparency are not impaired.
  • Examples of such other tetracarboxylic acids or derivatives thereof include pyromellitic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 2,3,3 ′, 4′-biphenyltetracarboxylic acid, 2, 2-bis (3,4-dicarboxyphenyl) propane, 2,2-bis (2,3-dicarboxyphenyl) propane, 2,2-bis (3,4-dicarboxyphenyl) -1,1,1 , 3,3,3-hexafluoropropane, 2,2-bis (2,3-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane, bis (3,4-dicarboxy) Phenyl) sulfone, bis (3,4-dicarboxyphenyl) ether, bis (2,3-dicarboxyphenyl) ether, 3,3 ′, 4,4′-benzophenonetetracarboxylic acid, 2,2
  • examples of the acid anhydride having a fluorene skeleton include 9,9-bis [4- (3,4-dicarboxyphenoxy) phenyl] fluorene dianhydride, 9,9- Bis (3,4-dicarboxyphenyl) fluorenic dianhydride, 9,9-bis [4- (3,4-dicarboxyphenoxy) phenyl] fluorenic dianhydride, 9,9-bis [4- ( 3,4-dicarboxyphenoxy) -3-phenylphenyl] fluorene dianhydride, 9,9-bis [4- (2,3-dicarboxyphenoxy) -3-phenylphenyl] fluorene dianhydride, 9,9 -Bis [4- (3,4-dicarboxyphenoxy) -2-phenylphenyl] fluorene dianhydride, 9,9-bis [4- (2,3-dicarboxyphenoxy) -2-phenylphenyl] fluorene dian
  • aromatic bis (ether anhydride) compounds 9,9-bis [4- (3,4-dicarboxyphenoxy) phenyl] fluorene dianhydride, 9,9-bis [4- (3 4-Dicarboxyphenoxy) -3-phenylphenyl] fluorene dianhydride, 9,9-bis [4- (3,4-dicarboxyphenoxy) -2-phenylphenyl] fluorene dianhydride, 9,9-bis [4- (3,4-Dicarboxyphenoxy) -3-methylphenyl] fluorene dianhydride, 9,9-bis [4- (3,4-dicarboxyphenoxy) -2-methylphenyl] fluorene dianhydride Etc.
  • 9,9-bis (3,4-dicarboxyphenyl) fluoric acid dianhydride or 9,9-bis [4- (3,4-dicarboxyphenoxy) phenyl] fluoric acid dianhydride may be used. ,preferable.
  • aromatic diamine or derivative thereof according to the present invention for example, aromatic diamine or isocyanate is preferable, and aromatic diamine is preferable.
  • the polyamic acid or polyimide having a fluorene skeleton according to the present invention is formed from a diamine or a derivative thereof and an acid anhydride or a derivative thereof, and either the diamine or the acid anhydride has a fluorene skeleton. It is.
  • the diamine or derivative thereof having no fluorene skeleton may be any of aromatic diamine, aliphatic diamine, or a mixture thereof, and the aromatic diamine may be used to whiten the film. From the viewpoint of suppression, it is preferable.
  • aromatic diamine refers to a diamine in which an amino group is directly bonded to an aromatic ring, and an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, or any other part of its structure.
  • a substituent for example, a halogen atom, a sulfonyl group, a carbonyl group, an oxygen atom, etc. may be contained.
  • aliphatic diamine refers to a diamine in which an amino group is directly bonded to an aliphatic hydrocarbon group or an alicyclic hydrocarbon group, and an aromatic hydrocarbon group or other substituent (for example, a halogen atom, a sulfonyl group, a carbonyl group, an oxygen atom, etc.) may be included.
  • aromatic diamine examples include p-phenylenediamine, m-phenylenediamine, 2,4-diaminotoluene, 2,6-diaminotoluene, benzidine, o-tolidine, m-tolidine, bis (trifluoromethyl) benzidine, Octafluorobenzidine, 3,3'-dihydroxy-4,4'-diaminobiphenyl, 3,3'-dimethoxy-4,4'-diaminobiphenyl, 3,3'-dichloro-4,4'-diaminobiphenyl, 3, , 3'-difluoro-4,4'-diaminobiphenyl, 2,6-diaminonaphthalene, 1,5-diaminonaphthalene, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'-diamino Diphenylmethane,
  • aliphatic diamine examples include ethylene diamine, hexamethylene diamine, polyethylene glycol bis (3-aminopropyl) ether, polypropylene glycol bis (3-aminopropyl) ether, 1,3-bis (aminomethyl) cyclohexane, 1,4 -Bis (aminomethyl) cyclohexane, m-xylylenediamine, p-xylylenediamine, 1,4-bis (2-amino-isopropyl) benzene, 1,3-bis (2-amino-isopropyl) benzene, isophorone Diamine, norbornanediamine, siloxane diamine, 4,4'-diaminodicyclohexylmethane, 3,3'-dimethyl-4,4'-diaminodicyclohexylmethane, 3,3'-diethyl-4,4'-diaminodicyclohexylme
  • examples of other diamine derivatives include diaminodisilanes, such as trimethylsilylated aromatic or aliphatic diamines obtained by reacting the above aromatic or aliphatic diamines with chlorotrimethylsilane.
  • the above diamines and derivatives thereof may be used in any mixture, but the amount of diamine in them is preferably 50 to 100 mol%, more preferably 80 to 100 mol%.
  • the diamine having a fluorene skeleton or a derivative thereof is preferably an aromatic diamine, for example, 9,9-bis [4- (4-aminophenoxy) phenyl] fluorene.
  • the polyamic acid or polyimide having a fluorene skeleton according to the present invention includes a diamine or a derivative thereof and an acid anhydride or a derivative thereof, wherein the diamine is 9,9-bis (4-aminophenyl) fluorene, 9,9-bis.
  • It is preferably either (4-amino-3-methylphenyl) fluorene or 9,9-bis (3-fluoro-4-aminophenyl) fluorene, and the acid anhydride is 9,9-bis (3 , 4-dicarboxyphenyl) fluorene dianhydride or 9,9-bis [4- (3,4-dicarboxyphenoxy) phenyl] fluorenic dianhydride is light-transmitting, coloring resistant And from the viewpoint of improving the bending resistance.
  • Polyamic acid can be obtained by polymerizing at least one of the tetracarboxylic acids and at least one of the diamines in a suitable solvent.
  • the polyamic acid ester is diesterified by ring-opening the tetracarboxylic dianhydride with an alcohol such as methanol, ethanol, isopropanol, or n-propanol, and the obtained diester is converted into the above-mentioned diester in an appropriate solvent. It can be obtained by reacting with a diamine compound. Furthermore, the polyamic acid ester can also be obtained by esterification by reacting the carboxylic acid group of the polyamic acid obtained as described above with an alcohol as described above.
  • the reaction between the tetracarboxylic dianhydride and the diamine compound can be carried out under conventionally known conditions. There are no particular limitations on the order of addition or addition method of the tetracarboxylic dianhydride and the diamine compound.
  • a polycarboxylic acid can be obtained by sequentially adding a tetracarboxylic dianhydride and a diamine compound to a solvent and stirring at an appropriate temperature.
  • the amount of the diamine compound is usually 0.8 mol or more, preferably 1 mol or more with respect to 1 mol of tetracarboxylic dianhydride. On the other hand, it is 1.2 mol or less normally, Preferably it is 1.1 mol or less.
  • the yield of the polyamic acid obtained can be improved by making the quantity of a diamine compound into such a range.
  • the concentration of tetracarboxylic dianhydride and diamine compound in the solvent is appropriately set according to the reaction conditions and the viscosity of the polyamic acid solution.
  • the total mass of the tetracarboxylic dianhydride and the diamine compound is not particularly limited, but is usually 1% by mass or more, preferably 5% by mass or more with respect to the total amount of the solution, while usually 70%. It is not more than mass%, preferably not more than 30 mass%.
  • the reaction temperature is not particularly limited, but is usually 0 ° C. or higher, preferably 20 ° C. or higher, and is usually 100 ° C. or lower, preferably 80 ° C. or lower.
  • the reaction time is not particularly limited but is usually 1 hour or longer, preferably 2 hours or longer, and is usually 100 hours or shorter, preferably 24 hours or shorter.
  • polymerization solvent used in this reaction examples include hydrocarbon solvents such as hexane, cyclohexane, heptane, benzene, toluene, xylene and mesitylene; carbon tetrachloride, methylene chloride, chloroform, 1,2-dichloroethane, chlorobenzene, diethylene Halogenated hydrocarbon solvents such as chlorobenzene and fluorobenzene; ether solvents such as diethyl ether, tetrahydrofuran, 1,4-dioxane and methoxybenzene; ketone solvents such as acetone and methyl ethyl ketone; N, N-dimethylformamide, N, N Amide solvents such as dimethylacetamide and N-methyl-2-pyrrolidone; aprotic polar solvents such as dimethyl sulfoxide and ⁇ -butyrolactone; compound such as pyridine, picoline, luti
  • the polymerization reaction may be controlled by adding a small amount of end-capping agent to the aromatic diamine before the polymerization reaction.
  • the polyimide is obtained by heat-treating a film in which the polyamic acid solution is cast, or by casting a polyamic acid solution mixed with a ring-closing catalyst onto the support and imidizing it.
  • a ring-closing catalyst include aliphatic tertiary amines such as trimethylamine and triethylenediamine, and heterocyclic tertiary amines such as isoquinoline, pyridine and picoline, and are selected from heterocyclic tertiary amines. It is preferred to use at least one amine.
  • the content of the cyclization catalyst relative to the polyamic acid is preferably in the range where the content of the cyclization catalyst (mole) / polyamic acid content (mole) is 0.5 to 8.0.
  • the polyamic acid or polyimide constituted as described above has a weight average molecular weight of 30,000 to 1,000,000 from the viewpoint of forming a film.
  • the polyamic acid may be imidized at the time of casting, and the imidization rate at the time of casting is preferably 10 to 100%.
  • the imidization rate can be obtained by the following formula (A) from the peak obtained by Fourier transform infrared spectroscopy.
  • Formula (A) Imidation rate (%) (C / D) ⁇ 100 / (E / F)
  • C represents the absorption peak height of 1370 cm ⁇ 1 of the polyamic acid or polyimide dope
  • D represents the absorption peak height of 1500 cm ⁇ 1 of the polyamic acid or polyimide dope
  • E represents the absorption peak height of 1370 cm ⁇ 1 of the polyimide film
  • F represents the absorption peak height of 1500 cm ⁇ 1 of the polyimide film.
  • the method for producing a polyimide film of the present invention is a method for producing a polyimide film produced by a solution casting method, comprising a step of preparing a dope containing polyamic acid or polyimide and an organic solvent, and the polyamic acid Or a polyimide, which is formed from a diamine or derivative thereof having a fluorene skeleton, and an acid anhydride or derivative thereof, having a weight average molecular weight in the range of 30,000 to 1,000,000, and the organic solvent is It is a mixed solvent containing 50% by mass or more of dichloromethane.
  • the mixed solvent that can be used together with dichloromethane may be any solvent that can dissolve polyamic acid or polyimide.
  • ethanol, butanol, N-methyl-2-pyrrolidone, N, N -Dimethylacetamide, N, N-diethylacetamide, N, N-dimethylformamide, N, N-diethylformamide, N-methylcaprolactam, hexamethylphosphoramide, tetramethylenesulfone, dimethylsulfoxide, m-cresol, phenol, p -Chlorphenol, 2-chloro-4-hydroxytoluene, diglyme, triglyme, tetraglyme, dioxane, ⁇ -butyrolactone, dioxolane, cyclohexanone, cyclopentanone, 1,4-dioxane, epsilon capro Kutamu, chloroform and the like can be used, and may be
  • a poor solvent such as hexane, heptane, benzene, toluene, xylene, chlorobenzene, or o-dichlorobenzene may be used to the extent that polyamic acid or polyimide does not precipitate.
  • the solvent contained as a mixed solvent together with the dichloromethane is preferably a solvent having a boiling point higher than that of dichloromethane.
  • Dope containing polyamic acid or polyimide As a method for preparing a dope in which polyamic acid or polyimide is dissolved in a mixed solvent containing 50% by mass or more of dichloromethane, for example, the following (a) to (c) However, it is not limited to these methods.
  • a polymerization solvent is used as the solvent used here.
  • the dope according to the present invention can be obtained by replacing the polymerization solvent in the obtained polyamic acid solution with the mixed solvent containing dichloromethane.
  • a solvent such as toluene or xylene azeotroped with water is added, and a dehydration reaction is performed while removing the generated water out of the system by azeotropy.
  • a solution can be obtained.
  • a dehydrating agent and a ring closure catalyst examples include aliphatic acid anhydrides such as acetic anhydride, aromatic acid anhydrides such as phthalic anhydride, and the like. These can be used alone or in combination.
  • the ring-closing catalyst examples include, as described above, heterocyclic tertiary amines such as pyridine, picoline and quinoline, aliphatic tertiary amines such as triethylamine, and aromatics such as N, N-dimethylaniline. Group tertiary amines and the like, and these can be used alone or in combination.
  • the reaction temperature is preferably in the temperature range of ⁇ 20 to 50 ° C. Further, it is preferable to use a dehydrating agent because the ring-closing reaction can proceed at a low temperature.
  • the reaction temperature is preferably in the temperature range of 80 to 300 ° C.
  • the dope according to the present invention can be obtained by replacing the polymerization solvent in the polyimide solution obtained by any of the above methods with the mixed solvent containing dichloromethane.
  • the concentration of polyamic acid or polyimide in the dope prepared as described above is preferably 1 to 50% by mass, and more preferably 10 to 40% by mass. If it is 50 mass% or less, the surface flatness of the polyimide film obtained will become favorable.
  • the viscosity of the dope is preferably from 1,000 to 100,000 cp, preferably from 10,000 to 50,000 cp as measured with a Brookfield viscometer at a dope temperature of 40 ° C., because stable liquid feeding is possible.
  • additives can be used for the dope containing the above polyamic acid or polyimide. Additives that can be used are described below.
  • ⁇ Thermal conductive filler> You may add a heat conductive filler to the dope containing a polyamic acid or a polyimide in the range which does not inhibit the effect of this invention. Thereby, the thermal conductivity of a polyimide film can be raised.
  • the thermally conductive filler is preferably a highly thermally conductive filler, and specifically includes aluminum, copper, nickel, silica, diamond, alumina, magnesia, beryllia, boron nitride, aluminum nitride, silicon nitride, and silicon carbide.
  • the filler shape is not particularly limited, such as a spherical or plate-like material, or a needle shape. Among these, at least one filler selected from silica, alumina, aluminum nitride, boron nitride, silicon nitride, and magnesia is preferable.
  • a dehydrating agent may be added to the dope containing polyamic acid or polyimide.
  • the dehydrating agent include aliphatic carboxylic acid anhydrides such as acetic anhydride, propionic anhydride and butyric anhydride, and aromatic carboxylic acid anhydrides such as benzoic anhydride, but acetic anhydride and / or anhydrous Benzoic acid is preferred.
  • the content of the dehydrating agent relative to the polyamic acid or polyimide is preferably in the range where the dehydrating agent content (mole) / polyamic acid or polyimide content (mole) is 0.1 to 5.0.
  • a gelation retarder such as acetylacetone may be used in combination.
  • surfactant such as a fluorine type and a polysiloxane type
  • a surfactant such as a fluorine type and a polysiloxane type
  • a film with good surface smoothness can be easily obtained.
  • a commercially available product may be used as the surfactant, and examples of the fluorosurfactant include MIC Corporation's MegaFace (registered trademark) series and Neos Corporation's Footgent (registered trademark) series. Examples include FONTENT (registered trademark) 251, 212MH, 250, 222F, 212D, FTX-218, and the like.
  • polysiloxane surfactant examples include BYK-307, BYK-315, BYK-320, BYK-325, BYK-330, BYK-331, BYK-333, BYK-333, manufactured by Big Chemie Japan Co., Ltd. And BYK-344.
  • antioxidant such as a phenol type, a sulfur type, phosphoric acid type, a phosphorous acid type, to dope containing a polyamic acid or a polyimide, for example.
  • Various other functional materials may be added to the dope containing polyamic acid or polyimide.
  • Various functional materials include, for example, conductive materials such as carbon nanotubes and nano metal materials, ferroelectric materials such as barium titanate, and phosphors such as ZnS: Ag, ZnS: Cu, and Y 2 O 2 S: Eu. UV absorbers and the like.
  • a phosphorus-based flame retardant may be added to the dope containing polyamic acid or polyimide. Thereby, a flame retardance can be provided to a polyimide film.
  • the phosphorus flame retardant for example, ammonium polyphosphate, phosphate ester, condensed phosphate ester, phenoxyphosphazene compound, phosphate ester amide, and the like can be used.
  • a phenoxyphosphazene compound for example, SPS-100 manufactured by Otsuka Chemical Co., Ltd. can be used.
  • a flame retardant can be imparted by mixing a halogen type flame retardant, it is preferable to use a phosphorus-based flame retardant.
  • Fine particles may be added to improve the slipperiness and peelability of the polyimide film.
  • the fine particles may be inorganic fine particles or organic fine particles, but inorganic fine particles are preferable from the viewpoint of refractive index and transparency.
  • inorganic fine particles examples include silicon dioxide (silica), titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, Examples include magnesium silicate and calcium phosphate.
  • silicon dioxide and zirconium oxide are preferable, and silicon dioxide is more preferable in order to reduce the increase in haze of the obtained film.
  • silicon dioxide examples include Aerosil 200V, Aerosil R972V, Aerosil R972, R974, R812, 200, 300, R202, OX50, TT600, NAX50 (above, Nippon Aerosil Co., Ltd.), Sea Hoster KEP-10, Sea Hoster KEP -30, Seahoster KEP-50 (above, manufactured by Nippon Shokubai Co., Ltd.), Silo Hovic 100 (manufactured by Fuji Silysia), Nip Seal E220A (manufactured by Nippon Silica Kogyo Co., Ltd.), Admafine SO (manufactured by Admatechs), etc.
  • a commercially available product having the above can be preferably used.
  • the shape of the fine particles amorphous, needle-like, flat, spherical and the like can be used.
  • spherical particles it is easy to show optical isotropy and the resulting film can have good transparency. Therefore, it is preferable.
  • the average particle size of the fine particles is preferably in the range of 0.05 to 5.0 ⁇ m. More preferably, the range of 1.0 to 4.0 ⁇ m is easy to handle when dispersed in a solvent or dope.
  • the average particle diameter of the fine particles means the size of the aggregates when the fine particles are aggregates of primary particles. Further, when the fine particles are not spherical, it means the diameter of a circle corresponding to the projected area.
  • the average particle size of the primary particles of the fine particles or the secondary aggregates thereof can be measured, for example, by observing with a transmission electron microscope. Also, the fine particles are dispersed in a solvent, and the Coulter particle size is obtained from the dispersion. It can be measured by a distribution measurement method, a laser diffraction scattering method, a dynamic light scattering method, or the like.
  • the content of the fine particles in the polyimide film is preferably in the range of 0.1 to 30% by mass, and preferably in the range of 1 to 25% by mass with respect to the total mass of the polyimide film. (Brightness) From the viewpoint of easily obtaining the effect of improvement, it is more preferable.
  • the imidization of the polymer chain molecules and between the polymer chain molecules proceeds to improve the mechanical properties.
  • the polyimide film using polyimide changes the absorption wavelength as the heat treatment is performed.
  • the color changes with color.
  • the higher the L * value the thinner the color, so that the horizontal unevenness due to thickness unevenness is less visible and the appearance is better. Since the progress of imidization is not sufficient, mechanical properties such as bending resistance and breaking strength of the polyimide film are deteriorated.
  • the L * value is too low, the color contrast due to the thickness unevenness becomes clear and the horizontal unevenness is worsened, and the polyimide film using polyimide partially carbonizes and becomes brittle. Characteristics are significantly regressed.
  • the L * value of the film was measured using a color meter SM-7-CH manufactured by Suga Test Instruments. About each sample which divided the film into 5 in the width direction, it cut out and measured the range of 30 mm x 30 mm centering on the center position of the width direction, and made it the 5-point average value.
  • the L * value is one for a film having a thickness of 50 ⁇ m or more, and 50 ⁇ m or more for a film having a thickness of less than 50 ⁇ m. It is a value measured by overlapping the minimum number of sheets.
  • a method of adjusting the heat treatment amount using a known means such as hot air or an electric heater (for example, an infrared heater). Can be mentioned.
  • a solution of a polyamic acid not containing a ring closure catalyst and a dehydrating agent is cast and formed into a film, and a support.
  • a thermal ring closure method in which the film is peeled off from the support and further imidized by drying and heat treatment at a high temperature can be used.
  • a solution of a polyamic acid containing a ring-closing catalyst and a dehydrating agent is cast to form a film, and after partially imidizing on the support to form a film, the film is peeled off from the support.
  • a chemical ring closure method in which heat drying / imidization and heat treatment are performed can also be used.
  • the ring-closing catalyst the above-mentioned tertiary amine or the like can be used.
  • heat treatment can be performed by using an infrared heater.
  • the infrared heater for example, a heater main body formed so that a filament is surrounded by an inner tube is covered with an outer tube, and a cooling fluid can be circulated between the heater main body and the outer tube.
  • the filament is energized and heated to 700 to 1200 ° C., and emits infrared light having a peak at a wavelength of about 3 ⁇ m.
  • the inner tube and the outer tube are made of quartz glass, borosilicate crown glass, or the like, and function as a filter that passes infrared light having a wavelength of 3.5 ⁇ m or less and absorbs infrared light having a wavelength exceeding 3.5 ⁇ m.
  • Such infrared heaters irradiate the film with infrared light having a wavelength of 3.5 ⁇ m or less through an inner tube or an outer tube when infrared light having a peak near 3 ⁇ m is emitted from the filament.
  • the mixed solvent in the film can be efficiently evaporated and the polyamic acid in the film can be imidized.
  • the inner tube and the outer tube absorb infrared rays having a wavelength exceeding 3.5 ⁇ m, but are cooled by the cooling fluid flowing through the flow path, so that the temperature can be maintained below the ignition point of the mixed solvent evaporating from the film. Is possible.
  • any of the above ring closure methods may be adopted, but the chemical ring closure method is a ring closure catalyst in a solution of polyamic acid.
  • the chemical ring closure method is a ring closure catalyst in a solution of polyamic acid.
  • it requires equipment for containing a dehydrating agent, it can be said to be a more preferable method in that a film having self-supporting properties can be obtained in a short time.
  • the main production process for producing the polyimide film of the present invention is as follows: (5-1) A polyamic acid formed by A) a diamine or derivative thereof and B) an acid anhydride or derivative thereof having a weight average molecular weight in the range of 30,000 to 1,000,000 and at least one having a fluorene skeleton.
  • a step of preparing a dope by dissolving polyimide in a mixed solvent containing 50% by mass or more of dichloromethane (dope preparation step); (5-2) A step of casting the dope on a support composed of an endless metal belt or the like to form a casting film (casting film forming step); (5-3) a step of evaporating the solvent from the cast film on the support (solvent evaporating step); (5-4) a step of peeling the cast film from which the solvent has been evaporated from the support to form a film (peeling step); (5-5) a step of drying the obtained film (first drying step); (5-6) a step of stretching the dried film (stretching step); (5-7) a step of further drying the stretched film to form a polyimide film (second drying step); (5-8) a step of winding the obtained polyimide film (winding step); (5-9) If necessary, it is preferably carried out by a step of heating and imidizing the polyimide film (heating step), it
  • a dope is prepared by dissolving a polyamic acid or polyimide having a weight average molecular weight of 30,000 to 1,000,000 in a mixed solvent containing 50% by mass or more of dichloromethane.
  • the prepared dope is guided to a filter by a liquid feed pump or the like and filtered.
  • a preferred temperature range is 45 to 120 ° C, more preferably 45 to 70 ° C, and even more preferably 45 to 55 ° C.
  • Casting film forming step An endless support that feeds the prepared dope to a die (also referred to as a coater) via a liquid feed pump (for example, a pressurized metering gear pump) and transfers it infinitely, for example, The dope is cast from a die at a casting position on a metal support such as an endless stainless steel belt or a rotating metal drum.
  • a liquid feed pump for example, a pressurized metering gear pump
  • the support used in the casting process is preferably a mirror-finished surface.
  • the support is a stainless steel belt or a drum whose surface is plated with a casting, or a metal such as a stainless steel belt or a stainless steel belt.
  • a support is preferably used.
  • the cast width can be in the range of 1 to 4 m, preferably in the range of 1.5 to 3 m, more preferably in the range of 2 to 2.8 m. Note that the support may not be made of metal.
  • the traveling speed of the metal support is not particularly limited, but is usually 5 m / min or more, preferably 10 to 180 m / min, particularly preferably 40 to 150 m / min.
  • the higher the traveling speed of the metal support the easier it is to generate entrained gas during film formation, and the occurrence of film thickness unevenness due to disturbance is more pronounced.
  • the traveling speed of the metal support is the moving speed of the outer surface of the metal support.
  • the surface temperature of the metal support is not particularly limited, but is usually 0 ° C. or higher, preferably 20 to 60 ° C., more preferably 20 to 25 ° C.
  • the die has a taper structure that becomes gradually thinner toward the discharge port in a vertical cross section with respect to the width direction.
  • the die has tapered surfaces on the downstream side and the upstream side in the lower traveling direction, and a discharge port is formed in a slit shape between the tapered surfaces.
  • a die made of metal is preferably used, and specific examples include stainless steel, titanium, and the like. In the present invention, when manufacturing films having different thicknesses, it is not necessary to change to dies having different slit gaps.
  • ⁇ It is preferable to use a pressure die that can adjust the slit shape of the die base and easily make the film thickness uniform.
  • the pressure die include a coat hanger die and a T die, and any of them is preferably used. Even when films with different thicknesses are continuously manufactured, the discharge rate of the dies is maintained at a substantially constant value. Therefore, when a pressure die is used, conditions such as extrusion pressure and shear rate are also substantially reduced. Maintained at a constant value.
  • two or more pressure dies may be provided on the metal support, and the dope amount may be divided and laminated.
  • Discharge rate of the dope from the die preferably in the range of 200 ⁇ 720g / m 2, more preferably in the range of 400 ⁇ 650g / m 2.
  • the dope discharge amount from the die is maintained at a substantially constant value within the above range. If the discharge amount is 200 g / m 2 or more, the cast film is not easily affected by disturbances such as vibration and wind, and thus film thickness unevenness can be sufficiently prevented. If the said discharge amount is 720 g / m ⁇ 2 > or less, since shrinkage
  • solvent evaporation step is a preliminary drying step which is performed on a metal support and the cast film is heated on the metal support to evaporate the solvent.
  • a method of blowing heated air from the casting film side and the back side of the metal support by a dryer, a method of transferring heat from the back side of the metal support by a heating liquid, and heat transfer from the front and back by radiant heat The method etc. can be mentioned.
  • a method of appropriately selecting and combining them is also preferable.
  • the surface temperature of the metal support may be the same as a whole or may vary depending on the position.
  • the temperature of the heating air is preferably in the range of 10 to 80 ° C.
  • a higher temperature is preferable because the drying rate of the cast film can be increased.
  • the temperature is too high, the cast film may foam or the planarity may deteriorate. Therefore, it is preferable to carry out within the range of about 10 to 30 ° C.
  • the solvent evaporation step it is preferable to dry the cast film until the residual solvent amount is in the range of 10 to 150% by mass from the viewpoint of the peelability of the cast film and the transportability after peeling.
  • the residual solvent amount referred to in the present invention can be expressed by the following formula.
  • Residual solvent amount (% by mass) ⁇ (MN) / N ⁇ ⁇ 100
  • M is the mass of the undried sample at a predetermined time point of the cast film (film)
  • N is the mass when the sample of mass M is dried at 200 ° C. for 3 hours.
  • M when calculating the residual solvent amount in the solvent evaporation step is the mass of the cast film immediately before the peeling step described later.
  • the peeling tension when peeling the metal support from the casting film is usually in the range of 60 to 400 N / m. However, if wrinkles are likely to occur during peeling, peeling is performed with a tension of 190 N / m or less. It is preferable.
