WO2022004856A1 - 光学フィルム - Google Patents

光学フィルム Download PDF

Info

Publication number
WO2022004856A1
WO2022004856A1 PCT/JP2021/025015 JP2021025015W WO2022004856A1 WO 2022004856 A1 WO2022004856 A1 WO 2022004856A1 JP 2021025015 W JP2021025015 W JP 2021025015W WO 2022004856 A1 WO2022004856 A1 WO 2022004856A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical film
group
formula
carbon atoms
examples
Prior art date
Application number
PCT/JP2021/025015
Other languages
English (en)
French (fr)
Inventor
孝至 桜井
シュローダー・クリスティアーン
ブロム・マット
チュウ・レノン
Original Assignee
住友化学株式会社
ザイマージェン インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021013621A external-priority patent/JP2022013624A/ja
Application filed by 住友化学株式会社, ザイマージェン インコーポレイテッド filed Critical 住友化学株式会社
Priority to CN202180045920.3A priority Critical patent/CN116075752A/zh
Priority to EP21833228.6A priority patent/EP4177647A1/en
Priority to US18/013,075 priority patent/US20230242721A1/en
Publication of WO2022004856A1 publication Critical patent/WO2022004856A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1082Partially aromatic polyimides wholly aromatic in the tetracarboxylic moiety
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04102Flexible digitiser, i.e. constructional details for allowing the whole digitising part of a device to be flexed or rolled like a sheet of paper
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/301Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED

