WO2016068276A1 - 液状発酵乳及びその製造方法 - Google Patents

液状発酵乳及びその製造方法 Download PDF

Info

Publication number
WO2016068276A1
WO2016068276A1 PCT/JP2015/080658 JP2015080658W WO2016068276A1 WO 2016068276 A1 WO2016068276 A1 WO 2016068276A1 JP 2015080658 W JP2015080658 W JP 2015080658W WO 2016068276 A1 WO2016068276 A1 WO 2016068276A1
Authority
WO
WIPO (PCT)
Prior art keywords
fermented milk
milk
liquid fermented
viscosity
pectin
Prior art date
Application number
PCT/JP2015/080658
Other languages
English (en)
French (fr)
Inventor
修平 内田
愉香 青山
Original Assignee
株式会社明治
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社明治 filed Critical 株式会社明治
Priority to JP2016556650A priority Critical patent/JP6719383B2/ja
Priority to CN201580055607.2A priority patent/CN106793792B/zh
Priority to SG11201703019QA priority patent/SG11201703019QA/en
Publication of WO2016068276A1 publication Critical patent/WO2016068276A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/12Fermented milk preparations; Treatment using microorganisms or enzymes
    • A23C9/13Fermented milk preparations; Treatment using microorganisms or enzymes using additives

Definitions

  • the present invention relates to liquid fermented milk and a method for producing the same.
  • Liquid fermented milk is obtained by liquefying solid fermented milk or pasty fermented milk obtained by gelling raw material milk by fermentation using a mechanical shearing force such as a homogenizer.
  • Examples of liquid fermented milk include drink yogurt (nomu yogurt), lactic acid bacteria beverages, fermented milk beverages, acidic milk beverages, and the like.
  • liquid fermented milk As a feature of these liquid fermented milk, there is an advantage that it is not necessary to prepare dishes such as a spoon when actually eating, and fermented milk (lactic acid bacteria) can be easily consumed. That is, liquid fermented milk can be said to be one of the evolved forms of fermented milk, for example, which can effectively replenish nutrients and promote health while busy in life.
  • Liquid fermented milk has no specific classification, but liquid fermented milk can be classified into two types, low viscosity type and high viscosity type, due to its physical properties.
  • the low-viscosity liquid fermented milk is, for example, a form in which solid fermented milk or pasty fermented milk is liquefied at a homogenization pressure of 100 kg / cm 2 to 150 kg / cm 2 and can be drunk with a sense of ingesting a beverage with low viscosity (Non-Patent Document 1).
  • a stabilizer such as HM pectin is added to repel particles of milk protein, thereby preventing separation and precipitation.
  • there is one that stabilizes the quality (Patent Document 1).
  • HM pectin soybean polysaccharides, carboxymethyl cellulose (CMC), and the like are known as stabilizers that have an action of repelling particles of milk protein in a chargeable manner.
  • the low-viscosity liquid fermented milk generally has a viscosity of about 5 to 50 mPa ⁇ s (measurement temperature: 10 ° C.).
  • the low-viscosity liquid fermented milk has a solid fermented milk (for example, set-type yogurt, hard yogurt, stationary yogurt, post-fermented yogurt) and pasty fermented milk (for example, Compared to soft yogurt and stirred yogurt), there is a tendency to feel the acidity derived from lactic acid produced by metabolism of lactic acid bacteria.
  • a solid fermented milk for example, set-type yogurt, hard yogurt, stationary yogurt, post-fermented yogurt
  • pasty fermented milk for example, Compared to soft yogurt and stirred yogurt
  • Patent Document 2 As a technique for suppressing the production of lactic acid during refrigerated storage of low-viscosity liquid fermented milk, a method of increasing the dissolved oxygen concentration of liquid fermented milk (Patent Document 2), fermenting raw material milk at a fermentation temperature higher than a predetermined value (Patent Document 3), and a method of homogenizing and liquefying solid fermented milk or pasty fermented milk at a pressure higher than a predetermined pressure (Patent Document 4) is known.
  • the high-viscosity liquid fermented milk is, for example, liquefied solid fermented milk or pasty fermented milk with a gentle mechanical shearing force so that it can be drunk in the form of ingesting a high-viscosity, thick and trolley-like beverage. It is a feature.
  • the high-viscosity liquid fermented milk due to the physical property of high viscosity, the separation and precipitation are suppressed and the quality is stabilized without using a stabilizer such as HM pectin. There is something.
  • the high-viscosity liquid fermented milk generally has a viscosity of about 100 to 1000 mPa ⁇ s (measurement temperature: 10 ° C.).
  • Conventional low-viscosity liquid fermented milk is manufactured by liquefying solid fermented milk or pasty fermented milk with mechanical shearing force under operating conditions that impose a load that is at least as high as that of milk beverages.
  • its good aftertaste (after-cut) was sufficient due to its low-viscosity physical property, but the richness derived from milk components was weak. It was felt.
  • conventional high-viscosity liquid fermented milk is produced by liquefying solid fermented milk or pasty fermented milk with mechanical shearing force under gentler operating conditions than manufacturing conditions such as milk beverages. Due to the physical property of viscosity, the thick feeling derived from the milk components was felt stronger than the conventional low-viscosity liquid fermented milk, but the aftertaste was insufficient.
  • liquid fermented milk (drink yogurt or the like) having a flavor and a texture that has both a rich feeling and a good aftertaste (a feeling of richness and good aftertaste can be felt simultaneously).
  • a liquid fermented milk having a predetermined viscosity and a predetermined average particle diameter has a flavor and texture that has a rich feeling and a good aftertaste.
  • the present inventors have found that a liquid fermented milk having the following can be provided.
  • a cation-reactive stabilizer is blended (added) into raw milk, lactic acid bacteria are added (inoculated) and fermented until the pH reaches 3 to 5, and then the viscosity is 200 to 800 mPa ⁇ s (measurement temperature). : 10 ° C.), and liquid fermented milk obtained by liquefaction so that the average particle size is 20 ⁇ m or less has been found to have a flavor and texture satisfying both richness and good aftertaste. And when this liquid fermented milk was stored refrigerated (10 degreeC, 14 days), water separation and precipitation were not recognized.
  • the present invention comprises the following [1] to [13].
  • [1] Liquid fermented milk having a viscosity of 200 to 800 mPa ⁇ s (measurement temperature: 10 ° C.) and an average particle size of 20 ⁇ m or less.
  • [2] The liquid fermented milk according to the above [1], comprising a cation-reactive stabilizer.
  • [3] The liquid fermented milk according to the above [2], containing 0.05 to 0.5% by weight of a cationic reactive stabilizer.
  • the cation-reactive stabilizer is any one of ⁇ -carrageenan, ⁇ -carrageenan, deacylated gellan gum, alginate, and low methoxyl pectin (LM pectin), or a combination of two or more thereof.
  • SNF nonfat milk solids
  • the liquid fermented milk according to any one of [1] to [5] wherein the liquid fermented milk is stored at 10 ° C. for 14 days immediately after production and no water separation or precipitation is observed.
  • the liquid fermented milk according to any one of [1] to [7], which is:
  • P means shear stress [Pa]
  • D means shear rate [s ⁇ 1 ]
  • means non-Newtonian viscosity coefficient
  • n means non-Newtonian viscosity index.
  • a raw material milk is mixed with a cationic reactive stabilizer, lactic acid bacteria are added (inoculated) and fermented until the pH becomes 3 to 5, and then the viscosity is 200 to 800 mPa ⁇ s (measurement temperature: 10).
  • C. a method for producing liquid fermented milk, wherein the liquid is liquefied so that the average particle size is 20 ⁇ m or less.
  • [10] The method for producing liquid fermented milk according to [9], wherein 0.05 to 0.5% by weight of a cation-reactive stabilizer is blended.
  • the cation-reactive stabilizer is any one of ⁇ -carrageenan, ⁇ -carrageenan, deacylated gellan gum, alginate, and low methoxyl pectin (LM pectin), or a combination of two or more thereof.
  • [12] The method for producing liquid fermented milk according to any one of [9] to [11] above, comprising 7 to 12% by weight of nonfat milk solids (SNF).
  • SNF nonfat milk solids
  • a liquid fermented milk having a flavor and texture that has both a rich feeling and a good aftertaste by having a viscosity of 200 to 800 mPa ⁇ s (measurement temperature: 10 ° C.) and an average particle diameter of 20 ⁇ m or less. Drink yogurt, etc.).
  • FIG. 1 shows the results of a sensory test (two-point comparison) of liquid fermented milk (Invention C and Control B).
  • the liquid fermented milk of the present invention is characterized by having a viscosity of 200 to 800 mPa ⁇ s (measurement temperature: 10 ° C.) and an average particle size of 20 ⁇ m or less, and has a flavor and texture that has a rich feeling and a good aftertaste. Have.
  • the viscosity of the liquid fermented milk of the present invention is 200 to 800 mPa ⁇ s (measurement temperature: 10 ° C.).
  • the viscosity of the liquid fermented milk of the present invention is preferably 250 to 750 mPa ⁇ s (measurement temperature: 10 ° C.), more preferably 250 to 700 mPa ⁇ s (measurement temperature: 10 ° C.), and 300 to 650 mPa ⁇ s (measurement temperature: 10 ° C.) is more preferable, and 300 to 600 mPa ⁇ s (measurement temperature: 10 ° C.) is particularly preferable.
  • the viscosity of the liquid fermented milk is 200 mPa ⁇ s (measurement temperature: 10 ° C.) or more, it is easy to feel a rich feeling, and the viscosity of the liquid fermented milk exceeds 800 mPa ⁇ s (measurement temperature: 10 ° C.). , Liquidity tends to weaken and paste-likeness tends to increase.
  • the method for setting the viscosity of the liquid fermented milk of the present invention in the above range will be described later in the method for producing liquid fermented milk of the present invention.
  • the viscosity can be measured with a B-type viscometer (for example, VISCO METER-TV-10, Toki Sangyo Co., Ltd.). Specifically, 100 mL of a sample (specimen) is filled into a milk cake (capacity: 110 mL) at 10 ° C., and then the spindle M2 (Toki Sangyo Co., Ltd.) is used as the rotor, and the rotor is rotated (60 rpm, 30 Seconds).
  • a B-type viscometer for example, VISCO METER-TV-10, Toki Sangyo Co., Ltd.
  • the viscosity range of the present invention (upper limit value) is adjusted with the difference in the measured value of the viscosity measured with the B-type viscometer. , Lower limit value, etc.) can be set.
  • the average particle size of the liquid fermented milk of the present invention is 20 ⁇ m or less.
  • the average particle size of the liquid fermented milk of the present invention is preferably 1 to 20 ⁇ m, more preferably 2 to 18 ⁇ m, further preferably 4 to 18 ⁇ m, further preferably 6 to 16 ⁇ m, and particularly preferably 8 to 16 ⁇ m.
  • the average particle diameter of the liquid fermented milk exceeds 20 ⁇ m, the refreshing feeling is weakened, and the smoothness of the touch tends to be weakened.
  • the method for setting the average particle size of the liquid fermented milk of the present invention in the above range will be described later in the method for producing liquid fermented milk of the present invention.
  • the average particle size can be measured by a laser diffraction particle size distribution analyzer (for example, SALD-2000, Shimadzu Corporation) and calculated as a measured value of 50% particle size.
  • the measured value of the 50% particle diameter is a particle diameter of 50% as an integrated value with respect to the result of measuring the particle size distribution of the liquid fermented milk dispersion by the laser diffraction / scattering method.
  • the particle size of 50% in terms of the integrated value is the particle size when the number of particles is added from a small particle size and reaches 50% of the total number of particles.
  • the average particle size is measured by a method other than the above, which is measured with a laser diffraction particle size distribution meter, this is adjusted with the difference in the measured value of the average particle size measured with the laser diffraction particle size distribution meter.
  • the range of the average particle diameter of the invention (upper limit value, lower limit value, etc.) can be set.
  • the liquid fermented milk of the present invention has a predetermined viscosity and a predetermined average particle diameter, and preferably contains a cation-reactive stabilizer.
  • the cation-reactive stabilizer is a general term for stabilizers that gel by reacting with a cation.
  • calcium is present in the milk component, and this cation-reactive stabilizer reacts with calcium in the milk component to promote gelation.
