WO2017010178A1 - 偏光板、その製造方法、液晶表示装置及び有機エレクトロルミネッセンス表示装置 - Google Patents

偏光板、その製造方法、液晶表示装置及び有機エレクトロルミネッセンス表示装置 Download PDF

Info

Publication number
WO2017010178A1
WO2017010178A1 PCT/JP2016/066129 JP2016066129W WO2017010178A1 WO 2017010178 A1 WO2017010178 A1 WO 2017010178A1 JP 2016066129 W JP2016066129 W JP 2016066129W WO 2017010178 A1 WO2017010178 A1 WO 2017010178A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polarizing plate
stretching
polyimide
hydrophilic polymer
Prior art date
Application number
PCT/JP2016/066129
Other languages
English (en)
French (fr)
Inventor
梅田 博紀
康敏 伊藤
直矢 岩上
健太 間島
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2017528323A priority Critical patent/JPWO2017010178A1/ja
Publication of WO2017010178A1 publication Critical patent/WO2017010178A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light

Definitions

  • the present invention relates to a polarizing plate, a manufacturing method thereof, a liquid crystal display device and an organic electroluminescence display device. More particularly, the present invention relates to a thin polarizing plate with reduced depolarization and an improved degree of polarization, a method for manufacturing the same, and a display device having an improved contrast provided with the polarizing plate.
  • Thinning the polarizing plate includes a method of forming a thin film of polyvinyl alcohol (also referred to as PVA in the present application) into a thin film, but a group capable of stretching the PVA in a step of producing a PVA polarizer.
  • a method is known in which a thin polarizer is prepared by applying to a material, then stretching the whole substrate, dyeing and then peeling off the PVA coating (see, for example, Patent Documents 1 to 3).
  • the coating type PVA polarizer is usually applied with PVA on a base material and stretched / dyed, but an uneven shape is generated on the surface. This is because the surface opposite to the substrate (that is, the surface that comes into contact with air during coating) has a concavo-convex shape because the surface shape of the PVA coating is controlled only by the surface tension of the coating solution. It is easy to suppress the shape.
  • a polarizer for example, a liquid crystal cell
  • the polarization is scattered and depolarization occurs, so that the degree of polarization decreases and the contrast of the display device is increased. Since it has a great influence, it is important to control the surface shape of the coating type PVA polarizer.
  • the present invention has been made in view of the above-described problems and circumstances, and a solution to the problem is a thin polarizing plate with reduced depolarization and an improved degree of polarization, and a contrast provided with the polarizing plate.
  • An improved display device is provided.
  • the present inventor in the process of studying the cause of the above problems, etc., by the polarizing plate composed of a polarizer and a transparent substrate having a specific indentation elastic modulus, depolarization is reduced, The inventors have found that a thin polarizing plate having an improved degree of polarization can be obtained, and have reached the present invention.
  • a polarizer (A) having a hydrophilic polymer layer dyed with a dichroic material, and an indentation elastic modulus of 4.5 GPa or more and a total light transmittance of 80 on at least one surface of the polarizer (A).
  • % Of the transparent substrate (B) which is at least%.
  • the gray value standard deviation ⁇ is in the range of 0.50 to 1.10, and the rectangular area
  • the polarizing plate according to item 1 or 2 wherein the area occupied by the black portion in the binarized image is 50% or less.
  • a method for producing a polarizing plate comprising a polarizer (A) having a hydrophilic polymer layer and a transparent substrate (B) having an indentation elastic modulus of 4.5 GPa or more and a total light transmittance of 80% or more, A step of casting a coating solution containing a hydrophilic polymer on a substrate to form a hydrophilic polymer layer; Stretching the hydrophilic polymer layer and dyeing with a dichroic material; A process of forming a polarizing plate by laminating the transparent base material (B) with a nip roller on the air interface side surface of the hydrophilic polymer layer, The manufacturing method of the polarizing plate characterized by having.
  • the said transparent base material (B) contains the transparent heat resistant resin which has an imide structure, The manufacturing method of the polarizing plate of Claim 5 characterized by the above-mentioned.
  • a liquid crystal display device comprising the polarizing plate according to any one of items 1 to 4.
  • An organic electroluminescence display device comprising the polarizing plate according to any one of items 1 to 4.
  • the coating-type PVA polarizer has a surface opposite to the substrate whose surface shape is controlled only by flattening due to the surface tension of the coating solution, and the surface of the polarizer when it is made into a polarizing plate.
  • the surface of the PVA polarizer opposite to the base material is sandwiched by a transparent base material having a high indentation elastic modulus with a nip roller. By smoothing, it is presumed that light scattering on the surface is suppressed, depolarization is less likely to occur, and the degree of polarization is improved.
  • Sectional drawing which shows an example of a structure of the polarizing plate of this invention
  • the schematic diagram which shows the example which clamps and bonds a polarizer (A) and a transparent base material (B) with a nip roller.
  • Schematic diagram for analyzing a film projection image according to the present invention Schematic diagram of a bending processing apparatus preferably applicable to the present invention Projected image of transparent substrate (B) of the present invention Binary image of the transparent substrate (B) of the present invention Gray value standard deviation of the transparent substrate (B) of the present invention
  • the polarizing plate of the present invention has a polarizer (A) having a hydrophilic polymer layer dyed with a dichroic substance and an indentation elastic modulus of 4.5 GPa or more on at least one surface of the polarizer (A). And a transparent substrate (B) having a total light transmittance of 80% or more.
  • A polarizer
  • B transparent substrate
  • the transparent base material (B) contains a transparent heat resistant resin having an imide structure, in order to realize a specific indentation elastic modulus. preferable.
  • the gray value standard deviation ⁇ is in the range of 0.50 to 1.10. From the viewpoint of improving the depolarization by making the surface of the coating type polarizer (A) smooth and remarkably smooth that the area occupied by the black portion in the binarized image of the rectangular area is 50% or less. ,preferable.
  • the method for producing a polarizing plate of the present invention comprises a polarizer (A) having a hydrophilic polymer layer and a transparent substrate (B) having an indentation elastic modulus of 4.5 GPa or more and a total light transmittance of 80% or more.
  • a process for forming a hydrophilic polymer layer by casting a coating liquid containing a hydrophilic polymer on a substrate, stretching the hydrophilic polymer layer, and A step of dyeing with a chromatic substance, and then a step of bonding the transparent base material (B) to a surface of the hydrophilic polymer layer on the air interface side with a nip roller to form a polarizing plate, It is preferable from the viewpoint of smoothing the uneven shape on the surface of the coating type polarizer (A) and improving depolarization.
  • the polarizing plate of the present invention is thin, has a reduced depolarization, and has an improved degree of polarization, so that the polarizing plate is particularly suitable for a thin liquid crystal display device and an organic electroluminescence display device.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • the polarizing plate of the present invention has a polarizer (A) having a hydrophilic polymer layer dyed with a dichroic substance and an indentation elastic modulus of 4.5 GPa or more on at least one surface of the polarizer (A). And a transparent substrate (B) having a total light transmittance of 80% or more.
  • FIG. 1 is a cross-sectional view showing an example of the configuration of the polarizing plate of the present invention.
  • the material (B) 4 is laminated to constitute the polarizing plate 10.
  • the substrate 1 is peeled from the hydrophilic polymer layer 2, and the hydrophilic polymer layer 2 is bonded as a polarizer (A) 3 to a display device or the like. Is done. Therefore, since the polarizer (A) 3 has only the layer thickness of the hydrophilic polymer layer 2, it becomes a thin polarizer and contributes to the thinning of the member.
  • the transparent base material (B) can function as a protective film for the polarizer
  • the transparent base material (B) is a polyimide film containing a transparent heat-resistant resin having an imide structure
  • TAC triacetyl cellulose
  • Polarizing plate In the polarizing plate of the present invention, a hydrophilic polymer layer is laminated on a substrate by a coating method, and then subjected to a stretching treatment to form a stretched laminate. After the polymer layer is dyed and imparted with a polarizing function to form a polarizer (A), the hydrophilic polymer layer has an indentation elastic modulus of 4.5 GPa or more on the air interface side surface to transmit all light.
  • the transparent base material (B) having a rate of 80% or more is bonded while being sandwiched between nip rollers.
  • the “coating polarizer” in the present invention refers to a hydrophilic polymer layer coated on the substrate.
  • the polarizer (A) according to the present invention finally refers to the hydrophilic polymer layer, and the layer thickness can be reduced to 10 ⁇ m or less. is there.
  • a preferred layer thickness is in the range of 0.5 to 10 ⁇ m.
  • Substrate The substrate according to the present invention functions as a substrate for supporting the hydrophilic polymer layer, and is preferably a thermoplastic resin layer.
  • thermoplastic resin used in the present invention includes a crystalline thermoplastic resin in which polymers are regularly arranged, and an amorphous or amorphous state in which the polymers do not have a regular arrangement or only a small part.
  • crystalline thermoplastic resin in which polymers are regularly arranged
  • amorphous or amorphous state in which the polymers do not have a regular arrangement or only a small part.
  • an amorphous or amorphous resin a resin that is not in a crystalline state or a resin that does not reach a crystalline state regardless of whether it is a crystalline resin or an amorphous resin is referred to as an amorphous or amorphous resin.
  • an amorphous or amorphous resin is used in distinction from an amorphous resin having a property of not producing a crystalline state.
  • the crystalline thermoplastic resin examples include olefin resins including polyethylene (PE) and polypropylene (PP), and ester resins including polyethylene terephthalate (PET) and polybutylene terephthalate (PBT).
  • olefin resins including polyethylene (PE) and polypropylene (PP)
  • ester resins including polyethylene terephthalate (PET) and polybutylene terephthalate (PBT).
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • One of the characteristics of the crystalline thermoplastic resin is that it generally has a property that crystallization proceeds due to alignment of polymers by heating or stretching orientation. The physical properties of the resin vary depending on the degree of crystallization. On the other hand, for example, even with a crystalline thermoplastic resin such as polypropylene (PP) and polyethylene terephthalate (PET), crystallization can be suppressed by inhibiting the arrangement of the polymers caused by heat treatment or stretching orientation
  • polypropylene (PP) and polyethylene terephthalate (PET) whose crystallization is suppressed are called amorphous polypropylene and amorphous polyethylene terephthalate. These are collectively called amorphous olefin resin and amorphous ester type. It is called resin.
  • amorphous polypropylene (PP) in which crystallization is suppressed can be produced by using an atactic structure without stereoregularity.
  • PET polyethylene terephthalate
  • PET polyethylene terephthalate
  • a molecule that inhibits crystallization of polyethylene terephthalate (PET) by copolymerizing a modifying group such as isophthalic acid or 1,4-cyclohexanedimethanol as a polymerization monomer By copolymerization, amorphous polyethylene terephthalate (PET) with suppressed crystallization can be produced.
  • ester resins that are polycondensates of polyvalent carboxylic acids (dicarboxylic acids) and polyhydric alcohols (diols)
  • examples of crystalline ester resins that can be used in the present invention include polyethylene terephthalate (PET). ), Polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polyethylene naphthalate (PEN), polybutylene naphthalate (PBN), and the like.
  • PET polyethylene terephthalate
  • PBT Polybutylene terephthalate
  • PTT polytrimethylene terephthalate
  • PEN polyethylene naphthalate
  • PBN polybutylene naphthalate
  • thermoplastic resin If the film is crystallized during film formation, the stretchability of the film naturally decreases. In order to ensure the stretchability of the film, it is preferable to use a film formed in an amorphous state by suppressing crystallization during film formation.
  • the base material according to the present invention may contain a plasticizer or an elastomer in order to improve the workability / stretchability of the film.
  • the plasticizer include phthalates and polycondensates thereof, fatty acid esters such as adipic acid and polycondensates thereof, polyester plasticizers, epoxy plasticizers, styrene polymers, acrylic polymers, terphenyl compounds, and the like. Examples thereof include substituted derivatives thereof.
  • the elastomer include styrene, olefin, acrylic, vinyl chloride, urethane, ester, and nylon.
  • the thickness of the substrate (before stretching) can be determined as appropriate, but is generally about 1 to 500 ⁇ m from the viewpoints of workability such as strength and handleability and thin layer properties. In particular, the range of 1 to 300 ⁇ m is preferable, and the range of 5 to 200 ⁇ m is more preferable. The thickness of the substrate is particularly suitable when it is 5 to 150 ⁇ m. On the other hand, the thickness of the base material (after stretching) in the stretched laminate is about 1 to 400 ⁇ m, and preferably in the range of 1 to 200 ⁇ m, from the viewpoint of workability such as strength and handleability. More preferably, it is the range. The thickness of the base material in the stretched laminate is determined by the thickness of the base material (before stretching) and the stretch ratio.
  • the polarizer (A) according to the present invention includes a hydrophilic polymer layer on a substrate.
  • the hydrophilic polymer layer is a layer containing a hydrophilic polymer as a main component, and the hydrophilic polymer layer adsorbs a dichroic substance by a dyeing process described later.
  • a hydrophilic polymer layer functions as a polarizer (A) in the polarizing plate of the present invention.
  • the hydrophilic polymer constituting the hydrophilic polymer layer is not particularly limited, but a polyvinyl alcohol material is preferably exemplified.
  • the polyvinyl alcohol-based material include polyvinyl alcohol and derivatives thereof.
  • polyvinyl alcohol derivatives include polyvinyl formal, polyvinyl acetal, etc., olefins such as ethylene and propylene, unsaturated carboxylic acids such as acrylic acid, methacrylic acid, and crotonic acid, alkyl esters thereof, acrylamide, and the like. Can be mentioned.
  • the degree of polymerization of polyvinyl alcohol is preferably about 100 to 10,000, and more preferably 1,000 to 10,000. A saponification degree of about 80 to 100 mol% is generally used.
  • hydrophilic polymer examples include partially saponified ethylene / vinyl acetate copolymer, dehydrated polyvinyl alcohol and dehydrochlorinated polyvinyl chloride.
  • polyvinyl alcohol is preferably used as the hydrophilic polymer.
  • the hydrophilic polymer layer may contain additives such as a plasticizer and a surfactant in addition to the hydrophilic polymer described above.
  • the plasticizer include polyols and condensates thereof, and examples include glycerin, diglycerin, triglycerin, ethylene glycol, propylene glycol, and polyethylene glycol.
  • the amount of the plasticizer used is not particularly limited, but is preferably 20% by mass or less with respect to the total solid content (100% by mass) of the hydrophilic polymer layer.
  • polyvinyl alcohol material for example, a commercially available product may be used.
  • commercially available products include the product name “JC40” manufactured by Nippon Vinegar Poval Co., Ltd., the product name “Poval PVA124” manufactured by Kuraray Co., Ltd. NH-18 "and the like.
  • the hydrophilic polymer layer is laminated on the base material to form a laminate, and further stretched to form a stretched laminate.
  • the stretching treatment may be carried out after or simultaneously with the dyeing treatment. However, if the drawing treatment is carried out before the dyeing treatment, it is possible to dye along the oriented hydrophilic polymer molecules, so that uniform polarization characteristics are imparted. This is also preferable.
  • a hydrophilic polymer layer is laminated on a substrate by a coating method, and then stretched in the TD direction (width direction) or MD direction (longitudinal direction). It is preferable to pass through and form the extending
  • the production method of the stretched laminate is not particularly limited, and can be suitably produced while referring to the conventionally known knowledge and the description in the Examples section described later.
  • An example of a method for producing a stretched laminate can be obtained, for example, by applying a solution containing the hydrophilic polymer (preferably polyvinyl alcohol) on the substrate, followed by drying and stretching. .
  • a solution containing the hydrophilic polymer preferably polyvinyl alcohol
  • the solvent of the solution is not particularly limited, and examples thereof include water, alcohol, dimethyl sulfoxide (DMSO) and the like. Any appropriate method can be adopted as a method of applying the solution. Examples of the coating method include spin coating, roll coating, flow coating, dip coating, and bar coating.
  • the coating temperature is preferably not higher than the glass transition temperature (Tg) of the substrate.
  • the hydrophilic polymer layer is dried, but natural drying, air drying, heat drying and the like are preferable.
  • heat drying the temperature is preferably in the range of 50 to 75 ° C, more preferably in the range of 60 to 70 ° C.
  • the drying time is usually about 5 to 30 minutes.
  • the base material used for producing the stretched laminate may have been subjected to a stretching treatment in advance before applying an aqueous solution containing a hydrophilic polymer.
  • the stretching treatment for forming the stretched laminate either an air stretching method or an underwater stretching method (for example, a method described in International Publication No. 2010/100917) can be employed.
  • stretching process can be implemented using arbitrary appropriate extending machines, such as a roll extending machine and a tenter extending machine, for example.
  • the stretching temperature is, for example, in the range of 75 to 150 ° C. in the case of air stretching, preferably in the range of 80 to 150 ° C., and more preferably in the range of 90 to 130 ° C. In the case of stretching in water, the stretching temperature is preferably 85 ° C. or lower, more preferably in the range of 40 to 85 ° C.
  • the dichroic substance such as iodine adsorbed on the polyvinyl alcohol resin is used in the case where the polyvinyl alcohol resin is dissolved in water or the dyeing process described later is performed before the stretching process.
  • the stretching temperature is 65 ° C. or less because stretching in water can be performed satisfactorily and more excellent optical properties (for example, polarizing film contrast ratio) can be obtained.
  • the stretching process includes uniaxial stretching, biaxial stretching, and oblique stretching.
  • Uniaxial stretching may be either longitudinal stretching performed in the MD direction of the laminate or transverse stretching performed in the TD direction of the laminate.
  • transverse stretching the film can be contracted in the longitudinal direction while stretching in the width direction.
  • Examples of the transverse stretching method include a fixed end uniaxial stretching method in which one end is fixed via a tenter, and a free end uniaxial stretching method in which one end is not fixed.
  • Examples of the longitudinal stretching method include an inter-roller stretching method, a compression stretching method, and a stretching method using a tenter.
  • the stretching process can be performed in multiple stages.
  • Preheating zone / stretching zone / holding zone / cooling zone 2 Preheating zone / stretching zone / shrinking zone / holding zone / cooling zone 3
  • Preheating zone / lateral stretching zone / longitudinal stretching zone / holding zone / cooling zone 4 Preheating Examples include a combination of zone / lateral stretching zone / longitudinal stretching zone / shrinking zone / holding zone / cooling zone.
  • the preheating zone refers to a section where the oven runs at the entrance of the oven while maintaining a constant interval between the gripping tools gripping both ends of the laminate.
  • the transverse stretching zone refers to the interval until the gap between the gripping tools gripping both ends of the laminate starts and reaches a predetermined interval. At this time, the opening angle of the rail on which the gripping tools at both ends run may be opened at the same angle for both rails, or may be opened at different angles.
  • the longitudinal stretching zone refers to a section in which a gripper that grips both ends of the laminate extends the laminate in the transport direction while changing the gripper interval.
  • the shrinkage zone refers to a section in which the interval between gripping tools that grip both ends of the laminate is narrowed in a direction perpendicular to the stretching axis and reaches a predetermined interval.
  • the holding zone refers to a section in which the gripping tools at both ends run parallel to each other during the period in which the interval between the gripping tools after the transverse stretching zone or the longitudinal stretching zone becomes constant again.
  • the cooling zone refers to a section in which the temperature in the zone is set to be equal to or lower than the glass transition temperature Tg ° C. of the thermoplastic resin constituting the laminate in the section after the holding zone.
  • a rail pattern that narrows the gap between opposing grippers in advance may be used.
  • the temperature in each zone is within the range of Tg to Tg + 30 ° C for the preheating zone, Tg to Tg + 30 ° C for the stretching zone, and Tg-30 ° C to Tg for the cooling zone, relative to the glass transition temperature Tg of the substrate. It is preferable to set to.
  • the stretched laminate obtained above is dyed with a dichroic substance, so that the dichroic substance is adsorbed on the hydrophilic polymer layer and functions as a polarizer (A). .
  • the dyeing process is performed by adsorbing a dichroic substance to the hydrophilic polymer layer of the laminate.
  • the dyeing process is performed, for example, by immersing the laminate in a solution (dyeing solution) containing a dichroic substance.
  • a solution in which a dichroic substance is dissolved in a solvent can be used.
  • the solvent water is generally used, but an organic solvent compatible with water may be further added.
  • the specific configuration of the dichroic substance adsorbed on the hydrophilic polymer layer is not particularly limited, and examples thereof include iodine and organic dyes.
  • Organic dyes include, for example, Red BR, Red LR, Red R, Pink LB, Rubin BL, Bordeaux GS, Sky Blue LG, Lemon Yellow, Blue BR, Blue 2R, Navy RY, Green LG, Violet LB, Violet B, Black H, Black B, Black GSP, Yellow 3G, Yellow R, Orange LR, Orange 3R, Scarlet GL, Scarlet KGL, Congo Red, Brilliant Violet BK, Spura Blue G, Spura Blue GL, Spura Orange GL, Direct Sky Blue, Direct First orange S, first black, etc. are used.
  • iodine as the dichroic substance, and it is preferable to further add iodide because dyeing efficiency can be further improved.
  • the iodide include potassium iodide, lithium iodide, sodium iodide, zinc iodide, aluminum iodide, lead iodide, copper iodide, barium iodide, calcium iodide, tin iodide, and iodide.
  • examples include titanium.
  • the addition ratio of these iodides is preferably 0.01 to 10% by mass, and more preferably 0.1 to 5% by mass in the dyeing solution.
  • the ratio (mass ratio) of iodine and potassium iodide is preferably in the range of 1: 5 to 1: 100, and in the range of 1: 6 to 1:80. More preferably, it is in a range of 1: 7 to 1:70.
  • the immersion time of the stretched laminate in the dyeing solution is not particularly limited, but usually it is preferably in the range of 15 seconds to 5 minutes, more preferably 1 minute to 3 minutes.
  • the temperature of the dyeing solution is preferably in the range of 10 to 60 ° C., more preferably in the range of 20 to 40 ° C.
  • the dichroic substance is fixed by sequentially immersing the laminate in a decolorizing solution containing potassium iodide and a crosslinking solution containing boric acid or a boron compound and potassium iodide. Then, when it dries with a dryer, a coating type polarizer (A) is obtained.
  • the method for producing a polarizing plate of the present invention is a method for producing a polarizing plate having the polarizer (A) and a transparent base material (B) described later, wherein the hydrophilic polymer layer of the polarizer (A)
  • a polarizing plate is obtained by laminating a transparent base material (B) having an indentation elastic modulus of 4.5 GPa or more and a total light transmittance of 80% or more, sandwiched by a nip roller, on the surface on the air interface side. It is characterized by.
  • FIG. 2 is a schematic view showing an example in which the polarizer (A) and the transparent substrate (B) are sandwiched and bonded by a nip roller.
  • the transparent base material (B) 4 is bonded to the hydrophilic polymer layer 2 surface side by a pair of nip rollers 5, and the polarizing plate 10 Is made.
  • the nip pressure in the nip roller 5 preferably in the range of 0.1 to 20 MPaPa, the surface of the hydrophilic polymer layer can be smoothed and wrinkles and peeling of the polarizing plate can be prevented. it can. More preferably, it is in the range of 0.5 to 15 Pa.
  • Transparent substrate (B) The transparent base material (B) according to the present invention is characterized in that the indentation elastic modulus is 4.5 GPa or more and the total light transmittance is 80% or more, and the outermost surface of the PVA polarizer has a high indentation elastic modulus.
  • the uneven shape on the outermost surface is smoothed, and light scattering on the surface is suppressed, so that the effect of depolarization hardly occurs.
  • the indentation elastic modulus is a value measured by Martens hardness in the present invention, and the Martens hardness is measured by the following method.
  • Martens hardness is a hardness measured in a state where a test load is applied (indentation), and is obtained from a value of a load-indentation depth curve when the load is increased. Martens hardness includes both plastic and elastic deformation components.
  • Martens hardness is defined for quadrangular pyramid indenters and triangular pyramid indenters. Specifically, as shown by the following formula (B1), it is defined as a value obtained by dividing the test load F by the surface area As where the indenter enters from the contact zero point.
  • Martens hardness F /
  • the Martens hardness is obtained, for example, from a load-indentation depth test in accordance with a method defined by ISO14577-1 Annex A. An example of a specific measurement method is shown below.
  • the temperature at the time of the test is 23 ° C., and a load of 10 mN is applied by pressing the indenter at a constant speed into the transparent base material (B) formed to a thickness of 25 ⁇ m.
  • the Martens hardness is measured using a square pyramidal diamond indenter for the test piece. The Martens hardness is calculated by applying a load (10 mN) to the transparent substrate (B) and dividing it by the surface area of the indenter that has entered beyond the contact zero point.
  • the Martens hardness is required to be 4.5 GPa or more in order to smooth the unevenness on the surface of the polarizer (A), preferably in the range of 4.5 to 10.0 GPa, Preferably, it is in the range of 4.7 to 7.0 GPa.
  • the Martens hardness of the transparent base material (B) within the range specified in the present invention, it can be controlled by appropriately selecting a resin contained in the transparent base material (B).
  • the total light transmittance of the transparent substrate (B) according to the present invention is required to be 80% or more when used as a polarizing plate.
  • the total light transmittance in the transparent substrate (B) according to the present invention is preferably as high as possible, but is preferably higher than 85%, more preferably 90% or more, and further preferably 92% or more.
  • the total light transmittance can be calculated by using the method described in JIS K 7105: 1981 for a transparent base material (B) formed to a thickness of 25 ⁇ m, that is, using an integrating sphere light transmittance measuring device. it can.
  • the measuring device for example, a haze meter NDH5000 manufactured by Tokyo Denshoku Co., Ltd. can be used.
  • the degree of polarization in the present invention can be determined according to the following method.
  • the parallel transmittance and orthogonal transmittance of light having a light wavelength of 550 nm were measured using an automatic polarizing film measuring device (VAP-7070, Measured using JASCO Corporation.
  • VAP-7070 automatic polarizing film measuring device
  • the degree of polarization (%) is preferably 99.995 or more.
  • the transparent substrate (B) according to the present invention is preferably long, and specifically, preferably has a length of about 100 to 10,000 m, and is wound up in a roll shape.
  • the width of the transparent substrate (B) according to the present invention is preferably 1 m or more, more preferably 1.4 m or more, and particularly preferably 1.4 to 4 m.
  • the film thickness of the transparent substrate (B) is preferably in the range of 5 to 200 ⁇ m from the viewpoint of strength and transparency, and more preferably in the range of 25 to 100 ⁇ m from the viewpoint of providing a thin film device. preferable. If the film thickness is 5 ⁇ m or more, a certain level of film strength can be developed. If the film thickness is 200 ⁇ m or less, flexibility can be exhibited.
  • the transparent substrate (B) according to the present invention has an indentation elastic modulus of 4.5 GPa or more and a total light transmittance of 80% or more. Although a constituent material is not ask
  • the transparent substrate (B) contains a compound having an imide structure, and the transparent heat-resistant resin having the imide structure has a structure represented by the following formula (1), the following formula (2), or the following It is preferably selected from polyimide, polyamideimide and polyetherimide having a structure represented by the formula (3).
  • the transparent substrate (B) may be referred to as a polyimide film.
  • Transparent heat resistant resin having an imide structure (1.1) Polyimide having a structure represented by the formula (1)
  • the transparent heat resistant resin having an imide structure according to the present invention (hereinafter also referred to as a polyimide resin). It is preferable that it is a polyimide resin represented by following formula (1) obtained by chemically imidizing a polyimide precursor.
  • diamine 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl (TFMB) is dissolved in a polymerization solvent in a polymerization vessel.
  • TFMB 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl
  • 6FDA 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropanoic acid dianhydride
  • 6FDA 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropanoic acid dianhydride
  • the mixture is stirred in the range, preferably in the range of 20 to 60 ° C. for 1 to 72 hours.
  • the number of moles of diamine and the number of moles of tetracarboxylic dianhydride are charged at substantially equal moles.
  • the total monomer concentration during the polymerization is 5 to 40% by mass, preferably 10 to 30% by mass.
  • the polymerization solvent is not particularly limited, but N, N-dimethylacetamide, N, N-diethylacetamide, N, N-dimethylformamide, N-methyl-2-pyrrolidone, hexamethylphosphoramide, dimethylsulfoxide, ⁇ - Butyrolactone, 1,3-dimethyl-2-imidazolidinone, 1,2-dimethoxyethane-bis (2-methoxyethyl) ether, terahydrofuran, 1,4-dioxane, picoline, pyridine, acetone, chloroform, toluene, Aprotic solvents such as xylene and protic solvents such as phenol, o-cresol, m-cresol, p-cresol, o-chlorophenol, m-chlorophenol, and p-chlorophenol can be used. These solvents may be used alone or in combination of two or more.
  • the polyimide resin represented by the formula (1) can be produced by a dehydration ring-closing reaction (imidation reaction) of the polyimide precursor obtained by the above method.
  • imidation reaction chemical imidization is used in which the resulting polyimide resin exhibits better dimensional stability.
  • Chemical imidization can be performed using a dehydrating cyclization agent (chemical imidization agent) comprising an acid anhydride of an organic acid and an organic tertiary amine.
  • a dehydration cyclization reagent is added thereto and stirred at 0 to 100 ° C., preferably 20 to 60 ° C. for 0.5 to 48 hours. It can be easily imidized.
  • the acid anhydride of the organic acid used at that time is not particularly limited, and acetic anhydride, propionic anhydride, maleic anhydride, phthalic anhydride, etc. can be used, but the cost and ease of post-treatment are not limited. In view of the above, acetic anhydride is preferably used.