Definitions

  • the present invention relates to an optical film used as a material for a flexible display device and the like, and a flexible display device including the optical film.
  • Optical films are used in various applications such as display devices such as liquid crystals and organic EL, touch sensors, speakers, and semiconductors.
  • a touch sensor substrate material a cyclic olefin film having a low phase difference or the like (for example, Patent Document 1), an aromatic polyimide film having dimensional stability or the like, an aliphatic polyimide film or the like is known (for example).
  • Patent Documents 2 and 3 a cyclic olefin film having a low phase difference or the like
  • Patent Documents 2 and 3 an aromatic polyimide film having dimensional stability or the like, an aliphatic polyimide film or the like.
  • the cyclic olefin-based film as in Patent Document 1 and the aliphatic polyimide-based film as in Patent Document 3 do not have sufficient heat resistance and ultraviolet-blocking property, and are aromatic polyimide-based films as in Patent Document 2.
  • the film has a problem that the phase difference is high. As described above, according to the study of the present inventor, it has been found that it is difficult to simultaneously satisfy low phase difference, high heat resistance, and high ultraviolet ray blocking property.
  • an object of the present invention is to provide an optical film having low phase difference, high heat resistance and high ultraviolet ray blocking property, and a flexible display device provided with the optical film.
  • the present inventor has adjusted the glass transition temperature and the light transmittance at 350 nm to 165 ° C. or higher and 10% or lower, respectively, in the optical film, and in-plane phase difference and thickness.
  • the above problems can be solved by adjusting the phase difference to 30 nm or less and 100 nm or less, respectively, and have completed the present invention. That is, the present invention includes the following preferred embodiments.
  • R 2 to R 7 represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms independently of each other.
  • hydrogen atoms contained in R 2 ⁇ R 7 are, independently of one another, may be substituted with a halogen atom
  • V is a single bond
  • R 8 Represents a monovalent hydrocarbon group having 1 to 12 carbon atoms which may be substituted with a hydrogen atom or a halogen atom, and * represents a bond.
  • Mw weight average molecular weight
  • a flexible display device comprising the optical film according to any one of [1] to [11].
  • the optical film of the present invention can have low phase difference, high heat resistance, and high ultraviolet ray blocking property. Therefore, it can be suitably used as a material for flexible display devices and the like.
  • the optical film of the present invention has a glass transition temperature of 165 ° C. or higher, a light transmittance of 350 nm of 10% or less, an in-plane retardation of 30 nm or less, and a thickness retardation of 100 nm or less.
  • the present inventor adjusted the in-plane retardation of the optical film to 30 nm or less, the thickness retardation to 100 nm or less, the light transmittance at 350 nm to 10% or less, and further adjusted the glass transition temperature to 165 ° C. or higher. It has been found that low phase difference, high heat resistance and high ultraviolet ray blocking property can be satisfied at the same time.
  • the optical film of the present invention has a glass transition temperature (hereinafter, may be abbreviated as Tg) of 165 ° C. or higher. If the glass transition temperature is less than 165 ° C., the heat resistance is not sufficient. In addition, the tensile strength and bending resistance may not be sufficient.
  • the glass transition temperature of the optical film of the present invention is preferably 170 ° C. or higher, more preferably 175 ° C. or higher, still more preferably 180 ° C. or higher, particularly preferably over 180 ° C., and particularly preferably 180.5 ° C. or higher. Is 181 ° C. or higher, preferably 400 ° C. or lower, more preferably 380 ° C. or lower, still more preferably 350 ° C.
  • the optical property means the optical property of the optical film including the phase difference, the transparency and the ultraviolet ray blocking property, and when the optical property is improved or enhanced, for example, the phase difference is lowered. It means that the light transmittance at 500 nm is high (or the transparency is high), the light transmittance at 350 nm is low (or the ultraviolet ray blocking property is high), etc., and it is said that the optical characteristics are excellent.
  • the glass transition temperature (Tg) is the type and composition ratio of the constituent units constituting the resin contained in the optical film; the solvent content of the optical film; the type and blending amount of the additive; the resin production conditions and the purity of the monomer.
  • the above range can be obtained by appropriately adjusting the manufacturing conditions of the optical film.
  • the type and composition ratio of the constituent units constituting the resin which are preferably described later, are used, and the solvent content of the optical film is adjusted. It may be adjusted within the above range by adjusting, applying the drying conditions in the optical film manufacturing process described later, and the like.
  • the glass transition temperature in the present invention is the glass transition temperature by DSC (differential scanning calorimetry).
  • the glass transition temperature can be measured using a thermal analyzer under the conditions of a measurement sample amount: 5 mg, a temperature range: room temperature to 400 ° C., and a temperature rise rate: 10 ° C./min. For example, it is measured by the method described in Examples. can.
  • the optical film of the present invention has a light transmittance of 10% or less at 350 nm.
  • the light transmittance of the optical film of the present invention at 350 nm is preferably 8% or less, more preferably 5% or less.
  • the lower limit of the light transmittance at 350 nm is 0%.
  • the light transmittance at 350 nm can be measured using an ultraviolet-visible near-infrared spectrophotometer, for example, by the method described in Examples.
  • the light transmittance at 350 nm is preferably the light transmittance in the range of the thickness (thickness) of the optical film of the present invention.
  • the light transmission rate of 350 nm is the type and composition ratio of the constituent units constituting the resin contained in the optical film; the thickness of the optical film; the solvent content of the optical film; the type and blending amount of the additive; the production of the resin.
  • Conditions and purity of monomer; The above range can be obtained by appropriately adjusting the manufacturing conditions of the optical film. For example, the above range can be adjusted by appropriately adjusting the type and amount of the ultraviolet absorber contained in the optical film. Cheap.
  • Nx indicates the refractive index in one direction in the optical film surface
  • Ny indicates the refractive index in the direction orthogonal to Nx in the optical film surface
  • Nz indicates the refractive index in the thickness direction of the optical film.
  • d indicates the thickness (nm) of the optical film and satisfies Nx> Ny]. It is represented by. That is, Nx is the refractive index in the slow axis direction, Ny is the refractive index in the phase advance axis direction, and Nx ⁇ Ny is birefringence.
  • the thickness retardation Rth of the optical film of the present invention is preferably 90 nm or less, more preferably 80 nm or less, further preferably 70 nm or less, preferably 1 nm or more, and more preferably 5 nm or more.
  • the thickness phase difference Rth is not more than the above upper limit, the visibility can be improved when the optical film is applied to a display device or the like, and when the thickness phase difference Rth is more than the above lower limit, the visibility becomes uneven. It's hard.
  • the in-plane phase difference R0 of the optical film of the present invention is given by the formula (B).
  • R0 (Nx-Ny) x d (nm) ...
  • B [In the formula, Nx, Ny and d are the same as Nx, Ny and d in the formula (A)] It is represented by.
  • the in-plane retardation R0 of the optical film of the present invention is preferably 20 nm or less, more preferably 15 nm or less, further preferably 10 nm or less, preferably 0.1 nm or more, and more preferably 1 nm or more.
  • the in-plane phase difference R0 is not more than the above upper limit, the visibility can be improved when the optical film is applied to a display device or the like, and when the in-plane phase difference R0 is more than the above lower limit, the visibility is uneven. Is hard to occur.
  • the optical film of the present invention has a light transmittance of 500 nm, preferably 90.0% or more. Therefore, in a preferred embodiment of the present invention, the optical film can achieve both cutability in the ultraviolet region and transparency in the visible light region.
  • the light transmittance at 500 nm is more preferably 90.2% or more, still more preferably 90.4% or more.
  • the upper limit of the light transmittance at 500 nm is 100%.
  • the light transmittance at 500 nm can be measured using an ultraviolet-visible near-infrared spectrophotometer, for example, by the method described in Examples.
  • the light transmittance of 500 nm is preferably the light transmittance in the range of the thickness (thickness) of the optical film of the present invention, and the thickness of the optical film is particularly preferably 22 to 40 nm, more preferably 23 to 27 nm, still more preferable. Is the light transmittance when it is 25 ⁇ m.
  • the light transmission rate of 500 nm is the type and composition ratio of the constituent units constituting the resin contained in the optical film; the thickness of the optical film; the solvent content of the optical film; the type and blending amount of the additive; the production of the resin. Conditions and purity of monomer; The above range can be obtained by appropriately adjusting the manufacturing conditions of the optical film.
  • the type and composition ratio of the constituent units constituting the resin which are preferably described later, are used, and the optical film.
  • the above range may be adjusted by adjusting the solvent content of the above-mentioned material, applying the drying conditions in the optical film manufacturing process described later, and the like.
  • the tensile strength can be measured using a tensile tester or the like under the conditions of a distance between chucks of 50 mm and a tensile speed of 20 mm / min, and can be measured, for example, by the method described in Examples.
  • the optical film of the present invention has a bending radius of 1 mm, preferably 10,000 times or more, more preferably 50,000 times or more, and further preferably 100 times in a MIT folding fatigue resistance test based on ASTM standard D2176-16. It is 000 times or more, more preferably 200,000 times or more, particularly preferably 500,000 times or more, and particularly more preferably 1,000,000 times or more.
  • the upper limit of the number of bends is usually 50,000,000 or less.
  • the number of times the optical film is bent can be measured under the conditions of a test speed of 175 cpm, a bending angle of 135 °, a weight of 0.75 kf, and a bending radius of the bending clamp of 1 mm. For example, it can be measured by the method described in Examples.
  • the tensile strength and bending resistance are the types and composition ratios of the constituent units that make up the resin contained in the optical film; the solvent content of the optical film; the types and blending amounts of the additives; the resin production conditions and the purity of the monomers. The above range can be obtained by appropriately adjusting the manufacturing conditions of the optical film.
  • the type and composition ratio of the constituent units constituting the resin which are preferably described later, are used, and the solvent content of the optical film is adjusted. It may be adjusted within the above range by adjusting, applying the drying conditions in the optical film manufacturing process described later, and the like.
  • the optical film of the present invention has a solvent content (also referred to as a residual solvent amount) of preferably 3.0% by mass or less, more preferably 2.% by mass, based on the mass of the optical film. It is 5% by mass or less, more preferably 2.0% by mass or less, preferably 0.01% by mass or more, more preferably 0.1% by mass or more, still more preferably 0.5% by mass or more.
  • a solvent content also referred to as a residual solvent amount
  • Tg can be easily adjusted to the above range, and heat resistance, tensile strength and bending resistance can be easily increased.
  • the solvent content corresponds to the mass reduction rate S (mass%) from 120 ° C. to 250 ° C. obtained by using the TG-DTA measuring device.
  • the mass reduction rate S is such that, for example, an optical film of about 20 mg is heated from room temperature to 120 ° C. at a heating rate of 10 ° C./min, held at 120 ° C. for 5 minutes, and then raised to 400 ° C./min.
  • Weight reduction rate S (mass%) 100- (W1 / W0) x 100 (1)
  • W0 is the mass of the sample after holding at 120 ° C. for 5 minutes
  • W1 is the mass of the sample at 250 ° C.
  • the solvent content may be adjusted to the above range by appropriately adjusting the drying conditions (particularly, drying temperature, drying time, etc.) in the optical film manufacturing process described later. For example, the higher the drying temperature, the smaller the solvent content tends to be. Further, the smaller the solvent content, the higher the Tg tends to be.
  • the thickness of the optical film of the present invention can be appropriately selected depending on the intended use, and is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, still more preferably 15 ⁇ m or more, preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less, still more preferably. It is 60 ⁇ m or less, particularly preferably 50 ⁇ m or less.
  • the thickness of the optical film can be measured using a thickness gauge or the like, and can be measured, for example, by the method described in Examples.
  • the optical film of the present invention preferably contains a resin.
  • the resin is preferably a transparent resin, and examples thereof include polyester resin, polycarbonate resin, polyarylate resin, polyether sulfone resin, polyimide resin, and poly (meth) acrylic resin. , Cycloolefin resin and the like. These resins can be used alone or in combination of two or more.
  • a polyimide resin is preferable from the viewpoint of easily improving optical properties, heat resistance, tensile strength and bending resistance.
  • the polyimide-based resin means a polymer containing a repeating structural unit (also referred to as a structural unit) containing an imide group, and may further contain a repeating structural unit containing an amide group.
  • the optical film of the present invention has the formula (1).
  • X represents a divalent organic group
  • Y represents a tetravalent organic group
  • * represents a bond
  • X in the formula (1) independently represents a divalent organic group, preferably a divalent organic group having 2 to 40 carbon atoms.
  • the divalent organic group include a divalent aromatic group and a divalent aliphatic group
  • examples of the divalent aliphatic group include a divalent acyclic aliphatic group or a divalent aliphatic group.
  • Cyclic aliphatic groups can be mentioned. Among these, a divalent aliphatic group is preferable, and a divalent acyclic aliphatic group is more preferable, from the viewpoint of easily improving optical properties, heat resistance, tensile strength and bending resistance.
  • the divalent aromatic group is a divalent organic group having an aromatic group, and an aliphatic group or another substituent may be contained as a part of the structure thereof.
  • the divalent aliphatic group is a divalent organic group having an aliphatic group, and a part of the structure thereof may contain other substituents, but does not contain an aromatic group.
  • the divalent aromatic group or the divalent cyclic aliphatic group in X in the formula (1) is the formula (10), the formula (11), the formula (12), the formula.
  • Equation (10) to (18) * Represents a bond V 1, V 2 and V 3 independently of one another, a single bond, -O -, - S -, - CH 2 -, - CH 2 -CH 2 -, - CH (CH 3) -, - C (CH 3 ) Represents 2- , -C (CF 3 ) 2- , -SO 2- , -CO- or -N (Q)-.
  • Q represents a monovalent hydrocarbon group having 1 to 12 carbon atoms which may be substituted with a halogen atom.
  • Examples of the monovalent hydrocarbon group having 1 to 12 carbon atoms which may be substituted with a halogen atom include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group and a tert.
  • Examples include a group and an n-decyl group.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • V 1 and V 3 are single bonds, -O- or -S-, and V 2 is -CH 2- , -C (CH 3 ) 2- , -C (CF 3 ) 2. -Or-SO 2- .
  • the binding positions of V 1 and V 2 for each ring and the bonding positions of V 2 and V 3 for each ring are independent of each other, preferably in the meta or para position for each ring, and more preferably in the para position. It is a place.
  • the hydrogen atom on the ring in the formulas (10) to (18) is substituted with an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms. May be good.
  • alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group and a 2-methyl-.
  • Examples thereof include a butyl group, a 3-methylbutyl group, a 2-ethyl-propyl group, and an n-hexyl group.
  • Examples of the alkoxy group having 1 to 6 carbon atoms include a methoxy group, an ethoxy group, a propyloxy group, an isopropyloxy group, a butoxy group, an isobutoxy group, a tert-butoxy group, a pentyloxy group, a hexyloxy group and a cyclohexyloxy group. Can be mentioned.
  • aryl group having 6 to 12 carbon atoms examples include a phenyl group, a tolyl group, a xylyl group, a naphthyl group and a biphenyl group. These divalent cyclic aliphatic groups or divalent aromatic groups can be used alone or in combination of two or more.
  • the hydrogen atom in the divalent acyclic aliphatic group may be substituted with a halogen atom, and the carbon atom may be substituted with a hetero atom (for example, an oxygen atom, a nitrogen atom, etc.).
  • the carbon number of the linear or branched alkylene group is preferably 2 or more, more preferably 3 or more, still more preferably 4 from the viewpoint of easily developing optical properties, heat resistance, tensile strength and bending resistance in a well-balanced manner. It is more than that, preferably 10 or less, more preferably 8 or less, still more preferably 6 or less.
  • an ethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, and a hexamethylene group are easily exhibited from the viewpoint of easily developing optical properties, heat resistance, tensile strength and bending resistance in a well-balanced manner.
  • An alkylene group having 2 to 6 carbon atoms such as a group is preferable, and a tetramethylene group is more preferable.
  • the polyimide-based resin of the present invention may contain a plurality of types of X, and the plurality of types of X may be the same as or different from each other.
  • X in the formula (1) a divalent acyclic aliphatic group and a divalent aromatic group and / or a divalent cyclic aliphatic group may be contained.
  • the X in the formula (1) when the X in the formula (1) contains a divalent aliphatic group, preferably a divalent acyclic aliphatic group, the X in the formula (1) is divalent.
  • the ratio of the constituent unit which is an aliphatic group, preferably a divalent acyclic aliphatic group is preferably 30 mol% or more, more preferably 30 mol% or more, based on the total molar amount of the constituent unit represented by the formula (1). Is 50 mol% or more, more preferably 70 mol% or more, particularly preferably 90 mol% or more, and preferably 100 mol% or less.
  • the ratio of the structural unit in which X in the formula (1) is a divalent aliphatic group, preferably a divalent acyclic aliphatic group is within the above range, the optical properties, heat resistance, and tension of the optical film are high. It is easy to improve the strength and bending resistance.
  • the ratio of the constituent units can be measured using, for example, 1 H-NMR, or can be calculated from the charging ratio of raw materials.
  • Y independently represents a tetravalent organic group, preferably a tetravalent organic group having 4 to 40 carbon atoms, and more preferably 4 having a cyclic structure and 4 to 40 carbon atoms.
  • Examples of the cyclic structure include an alicyclic ring, an aromatic ring, and a heterocyclic structure.
  • the organic group is an organic group in which the hydrogen atom in the organic group may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group, and in that case, the hydrocarbon group and the fluorine-substituted hydrocarbon group may be substituted.
  • the number of carbon atoms is preferably 1 to 8.
  • the polyimide-based resin of the present invention may contain a plurality of types of Y, and the plurality of types of Y may be the same as or different from each other.
  • Y the following formula (20), formula (21), formula (22), formula (23), formula (24), formula (25), formula (26), formula (27), formula (28)
  • groups represented by the formula (29) groups in which the hydrogen atom in the groups represented by the formulas (20) to (29) is substituted with a methyl group, a fluoro group, a chloro group or a trifluoromethyl group.
  • a chain hydrocarbon group having 4 or less valences of 6 carbon atoms can be mentioned.
  • W 1 represents a single bond, -O -, - CH 2 - , - CH 2 -CH 2 -, - CH (CH 3) -, - C (CH 3) 2 -, - C (CF 3) 2 -, -Ar-, -SO 2- , -CO-, -O-Ar-O-, -Ar-O-Ar- , -Ar-CH 2 -Ar-, -Ar-C (CH 3 ) 2-Ar- Or, it represents -Ar-SO 2-Ar-.
  • Ar represents an arylene group having 6 to 20 carbon atoms in which a hydrogen atom may be substituted with a fluorine atom, and specific examples thereof include a phenylene group.
  • the formulas (20) to (29), the formula (26), the formula (28) or the formula (29) can be used from the viewpoint of easily improving the optical characteristics, heat resistance, tensile strength and bending resistance.
  • the group represented is preferable, and the group represented by the formula (26) is more preferable.
  • W 1 the optical characteristics of the optical film, heat resistance, easy to tensile strength and enhance the flex resistance viewpoint, each independently, a single bond, -O -, - CH 2 - , - CH 2 -CH 2 - , -CH (CH 3 )-, -C (CH 3 ) 2- or -C (CF 3 ) 2- , preferably single bond, -O-, -CH 2- , -CH (CH 3 ). -, -C (CH 3 ) 2 -or-C (CF 3 ) 2- , more preferably single bond, -C (CH 3 ) 2- or -C (CF 3 ) 2-. More preferred.
  • the structural unit represented by the formula (1) is represented by the formula (2): [In the formula (2), R 2 to R 7 represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms independently of each other.
  • hydrogen atoms contained in R 2 ⁇ R 7 are, independently of one another, may be substituted with a halogen atom
  • V is a single bond
  • R 8 Represents a monovalent hydrocarbon group having 1 to 12 carbon atoms which may be substituted with a hydrogen atom or a halogen atom, and * represents a bond.
  • the structural unit represented by the formula (1) may include one or a plurality of types of the structure represented by the formula (2) as Y.
  • R 2 , R 3 , R 4 , R 5 , R 6 and R 7 are independent of each other, a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or an alkoxy group having 1 to 6 carbon atoms.
  • R 2 ⁇ R 7 are, independently of one another, preferably hydrogen atom or an alkyl group having 1 to 6 carbon atoms, more preferably represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, wherein, R 2 ⁇
  • the hydrogen atom contained in R 7 may be substituted with a halogen atom independently of each other.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • V is a single bond, -O -, - CH 2 - , - CH 2 -CH 2 -, - CH (CH 3) -, - C (CH 3) 2 -, - C (CF 3) 2 -, - Represents SO 2- , -S-, -CO- or -N (R 8 )-, where R 8 is a monovalent hydrocarbon having 1 to 12 carbon atoms which may be substituted with a hydrogen atom or a halogen atom. Represents a group.
  • the monovalent hydrocarbon group having 1 to 12 carbon atoms which may be substituted with a halogen atom is exemplified above as a monovalent hydrocarbon group having 1 to 12 carbon atoms which may be substituted with a halogen atom. Things can be mentioned.
  • V is single bond, -O-, -CH 2- , -CH (CH 3 )-, -C from the viewpoint of easily improving the optical properties, heat resistance, tensile strength and bending resistance of the optical film.
  • (CH 3 ) 2- or -C (CF 3 ) 2- is preferable, and single bond, -C (CH 3 ) 2- or -C (CF 3 ) 2- is more preferable, and single bond. Alternatively, it is more preferably ⁇ C (CF 3 ) 2-.
  • the formula (2) is the formula (2'). [In equation (2'), * represents a bond] It is represented by.
  • the optical film is more likely to exhibit excellent optical properties, heat resistance, tensile strength and bending resistance.
  • the skeleton containing a fluorine element can improve the solubility of the resin in the solvent, suppress the viscosity of the varnish to a low level, and facilitate the processing of the optical film.
  • Y in the formula (1) when Y in the formula (1) includes a structure represented by the formula (2), Y in the formula (1) is the ratio of the structural unit represented by the formula (2). Is preferably 30 mol% or more, more preferably 50 mol% or more, still more preferably 70 mol% or more, and particularly preferably 90 mol% or more, based on the total molar amount of the structural unit represented by the formula (1). It is preferably 100 mol% or less.
  • the ratio of the structural unit in which Y in the formula (1) is represented by the formula (2) is in the above range, the optical properties, heat resistance, tensile strength and bending resistance of the optical film can be more easily improved.
  • the ratio of the structural unit in which Y in the formula (1) is represented by the formula (2) can be measured using, for example, 1 H-NMR, or can be calculated from the charging ratio of the raw materials.
  • the polyimide-based resin of the present invention may contain a structural unit represented by the formula (30) and / or a structural unit represented by the formula (31) in addition to the structural unit represented by the formula (1). good.
  • Y 1 is a tetravalent organic group, preferably an organic group in which a hydrogen atom in the organic group may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group.
  • Y 1 include formula (20), formula (21), formula (22), formula (23), formula (24), formula (25), formula (26), formula (27), formula (28) and Groups represented by the formula (29), groups in which the hydrogen atom in the groups represented by the formulas (20) to (29) is substituted with a methyl group, a fluoro group, a chloro group or a trifluoromethyl group,
  • a chain hydrocarbon group having a tetravalent carbon number of 6 or less can be mentioned.
  • a polyimide resin may include a plurality of kinds of Y 1, Y 1 of the plurality of kinds can be the same or may be different from one another.
  • Y 2 is a trivalent organic group, preferably an organic group in which a hydrogen atom in the organic group may be substituted with a hydrocarbon group or a fluorine-substituted hydrocarbon group.
  • Y 2 the above-mentioned equation (20), equation (21), equation (22), equation (23), equation (24), equation (25), equation (26), equation (27), equation (28) ) And a group in which any one of the bonds of the group represented by the formula (29) is replaced with a hydrogen atom, and a chain hydrocarbon group having a trivalent carbon number of 6 or less.
  • a polyimide resin may include a plurality of kinds of Y 2, Y 2 a plurality of species may be the same or may be different from one another.
  • X 1 and X 2 independently represent a divalent organic group, preferably a divalent organic group having 2 to 40 carbon atoms.
  • the divalent organic group include a divalent aromatic group and a divalent aliphatic group
  • examples of the divalent aliphatic group include a divalent acyclic aliphatic group or a divalent aliphatic group. Cyclic aliphatic groups can be mentioned.
  • Examples of the divalent cyclic aliphatic group or the divalent aromatic group in X 1 and X 2 include the above formulas (10), (11), (12), (13) and (14).
  • the groups represented by the formulas (15), (16), (17) and (18); the hydrogen atoms in the groups represented by the formulas (10) to (18) are methyl groups. Examples include a group substituted with a fluoro group, a chloro group or a trifluoromethyl group; and a chain hydrocarbon group having 6 or less carbon atoms.
  • Examples of the divalent acyclic aliphatic group include an ethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, a hexamethylene group, a propylene group, a 1,2-butanediyl group and a 1,3-butanediyl group, and 2 Examples thereof include a linear or branched alkylene group having 2 to 10 carbon atoms such as a methyl-1,2-propanediyl group and a 2-methyl-1,3-propanediyl group.
  • the polyimide resin is composed of a structural unit represented by the formula (1), and in some cases, a structural unit represented by the formula (30) and a structural unit represented by the formula (31). It consists of at least one structural unit selected. Further, from the viewpoint of easily improving the optical properties, heat resistance, tensile strength and bending resistance of the optical film, the proportion of the structural unit represented by the formula (1) in the polyimide resin is all contained in the polyimide resin.
  • a structural unit for example, a structural unit represented by the formula (1), and optionally at least one structural unit selected from the structural unit represented by the formula (30) and the structural unit represented by the formula (31).
  • the polyimide resin Based on the total molar amount, it is preferably 80 mol% or more, more preferably 90 mol% or more, still more preferably 95 mol% or more.
  • the upper limit of the ratio of the structural unit represented by the formula (1) is 100 mol%. The above ratio can be measured using, for example, 1 H-NMR, or can be calculated from the charging ratio of raw materials.
  • the polyimide resin in the present invention is preferably a polyimide resin from the viewpoint of easily enhancing the optical properties, heat resistance, tensile strength and bending resistance of the optical film.
  • the polyimide-based resin of the present invention may contain a halogen atom, preferably a fluorine atom, which can be introduced by, for example, the above-mentioned halogen-containing atom substituent or the like.
  • a halogen atom preferably a fluorine atom
  • Preferred fluorine-containing substituents for containing a fluorine atom in the polyimide-based resin include, for example, a fluoro group and a trifluoromethyl group.
  • the content of halogen atoms in the polyimide resin is preferably 1 to 40% by mass, more preferably 5 to 40% by mass, and further preferably 5 to 30% by mass, based on the mass of the polyimide resin.
  • the content of halogen atoms is at least the above lower limit, it is easy to improve the optical properties, heat resistance, tensile strength and bending resistance of the optical film.
  • the content of the halogen atom is not more than the above upper limit, the synthesis becomes easy.
  • the weight average molecular weight (Mw) of the polyimide resin is preferably more than 250,000, more preferably 270,000 or more, still more preferably 300,000 or more, particularly preferably 350,000 or more, and preferably 800,000 or more. Below, it is more preferably 700,000 or less, still more preferably 600,000 or less. When the weight average molecular weight (Mw) is at least the above lower limit, the bending resistance and tensile strength are likely to be increased, and when the weight average molecular weight (Mw) is at least the above upper limit, the workability of the film is likely to be improved.
  • the weight average molecular weight (Mw) can be determined by gel permeation chromatography (GPC) measurement and converted to standard polystyrene, and can be calculated, for example, by the method described in Examples.
  • the imidization ratio of the polyimide resin is preferably 90% or more, more preferably 93% or more, further preferably 95% or more, still more preferably 97% or more, and particularly preferably 99% or more. From the viewpoint of easily improving the optical characteristics of the optical film, the imidization ratio is preferably at least the above lower limit. The upper limit of the imidization rate is 100%.
  • the imidization ratio indicates the ratio of the molar amount of the imide bond in the polyimide resin to the value twice the molar amount of the structural unit derived from the tetracarboxylic acid compound in the polyimide resin.