  • liquid fermented milk solid fermented milk and pasty fermented milk are crushed (granulated) with a strong shearing force, so gelation is performed so that milk proteins do not aggregate and separate or precipitate. It needs to be suppressed or prevented. Therefore, in liquid fermented milk, it was avoided as a technical common sense to use a cation-reactive stabilizer that promotes gelation. That is, until now, it has not been assumed that a cationically reactive stabilizer is used in the production of low-viscosity liquid fermented milk. On the other hand, the high-viscosity liquid fermented milk has a lower aftertaste than the low-viscosity liquid fermented milk.
  • a high viscosity liquid fermented milk contains a cation-reactive stabilizer that has been avoided in the production of a low viscosity liquid fermented milk. It was an average particle diameter, and it was possible to realize a flavor and texture that had a rich feeling and a good aftertaste.
  • a cation-reactive stabilizer is added to the raw milk before the raw milk is sterilized and / or fermented, so that a predetermined viscosity and a predetermined average particle diameter are obtained.
  • a flavor and texture that combine richness and good aftertaste.
  • a cation-reactive stabilizer is added, and lactic acid bacteria are added and fermented to a pH of 3 to 5 to prepare solid fermented milk.
  • the solid fermented milk curd has a viscosity of 200 Liquid fermented milk with a flavor and texture that has both a rich feeling and a good aftertaste by liquefying (crushing) so that the average particle diameter is 20 ⁇ m or less at a measuring temperature of 10 ° C. up to 800 mPa ⁇ s. Manufactured.
  • the amount of the cation-reactive stabilizer added to the raw material milk is not particularly limited as long as the effect of the present invention can be obtained, but specifically, 0.05% with respect to the whole liquid fermented milk.
  • -0.5 wt% is exemplified, 0.06-0.45 wt% is preferable, 0.06-0.4 wt% is more preferable, 0.07-0.35 wt% is further preferable, and Particularly preferred is 07 to 0.3% by weight.
  • the amount of the cationic reactive stabilizer added to the raw material milk is 0.05 to 0.5% by weight, for example 0.06 to 0.45% by weight based on the whole raw material milk. %, More preferably 0.06 to 0.4% by weight, still more preferably 0.07 to 0.35% by weight, and particularly preferably 0.07 to 0.3% by weight.
  • the type of the cation-reactive stabilizer is not particularly limited as long as the effects of the present invention can be obtained.
  • ⁇ -carrageenan, ⁇ -carrageenan, deacylated gellan gum, alginate, rhoate A methoxy pectin (LM pectin) is illustrated, and any one of these may be used alone, or two or more may be used in combination.
  • LM pectin methoxy pectin
  • a commercially available preparation can also be used as the cation-reactive stabilizer.
  • LM pectin from the viewpoint of ease of handling in an actual production process, etc., in addition to being able to produce a liquid fermented milk with a flavor and texture that has a richer feeling and a better aftertaste.
  • the type of cation-reactive stabilizer depends on the composition and concentration of the liquid fermented milk actually produced.
  • the DE value is specifically 16 to 46%, preferably 18 to 44%, more preferably 20 to 42%, still more preferably 22 to 40%. It is.
  • the amide group content of the cationically reactive stabilizer is specifically 10 to 30%, preferably 13 to 28%, more preferably 16 to 27%, and further preferably 19 to 26%.
  • pectin means polygalacturonic acid having an average molecular weight of 50,000 to 150,000 Da.
  • galacturonic acid There are two types of galacturonic acid as a constituent sugar, a free type and a methyl ester type, and the proportion of galacturonic acid existing as a methyl ester in the total galacturonic acid is called the degree of esterification (DE value).
  • DE value degree of esterification
  • the properties of pectin differ. Those having a DE value of 50% or more are called high methoxy pectin (HM pectin), and those having a DE value of less than 50% are called low methoxy pectin (LM pectin).
  • HM pectin was used to stabilize conventional low-viscosity drink yogurts (Reference: “Milk General Dictionary” 3. Processing Technology of Dairy Products, pages 246 to 247).
  • the method for adding a cation-reactive stabilizer is not particularly limited as long as the effects of the present invention can be obtained, but a cation-reactive stabilizer is added before sterilization of raw milk and / or before fermentation.
  • the addition to raw milk is exemplified. That is, as a method for adding a cation-reactive stabilizer, it may be dispersed and dissolved in raw milk.
  • a method in which a cation-reactive stabilizer is dispersed in water and then heated and dissolved, and then a solution of this cation-reactive stabilizer is added to the raw milk, cation-reactive stabilization The raw milk is heated to a temperature at which the agent can be dissolved, and the cationic reactive stabilizer is dispersed and dissolved in the heated raw milk.
  • the raw milk and the cationic reactive stabilizer solution are sterilized separately. Then, a method of mixing them is exemplified.
  • Other substances and components such as other stabilizers are not particularly limited as long as the effects of the present invention are not impaired, and can be arbitrarily added.
  • the raw milk is not particularly limited as long as it is a fluid (liquid or the like) before sterilization and / or before fermentation including raw milk, dairy products, soy milk, etc. .
  • examples thereof include those obtained by dispersing and dissolving skim milk powder in raw milk, and those obtained by dispersing and dissolving skim milk powder in water. That is, as raw milk, animal milk such as cow milk, processed products thereof (for example, full fat milk, skim milk, full fat concentrated milk, skim concentrated milk, full fat powdered milk, skim milk powder, condensed milk, whey, cream, etc.)
  • Examples include fluids containing vegetable milk such as soy milk and processed products thereof.
  • the composition of raw material milk (milk fat, milk protein, lactose, ash, etc.) can be appropriately adjusted.
  • concentration of milk fat, milk protein, etc. may be increased by strengthening cream and / or skim milk powder or the like into raw material milk.
  • the concentration of the milk fat in the liquid fermented milk is not particularly limited as long as the effect of the present invention is obtained. Specifically, the concentration is 8% by weight or less based on the whole liquid fermented milk, 0.01 to 8% by weight is preferable, 0.01 to 7% by weight is more preferable, 0.01 to 6% by weight is further preferable, 0.01 to 5% by weight is further preferable, and 0.01 to 4% by weight is preferable. Is particularly preferred.
  • the flavor as liquid fermented milk is suitable when the density
  • the concentration of the milk fat in the raw material milk is 8% by weight or less, preferably 0.01 to 8% by weight, more preferably 0.01 to 7% by weight with respect to the whole raw milk. It is preferably 0.01 to 6% by weight, more preferably 0.01 to 5% by weight, and particularly preferably 0.01 to 4% by weight.
  • the flavor as liquid fermented milk is suitable because the concentration of milk fat with respect to the whole raw milk is within the above range.
  • the concentration of milk protein in the liquid fermented milk is not particularly limited as long as the effect of the present invention is obtained, and specifically, 10% by weight or less is exemplified with respect to the whole liquid fermented milk. It is preferably 1 to 10% by weight, more preferably 1.5 to 9% by weight, further preferably 2 to 8% by weight, further preferably 2.5 to 7% by weight, and particularly preferably 3 to 6% by weight. It is because flavor is favorable when the density
  • the concentration of the milk protein in the raw material milk is 10% by weight or less, preferably 1 to 10% by weight, more preferably 1.5 to 9% by weight, based on the whole raw milk. It is more preferably 2 to 8% by weight, further preferably 2.5 to 7% by weight, particularly preferably 3 to 6% by weight. This is because the flavor is good when the milk protein concentration relative to the whole raw milk is within the above range.
  • the concentration of the non-fat milk solid content (SNF) of the liquid fermented milk is not particularly limited as long as the effect of the present invention can be obtained.
  • % Is exemplified preferably 1 to 18% by weight, more preferably 3 to 16% by weight, further preferably 5 to 14% by weight, further preferably 7 to 12% by weight, and particularly preferably 8 to 10% by weight. It is because flavor is favorable when the density
  • the concentration of the non-fat milk solid content (SNF) of the raw milk is, for example, 18% by weight or less, preferably 1 to 18% by weight, and preferably 3 to 16% by weight with respect to the whole raw milk. Is more preferably 5 to 14% by weight, further preferably 7 to 12% by weight, and particularly preferably 8 to 10% by weight. It is because flavor is favorable when the density
  • non-fat milk solid content (SNF) means the component except milk fat among milk components.
  • known foods and / or food additives can be appropriately added to the ingredients of the raw milk as long as the effects of the present invention are obtained. That is, examples of the ingredient added to the raw milk include sugar, sugars other than sugar, high-sensitivity sweeteners, fragrances, thickeners, gelling agents, minerals, vitamins, functional materials, water, and the like.
  • a viscosity of 200 to 800 mPa ⁇ s is obtained after blending a raw material milk with a cation-reactive stabilizer, adding lactic acid bacteria and fermenting until the pH becomes 3 to 5. (Measurement temperature: 10 ° C.) and liquefaction (crushing) so that the average particle size is 20 ⁇ m or less. That is, in the method for producing liquid fermented milk of the present invention, a cation-reactive stabilizer is added to raw material milk and then sterilized (heated), and then lactic acid bacteria are added to ferment until the pH reaches 3 to 5.
  • a cationic reactive stabilizer is added, and lactic acid bacteria are added and fermented to a pH of 3 to 5 to prepare a solid fermented milk.
  • the curd of this solid fermented milk is liquefied (crushed) so as to have a viscosity of 200 to 800 mPa ⁇ s (measurement temperature: 10 ° C.) and an average particle diameter of 20 ⁇ m or less.
  • the step of adding a cation-reactive stabilizer to the raw material milk, the step of sterilizing the raw material milk, the step of adding lactic acid bacteria to the raw material milk, the pH of the raw material milk is 3
  • the step of preparing fermented milk curd by fermenting to ⁇ 5 the fermented milk curd is liquefied so that the viscosity is 200 to 800 mPa ⁇ s (measurement temperature: 10 ° C.) and the average particle size is 20 ⁇ m or less. It has the process and the process of filling a container with fermented milk.
  • the liquid fermented milk of this invention manufactured in this way is characterized by the above-mentioned content, and as demonstrated in the Example, it preserve
  • no water separation is recognized means that water separation is not substantially observed, and water separation is not recognized at all, or even if it is recognized, the amount is extremely small. It can be confirmed visually that no water separation is observed.
  • precipitation is not recognized means that precipitation is not substantially recognized, and precipitation is not recognized at all, or even if it is recognized, it is a very small amount. It can be confirmed visually that no precipitation is observed.
  • a method and equipment for sterilizing raw milk a method and equipment usually used in the food field may be used.
  • a method of sterilizing raw milk for example, low temperature holding sterilization method (LTLT, 60 to 70 ° C., 20 to 40 minutes, etc.), high temperature holding sterilization method (HTLT, 80 to 90 ° C., 5 to 20 minutes, etc.)
  • HTST high-temperature and short-time sterilization methods
  • UHT ultra-high temperature instantaneous sterilization methods
  • UHT 120 to 150 ° C., 1 to 10 seconds, etc.
  • indirect heating type sterilizer plate type sterilizer, tube type sterilizer, etc.
  • direct heating type sterilizer steam injection type sterilizer, steam infusion type sterilizer, etc.
  • Examples of such equipment include an electrically heated sterilizer, a retort sterilizer, a tank with agitation / temperature control function, and a tank with agitation / temperature adjustment / decompression / homogenization function. Or two or more can be used in combination.
  • microorganisms commonly used in the food field may be used for fermentation of raw milk, and examples thereof include lactic acid bacteria, bifidobacteria, and yeast. And in this invention, if the effect of this invention is acquired, a well-known thing can be used suitably for lactic acid bacteria, bifidobacteria, yeast, etc., respectively.
  • lactic acid bacteria Bulgarian bacteria
  • thermophilus bacteria lactis bacteria
  • cremiris bacteria casei bacteria, bifidobacteria that have been used in the production of fermented milk
  • the results of general use in the production of yogurt A combination (mixture) of Bulgarian bacteria and Thermophilus bacteria is preferred.
  • fermentation of raw material milk will be specifically described by taking lactic acid bacteria as an example, but in the present invention, microorganisms that can be used for fermentation of raw material milk are not limited to lactic acid bacteria.
  • conditions for fermenting raw material milk are not particularly limited as long as the effects of the present invention are obtained, but it is preferable to appropriately adjust the fermentation temperature and / or fermentation time.
