WO2020158655A1 - 表示装置 - Google Patents
表示装置 Download PDFInfo
- Publication number
- WO2020158655A1 WO2020158655A1 PCT/JP2020/002734 JP2020002734W WO2020158655A1 WO 2020158655 A1 WO2020158655 A1 WO 2020158655A1 JP 2020002734 W JP2020002734 W JP 2020002734W WO 2020158655 A1 WO2020158655 A1 WO 2020158655A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transparent
- display panel
- liquid crystal
- display device
- crystal display
- Prior art date
Links
- 239000004973 liquid crystal related substance Substances 0.000 claims abstract description 148
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 claims abstract description 68
- 239000000758 substrate Substances 0.000 claims description 29
- 239000000463 material Substances 0.000 claims description 15
- 239000011347 resin Substances 0.000 claims description 9
- 229920005989 resin Polymers 0.000 claims description 9
- 239000002184 metal Substances 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000012780 transparent material Substances 0.000 description 9
- 239000011521 glass Substances 0.000 description 8
- 229910044991 metal oxide Inorganic materials 0.000 description 4
- 150000004706 metal oxides Chemical class 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000003566 sealing material Substances 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 3
- 239000004642 Polyimide Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 238000000149 argon plasma sintering Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- -1 Polyethylene terephthalate Polymers 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000010485 coping Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133616—Front illuminating devices
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/133308—Support structures for LCD panels, e.g. frames or bezels
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/133302—Rigid substrates, e.g. inorganic substrates
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133615—Edge-illuminating devices, i.e. illuminating from the side
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F9/00—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/136—Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
- G02F1/1362—Active matrix addressed cells
- G02F1/136286—Wiring, e.g. gate line, drain line
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/131—Interconnections, e.g. wiring lines or terminals
Definitions
- the present invention relates to a display device, and more particularly to a transparent display using a liquid crystal and a transparent display using a self-luminous element such as an organic EL or a micro LED.
- Such a transparent display is realized by, for example, a liquid crystal display device, an organic EL, an inorganic EL, or a self-luminous display device having a micro LED.
- Patent Document 1 describes a configuration in which a transparent liquid crystal display panel is arranged on the back of a front seat of a vending machine and an advertisement or the like is displayed on the transparent liquid crystal display panel. There is no backlight on the back surface of the transparent liquid crystal display panel. Instead of a backlight, an LED arranged on the bezel of a vending machine illuminates a product or the like in the vending machine, and an image is displayed by using the reflection of the light as a backlight.
- the transparent liquid crystal display device as described in Patent Document 1 basically has an advantage that the back of the liquid crystal display panel can be viewed while using the configuration of the conventional liquid crystal display device. However, the available devices are limited.
- liquid crystal display device in which the background can be seen like glass, light is incident from the side surface of the liquid crystal display panel, and in the liquid crystal display panel, light is scattered by liquid crystal molecules, and the light is emitted in the direction of the main surface of the liquid crystal display panel. By emitting light, it is possible to realize a liquid crystal display device in which the backlight is omitted.
- An object of the present invention is to provide a degree of freedom in supplying light to a transparent liquid crystal display panel and a degree of freedom in arrangement of the transparent liquid crystal display panel, so that the transparent liquid crystal display panel can be used in various applications. It is to be.
- a display device in which a plate-shaped display medium having a first main surface and a second main surface is arranged on a pedestal, and the display medium has a first transparent medium having a refractive index n1.
- a liquid crystal display panel is arranged inside, a first LED for supplying light to the liquid crystal display panel is arranged on the pedestal, and a refractive index n2 is provided between the first LED and the liquid crystal display panel.
- a display device characterized in that a certain second transparent medium is present and n2>n1.
- FIG. 3 is a front view showing the first mode of the first embodiment.
- FIG. 5 is a side view of FIG. 4. It is a front view which shows the 2nd form of Example 1.
- FIG. 7 is a side view of FIG. 6.
- It is a front view which shows the 3rd form of Example 1.
- It is a side view of FIG.
- It is a front view showing the 4th form of Example 1.
- It is a side view of FIG.
- FIG. is a front view which shows the 5th form of Example 1.
- FIG. is a front view which shows the 6th form of Example 1.
- FIG. 17 is a side view of FIG. 16.
- FIG. 17 is a side view of FIG. 16 with the outer frame removed.
- 6 is a front view of a transparent display device as a comparative example of Example 2.
- FIG. It is a side view of FIG. It is a front view which shows the 1st form of Example 2.
- FIG. 22 is a side view of FIG. 21.
- FIG. 24 is a side view of FIG. 23.
- FIG. 26 is a side view of FIG. 25. It is a front view which shows the 4th form of Example 2.
- FIG. 28 is a side view of FIG. 27. It is a front view which shows the 5th form of Example 2.
- FIG. 30 is a side view of FIG. 29. It is a front view which shows the 6th form of Example 2.
- FIG. 32 is a side view of FIG. 31. It is a front view which shows the 7th form of Example 2.
- FIG. 34 is a side view of FIG. 33. It is a front view which shows the 8th form of Example 2.
- FIG. 36 is a side view of FIG. 35. It is a front view which shows the 9th form of Example 2.
- FIG. 38 is a side view of FIG. 37. It is a side view of FIG. 37 in the state which removed the outer frame. It is a front view showing the 10th form of Example 2.
- FIG. 30 is a side view of FIG. 29. It is a front view which shows the 6th form of Example 2.
- FIG. 32 is a side view of FIG. 31. It is a front view which shows the 7th form of
- FIG. 42 is a side view of FIG. 41. It is a side view of FIG. 40 in the state which removed the outer frame. It is a front view which shows the 11th form of Example 2.
- FIG. 44 is a side view of FIG. 43. It is a side view of FIG. 43 in the state which removed the outer frame. It is a top view which shows the 1st form of Example 3. It is a top view which shows the 2nd form of Example 3. It is sectional drawing which shows the 1st form of Example 4. It is sectional drawing which shows the 2nd form of Example 4. It is a front view showing the 3rd form of Example 4. It is a side view of FIG. FIG. 51 is a side view of FIG. 50 with the outer frame removed. It is a front view showing the 4th form of Example 4.
- FIG. 54 is a side view of FIG. 53. FIG. 54 is a side view of FIG. 53 with the outer frame removed.
- liquid crystal display device and the transparent liquid crystal display panel will be described in the embodiment, but the present embodiment is not limited to the liquid crystal, and the liquid crystal display device in the embodiment may be an organic EL display device, a micro LED display device, a liquid crystal display. It is also possible to replace the display panel with an organic EL panel or a micro LED panel.
- FIG. 1 is a front view of a liquid crystal display device that does not use a backlight
- FIG. 2 is a side view thereof.
- the transparent liquid crystal display panel 10 is arranged on the pedestal 100.
- an LED 50 as a light source, an external wiring board 70 including a drive circuit described later, and the like are arranged on the pedestal 100.
- the LED 50 is arranged adjacent to the side surface of the liquid crystal display panel 10, and light is incident from the side surface of the liquid crystal display panel 10.
- the transparent liquid crystal display panel 10 is transparent unless a signal is applied, and the background can be seen through like a glass plate.
- the transparent liquid crystal display panel 10 receives light directly from the LEDs 50, and thus needs to be directly arranged on the pedestal 100.
- the pedestal 100 accommodates a transparent liquid crystal display panel 10 and a drive circuit board (PCB board) 70 that drives the LEDs 50.
- the drive circuit board 70 can also be expressed as an external wiring board 70. It is not preferable in terms of design that both the LED 50 and the external wiring board be visible to the user who uses the display device, and they are housed in the pedestal 100.
- the pedestal 100 can also be expressed as the storage unit 100.
- a film-like wiring board for example, an FPC board
- FPC board for connecting the external wiring board and the liquid crystal display panel
- the pedestal 100 and the liquid crystal display panel 10 need to be arranged close to each other, and by arranging them close to each other, it is not possible to cope with a design in which the pedestal 100 and the liquid crystal display panel 10 are desired to be separated from each other.
- the degree of freedom in designing the entire liquid crystal display device including the liquid crystal display panel 10 is limited.
- the organic EL display device and the micro LED display device emit light by themselves and do not need to have the LED 50 on the pedestal 100, they have a drive circuit board such as an IC for driving the display panel and a film-like wiring board.
- a drive circuit board such as an IC for driving the display panel and a film-like wiring board.
- FIG. 3 is a cross-sectional view showing an example of the transparent liquid crystal display panel 10 used in FIGS. 1 and 2 and the like.
- the first substrate 11 and the second substrate 12 face each other with the liquid crystal layer 14 in between.
- the first substrate 11 and the second substrate 12 are adhered by a sealing material 13, and liquid crystal is sandwiched inside.
- the sealing material 13 is a transparent sealing material.
- the pixel electrode 111 is formed of a transparent conductive film on the first substrate 11, and the common electrode 121 is formed of a transparent conductive film on the second substrate 11. Signals and power are supplied to the pixel electrodes 111 and the like from a film-like wiring board (hereinafter referred to as a flexible wiring board) 45 connected to the terminal area of the first substrate 11.
- a film-like wiring board hereinafter referred to as a flexible wiring board
- the light Light from the LED 50 is incident on the second substrate 12 and the liquid crystal layer 14 from the lateral direction.
- the liquid crystal molecules 141 change their orientation, and the light incident from the lateral direction is scattered in the main surface direction of the transparent liquid crystal display panel 10. It has the property of causing. Since the light scattering is controlled for each pixel, an image can be formed.
- the transparent liquid crystal display panel 10 As shown in FIG. 3, there is no backlight on the back surface of the transparent liquid crystal display panel 10. Therefore, the area where the image is not formed has a background like glass.
- an image is formed on both sides of the transparent liquid crystal display panel according to the voltage applied to the pixel electrode 111.
- the operation shown in FIG. 3 is an example. A method of forming an image by entering light from the side surface of the transparent liquid crystal display panel 10 without using a backlight is possible other than the method described in FIG.
- the transparent liquid crystal display panel 10 is described as one rectangle or as a combination of two plates in order not to complicate the drawing.
- FIG. 4 is a front view of a display device using the transparent liquid crystal display panel 10 according to the present invention
- FIG. 5 is a side view.
- a transparent liquid crystal display panel is arranged in a transparent glass plate or a transparent resin plate in a state of being separated from the pedestal 100. That is, this is an example of a free layout that does not depend on the distance between the transparent liquid crystal panel 10 and the LEDs 50.
- a signal is applied to the transparent liquid crystal display panel 10
- an image is formed on the transparent liquid crystal display panel 10 and this image appears to float in the hollow.