  • the organic tertiary amine is not particularly limited, and pyridine, 1,5-dimethylpyridine, ⁇ -picoline, ⁇ -picoline, lutidine, isoquinoline, triethylamine, N, N-dimethylaniline and the like can be used.
  • the amount of the acid anhydride used in the dehydration cyclization reagent is preferably in the range of 1 to 10 times mol of the theoretical dehydration amount of the polyimide precursor.
  • the amount of catalyst used is preferably in the range of 0.1 to 2 moles relative to the acid anhydride. If the chemical imidization is carried out outside these ranges, the imidation reaction may not be completed, or the imidization may not be completed in the reaction solution and the imidization may be insufficient.
  • the reaction solution can be used for coating (casting) as it is, or the reaction solution is dropped into a large amount of poor solvent, or a poor solvent is added to the reaction solution to precipitate a polyimide resin.
  • the excess chemical imidizing agent is removed, followed by drying under reduced pressure to obtain a polyimide resin powder.
  • the poor solvent that can be used is not particularly limited as long as it does not dissolve the polyimide resin, but water, methanol, ethanol, from the viewpoint of affinity with the reaction solvent and chemical imidizing agent and ease of removal by drying. n-propanol, isopropanol and the like are preferably used.
  • the weight average molecular weight of the polyimide resin is not particularly limited, but is preferably from 5,000 to 2,000,000, more preferably from 10,000 to 1,000,000, and further preferably from 50,000 to 500,000.
  • the weight average molecular weight is 5000 or more, sufficient strength can be obtained in the case of a film, and dimensional stability tends to be improved, so that sufficient dimensional stability can be obtained.
  • the said weight average molecular weight means the value of polyethyleneglycol conversion by size exclusion chromatography (SEC).
  • polyimide resin according to the present invention is a polyimide having a repeating unit represented by the following Formula (2) (hereinafter, polyimide P and Or a polyimide composed of a repeating unit represented by the formula (2) and a repeating unit represented by the following formula (3) (hereinafter, both are referred to as polyimide P).
  • X is a divalent aliphatic group having 2 to 39 carbon atoms, a divalent alicyclic group having 3 to 39 carbon atoms, or a divalent aromatic group having 6 to 39 carbon atoms.
  • At least one linking group selected from the group consisting of 2 —, —C 2 H 4 O— and —S— may be interposed, and X is selected from the group consisting of a carboxy group, a hydroxy group or a carbonyl group.
  • the polyimide resin is composed of a repeating unit represented by the formula (2), or a repeating unit represented by the formula (2) and a repeating unit represented by the formula (3).
  • the ratio of the repeating units to be used is more than 50 mol% of all repeating units, preferably 70 mol% or more, more preferably 80 mol% or more (each including 100 mol%).
  • the proportion of the repeating unit represented by the formula (2) exceeds 50 mol% of all the repeating units, low water absorption can be achieved, but when it is 50 mol% or less, depending on the structure of the formula (3), the water absorption rate may be increased. Get higher.
  • the polyimide P may be either a block copolymer or a random copolymer.
  • X in the above formula (3) is the following formula (4); 2 is composed of a divalent aliphatic group having 2 to 39 carbon atoms, a divalent alicyclic group having 3 to 39 carbon atoms, a divalent aromatic group having 6 to 39 carbon atoms, or a combination thereof. Is a valent group.
  • the main chain of X includes —O—, —SO 2 —, —CH 2 —, —C (CH 3 ) 2 —, —OSi (CH 3 ) 2 —, —C 2 H 4 O—, and —S. At least one linking group selected from the group consisting of — may intervene.
  • X may have at least one functional group selected from the group consisting of a carboxy group, a hydroxy group, and a carbonyl group (included in the main chain of X).
  • Specific examples of X include polyalkylene, polyoxyalkylene, xylylene and their alkyl-substituted, halogen-substituted, carboxy-substituted, and hydroxy-substituted divalent aliphatic groups; cyclohexane, dicyclohexylmethane, dimethylcyclohexane, Divalent alicyclic groups derived from isophorone, norbornane and their alkyl-substituted, halogen-substituted, carboxy-substituted, hydroxy-substituted, etc .; and benzene, naphthalene, biphenyl, diphenylmethane, diphenyl ether, diphenylsulfone, benzo
  • the molecular weight is preferably expressed by viscosity, particularly logarithmic viscosity.
  • the logarithmic viscosity ⁇ (measured at 30 ° C. using a 0.5 g / cm 3 N-methyl-2-pyrrolidone solution) of polyimide P is preferably 0.3 to 2 cm 3 / g. If it is less than 0.3 cm 3 / g, the strength of the polyimide resin itself is weak, and an optical film having sufficient peel strength cannot be obtained. If it exceeds 2.0 cm 3 / g, the solution becomes highly viscous and difficult to cast, requires significant dilution, and is difficult to handle.
  • the molecular end of polyimide P is an amino group, a carboxy group, or a carboxylic anhydride group.
  • the functional group at the molecular end is reduced as much as possible, or an intentionally functional group such as an amino group or a carboxy group is present at the molecular end.
  • Groups and other substituents can be introduced.
  • a substituent having a small polarity substituted at the molecular end.
  • the water absorption of the polyimide P measured by the method described later is preferably 2.5% or less.
  • the minimum value of water absorption that can be achieved industrially is usually about 1%.
  • the water absorption rate in the present invention represents a mass increase rate after the resin is immersed in water at 23 ° C. for 24 hours. Next, a specific method for obtaining the water absorption rate according to the present invention will be described.
  • Polyimide P consists of 1,2,4,5-cyclohexanetetracarboxylic acid, 1,2,4,5-cyclohexanetetracarboxylic dianhydride (HPMDA) and 1,2,4,5-cyclohexanetetracarboxylic acid esters. It is obtained by reacting at least one tetracarboxylic acid component (Y) selected from reactive derivatives such as diamine and at least one diamine component (Z) selected from diamines and reactive derivatives thereof. As the tetracarboxylic acid component (Y), HPMDA is preferable. In addition, the tetracarboxylic acid component (Y) and the diamine component (Z) include isomers.
  • diamine component (Z) examples include diamine, diisocyanate, and diaminodisilane, and diamine is preferred.
  • the diamine component (diamine component (Z1)) for forming the repeating unit of the above formula (2) is 4,4′-bis (4-aminophenoxy) biphenyl (BAPB) and a reactive derivative thereof.
  • the diamine component (diamine component (Z2)) for forming the repeating unit (3) is NH 2 —X—NH 2 (X is the same as described above) and reactive derivatives thereof.
  • the diamine component (Z2) may be an aromatic diamine, an aliphatic diamine, an alicyclic diamine, a reactive derivative of the diamine, or a mixture thereof. It may have at least one functional group selected from the group consisting of:
  • the “aromatic diamine” represents a diamine in which an amino group is directly bonded to an aromatic ring, and an aliphatic group, alicyclic group, aromatic group, other It may contain a substituent.
  • aliphatic diamine refers to a diamine in which an amino group is directly bonded to an aliphatic group, and an aliphatic group, an alicyclic group, an aromatic group, and other substituents are included in a part of the structure. May be.
  • Alicyclic diamine refers to a diamine in which an amino group is directly bonded to an alicyclic group, and an aliphatic group, an alicyclic group, an aromatic group, and other substituents are added to a part of the structure. It may be included.
  • BAPP 2,2-bis [4- (4-aminophenoxy) phenyl] propane
  • MXDA m-xylyl Range amine
  • 1,2,4,5-cyclohexanetetracarboxylic dianhydride is used as the tetracarboxylic dianhydride
  • a polyamic acid and a salt having a relatively weak bond between an amino group derived from an aliphatic diamine or an alicyclic diamine are used as the tetracarboxylic dianhydride.
  • the imidization reaction proceeds relatively easily and can be easily increased in molecular weight.
  • Examples of the aliphatic diamine include ethylene diamine, hexamethylene diamine, polyethylene glycol-bis (3-aminopropyl) ether, polypropylene glycol bis (3-aminopropyl) ether, 1,3-bis (aminomethyl) cyclohexane, 1, Examples include 4-bis (aminomethyl) cyclohexane, p-xylylenediamine, m-xylylenediamine, and siloxane diamines.
  • alicyclic diamine examples include 4,4′-diaminodicyclohexylmethane, isophorone diamine, norbornane diamine, and the like.
  • aromatic diamine examples include 1,4-phenylene diamine, 1,3-phenylene diamine, 2,4-toluene diamine, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'- Diaminodiphenylmethane, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, ⁇ , ⁇ '-bis (4 -Aminophenyl) -1,4-diisopropylbenzene, ⁇ , ⁇ '-bis (3-aminophenyl) -1,4-diisopropylbenzene, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 4,4'-diaminodiphenylsulfone, bis [4- (4-aminophenoxy) phenyl
  • Examples of the diamine having a functional group include 3,3′-dicarboxy-4,4′-diaminodiphenylmethane, 3,5-diaminobenzoic acid, 3,3′-dihydroxy-4,4′-diaminobiphenyl, 2,4-diaminophenol, 4,4'-diaminobenzophenone, 3,3'-diaminobenzophenone, and in particular, 3,3'-dicarboxy-4,4'-diaminodiphenylmethane (MBAA), 3,5 -Diaminobenzoic acid (DBA), 3,3'-dihydroxy-4,4'-diaminobiphenyl (HAB), 4,4'-diaminobenzophenone (4,4'-DBP) are preferred.
  • 3,3′-dicarboxy-4,4′-diaminodiphenylmethane 3,5-diaminobenzoic acid, 3,3′-dihydroxy-4,4'-
  • the polyimide P contains the tetracarboxylic acid component (Y) with respect to 1 mol of the diamine component (Z) (diamine component (Z1) or diamine component (Z1) + diamine component (Z2)), preferably 0.00. It is produced by reacting 66 to 1.5 mol, more preferably 0.9 to 1.1 mol, and still more preferably 0.97 to 1.03 mol.
  • a polyimide P having a logarithmic viscosity ⁇ within the above range is produced by adjusting at least one of the conditions such as the use ratio of raw materials, reaction temperature and time, presence / absence and use of a terminal terminator, and the amount of catalyst. can do.
  • the conditions such as the use ratio of raw materials, reaction temperature and time, presence / absence and use of a terminal terminator, and the amount of catalyst. can do.
  • Those skilled in the art can easily adjust the conditions by performing a preliminary reaction or the like. For example, when the logarithmic viscosity ⁇ is adjusted by the molar ratio of the tetracarboxylic acid component (Y) and the diamine component (Z) and the reaction time, the closer the molar ratio is to 1, the longer the reaction time, The logarithmic viscosity ⁇ increases within the above range.
  • the logarithmic viscosity ⁇ is smaller in the range.
  • the relationship between the viscosity of the reaction solution, the reaction time, and other reaction conditions, and the logarithmic viscosity corresponding thereto is obtained in advance, and the end point of the reaction is determined based on this relationship.
  • a polyimide P having a logarithmic viscosity ⁇ can be produced.
  • the reaction time is preferably 2 to 12 hours, and the reaction temperature is preferably 180 to 205 ° C.
  • Polyimide P is usually produced as an organic solvent solution.
  • the organic solvent is not particularly limited.
  • NMP N-methyl-2-pyrrolidone
  • DMAC N-dimethylacetamide
  • GBL ⁇ -butyrolactone
  • the organic solvent is used in such an amount that the polyimide P concentration in the obtained organic solvent solution is preferably 1 to 50% by mass, more preferably 5 to 40% by mass.
  • a poor solvent such as hexane, heptane, benzene, toluene, xylene, chlorobenzene, o-dichlorobenzene and the like can be used together with the above solvent to such an extent that the polymer does not precipitate.
  • Polyimide P is obtained by (1) solution polymerization method, (2) preparing a polyamic acid solution, forming a film and imidizing it, and (3) obtaining a salt or imide oligomer such as HPMDA half ester salt, It can be produced by a method of performing phase polymerization, (4) a method of reacting tetracarboxylic dianhydride and diisocyanate, or other conventionally known methods. You may use each method together.
  • the reaction between the tetracarboxylic acid component (Y) and the diamine component (Z) may be carried out in the presence of a conventionally known catalyst such as an acid, a tertiary amine or an anhydride.
  • an organic solvent solution of polyimide P can be obtained directly, the following solution polymerization methods (1) to (3) are preferable.
  • a mixture containing a diamine component (Z), an organic solvent, and, if necessary, a catalyst is stirred at 10 to 600 rpm to obtain a homogeneous solution, which is maintained at a temperature of 30 to 90 ° C., and the tetracarboxylic acid component (Y) And if necessary, a catalyst is added.
  • Solution polymerization for producing polyimide P includes trimethylamine, triethylamine (TEA), tripropylamine, tributylamine, triethanolamine, N, N-dimethylethanolamine, N, N-diethylethanolamine, triethylenediamine, N-
  • the reaction may be performed in the presence of at least one catalyst selected from tertiary amine compounds such as methylpyrrolidine, N-ethylpyrrolidine, N-methylpiperidine, N-ethylpiperidine, imidazole, pyridine, quinoline and isoquinoline.
  • the amount of catalyst used is preferably from 0.1 to 100 mol%, more preferably from 1 to 10 mol% of the tetracarboxylic acid component (Y).
  • Polyamideimide used in the present invention is an acid component, a) Tricarboxylic acid; diphenyl ether-3,3 ', 4'-tricarboxylic acid, diphenylsulfone-3,3', 4'-tricarboxylic acid, benzophenone-3,3 ', 4'-tricarboxylic acid, naphthalene-1,2 , 4-tricarboxylic acid, butan-1,2,4-tricarboxylic acid and other tricarboxylic acid monoanhydrides, esterified products and the like, or a mixture of two or more.
  • Tetracarboxylic acid diphenylsulfone-3,3 ′, 4,4′-tetracarboxylic acid, naphthalene-2,3,6,7-tetracarboxylic acid, naphthalene-1,2,4,5-tetracarboxylic acid , Naphthalene-1,4,5,8-tetracarboxylic acid, butane-1,2,3,4-tetracarboxylic acid, cyclopentane-1,2,3,4-tetracarboxylic acid monoanhydride, dianhydride , Esterified compounds alone, or a mixture of two or more.
  • amine component d) Amine component 3,3'-dimethyl-4,4'-diaminobiphenyl, 3,3'-diethyl-4,4'-diaminobiphenyl, 2,2'-dimethyl-4,4'-diaminobiphenyl, 2 2,2'-diethyl-4,4'-diaminobiphenyl, 3,3'-dimethoxy-4,4'-diaminobiphenyl, 3,3'-diethoxy-4,4'-diaminobiphenyl, p-phenylenediamine, m -Phenylenediamine, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 3,4'-diaminobiphenyl, 3,3 ' -Diamin
  • trimellitic anhydride TMA
  • BTDA 3,3,4', 4'-biphenyltetracarboxylic acid
  • BPDA raw material containing dianhydride
  • NDI 1,5-naphthalene diisocyanate
  • the molar ratio between the imide bond and the amide bond of the polyamideimide is preferably 99/1 to 60/40, more preferably 99/1 to 75/25, and even more preferably 90/10 to 80/20. is there.
  • the molar ratio of the imide bond to the amide bond is 60/40 or more, the heat resistance, moisture resistance reliability, and heat resistance reliability are improved.
  • it is 99/1 or less, the elastic modulus tends to be low, and the folding resistance and bending characteristics tend to be improved.
  • the unit represented by the formula (6) is an essential component, and at least one selected from the group represented by the formula (7), the formula (8), and the formula (9).
  • X represents an oxygen atom, CO, SO 2 , or a bond, and n represents 0 or 1.
  • Y represents an oxygen atom, CO, or OOC—R—COO, n represents 0 or 1, and R represents a divalent organic group.
  • Y is preferably a benzophenone type (CO) or a bond type (biphenyl bond).
  • formula (6) is a repeating unit from trimellitic anhydride and 1,5-naphthalene diisocyanate
  • formula (7) is a repeating unit from terephthalic acid and 1,5-naphthalene diisocyanate
  • the polyamideimide resin can be synthesized by a usual method.
  • the isocyanate method the amine method (acid chloride method, low temperature solution polymerization method, room temperature solution polymerization method, etc.), etc.
  • the polyamideimide resin used in the present invention is preferably soluble in an organic solvent.
  • the isocyanate method is preferred.
  • the molecular weight of the polyamide-imide resin used in the present invention is 0.3 to 2.5 cm 3 / g in N-methyl-2-pyrrolidone (polymer concentration 0.5 g / cm 3 ) as a logarithmic viscosity at 30 ° C. Those having a corresponding molecular weight are preferred, more preferably those having a molecular weight corresponding to 0.5 to 2.0 cm 3 / g.
  • the logarithmic viscosity is 0.3 cm 3 / g or more, mechanical properties are sufficient when formed into a molded product such as a film. On the other hand, if it is 2.0 cm 3 / g or less, the solution viscosity does not become too high and the molding process becomes easy.
  • polyetherimide used in the present invention is a thermoplastic resin containing an aromatic nucleus bond and an imide bond in its structural unit, and is not particularly limited. It is a polyetherimide having a repeating unit represented by the formula (10) or the following formula (11).
  • Polyetherimides having a repeating unit represented by the above formula (10) are trade names “Ultem 1000” (glass transition temperature: 216 ° C.) and “Ultem 1010” (glass transition temperature: 216 ° C.) manufactured by General Electric Co., Ltd.
  • Examples of the polyetherimide having a repeating unit represented by the above formula (11) include “Ultem CRS5001” (glass transition temperature Tg 226 ° C.), and other specific examples include trade names “Mitsui Chemicals, Inc.” Aurum PL500AM ”(glass transition temperature 258 ° C.).
  • the method for producing the polyetherimide is not particularly limited.
  • the amorphous polyetherimide having the above formula (10) is 4,4 ′-[isopropylidenebis (p-phenyleneoxy)].
  • 4,4 ′-[isopropylidenebis (p-phenyleneoxy)] diphthalic acid It is synthesized by a known method as a polycondensation product of an anhydride and p-phenylenediamine.
  • polyetherimide used in the present invention may contain other copolymerizable monomer units such as an amide group, an ester group and a sulfonyl group within the range not exceeding the gist of the present invention.
  • polyetherimide can be used individually by 1 type or in combination of 2 or more types.
  • additives can be added to the dope containing the polyimide resin. Additives that can be used are described below.
  • a thermally conductive filler may be added to the dope containing a polyimide resin as long as the effects of the present invention are not impaired. Thereby, the thermal conductivity of a polyimide film can be raised.
  • the thermally conductive filler is preferably a highly thermally conductive filler, and specifically includes aluminum, copper, nickel, silica, diamond, alumina, magnesia, beryllia, boron nitride, aluminum nitride, silicon nitride, and silicon carbide.
  • the filler shape is not particularly limited to a spherical or plate-like material, or a needle shape. Among these, at least one filler selected from silica, alumina, aluminum nitride, boron nitride, silicon nitride, and magnesia is preferable.
  • a dehydrating agent may be added to the dope containing the polyimide resin according to the present invention.
  • the dehydrating agent include aliphatic carboxylic acid anhydrides such as acetic anhydride, propionic anhydride and butyric anhydride, and aromatic carboxylic acid anhydrides such as benzoic anhydride, but acetic anhydride and / or anhydrous Benzoic acid is preferred.
  • the content of the dehydrating agent relative to the polyamic acid or polyimide is preferably in the range where the dehydrating agent content (mole) / polyamic acid or polyimide content (mole) is 0.1 to 5.0.
  • a gelation retarder such as acetylacetone may be used in combination.
  • a fluorine-based or polysiloxane-based surfactant may be added to the dope containing the polyimide resin according to the present invention.
  • a surfactant When a surfactant is added, a film with good surface smoothness can be easily obtained.
  • a commercially available product may be used as the surfactant, and examples of the fluorosurfactant include a mega-fac (registered trademark) series manufactured by DIC Corporation and a footer such as Neos Corporation's Footgent (registered trademark) series.
  • GENT registered trademark
  • polysiloxane surfactant examples include BYK-307, BYK-315, BYK-320, BYK-325, BYK-330, BYK-331, BYK-332, BYK-333, BYK manufactured by BYK-Chemie Japan Co., Ltd. -344 and the like.
  • a phenol-based, sulfur-based, phosphoric acid-based or phosphorous acid-based antioxidant may be added to the dope containing the transparent heat-resistant resin according to the present invention.
  • various other functional materials may be added to the dope containing the polyimide resin according to the present invention.
  • Various functional materials include, for example, conductive materials such as carbon nanotubes and nano metal materials, ferroelectric materials such as barium titanate, and phosphors such as ZnS: Ag, ZnS: Cu, and Y 2 O 2 S: Eu. UV absorbers and the like.
  • a phosphorus flame retardant may be added to the dope containing the polyimide resin according to the present invention.
  • a flame retardance can be provided to a polyimide-type optical film.
  • the phosphorus-based flame retardant include ammonium polyphosphate, phosphate ester, condensed phosphate ester, phenoxyphosphazene compound, phosphate ester amide, and the like.
  • a phenoxyphosphazene compound for example, SPS-100 manufactured by Otsuka Chemical Co., Ltd. can be used.
  • a flame retardant can be imparted by mixing a halogen type flame retardant, it is preferable to use a phosphorus-based flame retardant.
  • the film When the film is subjected to appropriate heat treatment, imidization in the polymer chain molecules and between the polymer chain molecules proceeds to improve the mechanical properties.
  • the optical film using polyimide changes in the absorption wavelength. The color changes with color.
  • the higher the L * value the lighter the overall color, so that the horizontal unevenness due to thickness unevenness is difficult to see, but the appearance is good. Since the progress of imidization is not sufficient, mechanical properties such as flex resistance and breaking strength of the polyimide film are deteriorated.
  • L * value is too low, the color contrast due to the thickness unevenness becomes clear and the horizontal unevenness deteriorates, and the optical film using polyimide partially carbonizes and becomes brittle. Characteristics are significantly regressed.
  • L * value of 30 to 55 is good for maintaining good mechanical properties, more preferably, The L * value is preferably 38 to 54.
  • the L * value of the film was measured using SM-7-CH manufactured by Suga Test Instruments. About each sample divided into 5 in the film width direction, the range of 30 mm x 30 mm centering on the center position of the width direction was cut out and measured, and it was set as the 5-point average value.
  • the L * value is one for a film having a thickness of 50 ⁇ m or more, and 50 ⁇ m or more for a film having a thickness of less than 50 ⁇ m. It is a value measured by overlapping the minimum number of sheets.
  • a method of adjusting the heat treatment amount using a known means such as hot air or an electric heater (for example, an infrared heater). Can be mentioned.
  • a solution of a polyamic acid not containing a ring-closing catalyst and a dehydrating agent is cast, formed into a film, heated and dried on the support, and then the film from the support.
  • a solution of a polyamic acid containing a ring-closing catalyst and a dehydrating agent is cast to form a film, and after partially imidizing on the support to form a film, the film is peeled off from the support.
  • a chemical ring closure method in which heat drying / imidization and heat treatment are performed can also be used.
  • the ring-closing catalyst the above-mentioned tertiary amine or the like can be used.
  • heat treatment can be performed by using, for example, an infrared heater.
  • the infrared heater for example, a heater main body formed so that a filament is surrounded by an inner tube is covered with an outer tube, and a cooling fluid can be circulated between the heater main body and the outer tube.
  • the filament is energized and heated to 700 to 1200 ° C., and emits infrared light having a peak at a wavelength of about 3 ⁇ m.
  • the inner tube and the outer tube are made of quartz glass, borosilicate crown glass, or the like, and function as a filter that passes infrared rays having a wavelength of 3.5 ⁇ m or less and absorbs infrared rays having a wavelength exceeding 3.5 ⁇ m.
  • Such infrared heaters irradiate the film with infrared light having a wavelength of 3.5 ⁇ m or less through an inner tube or an outer tube when infrared light having a peak near 3 ⁇ m is emitted from the filament.
  • the mixed solvent in the film can be efficiently evaporated and the polyamic acid in the film can be imidized.
  • the inner tube and the outer tube absorb infrared rays having a wavelength exceeding 3.5 ⁇ m, but are cooled by the cooling fluid flowing through the flow path, so that the temperature can be maintained below the ignition point of the mixed solvent evaporating from the film. Is possible.
  • any of the above ring closure methods may be adopted, but the chemical ring closure method requires equipment for containing a ring closure catalyst and a dehydrating agent in the polyamic acid solution. However, it can be said to be a more preferable method in that a film having self-supporting properties can be obtained in a short time.
  • a step of preparing a dope by dissolving the transparent heat resistant resin having an imide structure according to the present invention in a mixed solvent preferably containing 50% by mass or more of dichloromethane (dope preparation step), and flowing the dope on a support.
  • Extending the casting film to form a casting film (casting process), evaporating the solvent from the casting film on the support (solvent evaporation process), and peeling the casting film from the support (peeling process)
  • a step of drying the obtained film (first drying step), a step of stretching the film (stretching step), a step of performing a bending treatment while further drying the stretched film (second drying step), and It is preferably performed by a step of winding a polyimide film (winding step), a step of heating the film to imidize (heating step), or the like.
  • Dope preparation step it is preferable to prepare a dope in which the polyimide resin according to the present invention is dissolved in dichloromethane as a main solvent, preferably a mixed solvent containing dichloromethane at 50% by mass or more of the solvent. .
  • the prepared dope is guided to a filter by a liquid feed pump or the like and filtered.
  • a preferred temperature range is 45 to 120 ° C, more preferably 45 to 70 ° C, and even more preferably 45 to 55 ° C.
  • a solvent containing 50% by mass or more of dichloromethane from the viewpoint of improving the smoothness of the polyimide film.
  • the solvent contained together with dichloromethane may be any solvent that can dissolve the transparent heat-resistant resin having an imide structure according to the present invention, such as ethanol, butanol, N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-diethylacetamide, N, N-dimethylformamide, N, N-diethylformamide, N-methylcaprolactam, hexamethylphosphoramide, tetramethylenesulfone, dimethylsulfoxide, m-cresol, Phenol, p-chlorophenol, 2-chloro-4-hydroxytoluene, diglyme, triglyme, tetraglyme, dioxane, ⁇ -butyrolactone, dioxolane, cyclohexanone, cyclopentanone, 1,4-dioxane, epsilon capro Tam, chloroform and the like can be used, and may be used in combination
  • a poor solvent such as hexane, heptane, benzene, toluene, xylene, chlorobenzene, or o-dichlorobenzene may be used to the extent that polyamic acid or polyimide does not precipitate.
  • the solvent contained in the mixed solvent together with the dichloromethane is preferably a solvent having a boiling point higher than that of dichloromethane.
  • [B] Casting film forming step An endless support such as a stainless steel belt or a rotating metal drum that feeds the prepared dope to a die through a feed pump (for example, a pressurized metering gear pump) The dope is cast from the die at the casting position on the metal support.
  • a feed pump for example, a pressurized metering gear pump
  • the metal support in casting (cast) is preferably a mirror-finished surface, and the support is a stainless steel belt or a drum whose surface is plated with a casting, or a metal support such as a stainless steel belt or a stainless steel belt. Is preferably used.
  • the cast width can be in the range of 1 to 4 m, preferably in the range of 1.5 to 3 m, more preferably in the range of 2 to 2.8 m. Note that the support may not be made of metal.
  • the traveling speed of the metal support is not particularly limited, but is usually 5 m / min or more, preferably 10 to 180 m / min, particularly preferably 80 to 150 m / min. As the traveling speed of the metal support increases, entrained gas is more likely to be generated, and the occurrence of film thickness unevenness due to disturbance is more pronounced.
  • the traveling speed of the metal support is the moving speed of the outer surface of the metal support.
  • the surface temperature of the metal support is not particularly limited, but is usually 0 ° C. or higher, preferably 20 to 60 ° C., more preferably 20 to 25 ° C.
  • the die has a shape that becomes gradually narrower toward the discharge port in the vertical cross section with respect to the width direction.
  • the die usually has tapered surfaces on the downstream side and the upstream side in the lower traveling direction, and a discharge port is formed in a slit shape between the tapered surfaces.
  • a die made of metal is preferably used, and specific examples include stainless steel, titanium, and the like. In the present invention, when manufacturing films having different thicknesses, it is not necessary to change to dies having different slit gaps.
  • a pressure die that can adjust the slit shape of the die portion of the die and easily make the film thickness uniform.
  • the pressure die include a coat hanger die and a T die, and any of them is preferably used. Even when films with different thicknesses are continuously manufactured, the discharge rate of the dies is maintained at a substantially constant value. Therefore, when a pressure die is used, conditions such as extrusion pressure and shear rate are also substantially reduced. Maintained at a constant value. In order to increase the film forming speed, two or more pressure dies may be provided on the metal support, and the dope amount may be divided and laminated.
  • the amount of dope discharged from the die is preferably 20 to 1000 g / m 2 , more preferably 40 to 800 g / m 2 .
  • the dope discharge amount from the die is maintained at a substantially constant value within the above range.
  • the discharge amount is 40 g / m 2 or more, the cast film is not easily affected by disturbances such as vibration and wind, and thus film thickness unevenness can be sufficiently prevented.
  • the discharge amount is 800 g / m 2 or less, the shrinkage does not occur excessively, and the film thickness unevenness due to the contraction does not occur, so that the film thickness unevenness can be sufficiently prevented.
  • the solvent evaporation step is a preliminary drying step in which the casting film (also referred to as web) is heated on the metal support to evaporate the solvent.
  • a method of blowing heated air from the casting membrane side and the back side of the metal support by a dryer a method of transferring heat from the back side of the metal support by a heating liquid, a method of transferring heat from the front and back by radiant heat Etc.
  • a method of appropriately selecting and combining them is also preferable.
  • the surface temperature of the metal support may be the same as a whole or may vary depending on the position.
  • the temperature of the heating air is preferably 10 to 80 ° C.
  • a higher temperature is preferable because the drying speed of the cast film can be increased.
  • the temperature is too high, the cast film may foam or the planarity may deteriorate. Therefore, it is preferably performed at 10 to 30 ° C.
  • the solvent evaporation step it is preferable to dry the cast film until the residual solvent amount is 10 to 150% by mass from the viewpoint of the peelability of the cast film and the transportability after peeling.
  • the residual solvent amount can be expressed by the following formula.
  • Residual solvent amount (% by mass) ⁇ (MN) / N ⁇ ⁇ 100
  • M is the mass at a predetermined point of the casting membrane (film)
  • N is the mass when M is dried at 200 ° C. for 3 hours.
  • M when calculating the amount of residual solvent achieved in the solvent evaporation step is the mass of the cast film immediately before the peeling step.
  • the peeling tension when peeling the metal support from the casting film is usually in the range of 60 to 400 N / m. However, if wrinkles are likely to occur during peeling, peeling is performed with a tension of 190 N / m or less. It is preferable.
  • the temperature at the peeling position on the metal support is preferably in the range of ⁇ 50 to 60 ° C., more preferably in the range of 10 to 40 ° C., and in the range of 15 to 40 ° C. Most preferred.
  • the peeled film may be sent directly to the stretching process, or may be sent to the stretching process after being sent to the first drying process so as to achieve a desired residual solvent amount.
  • the film is sequentially sent to the first drying step and the stretching step after the peeling step.
  • the first drying step is a drying step in which the film is heated and the solvent is further evaporated.
  • the drying means is not particularly limited, and for example, hot air, infrared rays, a heating roller, microwaves and the like can be used. From the viewpoint of simplicity, it is preferable to dry with hot air or the like while transporting the film with rollers arranged in a staggered manner.
  • the drying temperature is preferably in the range of 30 to 200 ° C., taking into account the amount of residual solvent and the stretching ratio during transportation.
  • the stretching operation may be performed in multiple stages. Moreover, when performing biaxial stretching, simultaneous biaxial stretching may be performed and you may implement in steps.