  • the fermentation temperature depends on the type of lactic acid bacteria actually used, the optimum temperature for the activity of the lactic acid bacteria, etc., but for example, 30-50 ° C. is exemplified, and 35-48 ° C. is preferable, 38 More preferred is ⁇ 45 ° C.
  • a combination (mixture) of Bulgarian bacteria and Thermophilus bacteria is exemplified by 30 to 45 ° C, preferably 32 to 44 ° C, more preferably 34 to 44 ° C, still more preferably 36 to 43 ° C, and more preferably 38 to 43 ° C. is particularly preferred.
  • the fermentation temperature is within the above range, liquid fermented milk having a good flavor can be obtained with an appropriate fermentation time.
  • the fermentation time depends on the type of lactic acid bacterium actually used, the amount of lactic acid bacterium added, the fermentation temperature, and the like. For example, 2 to 15 hours are exemplified, and 2.5 to 10 hours are preferable. 3 to 6 hours are more preferable. Specifically, for example, the combination (mixture) of Bulgarian bacteria and Thermophilus bacteria is exemplified by 1 to 20 hours, preferably 1.5 to 15 hours, more preferably 2 to 10 hours, and further 2.5 to 8 hours. Preferred is 3 to 6 hours.
  • the fermentation time is in the above range, liquid fermented milk having good production suitability and good flavor can be obtained.
  • the lactic acid acidity at the end of fermentation is exemplified by 0.5 to 1.5%, preferably 0.55 to 1.4%, more preferably 0.6 to 1.3%, 0.65 to 1.2% is more preferable, and 0.7 to 1.1% is particularly preferable. This is because fermented milk having a good flavor can be obtained when the lactic acid acidity at the end of fermentation is in the above range.
  • the pH at the end of fermentation is exemplified by 3 to 5, preferably 3.2 to 4.9, more preferably 3.4 to 4.8, and further preferably 3.6 to 4.7. 3.8 to 4.6 are preferred, and particularly preferred. This is because fermented milk having a good flavor can be obtained when the pH of the raw milk at the end of fermentation is in the above range.
  • the lactic acid acidity at the end of fermentation of the raw milk can be calculated, for example, according to the following procedure. That is, after diluting 9 g of fermented milk sample with water twice, adding phenolphthalein indicator, neutralizing titration with aqueous sodium hydroxide (0.1 N), and the slight red color was 30 seconds. The state where it does not disappear is determined as the end point, and from the titer at this end point, it can be calculated as the amount of lactic acid of 100 g of the sample. Moreover, pH is measured, for example with a pH meter.
  • the conditions for liquefying (crushing) the solid fermented milk curd are not particularly limited as long as the effects of the present invention can be obtained, but the viscosity after liquefaction (viscosity of liquid fermented milk) is a predetermined viscosity.
  • the viscosity after liquefaction is 200 to 800 mPa ⁇ s (measurement temperature: 10 ° C.), preferably 250 to 750 mPa ⁇ s (measurement temperature: 10 ° C.), and preferably 250 to 700 mPa ⁇ s ( (Measurement temperature: 10 ° C.) is more preferable, 300 to 650 mPa ⁇ s (measurement temperature: 10 ° C.) is further preferable, and 300 to 600 mPa ⁇ s (measurement temperature: 10 ° C.) is particularly preferable. This is because fermented milk having a good texture can be obtained by adjusting the viscosity after liquefaction to the above range.
  • the average particle size after liquefaction is 20 ⁇ m or less, preferably 1 to 20 ⁇ m, more preferably 2 to 18 ⁇ m, further preferably 4 to 18 ⁇ m.
  • 6 to 16 ⁇ m is more preferable, and 8 to 16 ⁇ m is particularly preferable.
  • a method and equipment for liquefying the solid fermented milk card a method and equipment usually used in the food field may be used.
  • mechanical shearing force can be used as a method for liquefying the solid fermented milk curd, and a method for liquefaction before cooling after fermentation (termination), and liquefaction after cooling after fermentation (termination). Examples thereof include a method and a method of liquefying before cooling during fermentation.
  • a homogenizer homogeneous machine
  • homomixer homodisper
  • super mixer mesh filter
  • in-line mixer tank with agitation / temperature control function
  • tanks with functions of temperature adjustment, reduced pressure, and homogenization examples include tanks with functions of temperature adjustment, reduced pressure, and homogenization, and any one of these can be used alone, or two or more can be used in combination.
  • the conditions for obtaining a liquid fermented milk having a viscosity of 200 to 800 mPa ⁇ s (measurement temperature: 10 ° C.) and an average particle diameter of 20 ⁇ m or less are actually liquefied in the solid fermented milk card.
  • a person skilled in the art in the technical field of the present invention can use any of the above facilities for liquefying the card of solid fermented milk under appropriate conditions, depending on the flavor and texture of the liquid fermented milk to be produced. By using it or the like, liquid fermented milk having a predetermined viscosity and a predetermined average particle diameter can be obtained.
  • the pressure is exemplified to be 0 to 20 MPa, preferably 0.2 to 15 MPa, more preferably 0.4 to 10 MPa, and 0.6 to 8 MPa. Further preferred is 0.8 to 6 MPa.
  • the super mixer is a device that uses shear force while utilizing cavitation, which is the flow characteristic of a Venturi tube, and an NRK multimixer (Nichiraku Kikai Co., Ltd.) is exemplified.
  • the liquid fermented milk of the present invention has a specific property that is different from conventional liquid fermented milk because it has a flavor and texture that have both a rich feeling and a good aftertaste.
  • the properties of the liquid fermented milk of the present invention are not particularly limited as long as the effects of the present invention are obtained.
  • the viscosity expressed in units of mPa ⁇ s is 20 times or more the average particle diameter expressed in ⁇ m. 20 Is preferably 100 times, more preferably 20 to 80 times, further preferably 20 to 70 times, further preferably 20 to 60 times, and more preferably 20 to 50 times. Particularly preferred.
  • the ratio of the viscosity expressed in units of mPa ⁇ s to the average particle diameter expressed in ⁇ m is large, and the liquid fermented milk of the present invention.
  • the viscosity is high, so that it has a rich feeling, but the average particle size is small, so that it has a good aftertaste.
  • the liquid fermented milk of the present invention has a specific property that is different from conventional liquid fermented milk because it has a flavor and texture that have both a rich feeling and a good aftertaste.
  • the properties of the liquid fermented milk of the present invention are not particularly limited as long as the effects of the present invention are obtained.
  • the non-Newtonian viscosity index (N) is 0.49 or less, preferably 0.1 to 0.49, more preferably 0.1 to 0.47, still more preferably 0.1 to 0.45, To 0.43 is more preferable, and 0.1 to 0.4 is particularly preferable.
  • P shear stress [Pa]
  • D shear rate [s ⁇ 1 ]
  • non-Newtonian viscosity coefficient
  • n non-Newtonian viscosity index.
  • the viscosity is greatly reduced by shearing force. Therefore, when it is actually taken orally and put into the oral cavity, the viscosity is high and a rich feeling is felt. However, when actually swallowed, the viscosity is low and the aftertaste is good. That is, in the liquid fermented milk of the present invention, the non-Newtonian viscosity index (n) is small as compared with the conventional liquid fermented milk, and in the liquid fermented milk of the present invention, the viscosity is high, while providing a rich feeling. Since the non-Newtonian viscosity index (n) is small, it has good aftertaste.
  • the non-Newtonian viscosity index (n) is measured with a dynamic viscoelasticity measuring apparatus (for example, Physica MCR301, Anton Paar Co., Ltd.), and any three or more points in the range of 1 to 1000 s ⁇ 1 at a shear rate. It can be calculated from the relationship (measurement result) between the shear stress and the shear rate at the measurement point. Specifically, after a sample (specimen) is filled in a predetermined container at 25 ° C., a cone plate (diameter: 50 mm) is used, and the GAP can be set to 1 mm for measurement.
  • a dynamic viscoelasticity measuring apparatus for example, Physica MCR301, Anton Paar Co., Ltd.
  • the non-Newtonian viscosity index (n) is calculated by a method other than the above, which is measured by the dynamic viscoelasticity measuring device, the calculated value of the non-Newtonian viscosity index (n) measured by the dynamic viscoelasticity measuring device.
  • the range (upper limit value, lower limit value, etc.) of the non-Newtonian viscosity index (n) of the present invention can be set.
  • a non-Newtonian viscosity index (n) of 1 means a Newtonian fluid.
  • Example 1 Production of Invention A Nonfat dry milk (Meiji Co., Ltd.): 8.6 kg, sugar: 6.5 kg, LM pectin (DE value: 23, amide group content: 24 LM pectin, “LM pectin 01”) Say): 0.1 kg was dispersed and dissolved in warm water (60 ° C.): 84.8 kg, and raw milk (before sterilization) was prepared in a small tank (with a stirring blade). The solubility of LM pectin 01 in warm water was good.
  • the raw material milk containing LM pectin after dispersion and dissolution After heating (60 ° C.) the raw material milk containing LM pectin after dispersion and dissolution, it is passed through a plate type sterilizer (VHX, Iwai Kikai Kogyo Co., Ltd.) and sterilized (130 ° C., 2 seconds). It cooled (45 degreeC) and prepared raw material milk (after sterilization).
  • VHX plate type sterilizer
  • Lactic acid bacteria starter (a mixture of Bulgarian and thermophilus bacteria separated from “Meiji Bulgaria Yogurt Plain”): 2 kg is added to the raw milk containing LM pectin after sterilization, and then added in a small tank (with stirring blade) It was kept (43 ° C., 6 hours) and fermented until the lactic acid acidity reached 0.8% (pH 4.2) to prepare solid fermented milk.
  • This curd of solid fermented milk is crushed with a stirring blade to prepare paste-like fermented milk, and then this paste-like fermented milk is crushed with a super mixer (NRK Multimixer, Nichiraku Kikai Co., Ltd., Monopump: 50 Hz).
  • liquid fermented milk was prepared.
  • non-fat milk solid content (SNF) of this liquid fermented milk was 8.2 weight%
  • fat content (FAT) was 0.1 weight%.
  • SNF non-fat milk solid content
  • FAT fat content
  • this liquid fermented milk had a flavor and texture that had a richness and good aftertaste.
  • this liquid fermented milk was refrigerated immediately after manufacture (10 degreeC, 14 days), water separation and precipitation were not recognized.
  • the raw material milk containing LM pectin after dispersion and dissolution After heating (60 ° C.) the raw material milk containing LM pectin after dispersion and dissolution, it is passed through a plate type sterilizer (VHX, Iwai Kikai Kogyo Co., Ltd.) and sterilized (130 ° C., 2 seconds). It cooled (45 degreeC) and prepared raw material milk (after sterilization). Lactic acid bacteria starter (a mixture of Bulgarian and thermophilus bacteria separated from “Meiji Bulgaria Yogurt Plain”): 2 kg is added to the raw milk containing LM pectin after sterilization, and then added in a small tank (with stirring blades).
  • VHX a plate type sterilizer
  • Lactic acid bacteria starter a mixture of Bulgarian and thermophilus bacteria separated from “Meiji Bulgaria Yogurt Plain”
  • liquid fermented milk when the liquid fermented milk was subjected to sensory tests (richness and good aftertaste) by six specialist panelists, this liquid fermented milk had a flavor and texture that had a richness and good aftertaste. And when this liquid fermented milk was refrigerated immediately after manufacture (10 degreeC, 14 days), water separation and precipitation were not recognized.
  • Lactic acid bacteria starter (mixture of Bulgarian and thermophilus bacteria separated from “Meiji Bulgaria Yogurt Plain”): 2 kg after adding to sterilized raw material milk that does not contain LM pectin, then a small tank (with stirring blade) (43 ° C., 6 hours) and fermented until the lactic acid acidity reached 0.8% (pH 4.2) to prepare solid fermented milk.
  • This curd of solid fermented milk is crushed with a stirring blade to prepare paste-like fermented milk, and then this paste-like fermented milk is crushed with a super mixer (NRK Multimixer, Nichiraku Kikai Co., Ltd., Monopump: 50 Hz). ) And then cooled (10 ° C.) to prepare liquid fermented milk.