  • the temperature at the peeling position on the metal support is preferably in the range of ⁇ 50 to 60 ° C., more preferably in the range of 10 to 40 ° C., and in the range of 15 to 40 ° C. Is most preferred.
  • the peeled film may be sent directly to the stretching process, or may be sent to the stretching process after being sent to the first drying process so as to achieve a desired residual solvent amount.
  • the film is sequentially sent to the first drying step and the stretching step after the peeling step.
  • the first drying step is a drying step in which the film is heated and the solvent is further evaporated.
  • the drying means is not particularly limited, and for example, hot air, infrared rays, a heating roller, microwaves and the like can be used. From the viewpoint of simplicity, a method of drying by blowing hot air or the like on the film surface while conveying the film with a staggered roller is preferable.
  • the drying temperature is preferably in the range of 30 to 200 ° C. in consideration of the amount of residual solvent and the stretching ratio during transportation.
  • the stretching operation may be performed in multiple stages.
  • simultaneous biaxial stretching may be performed and you may implement independently in a longitudinal direction and a width direction stepwise.
  • stepwise means that, for example, stretching in different stretching directions can be sequentially performed, stretching in the same direction is divided into multiple stages, and stretching in different directions is added to any one of the stages. Is also possible.
  • the residual solvent amount at the start of stretching is preferably in the range of 2 to 50% by mass.
  • the amount of the residual solvent is 2% by mass or more, the film thickness deviation is small, and it is preferable from the viewpoint of flatness, and if it is within 10% by mass, the surface unevenness is reduced and the flatness is improved. .
  • the film is stretched in the longitudinal direction, or in the longitudinal direction and the width direction so that the film thickness after stretching is in a desired range. be able to.
  • the film is preferably stretched within a temperature range of (TgL-200) to (TgH + 50) ° C., where TgL is the lowest Tg and TgH is the highest Tg of the glass transition point (Tg) of the film. If the stretching is performed within the above temperature range, the stretching stress can be lowered, so that the haze is lowered.
  • the stretching temperature is more preferably within the range of (TgL-150) to (TgH + 40) ° C.
  • the self-supporting film peeled off from the support can be stretched in the longitudinal direction by regulating the traveling speed on the stretching roller.
  • the draw ratio in the longitudinal direction is preferably 1.03 to 2.00 times, more preferably 1.10 to 1.60 times, still more preferably 1.10 to 1.50 times in the temperature range of 30 to 250 ° C. is there.
  • the entire width of the film is held with clips or pins in the width direction in the entire drying process or a part of the process as disclosed in JP-A-62-46625.
  • a method of drying while drying (referred to as a “tenter method”), among which a tenter method using a clip is preferably used.
  • the draw ratio in the width direction is not particularly limited, but is preferably 1.03 to 2.00 times, more preferably 1.10 to 1.60 times, and still more preferably 1.10 to 1.0 times in a temperature range of 30 to 300 ° C. It is in the range of 1.50 times.
  • stretching in the width direction stretching in the width direction of the film at a stretching speed of 50 to 1000% / min is preferable from the viewpoint of improving the flatness of the film.
  • the stretching speed is 50% / min or more, the flatness is improved, and the film can be processed at a high speed, so that it is preferable from the viewpoint of production aptitude, and if it is within 1000% / min, the film is broken. It can be processed without being preferable.
  • More preferable stretching speed is in the range of 100 to 500% / min.
  • the stretching speed is defined by the following formula.
  • Stretching speed (% / min) [(d 1 / d 2 ) ⁇ 1] ⁇ 100 (%) / t
  • d 1 is the width dimension in the stretching direction of the film after stretching
  • d 2 is the width dimension in the stretching direction of the film before stretching
  • t is the time (min) required for stretching.
  • the stretching step usually, after stretching, holding and relaxation treatment are performed.
  • a stretching step for stretching the film it is preferable to perform a stretching step for stretching the film, a holding step for holding the film in a stretched state, and a relaxation step for relaxing the film in the stretched direction in this order.
  • the drawing at the draw ratio achieved in the drawing step is held at the drawing temperature in the drawing step.
  • the relaxation stage the stretching in the stretching stage is held in the holding stage, and then the stretching is relaxed by releasing the tension for stretching.
  • the relaxation step may be performed at a temperature lower than the stretching temperature in the stretching step.
  • Second drying step Next, the stretched film is heated and dried.
  • a means for preventing the mixing of used hot air by installing a nozzle that can exhaust used hot air (air containing solvent or wet air) is also preferably used.
  • the hot air temperature is preferably within the range of 40 to 350 ° C.
  • the drying time is preferably about 5 seconds to 30 minutes, and more preferably within the range of 10 seconds to 15 minutes.
  • heating and drying means is not limited to hot air, and for example, heating means such as infrared rays, heating rollers, and microwaves can be used. From the viewpoint of simplicity, it is preferable to dry with hot air or the like while transporting the film with rollers arranged in a staggered manner.
  • the drying temperature is more preferably in the range of 40 to 350 ° C. in consideration of the amount of residual solvent, the stretching rate during transportation, and the like.
  • the second drying step it is preferable to dry the film until the residual solvent amount is 0.5% by mass or less.
  • the winding step is a step of winding the obtained film and cooling it to room temperature.
  • the winder may be a commonly used one, and for example, it can be wound by a winding method such as a constant tension method, a constant torque method, a taper tension method, or a program tension control method that keeps the internal stress constant. it can.
  • the thickness of the film is not particularly limited, and is preferably, for example, 5 to 200 ⁇ m, particularly preferably 7 to 50 ⁇ m.
  • both ends of the film sandwiched between tenter clips when stretched and conveyed may be slit.
  • the slit end can be reused as a return material.
  • the recycled material refers to a portion that is formed into a film and is reused as a raw material for some reason, and the slit end (also referred to as an ear), or the feeding / termination of production.
  • a film that is not suitable as a product due to an appearance problem such as a scratch or a streak is exemplified.
  • the slit film edge is finely cut to a width of 1 to 30 mm, then dissolved in a solvent and reused.
  • the ratio of the portion of the formed film that is reused as a recycled material is preferably 10 to 90% by mass, more preferably 20 to 80% by mass, and still more preferably 30 to 70% by mass.
  • the input amount varies slightly depending on the amount of return material generated during the film forming process or finally, but the mixing ratio of the returned material to the total solid content in the dope is usually about 10 to 50% by mass, preferably It is about 15 to 40% by mass.
  • the mixing ratio of the recycled materials is preferably as constant as possible for production stability.
  • Each step from the solvent evaporation step to the winding step described above may be performed in an air atmosphere or an inert gas atmosphere such as nitrogen gas. Moreover, each process, especially a drying process and a extending process, are performed in consideration of the explosion limit concentration of the solvent in the atmosphere.
  • Heating step After the winding step, the film dried in the second drying step is further heat-treated in order to improve imidization in the polymer chain molecules and between the polymer chain molecules to improve mechanical properties. A heating step is performed.
  • the dope is prepared using polyimide (imidation rate 100%) or when the imidation rate of the film becomes 100% by performing the second drying step, the residual stress of the film For the purpose of relaxing, it is preferable to perform a heating step.
  • the said 2nd drying process may serve as a heating process.
  • the heating means is performed using a known means such as hot air, an electric heater, or a microwave.
  • a known means such as hot air, an electric heater, or a microwave.
  • the electric heater the above-described infrared heater can be used.
  • the heat treatment conditions are such that the heater output and hot air temperature are adjusted so that the L * value of the film is 30 to 55, and the final treatment condition is within a temperature range of 200 to 450 ° C., and 30 seconds to 1 hour. It is preferable to carry out as appropriate within the range. Thereby, the dimensional stability of a polyimide film can be improved.
  • the heating step if the film is heated rapidly, defects such as an increase in surface defects occur, and therefore it is preferable to select a heating method as appropriate.
  • the heating step is preferably performed in a low oxygen atmosphere.
  • the heating temperature in the second drying step and the heating step exceeds 450 ° C.
  • the energy required for heating becomes very large, resulting in an increase in manufacturing cost and an increase in environmental load.
  • the following is preferable.
  • a process of slitting the width direction end of the polyimide film, or a process of further neutralizing the polyimide film if charged, etc. is also preferable.
  • polyimide film of the present invention preferably has a haze of less than 1.0%, more preferably less than 0.5%. Preferably, it is less than 0.3%. By setting the haze to less than 1%, there is an advantage that the transparency of the film becomes higher and it becomes easier to use as a film for optical applications.
  • one sample conditioned for 24 hours in an air-conditioned room at 23 ° C. and 55 RH is in accordance with JIS K-7136 using a haze meter (NDH2000 type, manufactured by Nippon Denshoku Industries Co., Ltd.) and haze and all rays. Measure the transmittance.
  • the total light transmittance is preferably 50% or more, more preferably 70% or more, and particularly preferably 85% or more from the viewpoint of providing the polyimide film of the present invention in LED lighting.
  • the polyimide film of the present invention is preferably long, specifically, preferably about 100 to 10,000 m in length, and wound into a roll. It is done.
  • the width of the polyimide film of the present invention is preferably 1 m or more, more preferably 1.4 m or more, and particularly preferably 1.4 to 4 m.
  • the film thickness is preferably in the range of 5 to 200 ⁇ m, more preferably in the range of 7 to 50 ⁇ m, from the viewpoints of strength, transparency and retardation when used as a flexible printed circuit board.
  • the film thickness is 5 ⁇ m or more, a certain level of film strength and retardation can be exhibited. If a film thickness is 200 micrometers or less, the desired retardation is comprised and the flexibility as a printed circuit board can be provided.
  • the flexible printed circuit board of the present invention is obtained by using the polyimide film of the present invention as a base film and press-bonding a metal foil to this through an adhesive.
  • the adhesive used here include acrylic, polyimide, and epoxy adhesives.
  • the metal foil that is thermocompression bonded to the polyimide film via an adhesive is preferably a copper foil from the viewpoint of cost reduction, but other metal foils such as aluminum, gold, silver, aluminum, nickel, tin, etc. good.
  • Base material for flexible display, front plate for flexible display Further, the polyimide film of the present invention makes use of its excellent characteristics, and is used for base materials for flexible display and front plates for flexible display, for example, for organic electroluminescence elements. It can be applied as a substrate or a front plate.
  • LED lighting device of the present invention is not particularly limited as long as it is made of a polyimide film manufactured by the method for manufacturing a polyimide film of the present invention.
  • the LED lighting device includes a step of preparing a flexible printed board having a metal part using the polyimide film of the present invention, a step of fixing an LED chip on the board, and a barrier so as to cover the metal part.
  • Organic electroluminescence display device of the present invention comprises a polyimide film produced by the method for producing a polyimide film of the present invention, a substrate for flexible display, or a front plate for flexible display. It is characterized by being.
  • JP2013-157634A, JP2013-168552A, JP2013-177361A, and JP2013-13A for example, JP2013-157634A, JP2013-168552A, JP2013-177361A, and JP2013-13A.
  • Example 1 First, exemplary compounds of diamines or derivatives thereof (diamine 1 to diamine 9) used in the production of the following polyimide films 1 to 28, and exemplary compounds of acid anhydrides or derivatives thereof (acid anhydrides 1 to 9). It is shown below.
  • the diamine having a fluorene skeleton or a derivative thereof according to the present invention is diamine 5 to diamine 7, and the acid anhydride having a fluorene skeleton or a derivative thereof is an acid anhydride 6 and an acid anhydride 7.
  • Preparation of polyimide film [Preparation of polyimide film 1] (Polymerization of polyimide precursor)
  • a polyamic acid was produced using a reactor equipped with a stainless separable flask as a reaction vessel, two paddle blades as a stirring device in the separable flask, and a cooling device.
  • a nitrogen gas dehydrated by passing through a calcium chloride tube was flowed at 0.05 L / min in order to prevent moisture from being mixed.
  • N, N-dimethylacetamide (abbreviation: DMAC) is charged as a polymerization solvent, and 40.0 g (0.125 mol) of diamine 1 as the above exemplified compound is dissolved therein as a diamine. .
  • DMAC N, N-dimethylacetamide
  • 55.5 g (0.125 mol) of acid anhydride 6 as an exemplary compound was added as an acid anhydride and stirred to completely dissolve it.
  • the charged concentration of diamine 1 and acid anhydride 6 in this reaction solution is 30% by mass with respect to the total reaction solution.
  • a main dope having the following composition was prepared. First, dichloromethane (MC) and ethanol (ETOH) were added to the pressure dissolution tank as solvents. The prepared polyimide A was added to a pressurized dissolution tank containing a solvent little by little while stirring. While this was heated and stirred, it was completely dissolved, and this was dissolved in Azumi Filter Paper No. The main dope was prepared by filtering using 244 and repeating this operation to add the remaining ingredients and stirring to dissolve.
  • MC dichloromethane
  • ETOH ethanol
  • the stretched film was dried at a drying temperature at which the residual solvent amount was less than 0.1% by mass with a transport tension of 100 N / m and a drying time of 15 minutes, to obtain a film having a dry film thickness of 40 ⁇ m.
  • the obtained film was wound up.
  • polyimide films 2 to 12 In the production of the polyimide film 1, the polyimide was changed in the same manner except that the combination of the diamine and acid anhydride shown in Table 1 was used instead of the diamine 1 and acid anhydride 6 used for the synthesis of polyimide A.
  • the polyimide films 2 to 12 were prepared using the prepared film.
  • polyimide film 13 In the production of the polyimide film 1, a polyimide film 13 was produced in the same manner except that 400 parts by mass of N-methyl-2-pyrrolidone (NMP) was used as an organic solvent instead of dichloromethane and ethanol as mixed solvents. .
  • NMP N-methyl-2-pyrrolidone
  • polyimide film 14 In the production of the polyimide film 8, a polyimide film 14 was produced in the same manner except that 400 parts by mass of N-methyl-2-pyrrolidone (NMP) was used as an organic solvent instead of dichloromethane and ethanol as mixed solvents. .
  • NMP N-methyl-2-pyrrolidone
  • polyimide films 15-19 In the production of the polyimide film 11, polyimide films 15 to 19 were produced in the same manner except that the stretching ratio in the width direction in the stretching process was changed to the conditions shown in Table 1.
  • the glass transition temperature Tg (° C.) of each polyimide film was measured using a differential scanning calorimeter DSC220 manufactured by Seiko Instruments Inc. according to a method based on JIS K7121.
  • each polyimide film is set, and the temperature is raised from room temperature to 250 ° C. at a rate of 20 ° C./min and held for 10 minutes under the condition of a nitrogen flow rate of 50 ml / min (1st scan). Next, the temperature is lowered from 250 ° C. to 30 ° C. at a rate of 20 ° C./min and held for 10 minutes (2nd scan), and further raised to 250 ° C. at a rate of 20 ° C./min (3rd scan) to create a DSC curve.
  • the glass transition temperature Tg was determined from the DSC curve of the 3rd scan obtained.
  • the YI yellow index: yellowness index
  • JIS Z 8701 is defined for each of the polyimide films having a thickness of 40 ⁇ m, using a spectrophotometer U-3200 manufactured by Hitachi, Ltd. and an attached saturation calculation program.
  • the tristimulus values X, Y, and Z of the light source color being obtained were obtained, and the yellow index was obtained according to the following formula.
  • Yellow index (YI) 100 (1.28X-1.06Z) / Y [Measurement of total light transmittance]
  • the total light transmittance (%) of each polyimide film was determined by adjusting the humidity of each polyimide film in an environment of 23 ° C. and 55% RH for 24 hours, and then using a haze meter (NDH2000 type, Japan) according to a method in accordance with JIS K 7136. It was measured using Denshoku Industries Co., Ltd.).
  • a 20 mass% Cr chromium-nickel alloy layer with an average thickness of 23 nm is formed as a metal thin film on one side of a polyimide film by a direct current sputtering method using a sputtering equipment comprising an unwinder, a sputtering device, and a winder. did. Further, similarly, a copper thin film having an average thickness of 100 nm was formed on the metal thin film.
  • the copper plating bath used was a copper sulfate plating bath with a copper concentration of 23 g / L, and the bath temperature during plating was 27 ° C.
  • the plating tank is a multi-structure tank in which a plurality of plating tanks are connected so that a polyimide film provided with a metal thin film on one side is continuously immersed in each tank by an unwinder and a winder. Electroplating was performed while being conveyed. The conveying speed was 75 m / h, and the copper plating was performed by adjusting the average cathode current density of the plating tank to 1.0 to 2.5 A / dm 2 .
  • a COF (Chip on film) having a wiring interval of 30 ⁇ m and a total wiring width of 15000 ⁇ m was prepared by a subtractive method.
  • An IC chip is mounted on this, and the electrode on the surface of the IC chip and the lead portion of the wiring are wire-bonded at 400 ° C. under a bonding process condition of 0.5 seconds using a wire bonding apparatus to produce a flexible printed circuit board. did.
  • the above-mentioned flexible printed circuit board was measured with an MIT tester installed in a low-temperature constant temperature and humidity chamber (PL-4 manufactured by Espec Corp.) with an internal temperature set to ⁇ 20 ° C.
  • the temperature inside the temperature and humidity chamber is set to -20 ° C, and the current is applied due to circuit breakage by an energization test under the conditions of a load of 500g, a refraction angle of 135 °, a refraction cycle of 175cpm and a refractive part locality radius of 0.38mm. The number of times until cutting was measured.
  • solder reflow suitability was evaluated according to the following method using a flexible printed circuit board produced from each polyamide film.
  • Shape difference (surface shape change) is less than 400 nm ⁇ : Shape difference (surface shape change) is 400 or more and less than 600 nm ⁇ : Shape difference (surface shape change) is 600 nm or more Table 1 shows the measurement results and the evaluation results.
  • the polyimide films 1 to 11, 15 to 15 having the composition of the polyimide film defined in the present invention and the film elongation rate S2 (% / min) within the range defined by the present invention. It can be seen that No. 18 is excellent in total light transmittance, coloring resistance, solder reflow suitability and low-temperature bending resistance with respect to the polyimide films 12 to 14 and 19 as comparative examples.
  • Example 2 Next, with reference to the LED illumination production method described in Japanese Patent Application Laid-Open No. 2014-22508, the flexible printed circuit board produced with each polyamide film described in Example 1 was mounted on the LED illumination.
  • Each of the LED illuminations produced above was allowed to emit light at room temperature (about 25 ° C.) under a constant current condition of 2.5 mA / cm 2 , and the luminance of the front emission immediately after the start of emission (cd / m 2 ) When measured using a total of C154S-2000 (manufactured by Konica Minolta Co., Ltd.), all of the LED lights mounted with the polyimide film of the present invention had a front luminance of 1000 (cd / m 2 ) or more.
  • the polyimide film having the constitution of the present invention has high transparency and excellent front luminance.
  • Example 3 Preparation of front plate (hard coat film) >> On each of the polyimide films (111a) 1 to 19 prepared in Example 1, a hard coat layer coating solution was prepared by filtering the following hard coat layer coating composition through a polypropylene filter having a pore size of 0.4 ⁇ m, and applied with a die coater. Then, after drying at 70 ° C., while purging with nitrogen so that the oxygen concentration becomes 1.0% by volume or less, the illuminance of the irradiation part is 300 mW / cm 2 and the irradiation amount is 0.3 J / cm using an ultraviolet lamp. The coating layer was cured as 2 and further heat-treated in a heat treatment zone at 130 ° C. for 5 minutes with a conveyance force of 300 N / m to form a hard coat layer (111b) with a dry film thickness of 7 ⁇ m, and a front plate (D) Hard coat films (111) 1 to 19 were produced.
  • Radical polymerizable fluororesin Cefal coat CF-803 (hydroxy (hydroxyl group) value 60, number average molecular weight 15000; manufactured by Central Glass Co., Ltd.)
  • One-end radically polymerizable polysiloxane B): Silaplane FM-0721 (number average molecular weight 5000; manufactured by Chisso Corporation)
  • Radical polymerization initiator Perbutyl O (t-butylperoxy-2-ethylhexanoate; manufactured by NOF Corporation)
  • Curing agent Sumidur N3200 (biuret type prepolymer of hexamethylene diisocyanate; manufactured by Sumika Bayer Urethane Co., Ltd.)
  • ⁇ Synthesis of radical polymerizable fluororesin (FA)> A glass reactor equipped with a mechanical stirrer, a thermometer, a condenser and a dry nitrogen gas inlet was added to cefal coat CF-803 (1554 parts by mass),
  • ⁇ / 4 retardation film (108) a film prepared by the method described in paragraphs (0227) to (0287) of JP2013-101229A was used, and the protective film (110) was Konica Minolta Konica Minolta KC4UA was used.
  • Step 1 The ⁇ / 4 retardation film (108) and the stretched protective film (110) are immersed in a 2 mol / L sodium hydroxide solution at 60 ° C. for 90 seconds, then washed with water and dried to obtain a polarizer (109 ) Was saponified.
  • Step 2 The polarizer was immersed in a polyvinyl alcohol adhesive tank having a solid content of 2% by mass for 1 to 2 seconds.
  • Step 3 Excess adhesive adhered to the polarizer in Step 2 was lightly wiped and placed on the ⁇ / 4 retardation film (108) treated in Step 1.
  • Step 4 The ⁇ / 4 retardation film (108), the polarizer (109) and the protective film (110) laminated in Step 3 were bonded at a pressure of 20 to 30 N / cm 2 and a conveyance speed of about 2 m / min.
  • Step 5 A sample obtained by laminating the ⁇ / 4 retardation film (108), the polarizer (109) and the protective film (110) prepared in Step 4 in a dryer at 80 ° C. is dried for 2 minutes, and a circularly polarizing plate ( C) 1 to 14 were produced.
  • organic electroluminescence display device having the configuration shown in FIG. 2 (hereinafter abbreviated as “organic EL display device (A)”) using each of the front plate (D) and the circularly polarizing plate (C) produced above. 1 to 19 were produced.
  • organic EL display device (A) organic electroluminescence display device having the configuration shown in FIG. 2 (hereinafter abbreviated as “organic EL display device (A)”) using each of the front plate (D) and the circularly polarizing plate (C) produced above. 1 to 19 were produced.
  • each polyimide film produced in Example 1 was used as a transparent substrate (101), a reflective electrode (not shown) made of chromium, and a reflective electrode on the transparent substrate (101). ITO was deposited to form a metal electrode (102, anode). An organic light emitting layer unit (103) was laminated on the metal electrode (102).
  • poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (PEDOT: PSS) is formed as a hole transport layer by sputtering to a thickness of 80 nm, and then on the hole transport layer.
  • a light emitting layer was formed by laminating RGB light emitting layers 103R, 103G, and 103B with a thickness of 100 nm using a shadow mask.
  • red light-emitting layer 103R tris (8-hydroxyquinolinate) aluminum (Alq 3 ) as a host and a light-emitting compound [4- (dicyanomethylene) -2-methyl-6 (p-dimethylaminostyryl) -4H-pyran] ( DCM) were co-evaporated (mass ratio 99: 1) to form a thickness of 100 nm.
  • the green light emitting layer 103G has a thickness of 100 nm by co-evaporating Alq 3 as a host and the light emitting compound coumarin 6 (3- (2-benzothiazolyl) -7- (diethylamino) coumarin) (mass ratio 99: 1). Formed with.
  • the blue light emitting layer 103B was formed with a thickness of 100 nm by co-evaporating BAlq and a light emitting compound Perylene as a host (mass ratio 90:10).
  • calcium is deposited to a thickness of 4 nm by vacuum deposition as a first cathode having a low work function so that electrons can be efficiently injected onto the light emitting layer, and the second cathode is formed on the first cathode.
  • Aluminum was formed to a thickness of 2 nm to form an organic light emitting layer unit (103).
  • a transparent electrode layer (104) having a thickness of 80 nm was formed on the organic light emitting layer unit (103) by sputtering.
  • ITO was used as the transparent electrode layer.
  • 200 nm of silicon nitride was formed on the transparent electrode layer by a CVD method to form an insulating film (105), thereby producing an organic EL element unit (B).
  • a film in which a gas barrier layer is provided on a polyethylene terephthalate film having a thickness of 20 ⁇ m is used as the barrier film (107), and a thermosetting type as a sealing layer (106) is formed on one side of the barrier film (101).
  • a sealing unit to which a liquid adhesive (epoxy resin) was applied at a thickness of 25 ⁇ m was produced.
  • the organic EL element unit formed from the transparent substrate (101) to the insulating layer (105) and the sealing unit were pressed and held for 5 minutes under reduced pressure conditions at 90 ° C. and 0.1 MPa. Subsequently, the laminate was returned to the atmospheric pressure environment, and further heated at 90 ° C. for 30 minutes to cure the adhesive, thereby producing an organic EL device unit (B).
  • the light emitting area of the produced organic EL device unit was 1296 mm ⁇ 784 mm.
  • the front luminance when a DC voltage of 6 V was applied to the organic EL element unit was 1200 cd / m 2 .
  • the front luminance is measured using a spectral radiance meter CS-1000 manufactured by Konica Minolta, with the front luminance at 2 ° C. and the optical axis of the spectral radiance meter aligned with the normal from the light emitting surface.
  • the range of visible light wavelength of 430 to 480 nm was measured, and the integrated intensity was taken.
  • a circularly polarizing plate (C) in which a polarizer (109) and a protective film (110) are laminated on the produced ⁇ / 4 retardation film (108) is shown in the above-mentioned produced organic EL device unit (B).
  • Example 1 the low temperature folding resistance test result of Example 1 was reproduced, and the organic EL display device including the polyimide films 1 to 11 and 15 to 18 of the present invention had a bending test result in a low temperature environment of 1000. It was confirmed that it was excellent as a transparent substrate and a front plate for a flexible display of an organic EL display device.
  • the polyimide film of the present invention is suitable for flexible printed circuit boards of LED lighting devices, etc., and has excellent properties such as light transmittance, coloring resistance, solder reflow suitability and bending resistance, flexible printed circuit board, flexible display substrate, It can be suitably used for a flexible display front plate, an LED illumination device, and an organic electroluminescence display device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Led Device Packages (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 本発明の課題は、LED照明装置のフレキシブルプリント基板などに好適な、光透過性、着色耐性及び低温折り曲げ耐性が向上したポリイミドフィルムとその製造方法、当該ポリイミドフィルムを用いたフレキシブルプリント基板、フレキシブルディスプレイ用基材、フレキシブルディスプレイ用前面板、LED照明装置及び有機エレクトロルミネッセンス表示装置を提供することである。 本発明のポリイミドフィルムは、いずれか一方がフルオレン骨格を有する、ジアミン又はその誘導体と、酸無水物又はその誘導体と、により形成されるポリアミド酸又はポリイミドを有するポリイミドフィルムであって、23℃、55%RHの環境下で12時間調湿した後、23℃の純水に浸漬し、浸漬直後から2分後におけるフィルムの伸び速度Sが0.01~0.10%/分の範囲内であることを特徴とする。