  • stepwise means that, for example, stretching in different stretching directions can be sequentially performed, stretching in the same direction is divided into multiple stages, and stretching in different directions is added to any one of the stages. Is also possible.
  • the residual solvent amount at the start of stretching is preferably in the range of 0.5 to 100% by mass.
  • the amount of the residual solvent is 2% by mass or more, the film thickness deviation is small and is preferable from the viewpoint of flatness, and if it is within 10% by mass, the unevenness of the surface is reduced and the flatness is improved.
  • the film may be stretched in the longitudinal direction and / or the lateral direction, preferably in the lateral direction so that the film thickness after stretching is in a desired range.
  • the film is preferably stretched in a temperature range of (TgL ⁇ 200) to (TgH + 50) ° C., where TgL is the lowest Tg of the glass transition point (Tg) and TgH is the highest Tg. If it extends in the said temperature range, since a extending
  • the stretching temperature is more preferably in the range of (TgL ⁇ 150) to (TgH + 40) ° C.
  • the self-supporting film peeled from the support can be stretched in the longitudinal direction by regulating the running speed with a stretching roller.
  • the draw ratio in the longitudinal direction is preferably 1.05 to 2.50 times, more preferably 1.10 to 2.0 times, still more preferably 1.10 to 1.80 times in a temperature range of 30 to 350 ° C. is there.
  • the entire width of the film is held with clips or pins in the width direction in the entire drying process or a part of the process as disclosed in JP-A-62-46625.
  • a method of drying while drying (referred to as a tenter method), among which a tenter method using a clip is preferably used.
  • the film stretched in the longitudinal direction is preferably introduced into the tenter in a state where both ends in the width direction are gripped by the clip, and stretched in the width direction while running with the tenter clip.
  • the draw ratio in the width direction is not particularly limited, but is preferably 1.05 to 1.90 times, more preferably 1.10 to 1.60 times, and still more preferably 1.10 to 1.000 in the temperature range of 30 to 300 ° C. 1.50 times.
  • stretching in the width direction stretching in the width direction of the film at a stretching speed of 50 to 1000% / min is preferable from the viewpoint of improving the flatness of the film.
  • the stretching speed is 50% / min or more, the planarity is improved and the film can be processed at high speed, which is preferable from the viewpoint of production aptitude, and if it is within 1000% / min, the film is broken. Can be processed without any problem.
  • More preferable stretching speed is in the range of 100 to 500% / min.
  • the stretching speed is defined by the following formula.
  • Stretching speed (% / min) [(d 1 / d 2 ) ⁇ 1] ⁇ 100 (%) / t
  • d 1 is the width dimension in the stretching direction of the resin film after stretching
  • d 2 is the width dimension in the stretching direction of the resin film before stretching
  • t is the time (min) required for stretching. .
  • the stretching step usually, after stretching, holding and relaxation are performed. That is, in this step, it is preferable to perform a stretching step for stretching the film, a holding step for holding the film in a stretched state, and a relaxation step for relaxing the film in the stretched direction in this order.
  • the drawing at the draw ratio achieved in the drawing step is held at the drawing temperature in the drawing step.
  • the relaxation stage the stretching in the stretching stage is held in the holding stage, and then the stretching is relaxed by releasing the tension for stretching.
  • the relaxation step may be performed at a temperature lower than the stretching temperature in the stretching step.
  • [G] Second drying step Next, the stretched film is heated and dried.
  • a means for preventing the mixing of used hot air by installing a nozzle that can exhaust used hot air (air containing solvent or wet air) is also preferably used.
  • the hot air temperature is more preferably in the range of 40 to 350 ° C.
  • the drying time is preferably about 5 seconds to 30 minutes, more preferably 10 seconds to 15 minutes.
  • heating and drying means is not limited to hot air, and for example, infrared rays, heating rollers, microwaves, etc. can be used.
  • the drying temperature is more preferably in the range of 40 to 350 ° C. in consideration of the residual solvent amount, the stretching ratio during conveyance, and the like.
  • the second drying step it is preferable to dry the film until the residual solvent amount is 0.5% by mass or less.
  • the transparent base material (B) has a gray value standard deviation ⁇ within a range of 0.50 to 1.10 in a predetermined rectangular area cut out from the projected image of the transparent base material (B). And that the area occupied by the black portion in the binarized image of the rectangular area is 50% or less and is smooth to some extent, the effect of making the surface of the hydrophilic resin layer of the polarizer (A) smoother is high. From the viewpoint of improving depolarization, it is preferable.
  • the smoothness of the surface of the transparent substrate (B) can be represented by the standard deviation ⁇ and the area occupied by the black portion in the binarized image of the rectangular area.
  • FIG. 3 is a schematic diagram for analyzing a film projection image according to the present invention.
  • Adjust the distance between the transparent substrate (B) 11 and the white light source 12 to 60 cm from the diagonal 45 ° direction of the white light source 12 (Japan Technology Center Co., Ltd. S-light) with respect to the transparent substrate (B) 11 Irradiate and project the distance from the transparent substrate (B) 11 to the projection surface 13 as 70 cm.
  • the projection image is photographed by manual setting) to obtain a photographed image.
  • a rectangular evaluation area that is 1 cm ⁇ 5 cm in an actual captured image is set. At that time, the long side of the rectangle is set to be in the transport direction of the film sample.
  • the rectangular evaluation area is binarized using the average value m as a threshold.
  • the black portion area ratio K (%) is calculated by dividing the area of the black portion (dark portion) obtained by the binarization by the entire area.
  • free software ImageJ refers to ImageJ1.32S created by Wayne Rasband.
  • the background correction is output as different brightness even when the right half area and the left half area of the image have the same brightness, or as the image moves from the left side to the right side of the image.
  • background correction is performed, histogram calculation, average gradation calculation, and binarization processing are performed to obtain the area ratio K (%) of the black part (dark part) Is preferred.
  • the standard deviation ⁇ of gray value in gray scale is calculated by the method shown below.
  • Gray data N pieces of data x 1 , x 2 ,... XN is a population, and an arithmetic mean (population average) m of the population is obtained by the following formula 2.
  • the standard deviation ⁇ of the gray value in the gray scale of the transparent base material (B) according to the present invention is preferably in the range of 0.50 to 1.10. In consideration of this, the range of 0.70 to 1.05 is more preferable.
  • the area occupied by the black portion in the binarized image of the rectangular area of the polyimide film according to the present invention is preferably adjusted to 50% or less, but considering the range and productivity that are not visually recognized as unevenness, A range of 40 to 50% is more preferable, and a range of 40 to 45% is more preferable.
  • Means for adjusting the standard deviation ⁇ of the gray value and the area occupied by the black portion in the binarized image within the range are not particularly limited, and the selection of the type of polyimide and the type and amount of additive are not limited. Further, this can be achieved by adding a bending process during film formation, which will be described later. Among these, it is preferable to select a polyimide type and perform a bending process.
  • the dryer zone has a drying temperature within the range of (glass transition temperature Tg-150) to (glass transition temperature Tg-30) ° C. of the film. If the bending process is performed 150 times or more while transporting the roller, the standard deviation ⁇ of the gray value is adjusted within a predetermined range, and the area occupied by the black portion in the binarized image is in the range of 10 to 50%. From the viewpoint of improving the smoothness of the film.
  • the bending process refers to a B surface (for example, a casting support) that faces the A surface (for example, the air surface side of the web on the casting support) of the film by a transport roller while being maintained at a predetermined drying temperature.
  • This is a process in which the belt is bent by a roller in the conveying process so that the belt surface side of the upper web is alternately inside.
  • the bending process when the radius when bending the film was a (mm), the value of 1 / a is in the range of 0.035 mm -1 ⁇ 0.050 mm -1, and 150 times the bending It is preferable that the drying is carried out by repeating the steps less than 500 times.
  • the number is in the range of 200 to 400 times in order to satisfy the effect of improving smoothness and productivity.
  • the film folding interval is preferably in the range of 1 second to 1 minute, and more preferably in the range of 2 to 30 seconds.
  • FIG. 4 is a schematic diagram of a bending processing apparatus that can be preferably applied to the present invention.
  • a dope solution is cast from a die 101 onto a metal support 102 and continuously dried on the metal support by a driving roller 103 to obtain a web (referred to as a dope film after casting on the metal support. Form).
  • the web is dried so that the residual solvent amount becomes a desired value, peeled into a film at the peeling point 104, subjected to preliminary drying and stretching treatment (not shown), conveyed to the bending zone 106,
  • the transfer roller 105 causes the A side (the air surface side of the web on the casting support) and the B side (the belt side of the web on the casting support) to alternately be inside the transport roller 105. It is conveyed and the bending process is repeated continuously.
  • the bending process is performed in a bending zone 106 having an intake port 107 and an exhaust port 108, and is adjusted so that the film is bent at a desired atmospheric temperature.
  • a cooling zone 109 for cooling the film to a predetermined temperature may be provided after the bending zone 106.
  • the diameter of the transport roller is preferably in the range of 90 to 108 mm, and the distance between the rollers is preferably about 1800 mm.
  • the roller diameter may be determined so that the value of 1 / a is in the range of 0.035 to 0.050 mm ⁇ 1 when the radius when the film is bent is a (mm).
  • hot air whose temperature has been adjusted is introduced from the intake port 107, and the inside of the bending zone 106 is maintained at a constant atmospheric temperature and is exhausted from the exhaust port 108.
  • the atmospheric temperature in the bending zone 106 it may be performed by infrared rays, a heating roller, or the like, but it is preferably performed by hot air in terms of simplicity.
  • the atmosphere in the drying apparatus may be air, but may be performed in an inert gas atmosphere such as nitrogen gas, carbon dioxide gas, or argon.
  • the atmospheric temperature during the bending treatment of the polyimide film according to the present invention is preferably carried out at a drying temperature within the range of (glass transition temperature Tg-150 ° C.) to (glass transition temperature Tg-30 ° C.) of the film. In order to obtain the effects of the present invention, the range of 180 to 250 ° C. is more preferable.
  • the conveyance speed of the polyimide film according to the present invention in the bending zone is preferably 10 to 250 m / min, more preferably 15 to 200 m / min in terms of productivity and breakage.
  • the winding step is a step of winding the obtained film and cooling it to room temperature.
  • the winding machine may be a commonly used one, and can be wound by a winding method such as a constant tension method, a constant torque method, a taper tension method, a program tension control method with a constant internal stress, or the like.
  • the thickness of the film is not particularly limited, and is preferably 1 to 200 ⁇ m, particularly 2 to 100 ⁇ m, for example.
  • both ends of the film sandwiched between tenter clips when stretched and conveyed may be slit.
  • the slit end is preferably reused as a return material.
  • the recycled material refers to a portion that is formed into a film and is reused as a raw material for some reason, and the slit end (also referred to as an ear), or the feeding / termination of production.
  • a film that is not suitable as a product due to an appearance problem such as a scratch or a streak is exemplified.
  • the slit film edge is cut into a width of 1 to 30 mm, then dissolved in a solvent and reused.
  • the ratio of the portion of the formed film that is reused as a recycled material is preferably 10 to 90% by mass, more preferably 20 to 80% by mass, and still more preferably 30 to 70% by mass.
  • the input amount varies slightly depending on the amount of return material generated during the film forming process or finally, but the mixing ratio of the returned material to the total solid content in the dope is usually about 10 to 50% by mass, preferably It is about 15 to 40% by mass.
  • the mixing ratio of the recycled materials is preferably as constant as possible for production stability.
  • Each step from the solvent evaporation step to the winding step described above may be performed in an air atmosphere or an inert gas atmosphere such as nitrogen gas. Moreover, each process, especially a drying process and a extending process, are performed in consideration of the explosion limit concentration of the solvent in the atmosphere.
  • Heating step After the winding step, heating to further heat-treat the film dried in the second drying step in order to improve imidization in the polymer chain molecules and between the polymer chain molecules to improve the mechanical properties. It is preferable to perform a process.
  • the dope is prepared using polyimide (imidation rate 100%) or when the imidation rate of the film becomes 100% by performing the second drying step, the residual stress of the film For the purpose of relaxing, it is preferable to perform a heating step.
  • the said 2nd drying process may serve as a heating process.
  • the heating means is performed using a known means such as hot air, an electric heater, or a microwave.
  • a known means such as hot air, an electric heater, or a microwave.
  • the electric heater the above-described infrared heater can be used.
  • the heat treatment conditions are such that the heater output and hot air temperature are adjusted so that the film L value is 30 to 55, and the final treatment condition is within a temperature range of 200 to 450 ° C. and within a range of 30 seconds to 1 hour. It is preferable to perform appropriately. Thereby, the dimensional stability of a polyimide film can be improved.
  • the heating step if the film is heated rapidly, defects such as an increase in surface defects occur, and therefore it is preferable to select the heating method as appropriate.
  • the heating step is preferably performed in a low oxygen atmosphere.
  • the heating temperature in the second drying step and the heating step exceeds 450 ° C.
  • the energy required for heating becomes very large, resulting in an increase in manufacturing cost and an increase in environmental load.
  • the following is preferable.
  • [2] Liquid Crystal Display Device By using the polarizing plate of the present invention for a liquid crystal display device, various liquid crystal display devices having excellent visibility can be produced. By peeling the base material of the polarizer (A) according to the present invention and bonding the hydrophilic polymer layer side to the liquid crystal cell, a liquid crystal display device having a thin film polarizing plate can be produced.
  • the polarizing plate of the present invention can be used for liquid crystal display devices of various drive systems such as STN, TN, OCB, HAN, VA (MVA, PVA), IPS, OCB.
  • VA VA, PVA
  • IPS IPS type liquid crystal display device
  • liquid crystal display device with a 30-inch screen or more can obtain a liquid crystal display device with excellent visibility such as color unevenness and front contrast, with less environmental fluctuations, reduced light leakage.
  • the organic EL display of the present invention preferably comprises the polarizing plate of the present invention.
  • the polarizer (A) of the polarizing plate of the present invention has improved planarity, and when used on the surface of the organic EL display, the unevenness of the film when viewed through polarized sunglasses is not noticeable, and the organic EL has excellent visibility.
  • a display can be provided.
  • JP2013-157634A, JP2013-168552A, JP2013-177361A, JP2013-187221A JP, 2013-191644, JP 2013-191804, JP 2013-225678, JP 2013-235994, JP 2013-243234, JP 2013-243236, JP 2013-242366 A, JP 2013-243371 A, JP 2013-245179 A, JP 2014-003249 A, JP 2014-003299 A, JP 2014-013910 A, JP Japanese Patent Application Laid-Open No. 2014-017493, JP 20 It can be mentioned arrangement described in 4-017494 Patent Publication.
  • Example 1 ⁇ Production of Stretched Laminate 1 Having Polarizer (A)> ⁇ Production of laminate> (Substrate A)
  • the following PET film was prepared and used as the base material A.
  • A-PET amorphous polyethylene terephthalate film (Mitsubishi Resin Novaclear SG-007, glass transition temperature 80 ° C.) having a thickness of 200 ⁇ m and a length of 1000 m was used.
  • Hydrophilic polymer layer Polyvinyl alcohol powder (manufactured by Nippon Vinegar Poval Co., Ltd., average polymerization degree 2500, saponification degree 99.0 mol% or more, product name: J40) as a hydrophilic polymer is dissolved in hot water at 95 ° C. An 8% by mass aqueous polyvinyl alcohol solution was prepared. The obtained polyvinyl alcohol aqueous solution is applied onto the substrate A for lamination using a lip coater and dried at 70 ° C. for 5 minutes to produce a laminate 1 comprising the substrate A and a hydrophilic polymer layer. did. The hydrophilic polymer layer had a thickness of 12.0 ⁇ m.
  • the laminate was subjected to 4.5-fold free end uniaxial stretching in the air at 100 ° C. in the transport direction (MD direction).
  • the thickness of the hydrophilic polymer layer after stretching was 5.6 ⁇ m.
  • the stretched laminate was immersed in a 60 ° C. bath for 60 seconds, and immersed in an aqueous solution containing 0.05 parts by mass of iodine and 5 parts by mass of potassium iodide per 100 parts by mass of water at a temperature of 28 ° C. for 60 seconds. .
  • a boric acid aqueous solution containing 7.5 parts by mass of boric acid and 6 parts by mass of potassium iodide per 100 parts by mass of water at a temperature of 73 ° C. for 300 seconds.
  • ⁇ Polyimide A> In a 500 mL separable four-necked flask equipped with a stainless steel vertical agitator, nitrogen inlet tube, Dean-Stark apparatus, 56.11 g (0.18 mol) of 4,4′-oxydiphthalic anhydride (ODPA), diethyl Methylbenzenediamine (DETDA) 32.09 g (0.18 mol), gamma butyrolactone (GBL) 326.87 g, pyridine 2.85 g, and toluene 33 g were charged, and the inside of the reaction system was purged with nitrogen. ODPA was dissolved by stirring at 80 ° C. for 30 minutes under a nitrogen stream, and then heated to 180 ° C. and stirred for 6 hours.
  • ODPA 4,4′-oxydiphthalic anhydride
  • DETDA diethyl Methylbenzenediamine
  • GBL gamma butyrolactone
  • the water produced during the reaction was removed from the reaction system as an azeotrope with toluene and pyridine. After completion of the reaction, the reaction solution was cooled to room temperature to obtain a 20% by mass polyimide solution.
  • the structure of the obtained polyimide is as shown in the following formula. Isopropanol was added to this polyimide solution and cooled after stirring to obtain a polyimide A solid. Polyimide A had a weight average molecular weight of 80000 and an imidization ratio of 98%. This solid was washed and dried, and then dissolved in dichloromethane. Dioxolane was added with 1% by mass of dichloromethane to prepare a polyimide solution for film formation.
  • the water produced during the reaction was removed from the reaction system as an azeotrope with toluene and pyridine. After completion of the reaction, when cooled to 120 ° C., 100 g of GBL was added to obtain a polyimide solution having a concentration of 25% by mass.
  • the structure of the obtained polyimide is as shown in the following formula. Isopropanol was added to this polyimide solution, and the mixture was stirred and cooled to obtain a polyimide B solid.
  • Polyimide B had a weight average molecular weight of 94000 and an imidization ratio of 99%. This solid was washed and dried, and then dissolved in dichloromethane. Dioxolane was added with 1% by mass of dichloromethane to prepare a polyimide solution for film formation.
  • ⁇ Polyimide C> (Polymerization of polyimide precursor) A stainless steel separable flask was provided as a reaction vessel, two paddle blades were provided as a stirring device in the separable flask, and a polyamic acid was produced using a reaction device provided with a cooling device. During the polymerization reaction, a nitrogen gas dehydrated by passing through a calcium chloride tube was flowed at 0.05 L / min in order to prevent moisture from mixing.
  • Polyimide D had a weight average molecular weight of 110,000 and an imidization ratio of 98%.
  • DFBN 2,6-difluorobenzonitrile
  • RES resorcinol
  • thermometer a thermometer, a stirrer, a three-way cock with a nitrogen introduction tube, a Dean-Stark tube and a cooling tube were attached to the four-necked flask.
  • the resulting solution was reacted at 140 ° C. for 3 hours, and water produced was removed from the Dean-Stark tube as needed. When no more water was observed, the temperature was gradually raised to 160 ° C. and reacted at that temperature for 6 hours.
  • a transparent substrate (B): a polyimide film was produced by the following method.
  • the peeled polyimide film is 1.1 times in the MD direction (longitudinal direction) using the peripheral speed difference of the transport roller while applying heat at 200 ° C., and 1 in the TD direction (width direction) using a clip type tenter. The film was stretched 1 time. The residual solvent amount at the start of stretching was 20% by mass.
  • ⁇ Drying step a> The stretched film was subjected to 10 bending processes using a conveying roller in a bending zone 106 shown in FIG. The film was dried at a transport tension of 100 N / m and a drying time of 20 minutes so that the amount of residual solvent was less than 0.1% by mass to obtain a film having a dry film thickness of 25 ⁇ m.
  • Transparent substrates (B) 102 to 105 were prepared in the same manner as the polyimide film 101 except that polyimides B to E were used instead of polyimide A.
  • a transparent substrate (B) 106 was produced in the same manner as in the production of the transparent substrate (B) 105 except that the drying step a was changed to the following drying step b.
  • ⁇ Drying step b> The stretched film was subjected to 300 times of bending treatment with a large number of conveying rollers at a drying temperature of 200 ° C. in the bending zone 106 shown in FIG. The film was dried at a transport tension of 100 N / m and a drying time of 20 minutes so that the amount of residual solvent was less than 0.1% by mass to obtain a film having a dry film thickness of 25 ⁇ m.
  • ⁇ Dope composition Dichloromethane 365 parts by mass Ethanol 50 parts by mass Cellulose acylate (triacetyl cellulose: TAC, acetyl group substitution degree 2.85, MW 250,000) 100 parts by mass The following polycondensation ester P5 7 parts by mass And dissolved with stirring to prepare a dope.
  • the solvent was evaporated until the amount of residual solvent in the cast (cast) film reached 75%, and then peeled off from the stainless steel belt support with a peeling tension of 130 N / m.
  • the peeled cellulose acylate film was stretched 1.3 times in the width direction using a tenter while applying heat at 150 ° C.
  • the residual solvent at the start of stretching was 15%.
  • Comparative Transparent Base Material (B) 110> Using polycarbonate (PC) resin, manufactured by Tei Dedupon Film Co., Ltd., trade name: Panlite AD-5503, 150 g was added to 800 g of dichloromethane and dissolved by stirring at room temperature to prepare a dope.
  • PC polycarbonate
  • the dope was formed on a stainless steel plate using a doctor blade, and the web was peeled off.
  • the residual solvent amount at the time of peeling was 15 to 30%.
  • This web is fixed to a metal frame, hot air of 100 ° C. is applied, the residual solvent amount is dried to about 10%, and then stretched by 1.2 times in both the vertical and horizontal directions.
  • a transparent substrate (B) 110 having a thickness of 25 ⁇ m was obtained.
  • ⁇ Preparation of polarizing plate> ⁇ Preparation of polarizing plates 101 to 111>
  • the surface of the stretched laminate 1 having the prepared polarizer (A) subjected to corona discharge treatment on the hydrophilic polymer layer side of the transparent substrate (B) 101 to 111 is respectively shown in FIG.
  • the nip roller was applied with a load of 30 kg / 30 cm and bonded together.
  • the excess PVA aqueous solution was removed, the substrate A was peeled off, the two sides were fixed with clips, and dried at 60 ° C. for 5 minutes to prepare polarizing plates 101 to 111.
  • the conditions for the corona discharge treatment were a corona output intensity of 2.0 kW and a speed of 18 m / min.
  • Total light transmittance The total light transmittance of the transparent substrate (B) according to the present invention was calculated using the method described in JIS K 7105: 1981. As a measuring device, a haze meter NDH5000 manufactured by Tokyo Denshoku Co., Ltd. was used.
  • the photographed image was read into a personal computer using free software ImageJ.
  • a rectangular evaluation area was set to be 1 cm ⁇ 5 cm in the actual captured image. At that time, the long side of the rectangle was set to be the film sample transport direction.
  • the rectangular evaluation area was binarized using the average value m as a threshold.
  • the area of the black part (dark part) obtained by the binarization was divided by the total area to calculate the black part area ratio K (%).
  • the free software ImageJ is ImageJ1.32S created by Wayne Rasband.
  • FIG. 5 shows the projection image (A), the binarized image (B), and the standard deviation (C) of the gray value for the transparent substrate (B) 102 of the present invention.
  • a polarizing plate sample was subjected to a humidity conditioning treatment for 24 hours in an environment of 23 ° C. and 55% RH, then cut into a size of 30 cm ⁇ 30 cm, and the parallel transmittance of light having a light wavelength of 550 nm was obtained at the center point of the diagonal line.
  • the orthogonal transmittance was measured using an automatic polarizing film measuring device (VAP-7070, manufactured by JASCO Corporation). Subsequently, based on each obtained measurement value, polarization degree (%) was calculated
  • the degree of polarization is preferably 99.995% or more because there is no light leakage.
  • the polarizing plates 102 to 108 of the present invention have reduced depolarization and excellent degree of polarization.
  • the transparent substrate (B) was subjected to bending treatment. It was found that by improving the smoothness, the degree of polarization was further improved.
  • Example 2 ⁇ Production of liquid crystal display device>
  • the polarizing plate on both sides of the 40-inch display BRAVIA X1 made in advance by SONY was peeled off, and the substrate A was peeled off from each of the produced polarizing plates 101 to 111 to expose the hydrophilic resin layer.
  • the polarizers on both sides were bonded so that the absorption axes thereof were orthogonal to each other.
  • Liquid crystal display devices 101 to 111 corresponding to the polarizing plates 101 to 111 were produced.
  • A The image contrast is high and the image is clear.
  • The image contrast is high.
  • The image is slightly blurred and the contrast is slightly low.
  • the liquid crystal display device using the polarizing plates 102 to 108 of the present invention had clear images and excellent contrast.
  • the image was slightly unclear and the contrast was low. That is, when a film having high Martens hardness and good flatness was used, both the contrast and visibility were good.
  • Example 3 ⁇ Production of organic EL display> Using the polarizing plates 101 to 111 produced as described above, organic EL displays 101 to 111 were produced with the following configuration.
  • a PET film is used as the transparent substrate 211, a reflective electrode made of chromium is formed on the transparent substrate 211, a metal electrode 212 is formed on the reflective electrode using ITO as a metal electrode (anode), and the organic light emitting layer 213 is formed.
  • a hole transport layer poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (PEDOT: PSS) is formed to a thickness of 80 nm on the anode by sputtering, and then a shadow mask is formed on the hole transport layer.
  • PEDOT poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate
  • RGB light emitting layers 213R, 213G, and 213B (both not shown) were formed to a thickness of 100 nm.
  • red light-emitting layer 213R tris (8-hydroxyquinolinate) aluminum (Alq 3 ) and a light-emitting compound [4- (dicyanomethylene) -2-methyl-6 (p-dimethylaminostyryl) -4H-pyran] ( DCM) were co-evaporated (mass ratio 99: 1) to form a thickness of 100 nm.
  • the green light emitting layer 213G Alq 3 as a host and a light emitting compound coumarin 6 (3- (2-benzothiazolyl) -7- (diethylamino) coumarin) were co-evaporated (mass ratio 99: 1) to a thickness of 100 nm. Formed.
  • the blue light-emitting layer 213B was formed with a thickness of 100 nm by co-evaporating BAlq and a light-emitting compound Perylene as a host (mass ratio 90:10).
  • calcium is deposited in a thickness of 4 nm by vacuum deposition as a first cathode having a low work function so that electrons can be efficiently injected onto the organic light emitting layer, and a second cathode is formed on the first cathode.
  • aluminum was formed to a thickness of 2 nm.
  • the aluminum used as the second cathode has a role to prevent calcium as the first cathode from being chemically altered when the transparent conductive film formed thereon is formed by sputtering. .
  • an organic light emitting layer was obtained.
  • a transparent conductive film having a thickness of 80 nm was formed on the cathode by a sputtering method to form a transparent electrode 214.
  • ITO was used as the transparent conductive film.
  • 200 nm of silicon nitride was deposited on the transparent electrode 214 by a CVD method to form the insulating film 215, thereby fabricating an organic EL element unit.
  • a polyethylene terephthalate film with a gas barrier layer having a thickness of 20 ⁇ m is used as the gas barrier film 217, and a thermosetting liquid adhesive (epoxy resin) is formed as a sealing layer 216 on one side of the gas barrier film 217.
  • a sealing unit having a thickness of 25 ⁇ m was produced.
  • the organic EL element unit formed from the transparent substrate 211 to the insulating layer 215 and the sealing unit were pressed and held for 5 minutes under reduced pressure conditions of 90 MPa and 0.1 MPa. Subsequently, the laminate was returned to the atmospheric pressure environment, and further heated at 90 ° C. for 30 minutes to cure the adhesive, whereby an organic EL display device B was produced.
  • the light-emitting area of the produced organic EL display device B was 1296 mm ⁇ 784 mm. Further, the front luminance when a DC voltage of 6 V was applied to the organic EL display device B was 1200 cd / m 2 .
  • the front luminance is measured using a spectral radiance meter CS-1000 manufactured by Konica Minolta Co., Ltd., with the front luminance at 2 ° viewing angle and the optical axis of the spectral radiance meter aligned with the normal from the light emitting surface.
  • the range of visible light wavelength of 430 to 480 nm was measured, and the integrated intensity was taken.
  • Polarizer (A) 2 having a hydrophilic resin layer exposed by peeling off the commercially available ⁇ / 4 retardation film 218 and the base material A of the prepared polarizing plates 101 to 111 to the prepared organic EL display device B, and The circularly polarizing plate C provided with the protective film 4 which is the transparent base material (B) according to the present invention in this order is fixed through an adhesive layer so as to have the configuration shown in FIG. Displays 101 to 111 were produced.
  • the slow axis of the commercially available ⁇ / 4 retardation film 218 and the absorption axis of the polarizer (A) 2 were bonded so that the direction was 45 ° to prepare a circularly polarizing plate.
  • ⁇ Visibility evaluation> The organic EL displays 101 to 111 manufactured as described above are energized to display an image and visually observed. The visibility at that time was evaluated. ⁇ : The image is clear with almost no reflection from the outside. ⁇ : The reflection from the outside is small. ⁇ : The reflection from the outside is slightly seen and the image is slightly unclear.
  • the organic EL displays 102 to 108 using the polarizing plate of the present invention had little reflection from the outside and good visibility. Also in the case of an organic EL display, when a film having high Martens hardness and good flatness was used, both the contrast and visibility were good.
  • the polarizing plate of the present invention is a thin polarizing plate that has reduced depolarization and improved polarization degree, and is therefore suitable for a thin liquid crystal display device and an organic electroluminescence display.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Engineering & Computer Science (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)
  • Laminated Bodies (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本発明の課題は、薄型の偏光板であって、偏光解消が減り、偏光度が向上した偏光板及び当該偏光板を具備したコントラストの向上した表示装置を提供することである。 本発明の偏光板は、二色性物質で染色された親水性高分子層を有する偏光子(A)と、当該偏光子(A)の少なくとも一方の面に押込み弾性率が4.5GPa以上で、全光線透過率が80%以上である透明基材(B)とを有することを特徴とする。