  • non-fat milk solid content (SNF) of this liquid fermented milk was 8.2 weight%
  • fat content (FAT) was 0.1 weight%.
  • this liquid fermented milk was subjected to a sensory test (richness and good aftertaste) by six specialist panelists, this liquid fermented milk had a good aftertaste as in Example 1 or Example 2.
  • this liquid fermented milk was refrigerated immediately after manufacture (10 degreeC, 14 days), water separation and precipitation were recognized.
  • the viscosity (measurement temperature: 10 ° C.) and average particle diameter of (Invention A, Invention B, Control A) were measured. At this time, this viscosity was measured with a B-type viscometer (VISCO METER-TV-10, Toki Sangyo Co., Ltd.).
  • the average particle size was measured with a laser diffraction particle size distribution analyzer (SALD-2000, Shimadzu Corporation) and calculated as a measured value of 50% particle size.
  • SALD-2000 laser diffraction particle size distribution analyzer
  • the measured value of the 50% particle diameter is a particle diameter of 50% as an integrated value with respect to the result of measuring the particle size distribution of the liquid fermented milk dispersion by the laser diffraction / scattering method.
  • the particle size of 50% in terms of the integrated value is the particle size when the number of particles is added from a small particle size and reaches 50% of the total number of particles.
  • Example 1 Example 2, and Comparative Example 1, the LM pectin is used in comparison with Comparative Example 1 (control product A) that uses a supermixer to liquefy fermented milk and does not use LM pectin.
  • Example 1 invention product A
  • Example 2 invention product B
  • Example 1 Invention A and Example 2 (Invention B) using LM pectin, the viscosity (measurement temperature: 10 ° C.) was in the range of 200 to 800 mPa ⁇ s, In Comparative Example 1 (control product A) in which LM pectin was not used, the viscosity (measurement temperature: 10 ° C.) was less than 200.
  • a cone plate (diameter: 50 mm, Anton Paar) was used, GAP was set to 1 mm, the measurement temperature was set to 10 ° C., and the shear rate was set to 0.1 s ⁇ 1 to 100 s ⁇ 1 .
  • Example 1 Invention A
  • Commercial Product 1 Commercial Product 2
  • Example 1 Comparative Example 1 and Example 2 (Invention B)
  • Example 2 Comparative Example 1 and commercial product 2
  • Example 1 and Example 2 had a flavor and texture that had a rich feeling and good aftertaste.
  • Comparative Example 1 (control product A) and commercial product 2 had good aftertaste equivalent to those of Example 1 and Example 2, but had a richer feeling than Examples 1 and 2. There wasn't.
  • Example 1 Example 2
  • n The non-Newtonian viscosity index (n) was low. That is, compared with Comparative Example 1 (Control A), Commercial Product 1, and Commercial Product 2, in Example 1 (Inventive Product A) and Example 2 (Inventive Product B), the viscosity decreases due to shearing force. Thus, it was found that a flavor and texture having a rich feeling and a good aftertaste were realized.
  • Nonfat dry milk (Meijisha): 10.8 kg, sugar: 5 kg, LM pectin (DE value: 23, amide group content: 24 LM pectin, also referred to as “LM pectin 01”) : 0.15 kg was dispersed and dissolved in warm water (60 ° C.): 84.05 kg, and raw milk (before sterilization) was prepared in a small tank (with a stirring blade). The solubility of this LM pectin 01 in warm water was good (4 points, the evaluation index will be described later, Table 3).
  • the raw material milk containing LM pectin after dispersion and dissolution After heating (60 ° C.) the raw material milk containing LM pectin after dispersion and dissolution, it is passed through a plate type sterilizer (VHX, Iwai Kikai Kogyo Co., Ltd.) and sterilized (130 ° C., 2 seconds). It cooled (45 degreeC) and prepared raw material milk. Lactic acid bacteria starter (a mixture of Bulgarian and thermophilus bacteria separated from “Meiji Bulgaria Yogurt Plain”): 2 kg is added to the raw milk containing LM pectin after sterilization, and then added in a small tank (with stirring blades).
  • VHX a plate type sterilizer
  • Lactic acid bacteria starter a mixture of Bulgarian and thermophilus bacteria separated from “Meiji Bulgaria Yogurt Plain”
  • the liquid fermented milk has a viscosity of 565 mPa ⁇ s (measurement temperature: 10 ° C.), non-fat milk solids (SNF) of 10.25% by weight, and fat (FAT) of 0.13% by weight. there were.
  • glucose fructose liquid sugar (Gunei Chemical Industry Co., Ltd.): 6 kg was dispersed and dissolved in warm water (50 ° C.): 14 kg to prepare a sugar solution. And this sugar liquid and liquid fermented milk were mixed by the mixture ratio of 2: 8, and the sweetened liquid fermented milk was prepared. At this time, the flavor and texture of this sweetened liquid fermented milk were very good (5 points, the evaluation index will be described later, Table 3).
  • the viscosity of the sweetened liquid fermented milk is 350 mPa ⁇ s (measurement temperature: 10 ° C.), the non-fat milk solid content (SNF) is 8.2% by weight, and the fat content (FAT) is 0.1% by weight. Met. When this sweetened liquid fermented milk was refrigerated immediately after production (10 ° C., 14 days), water separation and precipitation were not observed.
  • Nonfat dry milk 15 kg is dispersed and dissolved in warm water (60 ° C): 85 kg, and raw milk (before sterilization) is prepared in a small tank (with stirring blades) did.
  • the raw material milk containing no LM pectin after dispersion / dissolution was sterilized (95 ° C., 10 minutes) in a jacketed tank and then cooled (45 ° C.) to prepare raw material milk.
  • Lactic acid bacteria starter mixture of Bulgarian and thermophilus bacteria separated from “Meiji Bulgaria yogurt plain”: 2 kg is added to the raw milk that does not contain LM pectin after sterilization.
  • the viscosity of the liquid fermented milk was 80 mPa ⁇ s (measurement temperature: 10 ° C.), the non-fat milk solid content (SNF) was 14% by weight, and the fat content (FAT) was 0.15% by weight. .
  • glucose fructose liquid sugar (Gunei Chemical Industry Co., Ltd.): 8 kg, HM pectin: 0.25 kg was dispersed and dissolved in warm water (50 ° C.): 31.75 kg to prepare a sugar solution. And this sugar liquid and liquid fermented milk were mixed by the mixture ratio of 4: 6, and the sweetened liquid fermented milk was prepared.
  • the viscosity of this sweetened liquid fermented milk is 20 mPa ⁇ s (measurement temperature: 10 ° C.), the non-fat milk solid content (SNF) is 8.4 wt%, and the fat content (FAT) is 0.1 wt%. Met.
  • SNF non-fat milk solid content
  • FAT fat content
  • Example 3 Evaluation of Flavor and Physical Properties of Invention C and Control Product B Regarding the liquid fermented milk of Example 3 and Comparative Example 2 (Invention product C, Control product A), among the users of liquid fermented milk, 30 to Sensory tests (two-point comparison) were conducted on 200 married women in their 60s, and the results of these tests are shown in FIG. At this time, compared to Comparative Example 2 (control product B) in which LM pectin was not used, Example 3 (invention product C) using LM pectin had a good taste, sour taste, sweet taste taste, sour taste and sweet taste. The tastes of balance, cleanliness, richness, richness, richness, aftertaste, unsatisfactory flavor, and satisfaction were highly rated. That is, the flavor and texture of Example 3 (Invention C) were very good.
  • Example 4 Production of Invention D
  • LM pectin (DE value: 23, amide group content: 24 LM pectin, also referred to as “LM pectin 01”) was converted into LM pectin (DE value: 33 to 39, amide group content: 13 to 17 LM pectin, also referred to as “LM pectin 02”)
  • liquid fermented milk and sweetened liquid fermented milk were prepared in the same manner as in Example 3.
  • the solubility of LM pectin 02 in hot water was good (4 points, the index of this evaluation will be described later, Table 3).
  • the flavor and texture of this sweetened liquid fermented milk were normally good (3 points, the evaluation index will be described later, Table 3).
  • the viscosity of the sweetened liquid fermented milk is 320 mPa ⁇ s (measurement temperature: 10 ° C.), the non-fat milk solid content (SNF) is 8.2% by weight, and the fat content (FAT) is 0.1. % By weight.
  • Example 5 Production of Invention Product E
  • LM pectin (DE value: 23, amide group content: 24 LM pectin, also referred to as “LM pectin 01”) was converted into LM pectin (DE value 26-32).
  • Liquid fermented milk and sweetened liquid fermented milk were prepared in the same manner as in Example 3 except that the LM pectin having an amide group content of 17 to 22 and also “LM pectin 03” was used.
  • the solubility of LM pectin 03 in warm water was good (4 points, the evaluation index will be described later, Table 3).
  • the flavor and texture of this sweetened liquid fermented milk were normally good (3 points, the evaluation index will be described later, Table 3).
  • the viscosity of the sweetened liquid fermented milk is 346 mPa ⁇ s (measurement temperature: 10 ° C.), the nonfat milk solid content (SNF) is 8.2% by weight, and the fat content (FAT) is 0.1. % By weight.
  • the solubility of LM pectin in warm water was comprehensively evaluated according to the following criteria by adding LM pectin to warm water (60 ° C.), stirring and mixing, and visually confirming the state.
  • the flavor of the sample was comprehensively evaluated according to the following criteria based on the average of six professional panelists.
  • 5 points A strong sense of richness, a sharp aftertaste, and a very good balance between sourness and sweetness.
  • 4 points There is a rich feeling, the aftertaste is cut off, and the balance between sourness and sweetness is good.
  • 3 points Medium richness, normal aftertaste and balance between sourness and sweetness.
  • 2 points Somewhat weak, rich aftertaste, and some bad balance between sourness and sweetness.
  • 1 point The feeling of richness is weak, the aftertaste is cut, and the balance between sourness and sweetness is poor.
  • Example 4 Evaluation of Flavor and Physical Properties of Invention Product C (Example 3), Invention Product D (Example 4), Invention Product E (Example 5) Liquid form of Example 3, Example 4, and Example 5
  • the type of LM pectin was changed to evaluate the flavor, physical properties, etc., and the results of evaluation and the properties of various LM pectin are shown in Table 3. Indicated. At this time, all of Example 3 (Invention C), Example 4 (Invention D), and Example 5 (Invention E) had good solubility of LM pectin in warm water (4 points). .
  • LM pectin preferably has a DE value of 16 to 46 and an amide group content of 10 to 30, more preferably a DE value of 18 to 44, and an amide group content of 13 to 28. It has been found that the DE value is 20 to 42 and the amide group content is more preferably 16 to 27, and the DE value is 22 to 40 and the amide group content is particularly preferably 19 to 26.
  • Nonfat dry milk (Meijisha): 10.8 kg, sugar: 5 kg, dispersed and dissolved in warm water (60 ° C.): 84.2 kg, raw milk (before sterilization) Prepared in a tank (with stirring blades). After the dispersion and dissolution, the raw milk containing no LM pectin is heated (60 ° C.) and then passed through a plate sterilizer (VHX, Iwai Kikai Kogyo Co., Ltd.) and sterilized (130 ° C., 2 seconds). After cooling (45 ° C.), raw milk (after sterilization) was prepared.
  • VHX Iwai Kikai Kogyo Co., Ltd.
  • Lactic acid bacteria starter (mixture of Bulgarian and thermophilus bacteria separated from “Meiji Bulgaria Yogurt Plain”): 2 kg after adding to sterilized raw material milk that does not contain LM pectin, then a small tank (with stirring blade) (43 ° C., 6 hours) and fermented until the lactic acid acidity reached 1.0% (pH 4.2) to prepare solid fermented milk.
  • This curd of solid fermented milk is crushed with a stirring blade to prepare paste-like fermented milk, and then this paste-like fermented milk is crushed with a super mixer (NRK Multimixer, Nichiraku Kikai Co., Ltd., Monopump: 50 Hz). ) And then cooled (10 ° C.) to prepare liquid fermented milk.
  • glucose fructose liquid sugar (Gunei Chemical Industry Co., Ltd.): 4 kg
  • LM pectin (DE value: 23, amide group content: 24 LM pectin, also referred to as “LM pectin 01”): 0.1 kg of warm water (50 ° C.): Dispersed and dissolved in 15.9 kg to prepare a sugar solution (before sterilization).