  • the value is twice the molar amount of the structural unit derived from the tetracarboxylic acid compound in the polyimide resin, and the molar amount of the structural unit derived from the tricarboxylic acid compound.
  • the ratio of the molar amount of the imide bond in the polyimide resin to the total of the above is shown.
  • the imidization rate can be determined by an IR method, an NMR method, or the like, and can be determined, for example, by the method described in Examples.
  • the content of the polyimide resin contained in the optical film is preferably 40% by mass or more, more preferably 50% by mass or more, and further, with respect to the mass (100% by mass) of the optical film. It is preferably 60% by mass, particularly preferably 80% by mass or more, and preferably 100% by mass or less.
  • the content of the polyimide resin contained in the optical film is within the above range, it is easy to improve the optical characteristics, heat resistance, tensile strength and bending resistance of the obtained optical film.
  • the resin contained in the optical film of the present invention may be a commercially available product or may be produced by a conventional method.
  • the resin is preferably a polyimide resin.
  • the method for producing the polyimide-based resin is not particularly limited.
  • a step of reacting a diamine compound with a tetracarboxylic acid compound to obtain a polyamic acid and a step of obtaining a polyamic acid. It can be produced by a method including a step of imidizing the polyamic acid.
  • a tricarboxylic acid compound may be reacted.
  • Examples of the tetracarboxylic acid compound used for synthesizing the polyimide resin include aromatic tetracarboxylic acid compounds such as aromatic tetracarboxylic dianhydride; and aliphatic tetracarboxylic acid compounds such as aliphatic tetracarboxylic dianhydride. Can be mentioned.
  • the tetracarboxylic acid compound may be used alone or in combination of two or more.
  • the tetracarboxylic acid compound may be a tetracarboxylic acid compound analog such as an acid chloride compound in addition to the dianhydride.
  • aromatic tetracarboxylic acid dianhydride examples include a non-condensed polycyclic aromatic tetracarboxylic acid dianhydride, a monocyclic aromatic tetracarboxylic acid dianhydride, and a condensed polycyclic aromatic tetra. Examples include carboxylic acid dianhydride. Examples of the non-condensed polycyclic aromatic tetracarboxylic acid dianhydride include 4,4'-oxydiphthalic acid dianhydride, 3,3', 4,4'-benzophenone tetracarboxylic acid dianhydride, 2,2.
  • Acid dianhydride can be mentioned.
  • the monocyclic aromatic tetracarboxylic acid dianhydride include 1,2,4,5-benzenetetracarboxylic acid dianhydride, and the condensed polycyclic aromatic tetracarboxylic acid dianhydride. Examples thereof include 2,3,6,7-naphthalenetetracarboxylic acid dianhydride. These can be used alone or in combination of two or more.
  • Examples of the aliphatic tetracarboxylic dianhydride include cyclic or acyclic aliphatic tetracarboxylic dianhydride.
  • the cyclic aliphatic tetracarboxylic acid dianhydride is a tetracarboxylic acid dianhydride having an alicyclic hydrocarbon structure, and specific examples thereof include 1,2,4,5-cyclohexanetetracarboxylic acid dianhydride.
  • 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride, cycloalkhantetracarboxylic acid dianhydride such as 1,2,3,4-cyclopentanetetracarboxylic acid dianhydride, Bicyclo [2.2] .2] Oct-7-en-2,3,5,6-tetracarboxylic acid dianhydride, dicyclohexyl-3,3', 4,4'-tetracarboxylic acid dianhydride and their positional isomers. Be done. These can be used alone or in combination of two or more.
  • acyclic aliphatic tetracarboxylic dianhydride examples include 1,2,3,4-butanetetracarboxylic dianhydride, 1,2,3,4-pentanetetracarboxylic dianhydride and the like. These can be used alone or in combination of two or more. Further, a cyclic aliphatic tetracarboxylic dianhydride and an acyclic aliphatic tetracarboxylic dianhydride may be used in combination.
  • diamine compound used for synthesizing the polyimide resin examples include aliphatic diamines, aromatic diamines and mixtures thereof.
  • aromatic diamine represents a diamine having an aromatic ring, and an aliphatic group or another substituent may be contained in a part of the structure thereof.
  • the aromatic ring may be a monocyclic ring or a condensed ring, and examples thereof include, but are not limited to, a benzene ring, a naphthalene ring, an anthracene ring, and a fluorene ring. Among these, a benzene ring is preferable.
  • the "aliphatic diamine” represents a diamine having an aliphatic group, and may contain other substituents as a part of its structure, but does not have an aromatic ring.
  • Examples of the aliphatic diamine include acyclic aliphatic diamines and cyclic aliphatic diamines.
  • Examples of the acyclic aliphatic diamine include 1,2-diaminoethane, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohekinsan, 1,2. -Linear linear with 2 to 10 carbon atoms such as diaminopropane, 1,2-diaminobutane, 1,3-diaminobutane, 2-methyl-1,2-diaminopropane, 2-methyl-1,3-diaminopropane, etc.
  • a branched chain diaminoalkane or the like can be mentioned.
  • the cyclic aliphatic diamine include 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, norbornanediamine and 4,4'-diaminodicyclohexylmethane. These can be used alone or in combination of two or more.
  • 1,2-diaminoethane, 1,3-diaminopropane, and 1,4-diaminobutane (1,4) diaminobutane (1,4-diaminobutane) from the viewpoint of easily improving the optical properties, heat resistance, tensile strength, and bending resistance of the optical film.
  • 4-DAB 1,5-diaminopentane, 1,6-diaminohexane, 1,2-diaminopropane, 1,2-diaminobutane, 1,3-diaminobutane, 2-methyl-1
  • Diaminoalkanes having 2 to 10 carbon atoms such as 2-diaminopropane and 2-methyl-1,3-diaminopropane are preferable, diaminoalkanes having 2 to 6 carbon atoms are more preferable, and 1,4-diaminobutane is further preferable.
  • Examples of other tetracarboxylic acids include water adducts of the anhydrides of the above tetracarboxylic acid compounds.
  • tricarboxylic acid compound examples include aromatic tricarboxylic acids, aliphatic tricarboxylic acids, acid chloride compounds related thereto, acid anhydrides, and the like, and two or more of them may be used in combination. Specific examples include anhydrate of 1,2,4-benzenetricarboxylic acid; 2,3,6-naphthalentricarboxylic acid-2,3-anhydride; a single bond of phthalic acid anhydride and benzoic acid, -O- , -CH 2- , -C (CH 3 ) 2- , -C (CF 3 ) 2- , -SO 2- or compounds linked with a phenylene group.
  • the amount of the diamine compound, the tetracarboxylic acid compound and the tricarboxylic acid compound used can be appropriately selected according to the ratio of each structural unit of the desired resin.
  • the amount of the diamine compound used is preferably 0.94 mol or more, more preferably 0.96 mol or more, still more preferably 0.98 mol, relative to 1 mol of the tetracarboxylic acid compound. It is mol or more, particularly preferably 0.99 mol or more, preferably 1.20 mol or less, more preferably 1.10 mol or less, still more preferably 1.05 mol or less, and particularly preferably 1.02 mol or less. ..
  • the amount of the diamine compound used with respect to the tetracarboxylic acid compound is in the above range, the optical properties, heat resistance, tensile strength and bending resistance of the obtained optical film can be easily improved.
  • the reaction temperature of the diamine compound and the tetracarboxylic acid compound is not particularly limited and may be, for example, 5 to 200 ° C.
  • the reaction time is also not particularly limited and may be, for example, about 30 minutes to 72 hours.
  • the reaction temperature is preferably 5 to 200 ° C, more preferably 50 to 190 ° C, even more preferably 100 to 180 ° C, and the reaction time is preferably 3 to 24 hours. More preferably, it is 5 to 20 hours.
  • the Mw of the polyimide resin is the reaction conditions such as the reaction time and the reaction temperature; the type and amount of the diamine compound, the tetracarboxylic acid compound, the catalyst and the solvent; the composition of the good solvent and the poor solvent in the precipitation operation; and the washing solution. It can be adjusted by appropriately changing the composition and the like.
  • the reaction between the diamine compound and the tetracarboxylic acid compound is preferably carried out in a solvent.
  • the solvent is not particularly limited as long as it does not affect the reaction, and is, for example, water, methanol, ethanol, ethylene glycol, isopropyl alcohol, propylene glycol, ethylene glycol methyl ether, ethylene glycol butyl ether, 1-methoxy-2-propanol, and the like.
  • 2-Alcohol solvents such as butoxyethanol and propylene glycol monomethyl ether; phenol solvents such as phenol and cresol; ethyl acetate, butyl acetate, ethylene glycol methyl ether acetate, ⁇ -butyrolactone, ⁇ -valerolactone, propylene glycol methyl ether acetate , Ester solvent such as ethyl lactate; Ketone solvent such as acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, 2-heptanone, methyl isobutyl ketone; aliphatic hydrocarbon solvent such as pentane, hexane, heptane; fat such as ethyl cyclohexane Cyclic hydrocarbon solvent; aromatic hydrocarbon solvent such as toluene and xylene; nitrile solvent such as acetonitrile; ether solvent such as tetrahydrofuran and dim
  • a phenolic solvent and an amide solvent can be preferably used from the viewpoint of solubility.
  • the solvent used for the reaction is preferably a solvent that has been strictly dehydrated to a water content of 700 ppm or less.
  • the Tg and light transmittance of the obtained optical film can be easily adjusted within the above ranges, and the optical properties, heat resistance, tensile strength and bending resistance can be easily improved.
  • imidization may be performed using an imidization catalyst, imidization may be performed by heating, or a combination thereof may be used.
  • the imidization catalyst used in the imidization step include aliphatic amines such as tripropylamine, dibutylpropylamine and ethyldibutylamine; N-ethylpiperidine, N-propylpiperidin, N-butylpyrolidin and N-butylpiperidine.
  • alicyclic amines such as N-propylhexahydroazepine (monocyclic); azabicyclo [2.2.1] heptane, azabicyclo [3.2.1] octane, azabicyclo [2.2.2] octane, and Alicyclic amines such as azabicyclo [3.2.2] nonane (polycyclic); as well as pyridine, 2-methylpyridine (2-picolin), 3-methylpyridine (3-picolin), 4-methylpyridine (4).
  • an acid anhydride together with the imidization catalyst.
  • the acid anhydride include conventional acid anhydrides used in the imidization reaction, and specific examples thereof include acetic anhydride, propionic anhydride, aliphatic acid anhydrides such as butyric anhydride, and aromatics such as phthalic acid. Acid anhydride and the like can be mentioned.
  • benzotriazole-based ultraviolet absorber examples include a compound represented by the formula (I), a trade name manufactured by Sumitomo Chemical Co., Ltd.: Sumisorb (registered trademark) 250 (2- [2-hydroxy-3- (3). , 4,5,6-tetrahydrophthalimide-methodiyl) -5-methylphenyl] benzotriazole), trade name manufactured by BASF Japan Co., Ltd .: Tinuvin® 360 (2,2'-methylenebis [6- (2H) -Benzotriazole-2-yl) -4-tert-octylphenol]) and Tinuvin 213 (methyl 3- [3- (2H-benzotriazole-2-yl) 5-tert-butyl-4-hydroxyphenyl] propionate and PEG300 (Reaction products with), which can be used alone or in combination of two or more.
  • formula (I) a trade name manufactured by Sumitomo Chemical Co., Ltd.: Sumisorb (registered trademark) 250 (2-
  • Specific examples of the compound represented by the formula (I) include trade names: Sumisorb 200 (2- (2-hydroxy-5-methylphenyl) benzotriazole) and Sumisorb300 (2- (3), manufactured by Sumitomo Chemical Co., Ltd. -Tert-Butyl-2-hydroxy-5-methylphenyl) -5-chlorobenzotriazole), Sumisorb 340 (2- (2-hydroxy-5-tert-octylphenyl) benzotriazole), Sumisorb 350 (2- (2) -Hydroxy 3,5-di-tert-pentylphenyl) benzotriazole) and BASF Japan Co., Ltd.
  • Adecastab registered trademark
  • LA-31 (2,2'-methylenebis [6- (2H-benzo) Triazole-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol]
  • the ultraviolet absorber is preferably a compound represented by the formula (I) and Tinuvin 213 (methyl 3- [3- (2H-benzotriazole-2-yl) 5-tert-butyl-4-hydroxyphenyl] propionate.
  • PEG300 more preferably a trade name manufactured by Sumitomo Chemical Co., Ltd .: Sumisorb 200 (2- (2-hydroxy-5-methylphenyl) benzotriazole), Sumisorb 300 (2- (3-tert).
  • XI is a hydrogen atom, a fluorine atom, a chlorine atom, an alkyl group having 1 to 5 carbon atoms or an alkoxy group having 1 to 5 carbon atoms
  • R I1 and RI 2 are independently hydrogen atoms. or a hydrocarbon group having 1 to 20 carbon atoms, at least one of R I1 or R I2 is a hydrocarbon group having 1 to 20 carbon atoms.
  • alkoxy group having 1 to 5 carbon atoms in XI examples include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, a sec-butoxy group, a tert-butoxy group, and an n-pentyloxy group. Examples thereof include 2-methyl-butoxy group, 3-methylbutoxy group, 2-ethyl-propoxy group and the like.
  • XI is preferably a hydrogen atom, a fluorine atom, a chlorine atom or a methyl group, and more preferably a hydrogen atom, a fluorine atom or a chlorine atom.
  • a triazine-based ultraviolet absorber is used in an optical film containing a polyimide-based resin.
  • the triazine-based ultraviolet absorber include compounds represented by the following formula (II).
  • KEMISORB registered trademark
  • 102 (2- [4,6) -Bis (2,4-dimethylphenyl) -1,3,5-triazine-2-yl] -5- (n-octyloxy) phenol), etc., which may be used alone or in combination of two or more. Can be done.
  • the compound represented by the formula (II) is preferably Adecaster LA-46 (2- (4,6-diphenyl-1,3,5-triazine-2-yl) -5- [2- (2-ethyl). Hexaneuroxy) ethoxy] phenol).
  • Y I1 to Y I4 are independently hydrogen atoms, fluorine atoms, chlorine atoms, hydroxy groups, alkyl groups having 1 to 20 carbon atoms or alkoxy groups having 1 to 20 carbon atoms, which are preferable. Is a hydrogen atom, an alkyl group having 1 to 12 carbon atoms or an alkoxy group having 1 to 12 carbon atoms, and more preferably a hydrogen atom.
  • RI3 is a hydrogen atom, a hydrocarbon group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms containing one oxygen atom, or an alkyl ketooxy having 1 to 12 carbon atoms. It is an alkoxy group having 1 to 4 carbon atoms substituted with a group, preferably an alkoxy group having 1 to 12 carbon atoms containing one oxygen atom or an alkyl ketooxy group having 8 to 12 carbon atoms. It is an alkoxy group having 2 to 4 carbon atoms, and more preferably an alkoxy group having 2 to 4 carbon atoms substituted with an alkylketooxy group having 8 to 12 carbon atoms.
  • alkyl groups having 1 to 20 carbon atoms as Y I1 to Y I4 are methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group and n.
  • -Pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-dodecyl group, n-undecyl group can be mentioned.
  • alkoxy groups having 1 to 20 carbon atoms include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, sec-butoxy group, tert-butoxy group, n-pentyloxy group and n.
  • -Hexyloxy group, n-heptyloxy group, n-octyloxy group, n-nonyloxy group, n-decyloxy group, n-dodecyloxy group, n-undecyloxy group can be mentioned.
  • the ultraviolet absorber is preferably one having light absorption of 300 to 400 nm, more preferably one having light absorption of 320 to 360 nm, and further preferably one having light absorption in the vicinity of 350 nm.
  • the content of the ultraviolet absorber is preferably 0.1 part by mass or more, more preferably 0.5 part by mass or more, based on 100 parts by mass of the polyimide resin. It is more preferably 0.8 parts by mass or more, particularly preferably 1 part by mass or more, preferably 10 parts by mass or less, more preferably 8 parts by mass or less, still more preferably 5 parts by mass or less.
  • the content of the ultraviolet absorber is at least the above lower limit, it is easy to improve the ultraviolet blocking property of the optical film, and when it is at least the above upper limit of the content of the ultraviolet absorber, the transparency and heat resistance of the optical film are affected. It is easy to increase the tensile strength and bending resistance.
  • the application of the optical film of the present invention is not particularly limited, and is used for various applications such as a substrate for a touch sensor, a material for a flexible display device, a protective film, a film for bezel printing, a semiconductor application, a speaker diaphragm, an IR cut filter, and the like. You may.
  • the optical film of the present invention may be a single layer or a laminated body, the optical film of the present invention may be used as it is, or a laminated body with another film. May be used as.
  • the optical film is a laminated body, it is referred to as an optical film including all the layers laminated on one side or both sides of the optical film.
  • the optical film of the present invention is a laminated body, it is preferable to have one or more functional layers on at least one surface of the optical film.
  • the functional layer include a hard coat layer, a primer layer, a gas barrier layer, an ultraviolet absorbing layer, an adhesive layer, a hue adjusting layer, and a refractive index adjusting layer.
  • the functional layer can be used alone or in combination of two or more.
  • the optical film may have a protective film on at least one side (one side or both sides).
  • the protective film may be laminated on the surface on the optical film side or the surface on the functional layer side, and is laminated on both the optical film side and the functional layer side. You may.
  • the protective film may be laminated on the surface on one functional layer side or on the surface on both functional layer sides.
  • the protective film is a film for temporarily protecting the surface of the optical film or the functional layer, and is not particularly limited as long as it is a peelable film capable of protecting the surface of the optical film or the functional layer.
  • the protective film examples include polyester resin films such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; polyolefin resin films such as polyethylene and polypropylene films, acrylic resin films, and the like, and polyolefin resin films and polyethylene. It is preferable to select from the group consisting of a terephthalate resin film and an acrylic resin film. When the optical film has two protective films, each protective film may be the same or different.
  • the thickness of the protective film is not particularly limited, but is usually 10 to 120 ⁇ m, preferably 15 to 110 ⁇ m, and more preferably 20 to 100 ⁇ m. When the optical film has two protective films, the thickness of each protective film may be the same or different.
  • the optical film of the present invention is not particularly limited, but for example, the following steps: (A) A step of preparing a liquid (sometimes referred to as a varnish) containing the polyimide resin (varnish preparation step), (B) A step of applying varnish to a substrate to form a coating film (coating step), and (c) a step of drying the applied liquid (coating film) to form an optical film (optical film forming step). ) It can be manufactured by a method including.
  • the polyimide resin is dissolved in a solvent, the additive is added as necessary, and the mixture is stirred and mixed to prepare the varnish.
  • the solvent used for preparing the varnish is not particularly limited as long as the resin can be dissolved.
  • a solvent include amide solvents such as N, N-dimethylacetamide (DMAc) and N, N-dimethylformamide (DMF); lactone solvents such as ⁇ -butyrolactone (GBL) and ⁇ -valerolactone; acetone, Ketone solvents such as methyl ethyl ketone, cyclopentanone, cyclohexanone, 2-heptanone, methylisobutylketone; sulfur-containing solvents such as dimethylsulfon, dimethylsulfoxide and sulfolane; carbonate solvents such as ethylene carbonate and propylene carbonate; and combinations thereof.
  • amide solvents such as N, N-dimethylacetamide (DMAc) and N, N-dimethylformamide (DMF)
  • lactone solvents such as ⁇ -butyrolactone (GBL) and ⁇ -val
  • an amide-based solvent, a lactone-based solvent, or a ketone-based solvent is preferable from the viewpoint of easily improving the optical properties, heat resistance, tensile strength, and bending resistance of the optical film.
  • these solvents can be used alone or in combination of two or more.
  • the varnish may contain water, an alcohol solvent, an acyclic ester solvent, an ether solvent and the like.
  • the solid content concentration of the varnish is preferably 1 to 30% by mass, more preferably 5 to 25% by mass, and further preferably 10 to 20% by mass.
  • the solid content of the varnish indicates the total amount of the components of the varnish excluding the solvent.
  • the viscosity of the varnish is preferably 5 to 100 Pa ⁇ s, more preferably 10 to 50 Pa ⁇ s. When the viscosity of the varnish is in the above range, the optical film can be easily made uniform, and an optical film having excellent optical properties, tensile strength, heat resistance and bending resistance can be easily obtained.
  • the viscosity of the varnish can be measured using a viscometer, for example, by the method described in Examples.
  • a varnish is applied onto the substrate by a known coating method to form a coating film.
  • Known coating methods include, for example, wire bar coating method, reverse coating, roll coating method such as gravure coating, die coating method, comma coating method, lip coating method, spin coating method, screen coating method, fountain coating method, dipping method, and the like. Examples include a spray method and a salivation forming method.
  • the optical film can be formed by drying the coating film and peeling it from the substrate. After peeling, a drying step of further drying the optical film may be performed.
  • the coating film can be dried at a temperature of usually 50 to 350 ° C, preferably 50 to 220 ° C. In a preferred embodiment of the present invention, it is preferable to carry out drying step by step. Varnishes containing high molecular weight resins tend to have high viscosities, which makes it generally difficult to obtain a uniform film, and may reduce optical properties (particularly transparency) and Tg.
  • the coating film may be dried under conditions of an inert atmosphere. Further, when the optical film is dried under vacuum conditions, minute bubbles may be generated and remain in the film, which causes a decrease in transparency. Therefore, it is preferable to perform the drying under atmospheric pressure.
  • the base material examples include a glass substrate, a PET film, a PEN film, another polyimide resin, a polyamide resin film, and the like.
  • glass, PET film, PEN film and the like are preferable from the viewpoint of excellent heat resistance, and a glass substrate or PET film is more preferable from the viewpoint of adhesion to an optical film and cost.
  • the optical film of the present invention can be suitably used as a display device, particularly a substrate for a touch sensor.
  • display devices include televisions, smartphones, mobile phones, car navigation systems, tablet PCs, portable game machines, electronic papers, indicators, bulletin boards, watches, wearable devices such as smart watches, and the like.
  • the present invention includes a flexible display device including the optical film of the present invention.
  • the flexible display device include display devices having flexible characteristics, such as televisions, smartphones, mobile phones, and smart watches.
  • the flexible display device is a display device used with operations such as repeatedly bending and repeatedly winding the display device, and examples thereof include a rollable display and a foldable display.
  • the rollable display is an image display device in which an image display portion is wound into a roll shape and is used in a state where the image display portion is pulled out to form a flat surface or a curved surface, and an operation such as winding the image display portion into a roll shape is performed. Is an image display device that is performed every time it is used.
  • the foldable display is an image display device in which the image display portion is folded and is used in a state where the image display portion is opened to form a flat surface or a curved surface, and an operation such as folding is performed every time the image is used. It is an image display device that can be seen.
  • the specific configuration of the flexible display device is not particularly limited, and examples thereof include a configuration including a laminate for a flexible display device and an organic EL display panel.
  • Such a flexible display device of the present invention preferably further includes a polarizing plate and / or a touch sensor. As the polarizing plate or the touch sensor, conventional ones can be used, and these may be included in the laminated body for the flexible display device.
  • Examples of the polarizing plate include a circular polarizing plate, and examples of the touch sensor include various types such as a resistance film method, a surface acoustic wave method, an infrared method, an electromagnetic induction method, and a capacitance method.
  • the touch sensor substrate (or touch sensor film) used in such a flexible display device is required to have bending resistance, but the optical film of the present invention has excellent bending resistance, so that it is used for the touch sensor. It can be suitably used as a substrate (or a film for a touch sensor).
  • the laminate for a flexible display device preferably further includes a window film on the visual recognition side, for example, a window film, a polarizing plate, a touch sensor, or a window film, a touch from the visual inspection side.
  • the sensor and the polarizing plate may be stacked in this order.
  • These members may be laminated using an adhesive or an adhesive, and may include other members other than these members.
  • the glass transition temperature (Tg) of the optical films obtained in Examples and Comparative Examples by DSC was measured by a thermal analyzer (“DSC Q200”, manufactured by TA Instruments).
  • the measurement conditions were a measurement sample amount: 5 mg, a temperature range: room temperature to 400 ° C., and a temperature rise rate: 10 ° C./min.
  • Nx is the refractive index in the slow phase axis direction
  • Ny is the refractive index in the phase advance axis direction
  • Nx> Ny is satisfied.
  • Rth ⁇ (Nx + Ny) /2-Nz ⁇ ⁇ d (nm) ... (A)
  • the in-plane retardation R0 of the optical film is (1) when the refractive index in one direction in the film surface is Nx, the refractive index in the direction orthogonal to Nx is Ny, and the thickness of the optical film is d (nm).
  • Nx is the refractive index in the slow phase axis direction
  • Ny is the refractive index in the phase advance axis direction
  • Nx> Ny is satisfied.
  • R0 (Nx-Ny) x d (nm) ... (B)
  • the optical transmittances of 350 nm and 500 nm in the optical films obtained in Examples and Comparative Examples were measured by using an ultraviolet-visible near-infrared spectrophotometer V-670 manufactured by JASCO Corporation to transmit light to light of 200 to 800 nm. Obtained by measuring the rate.
  • the tensile strength of the optical films obtained in Examples and Comparative Examples was measured as follows using a precision universal testing machine (“Autograph AG-IS”, manufactured by Shimadzu Corporation). The optical film was cut into a width of 10 mm and a length of 100 mm, and a strip-shaped test piece was prepared. Next, using the precision universal testing machine, a tensile test was performed under the conditions of a chuck-to-chuck distance of 50 mm and a tensile speed of 20 mm / min, and the tensile strength of the optical film was measured.
  • the number of bendings of the optical films obtained in Examples and Comparative Examples was determined as follows.
  • the optical film was cut into strips having a width of 10 mm and a length of 120 mm using a dumbbell cutter.
  • TG-DTA Thermogravimetric-differential thermal
  • the mass reduction rate S (mass%) from 120 ° C to 250 ° C. was calculated according to the following equation (1).
  • S (mass%) 100- (W1 / W0) x 100 (1)
  • W0 is the mass of the sample after holding at 120 ° C. for 5 minutes
  • W1 is 250.
  • the calculated mass reduction rate S was defined as the residual solvent amount S (mass%) in the optical film.
  • ⁇ Thickness> The thickness of the optical film obtained in Examples and Comparative Examples was measured three times using a contact-type digital thickness gauge (manufactured by Mitutoyo Co., Ltd.), and the average value of the values measured three times was taken as the thickness of the optical film. ..
  • ⁇ Synthesis example 2> A polyimide resin was produced by the same method as in Synthesis Example 1 except that the reaction conditions and the like were changed.
  • the weight average molecular weight (Mw) of the obtained polyimide resin was 317,000, and the imidization ratio was 99.9%.
  • Example 1 The polyimide resin obtained in Synthesis Example 1 was dissolved in cyclohexanone so that the solid content concentration was 15% by mass, and 2 phr of Sumisorb340 was added as an ultraviolet absorber (UVA) to prepare a varnish.
  • UVA ultraviolet absorber
  • the viscosity of the varnish was 26.0 Pa ⁇ s.
  • the obtained varnish was applied to a glass substrate, heated at 140 ° C. for 10 minutes, then heated at 200 ° C. for 30 minutes, and peeled off from the glass substrate to obtain an optical film having a thickness of 25 ⁇ m.
  • the residual solvent amount of the obtained optical film was 1.2% by mass.
  • Example 2 The polyimide resin obtained in Synthesis Example 2 was dissolved in cyclohexanone so that the solid content concentration was 13% by mass, and 2 phr of Sumisorb340 was added as an ultraviolet absorber (UVA) to prepare a varnish.
  • UVA ultraviolet absorber
  • the viscosity of the varnish was 22.0 Pa ⁇ s.
  • the obtained varnish was applied to a glass substrate, heated at 140 ° C. for 10 minutes, then heated at 200 ° C. for 30 minutes, and peeled off from the glass substrate to obtain an optical film having a thickness of 25 ⁇ m.
  • the residual solvent amount of the obtained optical film was 1.4% by mass.
  • Example 3 The polyimide resin obtained in Synthesis Example 3 was dissolved in cyclohexanone so that the solid content concentration was 11% by mass, and 2 phr of Sumisorb340 was added as an ultraviolet absorber (UVA) to prepare a varnish. The viscosity of the varnish was 17.5 Pa ⁇ s. Next, the obtained varnish was applied to a glass substrate, heated at 140 ° C. for 10 minutes, then heated at 200 ° C. for 30 minutes, and peeled off from the glass substrate to obtain an optical film having a thickness of 25 ⁇ m. The residual solvent amount of the obtained optical film was 1.5% by mass.
  • UVA ultraviolet absorber
  • ⁇ Comparative Example 2> The polyimide resin obtained in Synthesis Example 1 was dissolved in cyclohexanone so that the solid content concentration was 15% by mass, and 2 phr of Sumisorb340 was added as an ultraviolet absorber (UVA) to prepare a varnish. The viscosity of the varnish was 26 Pa ⁇ s. Next, the obtained varnish was applied to a glass substrate, heated at 140 ° C. for 10 minutes, then heated at 180 ° C. for 20 minutes, and peeled off from the glass substrate to obtain an optical film having a thickness of 25 ⁇ m. The residual solvent amount of the obtained optical film was 4.9% by mass.
  • UVA ultraviolet absorber
  • the glass transition temperature (Tg), in-plane retardation (nm), thickness retardation (nm), light transmittance (%) at 350 nm, and light transmittance at 500 nm ( %), Tensile strength (MPa), and number of bends (times) are shown in Table 1.
  • the optical films obtained in Examples 1 to 3 had a remarkably low light transmittance at 350 nm and a remarkably high Tg as compared with Comparative Example 1. Further, it was confirmed that the optical films obtained in Examples 1 and 2 had a lower thickness phase difference and a significantly higher Tg than those of Comparative Example 2. Further, it was confirmed that the optical film obtained in Example 3 had a significantly higher Tg than that of Comparative Example 2. Therefore, it was found that the optical films obtained in Examples 1 to 3 had low phase difference, high heat resistance, and high ultraviolet ray blocking property.
  • the optical films obtained in Examples 1 to 3 have higher light transmittance, tensile strength and bending frequency at 500 nm than Comparative Example 1, and have higher light transmittance and tensile strength at 500 nm than Comparative Example 2. It was confirmed that it was high. Therefore, it was found that the optical films obtained in Examples 1 to 3 were also excellent in transparency, tensile strength and bending resistance.