Description

ポリイミドフィルムとその製造方法、フレキシブルプリント基板、フレキシブルディスプレイ用基材、フレキシブルディスプレイ用前面板、LED照明装置及び有機エレクトロルミネッセンス表示装置
 本発明は、ポリイミドフィルム及びその製造方法と、それを具備したフレキシブルプリント基板、フレキシブルディスプレイ用基材、フレキシブルディスプレイ用前面板、LED照明装置及び有機エレクトロルミネッセンス表示装置に関する。より詳しくは、LED照明装置のフレキシブルプリント基板などに好適な、光透過性、着色耐性及び低温折り曲げ耐性が向上したポリイミドフィルムとその製造方法と、それを具備したフレキシブルプリント基板、フレキシブルディスプレイ用基材、フレキシブルディスプレイ用前面板、LED照明装置及び有機エレクトロルミネッセンス表示装置に関する。
 近年、電子機器などの小型化、軽量化にともないフレキシブル基板やフレキシブルプリント回路が用いられるようになってきた。
 照明用途としてもフレキシブル基板やフレキシブルプリント回路が求められており、例えば、LED(Light emitting Diode)照明装置用途の一般的なフレキシブル基板用フィルムとして、耐熱性に優れるポリイミドフィルムが広く用いられている。
 ポリイミドフィルムは、耐熱性に優れた特性を有しているが、高い芳香環密度により、茶色または黄色に呈色しやすく、可視光領域での光透過率が低く、透明性が要求される分野に適用することが困難であった。この問題に対し、透明性や光学特性を向上する目的で、フルオレン骨格を有するポリアミド酸やポリイミドを、ポリイミドフィルムの形成に使用する方法が提案されている(例えば、特許文献1参照。)。
 また、透明性、フレキシブル性、耐折性及び靭性に優れるポリイミド成形体を与えうることができる新規なポリイミド樹脂として、フルオレン骨格を有するポリイミド樹脂が提案されている(例えば、特許文献2参照。)。
 しかしながら、フルオレンのような嵩高い構造をポリイミドフィルムに適用すると、特に、低温環境下に保存した際に樹脂が脆くなり、低温環境下での折り曲げ耐性が大きく劣化するという問題を有していることが判明した。そして、屋外等の様々な環境で使用する、例えば、フレキシブルディスプレイ用途で使用した場合、折り曲げ性について、高い耐久性が要求され、更なる性能向上が要望されていた。
特開2009-235284号公報 特開2009-215412号公報
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、LED照明装置のフレキシブルプリント基板などに好適な、光透過性、着色耐性、半田リフロー適性及び折り曲げ耐性が向上したポリイミドフィルムとその製造方法と、当該ポリイミドフィルムを用いたフレキシブルプリント基板、フレキシブルディスプレイ用基材、フレキシブルディスプレイ用前面板、LED照明装置及び有機エレクトロルミネッセンス表示装置を提供することである。
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、いずれか一方がフルオレン骨格を有する、ジアミン又はその誘導体と、酸無水物又はその誘導体と、により形成されるポリアミド酸又はポリイミドを有し、23℃、55%RHの環境下で12時間調湿した後、23℃の純水に浸漬し、浸漬直後から2分後におけるフィルムの伸び速度Sが0.01~0.10%/分の範囲内であることを特徴とするポリイミドフィルムによって、光透過性、着色耐性、半田リフロー適性及び折り曲げ耐性が向上したポリイミドフィルムが得られることを見出した。
 従来、ポリイミドフィルムを製膜する際の溶媒としては、γ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、あるいはN-メチル-2-ピロリドン等のアミド系溶媒を使うことが多かった。この場合、表面が皮膜状となり、内部ではポリイミド樹脂分子がランダムに絡み合い徐々に乾燥してフィルム化すると考えており、また、皮膜部分が硬化し、剛性が高まり、その結果、低温折り曲げ耐性は不十分であった。このようなフィルムは、皮膜があるため、水が浸入しにくいフィルムであった。
 これに対して、いずれか一方がフルオレン骨格を有する、ジアミン又はその誘導体と、酸無水物又はその誘導体と、により形成されるポリアミド酸又はポリイミドを有する樹脂を用い、ジクロロメタンを主溶媒として使用すると、溶液流延方式によりフィルム化して乾燥する途中で樹脂が、製膜用の金属ベルト上で配向し、ポリイミド樹脂分子が一定方向に並び、かつ分子間にある程度の均一性ができることで柔軟性が発現し、破断し難しくなっていると推定している。更に、延伸処理を行うと上記効果が発現しやすくなる。上記条件で成膜を行うことにより、浸漬直後から2分後におけるフィルムの伸び速度Sが0.01~0.1%/分の範囲内となり、本発明の目的効果を達成することを見出したものである。
 フィルムの伸び速度Sを0.01~0.1%/分の範囲とすることにより、低温時に含水した水が固まり、欠陥として作用することを防止し、低温折り曲げ耐性を向上させることができる。
 即ち、ポリイミド樹脂分子が一定方向に配向することにより、耐熱性を維持して半田リフロー適性に優れ、低温でも柔軟性があり、低温環境下での折り曲げ耐性に優れたポリイミドフィルムが得られたと推定している。
 すなわち、本発明に係る上記課題は、以下の手段により解決される。
 1.いずれか一方がフルオレン骨格を有する、ジアミン又はその誘導体と、酸無水物又はその誘導体と、により形成されるポリアミド酸又はポリイミドを有するポリイミドフィルムであって、
 23℃、55%RHの環境下で12時間調湿した後、23℃の純水に浸漬し、浸漬直後から2分後におけるフィルムの伸び速度が0.01~0.10%/分の範囲内であることを特徴とするポリイミドフィルム。
 2.前記ポリアミド酸又はポリイミドの重量平均分子量が、30000~1000000の範囲内であることを特徴とする第1項に記載のポリイミドフィルム。
 3.前記ポリアミド酸又はポリイミドが、芳香族ジアミン、イソシアン酸エステル及びカルボン酸無水物から選択される少なくとも一種の化合物に由来するフルオレン骨格を有することを特徴とする第1項又は第2項に記載のポリイミドフィルム。
 4.前記フルオレン骨格を有するジアミンが、9,9-ビス(4-アミノフェニル)フルオレン、9,9-ビス(4-アミノ-3-メチルフェニル)フルオレン及び9,9-ビス(3-フルオロ-4-アミノフェニル)フルオレンから選ばれる少なくとも一種であることを特徴とする第1項から第3項までのいずれか一項に記載のポリイミドフィルム。
 5.前記フルオレン骨格を有する酸無水物が、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン酸二無水物又は9,9-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]フルオレン酸二無水物であることを特徴とする第1項から第4項までのいずれか一項に記載のポリイミドフィルム。
 6.第1項から第5項までのいずれか一項に記載のポリイミドフィルムを溶液流延法により製造するポリイミドフィルムの製造方法であって、
 ポリアミド酸又はポリイミドと、有機溶媒とを含有するドープを調製する工程を有し、
 前記ポリアミド酸又はポリイミドが、いずれか一方がフルオレン骨格を有する、ジアミン又はその誘導体と、酸無水物又はその誘導体とより形成され、
 前記有機溶媒が、ジクロロメタンを50質量%以上含有する混合溶媒であることを特徴とするポリイミドフィルムの製造方法。
 7.さらに、製膜したポリイミドフィルムを1.03~2.00倍の範囲内で延伸する工程を有することを特徴とする第6項に記載のポリイミドフィルムの製造方法。
 8.第1項から第5項までのいずれか一項に記載のポリイミドフィルムを具備していることを特徴とするフレキシブルプリント基板。
 9.第1項から第5項までのいずれか一項に記載のポリイミドフィルムを具備していることを特徴とするフレキシブルディスプレイ用基材。
 10.第1項から第5項までのいずれか一項に記載のポリイミドフィルムを具備していることを特徴とするフレキシブルディスプレイ用前面板。
 11.第1項から第5項までのいずれか一項に記載のポリイミドフィルム、又は第8項に記載のフレキシブルプリント基板を具備していることを特徴とするLED照明装置。
 12.第1項から第5項までのいずれか一項に記載のポリイミドフィルム、第9項に記載のフレキシブルディスプレイ用基材、又は第10項に記載のフレキシブルディスプレイ用前面板を具備していることを特徴とする有機エレクトロルミネッセンス表示装置。
 本発明の上記手段により、LED照明装置のフレキシブルプリント基板などに好適な、光透過性、着色耐性、半田リフロー適性及び折り曲げ耐性が向上したポリイミドフィルムと、その製造方法を提供することができる。また、当該ポリイミドフィルムを用いたフレキシブルプリント基板、フレキシブルディスプレイ用基材、フレキシブルディスプレイ用前面板、LED照明装置及び有機エレクトロルミネッセンス表示装置を提供することができる。
ポリイミドフィルムの水に浸漬した時の浸漬時間に対するフィルムの伸び量の関係の一例を示す模式図 本発明のポリイミドフィルムを具備した有機エレクトロルミネッセンス表示装置の構成の一例を示す概略断面図
 本発明のポリイミドフィルムは、いずれか一方がフルオレン骨格を有する、ジアミン又はその誘導体と、酸無水物又はその誘導体と、により形成されるポリアミド酸又はポリイミドを有し、23℃、55%RHの環境下で12時間調湿した後、23℃の純水に浸漬し、浸漬直後から2分後におけるフィルムの伸び速度Sが0.01~0.10%/分の範囲内であることを特徴とする。この特徴は、請求項1から請求項12までの請求項に係る発明に共通する技術的特徴である。
 本発明の実施態様としては、本発明の効果発現の観点から、ポリアミド酸又はポリイミドの重量平均分子量が、30000~1000000の範囲内であることが、より一層、光透過性、着色耐性及び折り曲げ耐性を向上する効果が高く、好ましい。
 また、前記ポリアミド酸又はポリイミドが、芳香族ジアミン、イソシアン酸エステル及びカルボン酸無水物から選択される少なくとも一種の化合物に由来するフルオレン骨格を有することが好ましく、前記フルオレン骨格を有するジアミン又はその誘導体が、9,9-ビス(4-アミノフェニル)フルオレン、9,9-ビス(4-アミノ-3-メチルフェニル)フルオレン及び9,9-ビス(3-フルオロ-4-アミノフェニル)フルオレンから選ばれる少なくとも一種であること、又は前記フルオレン骨格を有する酸無水物又はその誘導体が、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン酸二無水物又は9,9-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]フルオレン酸二無水物であることが、より一層、光透過性、着色耐性及び折り曲げ耐性を向上する効果が高く、好ましい。
 本発明のポリイミドフィルムは、フレキシブルプリント基板、フレキシブルディスプレイ用基材、フレキシブルディスプレイ用前面板、LED照明装置や有機エレクトロルミネッセンス表示装置に好適に具備される。
 本発明でいうフレキシブルとは、直径5mmのABS樹脂(アクリロニトリル-ブタジエンースチレン共重合体樹脂)製の棒に10回巻きつけと開放を繰り返した後、目視確認で、ポリイミドフィルム、フレキシブルプリント基板、フレキシブルディスプレイ用基材、フレキシブルディスプレイ用前面板に割れや欠け等の損傷がない特性をいう。
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。
 以下、本発明のポリイミドフィルムの特性、ポリイミドフィルムの各構成要素、その製造方法及びその用途について詳細に説明する。
 《本発明のポリイミドフィルム》
 〔1〕ポリイミドフィルムの特性値
 本発明のポリイミドフィルムは、いずれか一方がフルオレン骨格を有する、ジアミン又はその誘導体と、酸無水物又はその誘導体と、により形成されるポリアミド酸又はポリイミドを有し、23℃、55%RHの環境下で12時間調湿した後、23℃の純水に浸漬し、浸漬直後から2分後におけるフィルムの伸び速度Sが0.01~0.10%/分の範囲内であることを特徴とする。
 本発明において、上記で規定する純水に浸漬し、浸漬直後から2分後におけるフィルムの伸び速度Sが0.01~0.10%/分の範囲内に設定する具体的な手段としては、ポリアミドフィルムの製造方法として、ポリアミド酸又はポリイミドを、いずれか一方がフルオレン骨格を有する、ジアミン又はその誘導体と、酸無水物又はその誘導体と、により形成し、かつ有機溶媒として、ジクロロメタンを50質量%以上含有する混合溶媒を適用する製造方法により、得ることができる。
 (1.1:フィルムの含水による伸び特性)
 ポリイミドフィルムの含水による寸法変化量は、含水速度(初期の伸び速度S)と含水量(伸び量)に依存する。
 〈伸び量L及び伸び速度S〉
 図1は、フィルムを水に浸漬したときの浸漬時間に対するフィルムの伸び量Lの関係の一例を示す模式図である。
 図1に示すグラフは、具体的には、ポリイミドフィルムを、23℃、55%RHの環境下で12時間調湿した後、23℃の純水に浸漬し、横軸に浸漬時間(分)、縦軸に浸漬時間に対するポリイミドフィルムの伸び量Lをプロットしたグラフである。
 本発明においては、23℃の純水に浸漬し、浸漬直後から2分後におけるフィルムの伸び速度Sが0.01~0.10%/分の範囲内であることを特徴とする。
 本発明でいう伸び量(%)は、下式(1)により求める。
 式(1)
   フィルムの伸び量L1(%)=〔(浸漬T分後の寸法-未浸漬時の寸法)/未浸漬時の寸法〕×100
 また、本発明でいうフィルムの伸び速度Sは、下式(2)により求める。
 式(2)
   フィルムの伸び速度S1(%/分)=フィルムの伸び量L(%)/浸漬時間T(分)
 本発明では、フィルムの伸び速度Sは、浸漬2分後と規定しているため、式(3)及び式(4)となる。
 式(3)
   フィルムの伸び量L2(%)=〔(浸漬2分後の寸法-未浸漬時の寸法)/未浸漬時の寸法〕×100
 式(4)
   フィルムの伸び速度S2(%/分)=フィルムの伸び量L2(%)/浸漬時間2(分)
 本発明においては、図1で示すように、伸び速度S2が0.01~0.10%の範囲内であることを特徴とする。
 ポリイミドフィルムの初期の伸び速度Sとしては、0.03~0.10%/分の範囲内であること好ましく、0.04~0.09%/分の範囲内であることがより好ましく、0.04~0.08%/分の範囲内であることが特に好ましい。
 ポリイミドフィルムの初期の伸び速度Sが0.10%/分以下であれば、フィルムの含水速度が大きすぎないため、フィルムの低温での柔軟性を得ることができる。また、ポリイミドフィルムの初期の伸び速度Sが0.03%/分以上であれば、フィルムに低温環境下での適量の水の浸入により柔軟性を付与でき、低温折り曲げ耐性の劣化を防止することができる。
 〈伸び量L及び伸び速度Sの測定方法〉
 測定対象であるポリイミドフィルム(膜厚40μm)を、23℃、55%RHの環境下で12時間調湿した。次いで、同環境下で、水浸漬アタッチメントを装着したポリイミドフィルムを、日立ハイテクサイエンス社製の熱機械的分析装置 TMA/SS7100を用いて、23℃の純水に浸漬し、浸漬後に特定の時間間隔で取り出してフィルムの伸び量L(%)を測定した。伸び量L(%)の測定は、フィルムのMD方向(フィルム成膜時の長手方向)で測定した。そして、浸漬開始から30分後のフィルムの伸び量L1(%)を求めた。
 得られた測定データを、浸漬時間T(分)を横軸とし、フィルムの伸び量L(%)を縦軸としてプロットして、図1に示すようなグラフを得た。得られたグラフについて、式(3)に従って浸漬開始から2分後までのフィルムの伸び量L2(%)を算出し、式(4)に従って、フィルムの伸び速度S2(%/min)を求めた。
 〈伸び量L〉
 ポリイミドフィルムの含水速度は、初期のフィルムの伸び速度Sに相当し、フィルムの含水量は、一定時間経過後のフィルムの伸び量Lに相当する。
 含水による寸法変化量を小さくするためには、フィルムの含水量(伸び量L)と含水速度(伸び速度S)の両方を小さくすることが好ましい。しかしながら、含水速度(伸び速度S)を小さくしすぎると、剛性が高くなりすぎ、低温折り曲げ耐性が不十分であった。
 従って、本発明では、ポリイミドフィルムを水に含浸したときのフィルムの伸び速度Sと伸び量Lを、図1の斜線部で示されるような所定の範囲に調整することが好ましい。
 具体的には、ポリイミドフィルムは、23℃の水に浸漬して30分経過後の伸び量Lの最大値である伸び量Lmaxとしては0.4%以下であることが好ましく、0.35%以下であることがより好ましく、0.3%以下であることがさらに好ましい。ポリイミドフィルムの伸び量Lが一定以下であると、フィルムの含水量が少ないため、フィルムの寸法変化量が少なくなるため好ましい。一方、伸び量Lの最小値Lminとしては、フィルムに適度な柔軟性を付与させる観点から、0.2%以上であることが好ましい。
 (1.2:重量平均分子量)
 前記ポリアミド酸又はポリイミドは、フィルムを形成する観点から、重量平均分子量が30000~1000000の範囲内にあるものを適用することが好ましい。
 適用するポリアミド酸又はポリイミドの重量平均分子量が30000以上であれば、フィルムの強度等の物性や光学的均一性の高いフィルムが得られ、1000000以下であれば後述するポリイミドフィルムを製造する際に、流延製膜時の粘度が過度に上昇せず、均一な製膜が可能となる。好ましくは、80000~500000の範囲内であり、より好ましくは100000~300000の範囲内である。
 本発明でいう重量平均分子量は、ゲルパーミエーションクロマトグラフィーにより測定することができる。測定条件の一例は、以下のとおりである。
 溶媒:メチレンクロライド
 カラム:Shodex K806、K805、K803G(昭和電工(株)製を3本接続して使用する)
 カラム温度:25℃
 試料濃度:0.1質量%
 検出器:RI Model 504(GLサイエンス社製)
 ポンプ:L6000(日立製作所(株)製)
 流量:1.0ml/min
 校正曲線:標準ポリスチレンSTK standard ポリスチレン(東ソー(株)製)Mw=500~2800000までの13サンプルによる校正曲線を使用する。13サンプルは、ほぼ等間隔に用いることが好ましい。
 (1.3:その他の特性値)
 本発明のポリイミドフィルムにおいては、高品質のフィルムを実現する観点から、下記に示す条件1~条件4の特性を有していることが好ましい態様である。
 条件1:ガラス転移温度が、260℃以上であること
 条件2:イエローインデックスが、2.0以下であること
 条件3:全光線透過率が、80%以上であること、
 条件4:JIS P 8115に準拠した-20℃環境下におけるMIT耐折度試験による耐折回数が1000回以上であること。
 〈1.3.1:ガラス転移温度)
 本発明のポリイミドフィルムにおいては、ガラス転移温度が、260℃以上であることが好ましく、さらに好ましくは260~350℃の範囲内である。
 本発明のポリイミドフィルムのガラス転移温度Tg(℃)は、JIS K 7121に従って、セイコーインスツル(株)製の示差走査熱量計DSC220を用いて測定して、求めることができる。
 具体的な方法としては、ポリイミドフィルムを10mg程度セットし、窒素流量50ml/minの条件下で、20℃/minで室温から250℃まで昇温して10分間保持し(1stスキャン)、次に20℃/minの速度で30℃まで降温して10分間保持し(2ndスキャン)、さらに20℃/minで250℃まで昇温し(3rdスキャン)、DSC曲線を作成し、得られた3rdスキャンのDSC曲線からガラス転移温度Tgを求める。
 〈1.3.2:イエローインデックス)
 本発明のポリイミドフィルムにおいては、厚さ40μmにおけるイエローインデックス(YI)が2.0以下であることが好ましく、より好ましくは0.3~2.0の範囲内であり、更に好ましくは0.3~1.6の範囲内である。
 イエローインデックスは、JIS K 7103に定められているフィルムのYI(イエローインデックス:黄色味の指数)に従って求めることができる。
 具体的なイエローインデックス値の測定方法としては、厚さ25μmのサンプルを作製し、日立製作所製の分光光度計U-3200と付属の彩度計算プログラム等を用いて、JIS Z8701に定められている光源色の三刺激値X、Y、Zを求め、下式に従ってイエローインデックス値を求める。
  イエローインデックス(YI)=100(1.28X-1.06Z)/Y
 〈1.3.3:全光線透過率〉
 本発明のポリイミドフィルムにおいては、全光線透過率が、80%以上であることが好ましく、好ましくは80~95%の範囲内であり、さらに好ましくは85~95%の範囲内である。
 本発明に係る全光線透過率は、ポリアミドフィルムについて、23℃、55%RHの環境下で24時間調湿した後、JIS K 7136に従って、ヘイズメーター(NDH2000型、日本電色工業(株)製)を使用して全光線透過率を測定することができる。
 〈1.3.4:MIT耐折度試験〉
 本発明のポリイミドフィルムにおいては、JIS P 8115に準拠した-20℃環境下におけるMIT耐折度試験による耐折回数が1000回以上であることが好ましい特性である。
 MIT耐折度試験は、JIS P 8115に準拠した下記の方法により測定する。
 ポリイミドフィルムの片面に、巻き出し機、スパッタリング装置、巻取り機から構成されるスパッタリング設備を用いて直流スパッタリング法により、平均厚さ23nmの20質量%Crのクロム-ニッケル合金層を金属薄膜として形成する。更に、同様にして、金属薄膜の上に平均厚さ1000Åの銅薄膜を形成した。
 次に、銅薄膜の上に電気銅めっき法により、厚さ9μmの銅層を設けて金属化ポリイミドフィルムを作製する。用いた銅めっき浴は、銅濃度23g/Lの硫酸銅めっき浴であり、めっき時の浴温は27℃とする。また、めっき槽は、複数のめっき槽を連結させた複数構造槽とし、巻き出し機と巻取り機とにより片面に金属薄膜が設けられたポリイミドフィルムが連続的に各槽に浸漬されるように搬送しながら電気めっきを行った。搬送速度は、75m/hとし、めっき槽の平均陰極電流密度を1.0~2.5A/dmに調整して銅めっきを施す。
 次に、この金属被覆ポリイミドフィルムを用いて配線間隔30μm、全配線幅が15000μmのCOF(Chip on film)をサブトラクティブ法で作製する。これにICチップを搭載し、ICチップ表面の電極と配線のリード部とをワイヤボンディング装置を用いて400℃にて0.5秒間のボンディング処理条件でワイヤボンディングを施して、フレキシブルプリント基板を作製した。
 上記作製したフレキシブルプリント基板を、低温恒温恒湿器(エスペック社製 PL-4)の内の温度を-20℃に設定し、MIT試験機により測定した。恒温槽内が-20℃に到達したら、MIT試験機により荷重500g、屈折角135°、屈折サイクル175cpm、屈折部局率半径0.38mmの条件下で折り曲げ試験を行い、通電試験によりフレキシブルプリント基板の回路破断による通電状態切れまでの折り曲げ回数を測定する。
 《本発明のポリイミドフィルムの構成要素》
 〔1〕フルオレン骨格を有するポリアミド酸又はポリイミド
 本発明のポリイミドフィルムは、いずれか一方の成分がフルオレン骨格を有する、第1成分であるジアミン又はその誘導体と、第2成分である酸無水物又はその誘導体とから形成され、重量平均分子量が30000~1000000の範囲内であるフルオレン骨格を有するポリアミド酸又はポリイミドを構成要素とすることを特徴とする。
 本発明のポリイミドフィルムでは、ポリイミド特有の着色を改善するのに、本発明に係るフルオレン骨格を有するポリアミド酸又はポリイミドを含有することが必要である。本発明に係るフルオレン骨格を有するポリアミド酸又はポリイミドは、ジアミン又はその誘導体と酸無水物又はその誘導体から形成され、当該ジアミン又は酸無水物のいずれか一方がフルオレン骨格を有する化合物である。
 なお、本発明でいうフルオレン骨格とは、以下の構造をいう。
Figure JPOXMLDOC01-appb-C000001
 市販のポリイミドフィルムは、分子間あるいは分子内の電荷移動相互作用に由来する可視光領域の吸収により、黄色から褐色に着色しているという問題がある。また、上記フィルムは、フィルム状に成形する際に、高温での熱処理を要するなど、プロセス負荷が高く、成形性が低いという問題がある。具体的には、上記フィルムを形成するポリイミドは有機溶媒に対する溶解性が低く、ポリイミドをそのまま用いてフィルムを形成することが難しい。そのため、前記ポリイミドの前駆体であるポリアミド酸の有機溶媒溶液を用い、支持体への流延などによりフィルム状に塗膜した後、該塗膜を400℃程度の高温で熱処理することにより、塗膜中のポリアミド酸をイミド化し、ポリイミドより構成されるフィルムを得る必要がある。その結果、着色が強いという問題があった。
 本発明では、一つの方法として、フルオレン骨格を有するポリアミド酸又はポリイミドを用いることによって、前記着色の問題を改善するものである。
 本発明に用いられるポリイミド又はポリアミド酸としては、特に、下記一般式(I)で表される繰り返し単位を有するポリイミド(以下、ポリイミド(A)と称する。)又は下記一般式(I′)で表される繰り返し単位を有するポリアミド酸(以下、ポリアミド酸(A′)と称する。)が好ましい。
Figure JPOXMLDOC01-appb-C000002
 上記一般式(I)及び一般式(I′)において、Rは、芳香族炭化水素環若しくは芳香族複素環、又は、炭素数4~39の4価の脂肪族炭化水素基若しくは脂環式炭化水素基である。Φは、炭素数2~39の2価の脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基、又はこれらの組み合わせからなる基であって、結合基として、-O-、-SO-、-CO-、-CH-、-C(CH-、-OSi(CH-、-CO-及び-S-からなる群から選ばれる少なくとも一つの基を含有していても良い。
 Rで表される芳香族炭化水素環としては、例えば、フルオレン環、ベンゼン環、ビフェニル環、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o-テルフェニル環、m-テルフェニル環、p-テルフェニル環、アセナフテン環、コロネン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環等が挙げられる。
 また同様に、Rで表される芳香族複素環としては、例えば、シロール環、フラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、ベンズイミダゾール環、ベンズチアゾール環、ベンズオキサゾール環、キノキサリン環、キナゾリン環、フタラジン環、チエノチオフェン環、カルバゾール環、アザカルバゾール環(カルバゾール環を構成する炭素原子の任意の一つ以上が窒素原子で置き換わったものを表す)、ジベンゾシロール環、ジベンゾフラン環、ジベンゾチオフェン環、ベンゾチオフェン環やジベンゾフラン環を構成する炭素原子の任意の一つ以上が窒素原子で置き換わった環、ベンゾジフラン環、ベンゾジチオフェン環、アクリジン環、ベンゾキノリン環、フェナジン環、フェナントリジン環、フェナントロリン環、サイクラジン環、キンドリン環、テペニジン環、キニンドリン環、トリフェノジチアジン環、トリフェノジオキサジン環、フェナントラジン環、アントラジン環、ペリミジン環、ナフトフラン環、ナフトチオフェン環、ナフトジフラン環、ナフトジチオフェン環、アントラフラン環、アントラジフラン環、アントラチオフェン環、アントラジチオフェン環、チアントレン環、フェノキサチイン環、ジベンゾカルバゾール環、インドロカルバゾール環、ジチエノベンゼン環等が挙げられる。
 Rで表される炭素数4~39の4価の脂肪族炭化水素基としては、例えば、ブタン-1,1,4,4-トリイル基、オクタン-1,1,8,8-トリイル基、デカン-1,1,10,10-トリイル基等の基が挙げられる。
 また、Rで表される炭素数4~39の4価の脂環式炭化水素基としては、例えば、シクロブタン-1,2,3,4-テトライル基、シクロペンタン-1,2,4,5-テトライル基、シクロヘキサン-1,2,4,5-テトライル基、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトライル基、ビシクロ[2.2.2]オクタン-2,3,5,6-テトライル基、3,3′,4,4′-ジシクロヘキシルテトライル基、3,6-ジメチルシクロヘキサン-1,2,4,5-テトライル基、3,6-ジフェニルシクロヘキサン-1,2,4,5-テトライル基等の基が挙げられる。
 Φで表される上記結合基を有する又は有さない炭素数2~39の2価の脂肪族炭化水素基としては、例えば、下記構造式で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000003
 上記構造式において、nは、繰り返し単位の数を表し、1~5が好ましく、1~3がより好ましい。また、Xは、炭素数1~3のアルカンジイル基、つまり、メチレン基、エチレン基、トリメチレン基、プロパン-1,2-ジイル基であり、メチレン基が好ましい。
 Φで表される上記結合基を有する又は有さない炭素数2~39の2価の脂環式炭化水素基としては、例えば、下記構造式で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000004
 Φで表される上記結合基を有する又は有さない炭素数2~39の2価の芳香族炭化水素基としては、例えば、下記構造式で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000005
 Φで表される脂肪族炭化水素基、脂環式炭化水素基及び芳香族炭化水素基の組み合わせからなる基としては、例えば、下記構造式で示される基が挙げられる。
Figure JPOXMLDOC01-appb-C000006
 Φで表される基としては、結合基を有する炭素数2~39の2価の芳香族炭化水素基、又は該芳香族炭化水素基と脂肪族炭化水素基の組み合わせであることが好ましく、特に、以下の構造式で表される基が好ましい。
Figure JPOXMLDOC01-appb-C000007
 ポリアミド酸(A′)は、上記のとおり、ポリイミド(A)のイミド結合の一部が解離した構造に当たり、ポリアミド酸(A′)の詳細説明はポリイミド(A)に対応させて考えることができるため、以下、代表的にポリイミド(A)について詳細に説明する。
 前記一般式(I)で表される繰り返し単位は、全ての繰り返し単位に対して好ましくは10~100モル%、より好ましくは50~100モル%、更に好ましくは80~100モル%、特に好ましくは90~100モル%である。また、ポリイミド(A)1分子中の一般式(I)の繰り返し単位の個数は、10~2000、好ましくは20~200であり、この範囲において、更にガラス転移温度が230~350℃であることが好ましく、250~330℃であることがより好ましい。
 ポリイミド(A)は、ジアミン又はその誘導体と、酸無水物又はその誘導体から形成され、当該ジアミン又は酸無水物のいずれか一方がフルオレン骨格を有する化合物である。
 フルオレン骨格を有するポリイミド(A)中には、当該ジアミン又はその誘導体、又は酸無水物又はその誘導体由来のフルオレン骨格を50モル%以下含有することが好ましく、着色を低減する効果を発現するために、より好ましくは20~50モル%の範囲内であり、30~50モル%の範囲内がさらに好ましい。
 本発明に係る酸無水物のうち、フルオレン骨格を有しない酸無水物としてはカルボン酸無水物であり、脂肪族若しくは脂環式テトラカルボン酸の誘導体であることが好ましく、例えば、脂肪族若しくは脂環式テトラカルボン酸エステル類、脂肪族若しくは脂環式テトラカルボン酸二無水物等が挙げられる。なお、脂肪族若しくは脂環式テトラカルボン酸又はその誘導体のうち、脂環式テトラカルボン酸二無水物が好ましい。
 ここで、誘導体とは、脂肪族若しくは脂環式テトラカルボン酸に変化しうる化合物であり、例えば、脂肪族テトラカルボン酸二無水物の場合、当該無水物に代えて2つのカルボキシル基を有する化合物、これら2つのカルボキシル基の中の片方または両方がエステル化されたエステル化物である化合物、またはこれら2つのカルボキシル基の中の片方または両方がクロル化された酸クロライド等が好適に用いられる。
 このようなアシル化合物を用いることにより、高い耐熱性と優れた光学特性とを有し、着色(黄変)の少ないフィルムを得ることができる。
 脂肪族テトラカルボン酸としては、例えば、1,2,3,4-ブタンテトラカルボン酸等が挙げられる。脂環式テトラカルボン酸としては、例えば、1,2,3,4-シクロブタンテトラカルボン酸、1,2,4,5-シクロペンタンテトラカルボン酸、1,2,4,5-シクロヘキサンテトラカルボン酸、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸、ビシクロ[2.2.2]オクタン-2,3,5,6-テトラカルボン酸等が挙げられる。
 脂肪族テトラカルボン酸エステル類としては、例えば、上記脂肪族テトラカルボン酸のモノアルキルエステル、ジアルキルエステル、トリアルキルエステル、テトラアルキルエステルが挙げられる。脂環式テトラカルボン酸エステル類としては、例えば、上記脂環式テトラカルボン酸のモノアルキルエステル、ジアルキルエステル、トリアルキルエステル、テトラアルキルエステルが挙げられる。なお、アルキル基部位は、炭素数1~5のアルキル基であることが好ましく、炭素数1~3のアルキル基であることがより好ましい。
 脂肪族テトラカルボン酸二無水物としては、例えば、1,2,3,4-ブタンテトラカルボン酸二無水物等が挙げられる。脂環式テトラカルボン酸二無水物としては、例えば、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,4,5-シクロペンタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、ビシクロ[2.2.2]オクタン-2,3,5,6-テトラカルボン酸二無水物等が挙げられる。特に好ましくは、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物である。一般に、脂肪族ジアミンを構成成分とするポリイミドは、中間生成物であるポリアミド酸とジアミンが強固な塩を形成するため、高分子量化するためには塩の溶解性が比較的高い溶媒(例えばクレゾール、N,N-ジメチルアセトアミド、γ-ブチロラクトン、N-メチル-2-ピロリドン等)を用いることが好ましい。ところが、脂肪族ジアミンを構成成分とするポリイミドでも、1,2,4,5-シクロへキサンテトラカルボン酸二無水物を構成成分としている場合には、ポリアミド酸とジアミンの塩は比較的弱い結合で結ばれているので、高分子量化が容易で、フレキシブルなフィルムが得られ易い。
 他にも、例えば、4,4′-ビフタル酸無水物、4,4′-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、2,3,3′,4′-ビフェニルテトラカルボン酸二無水物、4,4′-オキシジフタル酸無水物、3,3′,4,4′-ベンゾフェノンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸無水物、5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物、3,3′,4,4′-ジフェニルスルホンテトラカルボン酸二無水物、3,4′-オキシジフタル酸無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物(ピグメントレッド224)1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物トリシクロ[6.4.0.02,7]ドデカン-1,8:2,7-テトラカルボン酸二無水物等を用いることができる。