Description

偏光板、その製造方法、液晶表示装置及び有機エレクトロルミネッセンス表示装置
 本発明は、偏光板、その製造方法、液晶表示装置及び有機エレクトロルミネッセンス表示装置に関する。より詳しくは、本発明は、薄型の偏光板であって偏光解消が減り、偏光度が向上した偏光板、その製造方法及び当該偏光板を具備したコントラストの向上した表示装置に関する。
 表示装置の薄型化の要望に伴い、偏光板の薄型化が要求されている。
 偏光板の薄型化には、ポリビニルアルコール(本願では、PVAともいう。)の原反フィルム自体を薄く製膜する方法があるが、さらにPVA偏光子を作製する工程で前記PVAを延伸可能な基材に塗布し、次いで前記基材ごと延伸し、染色した後PVA塗膜部分を剥離することで薄型偏光子を作製する方法が知られている(例えば、特許文献1~3参照。)。
 しかしながら、PVA偏光子を塗布によって作製する際に、そのPVA塗膜部分表面の凹凸形状により偏光が散乱し偏光解消が発生することで偏光度が低下し、液晶表示装置に用いるときにコントラストの低下が発生してしまうことが分かった。
 塗布型のPVA偏光子は、通常は基材にPVAを塗布し、延伸・染色を行うが、表面には凹凸形状が発生する。これは基材と反対の面(すなわち、塗布時に空気と触れる側の面)は、塗布液の表面張力のみの平坦化によってPVA塗膜部分の表面形状が制御されるため、凹凸形状が発生しやすく、その形状の抑制は難しい。
 偏光子と表示装置のセル(例えば、液晶セル)との間に前記凹凸形状があると、前述のとおり、偏光が散乱し偏光解消が発生することで偏光度が低下して表示装置のコントラストに大きな影響を与えるため、塗布型のPVA偏光子の表面形状の制御は重要である。
特開2000-338329号公報 特開2011-100161号公報 特開2012-073570号公報
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、薄型の偏光板であって、偏光解消が減り、偏光度が向上した偏光板及び当該偏光板を具備したコントラストの向上した表示装置を提供することである。
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、偏光子と特定の押込み弾性率を有する透明基材とで構成される偏光板によって、偏光解消が減り、偏光度が向上した薄型の偏光板が得られることを見出し、本発明に至った。
 すなわち、本発明に係る上記課題は、以下の手段により解決される。
 1.二色性物質で染色された親水性高分子層を有する偏光子(A)と、当該偏光子(A)の少なくとも一方の面に押込み弾性率が4.5GPa以上で、全光線透過率が80%以上である透明基材(B)とを有することを特徴とする偏光板。
 2.前記透明基材(B)が、イミド構造を有する透明耐熱性樹脂を含有することを特徴とする第1項に記載の偏光板。
 3.前記透明基材(B)が、当該透明基材の投影画像から切り取った所定の矩形エリアにおいて、グレーバリューの標準偏差σが、0.50~1.10の範囲内であり、かつ前記矩形エリアの二値化画像における黒部分の占める面積が、50%以下であることを特徴とする第1項又は第2項に記載の偏光板。
 4.前記偏光子(A)が、塗布型偏光子であることを特徴とする第1項から第3項までのいずれか一項に記載の偏光板。
 5.親水性高分子層を有する偏光子(A)と押込み弾性率が4.5GPa以上で全光線透過率が80%以上である透明基材(B)とを有する偏光板の製造方法であって、
 基材上に親水性高分子を含有する塗布液を流延して親水性高分子層を形成する工程、
 前記親水性高分子層を延伸し、かつ二色性物質で染色する工程、次いで、
 前記親水性高分子層の空気界面側の表面に、前記透明基材(B)をニップローラーで挟持しながら貼合して偏光板を形成する工程、
 を有することを特徴とする偏光板の製造方法。
 6.前記透明基材(B)が、イミド構造を有する透明耐熱性樹脂を含有することを特徴とする第5項に記載の偏光板の製造方法。
 7.第1項から第4項までのいずれか一項に記載の偏光板を具備することを特徴とする液晶表示装置。
 8.第1項から第4項までのいずれか一項に記載の偏光板を具備することを特徴とする有機エレクトロルミネッセンス表示装置。
 本発明の上記手段により、薄型の偏光板であって、偏光解消が減り、偏光度が向上した偏光板、その製造方法及び当該偏光板を具備したコントラストの向上した表示装置を提供することができる。
 本発明の効果の発現機構ないし作用機構については、明確にはなっていないが、以下のように推察している。
 前述のとおり、塗布型のPVA偏光子は、基材と反対の面は、塗布液の表面張力による平坦化のみでフィルムの最表面形状が制御されており、偏光板化したときの偏光子表面の凹凸形状の抑制が難しいという課題があったところ、PVA偏光子の基材とは反対側の表面が押込み弾性率の高い透明基材によってニップローラーで挟持されることによって、当該表面の凹凸形状が平滑化されることにより、当該表面での光散乱が抑制されて偏光解消が起こりにくくなり偏光度が向上するものと推察される。
本発明の偏光板の構成の一例を示す断面図 偏光子(A)と透明基材(B)とをニップローラーで挟持して貼合する例を示す模式図 本発明に係るフィルム投影画像の解析を行う模式図 本発明に好ましく適用できるベンディング処理装置の模式図 本発明の透明基材(B)の投影画像 本発明の透明基材(B)の二値化画像 本発明の透明基材(B)のグレーバリュー標準偏差 有機ELディスプレイの模式図
 本発明の偏光板は、二色性物質で染色された親水性高分子層を有する偏光子(A)と、当該偏光子(A)の少なくとも一方の面に押込み弾性率が4.5GPa以上で、全光線透過率が80%以上である透明基材(B)とを有することを特徴とする。この特徴は、各請求項に係る発明に共通する技術的特徴である。
 本発明の実施態様としては、本発明の効果発現の観点から、前記透明基材(B)が、イミド構造を有する透明耐熱性樹脂を含有することが、特定の押込み弾性率を実現する上で好ましい。
 また、前記透明基材(B)が、当該透明基材の投影画像から切り取った所定の矩形エリアにおいて、グレーバリューの標準偏差σが、0.50~1.10の範囲内であり、かつ前記矩形エリアの二値化画像における黒部分の占める面積が、50%以下である程度に平滑であることが、塗布型偏光子(A)の表面を顕著に平滑にして、偏光解消を改善する観点から、好ましい。
 本発明の偏光板の製造方法は、親水性高分子層を有する偏光子(A)と押込み弾性率が4.5GPa以上で全光線透過率が80%以上である透明基材(B)とを有する偏光板の製造方法であって、基材上に親水性高分子を含有する塗布液を流延して親水性高分子層を形成する工程、前記親水性高分子層を延伸し、かつ二色性物質で染色する工程、次いで、前記親水性高分子層の空気界面側の表面に、前記透明基材(B)をニップローラーで挟持しながら貼合して偏光板を形成する工程、を有することが、塗布型偏光子(A)の表面の凹凸形状を平滑にして、偏光解消を改善する観点から、好ましい。
 本発明の偏光板は、薄型であって、偏光解消が減り、偏光度が向上した偏光板であることによって、特に薄型の液晶表示装置及び有機エレクトロルミネッセンス表示装置に好適に具備される。
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。
 ≪本発明の偏光板の概要≫
 本発明の偏光板は、二色性物質で染色された親水性高分子層を有する偏光子(A)と、当該偏光子(A)の少なくとも一方の面に押込み弾性率が4.5GPa以上で、全光線透過率が80%以上である透明基材(B)とを有することを特徴とする。
 本発明の偏光板の構成を図をもって説明するが、これに限定されるものではない。
 図1は、本発明の偏光板の構成の一例を示す断面図である。
 基材1上に親水性高分子層2を塗設し偏光子(A)3が形成され、その上層に押込み弾性率が4.5GPa以上で、全光線透過率が80%以上である透明基材(B)4が積層され、偏光板10を構成する。
 実際に本発明の偏光板が用いられる際には、前記基材1は親水性高分子層2から剥離され、親水性高分子層2が偏光子(A)3として、表示装置等に貼合される。したがって、偏光子(A)3は親水性高分子層2の層厚のみとなるため、薄膜な偏光子となり部材の薄膜化に寄与するものである。
 本発明に係る透明基材(B)は、前記偏光子の保護フィルムとして機能することができ、当該透明基材(B)がイミド構造を有する透明耐熱性樹脂を含有するポリイミドフィルムである場合は、耐熱性、耐湿性に優れることから、従来のトリアセチルセルロース(TACともいう。)フィルムを使用した保護フィルムに比較して、偏光板の偏光性能の安定性、環境変動耐性及び寸法安定性を大幅に向上することができる。
 〔1〕偏光板
 本発明の偏光板は、基材上に親水性高分子層を塗布方式で積層した後、延伸処理を施して延伸積層体を形成し、次いで二色性物質で当該親水性高分子層を染色処理して偏光機能を付与して偏光子(A)を形成した後、前記親水性高分子層の空気界面側の表面に、押込み弾性率が4.5GPa以上で全光線透過率が80%以上である透明基材(B)をニップローラーで挟持しながら貼合したものである。本発明でいう「塗布型偏光子」とは、上記基材上に塗布された親水性高分子層をいう。
 前記基材は使用に際し剥離するものであるため、本発明に係る偏光子(A)とは最終的に前記親水性高分子層のことを指し、その層厚は10μm以下という薄膜化が可能である。好ましい層厚は0.5~10μmの範囲である。
 〔1.1〕基材
 本発明に係る基材は、親水性高分子層を担持するための基材として機能し、熱可塑性樹脂層であることが好ましい。
 本発明に用いられる熱可塑性樹脂は、高分子が規則正しく配列する結晶性熱可塑性樹脂と、高分子が規則正しい配列を持たない、あるいは、ごく一部しか持たない無定形又は非晶状態にある非晶性熱可塑性樹脂に大別でき、どちらでも使用することができる。
 また、結晶性樹脂であるか非晶性樹脂であるかを問わず、結晶状態にない樹脂又は結晶状態に至らない樹脂をアモルファス又は非晶質の樹脂という。ここでは、アモルファス又は非晶質の樹脂は、結晶状態をつくらない性質の非晶性樹脂と区別して用いられる。
 結晶性熱可塑性樹脂としては、例えばポリエチレン(PE)、ポリプロピレン(PP)を含むオレフィン系樹脂や、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)を含むエステル系樹脂がある。結晶性熱可塑性樹脂の特徴の一つは、一般的に加熱や延伸配向によって高分子が配列して結晶化が進む性質を有することである。樹脂の物性は、結晶化の程度に応じて様々に変化する。一方で、例えば、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)のような結晶性熱可塑性樹脂でも、加熱処理や延伸配向によって起こる高分子の配列を阻害することによって、結晶化の抑制が可能である。結晶化が抑制されたこれらのポリプロピレン(PP)、ポリエチレンテレフタレート(PET)を非晶性ポリプロピレン、非晶性ポリエチレンテレフタレートといい、これらをそれぞれ総称して非晶性オレフィン系樹脂、非晶性エステル系樹脂という。例えばポリプロピレン(PP)の場合、立体規則性のないアタクチック構造にすることによって、結晶化を抑制した非晶性ポリプロピレン(PP)を作製できる。また例えばポリエチレンテレフタレート(PET)の場合、重合モノマーとして、イソフタル酸、1,4-シクロヘキサンジメタノールのような変性基を共重合すること、すなわち、ポリエチレンテレフタレート(PET)の結晶化を阻害する分子を共重合させることによって、結晶化を抑制した非晶性ポリエチレンテレフタレート(PET)を作製することができる。
 また、多価カルボン酸(ジカルボン酸)と多価アルコール(ジオール)との重縮合体であるエステル系樹脂のうち、本発明で用いることのできる結晶性エステル系樹脂として、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTT)、ポリエチレンナフタレート(PEN)、ポリブチレンナフタレート(PBN)などを挙げることができる。これらの結晶性エステル系樹脂はフィルム状に製膜するときに結晶化しやすい性質があるが、アモルファス状態を維持する温度で作製する際には、急速に結晶化することはなく、延伸性があるので、熱可塑性樹脂として使用することができる。製膜時に結晶化しているとフィルムの延伸性は当然低下する。フィルムの延伸性を確保するためには、製膜時の結晶化を抑制し、そのことにより、アモルファス(非晶質)の状態で製膜されたものを用いることが好ましい。
 本発明に係る基材は、フィルムの加工性・延伸性を高めるために可塑剤やエラストマーを配合してもよい。可塑剤としては、例えばフタル酸エステル類及びその重縮合体、アジピン酸などの脂肪酸エステル及びその重縮合体、ポリエステル系可塑剤、エポキシ系可塑剤、スチレン系ポリマー、アクリル系ポリマー、ターフェニル化合物及びその置換誘導体などが挙げられる。また、エラストマーとしては、スチレン系、オレフィン系、アクリル系、塩ビ系、ウレタン系、エステル系、及びナイロン系などが挙げられる。
 基材(延伸前)の厚さは、適宜に決定できるが、一般には強度や取扱い性等の作業性、薄層性などの点より1~500μm程度である。特に1~300μmの範囲が好ましく、5~200μmの範囲がより好ましい。基材の厚さは、5~150μmの場合に特に好適である。一方、延伸積層体における基材(延伸後)の厚さは、強度や取扱い性等の作業性の点より、1~400μm程度であり、1~200μmの範囲であるのが好ましく、5~100μmの範囲であるのがより好ましい。延伸積層体における基材の厚さは、基材(延伸前)の厚さと延伸倍率により決定される。
 〔1.2〕偏光子(A)
 本発明に係る偏光子(A)は、基材上に親水性高分子層を備える。親水性高分子層は、親水性高分子を主成分として含有する層であり、当該親水性高分子層は後述する染色処理によって二色性物質を吸着したものである。これにより、親水性高分子層が、本発明の偏光板において、偏光子(A)として機能することになる。
 親水性高分子層を構成する親水性高分子については、特に制限はないが、ポリビニルアルコール系材料が好ましく例示される。ポリビニルアルコール系材料としては、例えば、ポリビニルアルコール及びその誘導体が挙げられる。ポリビニルアルコールの誘導体としては、ポリビニルホルマール、ポリビニルアセタール等が挙げられるほか、エチレン、プロピレン等のオレフィン、アクリル酸、メタクリル酸、クロトン酸等の不飽和カルボン酸そのアルキルエステル、アクリルアミド等で変性したものが挙げられる。ポリビニルアルコールの重合度は、100~10000程度が好ましく、1000~10000がより好ましい。ケン化度は80~100モル%程度のものが一般に用いられる。上記のほか、親水性高分子としては、エチレン・酢酸ビニル共重合体系部分ケン化物、ポリビニルアルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物等が挙げられる。前記親水性高分子としては、ポリビニルアルコール系材料の中でも、ポリビニルアルコールを用いるのが好ましい。
 親水性高分子層は、上述した親水性高分子に加えて、可塑剤、界面活性剤等の添加剤を含有してもよい。可塑剤としては、ポリオール及びその縮合物等が挙げられ、例えば、グリセリン、ジグリセリン、トリグリセリン、エチレングリコール、プロピレングリコール、ポリエチレングリコール等が挙げられる。可塑剤等の使用量は特に制限されないが、親水性高分子層の固形分全量(100質量%)に対して20質量%以下とするのが好ましい。
 前記ポリビニルアルコール系材料としては、例えば、市販品を用いてもよい。前記市販品としては、例えば、日本酢ビ・ポバール(株)製の商品名「JC40」、(株)クラレ製の商品名「ポバール PVA124」、日本合成化学工業(株)製の商品名「ゴーセノール NH-18」等が挙げられる。
 [偏光子(A)の製造方法]
 本発明に係る偏光子(A)は、前記基材上に前記親水性高分子層を積層して積層体を形成し、更に延伸処理して延伸積層体を形成する。該延伸処理は、染色処理する後や同時に行ってもよいが、染色処理する前に行うことが、配向する親水性高分子の分子に沿って染色を可能にするため、均一な偏光特性を付与する観点からも好ましい。
 したがって本発明に係る偏光子(A)の製造方法は、基材上に親水性高分子層を塗布方式により積層したのち、TD方向(幅手方向)又はMD方向(長手方向)に延伸する工程を経て、偏光子を有する延伸積層体を形成することが好ましい。
 前記延伸積層体の製造方法については、特に制限はなく、従来公知の知見、及び後述する実施例の欄の記載を参照しつつ、適宜製造が可能である。
 延伸積層体の製造方法の一例を挙げると、例えば、前記基材上に、前記親水性高分子(好ましくはポリビニルアルコール)を含有する溶液を塗布した後、乾燥、延伸することにより得ることができる。
 前記溶液の溶媒としては、特に制限されないが、例えば、水、アルコール、ジメチルスルホキシド(DMSO)等が挙げられる。前記溶液の塗布方法は、任意の適切な方法が採用され得る。前記塗布方法としては、例えば、スピンコート法、ロールコート法、フローコート法、ディップコート法、バーコート法等が挙げられる。塗布温度は、前記基材のガラス転移温度(Tg)以下であることが好ましい。
 塗布後、親水性高分子層は乾燥されるが、例えば、自然乾燥、送風乾燥、加熱乾燥等が好ましい。加熱乾燥の場合は、温度50~75℃の範囲が好ましく、より好ましくは、60~70℃の範囲である。乾燥時間は、通常、5~30分間程度である。
 延伸積層体の作製に用いる基材は、親水性高分子を含有する水溶液を塗布する前に、あらかじめ延伸処理を施されたものであってもよい。
 延伸積層体を形成する延伸処理は、空中延伸方法及び水中延伸方法(例えば、国際公開第2010/100917号に記載の方法)のいずれも採用できる。前記延伸処理は、例えば、ロール延伸機、テンター延伸機等の任意の適切な延伸機を用いて実施できる。延伸温度は、例えば、空中延伸の場合は75~150℃の範囲であり、好ましくは、80~150℃の範囲であり、より好ましくは、90~130℃の範囲である。水中延伸の場合は、延伸温度は、好ましくは85℃以下、より好ましくは40~85℃の範囲である。85℃を超えると、前記ポリビニルアルコール樹脂が水中に溶出する等の不具合や、後述する染色工程を延伸工程前に行う場合には、前記ポリビニルアルコール樹脂に吸着させたヨウ素等の二色性物質が水中に溶出する等の不具合が発生するおそれがある。そのため、特に、前記ポリビニルアルコール樹脂層が薄い場合(得られる偏光膜が薄い場合)には、得られる薄型偏光膜の光学特性が著しく低下するおそれがある。前記延伸温度が、65℃以下であると、水中延伸を良好に行うことができ、より優れた光学特性(例えば、偏光膜コントラスト比)を得ることができるので、より好ましい。
 延伸処理は、一軸延伸、二軸延伸、斜め延伸などが施される。一軸延伸は、前記積層体のMD方向に対して行う縦延伸、積層体のTD方向に対して行う横延伸のいずれであってもよい。横延伸では、幅方向に延伸を行いながら、長手方向に収縮させることもできる。横延伸方式としては、例えば、テンターを介して一端を固定した固定端一軸延伸法や、一端を固定しない自由端一軸延伸法等が挙げられる。縦延伸方式としては、ローラー間延伸方法、圧縮延伸方法、テンターを用いた延伸法等が挙げられる。延伸処理は多段で行うこともできる。なお、積層体に対する延伸処理が一軸延伸である場合には、縦延伸であることが好ましい。
 本発明において、延伸工程の構成としては、例えば、
 1)予熱ゾーン/延伸ゾーン/保持ゾーン/冷却ゾーン
 2)予熱ゾーン/延伸ゾーン/収縮ゾーン/保持ゾーン/冷却ゾーン
 3)予熱ゾーン/横延伸ゾーン/縦延伸ゾーン/保持ゾーン/冷却ゾーン
 4)予熱ゾーン/横延伸ゾーン/縦延伸ゾーン/収縮ゾーン/保持ゾーン/冷却ゾーン等の組み合わせが挙げられる。
 予熱ゾーンとは、オーブン入口部において、積層体の両端を把持した把持具の間隔が一定の間隔を保ったまま走行する区間をさす。
 横延伸ゾーンとは、積層体の両端を把持した把持具の間隔が開きだし、所定の間隔になるまでの区間をさす。このとき、両端の把持具が走行するレールの開き角度は、両レールともに同じ角度で開いてもよいし、各々異なる角度で開いてもよい。
 縦延伸ゾーンとは、積層体の両端を把持した把持具が、把持具間隔を変化させながら、積層体を搬送方向に延伸する区間をさす。
 収縮ゾーンとは、積層体の両端を把持した把持具の間隔が延伸軸に直行する方向に狭まり、所定の間隔になるまでの区間をさす。
 保持ゾーンとは、横延伸ゾーン又は縦延伸ゾーンより後の把持具の間隔が再び一定となる期間において、両端の把持具が互いに平行を保ったまま走行する区間をさす。
 冷却ゾーンとは、保持ゾーンより後の区間において、ゾーン内の温度が積層体を構成する熱可塑性樹脂のガラス転移温度Tg℃以下に設定される区間をさす。
 このとき、冷却による積層体の縮みを考慮して、あらかじめ対向する把持具間隔を狭めるようなレールパターンとしてもよい。
 各ゾーンの温度は、基材のガラス転移温度Tgに対し、予熱ゾーンの温度はTg~Tg+30℃、延伸ゾーンの温度はTg~Tg+30℃、冷却ゾーンの温度はTg-30℃~Tgの範囲内に設定することが好ましい。
 続いて、上記で得られた延伸積層体に対し、二色性物質による染色処理することにより、親水性高分子層に二色性物質が吸着されて偏光子(A)として機能するようになる。
 染色処理は、積層体の親水性高分子層に、二色性物質を吸着させることにより行う。染色処理は、例えば、二色性物質を含有する溶液(染色溶液)に積層体を浸漬することにより行う。染色溶液としては、二色性物質を溶媒に溶解した溶液が使用できる。溶媒としては、水が一般的に使用されるが、水と相溶性のある有機溶媒が更に添加されてもよい。
 親水性高分子層に吸着される二色性物質の具体的な構成については、特に制限はないが、例えば、ヨウ素や有機染料等が挙げられる。有機染料としては、例えば、レッドBR、レッドLR、レッドR、ピンクLB、ルビンBL、ボルドーGS、スカイブルーLG、レモンエロー、ブルーBR、ブルー2R、ネイビーRY、グリーンLG、バイオレットLB、バイオレットB、ブラックH、ブラックB、ブラックGSP、エロー3G、エローR、オレンジLR、オレンジ3R、スカーレットGL、スカーレットKGL、コンゴーレッド、ブリリアントバイオレットBK、スプラブルーG、スプラブルーGL、スプラオレンジGL、ダイレクトスカイブルー、ダイレクトファーストオレンジS、ファーストブラック、等が用いられる。中でも、水溶性、工程適性という観点からは、二色性物質としてヨウ素を使用することが好ましく、染色効率をより一層向上できることから、更にヨウ化物を添加することが好ましい。このヨウ化物としては、例えば、ヨウ化カリウム、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化亜鉛、ヨウ化アルミニウム、ヨウ化鉛、ヨウ化銅、ヨウ化バリウム、ヨウ化カルシウム、ヨウ化スズ、ヨウ化チタン等が挙げられる。これらヨウ化物の添加割合は、前記染色溶液において、0.01~10質量%であることが好ましく、0.1~5質量%であることがより好ましい。中でも、ヨウ化カリウムを添加することが好ましく、ヨウ素とヨウ化カリウムの割合(質量比)は、1:5~1:100の範囲にあることが好ましく、1:6~1:80の範囲にあることがより好ましく、1:7~1:70の範囲にあることが特に好ましい。
 染色溶液への延伸積層体の浸漬時間は、特に限定されないが、通常は、15秒~5分間の範囲であることが好ましく、1分~3分間であることがより好ましい。また、染色溶液の温度は、10~60℃の範囲にあることが好ましく、20~40℃の範囲にあることがより好ましい。
 染色処理後、ヨウ化カリウムを含む脱色液、及びホウ酸又はホウ素化合物とヨウ化カリウムを含む架橋液に上記積層体を順次浸漬して、二色性物質を固定化する。その後、乾燥機により乾燥すると、塗布型の偏光子(A)が得られる。
 [本発明の偏光板の製造方法]
 本発明の偏光板の製造方法は、前記偏光子(A)と後述する透明基材(B)とを有する偏光板の製造方法であって、前記偏光子(A)の親水性高分子層の空気界面側の表面に、後述する押込み弾性率が4.5GPa以上で全光線透過率が80%以上である透明基材(B)をニップローラーで挟持しながら貼合して偏光板を得ることを特徴とする。
 図2は、前記偏光子(A)と透明基材(B)とをニップローラーで挟持して貼合する例を示す模式図である。
 偏光子(A)3の親水性高分子層2側を内側にして、透明基材(B)4を一対のニップローラー5によって当該親水性高分子層2面側に貼合し、偏光板10を作製する。
 ニップローラー5におけるニップ圧は、好ましくは0.1~20MPaPaの範囲にすることによって、親水性高分子層表面を平滑にすることが可能であり、かつ偏光板のしわや剥離を防止することができる。より好ましくは、0.5~15Paの範囲である。
 〔1.3〕透明基材(B)
 本発明に係る透明基材(B)は、押込み弾性率が4.5GPa以上で、全光線透過率が80%以上であることを特徴とし、PVA偏光子の最表面が押込み弾性率の高い基材によってニップローラーで挟持されることによって、当該最表面の凹凸形状が平滑化され、表面での光散乱が抑制されて偏光解消が起こりにくくなる効果を発現する。
 押込み弾性率は、本発明ではマルテンス硬度によって測定される値であり、当該マルテンス硬度は以下の方法によって測定する。
 〔1.3.1〕透明基材(B)の物性
 [マルテンス硬度]
 本発明でいうマルテンス硬度とは、試験荷重が負荷された状態(押し込み)で測定される硬さであり、負荷増加時の荷重-押し込み深さ曲線の値から求められる。マルテンス硬度には、塑性及び弾性変形の両方の成分が含まれる。
 マルテンス硬度は、四角錐圧子及び三角錐圧子について定義される。具体的には、以下の式(B1)で示されるように、試験荷重Fを、接触ゼロ点から圧子の侵入した表面積Asで除した値と定義される。
 式(B1) マルテンス硬度=F/As
 マルテンス硬度は、例えば、ISO14577-1 AnnexAで規定されている方法に準拠して、荷重-押し込み深さ試験から得られる。その具体的な測定方法の一例を、以下に示す。
 ISO14577-1 AnnexAで規定する押込み試験の手順に従って行う。試験機としては、超微小硬度計(例えば、フィッシャー・インスツルメンツ製、商品名「フィッシャースコープ100C」)を用い、圧子としては、基部が正方形で対面角度が136°の角錐型ダイヤモンド圧子を用いる。
 試験時の温度を23℃とし、25μmの厚さに製膜された透明基材(B)に圧子を一定速度で押し込んで10mNの荷重を加える。マルテンス硬度の測定は、試験片に対して正方形の角錐形ダイヤモンド圧子を用いて行う。マルテンス硬度の計算は、透明基材(B)に荷重(10mN)をかけ、接触ゼロ点を超えて侵入した圧子の表面積で除した値で求める。
 本発明において、マルテンス硬度は4.5GPa以上であることが偏光子(A)の表面の凹凸を平滑化する上で必要であり、好ましくは、4.5~10.0GPaの範囲であり、さらに好ましくは、4.7~7.0GPaの範囲である。
 透明基材(B)のマルテンス硬度を、本発明で規定する範囲に制御する方法としては、透明基材(B)が含有する樹脂を適宜選択することで制御することができる。
 [全光線透過率]
 本発明に係る透明基材(B)の全光線透過率は、80%以上であることが偏光板として用いる場合に必要である。
 本発明に係る透明基材(B)における全光線透過率は高いほど好ましいが、85%より高いことが好ましく、より好ましくは90%以上であり、更に好ましくは92%以上である。全光線透過率は、25μmの厚さに製膜された透明基材(B)をJIS K 7105:1981に記載された方法、すなわち、積分球式光線透過率測定装置を用いて算出することができる。測定装置としては、例えば、東京電色社製 ヘイズメーター NDH5000等を用いることができる。
 [偏光度]
 本発明でいう偏光度は、具体的には下記の方法に従って求めることができる。
 偏光板試料を23℃、55%RHの環境下で24時間の調湿処理を施した後、光波長550nmの光の平行透過率と直交透過率を、自動偏光フィルム測定装置(VAP-7070、日本分光株式会社製)を用いて測定する。次いで、得られた各測定値を基に、下記数式(B2)に基づいて、偏光度(%)を求める。偏光度(%)は99.995以上であることが好ましい。
Figure JPOXMLDOC01-appb-M000001
 [フィルム長、幅、膜厚]
 本発明に係る透明基材(B)は、長尺であることが好ましく、具体的には、100~10000m程度の長さであることが好ましく、ロール状に巻き取られる。また、本発明に係る透明基材(B)の幅は1m以上であることが好ましく、更に好ましくは1.4m以上であり、特に1.4~4mであることが好ましい。
 透明基材(B)の膜厚は、強度と透明性の観点から、5~200μmの範囲内であることが好ましく、薄膜なデバイスを提供する観点から、25~100μmの範囲であることがより好ましい。膜厚が5μm以上であれば、一定以上のフィルム強度を発現させることができる。膜厚が200μm以下であれば、フレキシブル性を発現することができる。
 〔1.3.2〕イミド構造を有する透明耐熱性樹脂