Abstract

本発明は、ガラス転移温度が165℃以上、350nmの光透過率が10%以下、面内位相差が30nm以下、及び厚み位相差が100nm以下である光学フィルムに関する。

Description

光学フィルム
 本発明は、フレキシブル表示装置の材料等に使用される光学フィルム、及び該光学フィルムを備えるフレキシブル表示装置に関する。
 光学フィルムは、液晶や有機EL等の表示装置、タッチセンサ、スピーカー、半導体など、種々の用途に用いられている。例えば、タッチセンサ基板材料としては、低位相差等を有する環状オレフィン系フィルム(例えば特許文献1)、寸法安定性等を有する芳香族ポリイミド系フィルムや脂肪族ポリイミド系フィルムなどが知られている(例えば特許文献2及び3)。
特開2004-156048号公報 特開2005-336243号公報 WO2019/156717号
 しかし、特許文献1のような環状オレフィン系フィルムや特許文献3のような脂肪族ポリイミド系フィルムは、耐熱性と紫外線カット性との両立が十分ではなく、特許文献2のような芳香族ポリイミド系フィルムは、位相差が高いという問題があった。このように、本発明者の検討によれば、低位相差、高耐熱性、及び高い紫外線カット性を同時に満足することは困難であることがわかった。
 従って、本発明の目的は、低位相差、高耐熱性及び高い紫外線カット性を兼ね備えた光学フィルム、及び該光学フィルムを備えるフレキシブル表示装置を提供することにある。
 本発明者は、上記課題を解決するために鋭意検討した結果、光学フィルムにおいて、ガラス転移温度及び350nmの光透過率を、それぞれ165℃以上及び10%以下に調整し、面内位相差及び厚み位相差を、ぞれぞれ30nm以下及び100nm以下に調整すれば、上記課題を解決できることを見出し、本発明を完成するに至った。すなわち、本発明には、以下の好適な態様が含まれる。
[1]ガラス転移温度は165℃以上、350nmの光透過率は10%以下、面内位相差は30nm以下、及び厚み位相差は100nm以下である、光学フィルム。
[2]ガラス転移温度は180℃超である、[1]に記載の光学フィルム。
[3]500nmの光透過率は90%以上である、[1]又は[2]に記載の光学フィルム。
[4]引張強度は86MPa超である、[1]~[3]のいずれかに記載の光学フィルム。
[5]膜厚は10~100μmである、[1]~[4]のいずれかに記載の光学フィルム。
[6]溶媒含有量は、光学フィルムの質量に対して3.0質量%以下である、[1]~[5]のいずれかに記載の光学フィルム。
[7]式(1)
Figure JPOXMLDOC01-appb-C000003
[式(1)中、Xは2価の有機基を表し、Yは4価の有機基を表し、*は結合手を表す]
で表される構成単位を有するポリイミド系樹脂を含む、[1]~[6]のいずれかに記載の光学フィルム。
[8]式(1)で表される構成単位は、Xとして、2価の脂肪族基を含む、[7]に記載の光学フィルム。
[9]式(1)で表される構成単位は、Yとして、式(2)
Figure JPOXMLDOC01-appb-C000004
[式(2)中、R~Rは、互いに独立に、水素原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数6~12のアリール基を表し、R~Rに含まれる水素原子は、互いに独立に、ハロゲン原子で置換されていてもよく、Vは、単結合、-O-、-CH-、-CH-CH-、-CH(CH)-、-C(CH-、-C(CF-、-SO-、-S-、-CO-又は-N(R)-を表し、Rは、水素原子、又はハロゲン原子で置換されていてもよい炭素数1~12の一価の炭化水素基を表し、*は結合手を表す]
で表される構造を含む、[7]又は[8]に記載の光学フィルム。
[10]前記ポリイミド系樹脂は、フッ素原子を含有する、[7]~[9]のいずれかに記載の光学フィルム。
[11]前記ポリイミド系樹脂は、重量平均分子量(Mw)が250,000を超える、[7]~[10]のいずれかに記載の光学フィルム。
[12][1]~[11]のいずれかに記載の光学フィルムを備える、フレキシブル表示装置。
[13]さらに偏光板を備える、[12]に記載のフレキシブル表示装置。
[14]さらにタッチセンサを備える、[12]又は[13]に記載のフレキシブル表示装置。
 本発明の光学フィルムは、低位相差、高耐熱性、及び高い紫外線カット性を有することができる。そのため、フレキシブル表示装置等の材料として好適に使用できる。
[光学フィルム]
 本発明の光学フィルムは、ガラス転移温度が165℃以上、350nmの光透過率が10%以下、面内位相差が30nm以下、及び厚み位相差が100nm以下である。
 本発明者は、光学フィルムの面内位相差を30nm以下、厚み位相差を100nm以下、及び350nmの光透過率を10%以下に調整し、さらにガラス転移温度を165℃以上に調整したところ、低位相差、高耐熱性及び高い紫外線カット性を同時に満足できることを見出した。
 本発明の光学フィルムは、ガラス転移温度(以下、Tgと略すことがある)が165℃以上である。ガラス転移温度が165℃未満であると、耐熱性が十分でない。また、引張強度及び耐屈曲性が十分でない場合がある。本発明の光学フィルムのガラス転移温度は、好ましくは170℃以上、より好ましくは175℃以上、さらに好ましくは180℃以上、特に好ましくは180℃超、特により好ましくは180.5℃以上、最も好ましくは181℃以上であり、好ましくは400℃以下、より好ましくは380℃以下、さらに好ましくは350℃以下、特に好ましくは300℃以下である。ガラス転移温度が上記の下限以上であると、耐熱性を向上でき、また引張強度及び耐屈曲性を高めやすい。ガラス転移温度が上記の上限以下であると、光学特性を高めやすい。本明細書において、光学特性とは、位相差、透明性及び紫外線カット性を含む光学フィルムが有する光学的な特性を意味し、光学特性が向上する又は高まるとは、例えば位相差が低くなること、500nmの光透過率が高くなること(又は透明性が高くなること)、350nmの光透過率が低くなること(又は紫外線カット性が高くなること)等を意味し、光学特性に優れるとは、低い位相差、500nmの高い光透過率(又は高い透明性)、及び350nmの低い光透過率(又は高い紫外線カット性)を示すことを意味する。なお、ガラス転移温度(Tg)は、光学フィルムに含まれる樹脂を構成する構成単位の種類や構成比;光学フィルムの溶媒含有量;添加剤の種類や配合量;樹脂の製造条件やモノマーの純度;光学フィルムの製造条件を適宜調整することにより上記範囲内にすることができ、特に、樹脂を構成する構成単位の種類や構成比として後述の好ましいものを用いること、光学フィルムの溶媒含有量を調整すること、後述の光学フィルム製造工程における乾燥条件を適用すること等により、上記範囲に調整してもよい。
 本発明におけるガラス転移温度は、DSC(示差走査熱量測定)によるガラス転移温度である。該ガラス転移温度は、熱分析装置を用いて、測定試料量:5mg、温度域:室温から400℃、昇温速度:10℃/minという条件で測定でき、例えば実施例に記載の方法により測定できる。
 本発明の光学フィルムは、350nmの光透過率が10%以下である。350nmの光透過率が10%を超えると、紫外線カット性が低下する傾向がある。本発明の光学フィルムの350nmにおける光透過率は、好ましくは8%以下、より好ましくは5%以下である。350nmの光透過率が上記の上限以下であると、紫外線カット性を向上できる。350nmの光透過率の下限は0%である。350nmの光透過率は、紫外可視近赤外分光光度計を用いて測定でき、例えば実施例に記載の方法により測定できる。350nmの光透過率は、好ましくは本発明の光学フィルムの厚み(膜厚)の範囲における光透過率である。なお、350nmの光透過率は、光学フィルムに含まれる樹脂を構成する構成単位の種類や構成比;光学フィルムの厚さ;光学フィルムの溶媒含有量;添加剤の種類や配合量;樹脂の製造条件やモノマーの純度;光学フィルムの製造条件を適宜調整することにより上記範囲内にすることができ、例えば光学フィルムに含まれる紫外線吸収剤の種類や量を適宜調整することにより上記範囲に調整しやすい。
 本発明の光学フィルムは、面内位相差(面内方向の位相差)が30nm以下であり、かつ厚み位相差(厚み方向の位相差)が100nm以下である。面内位相差が30nm超、かつ厚み位相差が100nm超であると、表示装置等に適用した場合に視認性が十分でない。本発明の光学フィルムの厚み位相差Rthは、式(A)
Rth={(Nx+Ny)/2-Nz}×d   ・・・(A)
[式中、Nxは、光学フィルム面内の一方向の屈折率を示し、Nyは、光学フィルム面内のNxと直交する方向の屈折率を示し、Nzは光学フィルムの厚み方向の屈折率を示し、dは光学フィルムの厚み(nm)を示し、Nx>Nyを満たす]
で表される。すなわち、Nxは遅相軸方向の屈折率であり、Nyは進相軸方向の屈折率であり、Nx-Nyは複屈折である。
 本発明の光学フィルムの厚み位相差Rthは、好ましくは90nm以下、より好ましくは80nm以下、さらに好ましくは70nm以下であり、好ましくは1nm以上、より好ましくは5nm以上である。厚み位相差Rthが上記の上限以下であると、光学フィルムを表示装置等に適用した場合に視認性を向上でき、また厚み位相差Rthが上記の下限以上であると、視認性のムラが生じづらい。
 本発明の光学フィルムの面内位相差R0は、式(B)
R0=(Nx-Ny)×d(nm)   ・・・(B)
[式中、Nx、Ny及びdは、式(A)におけるNx、Ny及びdと同様である]
で表される。
 本発明の光学フィルムの面内位相差R0は、好ましくは20nm以下、より好ましくは15nm以下、さらに好ましくは10nm以下であり、好ましくは0.1nm以上、より好ましくは1nm以上である。面内位相差R0が上記の上限以下であると、光学フィルムを表示装置等に適用した場合に視認性を向上でき、また面内位相差R0が上記の下限以上であると、視認性のムラが生じづらい。
 光学フィルムの厚み位相差Rth及び面内位相差R0は、位相差測定装置を用いて測定でき、例えば実施例に記載の方法により測定できる。なお、Rth及びR0は、光学フィルムに含まれる樹脂を構成する構成単位の種類、構成比又は分子量;光学フィルムの厚さ;光学フィルムの溶媒含有量;添加剤の種類や配合量;樹脂の製造条件やモノマーの純度;光学フィルムの製造条件を適宜調整することにより上記範囲内にすることができ、特に光学フィルムに含まれる樹脂を構成する構成単位として非環式脂肪族骨格を有する構成単位を含有させると、上記範囲に調整しやすい。
 本発明の光学フィルムは、500nmの光透過率が好ましくは90.0%以上である。そのため、本発明の好適な実施態様では、光学フィルムは紫外領域のカット性と、可視光領域の透過性とを両立できる。500nmの光透過率は、より好ましくは90.2%以上、さらに好ましくは90.4%以上である。500nmの光透過率が上記の下限以上であると、表示装置等に適用した場合に視認性を高めやすい。500nmの光透過率の上限は100%である。500nmの光透過率は、紫外可視近赤外分光光度計を用いて測定でき、例えば実施例に記載の方法により測定できる。500nmの光透過率は、好ましくは本発明の光学フィルムの厚み(膜厚)の範囲における光透過率であり、特に光学フィルムの厚みが好ましくは22~40nm、より好ましくは23~27nm、さらに好ましくは25μmであるときの光透過率である。なお、500nmの光透過率は、光学フィルムに含まれる樹脂を構成する構成単位の種類や構成比;光学フィルムの厚さ;光学フィルムの溶媒含有量;添加剤の種類や配合量;樹脂の製造条件やモノマーの純度;光学フィルムの製造条件を適宜調整することにより上記範囲内にすることができ、特に、樹脂を構成する構成単位の種類や構成比として後述の好ましいものを用いること、光学フィルムの溶媒含有量を調整すること、後述の光学フィルム製造工程における乾燥条件を適用することなどにより、上記範囲に調整してもよい。
 本発明の好適な実施態様において、本発明の光学フィルムは、低位相差、高耐熱性及び高い紫外線カット性に加え、優れた引張強度と優れた耐屈曲性とを両立できる。本発明の光学フィルムの引張強度は、好ましくは70MPa以上、より好ましくは80MPa以上、さらに好ましくは85MPa以上、さらにより好ましくは86MPa超、特に好ましくは87MPa以上、特により好ましくは89MPa以上であり、好ましくは200MPa以下、より好ましくは180MPa以下である。引張強度が上記の下限以上であると、光学フィルムの破損等を抑制しやすく、また引張強度が上記の上限以下であると、柔軟性を高めやすい。引張強度は、引張試験機等を用いて、チャック間距離50mm、引張速度20mm/分の条件で測定でき、例えば実施例に記載の方法により測定できる。
 本発明の光学フィルムは、ASTM規格D2176-16に準拠したMIT耐折疲労試験において、屈曲半径1mmにおける屈曲回数が好ましくは10,000回以上、より好ましくは50,000回以上、さらに好ましくは100,000回以上、さらにより好ましくは200,000回以上、特に好ましくは500,000回以上、特により好ましくは1,000,000回以上である。屈曲回数が上記の下限以上であると、光学フィルムを繰り返し折り曲げても光学フィルムの破損等を有効に抑制しやすい。屈曲回数の上限は通常50,000,000回以下である。光学フィルムの屈曲回数は、試験速度175cpm、折り曲げ角度135°、加重0.75kf、折り曲げクランプの屈曲半径1mmという条件で測定でき、例えば実施例に記載の方法により測定できる。
 なお、引張強度及び耐屈曲性は、光学フィルムに含まれる樹脂を構成する構成単位の種類や構成比;光学フィルムの溶媒含有量;添加剤の種類や配合量;樹脂の製造条件やモノマーの純度;光学フィルムの製造条件を適宜調整することにより上記範囲内にすることができ、特に、樹脂を構成する構成単位の種類や構成比として後述の好ましいものを用いること、光学フィルムの溶媒含有量を調整すること、後述の光学フィルム製造工程における乾燥条件を適用すること等により、上記範囲に調整してもよい。
 本発明の好適な実施態様において、本発明の光学フィルムは、溶媒含有量(残留溶媒量ともいう)が、光学フィルムの質量に対して、好ましくは3.0質量%以下、より好ましくは2.5質量%以下、さらに好ましくは2.0質量%以下であり、好ましくは0.01質量%以上、より好ましくは0.1質量%以上であり、さらに好ましくは0.5質量%以上である。溶媒含有量が上記の上限以下であると、Tgを上記範囲に調整しやすく、耐熱性、引張強度及び耐屈曲性を高めやすい。溶媒含有量が上記の下限以上であると、光学特性を向上しやすく、例えば500nmの光透過率を高めやすく、また350nmの光透過率を低減しやすい。溶媒含有量(残存溶媒量)は、TG-DTAの測定装置を用いて得られた120℃から250℃にかけての質量減少率S(質量%)に相当する。該質量減少率Sは、例えば約20mgの光学フィルムを、室温から120℃まで10℃/分の昇温速度で昇温し、120℃で5分間保持した後、400℃まで10℃/分の昇温速度で昇温(加熱)しながらTG-DTA測定を行い、TG-DTA測定結果を基に、式(1):
質量減少率S(質量%)=100-(W1/W0)×100 (1)
[式(1)中、W0は120℃で5分間保持した後の試料の質量であり、W1は250℃における試料の質量である]
から算出できる。例えば実施例に記載の方法により測定及び算出できる。なお、溶媒含有量は、例えば後述の光学フィルム製造工程における乾燥条件(特に乾燥温度や乾燥時間等)を適宜調整することにより、上記範囲に調整してもよい。例えば、乾燥温度を高くするほど、溶媒含有量が小さくなる傾向がある。また、溶媒含有量が小さいほど、Tgが高くなる傾向がある。
 本発明の光学フィルムの厚みは、用途に応じて適宜選択でき、好ましくは5μm以上、より好ましくは10μm以上、さらに好ましくは15μm以上であり、好ましくは100μm以下、より好ましくは80μm以下、さらに好ましくは60μm以下、特に好ましくは50μm以下である。光学フィルムの厚さは、厚み計等を用いて測定でき、例えば実施例に記載の方法により測定できる。
 <樹脂>
 本発明の光学フィルムは、樹脂を含むことが好ましい。樹脂としては、透明性を有する樹脂であることが好ましく、その例としては、ポリエステル系樹脂、ポリカーボネート系樹脂、ポリアリレート系樹脂、ポリエーテルスルホン系樹脂、ポリイミド系樹脂、ポリ(メタ)アクリル系樹脂、シクロオレフィン系樹脂などが挙げられる。これらの樹脂は単独又は二種以上組合せて使用できる。これらの中でも、光学特性、耐熱性、引張強度及び耐屈曲性を高めやすい観点から、ポリイミド系樹脂が好ましい。ポリイミド系樹脂とは、イミド基を含む繰返し構造単位(構成単位ともいう)を含有する重合体を意味し、さらにアミド基を含む繰り返し構造単位を含有していてもよい。
 本発明の好適な実施態様において、本発明の光学フィルムは、式(1)
Figure JPOXMLDOC01-appb-C000005
[式(1)中、Xは2価の有機基を表し、Yは4価の有機基を表し、*は結合手を表す]
で表される構成単位を有するポリイミド系樹脂を含むことが好ましい。このようなポリイミド系樹脂を含むと、光学特性、耐熱性、引張強度及び耐屈曲性を高めやすい。
 式(1)中のXは、それぞれ独立に2価の有機基を表し、好ましくは炭素数2~40の2価の有機基を表す。2価の有機基としては、例えば2価の芳香族基、2価の脂肪族基等が挙げられ、2価の脂肪族基としては、例えば2価の非環式脂肪族基又は2価の環式脂肪族基が挙げられる。これらの中でも、光学特性、耐熱性、引張強度及び耐屈曲性を高めやすい観点から、2価の脂肪族基が好ましく、2価の非環式脂肪族基がより好ましい。なお、本明細書において、2価の芳香族基は芳香族基を有する2価の有機基であり、その構造の一部に脂肪族基又はその他の置換基を含んでいてもよい。また、2価の脂肪族基は脂肪族基を有する2価の有機基であり、その構造の一部にその他の置換基を含んでいてもよいが、芳香族基は含まない。
 本発明の一実施態様において、式(1)中のXにおける2価の芳香族基又は2価の環式脂肪族基としては、式(10)、式(11)、式(12)、式(13)、式(14)、式(15)、式(16)、式(17)及び式(18)で表される基;それらの式(10)~式(18)で表される基中の水素原子がメチル基、フルオロ基、クロロ基又はトリフルオロメチル基で置換された基;並びに炭素数6以下の鎖式炭化水素基が挙げられる。
Figure JPOXMLDOC01-appb-C000006
 式(10)~式(18)中、
 *は結合手を表し、
 V、V及びVは、互いに独立に、単結合、-O-、-S-、-CH-、-CH-CH-、-CH(CH)-、-C(CH-、-C(CF-、-SO-、-CO-又は-N(Q)-を表す。ここで、Qはハロゲン原子で置換されていてもよい炭素数1~12の1価の炭化水素基を表す。ハロゲン原子で置換されていてもよい炭素数1~12の1価の炭化水素基としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、2-メチル-ブチル基、3-メチルブチル基、2-エチル-プロピル基、n-ヘキシル、n-ヘプチル基、n-オクチル基、tert-オクチル基、n-ノニル基及びn-デシル基等が挙げられる。前記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子などが挙げられる。
 1つの例は、V及びVが単結合、-O-又は-S-であり、かつ、Vが-CH-、-C(CH-、-C(CF-又は-SO-である。VとVとの各環に対する結合位置、及び、VとVとの各環に対する結合位置は、互いに独立に、各環に対して好ましくはメタ位又はパラ位、より好ましくはパラ位である。なお、式(10)~式(18)における環上の水素原子は、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数6~12のアリール基で置換されていてもよい。炭素数1~6のアルキル基としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、2-メチル-ブチル基、3-メチルブチル基、2-エチル-プロピル基、n-ヘキシル基等が挙げられる。炭素数1~6のアルコキシ基としては、例えばメトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブトキシ基、イソブトキシ基、tert-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基及びシクロヘキシルオキシ基等が挙げられる。炭素数6~12のアリール基としては、例えばフェニル基、トリル基、キシリル基、ナフチル基及びビフェニル基等が挙げられる。これらの2価の環式脂肪族基又は2価の芳香族基は、単独又は二種以上組み合わせて使用できる。