 芳香族、脂肪族若しくは脂環式テトラカルボン酸又はその誘導体は、1種を単独で使用しても良いし、2種以上を併用しても良い。また、ポリイミドの溶媒可溶性、フィルムのフレキシビリティ、熱圧着性、透明性を損なわない範囲で、他のテトラカルボン酸又はその誘導体(特に二無水物)を併用しても良い。
 かかる他のテトラカルボン酸又はその誘導体としては、例えば、ピロメリット酸、3,3′,4,4′-ビフェニルテトラカルボン酸、2,3,3′,4′-ビフェニルテトラカルボン酸、2,2-ビス(3,4-ジカルボキシフェニル)プロパン、2,2-ビス(2,3-ジカルボキシフェニル)プロパン、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス(2,3-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、ビス(3,4-ジカルボキシフェニル)スルホン、ビス(3,4-ジカルボキシフェニル)エーテル、ビス(2,3-ジカルボキシフェニル)エーテル、3,3′,4,4′-ベンゾフェノンテトラカルボン酸、2,2′,3,3′-ベンゾフェノンテトラカルボン酸、4,4-(p-フェニレンジオキシ)ジフタル酸、4,4-(m-フェニレンジオキシ)ジフタル酸、1,1-ビス(2,3-ジカルボキシフェニル)エタン、ビス(2,3-ジカルボキシフェニル)メタン、ビス(3,4-ジカルボキシフェニル)メタン等の芳香族系テトラカルボン酸及びこれらの誘導体(特に二無水物);エチレンテトラカルボン酸等の炭素数1~3の脂肪族テトラカルボン酸及びこれらの誘導体(特に二無水物)等が挙げられる。
 本発明に係る酸無水物のうち、フルオレン骨格を有する酸無水物としては、例えば、9,9-ビス〔4-(3,4-ジカルボキシフェノキシ)フェニル〕フルオレン二無水物、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン酸二無水物、9,9-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]フルオレン酸二無水物、9,9-ビス〔4-(3,4-ジカルボキシフェノキシ)-3-フェニルフェニル〕フルオレン二無水物、9,9-ビス〔4-(2,3-ジカルボキシフェノキシ)-3-フェニルフェニル〕フルオレン二無水物、9,9-ビス〔4-(3,4-ジカルボキシフェノキシ)-2-フェニルフェニル〕フルオレン二無水物、9,9-ビス〔4-(2,3-ジカルボキシフェノキシ)-2-フェニルフェニル〕フルオレン二無水物、9,9-ビス〔4-(3,4-ジカルボキシフェノキシ)-3-メチルフェニル〕フルオレン二無水物、9,9-ビス〔4-(2,3-ジカルボキシフェノキシ)-3-メチルフェニル〕フルオレン二無水物、9,9-ビス〔4-(3,4-ジカルボキシフェノキシ)-2-メチルフェニル〕フルオレン二無水物、9,9-ビス〔4-(2,3-ジカルボキシフェノキシ)-2-メチルフェニル〕フルオレン二無水物、9,9-ビス〔4-(3,4-ジカルボキシフェノキシ)-3-エチルフェニル〕フルオレン二無水物、9,9-ビス〔4-(2,3-ジカルボキシフェノキシ)-3-エチルフェニル〕フルオレン二無水物、9,9-ビス〔4-(3,4-ジカルボキシフェノキシ)-2-エチルフェニル〕フルオレン二無水物、9,9-ビス〔4-(2,3-ジカルボキシフェノキシ)-2-エチルフェニル〕フルオレン二無水物、9,9-ビス〔4-(3,4-ジカルボキシフェノキシ)-3-プロピルフェニル〕フルオレン二無水物、9,9-ビス〔4-(2,3-ジカルボキシフェノキシ)-3-プロピルフェニル〕フルオレン二無水物、9,9-ビス〔4-(3,4-ジカルボキシフェノキシ)-2-プロピルフェニル〕フルオレン二無水物、9,9-ビス〔4-(2,3-ジカルボキシフェノキシ)-2-プロピルフェニル〕フルオレン二無水物、9,9-ビス〔4-(3,4-ジカルボキシフェノキシ)-3-ブチルフェニル〕フルオレン二無水物、9,9-ビス〔4-(2,3-ジカルボキシフェノキシ)-3-ブチルフェニル〕フルオレン二無水物、9,9-ビス〔4-(3,4-ジカルボキシフェノキシ)-2-ブチルフェニル〕フルオレン二無水物、9,9-ビス〔4-(2,3-ジカルボキシフェノキシ)-2-ブチルフェニル〕フルオレン二無水物、9,9-ビス〔4-(3,4-ジカルボキシフェノキシ)-3-t-ブチルフェニル〕フルオレン二無水物、9,9-ビス〔4-(2,3-ジカルボキシフェノキシ)-3-t-ブチルフェニル〕フルオレン二無水物、9,9-ビス〔4-(3,4-ジカルボキシフェノキシ)-2-t-ブチルフェニル〕フルオレン二無水物、9,9-ビス〔4-(2,3-ジカルボキシフェノキシ)-2-t-ブチルフェニル〕フルオレン二無水物、等を挙げることができる。これらの芳香族ビス(エーテル酸無水物)化合物のうち、9,9-ビス〔4-(3,4-ジカルボキシフェノキシ)フェニル〕フルオレン二無水物、9,9-ビス〔4-(3,4-ジカルボキシフェノキシ)-3-フェニルフェニル〕フルオレン二無水物、9,9-ビス〔4-(3,4-ジカルボキシフェノキシ)-2-フェニルフェニル〕フルオレン二無水物、9,9-ビス〔4-(3,4-ジカルボキシフェノキシ)-3-メチルフェニル〕フルオレン二無水物、9,9-ビス〔4-(3,4-ジカルボキシフェノキシ)-2-メチルフェニル〕フルオレン二無水物等を挙げることができる。
 中でも、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン酸二無水物又は9,9-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]フルオレン酸二無水物を用いることが、好ましい。
 本発明に係るジアミン又はその誘導体としては、例えば、芳香族ジアミン又はイソシアン酸エステル等が好ましく、芳香族ジアミンが好ましい。
 前述のとおり、本発明に係るフルオレン骨格を有するポリアミド酸又はポリイミドは、ジアミン又はその誘導体と、酸無水物又はその誘導体から形成され、当該ジアミン又は酸無水物のいずれか一方がフルオレン骨格を有する化合物である。
 本発明に係るジアミン又はその誘導体のうち、フルオレン骨格を有しないジアミン又はその誘導体としては、芳香族ジアミン、脂肪族ジアミン又はこれらの混合物のいずれでも良く、芳香族ジアミンであることがフィルムの白化を抑制できる観点から、好ましい。
 なお、本発明において「芳香族ジアミン」とは、アミノ基が芳香族環に直接結合しているジアミンを表し、その構造の一部に脂肪族炭化水素基、脂環式炭化水素基、その他の置換基(例えば、ハロゲン原子、スルホニル基、カルボニル基、酸素原子等。)を含んでいても良い。「脂肪族ジアミン」とは、アミノ基が脂肪族炭化水素基又は脂環式炭化水素基に直接結合しているジアミンを表し、その構造の一部に芳香族炭化水素基、その他の置換基(例えば、ハロゲン原子、スルホニル基、カルボニル基、酸素原子等。)を含んでいても良い。
 芳香族ジアミンとしては、例えば、p-フェニレンジアミン、m-フェニレンジアミン、2,4-ジアミノトルエン、2,6-ジアミノトルエン、ベンジジン、o-トリジン、m-トリジン、ビス(トリフルオロメチル)ベンジジン、オクタフルオロベンジジン、3,3′-ジヒドロキシ-4,4′-ジアミノビフェニル、3,3′-ジメトキシ-4,4′-ジアミノビフェニル、3,3′-ジクロロ-4,4′-ジアミノビフェニル、3,3′-ジフルオロ-4,4′-ジアミノビフェニル、2,6-ジアミノナフタレン、1,5-ジアミノナフタレン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4′-ジアミノジフェニルメタン、4,4′-ジアミノジフェニルスルホン、3,4′-ジアミノジフェニルスルホン、4,4′-ジアミノベンゾフェノン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン、2,2-ビス(4-(2-メチル-4-アミノフェノキシ)フェニル)プロパン、2,2-ビス(4-(2,6-ジメチル-4-アミノフェノキシ)フェニル)プロパン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)ヘキサフルオロプロパン、2,2-ビス(4-(2-メチル-4-アミノフェノキシ)フェニル)ヘキサフルオロプロパン、2,2-ビス(4-(2,6-ジメチル-4-アミノフェノキシ)フェニル)ヘキサフルオロプロパン、4,4′-ビス(4-アミノフェノキシ)ビフェニル、4,4′-ビス(2-メチル-4-アミノフェノキシ)ビフェニル、4,4′-ビス(2,6-ジメチル-4-アミノフェノキシ)ビフェニル、4,4′-ビス(3-アミノフェノキシ)ビフェニル、ビス(4-(4-アミノフェノキシ)フェニル)スルホン、ビス(4-(2-メチル-4-アミノフェノキシ)フェニル)スルホン、ビス(4-(2,6-ジメチル-4-アミノフェノキシ)フェニル)スルホン、ビス(4-(4-アミノフェノキシ)フェニル)エーテル、ビス(4-(2-メチル-4-アミノフェノキシ)フェニル)エーテル、ビス(4-(2,6-ジメチル-4-アミノフェノキシ)フェニル)エーテル、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(2-メチル-4-アミノフェノキシ)ベンゼン、1,4-ビス(2,6-ジメチル-4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(2-メチル-4-アミノフェノキシ)ベンゼン、1,3-ビス(2,6-ジメチル-4-アミノフェノキシ)ベンゼン、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(2-メチル-4-アミノフェニル)プロパン、2,2-ビス(3-メチル-4-アミノフェニル)プロパン、2,2-ビス(3-エチル-4-アミノフェニル)プロパン、2,2-ビス(3,5-ジメチル-4-アミノフェニル)プロパン、2,2-ビス(2,6-ジメチル-4-アミノフェニル)プロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス(2-メチル-4-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス(2,6-ジメチル-4-アミノフェニル)ヘキサフルオロプロパン、α,α′-ビス(4-アミノフェニル)-1,4-ジイソプロピルベンゼン、α,α′-ビス(2-メチル-4-アミノフェニル)-1,4-ジイソプロピルベンゼン、α,α′-ビス(2,6-ジメチル-4-アミノフェニル)-1,4-ジイソプロピルベンゼン、α,α’-ビス(3-アミノフェニル)-1,4-ジイソプロピルベンゼン、α,α′-ビス(4-アミノフェニル)-1,3-ジイソプロピルベンゼン、α,α′-ビス(2-メチル-4-アミノフェニル)-1,3-ジイソプロピルベンゼン、α,α′-ビス(2,6-ジメチル-4-アミノフェニル)-1,3-ジイソプロピルベンゼン、α,α′-ビス(3-アミノフェニル)-1,3-ジイソプロピルベンゼン、1,1-ビス(4-アミノフェニル)シクロペンタン、1,1-ビス(2-メチル-4-アミノフェニル)シクロペンタン、1,1-ビス(2,6-ジメチル-4-アミノフェニル)シクロペンタン、1,1-ビス(4-アミノフェニル)シクロヘキサン、1,1-ビス(2-メチル-4-アミノフェニル)シクロヘキサン、1,1-ビス(2,6-ジメチル-4-アミノフェニル)シクロヘキサン、1,1-ビス(4-アミノフェニル)4-メチル-シクロヘキサン、1,1-ビス(4-アミノフェニル)ノルボルナン、1,1-ビス(2-メチル-4-アミノフェニル)ノルボルナン、1,1-ビス(2,6-ジメチル-4-アミノフェニル)ノルボルナン、1,1-ビス(4-アミノフェニル)アダマンタン、1,1-ビス(2-メチル-4-アミノフェニル)アダマンタン、1,1-ビス(2,6-ジメチル-4-アミノフェニル)アダマンタン、1,4-フェニレンジアミン、3,3′-ジアミノベンゾフェノン、2,2-ビス(3-アミノフェニル)ヘキサフルオロプロパン、3-アミノベンジルアミン、2,2-ビス(3-アミノ-4-メチルフェニル)ヘキサフルオロプロパン、1,3-ビス(3-アミノフェノキシ)ベンゼン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、1,3-ビス[2-(4-アミノフェニル)-2-プロピル]ベンゼン、ビス(2-アミノフェニル)スルフィド、ビス(4-アミノフェニル)スルフィド、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン、4,4′-ジアミノ-3,3′-ジメチルジフェニルメタン、3,3′-ジアミノジフェニルメタン、4,4′-エチレンジアニリン、4,4′-メチレンビス(シクロヘキシルアミン)、4,4′-メチレンビス(2,6-ジエチルアニリン)、4,4′-メチレンビス(2-メチルシクロヘキシルアミン)等が挙げられる。
 脂肪族ジアミンとしては、例えば、エチレンジアミン、ヘキサメチレンジアミン、ポリエチレングリコールビス(3-アミノプロピル)エーテル、ポリプロピレングリコールビス(3-アミノプロピル)エーテル、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、m-キシリレンジアミン、p-キシリレンジアミン、1,4-ビス(2-アミノ-イソプロピル)ベンゼン、1,3-ビス(2-アミノ-イソプロピル)ベンゼン、イソフォロンジアミン、ノルボルナンジアミン、シロキサンジアミン、4,4′-ジアミノジシクロヘキシルメタン、3,3′-ジメチル-4,4′-ジアミノジシクロヘキシルメタン、3,3′-ジエチル-4,4′-ジアミノジシクロヘキシルメタン、3,3′,5,5′-テトラメチル-4,4′-ジアミノジシクロヘキシルメタン、2,3-ビス(アミノメチル)-ビシクロ[2.2.1]ヘプタン、2,5-ビス(アミノメチル)-ビシクロ[2.2.1]ヘプタン、2,6-ビス(アミノメチル)-ビシクロ[2.2.1]ヘプタン、2,2-ビス(4,4′-ジアミノシクロヘキシル)プロパン、2,2-ビス(4,4′-ジアミノメチルシクロヘキシル)プロパン等が挙げられる。
 ジアミン誘導体であるイソシアン酸エステルとしては、例えば、上記芳香族又は脂肪族ジアミンとホスゲンを反応させて得られるジイソシアネートが挙げられる。
 また、他のジアミン誘導体としては、ジアミノジシラン類も挙げられ、例えば上記芳香族又は脂肪族ジアミンとクロロトリメチルシランを反応させて得られるトリメチルシリル化した芳香族又は脂肪族ジアミンが挙げられる。
 以上のジアミン及びその誘導体は任意に混合して用いても良いが、それらの中におけるジアミンの量が50~100モル%となることが好ましく、80~100モル%となることがより好ましい。
 本発明に係るジアミン又はその誘導体のうち、フルオレン骨格を有するジアミン又はその誘導体としては、芳香族ジアミンであることが好ましく、例えば、9,9-ビス〔4-(4-アミノフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(4-アミノフェノキシ)-3-フェニルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノフェノキシ)-3-フェニルフェニル〕フルオレン、9,9-ビス〔4-(2-アミノフェノキシ)-3-フェニルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-3-メチルフェノキシ)-3-フェニルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-メチルフェノキシ)-3-フェニルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-3-エチルフェノキシ)-3-フェニルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-エチルフェノキシ)-3-フェニルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-3-i-プロピルフェノキシ)-3-フェニルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-i-プロピルフェノキシ)-3-フェニルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-3-t-ブチルフェノキシ)-3-フェニルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-t-ブチルフェノキシ)-3-フェニルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-3-トリフロオロメチルフェノキシ)-3-フェニルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-トリフロオロメチルフェノキシ)-3-フェニルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノ-2-メチルフェノキシ)-3-フェニルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノ-4-メチルフェノキシ)-3-フェニルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノ-5-メチルフェノキシ)-3-フェニルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノ-6-メチルフェノキシ)-3-フェニルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノ-2-トリフロオロメチルフェノキシ)-3-フェニルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノ-4-トリフロオロメチルフェノキシ)-3-フェニルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノ-5-トリフロオロメチルフェノキシ)-3-フェニルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノ-6-トリフロオロメチルフェノキシ)-3-フェニルフェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-3-メチルフェノキシ)-3-フェニルフェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-4-メチルフェノキシ)-3-フェニルフェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-5-メチルフェノキシ)-3-フェニルフェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-6-メチルフェノキシ)-3-フェニルフェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-3-トリフロオロメチルフェノキシ)-3-フェニルフェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-4-トリフロオロメチルフェノキシ)-3-フェニルフェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-5-トリフロオロメチルフェノキシ)-3-フェニルフェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-6-トリフロオロメチルフェノキシ)-3-フェニルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-メチルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-エチルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-n-プロピルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-i-プロピルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-t-ブチルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-トリフルオロメチルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-3-メチルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-3-エチルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-3-n-プロピルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-3-i-プロピルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-3-t-ブチルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-3-トリフルオロメチルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-3-メチルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-4-メチルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-5-メチルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-6-メチルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-3-エチルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-4-エチルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-5-エチルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-6-エチルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-3-n-プロピルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-4-n-プロピルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-5-n-プロピルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-6-n-プロピルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-3-i-プロピルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-4-i-プロピルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-5-i-プロピルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-6-i-プロピルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-3-t-ブチルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-4-t-ブチルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-5-t-ブチルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-6-t-ブチルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-3-トリフロオロメチルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-4-トリフロオロメチルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-5-トリフロオロメチルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-6-トリフロオロメチルフェノキシ)フェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-メチルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-エチルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-n-プロピルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-i-プロピルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-t-ブチルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-トリフルオロメチルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-メチルフェノキシ)-3-エチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-エチルフェノキシ)-3-エチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-n-プロピルフェノキシ)-3-エチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-i-プロピルフェノキシ)-3-エチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-t-ブチルフェノキシ)-3-エチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-トリフルオロメチルフェノキシ)-3-エチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-メチルフェノキシ)-3-n-プロピルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-エチルフェノキシ)-3-n-プロピルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-n-プロピルフェノキシ)-3-n-プロピルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-i-プロピルフェノキシ)-3-n-プロピルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-t-ブチルフェノキシ)-3-n-プロピルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-トリフルオロメチルフェノキシ)-3-n-プロピルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-メチルフェノキシ)-3-i-プロピルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-エチルフェノキシ)-3-i-プロピルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-n-プロピルフェノキシ)-3-i-プロピルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-i-プロピルフェノキシ)-3-i-プロピルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-t-ブチルフェノキシ)-3-i-プロピルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-トリフルオロメチルフェノキシ)-3-i-プロピルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-メチルフェノキシ)-3-t-ブチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-エチルフェノキシ)-3-t-ブチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-n-プロピルフェノキシ)-3-t-ブチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-i-プロピルフェノキシ)-3-t-ブチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-t-ブチルフェノキシ)-3-t-ブチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-トリフルオロメチルフェノキシ)-3-t-ブチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-メチルフェノキシ)-3-トリフルオロメチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-エチルフェノキシ)-3-トリフルオロメチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-n-プロピルフェノキシ)-3-トリフルオロメチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-i-プロピルフェノキシ)-3-トリフルオロメチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-t-ブチルフェノキシ)-3-トリフルオロメチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-トリフルオロメチルフェノキシ)-3-トリフルオロメチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-メチルフェノキシ)-3,5-ジメチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-エチルフェノキシ)-3,5-ジメチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-n-プロピルフェノキシ)-3,5-ジメチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-i-プロピルフェノキシ)-3,5-ジメチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-t-ブチルフェノキシ)-3,5-ジメチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-トリフルオロメチルフェノキシ)-3,5-ジメチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-メチルフェノキシ)-3,5-ジエチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-エチルフェノキシ)-3,5-ジエチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-n-プロピルフェノキシ)-3,5-ジエチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2