- the background of the transparent liquid crystal display panel 10 in the state where no signal is input, or the portion where no image is formed on the transparent liquid crystal display panel 10 can be seen through the transparent substrate.
- the LED 50 is arranged in the pedestal 100, and the light from the LED 50 enters the side surface of the transparent liquid crystal display panel 10 via the inner housing 30.
- the transparent liquid crystal display panel 10 and the inner housing 30 are housed in the outer housing 20.
- Both the outer casing 20 and the inner casing 30 are formed of a transparent material such as glass or transparent resin.
- the refractive index n2 of the inner housing 30 is larger than the refractive index n1 of the outer housing 20, so that the light from the LED emits light from the inner housing 30 and the outer housing.
- the light is incident on the transparent liquid crystal display panel 10 from the side surface of the transparent liquid crystal display panel 10 while repeating reflection at the interface of the body 20.
- the refractive indexes are different, since the outer casing 20 and the inner casing 30 are transparent, the image formed on the transparent liquid crystal display panel 10 appears to float in the air.
- the refractive index n1 is 1.5 and the refractive index n2 is 2.0.
- the LED 50 is not transparent, it is arranged in the pedestal 100. Further, the pedestal 100 accommodates non-transparent members such as a driver IC and a circuit board. As shown in FIG. 5, the inner casing 30 has a structure housed by the outer casing 20 or a sandwiched structure.
- FIG. 6 is a front view showing a second mode of the first embodiment, and FIG. 7 is a side view. 6 is different from FIG. 4 in that the number of LEDs 50 accommodated in the pedestal 100 can be increased, the amount of light supplied to the transparent liquid crystal display panel 10 can be increased, and the brightness of the screen can be increased. As the number of LEDs 50 increases, the volume of the inner housing 30 also becomes larger than that in the case of FIG.
- the number of LEDs 50 is also increased in the thickness direction of the display device to increase the amount of light incident on the transparent liquid crystal display panel 10.
- the thickness of the inner housing 30 is also thicker than that in the case of FIG.
- FIG. 8 is a front view showing a third mode according to the first embodiment
- FIG. 9 is a side view. 6 is different from FIG. 4 in that the LEDs 50 housed in the pedestal 100 are arranged on the entire sides of the pedestal 100 to increase the amount of light supplied to the transparent liquid crystal display panel 10 to improve the screen brightness. This is the point that it is made larger.
- the volume of the inner housing 30 also increases compared to the case of FIG. 4, but in FIG. 8, in order to guide light to the transparent liquid crystal display panel 10 more efficiently, When viewed in a plane, the side portion of the inner housing 30 is inclined.
- FIG. 9 is a side view of FIG. Also in this embodiment, since only one LED 50 is arranged in the thickness direction of the pedestal 100, FIG. 9 looks the same as FIG.
- FIG. 10 is a front view showing a fourth mode of the first embodiment
- FIG. 11 is a side view.
- FIG. 10 which is a front view, looks the same as FIG. 8, which is the third embodiment.
- FIG. 10 there are a plurality of LEDs 50 in the thickness direction of the pedestal 100, and a brighter image can be formed.
- FIG. 11 is a side view of FIG. 10 showing this state.
- three LEDs 50 are arranged in the thickness direction of the pedestal 100.
- the side surface of the inner housing 30 is inclined in order to more easily guide the light from the LED 50 to the transparent liquid crystal display panel 10, as compared with FIG. 7 or FIG. 9. As the number of LEDs 50 increases, the volume of the inner housing 30 also becomes larger than that in the case of FIGS. 8 and 9.
- FIG. 12 is a front view showing a fifth mode of the first embodiment
- FIG. 13 is a side view. 12 is different from FIG. 8 in that a column 110 is formed at one end of the pedestal 100 and the LED 50 is arranged in the column 110. The LED 50 is arranged over the entire side where the pillar 110 is formed.
- the inner housing 30 as a light guide is also formed in a region from the side corresponding to the pedestal 100 and the side corresponding to the support 110 to the transparent liquid crystal display panel 10.
- the size of the transparent liquid crystal display panel can be increased.
- the outer casing 20 and the inner casing 30 occupy the same area, but their volumes are not the same. As shown in FIG. 13, in FIG. 12, the region where the inner casing 30 is formed is also sandwiched by the outer casing 20. However, since both the outer casing 20 and the inner casing 30 are transparent, the effect that the screen appears to float in the air remains unchanged.
- the LED 50 is arranged inside the column 110.
- the thickness of the inner housing 30 that guides the light from the LED 50 can be freely set from the same thickness as the LED 50 to the same thickness as the pillar 110.
- the outer casing 20 has a configuration in which the inner casing 30 is sandwiched. The light from the LED 50 is repeatedly reflected at the boundary between the inner housing 30 and the outer housing 20, and enters the side surface of the transparent liquid crystal display panel 10 from the inner housing 30 having a small thickness.
- FIG. 14 is a front view showing a sixth mode of the first embodiment
- FIG. 15 is a side view.
- an outer frame 120 is formed on the outer periphery of the display device, and the LEDs 50 are arranged in the outer frame 120. Then, light is incident on the transparent liquid crystal display panel 10 from the LEDs 50 arranged in the pedestal 100 and the outer frame 120 over the entire circumference. Therefore, a bright image can be formed.
- an inner housing 30 as a light guide is formed between the LED 50 and the transparent liquid crystal display panel 10. That is, in FIG. 14, the inner housing 30 exists on the entire circumference of the transparent liquid crystal display panel 10. As shown in FIG. 15, the inner housing 30 is sandwiched by the outer housing 20. Therefore, the light from the LED 50 enters the transparent liquid crystal display panel 10 while being repeatedly reflected at the interface between the inner housing 30 and the outer housing 20. As shown in FIG. 15, the thickness of the outer frame 120 is smaller than the thickness of the transparent display device, and the outer frame 120 is inconspicuous.
- FIG. 16 is a front view showing a seventh embodiment of the first embodiment
- FIG. 17 is a side view
- FIG. 18 is a side view with an outer frame 120 removed.
- the outer shape of the display device is circular.
- the LEDs 50 are arranged in the circular outer frame 120 over the entire circumference. Since the LED 50 is also arranged on the pedestal 100, the light from the LED 50 enters from the entire circumference of the transparent liquid crystal display panel 10.
- the inner housing 30 as a light guide for guiding the light from the LED 50 to the transparent liquid crystal display panel 10 is also formed so as to surround the entire circumference of the transparent liquid crystal display panel 10.
- the width of the outer frame 120 in the thickness direction is large so as to cover the side surfaces of the outer housing 20 and the inner housing.
- the width of the outer frame 120 may be smaller than the thickness of the region where the image is formed, as shown in FIG.
- FIG. 18 is a side view showing a state in which the outer frame 120 in FIG. 17 is removed.
- the inner casing 30 is formed thicker than in the case of FIG.
- the inner housing 30 is sandwiched by the outer housing 20.
- the light from the LED 50 is incident on the side surface of the transparent liquid crystal display panel 10 while being repeatedly reflected at the interface between the inner housing 30 and the outer housing 20. Also in this embodiment, since the light from the LED 50 enters the transparent liquid crystal display panel 10 from the entire circumference, a bright image can be formed.
- the flexible wiring substrate is a colored resin base material (generally a polyimide substrate) having a thickness of about 30 ⁇ m and provided with copper wiring.
- FIG. 19 shows a case where such a flexible wiring board 45 is applied to FIG. 10 which is the fourth mode in the first embodiment.
- the inner housing 30 as a light guide portion for guiding the light from the LED 50 to the transparent liquid crystal display panel 10 is a transparent medium having a refractive index n2, but as shown in FIG. 19, the flexible wiring board 45 is opaque. If so, the appearance as a transparent display is impaired.
- 20 is a side view of FIG. A signal is supplied from the driver IC housed in the pedestal 100 to the first substrate 11 of the transparent liquid crystal display panel 10 via the colored flexible wiring substrate 45.
- FIG. 21 is a front view showing a first mode of the present invention in the second embodiment, and FIG. 22 is a side view.
- a transparent flexible wiring board 40 is used as a flexible wiring board that supplies a signal to the transparent liquid crystal display panel 10.
- the transparent flexible wiring board 40 is formed by using the wiring 41 formed on the transparent resin film by a fine pattern that is hard to be visually recognized.
- the wiring formed by this fine pattern may be a metal wiring or may be formed by using a transparent conductive film made of a metal oxide conductive film such as ITO (Indium Tin Oxide).
- ITO Indium Tin Oxide
- PET Polyethylene terephthalate
- acrylic acrylic
- polyimide can also be used as a transparent material depending on the firing conditions.
- the transparent flexible wiring board 40 is arranged in the inner housing 30, the reflection at the interface between the inner housing 30 and the transparent flexible wiring board 40 can be suppressed if the refractive index is close to that of the inner housing 30.
- the refractive index of the base material of the transparent flexible wiring board 40 is n3, it is desirable that the refractive index n2 of the inner casing and the refractive index n1 of the outer casing have a relationship of n3, n2>n1.
- FIG. 21 Another feature of FIG. 21 is that the area of the transparent flexible wiring board 40 is increased and the interval between the wirings 41 is enlarged by expanding the transparent flexible wiring board 40 toward the pedestal 100 side. By increasing the wiring interval, the wiring 41 can be made less noticeable. Moreover, since the width of each wiring 41 can be increased by increasing the wiring interval, the wiring resistance can be reduced.
- the pixel pitch of the transparent liquid crystal display panel 10 is 200 ⁇ m, which is an interval at which it is difficult for a viewer to visually recognize the wiring. If the distance between the wirings 41 is also at least equal to the pixel pitch of the transparent liquid crystal display panel 10, it is difficult for a viewer to visually recognize the wiring 41 even if the wiring 41 is a metal wiring, and the design is not impaired.
- FIG. 22 is a side view of FIG. 21, in which four LEDs, for example, are arranged in the thickness direction of the pedestal 100.
- a transparent flexible wiring board 40 is arranged in the inner housing 30 and supplies a video signal and the like to the transparent liquid crystal display panel 10.
- the reflection of the transparent flexible wiring board may not be sufficiently suppressed due to the relationship with the refractive index of the inner housing 30.
- the reflection from the wiring may not be sufficiently suppressed due to the relationship between the refractive index of the wiring 41 of the transparent flexible wiring board and the refractive index of the inner housing 30.
- the transparent flexible wiring board 40 can be made inconspicuous by coating or attaching the transparent material to the metal oxide conductive film 41.