 本発明に係る透明基材(B)は、押込み弾性率が4.5GPa以上で、全光線透過率が80%以上であれば、その構成材料は問わないが、イミド構造を有する透明耐熱性樹脂を含有することが好ましい。
 透明基材(B)は、イミド構造を有する化合物を含有し、当該イミド構造を有する透明耐熱性樹脂が、下記式(1)で表される構造を有するポリイミド、下記式式(2)又は下記式(3)で表される構造を有するポリイミド、ポリアミドイミド及びポリエーテルイミドから選択されることが好ましい。以下、透明基材(B)をポリイミドフィルムという場合がある。
 (1)イミド構造を有する透明耐熱性樹脂
 (1.1)式(1)で表される構造を有するポリイミド
 本発明に係るイミド構造を有する透明耐熱性樹脂(以下、ポリイミド樹脂ともいう。)は、ポリイミド前駆体を化学イミド化することにより得られる下記式(1)で表されるポリイミド樹脂であることが好ましい。
Figure JPOXMLDOC01-appb-C000002
 [ポリイミド前駆体の重合]
 本発明で用いる式(1)で表される構造を有するポリイミド前駆体の製造方法の一例について以下に示す。
 まず、重合容器中にジアミンである2,2′-ビス(トリフルオロメチル)-4,4′-ジアミノビフェニル(TFMB)を重合溶媒に溶解する。このジアミン溶液に対して、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン酸二無水物(6FDA)の粉末を徐々に添加し、メカニカルスターラーを用い、-20~100℃の範囲で、好ましくは20~60℃の範囲で1~72時間撹拌する。TFMB、6FDAを用いることで可視光の透過性、溶解性が向上する。ジアミンのモル数とテトラカルボン酸二無水物のモル数は実質的に等モルで仕込まれる。また重合の際の全モノマー濃度は5~40質量%、好ましくは10~30質量%である。このモノマー濃度範囲で重合を行うことにより均一で高重合度のポリイミド前駆体溶液を得ることができる。上記モノマー濃度範囲よりも低濃度で重合を行うと、ポリイミド前駆体の重合度が十分高くならず、最終的に得られるポリイミドフィルムが脆弱になる恐れがあり、好ましくない。
 重合溶媒としては特に限定されないが、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、ヘキサメチルホスホルアミド、ジメチルスルホオキシド、γ-ブチロラクトン、1,3-ジメチル-2-イミダゾリジノン、1,2-ジメトキシエタン-ビス(2-メトキシエチル)エーテル、テロラヒドロフラン、1,4-ジオキサン、ピコリン、ピリジン、アセトン、クロロホルム、トルエン、キシレン等の非プロトン性溶媒及び、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、o-クロロフェノール、m-クロロフェノール、p-クロロフェノール等のプロトン性溶媒が使用可能である。またこれらの溶媒は単独でも、2種類以上混合して用いてもよい。
 [ポリイミド樹脂の製造方法]
 式(1)で表されるポリイミド樹脂は、上記の方法で得られたポリイミド前駆体の脱水閉環反応(イミド化反応)により製造することができる。イミド化反応には、得られるポリイミド樹脂がより優れた寸法安定性を示す化学イミド化を用いる。化学イミド化は、有機酸の酸無水物と有機3級アミンからなる脱水環化剤(化学イミド化剤)を用いて行うことができる。例えば、ポリイミド前駆体ワニスをそのまま用いるか若しくは溶媒で適度に希釈後、これに脱水環化試剤を投入し、0~100℃、好ましくは20~60℃で0.5~48時間撹拌することで容易にイミド化することができる。
 その際に使用される有機酸の酸無水物としては、特に限定されず、無水酢酸、無水プロピオン酸、無水マレイン酸、無水フタル酸等が使用可能であるが、コスト及び後処理のしやすさの観点から無水酢酸が好適に用いられる。また有機3級アミンとしては特に限定されず、ピリジン、1,5-ジメチルピリジン、β-ピコリン、γ-ピコリン、ルチジン、イソキノリン、トリエチルアミン、N,N-ジメチルアニリン等が使用可能である。
 化学イミド化反応の際、脱水環化試薬中の酸無水物の使用量は、ポリイミド前駆体の理論脱水量の1~10倍モルの範囲であることが好ましく、脱水環化試薬中の塩基性触媒の使用量は酸無水物に対して0.1~2倍モルの範囲であることが好ましい。これらの範囲外で化学イミド化を行うとイミド化反応が完結しなかったり、反応溶液中にイミド化が未完結のポリイミド樹脂が析出してやはりイミド化が不十分となる恐れがある。
 イミド化完了後、反応溶液をそのままコーティング(流延)に用いることができ、又は、反応溶液を大量の貧溶媒中に滴下、又は、貧溶媒を反応溶液に添加して、ポリイミド樹脂を析出・洗浄して反応溶媒や、化学イミド化の場合は過剰な化学イミド化剤を除去した後、減圧乾燥してポリイミド樹脂の粉末を得ることができる。使用可能な貧溶媒としては、ポリイミド樹脂を溶解しなければよく、特に限定されないが、反応溶媒や化学イミド化剤との親和性及び乾燥による除去のしやすさの観点から水、メタノール、エタノール、n-プロパノール、イソプロパノール等が好適に用いられる。
 ポリイミド樹脂の重量平均分子量は、特に制限されるものではないが、5000~2000000であることが好ましく、10000~1000000であることがさらに好ましく、50000~500000であることがさらに好ましい。重量平均分子量が5000以上であると、フィルムとした場合に十分な強度が得られ、また寸法安定性が向上する傾向があるため、十分な寸法安定性が得られる。一方、2000000以下であると溶液粘度が高くなり過ぎず、取り扱いやすい。なお、上記重量平均分子量は、サイズ排除クロマトグラフィー(SEC)によるポリエチレングリコール換算の値のことをいう。
 (1.2)式(2)又は式(3)で表される構造を有するポリイミド
 本発明に係るポリイミド樹脂は、下記式(2)で表される繰り返し単位を有するポリイミド(以下、ポリイミドPと称する。)又は当該式(2)で表される繰り返し単位と下記式(3)で表される繰り返し単位とからなるポリイミド(以下、両者をポリイミドPと称する。)が好ましい。
Figure JPOXMLDOC01-appb-C000003
(式(3)中、Xは炭素数が2~39の2価の脂肪族基、炭素数が3~39の2価の脂環族基、炭素数が6~39の2価の芳香族基又はこれらの組み合わせからなる2価の基であり、Xの主鎖には、-O-、-SO-、-CH-、-C(CH-、-OSi(CH-、-CO-及び-S-からなる群から選ばれた少なくとも1種の結合基が介在していてもよく、Xはカルボキシ基、ヒドロキシ基又はカルボニル基からなる群から選ばれた少なくとも1種の官能基を有していてもよい。)
 前記ポリイミド樹脂は、前記式(2)で表される繰り返し単位、又は前記式(2)で表される繰り返し単位と前記式(3)で表される繰り返し単位からなり、式(2)で表される繰り返し単位の割合が全繰り返し単位の50モル%を超え、好ましくは70モル%以上、より好ましくは80モル%以上(それぞれ100モル%を含む)である。式(2)で表される繰り返し単位の割合が全繰り返し単位の50モル%を超えると低吸水性を達成できるが、50モル%以下であると、式(3)の構造によっては吸水率が高くなる。前記ポリイミドPは、ブロックコポリマー又はランダムコポリマーのどちらでも良い。
 上記式(3)中のXは下記式(4);
Figure JPOXMLDOC01-appb-C000004
とは異なり、炭素数2~39の2価の脂肪族基、炭素数3~39の2価の脂環族基、炭素数6~39の2価の芳香族基又はこれらの組み合わせからなる2価の基である。Xの主鎖には、-O-、-SO-、-CH-、-C(CH-、-OSi(CH-、-CO-、及び-S-からなる群から選ばれた少なくとも1の結合基が介在していてもよい。また、Xはカルボキシ基、ヒドロキシ基及びカルボニル基(Xの主鎖に含まれる)からなる群から選ばれた少なくとも一つの官能基を有していてもよい。Xの具体例としては、ポリアルキレン、ポリオキシアルキレン、キシリレン及びそれらのアルキル置換体、ハロゲン置換体、カルボキシ置換体及びヒドロキシ置換体などの2価の脂肪族基;シクロヘキサン、ジシクロヘキシルメタン、ジメチルシクロヘキサン、イソフォロン、ノルボルナン及びそれらのアルキル置換体、ハロゲン置換体、カルボキシ置換体及びヒドロキシ置換体等から誘導される2価の脂環族基;及び、ベンゼン、ナフタレン、ビフェニル、ジフェニルメタン、ジフェニルエーテル、ジフェニルスルホン、ベンゾフェノン及びそれらのアルキル置換体、ハロゲン置換体、カルボキシ置換体及びヒドロキシ置換体等から誘導される2価の芳香族基が挙げられる。また、Xは、樹脂強度の観点から、下記式(5)で表される構造であるのが好ましい。
Figure JPOXMLDOC01-appb-C000005
 ポリイミドPは溶液として使用される場合は、その分子量は粘度、特に対数粘度で表すことが好ましい。ポリイミドPの対数粘度η(0.5g/cmのN-メチル-2-ピロリドン溶液を用いて30℃で測定)は、0.3~2cm/gであることが好ましい。0.3cm/g未満であると、ポリイミド樹脂自体の強度が弱く、充分な剥離強度を有する光学フィルムが得られない。2.0cm/gを超えるとその溶液が高粘度になり流延し難く、大幅な希釈が必要となり、取り扱いが難しくなる。
 通常、ポリイミドPの分子末端は、アミノ基、カルボキシ基、又はカルボン酸無水物基である。これらの分子末端にカルボン酸無水物基やアミノ基を有する化合物を反応させることにより、分子末端の官能基を可能な限り減らすこと、又は、意図的に分子末端にアミノ基、カルボキシ基などの官能基やこれ以外の置換基を導入することができる。吸水率を低下させるために、分子末端に極性の小さい置換基(官能性のない置換基)を導入してもよい。後述する方法で測定したポリイミドPの吸水率は、2.5%以下が好ましい。工業的に達成できる吸水率の最小値は通常約1%である。
 本発明における吸水率とは、23℃の水中に24時間樹脂を浸漬した後の質量増加率を表す。本発明に係る吸水率の具体的な求め方を次に説明する。
 樹脂から作製したフィルムを23℃、55%RHに調湿された部屋に4時間以上放置した後の該フィルムの質量を測定し、これをW1とする。次に、該フィルムを23℃の蒸留水に24時間浸漬させた後、取り出したフィルムの質量を測定し、これをW2とする。吸水率を以下の式に基づいて算出する。
 吸水率(%)=(W2-W1)÷W1×100
 ポリイミドPは、1,2,4,5-シクロヘキサンテトラカルボン酸、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物(HPMDA)及び1,2,4,5-シクロヘキサンテトラカルボン酸エステル類などの反応性誘導体から選ばれる少なくとも1種のテトラカルボン酸成分(Y)と、ジアミン及びその反応性誘導体から選ばれる少なくとも1種のジアミン成分(Z)とを反応させることにより得られる。テトラカルボン酸成分(Y)としては、HPMDAが好ましい。なお、テトラカルボン酸成分(Y)及びジアミン成分(Z)は異性体を含む。
 ジアミン成分(Z)としては、ジアミン、ジイソシアネート、ジアミノジシランなどが挙げられるが、ジアミンが好ましい。上記式(2)の繰り返し単位を形成するためのジアミン成分(ジアミン成分(Z1))は、4,4′-ビス(4-アミノフェノキシ)ビフェニル(BAPB)及びその反応性誘導体であり、上記式(3)の繰り返し単位を形成するためのジアミン成分(ジアミン成分(Z2))はNH-X-NH(Xは前記と同様)及びその反応性誘導体である。
 ジアミン成分(Z2)は、芳香族ジアミン、脂肪族ジアミン、脂環族ジアミン、前記ジアミンの反応性誘導体、及びこれらの混合物のいずれでも良く、カルボキシ基、ヒドロキシ基及びカルボニル基(Xの主鎖に含まれる)からなる群から選ばれた少なくとも一つの官能基を有していてもよい。なお、本発明において「芳香族ジアミン」とは、アミノ基が芳香族環に直接結合しているジアミンを表し、その構造の一部に脂肪族基、脂環族基、芳香族基、その他の置換基を含んでいても良い。「脂肪族ジアミン」とは、アミノ基が脂肪族基に直接結合しているジアミンを表し、その構造の一部に脂肪族基、脂環族基、芳香族基、その他の置換基を含んでいても良い。「脂環族ジアミン」とは、アミノ基が脂環族基に直接結合しているジアミンを表し、その構造の一部に脂肪族基、脂環族基、芳香族基、その他の置換基を含んでいても良い。例えば、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパン(BAPP)は、アミノ基が芳香族環(ベンゼン環)に直接結合しているので芳香族ジアミンであり、m-キシリレンジアミン(MXDA)はアミノ基が脂肪族基(メチレン基)に直接結合しているので脂肪族ジアミンである。
 一般に、テトラカルボン酸二無水物と脂肪族ジアミン又は脂環族ジアミンを反応させると、中間生成物であるポリアミド酸と脂肪族ジアミン又は脂環族ジアミン由来のアミノ基が強固な塩を形成するために、高分子量ポリイミドが得られにくい。そのため、塩の溶解性が比較的高い溶媒、例えばクレゾールを用いるなどの工夫が必要になる。しかし、テトラカルボン酸二無水物として1,2,4,5-シクロヘキサンテトラカルボン酸二無水物を用いると、ポリアミド酸と脂肪族ジアミン又は脂環族ジアミン由来のアミノ基が比較的弱い結合の塩を形成するに留まるので、イミド化反応が比較的容易に進行し、容易に高分子量化できる。
 脂肪族ジアミンとしては、例えば、エチレンジアミン、ヘキサメチレンジアミン、ポリエチレングリコール-ビス(3-アミノプロピル)エーテル、ポリプロピレングリコールビス(3-アミノプロピル)エーテル、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、p-キシリレンジアミン、m-キシリレンジアミン、シロキサンジアミン類等が挙げられる。
 脂環族ジアミンとしては、例えば、4,4′-ジアミノジシクロヘキシルメタン、イソホロンジアミン、ノルボルナンジアミンなどが挙げられる。
 芳香族ジアミンとしては、例えば、1,4-フェニレンジアミン、1,3-フェニレンジアミン、2,4-トルエンジアミン、4,4′-ジアミノジフェニルエーテル、3,4′-ジアミノジフェニルエーテル、4,4′-ジアミノジフェニルメタン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、α,α′-ビス(4-アミノフェニル)-1,4-ジイソプロピルベンゼン、α,α′-ビス(3-アミノフェニル)-1,4-ジイソプロピルベンゼン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパン、4,4′-ジアミノジフェニルスルホン、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(3-アミノフェノキシ)フェニル〕スルホン、2,6-ジアミノナフタレン、1,5-ジアミノナフタレン等が挙げられる。
 上記官能基を有するジアミンとしては、例えば、3,3′-ジカルボキシ-4,4′-ジアミノジフェニルメタン、3,5-ジアミノ安息香酸、3,3′-ジヒドロキシ-4,4′-ジアミノビフェニル、2,4-ジアミノフェノール、4,4′-ジアミノベンゾフェノン、3,3′-ジアミノベンゾフェノンが挙げられ、特に、3,3′-ジカルボキシ-4,4′-ジアミノジフェニルメタン(MBAA)、3,5-ジアミノ安息香酸(DBA)、3,3′-ジヒドロキシ-4,4′-ジアミノビフェニル(HAB)、4,4′-ジアミノベンゾフェノン(4,4′-DBP)が好ましい。
 ジアミン成分(Z2)として、MXDA、BAPPを使用することが好ましい。
 ポリイミドPは、前記ジアミン成分(Z)(ジアミン成分(Z1)、又は、ジアミン成分(Z1)+ジアミン成分(Z2))1モルに対して前記テトラカルボン酸成分(Y)を、好ましくは0.66~1.5モル、より好ましくは0.9~1.1モル、さらに好ましくは0.97~1.03モル反応させることにより製造される。
 例えば、原料の使用割合、反応温度と時間、末端停止剤の使用の有無と使用量、触媒量などの少なくとも一つの条件を調整することにより、前記範囲内の対数粘度ηを有するポリイミドPを製造することができる。前記条件の調整は、予備反応などを行うことにより、当業者であれば容易に行うことができる。例えば、対数粘度ηを前記テトラカルボン酸成分(Y)と前記ジアミン成分(Z)とのモル比及び反応時間によって調整する場合、前記モル比が1に近い程、また、反応時間が長い程、対数粘度ηが前記範囲内で大きくなる。前記モル比が0.66~1.5の範囲内で1から遠く離れる程、また、反応時間が短い程、対数粘度ηは前記範囲内で小さくなる。溶液重合法では、反応溶液の粘度、反応時間その他の反応条件などと、これに対応した対数粘度との関係をあらかじめ求めておき、この関係に基づいて反応の終了時点を決定することにより、所定対数粘度ηのポリイミドPを製造することができる。反応時間は2~12時間、反応温度は180~205℃であるのが好ましい。
 ポリイミドPは、通常、有機溶剤溶液として製造される。
 有機溶媒としては特に限定されないが、例えば、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N-メチルカプロラクタム、ヘキサメチルホスホルアミド、テトラメチレンスルホン、ジメチルスルホキシド、m-クレゾール、フェノール、p-クロルフェノール、2-クロル-4-ヒドロキシトルエン、ジグライム、トリグライム、テトラグライム、ジオキサン、γ-ブチロラクトン、ジオキソラン、シクロヘキサノン、シクロペンタノンなどが使用可能であり、2種以上を併用しても良い。しかし、ポリイミドPと溶媒からなるポリイミドワニスの性能を考慮すると、N-メチル-2-ピロリドン(NMP)、N,N-ジメチルアセトアミド(DMAC)、γ-ブチロラクトン(GBL)を単独又は併用するのが好ましい。有機溶媒は、得られる有機溶媒溶液中のポリイミドP濃度が、好ましくは1~50質量%、より好ましくは5~40質量%になるような量用いる。また、溶液重合による製造の場合、上記溶媒と併せてヘキサン、ヘプタン、ベンゼン、トルエン、キシレン、クロロベンゼン、o-ジクロロベンゼン等の貧溶媒を、重合体が析出しない程度に使用することができる。
 ポリイミドPは、(1)溶液重合法、(2)ポリアミック酸溶液を調製し、これを製膜し、イミド化する方法、(3)HPMDAのハーフエステル塩などの塩又はイミドオリゴマーを得、固相重合を行う方法、(4)テトラカルボン酸二無水物とジイソシアネートを反応させる方法、その他従来公知の方法で製造することができる。それぞれの方法を併用しても良い。テトラカルボン酸成分(Y)とジアミン成分(Z)との反応は、酸、三級アミン類、無水物などの従来公知の触媒の存在下で行ってもよい。
 これらの方法の中で、ポリイミドPの有機溶媒溶液が直接得られるので、下記(1)~(3)の溶液重合法が好ましい。
(1)ジアミン成分(Z)、有機溶媒、及び必要に応じて触媒を含む混合物を10~600rpmで撹拌して均一溶液とし、これを温度30~90℃に保ち、テトラカルボン酸成分(Y)及び必要に応じて触媒を添加する。
(2)テトラカルボン酸成分(Y)、有機溶媒、及び必要に応じて触媒を含む混合物を10~600rpmで撹拌して均一溶液とし、これを温度30~90℃に保ち、ジアミン成分(Z)及び必要に応じて触媒を添加する。
(3)(1)又は(2)の方法の後に、0.1~6時間かけて160~230℃、好ましくは180~205℃まで昇温する。この温度は使用する有機溶媒の沸点によって左右される。反応系外に除去される成分を捕集しつつ、温度を0.5~24時間、好ましくは2~12時間ほぼ一定に保つ。その後必要ならば有機溶媒を更に添加し、適温まで冷却する。
 ポリイミドPを製造するための溶液重合は、トリメチルアミン、トリエチルアミン(TEA)、トリプロピルアミン、トリブチルアミン、トリエタノールアミン、N,N-ジメチルエタノールアミン、N,N-ジエチルエタノールアミン、トリエチレンジアミン、N-メチルピロリジン、N-エチルピロリジン、N-メチルピペリジン、N-エチルピペリジン、イミダゾール、ピリジン、キノリン、イソキノリンなどの3級アミン化合物から選ばれる少なくとも1種の触媒の存在下で行ってもよい。使用する場合、触媒の使用量は、テトラカルボン酸成分(Y)の0.1~100モル%が好ましく、1~10モル%がより好ましい。
 (1.3)ポリアミドイミド
 本発明に用いられるポリアミドイミドは、酸成分として、
 a)トリカルボン酸;ジフェニルエーテル-3,3′,4′-トリカルボン酸、ジフェニルスルホン-3,3′,4′-トリカルボン酸、ベンゾフェノン-3,3′,4′-トリカルボン酸、ナフタレン-1,2,4-トリカルボン酸、ブタン-1,2,4-トリカルボン酸などのトリカルボン酸等の一無水物、エステル化物などの単独、又は2種以上の混合物。
 b)テトラカルボン酸;ジフェニルスルホン-3,3′,4,4′-テトラカルボン酸、ナフタレン-2,3,6,7-テトラカルボン酸、ナフタレン-1,2,4,5-テトラカルボン酸、ナフタレン-1,4,5,8-テトラカルボン酸、ブタン-1,2,3,4-テトラカルボン酸、シクロペンタン-1,2,3,4-テトラカルボン酸一無水物、二無水物、エステル化物などの単独、又は2種以上の混合物。
 c)ジカルボン酸;アジピン酸、アゼライン酸、セバシン酸、シクロヘキサン-4,4′-ジカルボン酸のジカルボン酸、及びこれらの一無水物やエステル化物。
 アミン成分としては、
 d)アミン成分
 3,3′-ジメチル-4,4′-ジアミノビフェニル、3,3′-ジエチル-4,4′-ジアミノビフェニル、2,2′-ジメチル-4,4′-ジアミノビフェニル、2,2′-ジエチル-4,4′-ジアミノビフェニル、3,3′-ジメトキシ-4,4′-ジアミノビフェニル、3,3′-ジエトキシ-4,4′-ジアミノビフェニル、p-フェニレンジアミン、m-フェニレンジアミン、3,4′-ジアミノジフェニルエーテル、4,4′-ジアミノジフェニルエーテル、4,4′-ジアミノジフェニルスルホン、3,3′-ジアミノジフェニルスルホン、3,4′-ジアミノビフェニル、3,3′-ジアミノビフェニル、3,3′-ジアミノベンズアニリド、4,4′-ジアミノベンズアニリド、4,4′-ジアミノベンゾフェノン、3,3′-ジアミノベンゾフェノン、3,4′-ジアミノベンゾフェノン、2,6-トリレンジアミン、2,4-トリレンジアミン、4,4′-ジアミノジフェニルスルフィド、3,3′-ジアミノジフェニルスルフィド、4,4′-ジアミノジフェニルプロパン、3,3′-ジアミノジフェニルプロパン、3,3′-ジアミノジフェニルメタン、4,4′-ジアミノジフェニルメタン、p-キシレンジアミン、m-キシレンジアミン、2,2′-ビス(4-アミノフェニル)プロパン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]プロパン、4,4′-ビス(4-アミノフェノキシ)ビフェニル、4,4′-ビス(3-アミノフェノキシ)ビフェニル、テトラメチレンジアミン、ヘキサメチレンジアミン、イソホロンジアミン、4,4′-ジシクロヘキシルメタンジアミン、シクロヘキサン-1,4-ジアミン、ジアミノシロキサン、又はこれらに対応するジイソシアネート単独、又は2種以上の混合物が挙げられる。
 特に、酸成分として、無水トリメリット酸(TMA)、3,3,4′,4′-ベンゾフェノンテトラカルボン酸二無水物(BTDA)、及び3,3,4′,4′-ビフェニルテトラカルボン酸二無水物(BPDA)、イソシアネート成分として1,5-ナフタレンジイソシアネート(NDI)、を含む原料で重合されたポリアミドイミド樹脂であることが好ましい。
 ポリアミドイミドのイミド結合とアミド結合のモル比は、99/1~60/40モル比が好ましく、より好ましくは99/1~75/25であり、さらにより好ましくは90/10~80/20である。イミド結合とアミド結合のモル比が、60/40以上では、耐熱性、耐湿信頼性、耐熱信頼性が向上する。また、99/1以下であると、弾性率が低くなり、耐折特性、屈曲特性が向上する傾向にある。
 一つの好ましい実施態様は、式(6)で表される単位を必須成分とし、更に、式(7)、式(8)、及び、式(9)で表される群より選ばれる少なくとも1種の単位を、繰り返し単位として分子鎖中に含有するポリアミドイミド樹脂である。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
(Xは、酸素原子、CO、SO、又は、結合を表し、nは0又は1を表す。)
Figure JPOXMLDOC01-appb-C000008
(Yは、酸素原子、CO、又はOOC-R-COOを表し、nは0又は1を、Rは二価の有機基を表す。)
Figure JPOXMLDOC01-appb-C000009
 ここで、式(7)中、XはSO、又は、結合(ビフェニル結合)、又は、n=0が好ましく、更に好ましくは、結合(ビフェニル結合)、又はn=0の場合である。式(8)中、Yは、ベンゾフェノン型(CO)、又は、結合型(ビフェニル結合)が好ましい。
 一つの好ましい実施態様は式(6)が無水トリメリット酸と1,5-ナフタレンジイソシアネートからの繰り返し単位、式(7)がテレフタル酸と1,5-ナフタレンジイソシアネートからの繰り返し単位、式(8)がビフェニルテトラカルボン酸二無水物、及び/又は、ベンゾフェノンテトラカルボン酸二無水物と1,5-ナフタレンジイソシアネートからの繰り返し単位で、その含有比が式(6)/{式(7)+式(8)+式(9)}=1/99~40/60モル比で、かつ、式(7)/式(8)=10/90~90/10モル比が好ましい。
 上記ポリアミドイミド樹脂は、通常の方法で合成することができる。例えば、イソシアネート法、アミン法(酸クロリド法、低温溶液重合法、室温溶液重合法等)などであるが、本発明で用いるポリアミドイミド樹脂は有機溶媒に可溶なものが好ましく、前記通り、ピール強度(接着強度)の信頼性確保などの理由から、イソシアネート法による製造が好ましい。また、工業的にも、重合時の溶液がそのまま塗布できるため好ましい。
 本発明に用いられるポリアミドイミド樹脂の分子量は、N-メチル-2-ピロリドン中(ポリマー濃度0.5g/cm)、30℃での対数粘度にして0.3から2.5cm/gに相当する分子量を有するものが好ましく、より好ましくは0.5から2.0cm/gに相当する分子量を有するものである。対数粘度が0.3cm/g以上であればフィルム等の成型物にしたとき、機械的特性が十分となる。また、2.0cm/g以下であると溶液粘度が高くなり過ぎず、成形加工が容易となる。
 (1.4)ポリエーテルイミド
 本発明に用いられるポリエーテルイミドは、その構造単位に芳香核結合及びイミド結合を含む熱可塑性樹脂であり、特に制限されるものでなく、具体的には、下記式(10)又は下記式(11)で表される繰り返し単位を有するポリエーテルイミドである。
Figure JPOXMLDOC01-appb-C000010
 上記式(10)で表される繰り返し単位を有するポリエーテルイミドは、ゼネラルエレクトリック社製の商品名「Ultem 1000」(ガラス転移温度:216℃)、「Ultem 1010」(ガラス転移温度:216℃)、上記式(11)で表される繰り返し単位を有するポリエーテルイミドは、「Ultem CRS5001」(ガラス転移温度Tg226℃)、が挙げられ、そのほかの具体例として、三井化学株式会社製の商品名「オーラムPL500AM」(ガラス転移温度258℃)などが挙げられる。
 当該ポリエーテルイミドの製造方法は特に限定されるものではないが、通常、上記式(10)を有する非晶性ポリエーテルイミドは、4,4′-[イソプロピリデンビス(p-フェニレンオキシ)]ジフタル酸二無水物とm-フェニレンジアミンとの重縮合物として、また上記構造式(11)を有するポリエーテルイミドは、4,4′-[イソプロピリデンビス(p-フェニレンオキシ)]ジフタル酸二無水物とp-フェニレンジアミンとの重縮合物として公知の方法によって合成される。
 また、本発明に用いられるポリエーテルイミドには、本発明の主旨を超えない範囲でアミド基、エステル基、スルホニル基など共重合可能なほかの単量体単位を含むものであってもよい。なお、ポリエーテルイミドは、1種類を単独で又は2種類以上を組み合わせて用いることができる。
 (1.5)添加剤
 本発明に係る上記ポリイミド樹脂を溶液流延製膜法で製膜する際に、当該ポリイミド樹脂を含有するドープには、各種添加剤を添加することができる。用いることができる添加剤について以下説明する。
 ポリイミド樹脂を含有するドープには、本発明の効果を阻害しない範囲で、熱伝導性フィラーを添加しても良い。これにより、ポリイミドフィルムの熱伝導率を高めることができる。
 熱伝導性フィラーとしては、高熱伝導性のフィラーが好ましく、具体的には、アルミニウム、銅、ニッケル、シリカ、ダイヤモンド、アルミナ、マグネシア、ベリリア、窒化ホウ素、窒化アルミニウム、窒化ケイ素、炭化ケイ素が挙げられ、これらのフィラー形状は球状、板状の物のほか、針状など特に限定されるものではない。これらの中でも、シリカ、アルミナ、窒化アルミニウム、窒化ホウ素、窒化ケイ素及びマグネシアから選ばれる少なくとも1種類以上のフィラーが好ましい。