-i-プロピルフェノキシ)-3,5-ジエチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-t-ブチルフェノキシ)-3,5-ジエチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-トリフルオロメチルフェノキシ)-3,5-ジエチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-メチルフェノキシ)-3,5-ジ-n-プロピルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-エチルフェノキシ)-3,5-ジ-n-プロピルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-n-プロピルフェノキシ)-3,5-ジ-n-プロピルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-i-プロピルフェノキシ)-3,5-ジ-n-プロピルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-t-ブチルフェノキシ)-3,5-ジ-n-プロピルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-トリフルオロメチルフェノキシ)-3,5-ジ-n-プロピルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-メチルフェノキシ)-3,5-ジ-i-プロピルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-エチルフェノキシ)-3,5-ジ-i-プロピルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-n-プロピルフェノキシ)-3,5-ジ-i-プロピルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-i-プロピルフェノキシ)-3,5-ジ-i-プロピルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-t-ブチルフェノキシ)-3,5-ジ-i-プロピルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-トリフルオロメチルフェノキシ)-3,5-ジ-i-プロピルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-メチルフェノキシ)-3,5-ジ-t-ブチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-エチルフェノキシ)-3,5-ジ-t-ブチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-n-プロピルフェノキシ)-3,5-ジ-t-ブチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-i-プロピルフェノキシ)-3,5-ジ-t-ブチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-t-ブチルフェノキシ)-3,5-ジ-t-ブチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-トリフルオロメチルフェノキシ)-3,5-ジ-t-ブチルフェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-メチルフェノキシ)-3,5-ジ(トリフルオロメチル)フェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-エチルフェノキシ)-3,5-ジ(トリフルオロメチル)フェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-n-プロピルフェノキシ)-3,5-ジ(トリフルオロメチル)フェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-i-プロピルフェノキシ)-3,5-ジ(トリフルオロメチル)フェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-t-ブチルフェノキシ)-3,5-ジ(トリフルオロメチル)フェニル〕フルオレン、9,9-ビス〔4-(4-アミノ-2-トリフルオロメチルフェノキシ)-3,5-ジ(トリフルオロメチル)フェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-3-メチルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-4-メチルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-5-メチルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-6-メチルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-3-トリフロオロメチルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-4-トリフロオロメチルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-5-トリフロオロメチルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(2-アミノ-6-トリフロオロメチルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノ-2-メチルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノ-4-メチルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノ-5-メチルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノ-6-メチルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノ-2-エチルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノ-4-エチルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノ-5-エチルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノ-6-エチルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノ-2-n-プロピルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノ-4-n-プロピルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノ-5-n-プロピルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノ-6-n-プロピルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノ-2-i-プロピルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノ-4-i-プロピルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノ-5-i-プロピルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノ-6-i-プロピルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノ-2-t-ブチルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノ-4-t-ブチルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノ-5-t-ブチルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノ-6-t-ブチルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノ-2-トリフロオロメチルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノ-4-トリフロオロメチルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノ-5-トリフロオロメチルフェノキシ)-3-メチルフェニル〕フルオレン、9,9-ビス〔4-(3-アミノ-6-トリフロオロメチルフェノキシ)-3-メチルフェニル〕フルオレン等が挙げられる。
 本発明に係るフルオレン骨格を有するポリアミド酸又はポリイミドは、ジアミン又はその誘導体と、酸無水物又はその誘導体として、前記ジアミンが、9,9-ビス(4-アミノフェニル)フルオレン、9,9-ビス(4-アミノ-3-メチルフェニル)フルオレン又は9,9-ビス(3-フルオロ-4-アミノフェニル)フルオレンのいずれかであることが好ましく、前記酸無水物が、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二無水物又は9,9-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]フルオレン酸二無水物のいずれかであることが、光透過性、着色耐性及び折り曲げ耐性を向上する観点から、好ましい。
 ポリアミド酸は、適当な溶媒中で、前記テトラカルボン酸類の少なくとも1種類と、前記ジアミン類の少なくとも1種類を重合反応させることにより得られる。
 また、ポリアミド酸エステルは、前記テトラカルボン酸二無水物を、メタノール、エタノール、イソプロパノール、n-プロパノール等のアルコールを用いて開環することによりジエステル化し、得られたジエステルを適当な溶媒中で前記ジアミン化合物と反応させることにより得ることができる。更に、ポリアミド酸エステルは、上記のように得られたポリアミド酸のカルボン酸基を、上記のようなアルコールと反応させることによりエステル化することによっても得ることができる。
 前記テトラカルボン酸二無水物と、前記ジアミン化合物との反応は、従来知られている条件で行うことができる。テトラカルボン酸二無水物とジアミン化合物の添加順序や添加方法には特に限定はない。例えば、溶媒にテトラカルボン酸二無水物とジアミン化合物とを順に投入し、適切な温度で撹拌することにより、ポリアミド酸を得ることができる。
 ジアミン化合物の量は、テトラカルボン酸二無水物1モルに対して、通常0.8モル以上、好ましくは1モル以上である。一方、通常1.2モル以下、好ましくは1.1モル以下である。ジアミン化合物の量をこのような範囲とすることにより、得られるポリアミド酸の収率が向上し得る。
 溶媒中のテトラカルボン酸二無水物及びジアミン化合物の濃度は、反応条件やポリアミド酸溶液の粘度に応じて適宜設定する。例えば、テトラカルボン酸二無水物とジアミン化合物との合計の質量は、特段の制限はないが、全溶液量に対し、通常1質量%以上、好ましくは5質量%以上であり、一方、通常70質量%以下、好ましくは30質量%以下である。反応基質の量をこのような範囲とすることにより、低コストで収率良くポリアミド酸を得ることができる。
 反応温度は、特段の制限はないが、通常0℃以上、好ましくは20℃以上であり、一方、通常100℃以下、好ましくは80℃以下である。反応時間は、特段の制限はないが、通常1時間以上、好ましくは2時間以上であり、一方、通常100時間以下、好ましくは24時間以下である。このような条件で反応を行うことにより、低コストで収率良くポリアミド酸を得ることができる。
 この反応で用いられる重合溶媒としては、例えば、ヘキサン、シクロヘキサン、ヘプタン、ベンゼン、トルエン、キシレン及びメシチレン等の炭化水素系溶媒;四塩化炭素、塩化メチレン、クロロホルム、1,2-ジクロロエタン、クロロベンゼン、ジクロロベンゼン及びフルオロベンゼン等のハロゲン化炭化水素溶媒;ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン及びメトキシベンゼン等のエーテル系溶媒;アセトン及びメチルエチルケトン等のケトン系溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド及びN-メチル-2-ピロリドン等のアミド系溶媒;ジメチルスルホキシド、γ-ブチロラクトン等の非プロトン系極性溶媒;ピリジン、ピコリン、ルチジン、キノリン及びイソキノリン等の複素環系溶媒;フェノール及びクレゾールのようなフェノール系溶媒、等が挙げられるが、特に限定されるものではない。重合溶媒としては、1種のみを用いることもできるし、2種類以上の溶媒を混合して用いることもできる。
 また、重合反応の前に芳香族ジアミン類に少量の末端封止剤を添加して重合反応を制御しても良い。
 ポリイミドは、後述するように、ポリアミド酸溶液を流延したフィルムに対して加熱処理を行うか、閉環触媒を混合したポリアミド酸溶液を支持体上に流延してイミド化させることにより得られる。閉環触媒の具体例としては、トリメチルアミン、トリエチレンジアミン等の脂肪族第3級アミン及びイソキノリン、ピリジン、ピコリン等の複素環式第3級アミン等が挙げられるが、複素環式第3級アミンから選ばれる少なくとも1種のアミンを使用することが好ましい。ポリアミド酸に対する閉環触媒の含有量は、閉環触媒の含有量(モル)/ポリアミド酸の含有量(モル)が、0.5~8.0となる範囲が好ましい。
 上記のようにして構成されるポリアミド酸又はポリイミドは、フィルムを形成する観点から、重量平均分子量30000~1000000のものが用いられる。
 また、ポリアミド酸は、流延時においてイミド化されていても良く、流延時のイミド化率としては10~100%であることが好ましい。ここで、イミド化率としては、フーリエ変換赤外分光法により得られたピークから下記式(A)で求めることができる。
 式(A)
   イミド化率(%)=(C/D)×100/(E/F)
 上記式(A)において、Cは、ポリアミド酸又はポリイミドのドープの1370cm-1の吸収ピーク高さを表し、Dは、ポリアミド酸又はポリイミドのドープの1500cm-1の吸収ピーク高さを表し、Eは、ポリイミドフィルムの1370cm-1の吸収ピーク高さを表し、Fは、ポリイミドフィルムの1500cm-1の吸収ピーク高さを表す。
 流延時のポリアミド酸のイミド化率を10~100%とすることで、イミド化率0%のポリアミド酸を用いて流延膜を形成した後にイミド化させる方法よりも、低弾性率のポリイミドフィルムを得ることができる。
 《本発明のポリイミドフィルムの製造方法》
 本発明のポリイミドフィルムの製造方法は、溶液流延法により製造するポリイミドフィルムの製造方法であって、ポリアミド酸又はポリイミドと、有機溶媒とを含有するドープを調製する工程を有し、前記ポリアミド酸又はポリイミドが、いずれか一方がフルオレン骨格を有する、ジアミン又はその誘導体と、酸無水物又はその誘導体と、により形成され、重量平均分子量が30000~1000000の範囲内であり、かつ前記有機溶媒が、ジクロロメタンを50質量%以上含有する混合溶媒であることを特徴とする。
 はじめに、各製造工程で使用する構成材料等の詳細について説明する。
 〔1〕混合溶媒
 本発明で規定する特性値を備えたポリイミドフィルムを製造する場合、前記フルオレン骨格を有しないポリアミド酸又はポリイミド、及びフルオレン骨格を有するポリアミド酸又はポリイミド(以下、説明に当たって、両者を併せて、ポリアミド酸又はポリイミドとする。)を溶解する混合溶媒として、ジクロロメタンを50質量%以上含有する溶媒を用いることが、光透過性、着色耐性及び折り曲げ耐性を向上する観点から、必要である。
 本発明において、ジクロロメタンとともに併用可能な混合溶媒としては、ポリアミド酸又はポリイミドを溶解し得るものであればいずれであっても良く、例えば、エタノール、ブタノール、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N-メチルカプロラクタム、ヘキサメチルホスホルアミド、テトラメチレンスルホン、ジメチルスルホキシド、m-クレゾール、フェノール、p-クロルフェノール、2-クロル-4-ヒドロキシトルエン、ジグライム、トリグライム、テトラグライム、ジオキサン、γ-ブチロラクトン、ジオキソラン、シクロヘキサノン、シクロペンタノン、1,4-ジオキサン、イプシロンカプロラクタム、クロロホルム等が使用可能であり、2種以上を併用しても良い。また、これらの溶媒と併せて、ヘキサン、ヘプタン、ベンゼン、トルエン、キシレン、クロロベンゼン、o-ジクロロベンゼン等の貧溶媒を、ポリアミド酸又はポリイミドが析出しない程度に使用しても良い。
 また、上記ジクロロメタンとともに混合溶媒として含有される溶媒としては、ジクロロメタンよりも沸点の高い溶媒であることが好ましい。これにより、支持体から剥離した後の流延膜のカールを効果的に抑制することができる。
 〔2〕ポリアミド酸又はポリイミドを含有するドープ
 ポリアミド酸又はポリイミドを、上記ジクロロメタンを50質量%以上含有する混合溶媒に溶解させたドープの調製方法としては、例えば、下記の(a)~(c)の方法が挙げられるが、これらの方法に限定されない。
 (a)ジアミン又はその誘導体を含む溶液に、芳香族、脂肪族若しくは脂環式テトラカルボン酸又はその誘導体を添加する方法、あるいは、芳香族、脂肪族又は脂環式テトラカルボン酸成分の溶液に、ジアミン又はその誘導体を添加し、80℃以下(好ましくは30℃以下)の温度で0.5~3時間保ち、ポリアミド酸溶液を得る方法。ここで用いられる溶媒としては、重合溶媒が用いられる。
 得られたポリアミド酸溶液中の重合溶媒を、上記ジクロロメタンを含有する混合溶媒に置換することで、本発明に係るドープを得ることができる。
 (b)上記(a)で得られたポリアミド酸溶液に、水と共沸するトルエン又はキシレン等の溶媒を添加して、生成した水を共沸により系外へ除きながら脱水反応を行い、ポリイミド溶液を得ることができる。この場合、脱水剤及び閉環触媒を添加することが好ましく、そのような脱水剤としては、例えば、無水酢酸等の脂肪族酸無水物、フタル酸無水物等の芳香族酸無水物等が挙げられ、これらを単独又は混合して使用することができる。また、閉環触媒としては、上記したように、例えば、ピリジン、ピコリン、キノリン等の複素環式第3級アミン類、トリエチルアミン等の脂肪族第3級アミン類、N,N-ジメチルアニリン等の芳香族第3級アミン類等が挙げられ、これらを単独又は混合して使用することができる。また、反応温度としては、-20~50℃の温度範囲内とすることが好ましい。また、脱水剤を用いると、低温で閉環反応を進めることができ好ましい。
 また、上記(a)で得られたポリアミド酸溶液に対し、脱水剤や閉環触媒を添加せずに加熱処理を行うことで、ポリイミド溶液を得るものとしても良い。この場合、反応温度としては、80~300℃の温度範囲とすることが好ましい。
 このように、溶液中で閉環反応を進行させると、脱水剤の副生成物や残留モノマーを取り除くことができ好ましい。
 上記いずれかの方法により得られたポリイミド溶液中の重合溶媒を、上記ジクロロメタンを含有する混合溶媒に置換することで、本発明に係るドープを得ることができる。
 (c)上記(a)で得られるポリアミド酸溶液に無水酢酸等の脱水剤を加えてイミド化した後、ポリイミドに対する溶解能の乏しいメタノール等の溶媒を添加して、ポリイミドを沈殿させる。ろ過・洗浄・乾燥することにより固体として分離した後、上記混合溶媒に溶解することにより、本発明に係るドープを得ることができる。
 上記のように調製されるドープにおけるポリアミド酸又はポリイミドの濃度は、1~50質量%であることが好ましく、10~40質量%であることがより好ましい。50質量%以下であれば、得られるポリイミドフィルムの表面平坦性が良好となる。
 上記ドープの粘度としては、ドープ温度が40℃における、ブルックフィールド粘度計による測定値で1000~100000cp、好ましくは10000~50000cpのものが、安定した送液が可能であることから好ましい。
 〔3〕添加剤
 上記ポリアミド酸又はポリイミドを含有するドープには、各種添加剤を用いることができる。用いることができる添加剤について以下説明する。
 〈熱伝導性フィラー〉
 ポリアミド酸又はポリイミドを含有するドープには、本発明の効果を阻害しない範囲で、熱伝導性フィラーを添加しても良い。これにより、ポリイミドフィルムの熱伝導率を高めることができる。
 熱伝導性フィラーとしては、高熱伝導性のフィラーが好ましく、具体的には、アルミニウム、銅、ニッケル、シリカ、ダイヤモンド、アルミナ、マグネシア、ベリリア、窒化ホウ素、窒化アルミニウム、窒化ケイ素、炭化ケイ素が挙げられ、これらのフィラー形状は球状、板状の物の他、針状など特に限定されるものではない。これらの中でも、シリカ、アルミナ、窒化アルミニウム、窒化ホウ素、窒化ケイ素及びマグネシアから選ばれる少なくとも1種類以上のフィラーが好ましい。
 〈脱水剤〉
 また、ポリアミド酸又はポリイミドを含有するドープには、脱水剤を添加しても良い。脱水剤の具体例としては、無水酢酸、無水プロピオン酸、無水酪酸等の脂肪族カルボン酸無水物、及び無水安息香酸等の芳香族カルボン酸無水物等が挙げられるが、無水酢酸及び/又は無水安息香酸が好ましい。また、ポリアミド酸又はポリイミドに対する脱水剤の含有量は、脱水剤の含有量(モル)/ポリアミド酸又はポリイミドの含有量(モル)が、0.1~5.0となる範囲が好ましい。なお、この場合には、アセチルアセトン等のゲル化遅延剤を併用しても良い。
 〈界面活性剤〉
 また、ポリアミド酸又はポリイミドを含有するドープには、例えば、フッ素系、ポリシロキサン系等の界面活性剤を添加しても良い。界面活性剤を添加すると、表面平滑性の良好なフィルムを得やすくなる。界面活性剤は市販品を使用しても良く、フッ素系界面活性剤としては、例えば、DIC株式会社製のメガファック(登録商標)シリーズや、株式会社ネオス製のフタージェント(登録商標)シリーズであるフタージェント(登録商標)251、212MH、250、222F、212D、FTX-218等が挙げられる。ポリシロキサン系界面活性剤としては、例えば、ビックケミー・ジャパン株式会社製のBYK-307、BYK-315、BYK-320、BYK-325、BYK-330、BYK-331、BYK-332、BYK-333、BYK-344等が挙げられる。
 〈酸化防止剤〉
 また、ポリアミド酸又はポリイミドを含有するドープには、例えば、フェノール系、硫黄系、リン酸系、亜リン酸系等の酸化防止剤を添加しても良い。
 〈各種機能性材料〉
 また、ポリアミド酸又はポリイミドを含有するドープには、その他の各種機能性材料を添加しても良い。各種機能性材料とは、例えば、カーボンナノチューブ、ナノ金属材料等の導電性材料、チタン酸バリウム等の強誘電性材料、ZnS:Ag、ZnS:Cu、YS:Eu等の蛍光体、紫外線吸収剤等である。
 〈難燃剤〉
 更に、ポリアミド酸又はポリイミドを含有するドープには、リン系難燃剤を添加しても良い。これにより、ポリイミドフィルムに難燃性を付与することができる。リン系難燃剤としては、例えば、ポリリン酸アンモニウム、リン酸エステル、縮合リン酸エステル、フェノキシフォスファゼン化合物、リン酸エステルアミド等を用いることができる。これらリン系難燃剤の中でも、フェノキシフォスファゼン化合物を使用することが好ましい。該フェノキシフォスファゼン化合物としては、例えば、大塚化学製SPS-100等を使用することができる。なお、ハロゲン形難燃剤を混合して難燃性を付与することもできるが、リン系難燃剤を使用することが好ましい。
 〈微粒子〉
 また、ポリイミドフィルムの滑り性及び剥離性を改善するのに微粒子を加えてもよい。
 微粒子は、無機微粒子であっても有機微粒子であってもよいが、無機微粒子である方が屈折率や透明性の観点から好ましい。
 無機微粒子の例には、二酸化ケイ素(シリカ)、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウムなどが含まれる。なかでも、二酸化ケイ素や酸化ジルコニウムが好ましく、得られるフィルムのヘイズの増大を少なくするためには、より好ましくは二酸化ケイ素である。
 二酸化ケイ素の具体例としては、アエロジル200V、アエロジルR972V、アエロジルR972、R974、R812、200、300、R202、OX50、TT600、NAX50(以上、日本アエロジル(株)製)、シーホスターKEP-10、シーホスターKEP-30、シーホスターKEP-50(以上、株式会社日本触媒製)、サイロホービック100(富士シリシア製)、ニップシールE220A(日本シリカ工業社製)、アドマファインSO(アドマテックス社製)等の商品名を有する市販品などが好ましく使用できる。
 微粒子の形状としては、不定形、針状、扁平、球状等を使用できるが、特に真球状の粒子を用いると、光学的に等方性を示しやすく、得られるフィルムの透明性が良好にできるので好ましい。
 微粒子の平均粒径は、0.05~5.0μmの範囲内であることが好ましい。より好ましくは、1.0~4.0μmの範囲であることが、溶媒やドープに分散させる場合に、扱いやすい。
 なお、微粒子の平均粒径とは、微粒子が一次粒子の凝集体の場合は凝集体の大きさを意味する。また、微粒子が球状でない場合は、その投影面積に相当する円の直径を意味する。
 微粒子の一次粒子又はその二次凝集体の平均粒径の測定は、例えば透過型電子顕微鏡で観察することにより測定することができ、また、溶媒に微粒子を分散させ、その分散液から、コールター粒度分布測定法、レーザー回折散乱法、動的光散乱法などにより測定することができる。
 微粒子のポリイミドフィルム中の含有量は、当該ポリイミドフィルムの全質量に対して0.1~30質量%の範囲であることが好ましく、1~25質量%の範囲であることが、光取り出し効率(輝度)向上の効果を容易に得られる観点から、より好ましい。
 〔4〕フィルムのイミド化処理
 ポリアミド酸を用いて流延膜を形成した場合、得られたフィルムに対してイミド化処理を施すことで、ポリイミドフィルムを製造することができる。
 フィルムは適切な熱処理を施すことでポリマー鎖分子内及びポリマー鎖分子間でのイミド化が進行して機械的特性が向上するが、熱処理を施すほどポリイミドを用いたポリイミドフィルムは吸収波長の変化に伴い色濃く変化する。特に、4.0~15.0μmの薄いポリイミドを用いたポリイミドフィルムにおいては、L値が高いほど全体的に色が薄いために厚さムラによる横段ムラは見えにくく外観は良好となるが、イミド化の進行具合が十分ではないためポリイミドフィルムの折り曲げ耐性及び破断強度等の機械的特性が悪化する。また、逆にL値が低すぎると、厚さムラによる色のコントラストが鮮明になるため横段ムラが悪化するばかりか、ポリイミドを用いたポリイミドフィルムが一部炭化して脆弱となりフィルムの機械的特性が著しく後退する。上記理由から、本発明のポリイミドを用いたポリイミドフィルムの製造方法では、L値を30~55の範囲内とするのが良好な機械的特性を保つのに好ましく、より好ましくは、L値は38~54の範囲内とすることである。
 フィルムのL値は、スガ試験機社製のカラーメーターSM-7-CHを用い測定した。フィルムを幅方向で5分割したそれぞれのサンプルについて、幅方向の中央位置を中心とした30mm×30mmの範囲を切り出して測定し、その5点平均値とした。なお、L値はフィルム厚さが薄くなると検出器の感度が鈍くなり適切な評価ができないことから、フィルム厚さが50μm以上のフィルムについては1枚、50μm未満のフィルムについては50μm以上になる最小の枚数を重ねて測定した値である。
 フィルムのL値が30~55となるようなフィルムを得るための熱処理の方法については、例えば、熱風や電気ヒーター(例えば、赤外線ヒーター等)等公知の手段を用いて熱処理量を調整する手法を挙げることができる。
 本発明に係るフルオレン骨格を有するポリアミド酸又はポリイミドを用いた本発明のポリイミドフィルムの製造方法においては、閉環触媒及び脱水剤を含有しないポリアミド酸の溶液を流延してフィルムに成形し、支持体上で加熱乾燥した後、支持体よりフィルムを剥離し、更に高温下で乾燥熱処理することによりイミド化する熱閉環法を用いることができる。また、閉環触媒及び脱水剤を含有させたポリアミド酸の溶液を流延してフィルム状に成形し、支持体上でイミド化を一部進行させてフィルムとした後、支持体よりフィルムを剥離し、加熱乾燥/イミド化し、熱処理を行う化学閉環法を用いることもできる。閉環触媒としては、上記した第3級アミン等を用いることができる。
 熱閉環法においては、例えば、赤外線ヒーターを用いることにより熱処理を行うことができる。
 赤外線ヒーターとしては、例えば、フィラメントを内管が囲むように形成されたヒーター本体が外管によって覆われ、ヒーター本体と外管との間に冷却流体が流通可能に構成されたものが用いられる。フィラメントは、700~1200℃に通電加熱され、波長が3μm付近にピークを持つ赤外線を放射する。内管及び外管は、石英ガラスやホウケイ酸クラウンガラス等で作製されており、3.5μm以下の波長の赤外線を通過し、3.5μmを超える波長の赤外線を吸収するフィルターとして機能する。このような赤外線ヒーターは、フィラメントから波長が3μm付近にピークを持つ赤外線が放射されると、そのうち3.5μm以下の波長の赤外線を内管や外管を通過してフィルムに照射する。この波長の赤外線が照射されることにより、フィルム内の混合溶媒を効率的に蒸発させることができるとともに、フィルム内のポリアミド酸をイミド化することができる。なお、内管や外管は、3.5μmを超える波長の赤外線を吸収するが、流路を流れる冷却流体によって冷却されるため、フィルムから蒸発する混合溶媒の着火点未満の温度に維持することが可能である。
 本発明に係るフルオレン骨格を有するポリアミド酸又はポリイミドを用いた本発明のポリイミドフィルムの製造方法では、上記のいずれの閉環方法を採用しても良いが、化学閉環法はポリアミド酸の溶液に閉環触媒及び脱水剤を含有させる設備を必要とするものの、自己支持性を有するフィルムを短時間で得られる点で、より好ましい方法といえる。
 〔5〕ポリイミドフィルムの具体的な製造工程
 本発明のポリイミドフィルムの製造工程の具体例について以下説明する。
 本発明のポリイミドフィルムを製造する主な製造工程は、
 (5-1)重量平均分子量が30000~1000000の範囲内にあり、少なくとも一方がフルオレン骨格を有する、A)ジアミン又はその誘導体と、B)酸無水物又はその誘導体と、により形成されたポリアミド酸又はポリイミドを、ジクロロメタンを50質量%以上含有する混合溶媒に溶解してドープを調製する工程(ドープ調製工程)と、
 (5-2)前記ドープを、無端の金属ベルト等で構成される支持体上に流延して流延膜を形成する工程(流延膜形成工程)と、
 (5-3)支持体上で流延膜から溶媒を蒸発させる工程(溶媒蒸発工程)と、
 (5-4)溶媒を蒸発させた流延膜を支持体から剥離してフィルムを形成する工程(剥離工程)と、
 (5-5)得られたフィルムを乾燥させる工程(第1乾燥工程)と、
 (5-6)乾燥したフィルムを延伸する工程(延伸工程)と、
 (5-7)延伸後のフィルムを更に乾燥させてポリイミドフィルムを形成する工程(第2乾燥工程)と、
 (5-8)得られたポリイミドフィルムを巻き取る工程(巻取り工程)と、
 (5-9)さらに必要であればポリイミドフィルムを加熱処理してイミド化させる工程(加熱工程)等により行われることが好ましい。
 以下、各工程について具体的に説明する。
 〔5-1〕ドープ調製工程
 上記したように、重量平均分子量30000~1000000のポリアミド酸又はポリイミドを、ジクロロメタンを50質量%以上含有する混合溶媒に溶解させて、ドープを調製する。
 その後、調製したドープを送液ポンプ等により濾過器に導いて濾過する。
 すなわち、ドープの主たる溶媒であるジクロロメタンの1気圧における沸点(39.6℃)+5℃以上の温度で当該ドープを濾過することにより、ドープ中のゲル状異物を取り除くことができる。好ましい温度範囲は45~120℃であり、45~70℃がより好ましく、45~55℃であることが更に好ましい。
 〔5-2〕流延膜形成工程
 調製したドープを、送液ポンプ(例えば、加圧型定量ギヤポンプ)を介してダイス(コーターともいう)に送液し、無限に移送する無端の支持体、例えば、無端のステンレスベルト又は回転する金属ドラム等の金属支持体上の流延位置に、ダイスからドープを流延する。
 流延(キャスト)工程で使用する支持体は、表面を鏡面仕上げしたものが好ましく、支持体としては、ステンレススティールベルト又は鋳物で表面をめっき仕上げしたドラム、又はステンレスベルト若しくはステンレス鋼ベルト等の金属支持体が好ましく用いられる。キャストの幅は1~4mの範囲、好ましくは1.5~3mの範囲、更に好ましくは2~2.8mの範囲とすることができる。なお、支持体は、金属製でなくとも良い。
 金属支持体の走行速度は、特に制限されないが、通常は5m/分以上であり、好ましくは10~180m/分、特に好ましくは40~150m/分の範囲内である。金属支持体の走行速度は、高速であるほど、成膜時に巻き込む同伴ガスが発生しやすくなり、外乱による膜厚ムラの発生が顕著になる。
 金属支持体の走行速度は、金属支持体外表面の移動速度である。
 金属支持体の表面温度は特に制限されないが、通常は0℃以上、好ましくは20~60℃であり、より好ましくは20~25℃である。
 ダイスは、幅方向に対する垂直断面において、吐出口に向かうに従い次第に細くなるテーパー構造を有している。ダイスは、具体的には、下部の走行方向で下流側と上流側とにテーパー面を有し、当該テーパー面の間に吐出口がスリット形状で形成されている。ダイスは金属からなるものが好ましく使用され、具体例として、例えば、ステンレス、チタン等が挙げられる。本発明において、厚さが異なるフィルムを製造するとき、スリット間隙の異なるダイスに変更する必要はない。
 ダイの口金部分のスリット形状を調整でき、膜厚を均一にしやすい加圧ダイを用いることが好ましい。加圧ダイには、コートハンガーダイやTダイ等があり、いずれも好ましく用いられる。厚さが異なるフィルムを連続的に製造する場合であっても、ダイスの吐出量は略一定の値に維持されるので、加圧ダイを用いる場合、押し出し圧力、せん断速度等の条件もまた略一定の値に維持される。また、製膜速度を上げるために加圧ダイを金属支持体上に2基以上設け、ドープ量を分割して積層しても良い。
 ダイスからのドープの吐出量は、好ましくは200~720g/mの範囲内であり、より好ましくは400~650g/mの範囲内である。本発明において、厚さが異なるフィルムを連続的に製造する場合であっても、ダイスからのドープ吐出量は上記範囲内で略一定の値に維持されることが好ましい。当該吐出量が200g/m以上であれば、流延膜が振動及び風等の外乱の影響を受けにくくなるので、膜厚ムラを十分に防止することができる。当該吐出量が720g/m以下であれば、収縮が過度に起きにくく、収縮による膜厚ムラが発生しないので、均一な塗膜を得ることができる。
 〔5-3〕溶媒蒸発工程
 溶媒蒸発工程は、金属支持体上で行われ、流延膜を金属支持体上で加熱し、溶媒を蒸発させる予備乾燥工程である。
 溶媒を蒸発させるには、例えば、乾燥機により流延膜側及び金属支持体裏面側から加熱風を吹き付ける方法、金属支持体の裏面から加熱液体により伝熱させる方法、輻射熱により表裏から伝熱する方法等を挙げることができる。それらを適宜選択して組み合わせる方法も好ましい。金属支持体の表面温度は全体が同じであっても良いし、位置によって異なっていても良い。加熱風の温度は10~80℃の範囲内が好ましい。
 金属支持体を加熱する方法においては、温度が高い方が流延膜の乾燥速度を速くできるため好ましいが、過度に高すぎると流延膜が発泡したり、平面性が劣化したりする場合があるため、おおむね10~30℃の範囲内で行うことが好ましい。
 溶媒蒸発工程においては、流延膜の剥離性及び剥離後の搬送性の観点から、残留溶媒量が10~150質量%の範囲内となるまで、流延膜を乾燥することが好ましい。
 本発明でいう残留溶媒量は、下記の式で表すことができる。
  残留溶媒量(質量%)={(M-N)/N}×100
 ここで、Mは流延膜(フィルム)の所定の時点での未乾燥試料の質量、Nは質量Mの試料を200℃で3時間乾燥させた時の質量である。特に、溶媒蒸発工程における残留溶媒量を算出するときのMは、後述の剥離工程直前の流延膜の質量である。
 〔5-4〕剥離工程
 金属支持体上で溶媒が蒸発した流延膜を、剥離位置で剥離する。
 金属支持体と流延膜とを剥離する際の剥離張力は、通常、60~400N/mの範囲内であるが、剥離の際に皺が入りやすい場合、190N/m以下の張力で剥離することが好ましい。
 本発明においては、当該金属支持体上の剥離位置における温度を-50~60℃の範囲内とするのが好ましく、10~40℃の範囲内がより好ましく、15~40℃の範囲内とするのが最も好ましい。
 剥離されたフィルムは、延伸工程に直接送られても良いし、所望の残留溶媒量を達成するように第1乾燥工程に送られた後に延伸工程に送られても良い。本発明においては、延伸工程での安定搬送の観点から、剥離工程後、フィルムは、第1乾燥工程及び延伸工程に順次送られることが好ましい。
 〔5-5〕第1乾燥工程
 第1乾燥工程は、フィルムを加熱し、溶媒を更に蒸発させる乾燥工程である。乾燥手段は特に制限されず、例えば、熱風、赤外線、加熱ローラー、マイクロ波等を用いることができる。簡便さの観点からは、千鳥状に配置したローラーでフィルムを搬送しながら、熱風等をフィルム面に吹き付けて乾燥を行う方法が好ましい。乾燥温度は、残留溶媒量及び搬送における伸縮率等を考慮して、30~200℃の範囲内が好ましい。
 〔5-6〕延伸工程
 金属支持体から剥離されたフィルムを延伸することで、フィルムの膜厚や平坦性、配向性等を制御することができる。
 本発明のポリイミドフィルムの製造方法においては、長手方向及び/又は幅手方向に延伸することが好ましい。
 延伸操作は多段階に分割して実施しても良い。また、二軸延伸を行う場合には同時二軸延伸を行っても良いし、段階的に長手方向と幅手方向で独立して実施しても良い。この場合、段階的とは、例えば、延伸方向の異なる延伸を順次行うことも可能であるし、同一方向の延伸を多段階に分割し、かつ異なる方向の延伸をそのいずれかの段階に加えることも可能である。