  • the sugar solution containing LM pectin after dispersion and dissolution the solution is passed through a plate sterilizer (VHX, Iwai Kikai Kogyo Co., Ltd.) and sterilized (130 ° C., 2 seconds).
  • a sugar solution (after sterilization) was prepared. And when this sugar liquid and liquid fermented milk were mixed by the mixture ratio of 2: 8, this liquid mixture will gelatinize and liquid fermented milk could not be prepared.
  • liquid fermented milk (drink yogurt or the like) having a flavor and texture that can satisfy both a rich feeling and a good aftertaste (a feeling of richness and good aftertaste can be felt simultaneously).

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Dairy Products (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

 本発明では、濃厚感と後味の良さを両立した風味や食感の液状発酵乳を提供することを課題とする。本発明は、原料乳にカチオン反応性の安定化剤を配合し、乳酸菌を接種してpHが3~5になるまで発酵させた後に、粘度が200~800mPa・s(測定温度:10℃)、平均粒子径が20μm以下となるように液状化することにより、濃厚感と後味の良さを両立した風味や食感の液状発酵乳を製造できる。

Description

液状発酵乳及びその製造方法
 本発明は、液状発酵乳及びその製造方法に関する。
 液状発酵乳とは、原料乳を発酵によりゲル化させて得られる固形状発酵乳や糊状発酵乳を、均質機等の機械的な剪断力により液状化させたものである。液状発酵乳には、例えば、ドリンクヨーグルト(のむヨーグルト)、乳酸菌飲料、発酵乳飲料、酸性乳飲料等と称されるものがある。
 これら液状発酵乳の特徴として、実際に摂食する時にスプーン等の食器を用意する必要がなく、発酵乳(乳酸菌)を手軽に摂取できる利点がある。すなわち、液状発酵乳とは、例えば、生活の忙しい中で効果的に、栄養を補給できると共に、健康を訴求できる、いわば、発酵乳の進化形の一つといえる。
 液状発酵乳には、特に決まった分類等はないが、その物性から、液状発酵乳を低粘度型と高粘度型の二つに分類することができる。
 低粘度型の液状発酵乳は、例えば、固形状発酵乳や糊状発酵乳を100kg/cm~150kg/cmの均質化圧で液状化し、低粘度で飲料を摂取する感覚で飲用できる形態にしていることが特徴である(非特許文献1)。低粘度型の液状発酵乳では、低粘度という物性的な性質から、HMペクチン等の安定化剤を添加して、乳タンパク質の粒子同士を荷電的に反発させることで、その分離や沈殿を抑制し、その品質を安定化させているものがある(特許文献1)。なお、HMペクチンと同様に、乳タンパク質の粒子同士を荷電的に反発させる作用がある安定化剤として、大豆多糖類、カルボキメチルセルロース(CMC)等が知られている。なお、低粘度型の液状発酵乳とは、一般的にその粘度が約5~50mPa・s(測定温度:10℃)程度であるものをいう。
 また、低粘度型の液状発酵乳には、液状という物性的な性質から、固形状発酵乳(例えば、セットタイプヨーグルト、ハードヨーグルト、静置型ヨーグルト、後発酵ヨーグルト)や糊状発酵乳(例えば、ソフトヨーグルト、撹拌型ヨーグルト)と比較して、乳酸菌の代謝により生成される乳酸に由来する酸味を感じやすい傾向がある。そして、特に、冷蔵保存中において、乳酸菌の代謝により乳酸が多く生成されると、賞味期限内において、発酵乳の風味(酸味)が大きく変化することになる。
 低粘度型の液状発酵乳の冷蔵保存時において、乳酸の生成を抑制させる技術として、液状発酵乳の溶存酸素濃度を高める方法(特許文献2)、所定よりも高い発酵温度で、原料乳を発酵する方法(特許文献3)、所定よりも高い圧力で、固形状発酵乳や糊状発酵乳を均質化して液状化する方法(特許文献4)が知られている。
 高粘度型の液状発酵乳は、例えば、固形状発酵乳や糊状発酵乳を緩やかな機械的な剪断力で液状化し、高粘度で濃厚でトロミのある飲料を摂取する感覚で飲用できる形態にしていることが特徴である。高粘度型の液状発酵乳では、高粘度という物性的な性質から、前記のHMペクチン等の安定化剤を使用しなくても、その分離や沈殿を抑制し、その品質を安定化させているものがある。なお、高粘度型の液状発酵乳とは、一般的にその粘度が約100~1000mPa・s(測定温度:10℃)程度であるものをいう。
国際公開第2008/044533号 日本国特開2011-004711号公報 国際公開第2011/083776号 日本国特許4963747号
山内邦男、横山健吉編、「ミルク総合辞典」、朝倉書店,1992年、p.246-247
 従来の低粘度型の液状発酵乳では、乳飲料等の製造条件と同程度以上に負荷を掛ける操作条件において、固形状発酵乳や糊状発酵乳を機械的な剪断力で液状化して製造され、低粘度という物性的な性質から、従来の高粘度の液状発酵乳と比較して、後味の良さ(後切れ)は十分であったが、乳成分に由来する濃厚感(コク)は弱めに感じられていた。
 また、従来の高粘度型の液状発酵乳では、乳飲料等の製造条件よりも穏やかな操作条件において、固形状発酵乳や糊状発酵乳を機械的な剪断力で液状化して製造され、高粘度という物性的な性質から、従来の低粘度の液状発酵乳と比較して、乳成分に由来する濃厚感は強めに感じられていたが、後味の良さは不十分であった。
 すなわち、従来の液状発酵乳の製造方法では、濃厚感と後味の良さを両立した風味や食感の液状発酵乳を商業的に実現することは困難であると考えられていた。一方、従来の液状発酵乳とは異なり、濃厚感と後味の良さを両立した風味や食感の液状発酵乳を商業的に実現できれば、嗜好性の向上を期待できる。
 本発明では、濃厚感と後味の良さを兼ね備えた風味や食感を有する(濃厚感と後味の良さを同時に感じられる)液状発酵乳(ドリンクヨーグルト等)を提供することを課題とする。
 本発明者らは、上記課題を解決するために鋭意検討した結果、所定の粘度と、所定の平均粒子径を有する液状発酵乳であれば、濃厚感と後味の良さを兼ね備えた風味や食感を有する液状発酵乳を提供できることを見出し、本発明を完成させた。
 また、原料乳にカチオン反応性の安定化剤を配合(添加)し、乳酸菌を添加(接種)してpHが3~5になるまで発酵させた後に、粘度が200~800mPa・s(測定温度:10℃)、平均粒子径が20μm以下となるように液状化させることにより得られる液状発酵乳が、濃厚感と後味の良さを両立した風味や食感であることを見出した。
 そして、この液状発酵乳を冷蔵保存(10℃、14日間)したところ、離水や沈殿が認められなかった。
 すなわち、本発明は、以下の[1]~[13]からなる。
[1] 粘度が200~800mPa・s(測定温度:10℃)、平均粒子径が20μm以下である、液状発酵乳。
[2] カチオン反応性の安定化剤を含む、前記[1]に記載の液状発酵乳。
[3] カチオン反応性の安定化剤を0.05~0.5重量%含む、前記[2]に記載の液状発酵乳。
[4] カチオン反応性の安定化剤がκ-カラギナン、ι-カラギナン、脱アシルジェランガム、アルギン酸塩、ローメトキシルペクチン(LMペクチン)の何れか1種の単独又は2種以上の組合せである、前記[2]又は[3]に記載の液状発酵乳。
[5] 無脂乳固形分(SNF)を7~12重量%含む、前記[1]~[4]の何れか1に記載の液状発酵乳。
[6] 製造の直後から10℃、14日間保存して、離水や沈殿が認められない、前記[1]~[5]の何れか1に記載の液状発酵乳。
[7] 単位をmPa・sで表した粘度(測定温度:10℃)が単位をμmで表した平均粒子径の20倍以上である、前記[1]~[6]の何れか1に記載の液状発酵乳。
[8] 剪断速度で1~1000s-1の範囲の任意の3点以上の測定点における剪断応力と剪断速度の関係を、P=μDの数式で表す場合に、nの値が0.49以下である、前記[1]~[7]の何れか1に記載の液状発酵乳。ここで、Pは剪断応力[Pa]、Dは剪断速度[s-1]、μは非ニュートン粘性係数、nは非ニュートン粘性指数を意味する。
[9] 原料乳にカチオン反応性の安定化剤を配合し、乳酸菌を添加(接種)してpHが3~5になるまで発酵させた後に、粘度が200~800mPa・s(測定温度:10℃)、平均粒子径が20μm以下となるように液状化させる、液状発酵乳の製造方法。
[10] カチオン反応性の安定化剤を0.05~0.5重量%配合する、前記[9]に記載の液状発酵乳の製造方法。
[11] カチオン反応性の安定化剤がκ-カラギナン、ι-カラギナン、脱アシルジェランガム、アルギン酸塩、ローメトキシルペクチン(LMペクチン)の何れか1種の単独又は2種以上の組合せである、前記[9]又は[10]に記載の液状発酵乳の製造方法。
[12] 無脂乳固形分(SNF)を7~12重量%含む、前記[9]~[11]の何れか1に記載の液状発酵乳の製造方法。
[13] スーパーミキサーを用いて液状化させる、前記[8]~[12]の何れか1に記載の液状発酵乳の製造方法。
 本発明によれば、粘度が200~800mPa・s(測定温度:10℃)、平均粒子径が20μm以下であることにより、濃厚感と後味の良さを兼ね備えた風味や食感の液状発酵乳(ドリンクヨーグルト等)を提供することができる。
図1は、液状発酵乳(発明品Cと対照品B)の官能検査(2点比較)の結果である。
<液状発酵乳>
 本発明の液状発酵乳は、粘度が200~800mPa・s(測定温度:10℃)、平均粒子径が20μm以下であることを特徴とし、濃厚感と後味の良さを兼ね備えた風味や食感を有している。
<粘度>
 本発明の液状発酵乳の粘度は、200~800mPa・s(測定温度:10℃)である。本発明の液状発酵乳の粘度は、250~750mPa・s(測定温度:10℃)が好ましく、250~700mPa・s(測定温度:10℃)がより好ましく、300~650mPa・s(測定温度:10℃)がさらに好ましく、300~600mPa・s(測定温度:10℃)が特に好ましい。このとき、液状発酵乳の粘度が200mPa・s(測定温度:10℃)以上であれば、濃厚感を実感しやすく、液状発酵乳の粘度が800mPa・s(測定温度:10℃)を超えると、液状らしさが弱まり、糊状らしさが強まる傾向にある。本発明の液状発酵乳の粘度を上記範囲とする方法については、本発明の液状発酵乳の製造方法にて後述する。
 本発明において、粘度は、B型粘度計(例えば、VISCO METER-TV-10、東機産業株式会社)で測定することができる。具体的には、試料(検体):100mLを10℃で牛乳壜(容量:110mL)に充填してから、ローターにスピンドルM2(東機産業株式会社)を使用し、ローターを回転(60rpm、30秒間)させて測定することができる。そして、B型粘度計で測定する上記以外の方法で、粘度を測定した場合には、B型粘度計で測定した粘度の測定値の差異と調整して、本発明の粘度の範囲(上限値、下限値等)を設定することができる。
<平均粒子径>