 また、本発明に係るポリイミド樹脂を含有するドープには、脱水剤を添加しても良い。脱水剤の具体例としては、無水酢酸、無水プロピオン酸、無水酪酸等の脂肪族カルボン酸無水物、及び無水安息香酸等の芳香族カルボン酸無水物等が挙げられるが、無水酢酸及び/又は無水安息香酸が好ましい。また、ポリアミド酸又はポリイミドに対する脱水剤の含有量は、脱水剤の含有量(モル)/ポリアミド酸又はポリイミドの含有量(モル)が、0.1~5.0となる範囲が好ましい。なお、この場合には、アセチルアセトン等のゲル化遅延剤を併用しても良い。
 また、本発明に係るポリイミド樹脂を含有するドープには、例えば、フッ素系、ポリシロキサン系等の界面活性剤を添加しても良い。界面活性剤を添加すると、表面平滑性の良好なフィルムを得やすくなる。界面活性剤は市販品を使用しても良く、フッ素系界面活性剤としては、例えば、DIC株式会社のメガファック(登録商標)シリーズや、株式会社ネオスのフタージェント(登録商標)シリーズであるフタージェント(登録商標)251、212MH、250、222F、212D、FTX-218等が挙げられる。ポリシロキサン系界面活性剤としては、例えば、ビックケミー・ジャパン株式会社のBYK-307、BYK-315、BYK-320、BYK-325、BYK-330、BYK-331、BYK-332、BYK-333、BYK-344等が挙げられる。
 また、本発明に係る透明耐熱性樹脂を含有するドープには、例えば、フェノール系、硫黄系、リン酸系、亜リン酸系等の酸化防止剤を添加しても良い。
 また、本発明に係るポリイミド樹脂を含有するドープには、その他の各種機能性材料を添加しても良い。各種機能性材料とは、例えば、カーボンナノチューブ、ナノ金属材料等の導電性材料、チタン酸バリウム等の強誘電性材料、ZnS:Ag、ZnS:Cu、YS:Eu等の蛍光体、紫外線吸収剤等である。
 更に、本発明に係るポリイミド樹脂を含有するドープには、リン系難燃剤を添加しても良い。これにより、ポリイミド系光学フィルムに難燃性を付与することができる。リン系難燃剤としては、例えば、ポリリン酸アンモニウム、リン酸エステル、縮合リン酸エステル、フェノキシホスファゼン化合物、リン酸エステルアミド等を用いることができる。これらリン系難燃剤の中でも、フェノキシホスファゼン化合物を使用することが好ましい。該フェノキシホスファゼン化合物としては、例えば、大塚化学製SPS-100等を使用することができる。なお、ハロゲン形難燃剤を混合して難燃性を付与することもできるが、リン系難燃剤を使用することが好ましい。
 (1.6)フィルムのイミド化処理
 ポリアミド酸を用いて流延膜を形成した場合、得られたフィルムに対してイミド化処理を施すことでポリイミドフィルムを製造することができる。
 フィルムは適切な熱処理を施すことでポリマー鎖分子内及びポリマー鎖分子間でのイミド化が進行して機械的特性が向上するが、熱処理を施すほどポリイミドを用いた光学フィルムは吸収波長の変化に伴い色濃く変化する。特に、4.0~15.0μmの薄いポリイミドを用いたフィルムにおいては、L値が高いほど全体的に色が薄いために厚さムラによる横段ムラは見えにくく外観は良好となるが、イミド化の進行具合が十分ではないためポリイミドフィルムの耐屈曲性及び破断強度等の機械的特性が悪化する。また、逆にL値が低すぎると、厚さムラによる色のコントラストが鮮明になるため横段ムラが悪化するばかりか、ポリイミドを用いた光学フィルムが一部炭化して脆弱となりフィルムの機械的特性が著しく後退する。上記理由から、本発明に用いられるポリイミドを用いた透明基材(B)の製造方法では、L値を30~55とするのが良好な機械的特性を保つのに良く、より好ましくは、L値は38~54とするのが良い。
 フィルムのL値は、スガ試験機製SM-7-CHを用い測定した。フィルム幅方向に5分割したそれぞれのサンプルについて、幅方向の中央位置を中心とした30mm×30mmの範囲を切り出して測定し、その5点平均値とした。なお、L値はフィルム厚さが薄くなると検出器の感度が鈍くなり適切な評価ができないことから、フィルム厚さが50μm以上のフィルムについては1枚、50μm未満のフィルムについては50μm以上になる最小の枚数を重ねて測定した値である。
 フィルムのL値が30~55となるようなフィルムを得るための熱処理の方法については、例えば、熱風や電気ヒーター(例えば、赤外線ヒーター等)等公知の手段を用いて熱処理量を調整する手法を挙げることができる。
 本発明に係るポリイミドを用いたフィルムの製造方法においては、閉環触媒及び脱水剤を含有しないポリアミド酸の溶液を流延してフィルムに成形し、支持体上で加熱乾燥した後、支持体よりフィルムを剥離し、更に高温下で乾燥熱処理することによりイミド化する熱閉環法を用いることができる。また、閉環触媒及び脱水剤を含有させたポリアミド酸の溶液を流延してフィルム状に成形し、支持体上でイミド化を一部進行させてフィルムとした後、支持体よりフィルムを剥離し、加熱乾燥/イミド化し、熱処理を行う化学閉環法を用いることもできる。閉環触媒としては、上記した第3級アミン等を用いることができる。
 熱閉環法においては、例えば赤外線ヒーターを用いることにより熱処理を行うことができる。
 赤外線ヒーターとしては、例えば、フィラメントを内管が囲むように形成されたヒーター本体が外管によって覆われ、ヒーター本体と外管との間に冷却流体が流通可能に構成されたものが用いられる。フィラメントは、700~1200℃に通電加熱され、波長が3μm付近にピークを持つ赤外線を放射する。内管及び外管は、石英ガラスやホウケイ酸クラウンガラス等で作製されており、3.5μm以下の波長の赤外線を通過し、3.5μmを超える波長の赤外線を吸収するフィルタとして機能する。このような赤外線ヒーターは、フィラメントから波長が3μm付近にピークを持つ赤外線が放射されると、そのうち3.5μm以下の波長の赤外線を内管や外管を通過してフィルムに照射する。この波長の赤外線が照射されることにより、フィルム内の混合溶媒を効率的に蒸発させることができるとともに、フィルム内のポリアミド酸をイミド化することができる。なお、内管や外管は、3.5μmを超える波長の赤外線を吸収するが、流路を流れる冷却流体によって冷却されるため、フィルムから蒸発する混合溶媒の着火点未満の温度に維持することが可能である。
 本発明に係るポリイミドを用いたフィルムの製造方法では、上記のいずれの閉環方法を採用しても良いが、化学閉環法はポリアミド酸の溶液に閉環触媒及び脱水剤を含有させる設備を必要とするものの、自己支持性を有するフィルムを短時間で得られる点で、より好ましい方法といえる。
 (1.7)イミド構造を有する透明耐熱性樹脂を用いたフィルムの製造方法
 本発明に係る透明基材(B)(以下、ポリイミドフィルムともいう。)の製造方法の具体例について以下説明する。
 本発明に係るイミド構造を有する透明耐熱性樹脂を、好ましくはジクロロメタンを50質量%以上含有する混合溶媒に溶解してドープを調製する工程(ドープ調製工程)と、前記ドープを支持体上に流延して流延膜を形成する工程(流延工程)と、支持体上で流延膜から溶媒を蒸発させる工程(溶媒蒸発工程)、流延膜を支持体から剥離する工程(剥離工程)、得られたフィルムを乾燥させる工程(第1乾燥工程)、フィルムを延伸する工程(延伸工程)、延伸後のフィルムを更に乾燥させながらベンディング処理を行う工程(第2乾燥工程)、得られたポリイミドフィルムを巻き取る工程(巻取り工程)、フィルムを加熱処理してイミド化させる工程(加熱工程)等により行われることが好ましい。
 以下、各工程について具体的に説明する。
 〔A〕ドープ調製工程
 ドープ調製工程は、本発明に係るポリイミド樹脂を、ジクロロメタンを主な溶媒、好ましくは溶媒の50質量%以上ジクロロメタンを含有する混合溶媒に溶解させたドープを調製することが好ましい。
 その後、調製したドープを送液ポンプ等により濾過器に導いて濾過する。
 すなわち、ドープの主たる溶媒であるジクロロメタンの1気圧における沸点+5℃以上の温度で当該ドープを濾過することにより、ドープ中のゲル状異物を取り除く。好ましい温度範囲は45~120℃であり、45~70℃がより好ましく、45~55℃であることが更に好ましい。
 ここで、ジクロロメタンを50質量%以上含有する溶媒を用いることが、ポリイミドフィルムの平滑製を向上する観点から、好ましい。
 ジクロロメタンとともに含有される溶媒としては、本発明に係るイミド構造を有する透明耐熱性樹脂を溶解し得るものであればいずれであっても良く、例えば、エタノール、ブタノール、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N-メチルカプロラクタム、ヘキサメチルホスホルアミド、テトラメチレンスルホン、ジメチルスルホキシド、m-クレゾール、フェノール、p-クロルフェノール、2-クロル-4-ヒドロキシトルエン、ジグライム、トリグライム、テトラグライム、ジオキサン、γ-ブチロラクトン、ジオキソラン、シクロヘキサノン、シクロペンタノン、1,4-ジオキサン、イプシロンカプロラクタム、クロロホルム等が使用可能であり、2種以上を併用しても良い。また、これらの溶媒と併せて、ヘキサン、ヘプタン、ベンゼン、トルエン、キシレン、クロロベンゼン、o-ジクロロベンゼン等の貧溶媒を、ポリアミド酸又はポリイミドが析出しない程度に使用しても良い。
 また、上記ジクロロメタンとともに混合溶媒に含有される溶媒としては、ジクロロメタンよりも沸点の高い溶媒であることが好ましい。これにより、支持体から剥離した後の流延膜のカールも効果的に抑制することができる。
 〔B〕流延膜形成工程
 調製したドープを、送液ポンプ(例えば、加圧型定量ギヤポンプ)を通してダイスに送液し、無限に移送する無端の支持体、例えば、ステンレスベルト又は回転する金属ドラム等の金属支持体上の流延位置に、ダイスからドープを流延する。
 流延(キャスト)における金属支持体は、表面を鏡面仕上げしたものが好ましく、支持体としては、ステンレススティールベルト又は鋳物で表面をめっき仕上げしたドラム、又はステンレスベルト若しくはステンレス鋼ベルト等の金属支持体が好ましく用いられる。キャストの幅は1~4mの範囲、好ましくは1.5~3mの範囲、更に好ましくは2~2.8mの範囲とすることができる。なお、支持体は、金属製でなくとも良い。
 金属支持体の走行速度は特に制限されないが、通常は5m/分以上であり、好ましくは10~180m/分、特に好ましくは80~150m/分である。金属支持体の走行速度は、高速であるほど、同伴ガスが発生しやすくなり、外乱による膜厚ムラの発生が顕著になる。
 金属支持体の走行速度は、金属支持体外表面の移動速度である。
 金属支持体の表面温度は特に制限されないが、通常は0℃以上、好ましくは20~60℃であり、より好ましくは20~25℃である。
 ダイスは、幅方向に対する垂直断面において、吐出口に向かうに従い次第に細くなる形状を有している。ダイスは通常、具体的には、下部の走行方向で下流側と上流側とにテーパー面を有し、当該テーパー面の間に吐出口がスリット形状で形成されている。ダイスは金属からなるものが好ましく使用され、具体例として、例えば、ステンレス、チタン等が挙げられる。本発明において、厚さが異なるフィルムを製造するとき、スリット間隙の異なるダイスに変更する必要はない。
 ダイスの口金部分のスリット形状を調整でき、膜厚を均一にしやすい加圧ダイを用いることが好ましい。加圧ダイには、コートハンガーダイやTダイ等があり、いずれも好ましく用いられる。厚さが異なるフィルムを連続的に製造する場合であっても、ダイスの吐出量は略一定の値に維持されるので、加圧ダイを用いる場合、押し出し圧力、せん断速度等の条件もまた略一定の値に維持される。また、製膜速度を上げるために加圧ダイを金属支持体上に2基以上設け、ドープ量を分割して積層しても良い。
 ダイスからのドープの吐出量は好ましくは20~1000g/mであり、より好ましくは40~800g/mである。本発明において、厚さが異なるフィルムを連続的に製造する場合であっても、ダイスからのドープ吐出量は上記範囲内で略一定の値に維持されることが好ましい。当該吐出量が40g/m以上であると、流延膜が振動及び風等の外乱の影響を受けにくくなるので、膜厚ムラを十分に防止することができる。当該吐出量が800g/m以下であると、収縮が過度に起きにくく、収縮による膜厚ムラが発生しないので、膜厚ムラを十分に防止できる。
 〔C〕溶媒蒸発工程
 溶媒蒸発工程は、金属支持体上で行われ、流延膜(ウェブともいう。)を金属支持体上で加熱し、溶媒を蒸発させる予備乾燥工程である。
 溶媒を蒸発させるには、例えば、乾燥機により流延膜側及び金属支持体裏側から加熱風を吹き付ける方法、金属支持体の裏面から加熱液体により伝熱させる方法、輻射熱により表裏から伝熱する方法等を挙げることができる。それらを適宜選択して組み合わせる方法も好ましい。金属支持体の表面温度は全体が同じであっても良いし、位置によって異なっていても良い。加熱風の温度は10~80℃が好ましい。
 金属支持体を加熱する方法においては、温度が高い方が流延膜の乾燥速度を速くできるため好ましいが、余り高すぎると流延膜が発泡したり、平面性が劣化したりする場合があるため10~30℃で行うことが好ましい。
 溶媒蒸発工程においては、流延膜の剥離性及び剥離後の搬送性の観点から、残留溶媒量が10~150質量%になるまで、流延膜を乾燥することが好ましい。
 本発明において、残留溶媒量は下記の式で表すことができる。
  残留溶媒量(質量%)={(M-N)/N}×100
 ここで、Mは流延膜(フィルム)の所定の時点での質量、NはMのものを200℃で3時間乾燥させた時の質量である。特に、溶媒蒸発工程において達成された残留溶媒量を算出するときのMは剥離工程直前の流延膜の質量である。
 〔D〕剥離工程
 金属支持体上で溶媒が蒸発した流延膜を、剥離位置で剥離する。
 金属支持体と流延膜とを剥離する際の剥離張力は、通常、60~400N/mの範囲内であるが、剥離の際に皺が入りやすい場合、190N/m以下の張力で剥離することが好ましい。
 本発明においては、当該金属支持体上の剥離位置における温度を-50~60℃の範囲内とすることが好ましく、10~40℃の範囲内がより好ましく、15~40℃の範囲内とすることが最も好ましい。
 剥離されたフィルムは、延伸工程に直接送られても良いし、所望の残留溶媒量を達成するように第1乾燥工程に送られた後に延伸工程に送られても良い。本発明においては、延伸工程での安定搬送の観点から、剥離工程後、フィルムは、第1乾燥工程及び延伸工程に順次送られることが好ましい。
 〔E〕第1乾燥工程
 第1乾燥工程は、フィルムを加熱し、溶媒を更に蒸発させる乾燥工程である。乾燥手段は特に制限されず、例えば、熱風、赤外線、加熱ローラー、マイクロ波等を用いることができる。簡便さの観点からは、千鳥状に配置したローラーでフィルムを搬送しながら、熱風等で乾燥を行うことが好ましい。乾燥温度は、残留溶媒量及び搬送における伸縮率等を考慮して、30~200℃の範囲が好ましい。
 〔F〕延伸工程
 金属支持体から剥離されたフィルムを延伸することで、フィルムの膜厚や平坦性、配向性等を制御することができる。
 本発明に係るポリイミドフィルムの製造方法においては、長手方向及び/又は幅手方向に延伸することが好ましい。
 延伸操作は多段階に分割して実施しても良い。また、二軸延伸を行う場合には同時二軸延伸を行っても良いし、段階的に実施しても良い。この場合、段階的とは、例えば、延伸方向の異なる延伸を順次行うことも可能であるし、同一方向の延伸を多段階に分割し、かつ異なる方向の延伸をそのいずれかの段階に加えることも可能である。
 すなわち、例えば、次のような延伸ステップも可能である:
 ・長手方向に延伸→幅手方向に延伸→長手方向に延伸→長手方向に延伸
 ・幅手方向に延伸→幅手方向に延伸→長手方向に延伸→長手方向に延伸
 また、同時二軸延伸には、一方向に延伸し、もう一方を、張力を緩和して収縮する場合も含まれる。
 延伸開始時の残留溶媒量は0.5~100質量%の範囲内であることが好ましい。
 当該残留溶媒量は、2質量%以上であれば、膜厚偏差が小さくなり、平面性の観点から好ましく、10質量%以内であれば、表面の凹凸が減り、平面性が向上し好ましい。
 本発明に係るポリイミドフィルムの製造方法においては、延伸後の膜厚が所望の範囲になるように長手方向及び/又は幅手方向に、好ましくは幅手方向に延伸しても良い。フィルムのガラス転移点(Tg)のうち最も低いTgをTgL、最も高いTgをTgHとしたときに、(TgL-200)~(TgH+50)℃の温度範囲で延伸することが好ましい。上記温度範囲で延伸すると、延伸応力を低下できるのでヘイズが低くなる。また、破断の発生を抑制し、平面性、フィルム自身の着色性に優れたポリイミドフィルムが得られる。延伸温度は、(TgL-150)~(TgH+40)℃の範囲で行うことがより好ましい。
 本発明に係るポリイミドフィルムの製造方法では、支持体から剥離された自己支持性を有するフィルムを、延伸ローラーで走行速度を規制することにより長手方向に延伸することができる。長手方向の延伸倍率は、30~350℃の温度範囲で1.05~2.50倍が好ましく、より好ましくは1.10~2.0倍、更に好ましくは1.10~1.80倍である。
 幅手方向に延伸するには、例えば、特開昭62-46625号公報に示されているような乾燥全処理又は一部の処理を幅方向にクリップ又はピンでフィルムの幅両端を幅保持しつつ乾燥させる方法(テンター方式と呼ばれる。)、中でも、クリップを用いるテンター方式が好ましく用いられる。
 長手方向に延伸されたフィルムは、クリップに幅方向両端部を把持された状態にてテンターへ導入され、テンタークリップとともに走行しながら、幅方向へ延伸されることが好ましい。幅方向の延伸倍率は、特に限定されないが、30~300℃の温度範囲で1.05~1.90倍が好ましく、より好ましくは1.10~1.60倍、更に好ましくは1.10~1.50倍である。
 幅手方向への延伸に際し、フィルム幅手方向に50~1000%/minの延伸速度で延伸することが、フィルムの平面性を向上する観点から、好ましい。
 延伸速度は50%/min以上であれば、平面性が向上し、またフィルムを高速で処理することができるため、生産適性の観点で好ましく、1000%/min以内であれば、フィルムが破断することなく処理することができ、好ましい。
 より好ましい延伸速度は、100~500%/minの範囲内である。延伸速度は下記式によって定義される。
  延伸速度(%/min)=[(d/d)-1]×100(%)/t
(上記式において、dは延伸後の樹脂フィルムの前記延伸方向の幅寸法であり、dは延伸前の樹脂フィルムの前記延伸方向の幅寸法であり、tは延伸に要する時間(min)である。)
 延伸工程では、通常、延伸した後、保持・緩和が行われる。すなわち、本工程は、フィルムを延伸する延伸段階、フィルムを延伸状態で保持する保持段階及びフィルムを延伸した方向に緩和する緩和段階をこれらの順序で行うことが好ましい。保持段階では、延伸段階で達成された延伸倍率での延伸を、延伸段階における延伸温度で保持する。緩和段階では、延伸段階における延伸を保持段階で保持した後、延伸のための張力を解除することによって、延伸を緩和する。緩和段階は、延伸段階における延伸温度以下で行えば良い。
 〔G〕第2乾燥工程
 次いで、延伸後のフィルムを加熱して乾燥させる。熱風等によりフィルムを加熱する場合、使用済みの熱風(溶媒を含んだエアーや濡れ込みエアー)を排気できるノズルを設置して、使用済み熱風の混入を防ぐ手段も好ましく用いられる。熱風温度は、40~350℃の範囲がより好ましい。また、乾燥時間は5秒~30分程度が好ましく、10秒~15分がより好ましい。
 また、加熱乾燥手段は熱風に制限されず、例えば、赤外線、加熱ローラー、マイクロ波等を用いることができる。乾燥温度は残留溶媒量、搬送における伸縮率等を考慮して、40~350℃の範囲がより好ましい。
 第2乾燥工程においては、残留溶媒量が0.5質量%以下になるまで、フィルムを乾燥することが好ましい。
 本発明に係る透明基材(B)は、当該透明基材(B)の投影画像から切り取った所定の矩形エリアにおいて、グレーバリューの標準偏差σが、0.50~1.10の範囲内であり、かつ前記矩形エリアの二値化画像における黒部分の占める面積が、50%以下である程度に平滑であることが、偏光子(A)の親水性樹脂層表面をより平滑にする効果が高く、偏光解消を改善する観点から、好ましい。
 例えば表面にムラや横段等が多い透明基材(B)であると、前記投影画像を所定の矩形エリアに切り取り、当該エリアのグレーバリューの標準偏差σをとると当該σ値が大きく、かつ当該エリアの画像を二値化したときの黒部分の面積が大きくなる。したがって、透明基材(B)の表面の平滑度を前記標準偏差σ及び前記矩形エリアの二値化画像における黒部分の占める面積で表すことが可能である。
 図3に本発明に係るフィルム投影画像の解析を行う模式図を示す。
 白色光源12(株式会社日本技術センター製 S-light)を透明基材(B)11に対して斜め45°方向から、透明基材(B)11と白色光源12の距離を60cmに調整して照射し、透明基材(B)11から投影面13までの距離を70cmとして投影する。投影面3から90°の方向に80cmの距離で、カメラ14(例えば、Canon製EOS KISS50、レンズEF-S 18=55mm、ISO感度100、絞り5.6、シャッター速度1/10秒、ホワイトバランス マニュアル設定)にて投影画像を撮影し撮影画像を得る。
 次いで、撮影画像について以下の手順にて解析を行う。
 [平滑性のためのムラ数値化手順]
 1.撮影した画像をフリーソフトImageJを用いてパソコンに読み込む。
 2.実際の撮影画像において1cm×5cmとなるような矩形の評価エリアを設定する。そのとき前記矩形の長辺がフィルム試料の搬送方向になるようにする。
 3.フリーソフトImageJによって、8bit化(グレースケール化)を行う。
 4.フリーソフトImageJによってバックグラウンド補正を行う。
 5.グレースケールにおけるグレーバリューの標準偏差σ、平均値mを算出する。
 6.平均値mを閾値として前記矩形の評価エリアの二値化を行う。
 7.前記二値化によって得られる黒部分(暗部)の面積を全体の面積で除して、黒部分面積率K(%)を算出する。
 ここで、フリーソフトImageJとは、WayneRasband作成のImageJ1.32Sをいう。
 また、前記バックグラウンド補正は、例えば画像の右半分と左半分の領域で同一の明るさを有しているにもかかわらず、異なる明るさとして出力されたり、画像の左側から右側にいくにしたがって徐々に明るくなる結果として出力されたりする場合に、バックグラウンド補正を行い、ヒストグラム化、平均階調算出、及び二値化処理をして黒部分(暗部)の面積率K(%)を求めることが好ましい。
 グレースケールにおけるグレーバリューの標準偏差σは、下記に示す方法で算出する。
 グレーバリューのN個のデータ x, x, ・・・・ xNを母集団とし、その母集団の相加平均(母平均)mを下記数式2によって求める:
Figure JPOXMLDOC01-appb-M000011
 次に、上で求めた母平均 mを使って下記数式3で分散を求める。
Figure JPOXMLDOC01-appb-M000012
 この分散(σ)の正の平方根σを、標準偏差σとする。
 本発明に係る透明基材(B)の前記グレースケールにおけるグレーバリューの標準偏差σは、0.50~1.10の範囲内であることが好ましいが、ムラとして視認されない範囲と生産性とを考慮すると、0.70~1.05の範囲であることがより好ましい。
 また、本発明に係るポリイミドフィルムの前記矩形エリアの二値化画像における黒部分の占める面積は50%以下に調整されていることが好ましいが、ムラとして視認されない範囲と生産性とを考慮すると、40~50%の範囲であることがより好ましく、40~45%の範囲であることがさらに好ましい。
 前記グレーバリューの標準偏差σ及び二値化画像における黒部分の占める面積を、前記範囲内に調整する手段は特に限定されるものではなく、ポリイミドの種類の選択や添加剤の種類及び量の選択、さらには後述する製膜時のベンディング処理を加えることで達成することができる。中でも、ポリイミドの種類の選択及びベンディング処理を行うことが好ましい。
 [ベンディング処理]
 本発明に係るポリイミドフィルムは、ドライヤーゾーンで乾燥する第2乾燥工程において、当該ドライヤーゾーンが、フィルムの(ガラス転移温度Tg-150)~(ガラス転移温度Tg-30)℃の範囲内の乾燥温度で、ローラー搬送しながらベンディング処理を150回以上行うことが、前記グレーバリューの標準偏差σを所定の範囲内に調整し、かつ二値化画像における黒部分の占める面積を10~50%の範囲内に調整して、フィルムの平滑性を向上する観点から好ましい。
 前記ベンディング処理とは、所定の乾燥温度に保持されながら、搬送ローラーによって当該フィルムのA面(例えば、流延支持体上のウェブの空気面側)と対向するB面(例えば、流延支持体上のウェブのベルト面側)が交互に内側になるように、搬送過程においてローラーによって曲げられる処理をいう。当該ベンディング処理が、当該フィルムを曲げた時の半径をa(mm)としたとき、1/aの値が0.035mm-1~0.050mm-1の範囲内とし、かつ、ベンディングを150回以上500回未満繰り返しながら行うことによって乾燥されることが好ましい。好ましくは、200~400回の範囲内であることが、平滑性向上の効果と生産性とを満たすため好ましい。フィルムの折り曲げの間隔は、1秒~1分の範囲で行われることが好ましく、2~30秒の範囲で行われることがより好ましい。
 本発明に好ましい上記ベンディング処理について図を用いて説明する。ただし、これに限定されるものではない。
 図4は、本発明に好ましく適用できるベンディング処理装置の模式図である。
 ダイス101よりドープ液が金属支持体102上に流延され、駆動ローラー103により連続的に金属支持体上で乾燥され、ウェブ(金属支持体上に流延した以降のドープ膜の呼び方をウェブとする)を形成する。ウェブは残留溶媒量が所望の値になるように乾燥され、剥離点104においてフィルム状に剥離された後、予備乾燥、延伸処理(不図示)が施され、ベンディングゾーン106に搬送されて、多数の搬送ローラー105によりフィルムのA面(流延支持体上のウェブの空気面側)、B面(流延支持体上のウェブのベルト面側)が交互に搬送ローラー105の内側になるように搬送され連続的にベンディング処理が繰り返される。該ベンディング処理は吸気口107及び排気口108を有するベンディングゾーン106内で行われ、フィルムが所望の雰囲気温度でベンディングされるように調整される。ベンディングゾーン106の後には、フィルムを所定の温度に冷却するための冷却ゾーン109を設けてもよい。
 搬送ローラーの径は、90~108mmの範囲が好ましく、各ローラー間は1800mm程度が好ましい。フィルムを曲げたときの半径をa(mm)としたとき1/aの値が0.035~0.050mm-1の範囲となるようにローラー径を決定すればよい。
 ベンディングゾーン106では、温度調整された熱風が吸気口107より導入され、ベンディングゾーン106内を一定の雰囲気温度に保ち、排気口108より排気される。ベンディングゾーン106内の雰囲気温度を調整するには、他に赤外線、加熱ローラー等で行っても良いが、簡便さの点で熱風で行うのが好ましい。また、乾燥装置内の雰囲気を、空気とするのもよいが、窒素ガスや炭酸ガス、アルゴン等の不活性ガス雰囲気で行ってもよい。
 本発明に係るポリイミドフィルムのベンディング処理時の雰囲気温度は、フィルムの(ガラス転移温度Tg-150℃)~(ガラス転移温度Tg-30℃)の範囲内の乾燥温度で行うことが好ましく、具体的には、180~250℃の範囲が本発明の効果を得る上でより好ましい。
 当該ベンディングゾーンにおける本発明に係るポリイミドフィルムの搬送速度は、10~250m/分の範囲で行うことが好ましく、15~200m/分の範囲で行うことが生産性や破断の点でより好ましい。
 〔H〕巻取り工程
 巻取り工程は、得られたフィルムを巻き取って室温まで冷却する工程である。巻取り機は、一般的に使用されているもので良く、例えば、定テンション法、定トルク法、テーパーテンション法、内部応力一定のプログラムテンションコントロール法等の巻取り方法で巻き取ることができる。
 フィルムの厚さは特に制限されず、例えば、1~200μm、特に2~100μmであることが好ましい。
 巻取り工程においては、延伸搬送したときにテンタークリップ等で挟み込んだフィルムの両端をスリット加工しても良い。スリットした端部は、返材として再利用することが好ましい。ここで、返材とは、フィルムに成形したもののうち、何らかの理由で原料として再利用される部分のことを指し、上記スリットされた端部(耳部ともいう。)や、製造の繰り出し・終端に位置するフィルムの全幅部分、更には、傷やスジ等の外観上の問題で製品として不適合なフィルム等が挙げられる。スリットしたフィルム端部は、1~30mm幅に細かく断裁された後、溶媒に溶解させて再利用する。
 成形されたフィルムのうち返材として再利用される部分の比は、10~90質量%が好ましく、より好ましくは20~80質量%、更に好ましくは30~70質量%である。
 製膜工程の途中又は最終的に発生する返材の量により投入量は若干変わるが、通常、ドープ中の全固形分に対する返材の混合率は10~50質量%程度であり、好ましくは、15~40質量%程度である。返材の混合率は、できるだけ一定量とすることが生産安定上好ましい。
 上述した溶媒蒸発工程から巻取り工程までの各工程は、空気雰囲気下で行っても良いし、窒素ガス等の不活性ガス雰囲気下で行っても良い。また、各工程、特に乾燥工程や延伸工程は、雰囲気における溶媒の爆発限界濃度を考慮して行う。