 すなわち、例えば、次のような延伸ステップも可能である:
 ・長手方向に延伸→幅手方向に延伸→長手方向に延伸→長手方向に延伸
 ・幅手方向に延伸→幅手方向に延伸→長手方向に延伸→長手方向に延伸
 また、同時二軸延伸には、一方向に延伸し、もう一方を、張力を緩和して収縮する場合も含まれる。
 延伸開始時の残留溶媒量は、2~50質量%の範囲内であることが好ましい。
 当該残留溶媒量は、2質量%以上であれば、膜厚偏差が小さくなり、平面性の観点から好ましく、10質量%以内であれば、表面の凹凸が減り、平面性が向上する点で好ましい。
 本発明に係るフルオレン骨格を有するポリアミド酸又はポリイミドを用いたポリイミドフィルムの製造方法においては、延伸後の膜厚が所望の範囲になるように、長手方向、あるいは長手方向及び幅手方向に延伸することができる。フィルムのガラス転移点(Tg)のうち最も低いTgをTgL、最も高いTgをTgHとしたときに、(TgL-200)~(TgH+50)℃の温度範囲内で延伸することが好ましい。上記温度範囲内で延伸すると、延伸応力を低下できるのでヘイズが低くなる。また、破断の発生を抑制し、平面性、フィルム自身の着色耐性に優れたポリイミドフィルムが得られる。延伸温度は、(TgL-150)~(TgH+40)℃の範囲内で行うことがより好ましい。
 本発明のポリイミドフィルムの製造方法では、支持体から剥離された自己支持性を有するフィルムを、延伸ローラーでの走行速度を規制することにより長手方向に延伸することができる。長手方向の延伸倍率は、30~250℃の温度範囲で1.03~2.00倍が好ましく、より好ましくは1.10~1.60倍、更に好ましくは1.10~1.50倍である。
 幅手方向に延伸するには、例えば、特開昭62-46625号公報に示されているような乾燥全処理又は一部の処理を幅方向にクリップ又はピンでフィルムの幅両端を幅保持しつつ乾燥させる方法(「テンター方式」と呼ばれる。)、中でも、クリップを用いるテンター方式が好ましく用いられる。
 長手方向に延伸されたフィルム又は未延伸フィルムは、クリップに幅方向両端部を把持された状態でテンター領域へ導入され、テンタークリップとともに走行しながら、幅方向へ延伸する方法が好ましい。幅方向の延伸倍率は、特に限定されないが、30~300℃の温度範囲で1.03~2.00倍が好ましく、より好ましくは1.10~1.60倍、更に好ましくは1.10~1.50倍の範囲内である。
 幅手方向への延伸に際し、フィルム幅手方向に50~1000%/minの延伸速度で延伸することが、フィルムの平面性を向上する観点から、好ましい。
 延伸速度は50%/min以上であれば、平面性が向上し、また、フィルムを高速で処理することができるため、生産適性の観点で好ましく、1000%/min以内であれば、フィルムが破断することなく処理することができ、好ましい。
 より好ましい延伸速度は、100~500%/minの範囲内である。延伸速度は下記式によって定義される。
  延伸速度(%/min)=[(d/d)-1]×100(%)/t
 上記式において、dは延伸後のフィルムの前記延伸方向の幅寸法であり、dは延伸前のフィルムの前記延伸方向の幅寸法であり、tは延伸に要する時間(min)である。
 延伸工程では、通常、延伸した後、保持及び緩和処理が行われる。
 すなわち、本工程は、フィルムを延伸する延伸段階、フィルムを延伸状態で保持する保持段階及びフィルムを延伸した方向に緩和する緩和段階をこれらの順序で行うことが好ましい。保持段階では、延伸段階で達成された延伸倍率での延伸を、延伸段階における延伸温度で保持する。緩和段階では、延伸段階における延伸を保持段階で保持した後、延伸のための張力を解除することによって、延伸を緩和する。緩和段階は、延伸段階における延伸温度以下で行えば良い。
 〔5-7〕第2乾燥工程
 次いで、延伸後のフィルムを加熱して乾燥させる。熱風等によりフィルムを加熱する場合、使用済みの熱風(溶媒を含んだエアーや濡れ込みエアー)を排気できるノズルを設置して、使用済み熱風の混入を防ぐ手段も好ましく用いられる。熱風温度は、40~350℃の範囲内が好ましい。また、乾燥時間は5秒~30分程度が好ましく、10秒~15分の範囲内がより好ましい。
 また、加熱乾燥手段は熱風のみに制限されず、例えば、赤外線、加熱ローラー、マイクロ波等の加熱手段を用いることができる。簡便さの観点からは、千鳥状に配置したローラーでフィルムを搬送しながら、熱風等で乾燥を行うことが好ましい。乾燥温度は残留溶媒量、搬送における伸縮率等を考慮して、40~350℃の範囲内がより好ましい。
 第2乾燥工程においては、残留溶媒量が0.5質量%以下になるまで、フィルムを乾燥することが好ましい。
 〔5-8〕巻取り工程
 巻取り工程は、得られたフィルムを巻き取って室温まで冷却する工程である。巻取り機は、一般的に使用されているもので良く、例えば、定テンション法、定トルク法、テーパーテンション法、内部応力を一定にするプログラムテンションコントロール法等の巻取り方法で巻き取ることができる。
 フィルムの厚さは、特に制限されず、例えば、5~200μmが好ましく、特に7~50μmの範囲内であることが好ましい。
 巻取り工程においては、延伸搬送したときにテンタークリップ等で挟み込んだフィルムの両端をスリット加工しても良い。スリットした端部は、返材として再利用することができる。ここで、返材とは、フィルムに成形したもののうち、何らかの理由で原料として再利用される部分のことを指し、上記スリットされた端部(耳部ともいう。)や、製造の繰り出し・終端に位置するフィルムの全幅部分、更には、傷やスジ等の外観上の問題で製品として不適合なフィルム等が挙げられる。スリットしたフィルム端部は、1~30mm幅に細かく断裁された後、溶剤に溶解させて再利用する。
 成形されたフィルムのうち返材として再利用される部分の比は、10~90質量%が好ましく、より好ましくは20~80質量%、更に好ましくは30~70質量%である。
 製膜工程の途中又は最終的に発生する返材の量により投入量は若干変わるが、通常、ドープ中の全固形分に対する返材の混合率は10~50質量%程度であり、好ましくは、15~40質量%程度である。返材の混合率は、できるだけ一定量とすることが生産安定上好ましい。
 上述した溶媒蒸発工程から巻取り工程までの各工程は、空気雰囲気下で行っても良いし、窒素ガス等の不活性ガス雰囲気下で行っても良い。また、各工程、特に乾燥工程や延伸工程は、雰囲気における溶媒の爆発限界濃度を考慮して行う。
 〔5-9〕加熱工程
 上記巻取り工程後に、ポリマー鎖分子内及びポリマー鎖分子間でのイミド化を進行させて機械的特性を向上させるべく、上記第2乾燥工程で乾燥したフィルムを更に熱処理する加熱工程を行う。
 また、ポリイミド(イミド化率100%)を用いてドープを調製した場合や、上記第2乾燥工程を行うことによりフィルムのイミド化率が100%となった場合であっても、フィルムの残留応力を緩和させる目的で、加熱工程を行うことが好ましい。
 なお、上記第2乾燥工程が、加熱工程を兼ねるものであっても良い。
 加熱手段は、例えば、熱風、電気ヒーター、マイクロ波等の公知の手段を用いて行われる。電気ヒーターとしては、上記した赤外線ヒーターを用いることができる。
 加熱処理条件は、フィルムのL値が30~55となるようにヒーター出力及び熱風温度等を調整し、最終的な処理条件が200~450℃の温度範囲内で、30秒~1時間の範囲で適宜行うのが好ましい。これにより、ポリイミドフィルムの寸法安定性を向上させることができる。加熱工程において、フィルムを急激に加熱すると、表面欠点が増加する等の不具合が生じるため、加熱方法は適宜選択することが好ましい。また、加熱工程は、低酸素雰囲気下で行うことが好ましい。
 第2乾燥工程及び加熱工程における加熱温度が450℃を超えると、加熱に必要なエネルギーが非常に大きくなることから製造コストが高くなり、更に、環境負荷が増大するため、当該加熱温度は450℃以下にすることが好適である。
 なお、巻取り工程後であって、加熱工程の前又は後に、ポリイミドフィルムの幅方向端部をスリットする工程や、ポリイミドフィルムが帯電していた場合にはこれを除電する工程等を更に行う方法も好ましい。
 〔6〕ポリイミドフィルムのその他の物性
 〔6-1〕ヘイズ、全光線透過率
 本発明のポリイミドフィルムは、ヘイズが1.0%未満であることが好ましく、0.5%未満であることがより好ましく、0.3%未満であることがさらに好ましい。ヘイズを1%未満とすることにより、フィルムの透明性がより高くなり、光学用途のフィルムとしてより用いやすくなるという利点がある。
 フィルム試料について、23℃・55RHの空調室で24時間調湿した試料一枚をJIS K-7136に従って、ヘイズメーター(NDH2000型、日本電色工業(株)製)を使用してヘイズと全光線透過率を測定する。
 全光線透過率は、50%以上であることが好ましく、70%以上であることがより好ましく、85%以上であることが、本発明のポリイミドフィルムをLED照明に具備する観点から、特に好ましい。
 〔6-2〕フィルム長、幅、膜厚
 本発明のポリイミドフィルムは、長尺であることが好ましく、具体的には、100~10000m程度の長さであることが好ましく、ロール状に巻き取られる。また、本発明のポリイミドフィルムの幅は1m以上であることが好ましく、更に好ましくは1.4m以上であり、特に1.4~4mであることが好ましい。
 フィルムの膜厚は、フレキシブルプリント基板として使用する際の強度と透明性、リターデーションの観点から、5~200μmの範囲内であることが好ましく、さらに好ましくは7~50μmの範囲内である。膜厚が5μm以上であれば、一定以上のフィルム強度やリターデーションを発現させることができる。膜厚が200μm以下であれば、所望のリターデーションを具備し、かつプリント基板としてのフレキシブル性を付与することができる。
 〔7〕フレキシブルプリント基板
 本発明のフレキシブルプリント基板は、本発明のポリイミドフィルムをベースフィルムとし、これに接着剤を介して金属箔を圧着することによって得られる。ここで用いられる接着剤としては、例えば、アクリル系、ポリイミド系及びエポキシ系接着剤等が挙げられる。
 また、接着剤を介してポリイミドフィルムと熱圧着される金属箔は、コスト低減の観点から銅箔であることが好ましいが、アルミニウム、金、銀、アルミニウム、ニッケル、錫等、他の金属箔でも良い。
 〔8〕フレキシブルディスプレイ用基材、フレキシブルディスプレイ用前面板
 また、本発明のポリイミドフィルムは、その優れた特性を生かし、フレキシブルディスプレイ用基材やフレキシブルディスプレイ用前面板、例えば、有機エレクトロルミネッセンス素子用の基材や前面板として適用することができる。
 〔9〕LED照明装置
 本発明のLED照明装置としては、本発明のポリイミドフィルムの製造方法により製造されるポリイミドフィルムを用いてなるものであれば、特に制限されるものではない。
 具体的には、LED照明装置は、本発明のポリイミドフィルムを用いた金属部を有するフレキシブルプリント基板を準備する工程、当該基板上にLEDチップを固定する工程、金属部を被覆するように、バリアー層用塗布組成物を塗布して、バリアー層を形成する工程、LEDチップを被覆するように透明樹脂及び蛍光体粒子を含む波長変換層用組成物を塗布し、波長変換層を形成する工程等によって形成される。
 〔10〕有機エレクトロルミネッセンス表示装置
 本発明の有機エレクトロルミネッセンス表示装置においては、本発明のポリイミドフィルムの製造方法により製造されるポリイミドフィルム、フレキシブルディスプレイ用基材、又はフレキシブルディスプレイ用前面板を具備していることを特徴とする。
 本発明の有機エレクトロルミネッセンス表示装置に適用可能な有機EL素子の概要については、例えば、特開2013-157634号公報、特開2013-168552号公報、特開2013-177361号公報、特開2013-187211号公報、特開2013-191644号公報、特開2013-191804号公報、特開2013-225678号公報、特開2013-235994号公報、特開2013-243234号公報、特開2013-243236号公報、特開2013-242366号公報、特開2013-243371号公報、特開2013-245179号公報、特開2014-003249号公報、特開2014-003299号公報、特開2014-013910号公報、特開2014-017493号公報、特開2014-017494号公報等に記載されている構成を挙げることができる。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り、それぞれ「質量部」又は「質量%」を表す。
 実施例1
 はじめに、下記ポリイミドフィルム1~28の作製で用いたジアミン又はその誘導体の例示化合物(ジアミン1~ジアミン9)、及び酸無水物又はその誘導体の例示化合物(酸無水物1~酸無水物9)を、下記に示す。なお、本発明に係るフルオレン骨格を有するジアミン又はその誘導体は、ジアミン5~ジアミン7であり、フルオレン骨格を有する酸無水物又はその誘導体は、酸無水物6及び酸無水物7である。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
 《ポリイミドフィルムの作製》
 〔ポリイミドフィルム1の作製〕
 (ポリイミド前駆体の重合)
 本実施例では、反応容器としてステンレス製セパラブルフラスコを備え、該セパラブルフラスコ内の撹拌装置として2枚のパドル翼を備え、冷却装置を備えた反応装置を用いて、ポリアミド酸を製造した。重合反応中は水分の混入を防ぐ為に塩化カルシウム管を通過させて脱水を行った窒素ガスを0.05L/minで流して重合反応を行った。
 上記セパラブルフラスコに、重合溶媒としてN,N-ジメチルアセトアミド(略称:DMAC)223.5gを仕込み、これに、ジアミンとして上記例示化合物であるジアミン1を40.0g(0.125モル)溶解する。この溶液に、酸無水物として例示化合物である酸無水物6を55.5g(0.125モル)添加・撹拌して完全に溶解させた。この反応溶液におけるジアミン1と酸無水物6の仕込み濃度は、全反応液に対して30質量%となっている。
 (ポリイミド樹脂への化学イミド化)
 上記溶液にDMACを加え固形分濃度を15質量%とし、イミド化促進剤としてピリジン(pkBH+;5.17)を60g(イミド化促進剤/ポリアミド酸中アミド基のモル比=3)添加して、完全に分散させる。分散させた溶液中に無水酢酸を1分間に1gの速度で30.6g(脱水剤/ポリアミド酸中アミド基のモル比=1.2)を添加してさらに30分間撹拌した。撹拌後に内部温度を50℃に上昇させて5時間過熱撹拌を行った。
 (ポリイミドの抽出)
 得られた溶液をメタノールに加え、目的ポリイミド粉末を沈殿させた。得られた白色沈殿をメタノールで十分洗浄後、乾燥装置を用い50℃に加熱乾燥して、ポリイミドAとして取り出した。ポリイミドAは、重量平均分子量:203000、イミド化率:100%であった。
 (ドープの調製)
 下記組成の主ドープを調製した。まず、加圧溶解タンクに溶媒としてジクロロメタン(MC)とエタノール(ETOH)を添加した。溶媒の入った加圧溶解タンクに、上記調製したポリイミドAを撹拌しながら少量ずつ投入した。これを加熱し、撹拌しながら、完全に溶解し、これを安積濾紙(株)製の安積濾紙No.244を使用して濾過し、この操作を繰り返して残りの成分を添加し、撹拌して溶解させて、主ドープを調製した。
 〈主ドープの組成〉
 ジクロロメタン                    340質量部
 エタノール                       64質量部
 ポリイミドA                     100質量部
 〈流延工程〉
 次いで、無端ベルト流延装置を用い、ドープを温度30℃、1500mm幅でステンレスベルト支持体上に均一に流延した。ステンレスベルトの温度は30℃に制御した。
 〈剥離工程〉
 ステンレスベルト支持体上で、流延(キャスト)したフィルム中の残留溶媒量が75%になるまで溶媒を蒸発させ、次いで剥離張力180N/mで、ステンレスベルト支持体上から剥離した。
 〈延伸工程〉
 剥離したポリイミドフィルムを、200℃の熱をかけながらクリップ式テンターを用いて幅方向に1.5倍延伸した。延伸開始時の残留溶媒量は20質量%であった。
 〈乾燥工程〉
 延伸したフィルムを、搬送張力100N/m、乾燥時間15分間として、残留溶媒量が0.1質量%未満となる乾燥温度で乾燥させ、乾燥膜厚40μmのフィルムを得た。得られたフィルムを巻き取った。
 〈加熱工程〉
 巻き取ったフィルムに対して、赤外線ヒーターにより300℃で15分間加熱処理を行い、ポリイミドフィルム1を得た。
 〔ポリイミドフィルム2~12の作製〕
 上記ポリイミドフィルム1の作製において、ポリイミドAの合成に用いたジアミン1と酸無水物6に代えて、それぞれ表1に記載のジアミンと酸無水物との組み合わせに変更した以外は同様にしてポリイミドを調製し、それを用いてポリイミドフィルム2~12を作製した。
 〔ポリイミドフィルム13の作製〕
 上記ポリイミドフィルム1の作製において、混合溶媒であるジクロロメタン及びエタノールの代わりに、有機溶媒としてN-メチル-2-ピロリドン(NMP)を400質量部用いた以外は同様にして、ポリイミドフィルム13を作製した。
 〔ポリイミドフィルム14の作製〕
 上記ポリイミドフィルム8の作製において、混合溶媒であるジクロロメタン及びエタノールの代わりに、有機溶媒としてN-メチル-2-ピロリドン(NMP)を400質量部用いた以外は同様にして、ポリイミドフィルム14を作製した。
 〔ポリイミドフィルム15~19の作製〕
 上記ポリイミドフィルム11の作製において、延伸工程における幅方向の延伸倍率を、表1に記載の条件に変更した以外は同様にして、ポリイミドフィルム15~19を作製した。
 《ポリアミド酸又はポリイミドの特性値の測定》
 〔重量平均分子量の測定〕
 ポリイミドフィルムの作製に用いたポリアミド酸又はポリイミドの重量平均分子量は、ゲルパーミエーションクロマトグラフィーにより測定した。測定条件は以下のとおりである。
 溶媒:メチレンクロライド
 カラム:Shodex K806、K805、K803G(昭和電工(株)製を3本接続して使用した)
 カラム温度:25℃
 試料濃度:0.1質量%
 検出器:RI Model 504(GLサイエンス社製)
 ポンプ:L6000(日立製作所(株)製)
 流量:1.0ml/min
 校正曲線:標準ポリスチレンSTK standard ポリスチレン(東ソー(株)製)Mw=500~2800000までの13サンプルによる校正曲線を使用した。
 《ポリイミドフィルムの特性値の測定》
 〔フィルムの伸び速度S(2分後)の測定〕
 上記作製した各ポリイミドフィルム(膜厚40μm)を、23℃、55%RHの環境下で12時間調湿した。次いで、同環境下で、水浸漬アタッチメントを装着したポリイミドフィルムを、日立ハイテクサイエンス社製の熱機械的分析装置 TMA/SS7100を用いて、23℃の純水に浸漬し、浸漬2分後に取り出して、フィルムの伸び量L2(%)を測定した。伸び量L2(%)の測定は、フィルムのMD方向(フィルム成膜時の長手方向)で測定した。次いで、測定した浸漬2分後の伸び量L2(%)を用い、前記式(4)に従って、浸漬2分後におけるフィルムの伸び速度S2(%/min)を求めた。
 〔ガラス転移温度の測定〕
 各ポリイミドフィルムのガラス転移温度Tg(℃)を、JIS K 7121に準拠した方法に従って、セイコーインスツル(株)製の示差走査熱量計DSC220を用いて測定した。
 具体的な方法は、各ポリイミドフィルムを10mg程度セットし、窒素流量50ml/minの条件下で、20℃/minの速度で室温から250℃まで昇温して10分間保持し(1stスキャン)、次に20℃/minの速度で250℃から30℃まで降温して10分間保持し(2ndスキャン)、さらに20℃/minの速度で250℃まで昇温し(3rdスキャン)、DSC曲線を作成し、得られた3rdスキャンのDSC曲線からガラス転移温度Tgを求めた。
 〔イエローインデックスの測定〕
 イエローインデックスは、JIS K 7103に準拠した方法に従って、フィルムのYI(イエローインデックス:黄色味の指数)を求めた。
 具体的なイエローインデックスの測定方法としては、上記作製した厚さ40μmの各ポリイミドフィルムについて、日立製作所製の分光光度計U-3200と付属の彩度計算プログラム等を用いて、JIS Z 8701に定められている光源色の三刺激値X、Y、Zを求め、下式に従ってイエローインデックスを求めた。
   イエローインデックス(YI)=100(1.28X-1.06Z)/Y
 〔全光線透過率の測定〕
 各ポリイミドフィルムの全光線透過率(%)は、各ポリイミドフィルムを23℃、55%RHの環境下で24時間調湿した後、JIS K 7136に準拠した方法に従って、ヘイズメーター(NDH2000型、日本電色工業(株)製)を使用して測定した。
 《ポリイミドフィルムの特性評価》
 〔低温耐折度試験(MIT低温屈曲試験):低温折り曲げ耐性の評価〕
 MIT耐折度試験は、JIS P 8115に準拠した下記の方法により測定した。
 ポリイミドフィルムの片面に、巻き出し機、スパッタリング装置、巻取り機から構成されるスパッタリング設備を用い、直流スパッタリング法により、平均厚さ23nmの20質量%Crのクロム-ニッケル合金層を金属薄膜として形成した。更に、同様にして、金属薄膜の上に平均厚さ100nmの銅薄膜を形成した。
 次に、銅薄膜の上に電気銅めっき法により、厚さ9μmの銅層を設けて金属化ポリイミドフィルムを作製した。用いた銅めっき浴は、銅濃度が23g/Lの硫酸銅めっき浴であり、めっき時の浴温は27℃とした。また、めっき槽は、複数のめっき槽を連結させた複数構造槽とし、巻き出し機と巻取り機とにより片面に金属薄膜が設けられたポリイミドフィルムが連続的に各槽に浸漬されるように搬送しながら電気めっきを行った。搬送速度は、75m/hとし、めっき槽の平均陰極電流密度を1.0~2.5A/dmに調整して銅めっきを施した。
 次に、この金属被覆ポリイミドフィルムを用いて配線間隔30μm、全配線幅が15000μmのCOF(Chip on film)をサブトラクティブ法で作製した。これにICチップを搭載し、ICチップ表面の電極と配線のリード部とをワイヤボンディング装置を用いて400℃にて0.5秒間のボンディング処理条件でワイヤボンディングを施して、フレキシブルプリント基板を作製した。
 上記作製したフレキシブルプリント基板を、内部温度を-20℃に設定した低温恒温恒湿器(エスペック社製 PL-4)内に設置したMIT試験機により測定した。恒温恒湿器内の温度を-20℃に設定し、MIT試験機により荷重500g、屈折角135°、屈折サイクル175cpm、屈折部局率半径0.38mmの条件下、通電試験により回路破断による通電状態切れまでの回数を測定した。
 〔半田リフロー適性の評価〕
 上記低温耐折度試験(MIT低温屈曲試験)で、各ポリアミドフィルムにより作製したフレキシブルプリント基板を用いて、下記の方法に従って、半田リフロー適性の評価を行った。
 上記各フレキシブルプリント基板に対しリフロー処理(260℃で5~10分程度の加熱)を施した時のリフロー処理前後における面形状変化を、3次元測定機(UA3P、パナソニック(株)製)によって測定して評価した。
 ○:形状差(面形状変化)が400nm未満である
 △:形状差(面形状変化)が400以上、600nm未満である
 ×:形状差(面形状変化)が600nm以上である
 ポリイミドフィルムの構成と、上記測定結果及び評価結果を、表1に示す。
Figure JPOXMLDOC01-appb-T000010
 表1に記載の結果より明らかなように、本発明で規定するポリイミドフィルムの構成で、フィルムの伸び速度S2(%/min)が本発明で規定する範囲にあるポリイミドフィルム1~11、15~18は、比較例であるポリイミドフィルム12~14、19に対し、全光線透過性、着色耐性、半田リフロー適性及び低温折り曲げ耐性に優れていることが分かる。
 実施例2
 次いで、特開2014-22508号公報記載のLED照明の作製方法を参考にして、実施例1に記載の各ポリアミドフィルムにより作製したフレキシブルプリント基板を、LED照明に実装した。
 上記作製した各LED照明を、室温(約25℃)で、2.5mA/cmの定電流条件下で発光させ、発光開始直後の正面発光の輝度(cd/m)を、分光放射輝度計C154S-2000(コニカミノルタ社製)を用いて測定したところ、本発明のポリイミドフィルムを実装したLED照明は、いずれも正面輝度が1000(cd/m)以上であった。
 以上から、本発明の構成のポリイミドフィルムは、透明度が高く、かつ正面輝度に優れることを確認することができた。
 実施例3
 《前面板(ハードコートフィルム)の作製》
 実施例1で作製した各ポリイミドフィルム(111a)1~19上に、それぞれ下記ハードコート層塗布組成物を孔径0.4μmのポリプロピレン製フィルターで濾過したハードコート層塗布液を調製し、ダイコータにより塗布し、70℃で乾燥後、酸素濃度が1.0体積%以下の雰囲気になるように窒素パージしながら、紫外線ランプを用い照射部の照度が300mW/cm、照射量を0.3J/cmとして塗布層を硬化させ、さらに加熱処理ゾーンにおいて、130℃で5分間、搬送力300N/mで加熱処理し、ドライ膜厚7μmのハードコート層(111b)を形成し、前面板(D)であるハードコートフィルム(111)1~19を作製した。
 〔ハードコート層組成物の調製〕
 下記材料を撹拌、混合してハードコート層塗布組成物を調製した。
 ペンタエリスリトールトリアクリレート        20.0質量部
 ペンタエリスリトールテトラアクリレート       50.0質量部
 ジペンタエリスリトールヘキサアクリレート      30.0質量部
 ジペンタエリスリトールペンタアクリレート      30.0質量部
 イルガキュア184(BASFジャパン(株)製)    5.0質量部
 フッ素-シロキサングラフトポリマーI(35質量%)  5.0質量部
 シーホスターKEP-50(粉体のシリカ粒子、平均粒径0.47~0.61μm、日本触媒(株)製)             24.3質量部
 プロピレングリコールモノメチルエーテル         20質量部
 酢酸メチル                       40質量部
 メチルエチルケトン                   60質量部
 (フッ素-シロキサングラフトポリマーI)
 フッ素-シロキサングラフトポリマーIの調製に用いた素材の市販品名を、以下に示す。
 ラジカル重合性フッ素樹脂(FA):セフラルコートCF-803(ヒドロキシ(水酸基)価60、数平均分子量15000;セントラル硝子(株)製)
 片末端ラジカル重合性ポリシロキサン(B):サイラプレーンFM-0721(数平均分子量5000;チッソ(株)製)
 ラジカル重合開始剤:パーブチルO(t-ブチルパーオキシ-2-エチルヘキサノエート;日本油脂(株)製)
 硬化剤:スミジュールN3200(ヘキサメチレンジイソシアネートのビウレット型プレポリマー;住化バイエルウレタン(株)製)
 〈ラジカル重合性フッ素樹脂(FA)の合成〉
 機械式撹拌装置、温度計、コンデンサー及び乾燥窒素ガス導入口を備えたガラス製反応器に、セフラルコートCF-803(1554質量部)、キシレン(233質量部)、及び2-イソシアナトエチルメタクリレート(6.3質量部)を入れ、乾燥窒素雰囲気下で80℃に加熱した。80℃で2時間反応し、サンプリング物の赤外吸収スペクトルによりイソシアネートの吸収が消失したことを確認した後、反応混合物を取り出し、ウレタン結合を介して50質量%のラジカル重合性フッ素樹脂(FA)を得た。
 〈フッ素-シロキサングラフトポリマーIの調製〉
 機械式撹拌装置、温度計、コンデンサー及び乾燥窒素ガス導入口を備えたガラス製反応器に、上記合成したラジカル重合性フッ素樹脂(FA)(26.1質量部)、キシレン(19.5質量部)、酢酸n-ブチル(16.3質量部)、メチルメタクリレート(2.4質量部)、n-ブチルメタクリレート(1.8質量部)、ラウリルメタクリレート(1.8質量部)、2-ヒドロキシエチルメタクリレート(1.8質量部)、FM-0721(5.2質量部)、及びパーブチルO(0.1質量部)を入れ、窒素雰囲気中で90℃まで加熱した後、90℃で2時間保持した。パーブチルO(0.1部)を追加し、さらに90℃で5時間保持することによって、重量平均分子量が171000である35質量%フッ素-シロキサングラフトポリマーIの溶液を得た。
 《円偏光板(C)の作製》
 〔偏光子の作製〕
 厚さ120μmのポリビニルアルコールフィルムを、一軸延伸(温度110℃、延伸倍率5倍)した。これをヨウ素0.075g、ヨウ化カリウム5g、水100gより構成される水溶液に60秒間浸漬し、次いで、ヨウ化カリウム6g、ホウ酸7.5g、水100gより構成されている68℃の水溶液に浸漬した。これを水洗、乾燥して偏光子を得た。
 〔円偏光板の作製〕
 次いで、下記工程1~5に従って、λ/4位相差フィルム(108)上に、偏光子(109)、保護フィルム(110)及び各ポリイミドフィルム(111a)を有するハードコートフィルム(111)を積層及び貼り合わせて、円偏光板(C)を作製した。
 なお、λ/4位相差フィルム(108)は、特開2013-101229号公報の段落番号(0227)~同(0287)に記載の方法で作製したフィルムを使用し、保護フィルム(110)は、コニカミノルタ社製のコニカミノルタタック KC4UAを使用した。
 工程1:λ/4位相差フィルム(108)と延伸した保護フィルム(110)を60℃の2モル/Lの水酸化ナトリウム溶液に90秒間浸漬し、次いで水洗し乾燥して、偏光子(109)と貼合する側を鹸化した。
 工程2:前記偏光子を固形分2質量%のポリビニルアルコール接着剤槽中に1~2秒浸漬した。
 工程3:工程2で偏光子に付着した過剰の接着剤を軽く拭き取り、これを工程1で処理したλ/4位相差フィルム(108)上にのせて配置した。
 工程4:工程3で積層したλ/4位相差フィルム(108)と偏光子(109)と保護フィルム(110)を圧力20~30N/cm、搬送スピードは約2m/分で貼合した。
 工程5:80℃の乾燥機中に工程4で作製したλ/4位相差フィルム(108)、偏光子(109)及び保護フィルム(110)を積層した試料を2分間乾燥し、円偏光板(C)1~14を作製した。
 《有機エレクトロルミネッセンス表示装置の作製》
 次いで、上記作製した各前面板(D)及び円偏光板(C)を用いて、図2に記載の構成からなる有機エレクトロルミネッセンス表示装置(以下、有機EL表示装置(A)と略記する。)1~19を作製した。
 〔有機EL表示装置の作製〕
 図2に示すように、透明基板(101)として、実施例1で作製した各ポリイミドフィルムを使用し、当該透明基板(101)上に、クロムからなる反射電極(不図示)、反射電極上にITOを成膜し、金属電極(102、陽極)を形成した。この金属電極(102)上に有機発光層ユニット(103)を積層した。有機発光層ユニット(103)は、正孔輸送層としてポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホネート(PEDOT:PSS)をスパッタリング法で厚さ80nmで形成し、次いで正孔輸送層上にシャドーマスクを用いて、RGBそれぞれの発光層103R、103G、103Bを100nmの膜厚で積層して発光層を形成した。赤色発光層103Rには、ホストとしてトリス(8-ヒドロキシキノリナート)アルミニウム(Alq)と発光性化合物[4-(dicyanomethylene)-2-methyl-6(p-dimethylaminostyryl)-4H-pyran](DCM)とを共蒸着(質量比99:1)して100nmの厚さで形成した。緑色発光層103Gは、ホストとしてAlqと、発光性化合物クマリン6(3-(2-ベンゾチアゾリル)-7-(ジエチルアミノ)クマリン)とを共蒸着(質量比99:1)して100nmの厚さで形成した。青色発光層103Bとしては、ホストとしてBAlqと発光性化合物Peryleneとを共蒸着(質量比90:10)して厚さ100nmで形成した。
Figure JPOXMLDOC01-appb-C000011
 次いで、発光層上に電子が効率的に注入できるような仕事関数の低い第1の陰極としてカルシウムを真空蒸着法により4nmの厚さで成膜し、第1の陰極上に第2の陰極としてアルミニウムを2nmの厚さで形成して、有機発光層ユニット(103)を形成した。
 次に、有機発光層ユニット(103)上にスパッタリング法によって透明電極層(104)を80nmの厚さで成膜した。ここで透明電極層としてはITOを用いた。さらに、透明電極層上にCVD法によって窒化珪素を200nm成膜することで、絶縁膜(105)とし、有機EL素子ユニット(B)を作製した。
 次に、バリアーフィルム(107)として、厚さ20μmのポリエチレンテレフタレートフィルムにガスバリアー層を設けたフィルムを使用し、このバリアーフィルム(101)の片面に、封止層(106)として熱硬化型の液状接着剤(エポキシ系樹脂)を厚さ25μmで付与した封止ユニットを作製した。
 次に、90℃で0.1MPaの減圧条件下で、透明基板(101)~絶縁層(105)まで形成した有機EL素子ユニットと封止ユニットとに押圧をかけて5分間保持した。続いて、積層体を大気圧環境に戻し、さらに90℃で30分間加熱して接着剤を硬化させて、有機ELデバイスユニット(B)を作製した。
 上記作製した有機ELデバイスユニットの発光面積は1296mm×784mmであった。また、この有機EL素子ユニットに6Vの直流電圧を印加した際の正面輝度は1200cd/mであった。正面輝度の測定は、コニカミノルタ社製分光放射輝度計CS-1000を用いて、2℃視野角正面輝度を、発光面からの法線に分光放射輝度計の光軸が一致するようにして、可視光波長430~480nmの範囲を測定し、積分強度をとった。
 上記作製した有機ELデバイスユニット(B)に、前記作製したλ/4位相差フィルム(108)上に、偏光子(109)及び保護フィルム(110)を積層した円偏光板(C)を、図2に記載の構成となるように、対向して接着層を介して固定化し、更にその上に前記作製したポリイミドフィルム1~19上にハードコート層を設けたハードコートフィルムを前面板(D)として、ハードコート層が最表層となるように接着剤を介して接着して、有機EL表示装置(A)1~19を作製した。
 《評価》
 上記作製した各有機EL表示装置について、実施例1に記載の方法と同様にして、低温耐折度試験(MIT低温屈曲試験)を行った。
 その結果、実施例1の低温耐折度試験結果を再現し、本発明のポリイミドフィルム1~11、15~18を具備した有機EL表示装置は、低温環境下での折り曲げ試験結果が、全て1000回以上であり、有機EL表示装置のフレキシブルディスプレイ用の透明基板及び前面板として優れていることを確認することができた。
 本発明のポリイミドフィルムは、LED照明装置のフレキシブルプリント基板などに好適な、光透過性、着色耐性、半田リフロー適性及び折り曲げ耐性に優れた特性を有し、フレキシブルプリント基板、フレキシブルディスプレイ用基材、フレキシブルディスプレイ用前面板、LED照明装置及び有機エレクトロルミネッセンス表示装置に好適に利用できる。
 101 基板、透明基板
 102 金属電極
 103 有機発光層ユニット
 104 透明電極
 105 絶縁層
 106 封止層
 107 バリアーフィルム
 108 λ/4位相差フィルム
 109 偏光子
 110 保護フィルム
 111 ハードコートフィルム
 111a ポリイミドフィルム
 111b ハードコート層
 A 有機EL表示装置
 B 有機ELデバイスユニット
 C 円偏光板
 D 前面板