 本発明の一実施態様において、式(1)中のXにおける2価の非環式脂肪族基としては、例えば、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、プロピレン基、1,2-ブタンジイル基、1,3-ブタンジイル基、2-メチル-1,2-プロパンジイル基、2-メチル-1,3-プロパンジイル基等の直鎖状又は分岐鎖状アルキレン基などが挙げられる。2価の非環式脂肪族基中の水素原子は、ハロゲン原子で置換されていてもよく、炭素原子はヘテロ原子(例えば酸素原子、窒素原子等)で置換されていてもよい。直鎖状又は分岐鎖状アルキレン基の炭素数は、光学特性、耐熱性、引張強度及び耐屈曲性をバランス良く発現しやすい観点から、好ましくは2以上、より好ましくは3以上、さらに好ましくは4以上であり、好ましくは10以下、より好ましくは8以下、さらに好ましくは6以下である。上記2価の非環式脂肪族基の中でも、光学特性、耐熱性、引張強度及び耐屈曲性をバランス良く発現しやすい観点から、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基等の炭素数2~6のアルキレン基が好ましく、テトラメチレン基がより好ましい。
 本発明のポリイミド系樹脂は、複数種のXを含み得、複数種のXは、互いに同一であっても、異なっていてもよい。例えば、式(1)中のXとして、2価の非環式脂肪族基と、2価の芳香族基及び/又は2価の環式脂肪族基とを含んでいてもよい。
 本発明の一実施態様において、式(1)中のXとして、2価の脂肪族基、好ましくは2価の非環式脂肪族基を含む場合、式(1)中のXが2価の脂肪族基、好ましくは2価の非環式脂肪族基である構成単位の割合は、式(1)で表される構成単位の総モル量に対して、好ましくは30モル%以上、より好ましくは50モル%以上、さらに好ましくは70モル%以上、特に好ましくは90モル%以上であり、好ましくは100モル%以下である。式(1)中のXが2価の脂肪族基、好ましくは2価の非環式脂肪族基である構成単位の割合が上記の範囲であると、光学フィルムの光学特性、耐熱性、引張強度及び耐屈曲性を向上しやすい。該構成単位の割合は、例えばH-NMRを用いて測定することができ、又は原料の仕込み比から算出することもできる。
 式(1)において、Yは、それぞれ独立に4価の有機基を表し、好ましくは炭素数4~40の4価の有機基を表し、より好ましくは環状構造を有する炭素数4~40の4価の有機基を表す。環状構造としては、脂環、芳香環、ヘテロ環構造が挙げられる。前記有機基は、有機基中の水素原子が炭化水素基又はフッ素置換された炭化水素基で置換されていてもよい有機基であり、その場合、炭化水素基及びフッ素置換された炭化水素基の炭素数は好ましくは1~8である。本発明のポリイミド系樹脂は、複数種のYを含み得、複数種のYは、互いに同一でよく、異なっていてもよい。Yとしては、以下の式(20)、式(21)、式(22)、式(23)、式(24)、式(25)、式(26)、式(27)、式(28)及び式(29)で表される基;それらの式(20)~式(29)で表される基中の水素原子がメチル基、フルオロ基、クロロ基又はトリフルオロメチル基で置換された基;並びに4価の炭素数6以下の鎖式炭化水素基が挙げられる。
Figure JPOXMLDOC01-appb-C000007
 式(20)~式(29)中、
 *は結合手を表し、
 Wは、単結合、-O-、-CH-、-CH-CH-、-CH(CH)-、-C(CH-、-C(CF-、-Ar-、-SO-、-CO-、-O-Ar-O-、-Ar-O-Ar-、-Ar-CH-Ar-、-Ar-C(CH-Ar-又は-Ar-SO-Ar-を表す。Arは、水素原子がフッ素原子で置換されていてもよい炭素数6~20のアリーレン基を表し、具体例としてはフェニレン基が挙げられる。
 式(20)~式(29)で表される基の中でも、光学特性、耐熱性、引張強度及び耐屈曲性を高めやすい観点から、式(26)、式(28)又は式(29)で表される基が好ましく、式(26)で表される基がより好ましい。また、Wは、光学フィルムの光学特性、耐熱性、引張強度及び耐屈曲性を高めやすい観点から、それぞれ独立に、単結合、-O-、-CH-、-CH-CH-、-CH(CH)-、-C(CH-又は-C(CF-であることが好ましく、単結合、-O-、-CH-、-CH(CH)-、-C(CH-又は-C(CF-であることがより好ましく、単結合、-C(CH-又は-C(CF-であることがさらに好ましい。
 本発明の好適な実施態様において、式(1)で表される構成単位は、Yとして、式(2):
Figure JPOXMLDOC01-appb-C000008
[式(2)中、R~Rは、互いに独立に、水素原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数6~12のアリール基を表し、R~Rに含まれる水素原子は、互いに独立に、ハロゲン原子で置換されていてもよく、Vは、単結合、-O-、-CH-、-CH-CH-、-CH(CH)-、-C(CH-、-C(CF-、-SO-、-S-、-CO-又は-N(R)-を表し、Rは、水素原子、又はハロゲン原子で置換されていてもよい炭素数1~12の一価の炭化水素基を表し、*は結合手を表す]
で表される構造を含む。このような実施態様であると、光学フィルムは、優れた光学特性、耐熱性、引張強度及び耐屈曲性を発現しやすい。なお、式(1)で表される構成単位は、Yとして、式(2)で表される構造を1種又は複数種含んでいてもよい。
 式(2)において、R、R、R、R、R及びRは、互いに独立に、水素原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数6~12のアリール基を表す。炭素数1~6のアルキル基、炭素数1~6のアルコキシ基及び炭素数6~12のアリール基としてはそれぞれ、上記に例示の炭素数1~6のアルキル基、炭素数1~6のアルコキシ基及び炭素数6~12のアリール基が挙げられる。R~Rは、互いに独立に、好ましくは水素原子又は炭素数1~6のアルキル基を表し、より好ましくは水素原子又は炭素数1~3のアルキル基を表し、ここで、R~Rに含まれる水素原子は、互いに独立に、ハロゲン原子で置換されていてもよい。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。Vは、単結合、-O-、-CH-、-CH-CH-、-CH(CH)-、-C(CH-、-C(CF-、-SO-、-S-、-CO-又は-N(R)-を表し、Rは、水素原子、又はハロゲン原子で置換されていてもよい炭素数1~12の一価の炭化水素基を表す。ハロゲン原子で置換されていてもよい炭素数1~12の一価の炭化水素基としては、ハロゲン原子で置換されていてもよい炭素数1~12の一価の炭化水素基として上記に例示のものが挙げられる。これらの中でも、光学フィルムの光学特性、耐熱性、引張強度及び耐屈曲性を高めやすい観点から、Vは、単結合、-O-、-CH-、-CH(CH)-、-C(CH-又は-C(CF-であることが好ましく、単結合、-C(CH-又は-C(CF-であることがより好ましく、単結合又は-C(CF-であることがさらに好ましい。
 本発明の好適な実施態様においては、式(2)は、式(2’)
Figure JPOXMLDOC01-appb-C000009
[式(2’)中、*は結合手を表す]
で表される。このような実施態様であると、光学フィルムは、優れた光学特性、耐熱性、引張強度及び耐屈曲性をより発現しやすい。また、フッ素元素を含有する骨格により樹脂の溶媒への溶解性を向上し、ワニスの粘度を低く抑制することができ、光学フィルムの加工を容易にすることができる。
 本発明の一実施態様において、式(1)中のYとして、式(2)で表される構造を含む場合、式(1)中のYが式(2)で表される構成単位の割合は、式(1)で表される構成単位の総モル量に対して、好ましくは30モル%以上、より好ましくは50モル%以上、さらに好ましくは70モル%以上、特に好ましくは90モル%以上であり、好ましくは100モル%以下である。式(1)中のYが式(2)で表される構成単位の割合が上記の範囲であると、光学フィルムの光学特性、耐熱性、引張強度及び耐屈曲性をより向上しやすい。式(1)中のYが式(2)で表される構成単位の割合は、例えばH-NMRを用いて測定することができ、又は原料の仕込み比から算出することもできる。
 本発明のポリイミド系樹脂は、式(1)で表される構成単位の他に、式(30)で表される構成単位及び/又は式(31)で表される構成単位を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000010
 式(30)において、Yは4価の有機基であり、好ましくは有機基中の水素原子が炭化水素基又はフッ素置換された炭化水素基で置換されていてもよい有機基である。Yとしては、式(20)、式(21)、式(22)、式(23)、式(24)、式(25)、式(26)、式(27)、式(28)及び式(29)で表される基、それらの式(20)~式(29)で表される基中の水素原子がメチル基、フルオロ基、クロロ基又はトリフルオロメチル基で置換された基、並びに4価の炭素数6以下の鎖式炭化水素基が挙げられる。本発明の一実施態様において、ポリイミド系樹脂は、複数種のYを含み得、複数種のYは、互いに同一であっても、異なっていてもよい。
 式(31)において、Yは3価の有機基であり、好ましくは有機基中の水素原子が炭化水素基又はフッ素置換された炭化水素基で置換されていてもよい有機基である。Yとしては、上記の式(20)、式(21)、式(22)、式(23)、式(24)、式(25)、式(26)、式(27)、式(28)及び式(29)で表される基の結合手のいずれか1つが水素原子に置き換わった基、及び3価の炭素数6以下の鎖式炭化水素基が挙げられる。本発明の一実施態様において、ポリイミド系樹脂は、複数種のYを含み得、複数種のYは、互いに同一であっても、異なっていてもよい。
 式(30)及び式(31)において、X及びXは、互いに独立に、2価の有機基を表し、好ましくは炭素数2~40の2価の有機基を表す。2価の有機基としては、例えば2価の芳香族基、2価の脂肪族基等が挙げられ、2価の脂肪族基としては、例えば2価の非環式脂肪族基又は2価の環式脂肪族基が挙げられる。X及びXにおける2価の環式脂肪族基又は2価の芳香族基としては、上記の式(10)、式(11)、式(12)、式(13)、式(14)、式(15)、式(16)、式(17)及び式(18)で表される基;それらの式(10)~式(18)で表される基中の水素原子がメチル基、フルオロ基、クロロ基又はトリフルオロメチル基で置換された基;並びに炭素数6以下の鎖式炭化水素基などが挙げられる。2価の非環式脂肪族基としては、例えば、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、プロピレン基、1,2-ブタンジイル基、1,3-ブタンジイル基、2-メチル-1,2-プロパンジイル基、2-メチル-1,3-プロパンジイル基等の炭素数2~10の直鎖状又は分岐鎖状アルキレン基などが挙げられる。
 本発明の一実施態様において、ポリイミド系樹脂は、式(1)で表される構成単位、並びに、場合により式(30)で表される構成単位及び式(31)で表される構成単位から選択される少なくとも1つの構成単位からなる。また、光学フィルムの光学特性、耐熱性、引張強度及び耐屈曲性を高めやすい観点から、上記ポリイミド系樹脂において、式(1)で表される構成単位の割合は、ポリイミド系樹脂に含まれる全構成単位、例えば式(1)で表される構成単位、並びに、場合により式(30)で表される構成単位及び式(31)で表される構成単位から選択される少なくとも1つの構成単位の総モル量に基づいて、好ましくは80モル%以上、より好ましくは90モル%以上、さらに好ましくは95モル%以上である。なお、ポリイミド系樹脂において、式(1)で表される構成単位の割合の上限は100モル%である。なお、上記割合は、例えば、H-NMRを用いて測定することができ、又は原料の仕込み比から算出することもできる。また、本発明におけるポリイミド系樹脂は、光学フィルムの光学特性、耐熱性、引張強度及び耐屈曲性を高めやすい観点から、好ましくはポリイミド樹脂である。
 本発明の好ましい一実施態様において、本発明のポリイミド系樹脂は、例えば上記の含ハロゲン原子置換基等によって導入することができる、ハロゲン原子、好ましくはフッ素原子を含有していてもよい。ポリイミド系樹脂がハロゲン原子、好ましくはフッ素原子を含有する場合、耐熱性、引張強度及び耐屈曲性に加え、光学特性を高めやすい。ポリイミド系樹脂にフッ素原子を含有させるために好ましい含フッ素置換基としては、例えばフルオロ基及びトリフルオロメチル基が挙げられる。
 ポリイミド系樹脂におけるハロゲン原子の含有量は、それぞれ、ポリイミド系樹脂の質量を基準として、好ましくは1~40質量%、より好ましくは5~40質量%、さらに好ましくは5~30質量%である。ハロゲン原子の含有量が上記の下限以上であると、光学フィルムの光学特性、耐熱性、引張強度及び耐屈曲性を高めやすい。ハロゲン原子の含有量が上記の上限以下であると、合成がしやすくなる。
 ポリイミド系樹脂の重量平均分子量(Mw)は、好ましくは250,000超、より好ましくは270,000以上、さらに好ましくは300,000以上、特に好ましくは350,000以上であり、好ましくは800,000以下、より好ましくは700,000以下、さらに好ましくは600,000以下である。重量平均分子量(Mw)が上記の下限以上であると、耐屈曲性及び引張強度を高めやすく、また上記の上限以下であると、フィルムの加工性を向上させやすい。重量平均分子量(Mw)は、ゲル浸透クロマトグラフィー(GPC)測定を行い、標準ポリスチレン換算により求めることができ、例えば実施例に記載の方法により算出できる。
 ポリイミド系樹脂のイミド化率は、好ましくは90%以上、より好ましくは93%以上、さらに好ましくは95%以上、さらにより好ましくは97%以上、特に好ましくは99%以上である。光学フィルムの光学特性を高めやすい観点から、イミド化率が上記の下限以上であることが好ましい。また、イミド化率の上限は100%である。イミド化率は、ポリイミド系樹脂中のテトラカルボン酸化合物に由来する構成単位のモル量の2倍の値に対する、ポリイミド系樹脂中のイミド結合のモル量の割合を示す。なお、ポリイミド系樹脂がトリカルボン酸化合物を含む場合には、ポリイミド系樹脂中のテトラカルボン酸化合物に由来する構成単位のモル量の2倍の値と、トリカルボン酸化合物に由来する構成単位のモル量との合計に対する、ポリイミド系樹脂中のイミド結合のモル量の割合を示す。また、イミド化率は、IR法、NMR法などにより求めることができ、例えば実施例に記載の方法により求めることができる。
 本発明の一実施態様において、光学フィルムに含まれるポリイミド系樹脂の含有量は、光学フィルムの質量(100質量%)に対して、好ましくは40質量%以上、より好ましくは50質量%以上、さらに好ましくは60質量%、特に好ましくは80質量%以上であり、好ましくは100質量%以下である。光学フィルムに含まれるポリイミド系樹脂の含有量が上記範囲内であると、得られる光学フィルムの光学特性、耐熱性、引張強度及び耐屈曲性を高めやすい。
 <樹脂の製造方法>
 本発明の光学フィルムに含まれる樹脂は、市販品を用いてもよく、慣用の方法により製造してもよい。本発明の一実施態様では、前記樹脂はポリイミド系樹脂であることが好ましい。ポリイミド系樹脂の製造方法は特に限定されないが、例えば、式(1)で表される構成単位を含むポリイミド系樹脂は、ジアミン化合物とテトラカルボン酸化合物とを反応させてポリアミック酸を得る工程、及び該ポリアミック酸をイミド化する工程を含む方法により製造できる。なお、テトラカルボン酸化合物の他に、トリカルボン酸化合物を反応させてもよい。
 ポリイミド系樹脂の合成に用いられるテトラカルボン酸化合物としては、芳香族テトラカルボン酸二無水物等の芳香族テトラカルボン酸化合物;及び脂肪族テトラカルボン酸二無水物等の脂肪族テトラカルボン酸化合物等が挙げられる。テトラカルボン酸化合物は、単独で用いてもよいし、2種以上を組合せて用いてもよい。テトラカルボン酸化合物は、二無水物の他、酸クロリド化合物等のテトラカルボン酸化合物類縁体であってもよい。
 芳香族テトラカルボン酸二無水物の具体例としては、非縮合多環式の芳香族テトラカルボン酸二無水物、単環式の芳香族テトラカルボン酸二無水物及び縮合多環式の芳香族テトラカルボン酸二無水物が挙げられる。非縮合多環式の芳香族テトラカルボン酸二無水物としては、例えば4,4’-オキシジフタル酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDAと記載することがある)、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(3,4-ジカルボキシフェノキシフェニル)プロパン二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDAと記載することがある)、1,2-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,2-ビス(3,4-ジカルボキシフェニル)エタン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、4,4’-(p-フェニレンジオキシ)ジフタル酸二無水物、4,4’-(m-フェニレンジオキシ)ジフタル酸二無水物が挙げられる。また、単環式の芳香族テトラカルボン酸二無水物としては、例えば1,2,4,5-ベンゼンテトラカルボン酸二無水物が挙げられ、縮合多環式の芳香族テトラカルボン酸二無水物としては、例えば2,3,6,7-ナフタレンテトラカルボン酸二無水物が挙げられる。これらは単独又は2種以上を組合せて使用できる。
 脂肪族テトラカルボン酸二無水物としては、環式又は非環式の脂肪族テトラカルボン酸二無水物が挙げられる。環式脂肪族テトラカルボン酸二無水物とは、脂環式炭化水素構造を有するテトラカルボン酸二無水物であり、その具体例としては、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物等のシクロアルカンテトラカルボン酸二無水物、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、ジシクロヘキシル-3,3’,4,4’-テトラカルボン酸二無水物及びこれらの位置異性体が挙げられる。これらは単独で又は2種以上を組合せて用いることができる。非環式脂肪族テトラカルボン酸二無水物の具体例としては、1,2,3,4-ブタンテトラカルボン酸二無水物、及び1,2,3,4-ペンタンテトラカルボン酸二無水物等が挙げられ、これらは単独で又は2種以上を組合せて用いることができる。また、環式脂肪族テトラカルボン酸二無水物及び非環式脂肪族テトラカルボン酸二無水物を組合せて用いてもよい。
 上記テトラカルボン酸二無水物の中でも、光学フィルムの光学特性、耐熱性、引張強度及び耐屈曲性を向上しやすい観点から、4,4’-オキシジフタル酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物、並びにこれらの混合物が好ましく、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA)がより好ましい。
 ポリイミド系樹脂の合成に用いられるジアミン化合物としては、例えば、脂肪族ジアミン、芳香族ジアミン及びこれらの混合物が挙げられる。なお、本実施態様において「芳香族ジアミン」とは、芳香環を有するジアミンを表し、その構造の一部に脂肪族基又はその他の置換基を含んでいてもよい。この芳香環は単環でも縮合環でもよく、ベンゼン環、ナフタレン環、アントラセン環及びフルオレン環等が例示されるが、これらに限定されるわけではない。これらの中でも、好ましくはベンゼン環である。また「脂肪族ジアミン」とは、脂肪族基を有するジアミンを表し、その構造の一部にその他の置換基を含んでいてもよいが、芳香環は有しない。
 脂肪族ジアミンとしては、例えば非環式脂肪族ジアミン、環式脂肪族ジアミン等が挙げられる。非環式脂肪族ジアミンとしては、例えば、1,2-ジアミノエタン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノヘキンサン、1,2-ジアミノプロパン、1,2-ジアミノブタン、1,3-ジアミノブタン、2-メチル-1,2-ジアミノプロパン、2-メチル-1,3-ジアミノプロパン等の炭素数2~10の直鎖状又は分岐鎖状ジアミノアルカン等が挙げられる。環式脂肪族ジアミンとしては、例えば1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、ノルボルナンジアミン及び4,4’-ジアミノジシクロヘキシルメタン等が挙げられる。これらは単独で又は2種以上を組合せて用いることができる。