- FIG. 23 and 24 are a front view and a side view showing a second embodiment of the second embodiment realizing this configuration.
- the shape of FIG. 23 is similar to that of FIG. 21, but a transparent material 42 having a refractive index different from that of the base material of the transparent flexible wiring board 40 is formed on the surface of the transparent flexible wiring board 40.
- FIG. 24 is a side view of FIG.
- a transparent flexible wiring substrate 40 extends to the transparent liquid crystal display panel 10 from a pedestal 100 that houses a driver IC and the like.
- a transparent material 42 having a refractive index n4 is coated or attached.
- the transparent material 42 has a refractive index of n6.
- the refractive index n4 of the transparent material 42 is an intermediate refractive index between the refractive index n2 of the inner housing 30 and the refractive index n3 of the base material of the flexible wiring board 10. Is desirable.
- the refractive index n6 of the transparent material 42 is the refractive index n2 of the inner housing 30 and the metal oxide conductive film 41 formed on the flexible wiring board 40. It is desirable to be in the middle of the refractive index n5.
- FIG. 25 is a front view showing a third mode of the second embodiment, and FIG. 26 is a side view thereof.
- FIG. 25 is similar in external shape to FIG. 23, except that the transparent liquid crystal display panel 10 is housed in the inner housing 30 instead of the outer housing 20.
- FIG. 26 shows that the transparent liquid crystal display panel 10 is housed in the inner housing 30, and the outer housing 20 is formed so as to sandwich the inner housing 30.
- the light from the LED 50 enters the transparent liquid crystal display panel 10 while being repeatedly reflected at the interface between the inner housing 30 and the outer housing 20.
- the wiring 41 of the transparent flexible wiring board 40 is a diagonal wiring, and the length of the wiring differs depending on the location. Therefore, in the transparent flexible wiring board 40, the difference in wiring resistance due to the length of the wiring 41 is more remarkable than that of metal wiring.
- FIG. 27 is a front view showing a fourth mode of the second embodiment, which is a countermeasure against this, and the transparent flexible wiring substrate 40 is connected to the long side of the transparent liquid crystal display panel 10.
- the width of the transparent flexible wiring board 40 can be increased, and a signal can be supplied to the transparent liquid crystal display panel 10 without using diagonal wiring. Therefore, the wiring resistance of the transparent flexible wiring board 40 can be easily equalized.
- the driver IC and the like are arranged on the column 110 or the pedestal 100.
- metal wiring can be used in the pillar 110.
- FIG. 28 is a side view of FIG. 27. Since the flexible wiring board does not exist between the pedestal 100 and the transparent liquid crystal display panel 10, the transparent liquid crystal display panel 10 looks as if it floats inside the inner housing 30. The inner housing 30 is sandwiched by the outer housing 20.
- FIG. 29 and 30 are views showing a fifth mode of the second embodiment, FIG. 29 is a front view, and FIG. 30 is a side view.
- the LED 50 is arranged in the column 110 so that the light from the LED 50 can be supplied not only from the short side of the transparent liquid crystal display panel 10 but also from the long side thereof. Thereby, a brighter image can be formed.
- an inner housing 30 as a light guide is arranged between the LED 50 and the transparent liquid crystal display panel 10. Further, as shown in FIG. 30, the inner casing 20 and the transparent liquid crystal display panel 10 are sandwiched by the outer casing 20.
- FIG. 31 and 32 are views showing a sixth embodiment of the second embodiment, FIG. 31 is a front view and FIG. 32 is a side view.
- the relationship between the LED 50, the inner housing 30, and the outer housing 20 in FIGS. 31 and 32 is as described in FIGS. 14 and 15.
- the feature of FIG. 31 is that the transparent flexible wiring substrate 40 is connected to two sides of the transparent liquid crystal display panel 10. Thereby, the wiring density in each flexible wiring board 40 can be reduced, and the existence of the wiring 41 can be made less conspicuous. Moreover, since the width of the wiring 41 can be increased, the wiring resistance can be reduced.
- FIG. 33 and 34 are views showing a seventh mode of the second embodiment, FIG. 33 is a front view and FIG. 34 is a side view.
- the feature of FIG. 33 is that the pillar 110 is arranged on the long side of the transparent liquid crystal display panel 10 and the LED 50 is arranged on the pillar 110. On the other hand, the LED 50 is not arranged on the pedestal 100.
- a transparent flexible wiring board 40 exists between the pedestal 100 and the transparent liquid crystal display panel 10.
- the transparent flexible wiring board 40 exists in the inner housing 30 that is a light guide, the light from the LED 50 is scattered by the transparent flexible wiring board 40, and flickering is likely to occur.
- the inner housing 30 that serves as a light guide and the transparent flexible wiring board 40 are separated, such flicker can be prevented.
- An inner housing 30 as a light guide exists between the column 110 where the LED 50 is arranged and the transparent liquid crystal display panel 10. As shown in FIG. 34, the inner casing 30 is sandwiched by the outer casing 20. Then, the light from the LED 50 enters the transparent liquid crystal display panel 10 while being repeatedly reflected at the interface between the inner housing 30 and the outer housing 20.
- FIG. 35 and 36 are views showing an eighth embodiment of the second embodiment, FIG. 35 is a front view and FIG. 36 is a side view.
- the transparent display device is surrounded by an outer frame 120.
- the shape of the outer frame 120 is as described in FIGS. 14 and 15.
- the feature of FIG. 35 is that the LEDs 50 are arranged on two opposite sides of the outer frame 120, and the LEDs 50 are not arranged on the side of the pedestal 100 and the outer frame 120 facing the pedestal 100, and the transparent liquid crystal display panel 10 is provided.
- the transparent flexible wiring board 40 is arranged between them.
- the inner housing 30 that guides the light from the LED 50 to the transparent liquid crystal display panel 10 and the transparent flexible wiring board 40 By separating the inner housing 30 that guides the light from the LED 50 to the transparent liquid crystal display panel 10 and the transparent flexible wiring board 40, it is possible to prevent flickering due to the scattering of light from the transparent flexible wiring board 40.
- the configuration of FIG. 35 the brightness of the image can be improved by arranging the LEDs 50 on two sides, and the density of the wirings 41 can be reduced by arranging the transparent flexible wiring substrate 40 at two locations. There is an advantage that the existence of the transparent flexible wiring board 40 can be made less noticeable.
- FIG. 36 is a side view of FIG. 35, the inner housing 30 and the transparent liquid crystal display panel 10 are sandwiched by the outer housing 20, as in FIG. 34 and the like. Further, the thickness of the outer frame 120 is made smaller than that of the transparent display device so that the outer frame 120 is inconspicuous.
- FIG. 37, 38, and 39 are views showing a ninth embodiment of the second embodiment, FIG. 37 is a front view, FIG. 37 is a side view, and FIG. 38 is a side view when the outer frame 120 is removed. is there.
- the transparent display device is arranged in a circular outer frame 120.
- the LEDs 50 are arranged on the circular outer frame 120 and the pedestal 100, and the light from the LEDs 50 enters the transparent liquid crystal display panel 10 from the entire circumference.
- An inner housing 30 as a light guide is arranged between the transparent liquid crystal display panel 10 and the LEDs 50 in the periphery.
- a transparent flexible wiring board 40 is connected to two opposite sides of the transparent liquid crystal display panel 10.
- the transparent flexible wiring boards 40 are respectively connected to the circuit boards arranged on the circular outer frame 120.
- the area of each of the two transparent flexible wiring boards 40 can be increased, the density of the wirings 41 can be reduced and the wirings 41 of the transparent flexible wiring board 40 can be made less conspicuous.
- FIG. 39 is a side view of the transparent display device when the outer frame 120 is removed.
- the inner housing 30 as a light guide is sandwiched by the outer housing 20. The light from the LED 50 enters the transparent liquid crystal display panel 10 while reflecting the interface between the inner housing 30 and the outer housing 20.
- FIG. 40, 41, and 42 are views showing a tenth embodiment of the second embodiment.
- FIG. 40 is a front view
- FIG. 41 is a side view
- FIG. 42 is a side view when the outer frame 120 is removed. is there.
- the transparent display device is arranged in a circular outer frame 120.
- the difference between FIG. 40 and FIG. 37 is that the LED 50 is arranged in the pedestal 100 and the outer frame 120 of the region facing the pedestal 100, and the light from the LED 50 is incident from two sides of the transparent liquid crystal display panel 10. Is.
- a transparent flexible wiring board 40 is connected to the other two sides of the transparent liquid crystal display panel 10, and the two transparent flexible wiring boards 40 each occupy a large area. Therefore, the wiring density can be reduced, and the wiring 41 of the transparent flexible wiring substrate 40 can be made less noticeable. Further, since the light from the LED 50 does not interfere with the transparent flexible wiring board 40, the flicker phenomenon due to the transparent flexible wiring board 40 can be eliminated.
- FIG. 41 is a side view of FIG. 40, which is the same as that described in FIG.
- the transparent liquid crystal display panel 10 and the inner housing 30 as the light guide plate are sandwiched by the outer housing 20.
- the light from the LED 50 enters the transparent liquid crystal display panel 10 while reflecting the interface between the inner housing 30 and the outer housing 20.
- FIG. 43, 44, and 45 are views showing an eleventh embodiment of the second embodiment.
- FIG. 43 is a front view
- FIG. 44 is a side view
- FIG. 45 is a side view when an outer frame is removed. ..
- the transparent display device is arranged in a circular outer frame 120.
- 43 is different from FIG. 40 in that the wiring 41 of the transparent flexible wiring substrate 40 connected to the transparent liquid crystal display panel 10 is a straight line. If the wiring 41 has a complicated shape, it is difficult to make the wiring resistance uniform, but if the wiring 41 is a straight line, the wiring resistance can be easily adjusted.
- FIG. 43 the number of LEDs 50 in the pedestal 100 and the outer frame 120 in the area facing the pedestal 100 is increased in comparison with FIG. Therefore, a brighter image can be formed than in the case of FIG.
- FIG. 44 is a side view, it is similar to that described in FIG. 41.
- FIG. 45 is a side view with the outer frame removed, but in FIG. 45, it is the same as that described in FIG. 42 except that the number of LEDs 50 is increased.
- FIG. 46 is a plan view showing an example of the transparent flexible wiring board 40 used in the present invention.
- the upper side of the straight line indicated by the dotted line is the portion extending into the transparent display device, and the lower side is the portion existing in the pedestal 100.
- a driver IC 60 for driving the transparent liquid crystal display panel 10 is mounted on the transparent flexible wiring board 40.