 〔I〕加熱工程
 上記巻取り工程後に、ポリマー鎖分子内及びポリマー鎖分子間でのイミド化を進行させて機械的特性を向上させるべく、上記第2乾燥工程で乾燥したフィルムを更に熱処理する加熱工程を行うことが好ましい。
 また、ポリイミド(イミド化率100%)を用いてドープを調製した場合や、上記第2乾燥工程を行うことによりフィルムのイミド化率が100%となった場合であっても、フィルムの残留応力を緩和させる目的で、加熱工程を行うことが好ましい。
 なお、上記第2乾燥工程が、加熱工程を兼ねるものであっても良い。
 加熱手段は、例えば、熱風、電気ヒーター、マイクロ波等の公知の手段を用いて行われる。電気ヒーターとしては、上記した赤外線ヒーターを用いることができる。
 加熱処理条件は、フィルムL値が30~55となるようにヒーター出力及び熱風温度等を調整し、最終的な処理条件が200~450℃の温度範囲内で、30秒~1時間の範囲で適宜行うのが好ましい。これにより、ポリイミドフィルムの寸法安定性を向上させることができる。加熱工程において、フィルムを急激に加熱すると表面欠点が増加する等の不具合が生じるため、加熱方法は適宜選択することが好ましい。また、加熱工程は、低酸素雰囲気下で行うことが好ましい。
 第二乾燥工程及び加熱工程における加熱温度は450℃を超えると、加熱に必要なエネルギーが非常に大きくなることから製造コストが高くなり、更に、環境負荷が増大するため、当該加熱温度は450℃以下にすることが好適である。
 なお、巻取り工程後であって、加熱工程の前又は後に、ポリイミドフィルムの幅方向端部をスリットする工程や、ポリイミドフィルムが帯電していた場合にはこれを除電する工程等を更に行うものとしても良い。
 〔2〕液晶表示装置
 本発明の偏光板を液晶表示装置に用いることによって、種々の視認性に優れた液晶表示装置を作製することができる。本発明に係る偏光子(A)の基材を剥離して親水性高分子層側を液晶セルに貼合することで、薄膜の偏光板を具備する液晶表示装置を作製することができる。
 本発明の偏光板はSTN、TN、OCB、HAN、VA(MVA、PVA)、IPS、OCBなどの各種駆動方式の液晶表示装置に用いることができる。
 好ましくはVA(MVA、PVA)型若しくはIPS型液晶表示装置である。
 特に画面が30型以上の大画面の液晶表示装置であっても、環境変動が少なく、光漏れが低減された、色むら、正面コントラストなど視認性に優れ液晶表示装置を得ることができる。
 〔3〕有機エレクトロルミネッセンスディスプレイ
 本発明の有機ELディスプレイは、本発明の偏光板を具備していることが好ましい。本発明の偏光板の偏光子(A)は平面性が改善され、当該有機ELディスプレイの表面に用いた場合に、偏光サングラスを通して見たときのフィルムのムラが目立たず、視認性に優れる有機ELディスプレイを提供することができる。
 本発明の有機ELディスプレイに適用可能な有機EL素子の概要については、例えば、特開2013-157634号公報、特開2013-168552号公報、特開2013-177361号公報、特開2013-187211号公報、特開2013-191644号公報、特開2013-191804号公報、特開2013-225678号公報、特開2013-235994号公報、特開2013-243234号公報、特開2013-243236号公報、特開2013-242366号公報、特開2013-243371号公報、特開2013-245179号公報、特開2014-003249号公報、特開2014-003299号公報、特開2014-013910号公報、特開2014-017493号公報、特開2014-017494号公報等に記載されている構成を挙げることができる。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り「質量部」又は「質量%」を表す。
 実施例1
 <偏光子(A)を有する延伸積層体1の作製>
 〈積層体の作製〉
 (基材A)
 下記PETフィルムを準備し、これを基材Aとした。
 結晶性エステル系熱可塑性樹脂として、膜厚200μm、長さ1000mのアモルファス・ポリエチレンテレフタレートフィルム(A-PET)(三菱樹脂社製ノバクリアーSG-007、ガラス転移温度80℃)を用いた。
 (親水性高分子層)
 親水性高分子としてポリビニルアルコール粉末(日本酢ビ・ポバール(株)製、平均重合度2500、ケン化度99.0モル%以上、商品名:J40)を95℃の熱水中に溶解させ濃度8質量%のポリビニルアルコール水溶液を調製した。得られたポリビニルアルコール水溶液を、積層用の前記基材A上に、リップコーターを用いて塗布し、70℃で5分間乾燥させ、基材Aと親水性高分子層からなる積層体1を作製した。なお、親水性高分子層の厚さは12.0μmであった。
 (延伸工程)
 上記積層体を搬送方向(MD方向)に100℃で4.5倍の自由端一軸延伸を空中で実施した。なお、延伸後の親水性高分子層の厚さは5.6μmであった。
 (染色工程)
 次いで、延伸積層体を60℃の温浴に60秒浸漬し、水100質量部あたりヨウ素を0.05質量部及びヨウ化カリウムを5質量部それぞれ含有する水溶液に、温度28℃で60秒間浸漬した。次いで、緊張状態に保ったまま、水100質量部あたりホウ酸を7.5質量部及びヨウ化カリウムを6質量部それぞれ含有するホウ酸水溶液に、温度73℃で300秒間浸漬した。その後、15℃の純水で10秒間洗浄した。水洗したフィルムを緊張状態に保ったまま、70℃で300秒間乾燥し、基材Aと親水性高分子層からなる染色された延伸積層体1を得た。
 <透明基材(B)の作製>
 <ポリイミド樹脂>
 実施例に用いるポリイミド樹脂を以下の手順で準備した。
 〈ポリイミドA〉
 ステンレススチール製錨型撹拌機、窒素導入管、ディーン・スターク装置を取り付けた500mLのセパラブル四つ口フラスコに4,4′-オキシジフタル酸無水物(ODPA)56.11g(0.18モル)、ジエチルメチルベンゼンジアミン(DETDA)32.09g(0.18モル)、ガンマブチロラクトン(GBL)326.87g、ピリジン2.85g、トルエン33gを仕込み、反応系内を窒素置換した。窒素気流下80℃にて30分間撹拌することによりODPAを溶解させ、その後180℃まで昇温して6時間加熱撹拌を行った。
 反応中に生成する水はトルエン、ピリジンとの共沸混合物として反応系外へ除いた。反応終了後、室温まで冷却し、20質量%濃度のポリイミド溶液を得た。得られたポリイミドの構造は、下記の式のとおりである。このポリイミド溶液にイソプロパノールを投入し撹拌後に冷却してポリイミドAの固体を得た。ポリイミドAは、重量平均分子量:80000、イミド化率:98%であった。この固体を洗浄、乾燥後にジクロロメタンに溶解し、さらに、ジオキソランをジクロロメタンの1質量%を加え、製膜用のポリイミド溶液を作製した。
Figure JPOXMLDOC01-appb-C000013
 (式中、R~Rは一つがメチル基、二つがエチル基である。)
 〈ポリイミドB〉
 ポリイミドAの作製と同様の装置にODPA46.80g(0.15モル)、4,4′-ジアミノ-3,3′,5,5′-テトラメチルジフェニルメタン38.16g(0.15モル)、GBL147.67g、ピリジン2.39g、トルエン50gを仕込み、反応系内を窒素置換した。窒素気流下80℃にて30分間撹拌することによりODPAを溶解させ、その後180℃まで昇温して7時間加熱撹拌行った。
 反応中に生成する水はトルエン、ピリジンとの共沸混合物として反応系外へ除いた。反応終了後、120℃まで冷却したところでGBL100gを添加することにより、25質量%濃度のポリイミド溶液を得た。得られたポリイミドの構造は、下記の式のとおりである。このポリイミド溶液にイソプロパノールを投入し撹拌後に冷却してポリイミドBの固体を得た。ポリイミドBは、重量平均分子量:94000、イミド化率:99%であった。この固体を洗浄、乾燥後にジクロロメタンに溶解し、さらに、ジオキソランをジクロロメタンの1質量%を加え、製膜用のポリイミド溶液を作製した。
Figure JPOXMLDOC01-appb-C000014
 〈ポリイミドC〉
 (ポリイミド前駆体の重合)
 反応容器としてステンレス製セパラブルフラスコを備え、該セパラブルフラスコ内の撹拌装置として2枚のパドル翼を備え、冷却装置を備えた反応装置を用いてポリアミド酸を製造した。重合反応中は水分の混入を防ぐために塩化カルシウム管を通過させて脱水を行った窒素ガスを0.05L/minで流して重合反応を行った。
 上記セパラブルフラスコに、重合溶媒としてN,N-ジメチルアセトアミド(DMAC)223.5gを仕込み、これに、ジアミンとして下記例示化合物であるジアミン1を40.0g(0.125モル)溶解する。この溶液に、酸無水物として例示化合物である酸無水物1を55.5g(0.125モル)添加・撹拌して完全に溶解させた。この反応溶液におけるジアミン1と酸無水物1の仕込み濃度は、全反応液に対して30質量%となっている。
 (ポリイミドへの化学イミド化)
 上記溶液にDMACを加え固形分濃度を15質量%とし、イミド化促進剤としてピリジン(pkBH+;5.17)を60g(イミド化促進剤/ポリアミド酸中アミド基のモル比=3)添加して、完全に分散させる。分散させた溶液中に無水酢酸を1分間に1gの速度で30.6g(脱水剤/ポリアミド酸中アミド基のモル比=1.2)を添加してさらに30分間撹拌した。撹拌後に内部温度を50℃に上昇させて5時間過熱撹拌を行った。
 (ポリイミドの抽出)
 得られた溶液をメタノールに加え、目的ポリイミド粉末を沈殿させた。得られた白色沈殿をメタノールで十分洗浄後、乾燥装置を用い50℃に加熱乾燥して、ポリイミドCとして取り出した。ポリイミドCは、重量平均分子量:203000、イミド化率:100%であった。
Figure JPOXMLDOC01-appb-C000015
 〈ポリイミドD〉
 乾燥窒素ガス導入管、冷却器、トルエンを満たしたDean-Stark凝集器、撹拌機を備えた4口フラスコに、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物(酸無水物2)(ダイキン工業社製)25.59g(57.6mmol)をN,N-ジメチルアセトアミド(134g)に加え、窒素気流下、室温で撹拌した。
 それに4,4′-ジアミノ-2,2′-ビス(トリフルオロメチル)ビフェニル(ジアミン2)(ダイキン工業社製)19.2g(60mmol)を加え、80℃で6時間加熱撹拌した。その後、外温を190℃まで加熱して、イミド化に伴って発生する水をトルエンとともに共沸留去した。6時間加熱、還流、撹拌を続けたところ、水の発生は認められなくなった。引き続きトルエンを留去しながら7時間加熱し、さらにトルエン留去後にメタノールを投入して再沈殿し、固形分を乾燥後にジクロロメタン溶液にしてポリイミドD溶液を調製した。ポリイミドDは、重量平均分子量:110000、イミド化率:98%であった。
Figure JPOXMLDOC01-appb-C000016
 〈ポリイミドE〉
 3Lの四つ口フラスコに(A)成分:2,6-ジフルオロベンゾニトリル(以下「DFBN」ともいう。)35.12g(0.253mol)、(B)成分:9,9-ビス(4-ヒドロキシフェニル)フルオレン(以下「BPFL」ともいう。)70.08g(0.200mol)及びレゾルシノール(以下「RES」ともいう。)5.51g(0.050mol)、炭酸カリウム41.46g(0.300mol)、N,N-ジメチルアセトアミド(以下「DMAc」ともいう。)443g並びにトルエン111gを添加した。続いて、四つ口フラスコに温度計、撹拌機、窒素導入管付き三方コック、Dean-Stark管及び冷却管を取り付けた。 
 次いで、フラスコ内を窒素置換した後、得られた溶液を140℃で3時間反応させ、生成する水をDean-Stark管から随時取り除いた。水の生成が認められなくなったところで、徐々に温度を160℃まで上昇させ、そのままの温度で6時間反応させた。 反応後、室温(25℃)まで冷却し、生成した塩を濾紙で除去し、濾液をメタノールに投じて再沈殿させ、濾別により濾物(残渣)を単離した。得られた濾物を60℃で一晩真空乾燥し、白色粉末(重合体)を得た。ポリイミドEは、重量平均分子量:78000、イミド化率:100%であった。
 得られた白色粉末20gを、ジクロロメタン80gに溶解して、ポリイミドE溶液を調製した。
 以上のポリイミド樹脂を用いて、下記方法により透明基材(B):ポリイミドフィルムを作製した。
 <透明基材(B)101の作製>
 〈ドープの調製〉
 下記組成の主ドープを調製した。まず、加圧溶解タンクにジクロロメタンとエタノールを添加した。溶媒の入った加圧溶解タンクに、上記調製したポリイミド樹脂Aを撹拌しながら投入した。これを加熱し、撹拌しながら、完全に溶解し、これを安積濾紙(株)製の安積濾紙No.244を使用して濾過した後、残りの成分を添加し、撹拌して溶解させて、主ドープを調製した。
 〈主ドープの組成〉
 ジクロロメタン                   340質量部
 エタノール                      10質量部
 ポリイミドA                    100質量部
 〈流延工程〉
 次いで、無端ベルト流延装置を用い、ドープを温度30℃、1500mm幅でステンレスベルト支持体上に均一に流延した。ステンレスベルトの温度は30℃に制御した。
 〈剥離工程〉
 40℃に温度保持したステンレスベルト支持体上で、流延(キャスト)したフィルム中の残留溶媒量が75%になるまで溶媒を蒸発させ、次いで剥離張力180N/mで、ステンレスベルト支持体上から剥離した。
 〈延伸工程〉
 剥離したポリイミドフィルムを、200℃の熱をかけながら搬送ローラーの周速差を利用しMD方向(長手方向)に1.1倍、及びクリップ式テンターを用いてTD方向(幅手方向)に1.1倍延伸した。延伸開始時の残留溶媒量は20質量%であった。
 〈乾燥工程a〉
 延伸したフィルムを、図4で示すベンディングゾーン106にて、乾燥温度200℃で、搬送ローラーによって、10回のベンディング処理を行った。搬送張力は100N/m、乾燥時間20分間として、残留溶媒量が0.1質量%未満となるように乾燥させて、乾燥膜厚25μmのフィルムを得た。
 <透明基材(B)102~105の作製>
 上記ポリイミドフィルム101の作製において、ポリイミドAの代わりに、ポリイミドB~Eを用いた以外は同様にして、透明基材(B)102~105を作製した。
 <透明基材(B)106の作製>
 透明基材(B)105の作製において、乾燥工程aを下記乾燥工程bにした以外は同様にして、透明基材(B)106を作製した。
 〈乾燥工程b〉
 延伸したフィルムを、図4で示すベンディングゾーン106にて、乾燥温度200℃で、多数の搬送ローラーによって、300回のベンディング処理を行った。搬送張力は100N/m、乾燥時間20分間として、残留溶媒量が0.1質量%未満となるように乾燥させて、乾燥膜厚25μmのフィルムを得た。
 <透明基材(B)107、108の作製>
 透明基材(B)106の作製において、さらに、ドープ流量を変更し、乾燥工程aによって、搬送張力を20N/mに調整して、膜厚5μmの透明基材(B)107、及び膜厚3μmの透明基材(B)108を作製した。
 <比較の透明基材(B)109の作製>
 比較の透明基材(B)として以下の手順にてセルロースアシレートフィルムを作製した。
 〈ドープの組成〉
 ジクロロメタン                   365質量部
 エタノール                      50質量部
 セルロースアシレート(トリアセチルセルロース:TAC、アセチル基置換度2.85、MW25万)              100質量部
 下記重縮合エステルP5                 7質量部
 以上を密閉されている主溶解釜1に投入し、撹拌しながら溶解してドープを調製した。
 ステンレスベルト支持体上で、流延(キャスト)したフィルム中の残留溶媒量が75%になるまで溶媒を蒸発させ、次いで剥離張力130N/mで、ステンレスベルト支持体上から剥離した。剥離したセルロースアシレートフィルムを、150℃の熱をかけながらテンターを用いて幅方向に1.3倍延伸した。延伸開始時の残留溶媒は15%であった。
 次いで、乾燥ゾーンをローラーで搬送させながら乾燥を終了させた。乾燥温度は130℃で、搬送張力は100N/mとした。以上のようにして、乾燥膜厚25μmのセルロースアシレートを主成分とする透明基材(B)109を得た。
 〈重縮合エステルP5の作製〉
 1,2-プロピレングリコール251g、テレフタル酸354g、p-トロイル酸680g、エステル化触媒としてテトライソプロピルチタネート0.191gを、温度計、撹拌器、緩急冷却管を備えた2Lの四つ口フラスコに仕込み、窒素気流中230℃になるまで、撹拌しながら徐々に昇温する。重合度を観察しながら脱水縮合反応させた。反応終了後200℃で未反応の1,2-プロピレングリコールを減圧留去することにより、下記重縮合エステルP5を得た。酸価0.30、数平均分子量400であった。
Figure JPOXMLDOC01-appb-C000017
 <比較の透明基材(B)110の作製>
 ポリカーボネート(PC)樹脂として、帝デデュポンフィルム(株)製、商品名Panlite AD-5503を用いて、150gを、ジクロロメタン800gに投入し、室温で撹拌して溶解し、ドープを作製した。
 ステンレス板の上に、前記ドープをドクターブレードを用いて製膜し、ウェブを剥離した。剥離時の残留溶媒量は、15~30%であった。このウェブを金枠に固定して、100℃の温風を当て、残留溶媒量を10%程度まで、乾燥を行い、次いで縦・横の2方向にそれぞれ1.2倍に延伸を行い、厚さ25μmの透明基材(B)110を得た。
 <比較の透明基材(B)111の作製>
 ポリエチレンテレフタレート(PET)を溶融した樹脂を、表面温度30℃の冷却ドラム上にキャスティングして静電印加法を用いて冷却ドラム表面に密着させて冷却固化した後、78℃に加熱されたロール群でフィルム温度を75℃に昇温した後、赤外線ヒーターで105℃に加熱し、周速差のあるロール群で、長手方向に2.8倍に延伸した。得られた一軸延伸フィルムをクリップで把持し、テンターにて幅方向に120℃で4.5倍延伸した。次いで、210℃で15秒間の熱処理を行い、ミルロール幅方向の0~15%領域及び85~100%領域の端部をスリットし、厚さ25μmの二軸延伸ポリエチレンテレフタレートを主成分とした透明基材(B)111を得た。
 <偏光板の作製>
 〈偏光板101~111の作製〉
 前記作製した偏光子(A)を有する延伸積層体1の親水性高分子層側に、上記透明基材(B)101~111のコロナ放電処理した面を、それぞれPVA水溶液を使って図2で示すようにニップローラーで30kg/30cmの荷重をかけて挟持しながら貼合した。次いで余分なPVA水溶液を除き、前記基材Aを剥離し、クリップで二辺を固定して60℃・5分間乾燥させ、偏光板101~111を作製した。
 上記コロナ放電処理の条件は、コロナ出力強度2.0kW、速度18m/分とした。
 ≪評価≫
 (1)透明基材(B)の評価
 [マルテンス硬度]
 マルテンス硬度の測定は、ISO14577-1 AnnexAで規定する押込み試験の手順に従って行った。試験機としては、超微小硬度計(島津製作所製DUH-211S 試験力:12mNに設定)を用い、圧子としては、基部が正方形で対面角度が136°の角錐型ダイヤモンド圧子を用い、接触ゼロ点を超えて侵入した圧子の表面積で除した値で求めた。
 [全光線透過率]
 本発明に係る透明基材(B)の全光線透過率は、JIS K 7105:1981に記載された方法を用いて算出した。測定装置としては、東京電色社製 ヘイズメーター NDH5000等を用いた。
 [平面性評価]
 図3で示す装置及びレイアウトを用いて、フィルム投影画像の解析を行った。
 白色光源2をフィルム試料1に対して斜め45°方向から、透明基材(B)試料と白色光源の距離を60cmに調整して照射し、透明基材(B)試料から投影面までの距離を70cmとして投影する。投影面から90°の方向に80cmの距離で、カメラ4(Canon製EOS KISS50、レンズEF-S 18=55mm、ISO感度100、絞り5.6、シャッター速度1/10秒、ホワイトバランス マニュアル設定)にて投影画像を撮影し撮影画像を得た。
 次いで、撮影画像について以下の手順にて、グレーバリューの標準偏差σと二値化画像の黒部分(暗部)の面積率K(%)を求めた。
 1.撮影した画像をフリーソフトImageJを用いてパソコンに読み込んだ。
 2.実際の撮影画像において1cm×5cmとなるような矩形の評価エリアを設定した。そのとき前記矩形の長辺がフィルム試料の搬送方向になるようにした。
 3.フリーソフトImageJによって、8bit化(グレースケール化)を行った。
 4.フリーソフトImageJによってバックグラウンド補正を行った。
 5.グレースケールにおけるグレーバリューの標準偏差σ、平均値mを算出した。
 6.平均値mを閾値として前記矩形の評価エリアの二値化を行った。
 7.前記二値化によって得られる黒部分(暗部)の面積を全体の面積で除して、黒部分面積率K(%)を算出した。
 ここで、フリーソフトImageJとは、WayneRasband作成のImageJ1.32Sである。
 本発明の透明基材(B)102について、投影画像(A)、二値化画像(B)及びグレーバリューの標準偏差(C)を図5に示した。
 (2)偏光板の評価
 [偏光度の測定]
 偏光度は、下記の方法に従って求めた。
 偏光板試料を23℃、55%RHの環境下で24時間の調湿処理を施した後30cm×30cmの大きさに切り出し、その対角線の中心点について、光波長550nmの光の平行透過率と直交透過率を、自動偏光フィルム測定装置(VAP-7070、日本分光株式会社製)を用いて測定した。次いで、得られた各測定値を基に、下記式(B2)に基づいて、偏光度(%)を求めた。偏光度は99.995%以上であると光漏れがなく好ましい。
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-T000019
 表1の結果から、本発明の偏光板102~108は、偏光解消が減り偏光度に優れていることが分かる、特に、本発明の偏光板106において、透明基材(B)にベンディング処理を行い平滑性を向上することによって、より偏光度に優れることが分かった。
 実施例2
 <液晶表示装置の作製>
 SONY製40型ディスプレイBRAVIA X1のあらかじめ貼合されていた両面の偏光板を剥がして、上記作製した偏光板101~111について、それぞれ基材Aを剥離して親水性樹脂層を露出し、その面を液晶セルのガラス面に、アクリル系粘着剤を用いて貼合した。その際両面の偏光子の吸収軸は互いに直交するように貼り合わせた。
 偏光板101~111に対応する液晶表示装置101~111を作製した。
 ≪評価≫
 [コントラストの目視評価]
 上記作製した液晶表示装置に画像を表示し、コントラストを目視で評価した。
 ◎:画像のコントラストが高く、くっきりとした印象がある
 ○:画像のコントラストが高く感じる
 △:画像がややぼけた印象がありコントラストがやや低い。
Figure JPOXMLDOC01-appb-T000020
 表2の結果、本発明の偏光板102~108を用いた液晶表示装置は、画像がクリアであり、コントラストに優れていた。それに対し比較例の偏光板101、109~111を用いた液晶表示装置は、画像がやや不鮮明であり、コントラストが低かった。すなわち、マルテンス硬度が高く、平面性が良いフィルムを用いた場合、コントラスト・視認性ともに良好な結果であった。
 実施例3
 <有機ELディスプレイの作製>
 上記作製した、偏光板101~111を用いて、下記構成により、有機ELディスプレイ101~111を作製した。
 (有機ELディスプレイの作製)
 図6に示す構成からなる有機ELディスプレイAを作製した。
 〔有機ELディスプレイの作製〕
 図6に示す構成において、透明基板211としてPETフィルムを用いて、その上にクロムからなる反射電極、反射電極上に金属電極(陽極)としてITO用いて金属電極212を形成し、有機発光層213として、陽極上に正孔輸送層としてポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホネート(PEDOT:PSS)をスパッタリング法で厚さ80nmに形成し、次いで正孔輸送層上にシャドーマスクを用いて、RGBそれぞれの発光層213R、213G、213B(いずれも不図示)を100nmの膜厚で形成した。赤色発光層213Rとしては、ホストとしてトリス(8-ヒドロキシキノリナート)アルミニウム(Alq)と発光性化合物[4-(dicyanomethylene)-2-methyl-6(p-dimethylaminostyryl)-4H-pyran](DCM)とを共蒸着(質量比99:1)して100nmの厚さで形成した。緑色発光層213Gとしては、ホストとしてAlqと、発光性化合物クマリン6(3-(2-ベンゾチアゾリル)-7-(ジエチルアミノ)クマリン)とを共蒸着(質量比99:1)して100nmの厚さで形成した。青色発光層213Bとしては、ホストとしてBAlqと発光性化合物Peryleneとを共蒸着(質量比90:10)して厚さ100nmで形成した。
Figure JPOXMLDOC01-appb-C000021
 さらに、有機発光層上に電子が効率的に注入できるような仕事関数の低い第1の陰極としてカルシウムを真空蒸着法により4nmの厚さで成膜し、第1の陰極上に第2の陰極としてアルミニウムを2nmの厚さで形成した。ここで、第2の陰極として用いたアルミニウムはその上に形成される透明導電膜をスパッタリング法により成膜する際に、第1の陰極であるカルシウムが化学的変質をすることを防ぐ役割がある。以上のようにして、有機発光層を得た。次に、陰極上にスパッタリング法によって透明導電膜を80nmの厚さで成膜し透明電極214とした。ここで透明導電膜としてはITOを用いた。さらに、透明電極214上にCVD法によって窒化ケイ素を200nm成膜することで、絶縁膜215とし、有機EL素子ユニットを作製した。
 次に、ガスバリアーフィルム217として、厚さ20μmのガスバリアー層付きポリエチレンテレフタレートフィルムを使用し、このガスバリアーフィルム217の片面に、封止層216として熱硬化型の液状接着剤(エポキシ系樹脂)を厚さ25μmで付与した封止ユニットを作製した。
 次に、90℃で0.1MPaの減圧条件下で、透明基板211~絶縁層215まで形成した有機EL素子ユニットと封止ユニットとに押圧をかけて5分間保持した。続いて、積層体を大気圧環境に戻し、さらに90℃で30分間加熱して接着剤を硬化させて、有機EL表示デバイスBを作製した。
 上記作製した有機EL表示デバイスBの発光面積は1296mm×784mmであった。また、この有機EL表示デバイスBに6Vの直流電圧を印加した際の正面輝度は1200cd/mであった。正面輝度の測定は、コニカミノルタ社製分光放射輝度計CS-1000を用いて、2°視野角正面輝度を、発光面からの法線に分光放射輝度計の光軸が一致するようにして、可視光波長430~480nmの範囲を測定し、積分強度をとった。
 〔有機ELディスプレイ101~111の作製〕
 上記作製した有機EL表示デバイスBに、市販のλ/4位相差フィルム218、上記作製した偏光板101~111の基材Aを剥離して親水性樹脂層を露出した偏光子(A)2及び本発明に係る透明基材(B)である保護フィルム4をこの順に具備した円偏光板Cを、図6に記載の構成となるように、対向して接着層を介して固定化し、有機ELディスプレイ101~111を作製した。なお、市販のλ/4位相差フィルム218の遅相軸と偏光子(A)2の吸収軸はその方向が45°になるように貼合して円偏光板を作製した。
 <視認性評価>
 上記作製した有機ELディスプレイ101~111に通電し画像を表示させて、目視にて観察する。その時の視認性を評価した。
 ◎:外部からの反射もほとんどなく画像がクリア
 ○:外部からの反射が少ない
 △:外部からの反射がやや見られ、画像がやや不鮮明
Figure JPOXMLDOC01-appb-T000022
 本発明の偏光板を用いた有機ELディスプレイ102~108は、外部からの反射が少なく、視認性が良好であった。有機ELディスプレイの場合も、マルテンス硬度が高く、平面性が良いフィルムを用いた場合、コントラスト・視認性ともに良好な結果であった。
 本発明の偏光板は、薄型の偏光板であって、偏光解消が減り、偏光度が向上した偏光板であるため、薄型の液晶表示装置や有機エレクトロルミネッセンスディスプレイに好適である。
 1 基材
 2 高分子層
 3 偏光子(A)
 4 透明基材(B)
 5 ニップローラー
 10 偏光板
 11 透明基材(B):ポリイミドフィルム
 12 白色光源
 13 投影面
 14 カメラ
 101 ダイス
 102 金属支持体
 103 駆動ローラー
 104 剥離点
 105 搬送ローラー
 106 ベンディングゾーン
 107 吸気口
 108 排気口
 109 冷却ゾーン
 A 有機ELディスプレイ
 B 有機EL表示デバイス
 C 円偏光板
 211 基板、透明基板
 212 金属電極
 213 有機発光層
 214 透明電極
 215 絶縁層
 216 封止層
 217 ガスバリアーフィルム
 218 λ/4位相差フィルム