Claims (12)

  1.  いずれか一方がフルオレン骨格を有する、ジアミン又はその誘導体と、酸無水物又はその誘導体と、により形成されるポリアミド酸又はポリイミドを有するポリイミドフィルムであって、
     23℃、55%RHの環境下で12時間調湿した後、23℃の純水に浸漬し、浸漬直後から2分後におけるフィルムの伸び速度Sが0.01~0.10%/分の範囲内であることを特徴とするポリイミドフィルム。
  2.  前記ポリアミド酸又はポリイミドの重量平均分子量が、30000~1000000の範囲内であることを特徴とする請求項1に記載のポリイミドフィルム。
  3.  前記ポリアミド酸又はポリイミドが、芳香族ジアミン、イソシアン酸エステル及びカルボン酸無水物から選択される少なくとも一種の化合物に由来するフルオレン骨格を有することを特徴とする請求項1又は請求項2に記載のポリイミドフィルム。
  4.  前記フルオレン骨格を有するジアミンが、9,9-ビス(4-アミノフェニル)フルオレン、9,9-ビス(4-アミノ-3-メチルフェニル)フルオレン及び9,9-ビス(3-フルオロ-4-アミノフェニル)フルオレンから選ばれる少なくとも一種であることを特徴とする請求項1から請求項3までのいずれか一項に記載のポリイミドフィルム。
  5.  前記フルオレン骨格を有する酸無水物が、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン酸二無水物又は9,9-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]フルオレン酸二無水物であることを特徴とする請求項1から請求項4までのいずれか一項に記載のポリイミドフィルム。
  6.  請求項1から請求項5までのいずれか一項に記載のポリイミドフィルムを溶液流延法により製造するポリイミドフィルムの製造方法であって、
     ポリアミド酸又はポリイミドと、有機溶媒とを含有するドープを調製する工程を有し、
     前記ポリアミド酸又はポリイミドが、いずれか一方がフルオレン骨格を有する、ジアミン又はその誘導体と、酸無水物又はその誘導体とより形成され、
     前記有機溶媒が、ジクロロメタンを50質量%以上含有する混合溶媒であることを特徴とするポリイミドフィルムの製造方法。
  7.  さらに、製膜したポリイミドフィルムを1.03~2.00倍の範囲内で延伸する工程を有することを特徴とする請求項6に記載のポリイミドフィルムの製造方法。
  8.  請求項1から請求項5までのいずれか一項に記載のポリイミドフィルムを具備していることを特徴とするフレキシブルプリント基板。
  9.  請求項1から請求項5までのいずれか一項に記載のポリイミドフィルムを具備していることを特徴とするフレキシブルディスプレイ用基材。
  10.  請求項1から請求項5までのいずれか一項に記載のポリイミドフィルムを具備していることを特徴とするフレキシブルディスプレイ用前面板。
  11.  請求項1から請求項5までのいずれか一項に記載のポリイミドフィルム、又は請求項8に記載のフレキシブルプリント基板を具備していることを特徴とするLED照明装置。
  12.  請求項1から請求項5までのいずれか一項に記載のポリイミドフィルム、請求項9に記載のフレキシブルディスプレイ用基材、又は請求項10に記載のフレキシブルディスプレイ用前面板を具備していることを特徴とする有機エレクトロルミネッセンス表示装置。
PCT/JP2015/083202 2014-12-04 2015-11-26 ポリイミドフィルムとその製造方法、フレキシブルプリント基板、フレキシブルディスプレイ用基材、フレキシブルディスプレイ用前面板、led照明装置及び有機エレクトロルミネッセンス表示装置 WO2016088641A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016562403A JP6638654B2 (ja) 2014-12-04 2015-11-26 ポリイミドフィルムとその製造方法、フレキシブルプリント基板、フレキシブルディスプレイ用基材、フレキシブルディスプレイ用前面板、led照明装置及び有機エレクトロルミネッセンス表示装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014245727 2014-12-04
JP2014-245727 2014-12-04
JP2014-245726 2014-12-04
JP2014245726 2014-12-04