- the driver IC 60 has an input side 61 to which power and signals are input from an external circuit, and an output side 62 from which the driver IC 60 sends out a scanning signal and a video signal line.
- the wiring 41 is connected to the output side 62, but since the wiring 41 has a large specific resistance, it is formed wide to reduce the wiring resistance. Therefore, the output side 62 needs a larger area.
- the connection area of the output side 62 is widened by using the first long side, two short sides, and part of the second long side of the driver IC 60.
- the wiring pitch can be reduced and the wiring width can be increased. Therefore, the connection area of the input side 61 can be reduced.
- FIG. 47 is a plan view showing another example of the transparent flexible wiring board 40 used in the present invention.
- the inside of the circle indicated by the dotted line is the portion extending inside the transparent display device, and the outside is the portion existing inside the circular outer frame 120. Assigning a larger area to the output side 62 in the driver IC 50 is as described with reference to FIG.
- the wiring from the transparent flexible wiring board 40 is handled by the two driver ICs 60 arranged in the outer frame 120. This makes it possible to avoid routing the wiring 41. Since the input side of the driver IC 60 is the metal wiring 46, even if the driver IC 60 is drawn toward the pedestal 100, the problem of wiring resistance is small.
- FIG. 48 is a sectional view showing an example of a specific structure of the transparent display device according to the present invention.
- the transparent liquid crystal display panel 10 is housed in the inner housing 30 which functions as a light guide.
- the inner housing 30 is sandwiched by the outer housing 20.
- the refractive index n2 of the inner housing 30 is larger than the refractive index n1 of the outer housing 20.
- LEDs 50 are arranged at both ends of the inner housing 30. The light from the LED 50 enters the transparent liquid crystal display panel 10 while being repeatedly reflected at the interface between the inner housing 30 and the outer housing 20.
- One of the LEDs 50 is mounted on the LED flexible wiring board 55 inside the outer frame 10, and the other LED 50 is mounted on the LED flexible wiring board 55 in the pedestal 100.
- a transparent flexible wiring board 40 on which wiring 41 is formed is connected to the transparent liquid crystal display panel 10 to supply scanning signals and video signal lines to the transparent liquid crystal display panel 10.
- a driver IC 60 is mounted in the pedestal 100 on the transparent flexible wiring board 40.
- the transparent flexible wiring board 40 is connected to the circuit board 70 arranged in the pedestal 100.
- a flexible wiring board 55 for the LED 50 is also connected to the circuit board 70.
- the inner casing 30 is formed of a transparent gel of silicon resin, urethane resin or the like so that no gap is generated in the inner casing 30.
- the inner case 30 is sandwiched between the outer case 20 and the inner case 30 so as not to generate bubbles, and is fitted into the pedestal 100 or the outer frame 120.
- a transparent gel or the like formed of urethane resin or silicon resin is used for the inner housing 30, and a resin such as glass, acrylic resin, or polycarbonate is used for the outer housing 20.
- FIG. 49 is a sectional view showing a second mode in the fourth embodiment for coping with this.
- the heat pipe 80 is arranged on the back surface of the LED flexible wiring board 55.
- the heat pipe 80 is a container in which a liquid such as water is sealed in an envelope formed of a copper alloy or the like having good heat conductivity, and quickly transfers heat from a high temperature portion to a low temperature portion.
- the thickness of the heat pipe 80 can be about 3 mm.
- the heat dissipation portion can be formed by forming a metal fin on the pedestal 100 portion. Since the driver IC 60 also has high heat, it is desirable that the driver IC 60 also exerts the effect of the heat pipe 80.
- the transparent display device is surrounded by the heat pipe 80.
- the LED 50 is arranged on the long side of the transparent display device.
- the heat pipe 80 surrounds the entire circumference of the display device outside the flexible wiring board 55 for LED.
- the LED flexible wiring board 55 also surrounds the entire circumference of the display device, the LED flexible wiring board 55 may be arranged only on the side where the LEDs 50 are arranged.
- the pedestal 100 is omitted in FIG. 50, the low temperature part of the heat pipe 80 can be arranged in the pedestal 100 part.
- FIG. 51 is a side view of FIG. In FIG. 51, the outside of the transparent display device is surrounded by the heat pipe 80. Since the heat pipe 80 is arranged only in the portion where the LED 50 having a high temperature is present, the thickness of the heat pipe 80 is smaller than the thickness of the transparent display device.
- FIG. 52 is a side view of the transparent display device with the heat pipe 80 removed. This configuration is the same as the configuration of the present invention described in the first and second embodiments.
- the display device of FIG. 53 has a circular outer shape.
- the LEDs 50 are arranged on the pedestal 100 side of the transparent display device and on the outer frame 120 portion facing the pedestal 100.
- the heat pipe surrounds the entire circumference of the display device outside the flexible wiring board 55 for LED.
- the LED flexible wiring board 55 also surrounds the entire circumference of the display device, the LED flexible wiring board 55 may be arranged only on the side where the LEDs 50 are arranged.
- the pedestal 100 is omitted in FIG. 53, the low temperature part of the heat pipe can be arranged in the pedestal 100 part.
- FIG. 54 is a side view of the transparent display device in the example in which the outer frame 120 is arranged in the configuration of FIG.
- the heat pipe 80 is arranged inside the outer frame 120.
- a metal such as copper having good heat conductivity for the outer frame 120, it can be used as a heat radiating means for assisting the heat pipe 80.