Claims (8)

  1.  二色性物質で染色された親水性高分子層を有する偏光子(A)と、当該偏光子(A)の少なくとも一方の面に押込み弾性率が4.5GPa以上で、全光線透過率が80%以上である透明基材(B)とを有することを特徴とする偏光板。
  2.  前記透明基材(B)が、イミド構造を有する透明耐熱性樹脂を含有することを特徴とする請求項1に記載の偏光板。
  3.  前記透明基材(B)が、当該透明基材(B)の投影画像から切り取った所定の矩形エリアにおいて、グレーバリューの標準偏差σが、0.50~1.10の範囲内であり、かつ前記矩形エリアの二値化画像における黒部分の占める面積が、50%以下であることを特徴とする請求項1又は請求項2に記載の偏光板。
  4.  前記偏光子(A)が、塗布型偏光子であることを特徴とする請求項1から請求項3までのいずれか一項に記載の偏光板。
  5.  親水性高分子層を有する偏光子(A)と押込み弾性率が4.5GPa以上で全光線透過率が80%以上である透明基材(B)とを有する偏光板の製造方法であって、
     基材上に親水性高分子を含有する塗布液を流延して親水性高分子層を形成する工程、
     前記親水性高分子層を延伸し、かつ二色性物質で染色する工程、次いで、
     前記親水性高分子層の空気界面側の表面に、前記透明基材(B)をニップローラーで挟持しながら貼合して偏光板を形成する工程、
     を有することを特徴とする偏光板の製造方法。
  6.  前記透明基材(B)が、イミド構造を有する透明耐熱性樹脂を含有することを特徴とする請求項5に記載の偏光板の製造方法。
  7.  請求項1から請求項4までのいずれか一項に記載の偏光板を具備することを特徴とする液晶表示装置。
  8.  請求項1から請求項4までのいずれか一項に記載の偏光板を具備することを特徴とする有機エレクトロルミネッセンス表示装置。
PCT/JP2016/066129 2015-07-16 2016-06-01 偏光板、その製造方法、液晶表示装置及び有機エレクトロルミネッセンス表示装置 WO2017010178A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017528323A JPWO2017010178A1 (ja) 2015-07-16 2016-06-01 偏光板、その製造方法、液晶表示装置及び有機エレクトロルミネッセンス表示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015141917 2015-07-16
JP2015-141917 2015-07-16

Publications (1)

Publication Number Publication Date
WO2017010178A1 true WO2017010178A1 (ja) 2017-01-19

Family

ID=57757115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/066129 WO2017010178A1 (ja) 2015-07-16 2016-06-01 偏光板、その製造方法、液晶表示装置及び有機エレクトロルミネッセンス表示装置

Country Status (2)

Country Link
JP (1) JPWO2017010178A1 (ja)
WO (1) WO2017010178A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018124367A (ja) * 2017-01-31 2018-08-09 東レ株式会社 有機エレクトロルミネッセンス表示装置用フィルムおよび積層シート
WO2018194829A1 (en) * 2017-04-17 2018-10-25 Eastman Chemical Company Copolyesters plasticized with polymeric plasticizer
TWI689776B (zh) * 2017-09-21 2020-04-01 日商Hoya股份有限公司 遮罩基底、轉印遮罩以及半導體元件之製造方法
CN111164473A (zh) * 2017-10-03 2020-05-15 日东电工株式会社 偏振片、图像显示装置及偏振片的制造方法
US20210151763A1 (en) * 2017-06-13 2021-05-20 Denka Company Limited Positive electrode composition
WO2022004856A1 (ja) * 2020-07-02 2022-01-06 住友化学株式会社 光学フィルム
WO2023155030A1 (zh) * 2022-02-21 2023-08-24 汕头超声显示器技术有限公司 一种聚酰亚胺膜及其制造方法与应用
WO2024065496A1 (zh) * 2022-09-29 2024-04-04 京东方科技集团股份有限公司 显示模组及显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003279743A (ja) * 2002-03-26 2003-10-02 Fuji Photo Film Co Ltd 偏光板および液晶表示装置
JP2013186389A (ja) * 2012-03-09 2013-09-19 Nitto Denko Corp 光学的表示装置
JP2013207097A (ja) * 2012-03-28 2013-10-07 Asahi Kasei Electronics Co Ltd ホール素子
JP2014025059A (ja) * 2012-06-19 2014-02-06 Nippon Steel & Sumikin Chemical Co Ltd 表示装置支持基材用ポリイミドフィルム、及びその積層体、並びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003279743A (ja) * 2002-03-26 2003-10-02 Fuji Photo Film Co Ltd 偏光板および液晶表示装置
JP2013186389A (ja) * 2012-03-09 2013-09-19 Nitto Denko Corp 光学的表示装置
JP2013207097A (ja) * 2012-03-28 2013-10-07 Asahi Kasei Electronics Co Ltd ホール素子
JP2014025059A (ja) * 2012-06-19 2014-02-06 Nippon Steel & Sumikin Chemical Co Ltd 表示装置支持基材用ポリイミドフィルム、及びその積層体、並びその製造方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018124367A (ja) * 2017-01-31 2018-08-09 東レ株式会社 有機エレクトロルミネッセンス表示装置用フィルムおよび積層シート
US11427688B2 (en) 2017-04-17 2022-08-30 Eastman Chemical Company Copolyesters plasticized with polymeric plasticizer
WO2018194829A1 (en) * 2017-04-17 2018-10-25 Eastman Chemical Company Copolyesters plasticized with polymeric plasticizer
CN110506069A (zh) * 2017-04-17 2019-11-26 伊士曼化工公司 用聚合物增塑剂增塑的共聚酯
CN110506069B (zh) * 2017-04-17 2022-12-02 伊士曼化工公司 用聚合物增塑剂增塑的共聚酯
US11824197B2 (en) * 2017-06-13 2023-11-21 Denka Company Limited Positive electrode composition
US20210151763A1 (en) * 2017-06-13 2021-05-20 Denka Company Limited Positive electrode composition
TWI689776B (zh) * 2017-09-21 2020-04-01 日商Hoya股份有限公司 遮罩基底、轉印遮罩以及半導體元件之製造方法
TWI762878B (zh) * 2017-09-21 2022-05-01 日商Hoya股份有限公司 遮罩基底、轉印遮罩以及半導體元件之製造方法
CN111164473A (zh) * 2017-10-03 2020-05-15 日东电工株式会社 偏振片、图像显示装置及偏振片的制造方法
WO2022004856A1 (ja) * 2020-07-02 2022-01-06 住友化学株式会社 光学フィルム
WO2023155030A1 (zh) * 2022-02-21 2023-08-24 汕头超声显示器技术有限公司 一种聚酰亚胺膜及其制造方法与应用
WO2024065496A1 (zh) * 2022-09-29 2024-04-04 京东方科技集团股份有限公司 显示模组及显示装置

Also Published As

Publication number Publication date
JPWO2017010178A1 (ja) 2018-04-26

Similar Documents

Publication Publication Date Title
WO2017010178A1 (ja) 偏光板、その製造方法、液晶表示装置及び有機エレクトロルミネッセンス表示装置
JP6635110B2 (ja) ポリイミド系光学フィルム、その製造方法及び有機エレクトロルミネッセンスディスプレイ
JP6638654B2 (ja) ポリイミドフィルムとその製造方法、フレキシブルプリント基板、フレキシブルディスプレイ用基材、フレキシブルディスプレイ用前面板、led照明装置及び有機エレクトロルミネッセンス表示装置
KR102114293B1 (ko) 수지 필름 및 그 제조 방법
JP6409540B2 (ja) フィルム、フィルムの製造方法および積層体
JP6834440B2 (ja) ポリイミドフィルムおよび当該フィルムを用いる表示装置
CN110967786B (zh) 光学膜
JP6874759B2 (ja) ポリイミドフィルム及びその製造方法
JP6806141B2 (ja) ポリイミドフィルムの製造方法
JP2008297360A (ja) 溶剤可溶性ポリイミド樹脂
JP2017083669A (ja) 偏光板とその製造方法
TW201946786A (zh) 積層體及其製造方法
TW202028004A (zh) 積層體及其製造方法
CN112817069A (zh) 光学膜及柔性显示装置
JP5675114B2 (ja) 光学補償フィルム、光学補償用積層体、光学補償用偏光板、及び液晶表示装置
JP6670967B1 (ja) 光学フィルム
WO2017057247A1 (ja) ポリイミドフィルム、フレキシブルプリント基板、led照明用基板及びフレキシブルディスプレイ用前面板
CN110969941A (zh) 光学膜
JP7120819B2 (ja) ポリイミドフィルムとフレキシブルガラスとの積層体
JP2020001381A (ja) 透明樹脂フィルムの製造方法
JP7367214B2 (ja) ポリイミドフィルムの製造方法およびこれにより製造されたポリイミドフィルム
KR20220097473A (ko) 건조한 필름 롤의 제조 방법
KR20210056258A (ko) 필름의 결함의 검출 시스템
WO2021256298A1 (ja) 無色多層ポリイミドフィルム、積層体、フレキシブル電子デバイスの製造方法
JP2023132813A (ja) ポリイミド系フィルムの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16824158

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017528323

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16824158

Country of ref document: EP

Kind code of ref document: A1