 本発明の液状発酵乳の平均粒子径は、20μm以下である。本発明の液状発酵乳の平均粒子径は、1~20μmが好ましく、2~18μmがより好ましく、4~18μmがさらに好ましく、6~16μmがさらに好ましく、8~16μmが特に好ましい。このとき、液状発酵乳の平均粒子径が20μmを超えると、すっきり感が弱まり、舌触りの滑らかさ等も弱まる傾向にある。本発明の液状発酵乳の平均粒子径を上記範囲とする方法については、本発明の液状発酵乳の製造方法にて後述する。
 本発明において、平均粒子径は、レーザー回折式粒度分布計(例えば、SALD-2000、島津製作所)で測定し、50%粒子径の測定値として算出することができる。なお、この50%粒子径の測定値とは、レーザー回折・散乱法により、液状発酵乳の分散体の粒度分布を測定した結果に対して、その積算値で50%の粒子径であり、この積算値で50%の粒子径とは、小さい粒子径から粒子数を加算していき、粒子数の合計値の50%に到達したところの粒子径である。そして、レーザー回折式粒度分布計で測定する上記以外の方法で、平均粒子径を測定した場合には、レーザー回折式粒度分布計で測定した平均粒子径の測定値の差異と調整して、本発明の平均粒子径の範囲(上限値、下限値等)を設定することができる。
<カチオン反応性の安定化剤>
 本発明の液状発酵乳は、所定の粘度と所定の平均粒子径を有するものであり、カチオン反応性の安定化剤を含むことが好ましい。本発明において、カチオン反応性の安定化剤とは、カチオンと反応してゲル化する安定化剤の総称である。例えば、乳成分にはカルシウムが存在しており、このカチオン反応性の安定化剤が乳成分のカルシウムと反応し、ゲル化を促進する。
 ところで、低粘度型の液状発酵乳では、固形状発酵乳や糊状発酵乳を強い剪断力で破砕(微粒化)するため、乳タンパク質等が凝集して分離や沈殿しないように、ゲル化を抑制したり、防止したりする必要がある。そのため、液状発酵乳では、技術常識として、ゲル化を促進するカチオン反応性の安定化剤を使用することは避けられていた。すなわち、これまでは、低粘度型の液状発酵乳の製造において、カチオン反応性の安定化剤を使用することは想定されていなかった。
 一方、高粘度型の液状発酵乳は、低粘度型の液状発酵乳に比べて、後味のすっきり感が低い。高粘度型の液状発酵乳を製造したとしても、固形状発酵乳や糊状発酵乳を緩やかな機械的な剪断力で液状化するため、カチオン反応性の安定化剤を使用することはこれまで想定されていなかった。本発明では意外なことに、高粘度型の液状発酵乳において、低粘度型の液状発酵乳の製造で避けられていたカチオン反応性の安定化剤を含有させることで、所定の粘度と所定の平均粒子径であって、濃厚感と後味の良さを兼ね備えた風味や食感を実現することができた。
 すなわち、本発明の液状発酵乳では、原料乳の殺菌前及び/又は発酵前に敢えて、カチオン反応性の安定化剤を原料乳に添加することで、所定の粘度と所定の平均粒子径であって、濃厚感と後味の良さを兼ね備えた風味や食感を実現した。つまり、原料乳にカチオン反応性の安定化剤を添加してから(加熱)殺菌した後に、乳酸菌を添加してpHが3~5になるまで発酵させるか、又は原料乳を(加熱)殺菌した後に、カチオン反応性の安定化剤を添加すると共に、乳酸菌を添加してpHが3~5になるまで発酵させて、固形状発酵乳を調製し、この固形状発酵乳のカードを粘度が200~800mPa・s(測定温度:10℃)、平均粒子径が20μm以下となるように液状化(破砕)することで、濃厚感と後味の良さを兼ね備えた風味や食感である液状発酵乳を製造した。
 本発明において、原料乳に対するカチオン反応性の安定化剤の添加量は、本発明の効果が得られれば、特に制限されないが、具体的には、液状発酵乳の全体に対して、0.05~0.5重量%が例示され、0.06~0.45重量%が好ましく、0.06~0.4重量%がより好ましく、0.07~0.35重量%がさらに好ましく、0.07~0.3重量%が特に好ましい。
 また、本発明において、原料乳に対するカチオン反応性の安定化剤の添加量は、原料乳の全体に対して、0.05~0.5重量%が例示され、0.06~0.45重量%が好ましく、0.06~0.4重量%がより好ましく、0.07~0.35重量%がさらに好ましく、0.07~0.3重量%が特に好ましい。
 本発明において、カチオン反応性の安定化剤の種類は、本発明の効果が得られれば、特に制限されないが、具体的には、κ-カラギナン、ι-カラギナン、脱アシルジェランガム、アルギン酸塩、ローメトキシペクチン(LMペクチン)が例示され、これらの何れか1種を単独で使用するか、又は2種以上を組合せて使用することができる。また、本発明において、カチオン反応性の安定化剤は、市販の製剤を使用することもできる。このとき、より濃厚感と後味の良さを兼ね備えた風味や食感の液状発酵乳を製造できることの他、実際の製造工程における取扱いの容易さ等から、LMペクチンを使用することが好ましい。
 なお、本発明において、カチオン反応性の安定化剤の種類は、実際に製造する液状発酵乳の組成や濃度等に依存する。
 例えば、カチオン反応性の安定化剤がLMペクチンの場合では、DE値は具体的には16~46%、好ましくは18~44%、より好ましくは20~42%、さらに好ましくは22~40%である。また、カチオン反応性の安定化剤のアミド基含量は、具体的には10~30%、好ましくは13~28%、より好ましくは16~27%、さらに好ましくは19~26%である。
 ところで、本発明において、ペクチンとは、平均分子量が50,000~150,000Daのポリガラクチュロン酸を意味する。この構成糖のガラクチュロン酸には、フリー型とメチルエステル型の2種類があり、全ガラクチュロン酸のうち、メチルエステルとして存在するガラクチュロン酸の割合をエステル化度(DE値)と呼ぶ。このDE値により、ペクチンの性質は異なる。そして、DE値が50%以上のものをハイメトキシペクチン(HMペクチン)と呼び、50%未満のものをローメトキシペクチン(LMペクチン)と呼ぶ。なお、従来の低粘度型のドリンクヨーグルトの安定化には、HMペクチンが用いられていた(参考:「ミルク総合辞典」3.乳製品の加工技術、p.246~247)。
 本発明において、カチオン反応性の安定化剤の添加方法は、本発明の効果が得られれば、特に制限されないが、原料乳の殺菌前及び/又は発酵前に、カチオン反応性の安定化剤を原料乳に添加することが例示される。すなわち、カチオン反応性の安定化剤の添加方法として、原料乳に分散・溶解されていればよい。例えば、カチオン反応性の安定化剤を水等に分散させてから加温して溶解させた後に、このカチオン反応性の安定化剤の溶液を原料乳に添加する方法、カチオン反応性の安定化剤が溶解できる温度に原料乳を加温し、この加温した原料乳にカチオン反応性の安定化剤を分散・溶解させる方法、原料乳とカチオン反応性の安定化剤の溶液を別々に殺菌した後に、これらを混合する方法等が例示される。なお、この他の安定化剤等の他の物質や成分は、本発明の効果が損なわれなければ、特に制限されず、任意に添加することができる。
<原料乳>
 本発明において、原料乳は、一般的に解釈される原料乳にとらわれることなく、生乳、乳製品、豆乳等を含む殺菌前及び/又は発酵前の流体(液体等)であれば、特に制限されない。例えば、脱脂粉乳を生乳に分散・溶解したもの、脱脂粉乳を水に分散・溶解したもの等が例示される。すなわち、原料乳として、牛乳等の獣乳、その加工品(例えば、全脂乳、脱脂乳、全脂濃縮乳、脱脂濃縮乳、全脂粉乳、脱脂粉乳、練乳、乳清、クリーム等)や、豆乳等の植物性乳や、その加工品等を含む流体が例示される。また、本発明において、原料乳は、その組成(乳脂肪、乳タンパク質、乳糖、灰分等)を適宜調整できる。例えば、液状発酵乳において、乳風味や濃厚感等を強調するために、クリーム及び/又は脱脂粉乳等を原料乳に強化して、乳脂肪や乳タンパク質等の濃度を高めてもよい。
<各種成分>
 本発明において、液状発酵乳の乳脂肪の濃度は、本発明の効果が得られれば、特に制限されないが、具体的には、液状発酵乳の全体に対して、8重量%以下が例示され、0.01~8重量%が好ましく、0.01~7重量%がより好ましく、0.01~6重量%がさらに好ましく、0.01~5重量%がさらに好ましく、0.01~4重量%が特に好ましい。液状発酵乳全体に対する乳脂肪の濃度が上記範囲内であることによって、液状発酵乳としての風味が適している。
 また、本発明において、原料乳の乳脂肪の濃度は、原料乳の全体に対して、8重量%以下が例示され、0.01~8重量%が好ましく、0.01~7重量%がより好ましく、0.01~6重量%がさらに好ましく、0.01~5重量%がさらに好ましく、0.01~4重量%が特に好ましい。原料乳全体に対する乳脂肪の濃度が上記範囲内であることによって、液状発酵乳としての風味が適している。
 本発明において、液状発酵乳の乳タンパク質の濃度は、本発明の効果が得られれば、特に制限されないが、具体的には、液状発酵乳の全体に対して、10重量%以下が例示され、1~10重量%が好ましく、1.5~9重量%がより好ましく、2~8重量%がさらに好ましく、2.5~7重量%がさらに好ましく、3~6重量%が特に好ましい。液状発酵乳全体に対する乳タンパク質の濃度が上記範囲内であることによって、風味が良好であるからである。
 また、本発明において、原料乳の乳タンパク質の濃度は、原料乳の全体に対して、10重量%以下が例示され、1~10重量%が好ましく、1.5~9重量%がより好ましく、2~8重量%がさらに好ましく、2.5~7重量%がさらに好ましく、3~6重量%が特に好ましい。原料乳全体に対する乳タンパク質の濃度が上記範囲内であることによって、風味が良好であるからである。
 本発明において、液状発酵乳の無脂乳固形分(SNF)の濃度は、本発明の効果が得られれば、特に制限されないが、具体的には、液状発酵乳の全体に対して、18重量%以下が例示され、1~18重量%が好ましく、3~16重量%がより好ましく、5~14重量%がさらに好ましく、7~12重量%がさらに好ましく、8~10重量%が特に好ましい。液状発酵乳全体に対する無脂乳固形分(SNF)の濃度が上記範囲内であることによって、風味が良好であるからである。
 また、本発明において、原料乳の無脂乳固形分(SNF)の濃度は、原料乳の全体に対して、18重量%以下が例示され、1~18重量%が好ましく、3~16重量%がより好ましく、5~14重量%がさらに好ましく、7~12重量%がさらに好ましく、8~10重量%が特に好ましい。原料乳全体に対する無脂乳固形分(SNF)の濃度が上記範囲内であることによって、風味が良好であるからである。なお、無脂乳固形分(SNF)とは、乳成分のうち、乳脂肪を除いた成分を意味する。
 本発明において、原料乳の成分には、本発明の効果が得られれば、公知の食品及び/又は食品添加物を適宜添加できる。すなわち、原料乳の添加成分として、例えば、砂糖、砂糖以外の糖類、高感度甘味料、香料、増粘剤、ゲル化剤、ミネラル類、ビタミン類、機能性素材、水等が例示される。
<製造方法>
 本発明の液状発酵乳の製造方法は、原料乳にカチオン反応性の安定化剤を配合し、乳酸菌を添加してpHが3~5になるまで発酵させた後に、粘度が200~800mPa・s(測定温度:10℃)、平均粒子径が20μm以下となるように液状化(破砕)することを特徴とする。すなわち、本発明の液状発酵乳の製造方法は、原料乳にカチオン反応性の安定化剤を添加してから(加熱)殺菌した後に、乳酸菌を添加してpHが3~5になるまで発酵させるか、又は原料乳を(加熱)殺菌した後に、カチオン反応性の安定化剤を添加すると共に、乳酸菌を添加してpHが3~5になるまで発酵させて、固形状発酵乳を調製し、この固形状発酵乳のカードを粘度が200~800mPa・s(測定温度:10℃)、平均粒子径が20μm以下となるように液状化(破砕)することを特徴とする。