- FIG. 55 is a side view of the transparent display device with the outer frame 120 and the heat pipe 80 removed. This configuration is the same as the configuration of the present invention described in the first and second embodiments.
- the organic EL display device and the micro LED display device do not require a backlight.
- the configuration described in the second embodiment of the present invention is also useful for the organic EL display device and the micro LED display device.
- the present invention enables a free layout that does not depend on the distance between the transparent display panel and the LEDs, the external circuit, and the pedestal, and expands the degree of freedom in designing the display device.
- a figurine featuring a transparent design such as a trophy or a digital photo frame using a transparent display panel, or a transparent display panel incorporated in a part of a glass material such as a transparent door or window Can be used for.
- the display panel 10 which is built in the transparent outer casing 20, is connected to the transparent flexible wiring board 40, and is located apart from the pedestal 100 is not limited to the transparent display panel but is a liquid crystal display device having a backlight. You can have it. Even in a liquid crystal display device equipped with a backlight, the transparent flexible wiring substrate is transparent, and the designability of the display device is not impaired.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mathematical Physics (AREA)
- Liquid Crystal (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Theoretical Computer Science (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Electroluminescent Light Sources (AREA)
- Microelectronics & Electronic Packaging (AREA)
Abstract
本発明の課題は、透明媒体の中空に液晶表示パネルによる画像を形成することが可能な表示装置を実現することである。このために、本発明は次のような構成をとる。すなわち、台座100の上に第1の主面と第2の主面を有する板状の表示媒体が配置した表示装置であって、前記表示媒体には、屈折率n1である第1の透明媒体20の内部に液晶表示パネル10が配置し、前記台座100には、前記液晶表示パネル10に光を供給する第1のLED50が配置し、前記第1のLED50と前記液晶表示パネル10の間には、屈折率n2である第2の透明媒体30が存在し、n2>n1であることを特徴とする表示装置。
Description
本発明は表示装置に係り、特に液晶用い透明ディスプレイや有機EL、マイクロLEDなどの自発光素子を用いた透明ディスプレイに関する。
ガラスのように、背景が見える透明ディスプレイに対する需要が存在する。このような透明ディスプレイは例えば、液晶表示装置、有機ELや無機EL、マイクロLEDを有する自発光型の表示装置によって実現される。
特許文献1には、自動販売機のフロントシートの背面に透明液晶表示パネルを配置し、この透明液晶表示パネルに広告等を表示する構成が記載されている。この透明液晶表示パネルの背面には特にバックライトは存在しない。バックライトの代わりに、自動販売機のベゼルに配置したLEDから販売機内の商品等に光を当て、この光の反射をバックライトとして画像を表示するものである。
特許文献1に記載のような、透明液晶表示装置は、基本的には、従来の液晶表示装置の構成を使用しながら、液晶表示パネルの背後を視ることが出来るという利点を有しているが、利用できる装置が限られる。
一方、ガラスのように、背景が見える液晶表示装置として、液晶表示パネルの側面から光を入射し、液晶表示パネル内において、液晶分子によって光を散乱させて、液晶表示パネルの主面方向に光を出射することにより、バックライトを省略した液晶表示装置を実現することが出来る。
つまり、液晶分子の配向を制御することによって、液晶分子による光の散乱を画素毎に制御し、画像を形成する方法である。この方法は、液晶表示パネルの側面にどのように光を導くかが問題である。液晶表示パネルの側面に光源LEDを配置することによって、液晶表示パネルの側面から光を入射させることが出来るが、この方法の場合、光源を液晶表示パネルに近接して配置する必要があるので、透明液晶表示パネルの自由なレイアウトが困難である。本発明の課題は、透明液晶表示パネルへの光の供給に自由度を与え、透明液晶表示パネル配置に自由度を与えることによって、色々な用途に透明液晶表示パネルを使用することが出来るようにすることである。
本発明は上記課題を克服するものであり、代表的な手段は次のとおりである。すなわち、台座の上に第1の主面と第2の主面を有する板状の表示媒体が配置した表示装置であって、前記表示媒体には、屈折率n1である第1の透明媒体の内部に液晶表示パネルが配置し、前記台座には、前記液晶表示パネルに光を供給する第1のLEDが配置し、前記第1のLEDと前記液晶表示パネルの間には、屈折率n2である第2の透明媒体が存在し、n2>n1であることを特徴とする表示装置、である。
以下に実施例を用いて本発明の内容を詳細に説明する。
また、実施例においては液晶表示装置及び透明液晶表示パネルにて説明をするが、本実施例は液晶に限るものではなく、実施例における液晶表示装置を有機EL表示装置やマイクロLED表示装置、液晶表示パネルを有機ELパネルやマイクロLEDパネルと置き換えることも可能である。
図1はバックライトを使用しない液晶表示装置の正面図であり、図2はその側面図である。図1及び図2において、透明液晶表示パネル10は、台座100の上に配置されている。台座100には、光源としてのLED50を始め、後述する駆動回路を備えた外部配線基板70等を配置している。液晶表示パネル10の側面にはLED50が隣接して配置され、液晶表示パネル10の側面から光を入射する。
透明液晶表示パネル10は、信号を印加しなければ、透明であり、ガラス板のように、背景が透けて見える。図1の構成では、透明液晶表示パネル10は、LED50から直接光の供給を受けるので、台座100に直接配置する必要がある。また、台座100には、LED50以外にも透明液晶表示装置パネル10やLED50を駆動する駆動回路基板(PCB基板)70が収納されている。駆動回路基板70は外部配線基板70と表現することもできる。LED50も外部配線基板も、何れも表示装置を利用する利用者に視認できる状態にあることはデザイン的にも好ましくなく、台座100に収納されている。台座100は収納部100と表現することもできる。また外部配線基板と液晶表示パネルを接続するフィルム状配線基板(例えばFPC基板)も必要であり、これも視認者が視認できる状態にあることは好ましくなく、台座100に収納させることでデザイン性を向上させている。しかし、このため台座100と液晶表示パネル10は近接して配置させる必要があり、この近接させて配置させることにより台座100と液晶表示パネル10とが離れた位置にしたいというデザインに対応できず、液晶表示パネル10を含む液晶表示装置全体のデザインの自由度に制限が掛かる。有機EL表示装置やマイクロLED表示装置は自発光でありLED50を台座100に有する必要はないものの、表示パネルを駆動するためのIC等駆動回路基板やフィルム状配線基板を有しており、表示パネルのデザインの自由度に制限を掛けるという課題は同様である。
図3は、図1及び図2等で使用される透明液晶表示パネル10の例を示す断面図である。図3において、第1基板11と第2基板12が液晶層14を挟んで対向している。第1基板11と第2基板12はシール材13によって接着し、内部に液晶が挟持されている。シール材13は透明シール材である。
第1基板11には透明導電膜によって画素電極111が形成され、第2基板には、透明導電膜によってコモン電極121が形成されている。画素電極111等には、第1基板11の端子領域に接続したフィルム状配線基板(以後フレキシブル配線基板という)45から信号や電源が供給される。
図3において、LED50からの光Lightが横方向から第2基板12及び液晶層14に入射する。液晶は通常の液晶とは異なり、画素電極111に映像信号線が印加されると、液晶分子141は配向を変化させて、横方向から入射した光を透明液晶表示パネル10の主面方向に散乱させる性質を持っている。画素毎に光の散乱を制御するので、画像を形成することが出来る。
図3に示すように、透明液晶表示パネル10の背面にはバックライトは存在していない。したがって、画像が形成されない領域は、ガラスのように、背景が見える。図3では、画素電極111に印加される電圧に応じて、画像は透明液晶表示パネルの両側に形成される。なお、図3に示す動作は例である。バックライトを用いずに、透明液晶表示パネル10の側面から光を入射して画像を形成する方法は、図3で説明した以外にも可能である。以後の図面では、図を複雑にしないために、透明液晶表示パネル10は1枚の長方形、あるいは、2枚の板が合わさったものとして記載する。
図4は本発明による透明液晶表示パネル10を用いた表示装置の正面図であり、図5は側面図である。図4及び図5では例えば、透明なガラス板、あるいは、透明な樹脂板の中に透明液晶表示パネルが台座100と離間された状態で配置されている。つまり、透明液晶パネル10とLED50との距離に依存しない自由なレイアウトの一実施例である。透明液晶表示パネル10に信号が印加されると透明液晶表示パネル10に画像が形成され、この画像は、中空に浮いているように見える。また、信号が入力されていない状態の透明液晶表示パネル10、あるいは透明液晶表示パネル10に画像が形成されていない部分は、背景が透明基板を通して透けて見える。
図4において、LED50は台座100中に配置され、LED50からの光は、内筐体30を介して透明液晶表示パネル10の側面に入射する。透明液晶表示パネル10及び内筐体30は外筐体20に収容されている。外筐体20、内筐体30とも、ガラスあるいは透明樹脂等の透明材料によって形成される。内筐体30も外筐体20も透明であるが、内筐体30の屈折率n2は外筐体20の屈折率n1よりも大きいので、LEDからの光は、内筐体30と外筐体20の界面において反射を繰り返しながら透明液晶表示パネル10の側面から透明液晶表示パネル10に入射する。屈折率は異なるが、外筐体20も内筐体30も透明なので、透明液晶表示パネル10に形成された画像は中空に浮いているように見える。一例では、屈折率n1を1.5とし、屈折率n2を2.0としている。
図4において、LED50は透明ではないので、台座100中に配置されている。また、台座100には、ドライバIC、回路基板等、透明ではない部材が収容されている。図5に示すように、内筐体30は、外筐体20によって収容された構成、あるいは、挟持された構成となっている。図6は実施例1の第2の形態を示す正面図であり、図7は側面図である。図6が図4と異なる点は、台座100に収容されたLED50の数を多くして、透明液晶表示パネル10に供給される光量を多くし、画面の明るさを大きくできる点である。LED50の数が増えている分、内筐体30の体積も図4の場合に比べて大きくなっている。
図7では、表示装置の厚さ方向にもLED50の数を増やし、透明液晶表示パネル10に入射する光量を増加している。これに対応して、内筐体30の厚さも図5の場合に比べて厚くなっている。
図8は実施例1による第3の形態を示す正面図であり、図9は側面図である。図6が図4と異なる点は、台座100に収容されたLED50を、台座100の辺全体に配置することによって、透明液晶表示パネル10に供給される光量を多くして、画面の明るさを大きくしている点である。LED50の数が増えている分、内筐体30の体積も図4の場合に比べて大きくなっているが、図8では、光を透明液晶表示パネル10に、より効率的に導くために、平面で視て、内筐体30の側部を傾斜させている。図9は図8の側面図である。本形態も、LED50は台座100の厚さ方向には1個のみ配置されているので、図9は図5と同じに見える。