 芳香族ジアミンとしては、例えばp-フェニレンジアミン、m-フェニレンジアミン、2,4-トルエンジアミン、m-キシリレンジアミン、p-キシリレンジアミン、1,5-ジアミノナフタレン、2,6-ジアミノナフタレン等の、芳香環を1つ有する芳香族ジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(3-アミノフェノキシ)フェニル〕スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、2,2’-ジメチルベンジジン、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノジフェニル(TFMBということがある)、4,4’-(ヘキサフルオロプロピリデン)ジアニリン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、9,9-ビス(4-アミノフェニル)フルオレン、9,9-ビス(4-アミノ-3-メチルフェニル)フルオレン、9,9-ビス(4-アミノ-3-クロロフェニル)フルオレン、9,9-ビス(4-アミノ-3-フルオロフェニル)フルオレン等の、芳香環を2つ以上有する芳香族ジアミンが挙げられる。これらは単独又は2種以上を組合せて使用できる。
 上記ジアミン化合物の中でも、光学フィルムの光学特性、耐熱性、引張強度及び耐屈曲性を高めやすい観点から、1,2-ジアミノエタン、1,3-ジアミノプロパン、1,4-ジアミノブタン(1,4-DABということがある)、1,5-ジアミノペンタン、1,6-ジアミノヘキサン、1,2-ジアミノプロパン、1,2-ジアミノブタン、1,3-ジアミノブタン、2-メチル-1,2-ジアミノプロパン、2-メチル-1,3-ジアミノプロパン等の炭素数2~10のジアミノアルカンが好ましく、炭素数2~6のジアミノアルカンがより好ましく、1,4-ジアミノブタンがさらに好ましい。
 なお、上記ポリイミド系樹脂は、光学フィルムの各種物性を損なわない範囲で、上記の樹脂合成に用いられるテトラカルボン酸化合物に加えて、他のテトラカルボン酸及びトリカルボン酸並びにそれらの無水物及び誘導体をさらに反応させたものであってもよい。
 他のテトラカルボン酸としては、上記テトラカルボン酸化合物の無水物の水付加体が挙げられる。
 トリカルボン酸化合物としては、芳香族トリカルボン酸、脂肪族トリカルボン酸及びそれらの類縁の酸クロリド化合物、酸無水物等が挙げられ、2種以上を組合せて用いてもよい。具体例としては、1,2,4-ベンゼントリカルボン酸の無水物;2,3,6-ナフタレントリカルボン酸-2,3-無水物;フタル酸無水物と安息香酸とが単結合、-O-、-CH-、-C(CH-、-C(CF-、-SO-若しくはフェニレン基で連結された化合物が挙げられる。
 ポリイミド系樹脂の製造において、ジアミン化合物、テトラカルボン酸化合物及びトリカルボン酸化合物の使用量は、所望とする樹脂の各構成単位の比率に応じて適宜選択できる。
 本発明の好適な実施態様においては、ジアミン化合物の使用量は、テトラカルボン酸化合物1モルに対して、好ましくは0.94モル以上、より好ましくは0.96モル以上、さらに好ましくは0.98モル以上、特に好ましくは0.99モル以上であり、好ましくは1.20モル以下、より好ましくは1.10モル以下、さらに好ましくは1.05モル以下、特に好ましくは1.02モル以下である。テトラカルボン酸化合物に対するジアミン化合物の使用量が上記の範囲であると、得られる光学フィルムの光学特性、耐熱性、引張強度及び耐屈曲性を高めやすい。
 ジアミン化合物とテトラカルボン酸化合物との反応温度は、特に限定されず、例えば5~200℃であってもよく、反応時間も特に限定されず、例えば30分~72時間程度であってもよい。本発明の好適な実施態様においては、反応温度は、好ましくは5~200℃、より好ましくは50~190℃、さらに好ましくは100~180℃であり、反応時間は、好ましくは3~24時間、より好ましくは5~20時間である。このような反応温度及び反応時間であると、得られる光学フィルムのTg及び光透過率を上記の範囲に調整しやすく、光学フィルムの光学特性、耐熱性、引張強度及び耐屈曲性を高めやすい。なお、ポリイミド系樹脂のMwは反応時間及び反応温度等の反応条件;ジアミン化合物、テトラカルボン酸化合物、触媒及び溶媒の種類及び使用量;析出操作における良溶媒と貧溶媒の組成;並びに洗浄溶液の組成等を適宜変更することにより調整できる。
 ジアミン化合物とテトラカルボン酸化合物との反応は、溶媒中で行うことが好ましい。溶媒としては、反応に影響を与えない限り特に限定されないが、例えば、水、メタノール、エタノール、エチレングリコール、イソプロピルアルコール、プロピレングリコール、エチレングリコールメチルエーテル、エチレングリコールブチルエーテル、1-メトキシ-2-プロパノール、2-ブトキシエタノール、プロピレングリコールモノメチルエーテル等のアルコール系溶媒;フェノール、クレゾール等のフェノール系溶媒;酢酸エチル、酢酸ブチル、エチレングリコールメチルエーテルアセテート、γ-ブチロラクトン、γ-バレロラクトン、プロピレングリコールメチルエーテルアセテート、乳酸エチル等のエステル系溶媒;アセトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、2-ヘプタノン、メチルイソブチルケトン等のケトン系溶媒;ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素溶媒;エチルシクロヘキサン等の脂環式炭化水素溶媒;トルエン、キシレン等の芳香族炭化水素溶媒;アセトニトリル等のニトリル系溶媒;テトラヒドロフラン及びジメトキシエタン等のエーテル系溶媒;クロロホルム及びクロロベンゼン等の塩素含有溶媒;N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等のアミド系溶媒;ジメチルスルホン、ジメチルスルホキシド、スルホラン等の含硫黄系溶媒;エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶媒;及びそれらの組合せなどが挙げられる。これらの中でも、溶解性の観点から、フェノール系溶媒、アミド系溶媒を好適に使用できる。
 本発明の好適な実施態様においては、反応に使用する溶媒は、水分量700ppm以下まで厳密に脱水した溶媒であることが好ましい。このような溶媒を用いると、得られる光学フィルムのTg及び光透過率を上記の範囲に調整しやすく、光学特性、耐熱性、引張強度及び耐屈曲性を高めやすい。
 ジアミン化合物とテトラカルボン酸化合物との反応は、必要に応じて、不活性雰囲気(窒素雰囲気、アルゴン雰囲気等)又は減圧の条件下において行ってもよく、不活性雰囲気(窒素雰囲気、アルゴン雰囲気等)下、厳密に制御された脱水溶媒中で撹拌しながら行うことが好ましい。このような条件であると、得られる光学フィルムのTg及び光透過率を上記の範囲に調整しやすく、光学特性、耐熱性、引張強度及び耐屈曲性を高めやすい。
 イミド化工程では、イミド化触媒を用いてイミド化しても、加熱によりイミド化しても、これらを組み合わせてもよい。イミド化工程で使用するイミド化触媒としては、例えばトリプロピルアミン、ジブチルプロピルアミン、エチルジブチルアミン等の脂肪族アミン;N-エチルピペリジン、N-プロピルピペリジン、N-ブチルピロリジン、N-ブチルピペリジン、及びN-プロピルヘキサヒドロアゼピン等の脂環式アミン(単環式);アザビシクロ[2.2.1]ヘプタン、アザビシクロ[3.2.1]オクタン、アザビシクロ[2.2.2]オクタン、及びアザビシクロ[3.2.2]ノナン等の脂環式アミン(多環式);並びにピリジン、2-メチルピリジン(2-ピコリン)、3-メチルピリジン(3-ピコリン)、4-メチルピリジン(4-ピコリン)、2-エチルピリジン、3-エチルピリジン、4-エチルピリジン、2,4-ジメチルピリジン、2,4,6-トリメチルピリジン、3,4-シクロペンテノピリジン、5,6,7,8-テトラヒドロイソキノリン、及びイソキノリン等の芳香族アミンが挙げられる。また、イミド化反応を促進しやすい観点から、イミド化触媒とともに、酸無水物を用いることが好ましい。酸無水物は、イミド化反応に用いられる慣用の酸無水物等が挙げられ、その具体例としては、無水酢酸、無水プロピオン酸、無水酪酸等の脂肪族酸無水物、フタル酸等の芳香族酸無水物などが挙げられる。
 本発明の一実施態様では、イミド化する場合、反応温度は、好ましくは40℃以上、より好ましくは60℃以上、さらに好ましくは80℃以上であり、好ましくは190℃以下、より好ましくは170℃以下である。イミド化工程の反応時間は、好ましくは30分~24時間、より好ましくは1~12時間である。反応温度及び反応時間が上記の範囲にあると、得られる光学フィルムの光学特性、耐熱性、引張強度及び耐屈曲性を高めやすい。
 ポリイミド系樹脂は、慣用の方法、例えば、濾過、濃縮、抽出、晶析、再結晶、カラムクロマトグラフィーなどの分離手段や、これらを組合せた分離手段により単離(分離精製)してもよく、好ましい態様では、樹脂を含む反応液に、多量のメタノール等のアルコールを加え、樹脂を析出させ、濃縮、濾過、乾燥等を行うことにより単離することができる。
 <添加剤>
 本発明の光学フィルムは、紫外線吸収剤を含有してもよい。本発明では、紫外線吸収剤を含有していても、Tgを上記範囲に調整することにより、耐熱性、好ましくは耐熱性、引張強度及び耐屈曲性に優れた光学フィルムを形成できる。そのため、紫外線吸収剤を用いて、紫外線領域の光吸収性を低下させることにより、紫外線カット性及び耐熱性、好ましくは紫外線カット性、耐熱性、引張強度及び耐屈曲性をバランス良く発現し得る光学フィルムを形成できる。紫外線吸収剤としては、例えば、ベンゾトリアゾール誘導体(ベンゾトリアゾール系紫外線吸収剤)、1,3,5-トリフェニルトリアジン誘導体等のトリアジン誘導体(トリアジン系紫外線吸収剤)、ベンゾフェノン誘導体(ベンゾフェノン系紫外線吸収剤)、及びサリシレート誘導体(サリシレート系紫外線吸収剤)が挙げられ、これらからなる群から選択される少なくとも1つを用いることができる。300~400nm、好ましくは320~360nm付近の紫外線吸収性を有し、可視光域での透過率を低下させることなく、光学フィルムの紫外線カット性を向上し得る観点から、ベンゾトリアゾール系紫外線吸収剤及びトリアジン系紫外線吸収剤からなる群から選ばれる少なくとも1つを用いることが好ましく、ベンゾトリアゾール系紫外線吸収剤がより好ましい。
 ベンゾトリアゾール系紫外線吸収剤の具体例としては、式(I)で表される化合物、住友化学(株)製の商品名:Sumisorb(登録商標) 250(2-[2-ヒドロキシ-3-(3,4,5,6-テトラヒドロフタルイミド-メトジイル)-5-メチルフェニル]ベンゾトリアゾール)、BASFジャパン(株)製の商品名:Tinuvin(登録商標) 360(2,2’-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-tert-オクチルフェノール])及びTinuvin 213(メチル3-[3-(2H-ベンゾトリアゾール-2-イル)5-tert-ブチル-4-ヒドロキシフェニル]プロピオネートとPEG300との反応生成物)が挙げられ、これらは単独又は2種以上を組み合わせて用いることができる。式(I)で表される化合物の具体例としては、住友化学(株)製の商品名:Sumisorb 200(2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール)、Sumisorb300(2-(3-tert-ブチル-2-ヒドロキシ-5-メチルフェニル)-5-クロロベンゾトリアゾール)、Sumisorb 340(2-(2-ヒドロキシ-5-tert-オクチルフェニル)ベンゾトリアゾール)、Sumisorb 350(2-(2-ヒドロキシ3,5-ジ-tert-ペンチルフェニル)ベンゾトリアゾール)、及びBASFジャパン(株)製の商品名:Tinuvin 327(2-(2’-ヒドロキシ-3’,5’-ジ-tert-ブチルフェニル)-5-クロロベンゾトリアゾール)、Tinuvin 571(2-(2H-ベンゾトリアゾ-2-イル)-6-ドデシル-4-メチル-フェノール)及びTinuvin 234(2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール)及びADEKA(株)の製品名:アデカスタブ(登録商標) LA-31(2,2’-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール])が挙げられる。紫外線吸収剤は、好ましくは、式(I)で表される化合物及びTinuvin 213(メチル3-[3-(2H-ベンゾトリアゾール-2-イル)5-tert-ブチル-4-ヒドロキシフェニル]プロピオネートとPEG300との反応生成物であり、より好ましくは住友化学(株)製の商品名:Sumisorb 200(2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール)、Sumisorb 300(2-(3-tert-ブチル-2-ヒドロキシ-5-メチルフェニル)-5-クロロベンゾトリアゾール)、Sumisorb 340(2-(2-ヒドロキシ-5-tert-オクチルフェニル)ベンゾトリアゾール)、Sumisorb 350(2-(2-ヒドロキシ3,5-ジ-tert-ペンチルフェニル)ベンゾトリアゾール)、(株)ADEKAの製品名:アデカスタブ LA-31(2,2’-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール])及びBASFジャパン(株)製の商品名:Tinuvin 327(2-(2’-ヒドロキシ-3’,5’-ジ-tert-ブチルフェニル)-5-クロロベンゾトリアゾール)及びTinuvin 571(2-(2H-ベンゾトリアゾ-2-イル)-6-ドデシル-4-メチル-フェノール)であり、最も好ましくは住友化学(株)製の商品名:Sumisorb 340(2-(2-ヒドロキシ-5-tert-オクチルフェニル)ベンゾトリアゾール)、Sumisorb350(2-(2-ヒドロキシ3,5-ジ-tert-ペンチルフェニル)ベンゾトリアゾール)、及び(株)ADEKAの製品名:アデカスタブ LA-31(2,2’-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール])である。
Figure JPOXMLDOC01-appb-C000011
 式(I)中、Xは水素原子、フッ素原子、塩素原子、炭素数1~5のアルキル基又は炭素数1~5のアルコキシ基であり、RI1及びRI2はそれぞれ独立に、水素原子又は炭素数1~20の炭化水素基であり、RI1又はRI2のうち少なくともいずれか一方は炭素数1~20の炭化水素基である。
 Xにおける炭素数1~5のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、2-メチル-ブチル基、3-メチルブチル基、2-エチル-プロピル基等が挙げられる。
 Xにおける炭素数1~5のアルコキシ基としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、tert-ブトキシ基、n-ペンチルオキシ基、2-メチル-ブトキシ基、3-メチルブトキシ基、2-エチル-プロポキシ基等が挙げられる。
 Xは、好ましくは水素原子、フッ素原子、塩素原子又はメチル基であり、より好ましくは水素原子、フッ素原子又は塩素原子である。
 RI1及びRI2はそれぞれ独立に水素原子又は炭素数1~20の炭化水素基であり、RI1及びRI2のうち少なくともいずれか一方は炭化水素基である。RI1及びRI2は、それぞれ炭化水素基である場合、好ましくは炭素数1~12の炭化水素基であり、より好ましくは炭素数1~8の炭化水素基である。具体的にはメチル基、tert-ブチル基、tert-ペンチル基及びtert-オクチル基が例示される。
 別の好ましい一態様に係る紫外線吸収剤は、ポリイミド系樹脂を含有する光学フィルムにおいて、トリアジン系紫外線吸収剤が用いられる。トリアジン系紫外線吸収剤としては、下記式(II)で表される化合物が挙げられる。その具体例としては、(株)ADEKAの製品名:アデカスタブ LA-46(2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-[2-(2-エチルヘキサノイロキシ)エトキシ]フェノール)、BASFジャパン(株)製の商品名:Tinuvin 400(2-[4-[2-ヒドロキシ-3-トリデシロキシプロピル]オキシ]-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン)、2-[4-[2-ヒドロキシ-3-ジデシロキシプロピル]オキシ]-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン)、Tinuvin 405(2-[4(2-ヒドロキシ-3-(2’-エチル)ヘキシル)オキシ]-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン)、Tinuvin 460(2,4-ビス(2-ヒドロキシ-4-ブチロキシフェニル)-6-(2,4-ビス-ブチロキシフェニル)-1,3,5-トリアジン)、Tinuvin 479(ヒドロキシフェニルトリアジン系紫外線吸収剤)、及びケミプロ化成(株)の製品名:KEMISORB(登録商標) 102(2-[4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン-2-イル]-5-(n-オクチロキシ)フェノール)等が挙げられ、これらは単独又は2種以上を組み合わせて用いることができる。式(II)で表される化合物は、好ましくは、アデカスタブ LA-46(2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-[2-(2-エチルヘキサノイロキシ)エトキシ]フェノール)である。
Figure JPOXMLDOC01-appb-C000012
 式(II)中、YI1~YI4は、それぞれ独立に、水素原子、フッ素原子、塩素原子、ヒドロキシ基、炭素数1~20のアルキル基又は炭素数1~20のアルコキシ基であり、好ましくは水素原子、炭素数1~12のアルキル基又は炭素数1~12のアルコキシ基であり、より好ましくは水素原子である。
 式(II)中、RI3は水素原子、炭素数1~20の炭化水素基、含まれる酸素原子が1つである炭素数1~20のアルコキシ基、又は炭素数1~12のアルキルケトオキシ基で置換されている炭素数1~4のアルコキシ基であり、好ましくは1個の酸素原子を含む炭素数1~12のアルコキシ基又は炭素数8~12のアルキルケトオキシ基で置換されている炭素数2~4のアルコキシ基であり、より好ましくは炭素数8~12のアルキルケトオキシ基で置換されている炭素数2~4のアルコキシ基である。
 YI1~YI4としての炭素数1~20のアルキル基の例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、n-へプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ドデシル基、n-ウンデシル基が挙げられる。炭素数1~20のアルコキシ基の例としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、tert-ブトキシ基、n-ペンチルオキシ基、n-ヘキシルオキシ基、n-へプチルオキシ基、n-オクチルオキシ基、n-ノニルオキシ基、n-デシルオキシ基、n-ドデシルオキシ基、n-ウンデシルオキシ基が挙げられる。
 紫外線吸収剤は、300~400nmの光吸収を有するものが好ましく、320~360nmの光吸収を有するものがより好ましく、350nm付近の光吸収を有するものがさらに好ましい。
 本発明の光学フィルムが紫外線吸収剤を含有する場合、紫外線吸収剤の含有量は、ポリイミド系樹脂100質量部に対して、好ましくは0.1質量部以上、より好ましくは0.5質量部以上、さらに好ましくは0.8質量部以上、特に好ましくは1質量部以上であり、好ましくは10質量部以下、より好ましくは8質量部以下、さらに好ましくは5質量部以下である。紫外線吸収剤の含有量が上記の下限以上であると、光学フィルムの紫外線カット性を向上しやすく、紫外線吸収剤の含有量の上記の上限以下であると、光学フィルムの透明性、耐熱性、引張強度及び耐屈曲性を高めやすい。
 本発明の光学フィルムは、紫外線吸収剤以外の他の添加剤をさらに含有していてもよい。他の添加剤としては、例えば、酸化防止剤、離型剤、安定剤、ブルーイング剤、難燃剤、pH調整剤、シリカ分散剤、滑剤、増粘剤、及びレベリング剤等が挙げられる。他の添加剤を含有する場合、その含有量は、光学フィルムの質量に対して、好ましくは0.001~20質量%、より好ましくは0.01~15質量%、さらに好ましくは0.1~10質量%であってよい。また、本発明の光学フィルムは、フィラーなどをさらに含有してもよい。その含有量は光学フィルムの質量に対して、1~30質量%が好適である。