 さらに、本発明の液状発酵乳の製造方法は、原料乳にカチオン反応性の安定化剤を添加する工程、原料乳を殺菌する工程、原料乳に乳酸菌を添加する工程、原料乳をpHが3~5になるまで発酵させて発酵乳のカードを調製する工程、発酵乳のカードを粘度が200~800mPa・s(測定温度:10℃)、平均粒子径が20μm以下となるように液状化する工程、発酵乳を容器に充填する工程を有することを特徴とする。このとき、実際の製造工程における取扱いの容易さ等から、原料乳にカチオン反応性の安定化剤を添加してから殺菌する方法(工程)を有することが好ましい。そして、このようにして製造された本発明の液状発酵乳は、前述した内容を特徴とすると共に、実施例で実証されたように、製造の直後から10℃、14日間保存して、離水や沈殿が認められないことを特徴とする。
 なお、本発明において「離水が認められない」とは、実質的に離水が認められないことを意味し、離水が全く認められないか、認められたとしても極少量である場合をいう。離水が認められないことは、目視により確認できる。
 また、本発明において「沈澱が認められない」とは、実質的に沈澱が認められないことを意味し、沈澱が全く認められないか、認められたとしても極少量である場合をいう。沈澱が認められないことは、目視により確認できる。
 本発明において、原料乳を殺菌する方法や設備には、食品分野において通常で使用される方法や設備を使用すればよい。このとき、原料乳を殺菌する方法として、例えば、低温保持殺菌法(LTLT、60~70℃、20~40分間等)、高温保持殺菌法(HTLT、80~90℃、5~20分間等)、高温短時間殺菌法(HTST、100~110℃、1~3分間等)、超高温瞬間殺菌法(UHT、120~150℃、1~10秒間等)等が例示される。
 そして、原料乳を殺菌する設備として、例えば、間接加熱式殺菌機(プレート式殺菌機、チューブ式殺菌機等)、直接加熱式殺菌機(スチームインジェクション式殺菌機、スチームインフュージョン式殺菌機等)、通電加熱式殺菌機、レトルト殺菌機、撹拌・調温の機能付きのタンク、撹拌・調温・減圧・均質化の機能付きのタンク等の設備が例示され、これらの何れか1種を単独で使用するか、又は2種以上を組合せて使用することができる。
 本発明において、原料乳の発酵には、食品分野において通常使用される微生物を使用すればよく、例えば、乳酸菌、ビフィズス菌、酵母等が例示される。そして、本発明において、乳酸菌、ビフィズス菌、酵母等には、本発明の効果が得られれば、公知のものを適宜使用できる。具体的には、乳酸菌の場合、発酵乳の製造において使用の実績があるブルガリア菌、サーモフィラス菌、ラクチス菌、クレモリス菌、カゼイ菌、ビフィズス菌が例示され、ヨーグルトの製造において一般的な使用の実績があるブルガリア菌とサーモフィラス菌の組合せ(混合物)が好ましい。以下、乳酸菌を例に挙げて、原料乳の発酵について具体的に説明するが、本発明においては原料乳の発酵に使用できる微生物は乳酸菌に限られるものではない。
 本発明において、原料乳を発酵する条件は、本発明の効果が得られれば、特に制限されないが、発酵温度及び/又は発酵時間を適宜調整することが好ましい。このとき、本発明において、発酵温度は、実際に使用する乳酸菌の種類や乳酸菌の活動の至適温度等に依存するが、例えば、30~50℃が例示され、35~48℃が好ましく、38~45℃がより好ましい。具体的に例えば、ブルガリア菌とサーモフィラス菌の組合せ(混合物)では、30~45℃が例示され、32~44℃が好ましく、34~44℃がより好ましく、36~43℃がさらに好ましく、38~43℃が特に好ましい。発酵温度が前記範囲であることによって、適正な発酵時間で風味良好な液状発酵乳ができる。
 また、本発明において、発酵時間は、実際に使用する乳酸菌の種類や乳酸菌の添加量や発酵温度等に依存するが、例えば、2~15時間が例示され、2.5~10時間が好ましく、3~6時間がより好ましい。具体的に例えば、ブルガリア菌とサーモフィラス菌の組合せ(混合物)では、1~20時間が例示され、1.5~15時間が好ましく、2~10時間がより好ましく、2.5~8時間がさらに好ましく、3~6時間が特に好ましい。発酵時間が前記範囲であることによって、製造適性も良好で、風味良好な液状発酵乳ができる。
 一方、本発明において、原料乳の発酵の終了の乳酸酸度及び/又はpHを適宜調整することが好ましい。このとき、本発明において、発酵の終了の乳酸酸度は、0.5~1.5%が例示され、0.55~1.4%が好ましく、0.6~1.3%がより好ましく、0.65~1.2%がさらに好ましく、0.7~1.1%が特に好ましい。発酵終了時の乳酸酸度が前記範囲であることによって、風味が良好な発酵乳が得られるためである。
 また、本発明において、発酵終了時のpHは、3~5が例示され、3.2~4.9が好ましく、3.4~4.8がより好ましく、3.6~4.7がさらに好ましく、3.8~4.6が特に好ましい。原料乳の発酵終了時のpHが前記範囲であることによって、風味が良好な発酵乳が得られるためである。
 なお、原料乳の発酵終了時の乳酸酸度は、例えば、次の手順に従って算出できる。すなわち、発酵乳の試料:9gを水で2倍に希釈してから、フェノールフタレインの指示薬を添加した後に、水酸化ナトリウム水溶液(0.1N)で中和滴定し、微紅色が30秒間で消失しない状態を終点と判断して、この終点における滴定量から、試料:100gの乳酸量として算出できる。また、pHは、例えばpH計で測定する。
 本発明において、固形状発酵乳のカードを液状化(破砕)する条件は、本発明の効果が得られれば、特に制限されないが、液状化後の粘度(液状発酵乳の粘度)が所定の粘度に、液状化後の平均粒子径が所定の粒子径となるよう適宜調整することが好ましい。このとき、本発明において、液状化後の粘度は、200~800mPa・s(測定温度:10℃)であり、250~750mPa・s(測定温度:10℃)が好ましく、250~700mPa・s(測定温度:10℃)がより好ましく、300~650mPa・s(測定温度:10℃)がさらに好ましく、300~600mPa・s(測定温度:10℃)が特に好ましい。液状化後の粘度を前記範囲とすることによって、食感が良好な発酵乳が得られるためである。
 さらに、このとき、本発明において、液状化後の平均粒子径(液状発酵乳の平均粒子径)は、20μm以下であり、1~20μmが好ましく、2~18μmがより好ましく、4~18μmがさらに好ましく、6~16μmがさらに好ましく、8~16μmが特に好ましい。このとき、液状発酵乳の平均粒子径が20μmを超えると、すっきり感が弱まり、舌触りの滑らかさ等も弱まる傾向にある。
 本発明において、固形状発酵乳のカードを液状化する方法や設備には、食品分野において通常で使用される方法や設備を使用すればよい。このとき、固形状発酵乳のカードを液状化する方法として、機械的な剪断力を利用でき、発酵(終了)後の冷却前に液状化する方法、発酵(終了)後の冷却後に液状化する方法、発酵途中の冷却前に液状化する方法等が例示される。
 そして、固形状発酵乳のカードを液状化する設備として、例えば、ホモゲナイザー(均質機)、ホモミキサー、ホモディスパー、スーパーミキサー、メッシュフィルター、インラインミキサー、撹拌・調温の機能付きのタンク、撹拌・調温・減圧・均質化の機能付きのタンク等が例示され、これらの何れか1種を単独で使用するか、又は2種以上を組合せて使用することができる。
 なお、本発明において、固形状発酵乳のカードを液状化し、粘度が200~800mPa・s(測定温度:10℃)、平均粒子径が20μm以下となる液状発酵乳を得るための条件は、実際に製造する液状発酵乳の風味や食感等に依存する。本発明の技術分野における当業者であれば、製造する液状発酵乳の風味や食感等に応じて、上記の固形状発酵乳のカードを液状化する設備のいずれかを適切な条件の下で使用等することによって、所定の粘度と、所定の平均粒子径を有する液状発酵乳を得ることができる。具体的には、例えば、ホモゲナイザーを使用する場合は、その圧力を0~20MPaとすることが例示され、0.2~15MPaが好ましく、0.4~10MPaがより好ましく、0.6~8MPaがさらに好ましく、0.8~6MPaが特に好ましい。なお、スーパーミキサーとは、ベンチュリー管の流動特性であるキャビテーションを利用しつつ、剪断力を利用する装置であり、NRKマルチミキサー(ニチラク機械社)が例示される。
 本発明の液状発酵乳は、濃厚感と後味の良さを兼ね備えた風味や食感であることから、従来の液状発酵乳と異なる特定の性質を有している。このとき、本発明の液状発酵乳の性質は、本発明の効果が得られれば、特に制限されない。具体的には、液状発酵乳の性質を表現する指標の一つとして、単位をmPa・sで表した粘度が単位をμmで表した平均粒子径の20倍以上であることが例示され、20~100倍であることが好ましく、20~80倍であることがより好ましく、20~70倍であることがさらに好ましく、20~60倍であることがさらに好ましく、20~50倍であることが特に好ましい。
 すなわち、本発明の液状発酵乳では、従来の液状発酵乳と比較して、単位をμmで表した平均粒子径に対する、単位をmPa・sで表した粘度の割合が大きく、本発明の液状発酵乳では、粘度が高いことで、濃厚感を備えていながら、平均粒子径が小さいことで、後味の良さを備えていることとなる。
 本発明の液状発酵乳は、濃厚感と後味の良さを兼ね備えた風味や食感であることから、従来の液状発酵乳と異なる特定の性質を有している。このとき、本発明の液状発酵乳の性質は、本発明の効果が得られれば、特に制限されないが、具体的には、液状発酵乳の性質を表現する指標の一つとして、非ニュートン粘性指数(n)が0.49以下であることが例示され、0.1~0.49が好ましく、0.1~0.47がより好ましく、0.1~0.45がさらに好ましく、0.1~0.43がさらに好ましく、0.1~0.4が特に好ましい。
 なお、非ニュートン粘性指数は、P=μDの数式(剪断流動化特性の粘性式)におけるnで表される。ここで、Pは剪断応力[Pa]、Dは剪断速度[s-1]、μは非ニュートン粘性係数、nは非ニュートン粘性指数を意味する。
 ところで、一般的に、非ニュートン粘性指数(n)が小さい液状食品では、剪断力により、粘度が大きく低下するため、実際に経口摂取して口腔内へ入れたときには、粘度が高く、濃厚感がありながら、実際に飲み込むときには、粘度が低く、後味の良さがあることとなる。すなわち、本発明の液状発酵乳では、従来の液状発酵乳と比較して、非ニュートン粘性指数(n)が小さく、本発明の液状発酵乳では、粘度が高いことで、濃厚感を備えていながら、非ニュートン粘性指数(n)が小さいことで、後味の良さを備えていることとなる。
 本発明において、非ニュートン粘性指数(n)は、動的粘弾性測定装置(例えば、Physica MCR301、アントンパール社)で測定し、剪断速度で1~1000s-1の範囲の任意の3点以上の測定点における剪断応力と剪断速度の関係(測定結果)から算出することができる。具体的には、試料(検体)を25℃で所定の容器に充填してから、コーンプレート(直径:50mm)を使用し、GAPを1mmに設定して測定することができる。そして、動的粘弾性測定装置で測定する上記以外の方法で、非ニュートン粘性指数(n)を算出した場合には、動的粘弾性測定装置で測定した非ニュートン粘性指数(n)の算出値の差異と調整して、本発明の非ニュートン粘性指数(n)の範囲(上限値、下限値等)を設定することができる。なお、非ニュートン粘性指数(n)が1の場合には、ニュートン流体を意味する。
 以下、実施例によって、本発明を詳しく説明するが、本発明は、これらの実施例に限定されるものではない。
[実施例1] 発明品Aの製造