図10は実施例1の第4の形態を示す正面図であり、図11は側面図である。正面図である図10は、第3の実施例である図8と同じ見える。しかし、図10では、台座100の厚さ方向に複数のLED50が存在し、より明るい画像を形成することが出来る。図11はこの様子を示す、図10の側面図である。本形態では、LED50は台座100の厚さ方向にLED50が3個配置されている。また、図11では、図7、あるいは、図9に比べて、LED50からの光を、より、透明液晶表示パネル10に導きやすくするために、内筐体30の側面に傾斜をつけている。LED50の数が増えている分、内筐体30の体積も図8及び図9の場合に比べて大きくなっている。
図12は実施例1の第5の形態を示す正面図であり、図13は側面図である。図12が図8と異なる点は、台座100の一方の端部に支柱110を形成し、この支柱110内にLED50を配置している点である。LED50は支柱110が形成されている辺全体にわたって配置されている。これに伴い、導光体としての内筐体30も台座100に対応する辺及び支柱110に対応する辺から、透明液晶表示パネル10までの領域に形成されている。透明液晶表示パネルが大型化すると、表示装置の一辺側からのみの入光では十分な光量を得ることが難しく、第5の形態を有することで透明液晶表示パネルの大型化も可能となる。
図12では、外筐体20と内筐体30が同じ位の面積を占めているが、体積も同じというわけではない。図13に示すように、図12において、内筐体30が形成された領域も、外筐体20によってサンドイッチされている。但し、外筐体20も内筐体30も透明なので、画面が中空に浮いて見える効果には変わりがない。
図13において、LED50が支柱110の中に配置している。LED50からの光を導く内筐体30の厚さは、LED50の厚さと同程度から支柱110の厚さと同程度まで、自由に設定することが出来る。外筐体20は内筐体30をサンドイッチしている構成である。LED50からの光は、内筐体30と外筐体20の境界で反射を繰り返しながら、厚さの小さい内筐体30から透明液晶表示パネル10の側面に入射する。
図14は、実施例1の第6の形態を示す正面図であり、図15は側面図である。図14において、表示装置の外周には外枠120が形成され、この外枠120内にLED50が配置している。そして、透明液晶表示パネル10には、台座100内および外枠120内に配置されたLED50から、全周にわたって光が入射する。したがって、明るい画像を形成することができる。
図14において、LED50と透明液晶表示パネル10の間には、導光体としての内筐体30が形成されている。つまり、図14では、透明液晶表示パネル10の全周に内筐体30が存在している。図15に示すように、内筐体30は外筐体20によってサンドイッチされている。したがって、LED50からの光は、内筐体30と外筐体20の界面において、反射を繰り返しながら透明液晶表示パネル10に入射する。図15に示すように、外枠120の厚さは透明表示装置の厚さよりも小さく、外枠120は目立たない構成となっている。
図16は実施例1の第7の形態例を示す正面図であり、図17は側面図であり、図18は外枠120を外した状態の側面図である。図16では、表示装置の外形が円形である。図16において、円形の外枠120内に全周にわたってLED50が配置している。LED50は台座100にも配置されているので、透明液晶表示パネル10は全周からLED50からの光が入射する。
図16では、LED50からの光を透明液晶表示パネル10に導く導光体としての内筐体30も透明液晶表示パネル10の全周を囲むように形成されている。ところで、本形態では、外枠120の厚さ方向の幅は大きくなっており、外筐体20及び内筐体の側面を覆うようになっている。しかし、これは例であり、外枠120の幅は、図15のように、画像が形成される領域の厚さよりも小さくともよい。
図18は、図17における外枠120を取り除いた状態の側面図である。図18において、内筐体30の厚さは、図15等の場合に比較して厚く形成されている。内筐体30は外筐体20によってサンドイッチされている。LED50からの光は内筐体30と外筐体20の界面で反射を繰り返しながら、透明液晶表示パネル10の側面に入射する。本形態も、透明液晶表示パネル10に対して、全周からLED50からの光が入射するので、明るい画像を形成することが出来る。
透明液晶表示パネル10を駆動するには、電気信号を供給する必要がある。電気信号は、一般的にはフレキシブル配線基板(フィルム状配線基板ともいう)を用いて供給される。フレキシブル配線基板は、厚さ30μm程度の有色の樹脂基材(一般にはポリイミド基板)に銅による配線を施したものである。図19は、このようなフレキシブル配線基板45を実施例1における第4形態である図10に適用した場合である。
図10では、LED50からの光を透明液晶表示パネル10に導く導光部としての内筐体30は屈折率n2の透明媒体としているが、図19に示すように、フレキシブル配線基板45が不透明であると、透明ディスプレイとしての見栄えを損ねる。図20は、図19の側面図である。台座100に収容されたドライバICから有色フレキシブル配線基板45を介して透明液晶表示パネル10の第1基板11に信号が供給されている。
図21は、実施例2における本発明の第1の形態を示す正面図であり、図22は側面図である。図21において、透明液晶表示パネル10に信号を供給するフレキシブル配線基板には、透明フレキシブル配線基板40が用いられている。透明フレキシブル配線基板40は、透明樹脂フィルムに視認されにくい微細パターンにより形成された配線41を用いることによって形成されるものである。この微細パターンにより形成された配線は金属配線であっても良くITO(Indium Tin Oxide)等の金属酸化物導電膜等による、透明導電膜を用いることによって形成されるものであってもよい。基材として用いる透明樹脂としては、ポリエチレンテレフタレート(PET)、アクリル等が存在するが、ポリイミドも焼成条件によっては、透明材料とすることが出来る。
透明フレキシブル配線基板40は内筐体30内に配置されるので、内筐体30に近い屈折率であれば、内筐体30と透明フレキシブル配線基板40の界面での反射が抑えられる。透明フレキシブル配線基板40の基材の屈折率をn3とすると、内筐体の屈折率n2、外筐体の屈折率n1の間には、n3、n2>n1の関係があることが望ましい。
図21の他の特徴は、透明フレキシブル配線基板40を台座100側に行くにしたがって広げることによって、透明フレキシブル配線基板40の面積を大きくし、配線41の間隔を広げていることである。配線間隔を広げることによって、配線41をより目立たなくすることが出来る。また、配線間隔を大きくすることによって、各配線41の幅を大きくすることが出来るので、配線抵抗を小さくすることが出来る。
一例では、透明液晶表示パネル10の画素ピッチは200μmであり、これは視認者にとって配線を視認し難い間隔である。配線41の間隔も少なくとも透明液晶表示パネル10の画素ピッチと同等の間隔であれば配線41が金属配線であろうと視認者にとって視認し難くデザイン性を損ねることが無い。
図22は図21の側面図であり、LEDが例えば4個、台座100の厚さ方向に配置されている。内筐体30内に透明フレキシブル配線基板40が配置し、透明液晶表示パネル10に映像信号等を供給する。
ところで、透明フレキシブル配線基板40の基材の屈折率によっては、内筐体30の屈折率との関係で、透明フレキシブル配線基板の反射を十分に抑えられない場合がある。あるいは、透明フレキシブル配線基板の配線41の屈折率と内筐体30の屈折率との関係で、配線からの反射が十分に抑えられない場合がある。
このような場合、透明フレキシブル配線基板の表面に内筐体の屈折率n2、あるいは、透明フレキシブル配線基板の基材の屈折率n3とは異なる屈折率n4を有する透明材料をコーティングあるいは貼り付けることによって、透明フレキシブル配線基板の存在を目立たなくすることが出来る。また、透明フレキシブル配線基板の反射が目立つ場合、透明導電膜41の屈折率をn5としたとき、内筐体の屈折率n2、あるいは、透明導電膜41の屈折率n5とは異なる屈折率n6を有する透明材料を金属酸化物導電膜41の上にコーティングあるいは貼り付けることによって、透明フレキシブル配線基板40の存在を目立たなくすることが出来る。
図23及び図24は、この構成を実現する、実施例2の第2の形態を示す正面図、及び側面図である。図23の形状は図21と同様であるが、透明フレキシブル配線基板40の表面に透明フレキシブル配線基板40の基材とは異なる屈折率の透明材料42が形成されている。図24は、図23の側面図である。図24において、ドライバIC等が収容された台座100から、透明フレキシブル配線基板40が透明液晶表示パネル10に延在している。透明フレキシブル配線基板40の表面には、例えば、屈折率n4である透明材料42がコーティングされているか、あるいは、貼り付けられている。屈折率がn5である金属酸化物導電膜41からの反射防止を主眼とする場合は、この透明材料42の屈折率はn6である。
フレキシブル配線基板40からの反射を防止するというためには、透明材料42の屈折率n4は、内筐体30の屈折率n2とフレキシブル配線基板10の基材の屈折率n3の中間の屈折率であることが望ましい。また、透明導電膜41からの反射防止を主眼とする場合における、透明材料42の屈折率n6は、内筐体30の屈折率n2とフレキシブル配線基板40に形成されている金属酸化物導電膜41の屈折率n5との中間であることが望ましい。
図25は、実施例2の第3の形態を示す正面図であり、図26はその側面図である。図25は、図23と外形は似ているが、透明液晶表示パネル10が外筐体20ではなく、内筐体30内に収容されている点が異なっている。図26は、透明液晶表示パネル10が内筐体30内に収容され、内筐体30を挟持するように外筐体20が形成されていることを示している。図26において、LED50からの光は、内筐体30と外筐体20の界面で反射を繰り返しながら、透明液晶表示パネル10に入射する。
図25に示すように、透明フレキシブル配線基板40の配線41は、斜め配線となっており、場所によって配線の長さが異なる。したがって、透明フレキシブル配線基板40においては、配線41の長さによる配線抵抗の差が金属の配線に比べて顕著に表れる。
図27はこれを対策する、実施例2の第4の形態を示す正面図であり、透明フレキシブル配線基板40は、透明液晶表示パネル10の長辺側と接続している。これによって、透明フレキシブル配線基板40の幅を大きくすることが出来、斜め配線を使用しなくとも、透明液晶表示パネル10に信号を供給することが出来る。したがって、透明フレキシブル配線基板40の配線抵抗を容易に均一化することができる。図27において、ドライバIC等は支柱110または台座100に配置している。また、支柱110内においては、金属配線を使用することが出来る。
図28は図27の側面図である。台座100と透明液晶表示パネル10との間には、フレキシブル配線基板が存在していないので、透明液晶表示パネル10は、内筐体30内において、浮いているように見える。内筐体30は、外筐体20によって挟持された状態となっている。
図29及び図30は、実施例2の第5の形態を示す図であり、図29は正面図、図30は側面図である。図29は、支柱110内にLED50を配置し、透明液晶表示パネル10の短辺側のみでなく、長辺側からもLED50からの光を供給できるようにしたものである。これによって、より明るい画像を形成することが出来る。
図29において、LED50と透明液晶表示パネル10の間には、導光体としての内筐体30が配置している。また、図30に示すように、内筐体20及び透明液晶表示パネル10は、外筐体20によってサンドイッチされている。
図31及び図32は、実施例2の第6の形態を示す図であり、図31は正面図、図32は側面図である。図31及び図32におけるLED50、内筐体30、外筐体20の関係は図14及び図15で説明したとおりである。図31の特徴は、透明液晶表示パネル10の2辺に透明フレキシブル配線基板40が接続されている点である。これによって、各フレキシブル配線基板40における配線密度を小さくすることが出来、配線41の存在をより目立たなくすることが出来る。また、配線41の幅を大きくすることが出来るので、配線抵抗を小さくすることも出来る。
図33及び図34は、実施例2の第7の形態を示す図であり、図33は正面図、図34は側面図である。図33の特徴は、透明液晶表示パネル10の長辺側に支柱110を配置し、この支柱110にLED50を配置していることである。一方、台座100にはLED50は配置していない。台座100と透明液晶表示パネル10の間には透明フレキシブル配線基板40が存在している。
導光体である内筐体30内に透明フレキシブル配線基板40が存在すると、LED50からの光が透明フレキシブル配線基板40によって散乱し、ちらつきが生じやすくなる。図33の構成では、導光体となる内筐体30と透明フレキシブル配線基板40が分離しているので、このようなちらつきは防止することが出来る。
LED50が配置している支柱110と透明液晶表示パネル10の間には、導光体としての内筐体30が存在している。図34に示すように、この内筐体30は、外筐体20によってサンドイッチされている。そして、LED50からの光は、内筐体30と外筐体20の界面で反射を繰り返しながら透明液晶表示パネル10に入射する。
図35及び図36は、実施例2の第8の形態を示す図であり、図35は正面図、図36は側面図である。図35において、透明表示装置は外枠120によって囲まれている。外枠120の形状は図14、図15で説明したとおりである。図35の特徴は、外枠120の相対する2辺にLED50を配置しており、台座100及び台座100と対向する外枠120の辺には、LED50を配置せず、透明液晶表示パネル10との間に透明フレキシブル配線基板40が配置している。
LED50からの光を透明液晶表示パネル10に導く内筐体30と、透明フレキシブル配線基板40とを分離することによって、透明フレキシブル配線基板40からの光の散乱に起因するちらつきを防止するという意味では、図33の構成と同じである。しかし、図35では、LED50を2辺に配置することによって、画像の明るさを向上出来ること、また、透明フレキシブル配線基板40を2箇所に配置することによって、配線41の密度を小さくできるので、透明フレキシブル配線基板40の存在をより目立たなくできるという利点がある。
図36は、図35の側面図であるが、内筐体30及び透明液晶表示パネル10は外筐体20によってサンドイッチされていることは、図34等と同じである。また、外枠120の厚さは、透明表示装置の厚さよりも小さくして、外枠120が目立たないようにしている。