Publications (1)

Publication Number Publication Date
WO2016088641A1 true WO2016088641A1 (ja) 2016-06-09

Family

ID=56091587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083202 WO2016088641A1 (ja) 2014-12-04 2015-11-26 ポリイミドフィルムとその製造方法、フレキシブルプリント基板、フレキシブルディスプレイ用基材、フレキシブルディスプレイ用前面板、led照明装置及び有機エレクトロルミネッセンス表示装置

Country Status (2)

Country Link
JP (1) JP6638654B2 (ja)
WO (1) WO2016088641A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017135227A1 (ja) * 2016-02-01 2017-08-10 シャープ株式会社 有機el表示装置
WO2017138416A1 (ja) * 2016-02-08 2017-08-17 シャープ株式会社 有機el表示装置
WO2018062887A1 (ko) * 2016-09-29 2018-04-05 코오롱인더스트리 주식회사 폴리아믹산, 폴리이미드, 폴리이미드 필름, 이를 포함하는 영상 표시소자 및 폴리아믹산의 제조방법
JP2018065993A (ja) * 2016-10-17 2018-04-26 大日本印刷株式会社 ポリイミドフィルムの製造方法、ポリイミド前駆体の製造方法、積層体の製造方法及びディスプレイ用表面材の製造方法
WO2018088543A1 (ja) * 2016-11-11 2018-05-17 宇部興産株式会社 ポリイミドフィルムとハードコート層とを含む積層体
JP2018119144A (ja) * 2017-01-25 2018-08-02 住友化学株式会社 ポリイミド系フィルム及び積層体
JP2019006933A (ja) * 2017-06-27 2019-01-17 旭化成株式会社 ポリイミドフィルム及びその製造方法
JP2019503412A (ja) * 2016-09-23 2019-02-07 エルジー・ケム・リミテッド ポリイミド前駆体溶液及びその製造方法
CN110066411A (zh) * 2018-01-24 2019-07-30 东进世美肯株式会社 聚酰亚胺薄膜以及其制备方法
CN110156990A (zh) * 2019-05-30 2019-08-23 武汉华星光电半导体显示技术有限公司 一种聚酰亚胺复合物、制备方法及其应用
JP2019151093A (ja) * 2017-10-31 2019-09-12 住友化学株式会社 樹脂フィルムの製造方法
KR20200001994A (ko) 2018-06-28 2020-01-07 아사히 가세이 가부시키가이샤 폴리이미드 전구체 수지 조성물
WO2020158655A1 (ja) * 2019-01-30 2020-08-06 株式会社ジャパンディスプレイ 表示装置
WO2020159183A1 (ko) * 2019-02-01 2020-08-06 주식회사 엘지화학 폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치
JP2020125485A (ja) * 2017-02-01 2020-08-20 住友化学株式会社 ポリイミドフィルム
WO2020255890A1 (ja) * 2019-06-20 2020-12-24 Jfeケミカル株式会社 ポリイミド溶液、及び、ポリイミド
JPWO2019188306A1 (ja) * 2018-03-28 2021-03-11 三菱瓦斯化学株式会社 ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
TWI747146B (zh) * 2019-02-01 2021-11-21 南韓商Lg化學股份有限公司 聚醯亞胺系樹脂膜、用於顯示器元件的基底以及光學元件
CN115850699A (zh) * 2022-09-05 2023-03-28 江西有泽新材料科技有限公司 一种低介电共混聚酰亚胺及制备方法和应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022085620A1 (ja) * 2020-10-22 2022-04-28
CN112770488B (zh) * 2021-01-20 2022-02-18 东莞市玮孚电路科技有限公司 一种电路板及其制造方法
CN114751832B (zh) * 2022-06-14 2022-10-04 吉林奥来德光电材料股份有限公司 一种有机电致发光化合物、其制备方法及应用
CN117683351A (zh) * 2023-11-21 2024-03-12 哈尔滨理工大学 一种聚酰亚胺基复合电介质薄膜及其制备方法和在电气绝缘中的应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006213826A (ja) * 2005-02-04 2006-08-17 Fuji Photo Film Co Ltd ポリアリレートイミド、光学フィルム、および、画像表示装置
JP2006213827A (ja) * 2005-02-04 2006-08-17 Fuji Photo Film Co Ltd ポリアリレートイミド、光学フィルム、および、画像表示装置
JP2007505973A (ja) * 2003-09-19 2007-03-15 ブルーワー サイエンス アイ エヌ シー. 高屈折率、薄膜材料として用いるポリイミド
WO2008132951A1 (ja) * 2007-04-17 2008-11-06 Nitto Denko Corporation 光学フィルム、及び画像表示装置
JP2009215412A (ja) * 2008-03-10 2009-09-24 New Japan Chem Co Ltd ポリイミド樹脂組成物及びその成形体
JP2013001899A (ja) * 2011-06-22 2013-01-07 Jsr Corp 可溶性ポリイミドおよびその製造方法、ワニス並びにポリイミドフィルム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007505973A (ja) * 2003-09-19 2007-03-15 ブルーワー サイエンス アイ エヌ シー. 高屈折率、薄膜材料として用いるポリイミド
JP2006213826A (ja) * 2005-02-04 2006-08-17 Fuji Photo Film Co Ltd ポリアリレートイミド、光学フィルム、および、画像表示装置
JP2006213827A (ja) * 2005-02-04 2006-08-17 Fuji Photo Film Co Ltd ポリアリレートイミド、光学フィルム、および、画像表示装置
WO2008132951A1 (ja) * 2007-04-17 2008-11-06 Nitto Denko Corporation 光学フィルム、及び画像表示装置
JP2009215412A (ja) * 2008-03-10 2009-09-24 New Japan Chem Co Ltd ポリイミド樹脂組成物及びその成形体
JP2013001899A (ja) * 2011-06-22 2013-01-07 Jsr Corp 可溶性ポリイミドおよびその製造方法、ワニス並びにポリイミドフィルム

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017135227A1 (ja) * 2016-02-01 2017-08-10 シャープ株式会社 有機el表示装置
WO2017138416A1 (ja) * 2016-02-08 2017-08-17 シャープ株式会社 有機el表示装置
US10899886B2 (en) 2016-09-23 2021-01-26 Lg Chem, Ltd. Polyimide precursor solution and method for producing same
JP2019503412A (ja) * 2016-09-23 2019-02-07 エルジー・ケム・リミテッド ポリイミド前駆体溶液及びその製造方法
KR20180035546A (ko) * 2016-09-29 2018-04-06 코오롱인더스트리 주식회사 폴리아믹산, 폴리이미드, 폴리이미드 필름, 이를 포함하는 영상 표시소자 및 폴리아믹산의 제조방법
KR102271023B1 (ko) * 2016-09-29 2021-06-29 코오롱인더스트리 주식회사 폴리아믹산, 폴리이미드, 폴리이미드 필름, 이를 포함하는 영상 표시소자 및 폴리아믹산의 제조방법
CN109790290B (zh) * 2016-09-29 2021-08-10 可隆工业株式会社 聚酰胺酸、聚酰亚胺、聚酰亚胺薄膜、含有该薄膜的图像显示设备及聚酰胺酸的制备方法
JP2019532147A (ja) * 2016-09-29 2019-11-07 コーロン インダストリーズ インク ポリアミック酸、ポリイミド、ポリイミドフィルム、これを含む画像表示素子及びポリアミック酸の製造方法
WO2018062887A1 (ko) * 2016-09-29 2018-04-05 코오롱인더스트리 주식회사 폴리아믹산, 폴리이미드, 폴리이미드 필름, 이를 포함하는 영상 표시소자 및 폴리아믹산의 제조방법
TWI657101B (zh) * 2016-09-29 2019-04-21 南韓商可隆股份有限公司 聚醯胺酸、聚醯亞胺、聚醯亞胺薄膜、含有聚醯亞胺薄膜的顯示裝置及製備聚醯胺酸的方法
CN109790290A (zh) * 2016-09-29 2019-05-21 可隆工业株式会社 聚酰胺酸、聚酰亚胺、聚酰亚胺薄膜、含有该薄膜的图像显示设备及聚酰胺酸的制备方法
JP2018065993A (ja) * 2016-10-17 2018-04-26 大日本印刷株式会社 ポリイミドフィルムの製造方法、ポリイミド前駆体の製造方法、積層体の製造方法及びディスプレイ用表面材の製造方法
JP7009902B2 (ja) 2016-10-17 2022-01-26 大日本印刷株式会社 ポリイミドフィルムの製造方法、ポリイミド前駆体の製造方法、積層体の製造方法及びディスプレイ用表面材の製造方法
WO2018088542A1 (ja) * 2016-11-11 2018-05-17 宇部興産株式会社 ポリイミドフィルムとハードコート層とを含む積層体
CN109922956A (zh) * 2016-11-11 2019-06-21 宇部兴产株式会社 包含聚酰亚胺膜和硬涂层的层积体
JPWO2018088543A1 (ja) * 2016-11-11 2019-10-10 宇部興産株式会社 ポリイミドフィルムとハードコート層とを含む積層体
WO2018088543A1 (ja) * 2016-11-11 2018-05-17 宇部興産株式会社 ポリイミドフィルムとハードコート層とを含む積層体
JP7164304B2 (ja) 2017-01-25 2022-11-01 住友化学株式会社 ポリイミド系フィルム及び積層体
CN110234687B (zh) * 2017-01-25 2022-04-15 住友化学株式会社 聚酰亚胺系膜及层叠体
CN110234687A (zh) * 2017-01-25 2019-09-13 住友化学株式会社 聚酰亚胺系膜及层叠体
KR20190109481A (ko) * 2017-01-25 2019-09-25 스미또모 가가꾸 가부시키가이샤 폴리이미드계 필름 및 적층체
KR102475756B1 (ko) * 2017-01-25 2022-12-08 스미또모 가가꾸 가부시키가이샤 폴리이미드계 필름 및 적층체
WO2018139392A1 (ja) * 2017-01-25 2018-08-02 住友化学株式会社 ポリイミド系フィルム及び積層体
JP2018119144A (ja) * 2017-01-25 2018-08-02 住友化学株式会社 ポリイミド系フィルム及び積層体
JP7005680B2 (ja) 2017-02-01 2022-01-21 住友化学株式会社 ポリイミドフィルム
JP2020125485A (ja) * 2017-02-01 2020-08-20 住友化学株式会社 ポリイミドフィルム
JP2019006933A (ja) * 2017-06-27 2019-01-17 旭化成株式会社 ポリイミドフィルム及びその製造方法
JP2019151093A (ja) * 2017-10-31 2019-09-12 住友化学株式会社 樹脂フィルムの製造方法
CN110066411A (zh) * 2018-01-24 2019-07-30 东进世美肯株式会社 聚酰亚胺薄膜以及其制备方法
JPWO2019188306A1 (ja) * 2018-03-28 2021-03-11 三菱瓦斯化学株式会社 ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルム
KR20200001994A (ko) 2018-06-28 2020-01-07 아사히 가세이 가부시키가이샤 폴리이미드 전구체 수지 조성물
JP2020007531A (ja) * 2018-06-28 2020-01-16 旭化成株式会社 ポリイミド前駆体樹脂組成物
JP7412094B2 (ja) 2018-06-28 2024-01-12 旭化成株式会社 ポリイミド前駆体樹脂組成物
JP2020122846A (ja) * 2019-01-30 2020-08-13 株式会社ジャパンディスプレイ 表示装置
WO2020158655A1 (ja) * 2019-01-30 2020-08-06 株式会社ジャパンディスプレイ 表示装置
JP7349245B2 (ja) 2019-01-30 2023-09-22 株式会社ジャパンディスプレイ 表示装置
TWI747146B (zh) * 2019-02-01 2021-11-21 南韓商Lg化學股份有限公司 聚醯亞胺系樹脂膜、用於顯示器元件的基底以及光學元件
US12060456B2 (en) 2019-02-01 2024-08-13 Lg Chem, Ltd. Polyimide precursor composition and polyimide film, substrate for display device, and optical device prepared by using same
WO2020159183A1 (ko) * 2019-02-01 2020-08-06 주식회사 엘지화학 폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치
US12065543B2 (en) 2019-02-01 2024-08-20 Lg Chem, Ltd. Polyimide-based polymer film, substrate for display device, and optical device using the same
US11999823B2 (en) 2019-02-01 2024-06-04 Lg Chem, Ltd. Polyimide-based polymer film, substrate for display device, and optical device using the same
CN110156990A (zh) * 2019-05-30 2019-08-23 武汉华星光电半导体显示技术有限公司 一种聚酰亚胺复合物、制备方法及其应用
WO2020237933A1 (zh) * 2019-05-30 2020-12-03 武汉华星光电半导体显示技术有限公司 一种聚酰亚胺复合物、制备方法及其应用
JP7095115B2 (ja) 2019-06-20 2022-07-04 Jfeケミカル株式会社 ポリイミド溶液、及び、ポリイミド
WO2020255890A1 (ja) * 2019-06-20 2020-12-24 Jfeケミカル株式会社 ポリイミド溶液、及び、ポリイミド
TWI783237B (zh) * 2019-06-20 2022-11-11 日商杰富意化學股份有限公司 聚醯亞胺溶液及聚醯亞胺混合物
CN112437786A (zh) * 2019-06-20 2021-03-02 杰富意化学株式会社 聚酰亚胺溶液及聚酰亚胺
JPWO2020255890A1 (ja) * 2019-06-20 2021-09-13 Jfeケミカル株式会社 ポリイミド溶液、及び、ポリイミド
CN115850699A (zh) * 2022-09-05 2023-03-28 江西有泽新材料科技有限公司 一种低介电共混聚酰亚胺及制备方法和应用
CN115850699B (zh) * 2022-09-05 2024-04-26 江西有泽新材料科技有限公司 一种低介电共混聚酰亚胺及制备方法和应用

Also Published As

Publication number Publication date
JPWO2016088641A1 (ja) 2017-09-14
JP6638654B2 (ja) 2020-01-29

Similar Documents

Publication Publication Date Title
JP6638654B2 (ja) ポリイミドフィルムとその製造方法、フレキシブルプリント基板、フレキシブルディスプレイ用基材、フレキシブルディスプレイ用前面板、led照明装置及び有機エレクトロルミネッセンス表示装置
WO2016129329A1 (ja) 透明耐熱性積層フィルムの製造方法、透明耐熱性積層フィルム、フレキシブルプリント基板、フレキシブルディスプレイ用基板、フレキシブルディスプレイ用前面板、led照明装置及び有機エレクトロルミネッセンス表示装置
KR102046699B1 (ko) 폴리이미드계 광학 필름, 그의 제조 방법 및 유기 일렉트로루미네센스 디스플레이
JP6801648B2 (ja) ポリイミドフィルム、ポリイミドフィルムの製造方法、フレキシブルプリント基板、フレキシブルディスプレイ用基板、フレキシブルディスプレイ用前面板、led照明装置及び有機エレクトロルミネッセンス表示装置
TWI478958B (zh) 低熱膨脹性嵌段聚醯亞胺及其前驅體及其用途
JP6834440B2 (ja) ポリイミドフィルムおよび当該フィルムを用いる表示装置
US20120043691A1 (en) Multilayered polyimide film
JP2016075894A (ja) 光学フィルム、その製造方法、フレキシブルプリント基板及びled照明
JP6874759B2 (ja) ポリイミドフィルム及びその製造方法
JP6806141B2 (ja) ポリイミドフィルムの製造方法
WO2017099041A1 (ja) ポリイミドフィルム、フレキシブルプリント基板、led照明装置等
WO2017010178A1 (ja) 偏光板、その製造方法、液晶表示装置及び有機エレクトロルミネッセンス表示装置
JP6850352B2 (ja) ポリイミドワニス及びその製造方法
JP2016064642A (ja) ポリイミドフィルムの製造方法、フレキシブルプリント基板の製造方法及びled照明用基板の製造方法
JP2017083669A (ja) 偏光板とその製造方法
TW202035520A (zh) 聚醯亞胺前體組合物及由其產生的聚醯亞胺膜以及柔性器件、聚醯亞胺膜的製造方法
JP7172981B2 (ja) 透明電極用基材フィルムおよびその製造方法
JP2018103392A (ja) 透明ポリイミドフィルム積層体
WO2017057247A1 (ja) ポリイミドフィルム、フレキシブルプリント基板、led照明用基板及びフレキシブルディスプレイ用前面板
JP2017185743A (ja) ポリイミドフィルムの製造方法、及び製造装置
WO2019203037A1 (ja) ポリマーブレンド組成物及びポリマーフィルム
JPWO2019239865A1 (ja) ポリマーブレンドフィルムおよび積層体
JP7367214B2 (ja) ポリイミドフィルムの製造方法およびこれにより製造されたポリイミドフィルム
JP2018153974A (ja) 透明耐熱性積層フィルム、透明フレキシブルプリント基板、透明電極基板、照明装置及び有機エレクトロルミネッセンス表示装置
KR20210116067A (ko) 내흡습 및 흡수 특성을 갖는 폴리이미드 필름

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15865302

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016562403

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15865302

Country of ref document: EP

Kind code of ref document: A1