 本発明の光学フィルムの用途は特に限定されず、種々の用途、例えばタッチセンサー用基板、フレキシブル表示装置用材料、保護フィルム、ベゼル印刷用途フィルム、半導体用途、スピーカー振動板、IRカットフィルターなどに使用してもよい。本発明の光学フィルムは、上記に述べたように単層であっても、積層体であってもよく、本発明の光学フィルムをそのまま使用してもよいし、さらに他のフィルムとの積層体として使用してもよい。なお、光学フィルムが積層体である場合、光学フィルムの片面又は両面に積層された全ての層を含めて光学フィルムと称する。
 本発明の光学フィルムが積層体である場合、光学フィルムの少なくとも一方の面に1以上の機能層を有することが好ましい。機能層としては、例えばハードコート層、プライマー層、ガスバリア層、紫外線吸収層、粘着層、色相調整層、屈折率調整層などが挙げられる。機能層は単独又は二種以上組合せて使用できる。
 本発明の一実施態様において、光学フィルムは、少なくとも一方の面(片面又は両面)に保護フィルムを有していてもよい。例えば光学フィルムの片面に機能層を有する場合には、保護フィルムは、光学フィルム側の表面又は機能層側の表面に積層されていてもよく、光学フィルム側と機能層側の両方に積層されていてもよい。光学フィルムの両面に機能層を有する場合には、保護フィルムは、片方の機能層側の表面に積層されていてもよく、両方の機能層側の表面に積層されていてもよい。保護フィルムは、光学フィルム又は機能層の表面を一時的に保護するためのフィルムであり、光学フィルム又は機能層の表面を保護できる剥離可能なフィルムである限り特に限定されない。保護フィルムとしては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂フィルム;ポリエチレン、ポリプロピレンフィルムなどのポリオレフィン系樹脂フィルム、アクリル系樹脂フィルム等が挙げられ、ポリオレフィン系樹脂フィルム、ポリエチレンテレフタレート系樹脂フィルム及びアクリル系樹脂フィルムからなる群から選択されることが好ましい。光学フィルムが保護フィルムを2つ有する場合、各保護フィルムは同一又は異なっていてもよい。
 保護フィルムの厚さは、特に限定されるものではないが、通常、10~120μm、好ましくは15~110μm、より好ましくは20~100μmである。光学フィルムが保護フィルムを2つ有する場合、各保護フィルムの厚さは同じであっても、異なっていてもよい。
[光学フィルムの製造方法]
 本発明の光学フィルムは、特に限定されないが、例えば以下の工程:
(a)前記ポリイミド系樹脂を含む液(ワニスと称する場合がある)を調製する工程(ワニス調製工程)、
(b)ワニスを基材に塗布して塗膜を形成する工程(塗布工程)、及び
(c)塗布された液(塗膜)を乾燥させて、光学フィルムを形成する工程(光学フィルム形成工程)
を含む方法によって製造することができる。
 ワニス調製工程において、前記ポリイミド系樹脂を溶媒に溶解し、必要に応じて前記添加剤を添加して撹拌混合することによりワニスを調製する。
 ワニスの調製に用いられる溶媒は、前記樹脂を溶解可能であれば特に限定されない。かかる溶媒としては、例えばN,N-ジメチルアセトアミド(DMAc)、N,N-ジメチルホルムアミド(DMF)等のアミド系溶媒;γ-ブチロラクトン(GBL)、γ-バレロラクトン等のラクトン系溶媒;アセトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、2-ヘプタノン、メチルイソブチルケトン等のケトン系溶媒;ジメチルスルホン、ジメチルスルホキシド、スルホラン等の含硫黄系溶媒;エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶媒;及びそれらの組合せが挙げられる。これらの中でも、光学フィルムの光学特性、耐熱性、引張強度及び耐屈曲性を高めやすい観点から、アミド系溶媒、ラクトン系溶媒又はケトン系溶媒が好ましい。これらの溶媒は単独又は二種以上組合せて使用できる。また、ワニスには水、アルコール系溶媒、非環状エステル系溶媒、エーテル系溶媒などが含まれてもよい。
 ワニスの固形分濃度は、好ましくは1~30質量%、より好ましくは5~25質量%、さらに好ましくは10~20質量%である。なお、本明細書において、ワニスの固形分とは、ワニスから溶媒を除いた成分の合計量を示す。また、ワニスの粘度は、好ましくは5~100Pa・s、より好ましくは10~50Pa・sである。ワニスの粘度が上記の範囲であると、光学フィルムを均一化しやすく、光学特性、引張強度、耐熱性及び耐屈曲性に優れた光学フィルムが得られやすい。なお、ワニスの粘度は粘度計を用いて測定でき、例えば実施例に記載の方法により測定できる。
 塗布工程において、公知の塗布方法により、基材上にワニスを塗布して塗膜を形成する。公知の塗布方法としては、例えばワイヤーバーコーティング法、リバースコーティング、グラビアコーティング等のロールコーティング法、ダイコート法、カンマコート法、リップコート法、スピンコーティング法、スクリーンコーティング法、ファウンテンコーティング法、ディッピング法、スプレー法、流涎成形法等が挙げられる。
 光学フィルム形成工程において、塗膜を乾燥し、基材から剥離することによって、光学フィルムを形成することができる。剥離後にさらに光学フィルムを乾燥する乾燥工程を行ってもよい。塗膜の乾燥は、通常50~350℃、好ましくは50~220℃の温度にて行うことができる。本発明の好適な実施態様では、段階的に乾燥を行うことが好ましい。高分子量樹脂を含むワニスは高粘度になりやすく、一般的に均一なフィルムを得ることが困難となり、光学特性(特に透明性)や、Tgが低下することがある。そこで、段階的に乾燥を行うことにより、高分子量樹脂を含むワニスを均一に乾燥することができ、優れた光学特性(特に透明性)とともに、Tgが高く、耐熱性、引張強度及び耐屈曲性に優れた光学フィルムを得ることができる。本発明のより好適な実施態様では、100~170℃の比較的低温下で加熱した後、185~220℃で加熱することができる。乾燥(又は加熱時間)は、好ましくは5分~5時間、より好ましくは10分~1時間である。このような範囲で段階的に低温から高温に加熱することにより、Tgを上記範囲に調整しやすく、より優れた光学特性(例えば500nmの高い光透過率など)とともに、より耐熱性、引張強度及び耐屈曲性に優れた光学フィルムが得られやすい。必要に応じて、不活性雰囲気条件下において塗膜の乾燥を行ってよい。また、光学フィルムの乾燥を真空条件下で行うと、フィルム中に微小な気泡が発生、残存することがあり、透明性が低下する要因となるため大気圧下で行うことが好ましい。
 基材の例としては、ガラス基板、PETフィルム、PENフィルム、他のポリイミド系樹脂又はポリアミド系樹脂フィルム等が挙げられる。中でも、耐熱性に優れる観点から、ガラス、PETフィルム、PENフィルム等が好ましく、さらに光学フィルムとの密着性及びコストの観点から、ガラス基板又はPETフィルムがより好ましい。
 本発明の光学フィルムは、表示装置、特にタッチセンサ用基板として好適に使用できる。また、表示装置としては、テレビ、スマートフォン、携帯電話、カーナビゲーション、タブレットPC、携帯ゲーム機、電子ペーパー、インジケーター、掲示板、時計、及びスマートウォッチ等のウェアラブルデバイス等が挙げられる。
[フレキシブル表示装置]
 本発明は、本発明の光学フィルムを含むフレキシブル表示装置を包含する。該フレキシブル表示装置としては、フレキシブル特性を有する表示装置、例えばテレビ、スマートフォン、携帯電話、スマートウォッチ等が挙げられる。
 フレキシブル表示装置は、表示装置を繰り返し折り曲げる、繰り返し巻く等の操作を伴い使用される表示装置であり、例えばローラブルディスプレイやフォルダブルディスプレイなどが挙げられる。ローラブルディスプレイとは、画像表示部分がロール状に巻き取られており、該画像表示部分を引き出して平面又は曲面にした状態で使用される画像表示装置であり、ロール状に巻き取る等の操作が使用の度に行われるような画像表示装置である。また、フォルダブルディスプレイとは、画像表示部分が折り曲げられており、該画像表示部分を開いて平面又は曲面にした状態で使用される画像表示装置であり、折り曲げる等の操作が使用の度に行われるような画像表示装置である。フレキシブル表示装置の具体的な構成としては、特に限定されないが、例えばフレキシブル表示装置用積層体及び有機EL表示パネルを含んでなる構成が挙げられる。このような本発明のフレキシブル表示装置は、さらに偏光板及び/又はタッチセンサを備えることが好ましい。偏光板又はタッチセンサとしては、慣用のものを用いることができ、これらは前記フレキシブル表示装置用積層体に含まれていてよい。偏光板としては、例えば円偏光板が挙げられ、タッチセンサとしては、抵抗膜方式、表面弾性波方式、赤外線方式、電磁誘導方式、静電容量方式等の様々な様式が挙げられる。このようなフレキシブル表示装置に使用されるタッチセンサ用基板(又はタッチセンサ用フィルム)には、耐屈曲性が求められるが、本発明の光学フィルムは、耐屈曲性に優れるため、前記タッチセンサ用基板(又はタッチセンサ用フィルム)として好適に使用することができる。
 また、本発明の一実施態様では、フレキシブル表示装置用積層体は、視認側に、さらにウインドウフィルムを含むことが好ましく、例えば、視認側からウインドウフィルム、偏光板、タッチセンサ、又はウインドウフィルム、タッチセンサ、偏光板の順に積層されていてもよい。これらの部材は、接着剤又は粘着剤を用いて積層してもよく、これらの部材以外の他の部材を含むこともできる。
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。まず測定方法について説明する。
 <ガラス転移温度の測定>
 実施例及び比較例で得られた光学フィルムのDSC(示差走査熱量測定)によるガラス転移温度(Tg)を熱分析装置(「DSC Q200」、TA Instruments製)により測定した。測定条件は、測定試料量:5mg、温度域:室温から400℃、昇温速度:10℃/minであった。
 <位相差の測定>
 実施例及び比較例で得られた光学フィルムのRth及びR0は、王子計測機器(株)製の位相差測定装置(商品名:KOBRA)を用いて測定した。光学フィルムの厚み位相差Rthは、フィルム面内の一方向の屈折率をNx、Nxと直交する方向の屈折率をNy、フィルムの厚さ方向の屈折率をNz、光学フィルムの厚さをd(nm)としたときに、(A)式で算出される。ここで、Nxは遅相軸方向の屈折率、Nyは進相軸方向の屈折率であり、Nx>Nyを満たす。
Rth={(Nx+Ny)/2-Nz}×d(nm)   ・・・(A)
 光学フィルムの面内位相差R0は、フィルム面内の1つの方向の屈折率をNx、Nxと直交する方向の屈折率をNy、光学フィルムの厚さをd(nm)としたときに、(B)式で算出される。ここで、Nxは遅相軸方向の屈折率、Nyは進相軸方向の屈折率であり、Nx>Nyを満たす。
R0=(Nx-Ny)×d(nm)   ・・・(B)
 <350nm及び500nmの光透過率>
 実施例及び比較例で得られた光学フィルムにおける350nm及び500nmの光透過率は、日本分光(株)製の紫外可視近赤外分光光度計V-670を用い、200~800nmの光に対する光透過率を測定することで得られた。
 <引張強度の測定>
 実施例及び比較例で得られた光学フィルムの引張強度は、精密万能試験機(「オートグラフAG-IS」、(株)島津製作所製)を用いて以下のように測定した。
 該光学フィルムを幅10mm、長さ100mmにカットし、短冊状の試験片を準備した。次いで、該精密万能試験機を用いて、チャック間距離50mm、引張速度20mm/分の条件で引張試験を行い、光学フィルムの引張強度を測定した。
 <耐屈曲性試験>
 ASTM規格D2176-16に準拠して、実施例及び比較例で得られた光学フィルムの屈曲回数を以下のように求めた。該光学フィルムを、ダンベルカッターを用いて幅10mm×長さ120mmの短冊状にカットした。カットした光学フィルムをMIT耐折疲労試験機(「型式0530」、(株)東洋精機製作所製)本体にセットして、試験速度175cpm、折り曲げ角度135°、加重0.75kf、折り曲げクランプの屈曲半径R=1mmの条件で、光学フィルムが破断するまでの裏表方向への往復折曲げ回数を測定し、これを屈曲回数とした。
 <残留溶媒量の測定方法>
 (熱重量-示差熱(TG-DTA)測定)
 TG-DTAの測定装置(「TG/DTA6300」、日立ハイテクサイエンス社製)を用いて、実施例及び比較例で得られた光学フィルムの残留溶媒量を測定した。
 該光学フィルムから約20mgの試料を取得した。この試料を、室温から120℃まで10℃/分の昇温速度で昇温し、120℃で5分間保持した後、400℃まで10℃/分の昇温速度で昇温(加熱)しながら、試料の質量変化を測定した。
 TG-DTA測定結果から、120℃から250℃にかけての質量減少率S(質量%)
を下記式(1)に従い、算出した。
 S(質量%)=100-(W1/W0)×100 (1)
〔式(1)中、W0は120℃で5分間保持した後の試料の質量であり、W1は250
℃における試料の質量である〕。
 算出された質量減少率Sを、光学フィルム中の残留溶媒量S(質量%)とした。
 <厚み>
 実施例及び比較例で得られた光学フィルムの厚みは、接触式のデジタル厚み計(ミツトヨ社製)を用いて3回測定を行い、3回測定した値の平均値を光学フィルムの厚みとした。
 <粘度>
 実施例及び比較例で得られたワニスの粘度は、E型粘度計(「HBDV-II + P CP」 Brook Field社製)を用いて、ワニス0.6ccを試料として、25℃、回転数3rpmの条件で測定した。
 <重量平均分子量(Mw)>
 合成例で得られたポリイミド系樹脂の重量平均分子量(Mw)は、GPCを用いて、以下の条件により測定した。
 (GPC条件)
装置:島津LC-20A
カラム:TSKgel GMHHR-M (ミックスカラム、排除限界分子量:400万)
ガードカラム:TSKgel guardcolumn HHR-H
移動相:N-メチル-2-ピロリジノン(NMP) 10mM LiBr添加
※NMPはHPLC用グレード、LiBrは試薬一級(無水物)を使用
流速:1mL/min
測定時間:20分
カラムオーブン:40℃
検出:UV 275nm
洗浄溶媒:NMP
試料濃度:1mg/mL (※20wt%反応マスは移動相で5mg/mLに希釈して分析)
分子量較正:ポリマーラボラトリーズ製 標準ポリスチレン(分子量500~400万の17分子量)
 <イミド化率>
 合成例で得られたポリイミド系樹脂のイミド化率は、NMRを用いて、以下の条件により測定した。
 (NMR条件)
 ポリイミド系樹脂10mgを秤量し、重DMSO 0.75mlを添加後、120℃で20分加熱することで溶解した。溶液をNMR管に移し、ブルカー製AV600装置を用いて、100℃で1H NMR測定を実施した。1H NMRスペクトルよりイミド基由来のプロトンとアミド基由来のプロトンを帰属し、次式を用いてイミド化率を求めた。
イミド化率 = {イミド基積分比/(イミド基積分比+アミド基積分比)}×100
 <合成例1>
 国際公開第2019/156717号に記載の方法により、6FDA由来の構成単位と1,4-DAB由来の構成単位とからなるポリイミド系樹脂(6FDA-DAB)を、以下のように製造した。
 窒素ガス雰囲気下、撹拌翼を備えた反応容器に、m-クレゾール(本州化学工業(株)製)178.78kg、1,4-DAB(ThermoFisher社製)7.940kg、および6FDA(八幸通商(株)製)40.120kgを加え、次に、イソキノリン(富士フィルム和光純薬(株)製)3.428kgを添加した後、158℃に昇温し、5時間撹拌した後、m-クレゾールを74.49kg加え、得られた反応液を50℃まで冷却した。攪拌しながら、Solmix AP-1(日本アルコール販売(株)製)を118.97kg添加し、更に、Solmix AP-1を356.91kg加えた後、ろ過した。ろ過した沈殿物をSolmix AP-1(70.62kg)で洗浄し、更にSolmix AP-1(141.23kg)で4回懸濁ろ過を行い、沈殿物を乾燥機にて70℃で96時間乾燥させることで、ポリイミド系樹脂を39.97kg得た。製造したポリイミド系樹脂の重量平均分子量(Mw)は、252,000であり、イミド化率は、99.9%であった。
 <合成例2>
 反応条件等を変更したこと以外は、合成例1と同様の方法にて、ポリイミド系樹脂を製造した。得られたポリイミド系樹脂の重量平均分子量(Mw)は、317,000であり、イミド化率は、99.9%であった。
 <合成例3>
 窒素ガス雰囲気下、撹拌翼を備えた反応容器に、m-クレゾール(本州化学工業)178.56kg、1,4-DAB(ThermoFisher)7.961kg、および6FDA(八幸通商(株))40.112kgを加え、次に、イソキノリン(富士フィルム和光純薬(株)製)3.424kgを添加した後、130℃に昇温し、8時間撹拌した後、得られた反応液を50℃まで冷却した。攪拌しながら、メタノール(住友化学(株))を93.38kg添加し、更に、メタノールを242.13kg加えた後、ろ過した。ろ過した沈殿物をメタノール(70.62kg)で洗浄し、更にメタノール(141.23kg)で4回懸濁ろ過を行い、沈殿物を乾燥機にて70℃で96時間乾燥させることで、ポリイミド系樹脂を41.70kg得た。製造したポリイミド系樹脂の重量平均分子量(Mw)は、396,000であり、イミド化率は、100.0%であった。
 <実施例1>
 合成例1で得られたポリイミド系樹脂を固形分濃度が15質量%となるようにシクロヘキサノンに溶解し、紫外線吸収剤(UVA)として、Sumisorb340を2phr添加してワニスを調製した。前記ワニスの粘度は26.0Pa・sであった。次いで、得られたワニスを、ガラス基板に塗布し、140℃で10分加熱した後、さらに200℃で30分間加熱し、ガラス基板から剥離することで、厚さ25μmの光学フィルムを得た。得られた光学フィルムの残留溶媒量は、1.2質量%であった。
 <実施例2>
 合成例2で得られたポリイミド系樹脂を固形分濃度が13質量%となるようにシクロヘキサノンに溶解し、紫外線吸収剤(UVA)として、Sumisorb340を2phr添加してワニスを調製した。前記ワニスの粘度は22.0Pa・sであった。次いで、得られたワニスを、ガラス基板に塗布し、140℃で10分加熱した後、さらに200℃で30分間加熱し、ガラス基板から剥離することで、厚さ25μmの光学フィルムを得た。得られた光学フィルムの残留溶媒量は、1.4質量%であった。
 <実施例3>
 合成例3で得られたポリイミド系樹脂を固形分濃度が11質量%となるようにシクロヘキサノンに溶解し、紫外線吸収剤(UVA)として、Sumisorb340を2phr添加してワニスを調製した。前記ワニスの粘度は17.5Pa・sであった。次いで、得られたワニスを、ガラス基板に塗布し、140℃で10分加熱した後、さらに200℃で30分間加熱し、ガラス基板から剥離することで、厚さ25μmの光学フィルムを得た。得られた光学フィルムの残留溶媒量は、1.5質量%であった。
 <比較例1>
 環状オレフィンコポリマー(COC)フィルム(「ZF16」、日本ゼオン社製)を用いた。
 <比較例2>
 合成例1で得られたポリイミド系樹脂を固形分濃度が15質量%となるようにシクロヘキサノンに溶解し、紫外線吸収剤(UVA)として、Sumisorb340を2phr添加してワニスを調製した。前記ワニスの粘度は26Pa・sであった。次いで、得られたワニスを、ガラス基板に塗布し、140℃で10分加熱した後、さらに180℃で20分間加熱し、ガラス基板から剥離することで、厚さ25μmの光学フィルムを得た。得られた光学フィルムの残留溶媒量は、4.9質量%であった。
 実施例及び比較例で得られた光学フィルムについて、ガラス転移温度(Tg)、面内位相差(nm)、厚み位相差(nm)、350nmの光透過率(%)、500nmの光透過率(%)、引張強度(MPa)、及び屈曲回数(回)を測定した結果を表1に示す。
Figure JPOXMLDOC01-appb-T000013
 表1に示される通り、実施例1~3で得られた光学フィルムは、比較例1と比べ、350nmの光透過率が顕著に低く、かつTgが顕著に高いことが確認された。また、実施例1及び2で得られた光学フィルムは、比較例2と比べると、厚み位相差が低く、Tgが顕著に高いことが確認された。さらに、実施例3で得られた光学フィルムは、比較例2と比べると、Tgが顕著に高いことが確認された。従って、実施例1~3で得られた光学フィルムは、低位相差、高耐熱性及び高い紫外線カット性を兼ね備えていることがわかった。
 さらに、実施例1~3で得られた光学フィルムは、比較例1と比べ、500nmの光透過率、引張強度及び屈曲回数が高く、比較例2と比べ、500nmの光透過率及び引張強度が高いことが確認された。従って、実施例1~3で得られた光学フィルムは、透明性、引張強度及び耐屈曲性にも優れていることがわかった。