図37、図38、図39は、実施例2の第9の形態を示す図であり、図37は正面図、図37は側面図、図38は外枠120をはずした場合の側面図である。図37において、透明表示装置は円形の外枠120内に配置している。円形の外枠120及び台座100にはLED50が配置し、透明液晶表示パネル10には全周からLED50からの光が入射する。透明液晶表示パネル10と周辺のLED50との間には、導光体としての内筐体30が配置している。
図37において、透明液晶表示パネル10の対向する2辺には、透明フレキシブル配線基板40が接続している。透明フレキシブル配線基板40は、各々、円形の外枠120に配置された回路基板と接続する。図37では、2枚の透明フレキシブル配線基板40の各々の面積を大きくすることが出来るので、配線41の密度を小さくでき、透明フレキシブル配線基板40の配線41をより目立たなくすることが出来る。
図38に示すように、本形態における外枠120の幅は、透明表示装置の厚さと同じかそれよりも厚く形成されている。外枠に金、銀、銅等のメッキを施すことによって、意匠的な効果を発揮することが出来る。図39は、外枠120をはずした場合の透明表示装置の側面図である。図39に示すように、導光体としての内筐体30は外筐体20にサンドイッチされている。LED50からの光は、内筐体30と外筐体20の界面を反射しながら、透明液晶表示パネル10に入射する。
図40、図41、図42は、実施例2の第10の形態を示す図であり、図40は正面図、図41は側面図、図42は外枠120をはずした場合の側面図である。図40において、透明表示装置は円形の外枠120内に配置している。図40が図37と異なる点は、LED50は台座100および台座100と対向する領域の外枠120内に配置しており、LED50からの光は、透明液晶表示パネル10の2辺から入射することである。
透明液晶表示パネル10の他の2辺には透明フレキシブル配線基板40が接続しており、2枚の透明フレキシブル配線基板40は各々広い面積を占めている。したがって、配線密度を小さくすることが出来、透明フレキシブル配線基板40の配線41をより目立たなくすることが出来る。また、LED50からの光は透明フレキシブル配線基板40と干渉しないので、透明フレキシブル配線基板40によるちらつきの現象を無くすことが出来る。
図41は、図40の側面図であり、図38で説明したのと同じである。図42は、透明液晶表示パネル10及び導光板としての内筐体30は外筐体20によってサンドイッチされた構成となっている。LED50からの光は、内筐体30と外筐体20の界面を反射しながら透明液晶表示パネル10に入射する。
図43、図44、図45は、実施例2の第11の形態を示す図であり、図43は正面図、図44は側面図、図45は外枠をはずした場合の側面図である。図43において、透明表示装置は円形の外枠120内に配置している。図43が図40と異なる点は、透明液晶表示パネル10と接続する透明フレキシブル配線基板40の配線41が直線になっている点である。配線41が複雑な形状であると、配線抵抗を均一化することが困難になるが、配線41が直線であれば、配線抵抗の調整が容易である。
図43では、図40に比べて、台座100、及び台座100と対向する領域の外枠120におけるLED50の数が増加している。したがって、図40の場合よりも明るい画像を形成することが出来る。図44は側面図であるが、図41で説明したのと同様である。また、図45は外枠を外した状態の側面図であるが、図45においては、LED50の数が増えている他は図42で説明したのと同じである。
図46は、本発明で使用される透明フレキシブル配線基板40の例を示す平面図である。図46の透明フレキシブル配線基板40において、点線で示す直線の上側が透明表示装置内に延在する部分であり、下側が台座100内に存在する部分である。透明フレキシブル配線基板40には透明液晶表示パネル10を駆動するドライバIC60が搭載されている。ドライバIC60には、外部回路から、電源や信号が入力される入力側61と、ドライバIC60から走査信号及び映像信号線を送り出す、出力側62が存在する。
本発明の透明フレキシブル配線基板40では、出力側62には、配線41が接続されるが、配線41は比抵抗が大きいので、配線抵抗を下げるために、幅広に形成されている。したがって、出力側62はより広い面積が必要である。図46においては、ドライバIC60の第1の長辺、2個の短辺及び、第2の長辺の一部を使用して出力側62の接続面積を広げている。
なお、入力側61は、台座100に隠されており、配線41と異なる金属配線46を使用することが出来るので、配線ピッチを小さくすることや配線幅を大きくすることが出来る。したがって、入力側61の接続面積は小さくすることが出来る。
図47は、本発明で使用される透明フレキシブル配線基板40の他の例を示す平面図である。図47の透明フレキシブル配線基板40において、点線で示す円の内側が透明表示装置内に延在する部分であり、外側が円形の外枠120内に存在する部分である。ドライバIC50において、出力側62により多くの面積を割り当てることは、図46において説明したとおりである。
図47において、透明フレキシブル配線基板40からの配線を、外枠120内に配置した2つのドライバIC60で受け持っている。これによって、配線41を引き回すことを避けることが出来る。なお、ドライバIC60の入力側は金属配線46なので、台座100方向に引き回しても、配線抵抗の問題は少ない。
図48は、本発明による透明表示装置の具体的な構造の例を示す断面図である。図48において、透明液晶表示パネル10は導光体としての役割を有する内筐体30内に収容されている。内筐体30は外筐体20によってサンドイッチされている。内筐体30の屈折率n2は外筐体20の屈折率n1よりも大きい。内筐体30の両端部にはLED50が配置している。LED50からの光は、内筐体30と外筐体20の界面において反射を繰り返しながら透明液晶表示パネル10に入射する。一方のLED50は、外枠10の内部においてLED用フレキシブル配線基板55に搭載され、他方のLED50は、台座100内のLED用フレキシブル配線基板55に搭載されている。
透明液晶表示パネル10には、配線41が形成された透明フレキシブル配線基板40が接続して、走査信号や映像信号線を透明液晶表示パネル10に供給する。透明フレキシブル配線基板40には台座100内において、ドライバIC60が搭載されている。透明フレキシブル配線基板40は台座100内に配置した回路基板70と接続する。回路基板70には、LED50用のフレキシブル配線基板55も接続している。
透明液晶表示パネル10や透明フレキシブル配線基板40には段差が存在しているので、内筐体30が硬い材料であると、隙間が発生する危険がある。そこで、図48に示す実施例では、内筐体30をシリコン樹脂、あるいは、ウレタン樹脂等による透明ゲルによって形成し、内筐体30内に隙間が発生しないようにしている。
そして内筐体30を、気泡が発生しないように、外筐体20で挟んだ状態で、台座100あるいは外枠120にはめ込む構成となっている。ここで、内筐体30には、ウレタン樹脂やシリコン樹脂で形成された透明ゲル等が用いられ、外筐体20には、ガラス、アクリル樹脂、ポリカーボネート等の樹脂が用いられる。
図48に示すLED50は高熱を発生する。LED50が台座100及び外枠120に多数配置される構成では、透明表示装置自体が高温になる。図49は、これを対策するための、実施例4における第2の形態を示す断面図である。図49では、LED用フレキシブル配線基板55の背面にヒートパイプ80を配置している。ヒートパイプ80は、熱伝導のよい銅合金等で形成された外囲器内に水等の液体を密閉したものであり、熱を高温部分から低温部分に速やかに移動させる。ヒートパイプ80の厚さは3mm程度にすることも出来る。ヒートパイプ80を用いるには、いずれかの場所に放熱部分を設ける必要がある。例えば、台座100部分に金属のフィンを形成することで放熱部分を形成することが出来る。なお、ドライバIC60も高熱となるので、ドライバIC60についても、ヒートパイプ80の効果を及ぼすようにすることが望ましい。
図50乃至図52は、ヒートパイプ80によって、透明表示装置を囲った例である。図50において、LED50は透明表示装置の長辺側に配置している。ヒートパイプ80は、LED用フレキシブル配線基板55の外側において、表示装置の全周を囲っている。LED用フレキシブル配線基板55も表示装置の全周を囲っているが、LED用フレキシブル配線基板55は、LED50が配置された辺にのみ配置してもよい。図50では、台座100が省略されているが、台座100部分にヒートパイプ80の低温部を配置することが出来る。
図51は、図50の側面図である。図51において、透明表示装置の外側はヒートパイプ80によって囲まれている。ヒートパイプ80は、高温となるLED50の存在している部分のみに配置されているので、ヒートパイプ80の厚さは、透明表示装置の厚さよりも小さい。図52は、ヒートパイプ80を取り除いた状態での、透明表示装置の側面図である。この構成は、実施例1及び実施例2で説明した本発明の構成と同じである。
図53乃至図55は、ヒートパイプによって、透明表示装置を囲った、他の例である。図53の表示装置は外形が円形である。図53において、LED50は透明表示装置の台座100側及び台座100と対向する外枠120部分に配置している。ヒートパイプは、LED用フレキシブル配線基板55の外側において、表示装置の全周を囲っている。LED用フレキシブル配線基板55も表示装置の全周を囲っているが、LED用フレキシブル配線基板55は、LED50が配置された辺にのみ配置してもよい。図53では、台座100が省略されているが、台座100部分にヒートパイプの低温部を配置することが出来る。
図54は、図53の構成に外枠120を配置した例における透明表示装置の側面図である。ヒートパイプ80は外枠120の内側に配置している。なお、外枠120に熱伝導のよい銅等の金属を用いることによって、ヒートパイプ80を補助する放熱手段として使用することが出来る。図55は、外枠120及びヒートパイプ80を除去した状態における透明表示装置の側面図である。この構成は、実施例1及び実施例2において説明した本発明の構成と同じである。
また、上述のように有機EL表示装置及びマイクロLED表示装置は、バックライトは不要である。しかし、表示画面が中空に浮いたように見える表示装置とするためには、台座から表示パネルに信号を送るためのフレキシブル配線基板を目立たなくする必要がある。したがって、本発明の実施例2で説明した構成は、有機EL表示装置及びマイクロLED表示装置についても有用である。
本発明は、透明表示パネルとLEDや外部回路や台座との距離に依存しない自由なレイアウトを可能とし、表示装置のデザインの自由度を広げるものである。表示装置としては、例えば透明表示パネルを利用したトロフィーやデジタルフォトフレーム等のデザインの透明性を特徴とした置物や、透明のドアや窓等のガラス材の一部に透明表示パネルを組み込んだものに利用することができる。
また透明の外筐体20に内蔵され、透明フレキシブル配線基板40が接続され、台座100と離間された位置にある表示パネル10は、透明表示パネルに限らず、バックライトを備えた液晶表示装置であっても良い。バックライトを備えた液晶表示装置であっても透明フレキシブル配線基板は透明であり、表示装置として見た際のデザイン性を損ねることは無い。
10…透明液晶表示パネル、11…第1基板、 12…第2基板、 13…シール材、 14…液晶層、 20…外筐体、 30…内筐体、 40…透明フレキシブル配線基板、 41…フレキシブル配線基板配線、 42…透明膜、 45…有色フレキシブル配線基板、 46…金属配線、 50…LED、 55…LED用フレキシブル配線基板、 60…ドライバIC、 61…ドライバICの出力側、 62…ドライバICの入力側、 70…配線基板、 80…ヒートパイプ、 100…台座、 110…支柱、 111…画素電極、 120…外周枠、 121…コモン電極、 141…液晶分子
Claims (20)
- 台座の上に第1の主面と第2の主面を有する板状の表示媒体が配置した表示装置であって、
前記表示媒体には、屈折率n1である第1の透明媒体の内部に液晶表示パネルが配置し、
前記台座には、前記液晶表示パネルに光を供給する第1のLEDが配置し、
前記第1のLEDと前記液晶表示パネルの間には、屈折率n2である第2の透明媒体が存在し、
n2>n1であることを特徴とする表示装置。 - 前記第2の透明媒体は前記第1の透明媒体によって挟持されていることを特徴とする請求項1に記載の表示装置。
- 前記第2の透明媒体は前記第1の透明媒体の内部に収容されていることを特徴とする請求項1に記載の表示装置。
- 前記液晶表示パネルは、前記第2の透明媒体内に収容されていることを特徴とする請求項1に記載の表示装置。
- 前記台座には、支柱が配置され、前記支柱には、第2のLEDが配置し、前記第2のLEDと前記液晶表示パネルの間には、前記第2の透明媒体が存在することを特徴とする請求項1に記載の表示装置。
- 前記表示媒体を囲むように、外枠が形成され、
前記外枠には第2のLEDが配置し、
前記第2のLEDと前記液晶表示パネルの間には、前記第2の透明媒体が存在していることを特徴とする請求項1に記載の表示装置。 - 前記液晶表示パネルは平面で視て、前記第1のLEDと前記第2のLEDによって囲まれていることを特徴とする請求項6に記載の表示装置。
- 前記液晶表示パネルは、平面で視て、前記第2の透明媒体によって囲まれており、前記第2の透明媒体は、前記第1の透明媒体によってサンドイッチされていることを特徴とする請求項6に記載の表示装置。
- 前記台座と前記液晶表示パネルの間には、前記液晶表示パネルに信号を供給するための、フィルム状配線基板が配置し、
前記フィルム状配線基板は、屈折率がn3である透明基材で形成され、n1<n3であり、前記透明基材の上に配線が形成されている構成であることを特徴とする請求項1に記載の表示装置。 - 前記フィルム状配線基板は、前記第2の透明媒体中に存在することを特徴とする請求項9に記載の表示装置。
- 前記フィルム状配線基板の表面には、屈折率がn4である膜が存在し、n4は、n2とn3の中間の値であることを特徴とする請求項9に記載の表示装置。
- 前記フィルム状配線基板に形成された前記配線の屈折率をn5としたとき、前記配線の表面には、屈折率がn6である膜が存在し、n6は、n2とn5の中間の値であることを特徴とする請求項9に記載の表示装置。
- 前記台座には、支柱が配置し、前記支柱と前記液晶表示パネルの間には、フィルム状配線基板が配置し、
前記フィルム状配線基板は、前記透明基材の上に配線が形成されている構成であることを特徴とする請求項1に記載の表示装置。 - 前記台座には、前記表示媒体を囲むように、外枠が配置し、
前記外枠において、前記台座と対向する領域には第2のLEDが配置し、
前記外枠において、前記第2のLEDが配置していない領域と前記液晶表示パネルの間には、フィルム状配線基板が配置し、
前記フィルム状配線基板は、前記透明基材の上に配線が形成されている構成であることを特徴とする請求項1に記載の表示装置。 - 表示パネルと、
外部配線基板と、
前記表示パネルと外部配線基板とを接続するフィルム状配線基板と、
前記外部配線基板を収納する収納部と、
を備えた表示装置であって、
前記フィルム状配線基板の少なくとも一部は前記収納部から露出されており、
前記フィルム状配線基板は透明樹脂により形成された基材と、前記基材上に形成された複数の配線を有する、ことを特徴とする表示装置。 - 前記表示装置はさらにLEDを有し、
前記表示パネルは透明表示パネルであって、
前記透明表示パネルは第1の主面と前記第1の主面と反対の第2の主面と、前記第1の主面と前記第2の主面との間に側面を有し、
前記LEDは前記収納部に収納され、前記透明表示パネルの前記側面に向かって光を照射する、ことを特徴とする請求項15に記載の表示装置。 - 前記表示装置はさらに、前記収納部と前記透明表示パネルの前記側面との間に前記LEDからの光を前記側面に導光させる第1の透明媒体を有し、
前記フィルム状配線基板は、前記透明表示パネルの前記第1の主面側と前記第2の主面側の両面を、前記第1の透明媒体によって覆われている、ことを特徴とする請求項16に記載の表示装置。 - 前記表示装置はさらに、前記透明表示パネル及び前記第1の透明媒体の外形を覆う第2の透明媒体を有し、
前記第1の透明媒体は屈折率n2であり、
前記第2の透明媒体は前記屈折率n2より小さい屈折率n1である、ことを特徴とする請求項17に記載の表示装置。 - 前記表示パネルは、マイクロLED表示パネルである、請求項15に記載の表示装置。
- 前記表示パネルは、有機EL表示パネルである、請求項15に記載の表示装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/372,668 US11762227B2 (en) | 2019-01-30 | 2021-07-12 | Display device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-013784 | 2019-01-30 | ||
JP2019013784A JP7349245B2 (ja) | 2019-01-30 | 2019-01-30 | 表示装置 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/372,668 Continuation US11762227B2 (en) | 2019-01-30 | 2021-07-12 | Display device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020158655A1 true WO2020158655A1 (ja) | 2020-08-06 |
Family
ID=71841313
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/002734 WO2020158655A1 (ja) | 2019-01-30 | 2020-01-27 | 表示装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11762227B2 (ja) |
JP (1) | JP7349245B2 (ja) |
WO (1) | WO2020158655A1 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022118600A1 (ja) | 2020-12-04 | 2022-06-09 | デンカ株式会社 | 蛍光体粒子および発光装置 |
WO2023149463A1 (ja) * | 2022-02-03 | 2023-08-10 | 株式会社ジャパンディスプレイ | 表示装置 |
US20230410724A1 (en) * | 2022-06-15 | 2023-12-21 | Brendan Jude Moran | Two-way transparent display systems |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010092791A1 (ja) * | 2009-02-10 | 2010-08-19 | シャープ株式会社 | 液晶表示装置 |
WO2010122781A1 (ja) * | 2009-04-21 | 2010-10-28 | シャープ株式会社 | 表示装置 |
WO2011083720A1 (ja) * | 2010-01-08 | 2011-07-14 | シャープ株式会社 | 液晶表示装置 |
WO2011108334A1 (ja) * | 2010-03-02 | 2011-09-09 | シャープ株式会社 | 表示装置付き建材及び表示装置 |
JP2011187718A (ja) * | 2010-03-09 | 2011-09-22 | Dainippon Printing Co Ltd | フレキシブルプリント配線板及びその製造方法 |
US20140078407A1 (en) * | 2012-03-06 | 2014-03-20 | Planar Systems, Inc. | Transparent electronic image display apparatus for refrigerated merchandisers and the like |
JP2015072306A (ja) * | 2013-10-01 | 2015-04-16 | 旭硝子株式会社 | 表示装置及び車両用窓ガラス |
WO2016088641A1 (ja) * | 2014-12-04 | 2016-06-09 | コニカミノルタ株式会社 | ポリイミドフィルムとその製造方法、フレキシブルプリント基板、フレキシブルディスプレイ用基材、フレキシブルディスプレイ用前面板、led照明装置及び有機エレクトロルミネッセンス表示装置 |
JP2018070818A (ja) * | 2016-11-01 | 2018-05-10 | コニカミノルタ株式会社 | ポリアリレートフィルム、及び表示装置 |
US20180160824A1 (en) * | 2016-12-12 | 2018-06-14 | Lg Electronics Inc. | Refrigerator |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103988245A (zh) | 2011-10-13 | 2014-08-13 | 制造资源国际公司 | 具有透明液晶显示屏的展示柜及其照明系统 |
US9881528B2 (en) | 2011-10-13 | 2018-01-30 | Manufacturing Resources International, Inc. | Transparent liquid crystal display on display case |
-
2019
- 2019-01-30 JP JP2019013784A patent/JP7349245B2/ja active Active
-
2020
- 2020-01-27 WO PCT/JP2020/002734 patent/WO2020158655A1/ja active Application Filing
-
2021
- 2021-07-12 US US17/372,668 patent/US11762227B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010092791A1 (ja) * | 2009-02-10 | 2010-08-19 | シャープ株式会社 | 液晶表示装置 |
WO2010122781A1 (ja) * | 2009-04-21 | 2010-10-28 | シャープ株式会社 | 表示装置 |
WO2011083720A1 (ja) * | 2010-01-08 | 2011-07-14 | シャープ株式会社 | 液晶表示装置 |
WO2011108334A1 (ja) * | 2010-03-02 | 2011-09-09 | シャープ株式会社 | 表示装置付き建材及び表示装置 |
JP2011187718A (ja) * | 2010-03-09 | 2011-09-22 | Dainippon Printing Co Ltd | フレキシブルプリント配線板及びその製造方法 |
US20140078407A1 (en) * | 2012-03-06 | 2014-03-20 | Planar Systems, Inc. | Transparent electronic image display apparatus for refrigerated merchandisers and the like |
JP2015072306A (ja) * | 2013-10-01 | 2015-04-16 | 旭硝子株式会社 | 表示装置及び車両用窓ガラス |
WO2016088641A1 (ja) * | 2014-12-04 | 2016-06-09 | コニカミノルタ株式会社 | ポリイミドフィルムとその製造方法、フレキシブルプリント基板、フレキシブルディスプレイ用基材、フレキシブルディスプレイ用前面板、led照明装置及び有機エレクトロルミネッセンス表示装置 |
JP2018070818A (ja) * | 2016-11-01 | 2018-05-10 | コニカミノルタ株式会社 | ポリアリレートフィルム、及び表示装置 |
US20180160824A1 (en) * | 2016-12-12 | 2018-06-14 | Lg Electronics Inc. | Refrigerator |
Also Published As
Publication number | Publication date |
---|---|
US11762227B2 (en) | 2023-09-19 |
JP2020122846A (ja) | 2020-08-13 |
JP7349245B2 (ja) | 2023-09-22 |
US20210341810A1 (en) | 2021-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020158655A1 (ja) | 表示装置 | |
US8687142B2 (en) | Backlight unit comprising a bottom cover including an embossing portion that overlaps with a portion of an LED package and liquid crystal display using the same | |
CN101303482B (zh) | 液晶显示装置 | |
CN108150883B (zh) | 显示装置以及制造量子点单元的方法 | |
US9784911B2 (en) | Backlight assembly including alignment member and display device having the same | |
US10111352B2 (en) | Display unit and display device including the same | |
US9261721B2 (en) | Display apparatus | |
TWI698679B (zh) | 彎曲型液晶顯示裝置 | |
KR20160114799A (ko) | 표시 장치 | |
US11480838B2 (en) | Display device | |
CN107884986B (zh) | 具有量子点单元的显示装置 | |
US11705076B2 (en) | Cholesteric liquid crystal composite display device | |
US20210200014A1 (en) | Display device | |
JP3224923U (ja) | 表示装置 | |
CN110018594B (zh) | 背光模组及显示模组 | |
JP5760937B2 (ja) | 光源付表示素子 | |
JP5790395B2 (ja) | フロントライト付表示素子 | |
US20240329294A1 (en) | Illumination device and display device | |
KR20080012613A (ko) | 액정표시장치 | |
KR20170082700A (ko) | 터치 표시 장치 | |
JP2023167047A (ja) | 液晶表示装置 | |
JP2023034959A (ja) | 表示装置 | |
KR20160043609A (ko) | 표시 장치 | |
KR20110066054A (ko) | 백라이트 유닛 및 이를 구비한 액정표시장치 | |
CN118131536A (zh) | 背光模组及显示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20748425 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20748425 Country of ref document: EP Kind code of ref document: A1 |