Claims (14)

  1.  ガラス転移温度は165℃以上、350nmの光透過率は10%以下、面内位相差は30nm以下、及び厚み位相差は100nm以下である、光学フィルム。
  2.  ガラス転移温度は180℃超である、請求項1に記載の光学フィルム。
  3.  500nmの光透過率は90%以上である、請求項1又は2に記載の光学フィルム。
  4.  引張強度は86MPa超である、請求項1~3のいずれかに記載の光学フィルム。
  5.  膜厚は10~100μmである、請求項1~4のいずれかに記載の光学フィルム。
  6.  溶媒含有量は、光学フィルムの質量に対して3.0質量%以下である、請求項1~5のいずれかに記載の光学フィルム。
  7.  式(1)
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、Xは2価の有機基を表し、Yは4価の有機基を表し、*は結合手を表す]
    で表される構成単位を有するポリイミド系樹脂を含む、請求項1~6のいずれかに記載の光学フィルム。
  8.  式(1)で表される構成単位は、Xとして、2価の脂肪族基を含む、請求項7に記載の光学フィルム。
  9.  式(1)で表される構成単位は、Yとして、式(2)
    Figure JPOXMLDOC01-appb-C000002
    [式(2)中、R~Rは、互いに独立に、水素原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基又は炭素数6~12のアリール基を表し、R~Rに含まれる水素原子は、互いに独立に、ハロゲン原子で置換されていてもよく、Vは、単結合、-O-、-CH-、-CH-CH-、-CH(CH)-、-C(CH-、-C(CF-、-SO-、-S-、-CO-又は-N(R)-を表し、Rは、水素原子、又はハロゲン原子で置換されていてもよい炭素数1~12の一価の炭化水素基を表し、*は結合手を表す]
    で表される構造を含む、請求項7又は8に記載の光学フィルム。
  10.  前記ポリイミド系樹脂は、フッ素原子を含有する、請求項7~9のいずれかに記載の光学フィルム。
  11.  前記ポリイミド系樹脂は、重量平均分子量(Mw)が250,000を超える、請求項7~10のいずれかに記載の光学フィルム。
  12.  請求項1~11のいずれかに記載の光学フィルムを備える、フレキシブル表示装置。
  13.  さらに偏光板を備える、請求項12に記載のフレキシブル表示装置。
  14.  さらにタッチセンサを備える、請求項12又は13に記載のフレキシブル表示装置。
PCT/JP2021/025015 2020-07-02 2021-07-01 光学フィルム WO2022004856A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180045920.3A CN116075752A (zh) 2020-07-02 2021-07-01 光学膜
EP21833228.6A EP4177647A1 (en) 2020-07-02 2021-07-01 Optical film
US18/013,075 US20230242721A1 (en) 2020-07-02 2021-07-01 Optical Film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-115180 2020-07-02
JP2020115180 2020-07-02
JP2021013621A JP2022013624A (ja) 2020-07-02 2021-01-29 光学フィルム
JP2021-013621 2021-01-29

Publications (1)

Publication Number Publication Date
WO2022004856A1 true WO2022004856A1 (ja) 2022-01-06

Family

ID=79316407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025015 WO2022004856A1 (ja) 2020-07-02 2021-07-01 光学フィルム

Country Status (5)

Country Link
US (1) US20230242721A1 (ja)
EP (1) EP4177647A1 (ja)
CN (1) CN116075752A (ja)
TW (1) TW202208512A (ja)
WO (1) WO2022004856A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022163757A1 (ja) * 2021-01-29 2022-08-04 住友化学株式会社 ポリイミド系樹脂
WO2022163759A1 (ja) * 2021-01-29 2022-08-04 住友化学株式会社 光学フィルム及び該光学フィルムを備えるフレキシブル表示装置

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002331616A (ja) * 2001-05-11 2002-11-19 Kanegafuchi Chem Ind Co Ltd 透明フィルム
JP2004156048A (ja) 2004-02-09 2004-06-03 Polyplastics Co 環状オレフィン系樹脂組成物フィルム
JP2005336243A (ja) 2004-05-25 2005-12-08 Nissan Chem Ind Ltd 高透明性を有するポリ(アミド酸−イミド)共重合体とそのポジ型感光性樹脂組成物およびその硬化膜
JP2006243266A (ja) * 2005-03-02 2006-09-14 Fuji Photo Film Co Ltd 光学積層体、偏光板および液晶表示装置
JP2006267625A (ja) * 2005-03-24 2006-10-05 Nitto Denko Corp 液晶パネル、液晶テレビおよび液晶表示装置
JP2007009182A (ja) * 2005-05-11 2007-01-18 Kaneka Corp 樹脂組成物、成形体、フィルムとその製造方法
JP2007057665A (ja) * 2005-08-23 2007-03-08 Fujifilm Corp 光学フィルム、画像表示装置、液晶表示装置
US20070188686A1 (en) * 2005-03-07 2007-08-16 Nitto Denko Corporation Liquid crystal panel, liquid crystal television, and liquid crystal display apparatus
JP2008242259A (ja) * 2007-03-28 2008-10-09 Fujifilm Corp 光学補償シート、偏光板、及び液晶表示装置
JP2010270162A (ja) * 2009-04-22 2010-12-02 Kaneka Corp 光学用フィルム
JP2011128480A (ja) * 2009-12-21 2011-06-30 Tosoh Corp 液晶ディスプレイ用基板及びその製造方法
WO2014057949A1 (ja) * 2012-10-12 2014-04-17 富士フイルム株式会社 液晶表示装置
WO2015053237A1 (ja) * 2013-10-07 2015-04-16 三菱化学株式会社 ポリイミド組成物、前記ポリイミド組成物を用いて形成された配向膜及び光学素子
WO2017010178A1 (ja) * 2015-07-16 2017-01-19 コニカミノルタ株式会社 偏光板、その製造方法、液晶表示装置及び有機エレクトロルミネッセンス表示装置
JP2017122857A (ja) * 2016-01-08 2017-07-13 コニカミノルタ株式会社 光学フィルム、光学フィルムの製造方法、ロールフィルム、偏光板及び画像表示装置
JP2017187617A (ja) * 2016-04-06 2017-10-12 コニカミノルタ株式会社 光学フィルムの製造方法及び製造装置
WO2018173601A1 (ja) * 2017-03-23 2018-09-27 コニカミノルタ株式会社 光学フィルム、その製造方法、それを具備した偏光板及び表示装置
WO2019156717A2 (en) 2017-10-05 2019-08-15 Zymergen Inc. Optically transparent polyimides
JP2021006624A (ja) * 2019-06-27 2021-01-21 住友化学株式会社 光学フィルム、フレキシブル表示装置、及び光学フィルムの製造方法

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002331616A (ja) * 2001-05-11 2002-11-19 Kanegafuchi Chem Ind Co Ltd 透明フィルム
JP2004156048A (ja) 2004-02-09 2004-06-03 Polyplastics Co 環状オレフィン系樹脂組成物フィルム
JP2005336243A (ja) 2004-05-25 2005-12-08 Nissan Chem Ind Ltd 高透明性を有するポリ(アミド酸−イミド)共重合体とそのポジ型感光性樹脂組成物およびその硬化膜
JP2006243266A (ja) * 2005-03-02 2006-09-14 Fuji Photo Film Co Ltd 光学積層体、偏光板および液晶表示装置
US20070188686A1 (en) * 2005-03-07 2007-08-16 Nitto Denko Corporation Liquid crystal panel, liquid crystal television, and liquid crystal display apparatus
JP2006267625A (ja) * 2005-03-24 2006-10-05 Nitto Denko Corp 液晶パネル、液晶テレビおよび液晶表示装置
JP2007009182A (ja) * 2005-05-11 2007-01-18 Kaneka Corp 樹脂組成物、成形体、フィルムとその製造方法
JP2007057665A (ja) * 2005-08-23 2007-03-08 Fujifilm Corp 光学フィルム、画像表示装置、液晶表示装置
JP2008242259A (ja) * 2007-03-28 2008-10-09 Fujifilm Corp 光学補償シート、偏光板、及び液晶表示装置
JP2010270162A (ja) * 2009-04-22 2010-12-02 Kaneka Corp 光学用フィルム
JP2011128480A (ja) * 2009-12-21 2011-06-30 Tosoh Corp 液晶ディスプレイ用基板及びその製造方法
WO2014057949A1 (ja) * 2012-10-12 2014-04-17 富士フイルム株式会社 液晶表示装置
WO2015053237A1 (ja) * 2013-10-07 2015-04-16 三菱化学株式会社 ポリイミド組成物、前記ポリイミド組成物を用いて形成された配向膜及び光学素子
WO2017010178A1 (ja) * 2015-07-16 2017-01-19 コニカミノルタ株式会社 偏光板、その製造方法、液晶表示装置及び有機エレクトロルミネッセンス表示装置
JP2017122857A (ja) * 2016-01-08 2017-07-13 コニカミノルタ株式会社 光学フィルム、光学フィルムの製造方法、ロールフィルム、偏光板及び画像表示装置
JP2017187617A (ja) * 2016-04-06 2017-10-12 コニカミノルタ株式会社 光学フィルムの製造方法及び製造装置
WO2018173601A1 (ja) * 2017-03-23 2018-09-27 コニカミノルタ株式会社 光学フィルム、その製造方法、それを具備した偏光板及び表示装置
WO2019156717A2 (en) 2017-10-05 2019-08-15 Zymergen Inc. Optically transparent polyimides
JP2021006624A (ja) * 2019-06-27 2021-01-21 住友化学株式会社 光学フィルム、フレキシブル表示装置、及び光学フィルムの製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022163757A1 (ja) * 2021-01-29 2022-08-04 住友化学株式会社 ポリイミド系樹脂
WO2022163759A1 (ja) * 2021-01-29 2022-08-04 住友化学株式会社 光学フィルム及び該光学フィルムを備えるフレキシブル表示装置

Also Published As

Publication number Publication date
EP4177647A1 (en) 2023-05-10
US20230242721A1 (en) 2023-08-03
TW202208512A (zh) 2022-03-01
CN116075752A (zh) 2023-05-05

Similar Documents

Publication Publication Date Title
KR101952823B1 (ko) 필름, 수지 조성물 및 폴리아미드이미드 수지의 제조 방법
JP7072140B2 (ja) ポリイミドフィルム
KR101760555B1 (ko) 폴리이미드계 필름 형성용 조성물 및 이를 이용하여 제조된 폴리이미드계 필름
KR20190053112A (ko) 광학 필름
KR102127489B1 (ko) 광학 필름
WO2022004856A1 (ja) 光学フィルム
WO2019189483A1 (ja) 透明ポリイミド系高分子と溶媒とを含むワニス
JP2022013625A (ja) 光学フィルム
WO2022163759A1 (ja) 光学フィルム及び該光学フィルムを備えるフレキシブル表示装置
KR20160097682A (ko) 폴리이미드계 용액 및 이를 이용하여 제조된 폴리이미드계 필름
WO2017057360A1 (ja) 新規なテトラカルボン酸二無水物、及び該テトラカルボン酸二無水物から誘導されるポリイミド、及び該ポリイミドからなる成形体
WO2022004861A1 (ja) ポリイミド系樹脂を含む光学フィルムの製造方法
KR101501875B1 (ko) 폴리이미드계 용액 및 이를 이용하여 제조된 폴리이미드계 필름
JP2019174801A (ja) 透明ポリイミド系高分子を含む光学フィルム
WO2022004860A1 (ja) ポリイミド系樹脂を含む長尺状光学フィルムの製造方法
JP2022013624A (ja) 光学フィルム
WO2022004857A1 (ja) 光学フィルム
WO2023101005A1 (ja) フィルム及びポリイミド系樹脂
WO2022163757A1 (ja) ポリイミド系樹脂
WO2020158784A1 (ja) ポリイミド系樹脂粉体の製造方法
JP2019210422A (ja) 重合体及びワニス
WO2023101006A1 (ja) ポリイミド系樹脂の製造方法
WO2022163758A1 (ja) 積層フィルム
JP2020019935A (ja) ポリアミド系樹脂粉体の製造方法およびポリアミド系樹脂組成物
JP2019085549A (ja) 光学フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21833228

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021833228

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021833228

Country of ref document: EP

Effective date: 20230202

NENP Non-entry into the national phase

Ref country code: DE