 脱脂粉乳(明治社):8.6kg、砂糖:6.5kg、LMペクチン(DE値:23、アミド基含量:24のLMペクチン、「LMペクチン01」ともいう):0.1kgを、温水(60℃):84.8kgに分散・溶解し、原料乳(殺菌前)を小型のタンク(撹拌翼付き)で調製した。なお、このLMペクチン01の温水への溶解性は良好であった。この分散・溶解後のLMペクチンを含む原料乳を加温(60℃)してから、プレート式殺菌機(VHX、岩井機械工業社)に通液して殺菌(130℃、2秒間)した後に冷却(45℃)し、原料乳(殺菌後)を調製した。この殺菌後のLMペクチンを含む原料乳に、乳酸菌スターター(「明治ブルガリアヨーグルト プレーン」より分離した、ブルガリア菌とサーモフィラス菌の混合物):2kgを添加してから、小型のタンク(撹拌翼付き)で保持(43℃、6時間)して、乳酸酸度が0.8%(pHが4.2)になるまで発酵し、固形状発酵乳を調製した。この固形状発酵乳のカードを撹拌翼で破砕し、糊状発酵乳を調製してから、この糊状発酵乳をスーパーミキサー(NRKマルチミキサー、ニチラク機械社、モーノポンプ:50Hz)で破砕(微粒化)した後に冷却(10℃)し、液状発酵乳を調製した。なお、この液状発酵乳の無脂乳固形分(SNF)は、8.2重量%、脂肪分(FAT)は、0.1重量%であった。また、この液状発酵乳について、専門パネルの6名で官能検査(濃厚感、後味の良さ)したところ、この液状発酵乳は、濃厚感と後味の良さを兼ね備えた風味や食感であった。そして、この液状発酵乳を製造直後から冷蔵保存(10℃、14日間)したところ、離水や沈殿は認められなかった。
[実施例2] 発明品Bの製造
 脱脂粉乳(明治社):8.6kg、砂糖:6.5kg、LMペクチン(DE値:23、アミド基含量:24のLMペクチン、「LMペクチン01」ともいう):0.25kgを、温水(60℃):84.65kgに分散・溶解し、原料乳(殺菌前)を小型のタンク(撹拌翼付き)で調製した。なお、このLMペクチン01の温水への溶解性は良好であった。この分散・溶解後のLMペクチンを含む原料乳を加温(60℃)してから、プレート式殺菌機(VHX、岩井機械工業社)に通液して殺菌(130℃、2秒間)した後に冷却(45℃)し、原料乳(殺菌後)を調製した。この殺菌後のLMペクチンを含む原料乳に、乳酸菌スターター(「明治ブルガリアヨーグルト プレーン」より分離した、ブルガリア菌とサーモフィラス菌の混合物):2kgを添加してから、小型のタンク(撹拌翼付き)で保持(43℃、6時間)して、乳酸酸度が0.8%(pHが4.2)になるまで発酵し、固形状発酵乳を調製した。この固形状発酵乳のカードを撹拌翼で破砕し、糊状発酵乳を調製してから、この糊状発酵乳をスーパーミキサー(NRKマルチミキサー、ニチラク機械社、モーノポンプ:50Hz)で破砕(微粒化)した後に冷却(10℃)し、液状発酵乳を調製した。なお、この液状発酵乳の無脂乳固形分(SNF)は、8.2重量%、脂肪分(FAT)は、0.1重量%であった。また、この液状発酵乳について、専門パネルの6名で官能検査(濃厚感、後味の良さ)したところ、この液状発酵乳は、濃厚感と後味の良さを兼ね備えた風味や食感であった。そして、この液状発酵乳を製造直後から冷蔵保存(10℃、14日間)したところ、離水や沈殿は認められなかった。
[比較例1] 対照品Aの製造
 脱脂粉乳(明治社):8.6kg、砂糖:6.5kgを、温水(60℃):84.9kgに分散・溶解し、原料乳(殺菌前)を小型のタンク(撹拌翼付き)で調製した。この分散・溶解後のLMペクチンを含まない原料乳を加温(60℃)してから、プレート式殺菌機(VHX、岩井機械工業社)に通液して殺菌(130℃、2秒間)した後に冷却(45℃)し、原料乳(殺菌後)を調製した。この殺菌後のLMペクチンを含まない原料乳に、乳酸菌スターター(「明治ブルガリアヨーグルト プレーン」より分離した、ブルガリア菌とサーモフィラス菌の混合物):2kgを添加してから、小型のタンク(撹拌翼付き)で保持(43℃、6時間)して、乳酸酸度が0.8%(pHが4.2)になるまで発酵し、固形状発酵乳を調製した。この固形状発酵乳のカードを撹拌翼で破砕し、糊状発酵乳を調製してから、この糊状発酵乳をスーパーミキサー(NRKマルチミキサー、ニチラク機械社、モーノポンプ:50Hz)で破砕(微粒化)した後に冷却(10℃)し、液状発酵乳を調製した。なお、この液状発酵乳の無脂乳固形分(SNF)は、8.2重量%、脂肪分(FAT)は、0.1重量%であった。また、この液状発酵乳について、専門パネルの6名で官能検査(濃厚感、後味の良さ)したところ、この液状発酵乳は、実施例1や実施例2と同等の後味の良さを備えていたが、実施例1や実施例2に比べて濃厚感を備えていなかった。そして、この液状発酵乳を製造直後から冷蔵保存(10℃、14日間)したところ、離水や沈殿が認められた。
[試験例1] 発明品A(実施例1)、発明品B(実施例2)、対照品A(比較例1)の物性の評価
 実施例1、実施例2、比較例1の液状発酵乳(発明品A、発明品B、対照品A)の粘度(測定温度:10℃)、平均粒子径を測定した。このとき、この粘度は、B型粘度計(VISCO METER-TV-10、東機産業株式会社)で測定した。具体的には、試料(検体):100mLを10℃で牛乳壜(容量:110mL)に充填してから、ローターにスピンドルM2(東機産業株式会社)を使用し、ローターを回転(60rpm、30秒間)させて測定した。また、この平均粒子径は、レーザー回折式粒度分布計(SALD-2000、島津製作所)で測定し、50%粒子径の測定値として算出した。なお、この50%粒子径の測定値とは、レーザー回折・散乱法により、液状発酵乳の分散体の粒度分布を測定した結果に対して、その積算値で50%の粒子径であり、この積算値で50%の粒子径とは、小さい粒子径から粒子数を加算していき、粒子数の合計値の50%に到達したところの粒子径である。
 以上に基づいて、これらの測定した結果を表1に示すと共に、単位をμmで表した平均粒子径に対する単位をmPa・sで表した粘度(測定温度:10℃)の割合も算出して、表1に示した。このとき、実施例1、実施例2、比較例1では、発酵乳を液状化するにあたり、スーパーミキサーを用いており、LMペクチンを使用しない比較例1(対照品A)に比べて、LMペクチンを使用した実施例1(発明品A)と実施例2(発明品B)では、平均粒子径(μm)に対する粘度(mPa・s、測定温度:10℃)の割合が大きかった。また、LMペクチンを使用した実施例1(発明品A)と実施例2(発明品B)では、粘度(測定温度:10℃)が200~800mPa・sの範囲内であったのに対し、LMペクチンを使用しない比較例1(対照品A)では、粘度(測定温度:10℃)が200未満であった。
Figure JPOXMLDOC01-appb-T000001
[試験例2] 発明品A(実施例1)、発明品B(実施例2)、対照品A(比較例1)、市販品1、市販品2の風味・物性の評価
 実施例1、実施例2、比較例1の液状発酵乳(発明品A、発明品B、対照品A)と、市販の液状発酵乳について、剪断粘度(Pa・s)を測定し、非ニュートン粘性係数μを求めた。市販の液状発酵乳には、商品の表示の情報から安定化剤を使用していないと判断された「ヤスダのむヨーグルト」(市販品1、ヤスダヨーグルト社)、「毎日骨太1日分のCaのむヨーグルト」(市販品2、雪印メグミルク社)を対象とした。このとき、剪断速度を変化させた剪断粘度は、粘弾性測定装置(Physica MCR301、アントンパール社)で測定した。具体的には、コーンプレート(直径:50mm、アントンパール社)を使用し、GAPを1mm、測定温度を10℃、剪断速度を0.1s-1~100s-1に設定して測定した。
 実施例1、実施例2、比較例1の液状発酵乳(発明品A、発明品B、対照品A)と、市販の液状発酵乳(市販品1、市販品2)について、専門パネルの6名で官能検査(濃厚感、後味の良さ)し、これらの検査した結果を表2に示した。このとき、実施例1(発明品A)と実施例2(発明品B)は、濃厚感と後味の良さを兼ね備えた風味や食感であった。一方、比較例1(対照品A)と市販品2は、実施例1や実施例2と同等の後味の良さを備えていたが、実施例1や実施例2に比べて濃厚感を備えていなかった。そして、市販品1は、実施例1や実施例2と同等の濃厚感を備えていたが、実施例1や実施例2に比べて後味の良さを備えていなかった。ところで、LMペクチンを使用しない比較例1(対照品A)、市販品1、市販品2に比べて、LMペクチンを使用した実施例1(発明品A)と実施例2(発明品B)では、非ニュートン粘性指数(n)が低かった。すなわち、比較例1(対照品A)、市販品1、市販品2に比べて、実施例1(発明品A)と実施例2(発明品B)では、剪断力により、粘度が低下することで、濃厚感と後味の良さを兼ね備えた風味や食感が実現されていることが分かった。
Figure JPOXMLDOC01-appb-T000002
[実施例3] 発明品Cの製造
 脱脂粉乳(明治社):10.8kg、砂糖:5kg、LMペクチン(DE値:23、アミド基含量:24のLMペクチン、「LMペクチン01」ともいう):0.15kgを、温水(60℃):84.05kgに分散・溶解し、原料乳(殺菌前)を小型のタンク(撹拌翼付き)で調製した。なお、このLMペクチン01の温水への溶解性は良好であった(4点、この評価の指標は後述する。表3)。この分散・溶解後のLMペクチンを含む原料乳を加温(60℃)してから、プレート式殺菌機(VHX、岩井機械工業社)に通液して殺菌(130℃、2秒間)した後に冷却(45℃)し、原料乳を調製した。この殺菌後のLMペクチンを含む原料乳に、乳酸菌スターター(「明治ブルガリアヨーグルト プレーン」より分離した、ブルガリア菌とサーモフィラス菌の混合物):2kgを添加してから、小型のタンク(撹拌翼付き)で保持(43℃、6時間)して、乳酸酸度が1.0%(pHが4.2)になるまで発酵し、固形状発酵乳を調製した。この固形状発酵乳のカードを撹拌翼で破砕し、糊状発酵乳を調製してから、この糊状発酵乳をスーパーミキサー(NRKマルチミキサー、ニチラク機械社、モーノポンプ:50Hz)で破砕(微粒化)した後に冷却(10℃)し、液状発酵乳を調製した。なお、この液状発酵乳の粘度は、565mPa・s(測定温度:10℃)、無脂乳固形分(SNF)は、10.25重量%、脂肪分(FAT)は、0.13重量%であった。一方、ブドウ糖果糖液糖(群栄化学工業社):6kgを、温水(50℃):14kgに分散・溶解し、糖液を調製した。そして、この糖液と液状発酵乳を2:8の配合比率で混合し、加糖型の液状発酵乳を調製した。このとき、この加糖型の液状発酵乳の風味や食感は大変に良好であった(5点、この評価の指標は後述する。表3)。この加糖型の液状発酵乳の粘度は、350mPa・s(測定温度:10℃)、無脂乳固形分(SNF)は、8.2重量%、脂肪分(FAT)は、0.1重量%であった。なお、この加糖型の液状発酵乳を製造直後から冷蔵保存(10℃、14日間)したところ、離水や沈殿は認められなかった。
[比較例2] 対照品Bの製造
 脱脂粉乳(明治社):15kgを、温水(60℃):85kgに分散・溶解し、原料乳(殺菌前)を小型のタンク(撹拌翼付き)で調製した。この分散・溶解後のLMペクチンを含まない原料乳を、ジャケット付のタンクで殺菌(95℃、10分間)した後に冷却(45℃)し、原料乳を調製した。この殺菌後のLMペクチンを含まない原料乳に乳酸菌スターター(「明治ブルガリアヨーグルト プレーン」から分離した、ブルガリア菌とサーモフィラス菌の混合物):2kgを添加してから、小型のタンク(撹拌翼付き)で保持(43℃、6時間)して、乳酸酸度が1.2%(pHが4.3)になるまで発酵し、固形状発酵乳を調製した。この固形状発酵乳のカードを撹拌翼で破砕し、糊状発酵乳を調製してから、この糊状発酵乳をホモゲナイザー(イズミフードマシナリ社)で破砕(微粒化)した後に冷却(10℃)し、液状発酵乳を調製した。なお、この液状発酵乳の粘度は、80mPa・s(測定温度:10℃)、無脂乳固形分(SNF)は、14重量%、脂肪分(FAT)は、0.15重量%であった。一方、ブドウ糖果糖液糖(群栄化学工業社):8kg、HMペクチン:0.25kgを、温水(50℃):31.75kgに分散・溶解し、糖液を調製した。そして、この糖液と液状発酵乳を4:6の配合比率で混合し、加糖型の液状発酵乳を調製した。この加糖型の液状発酵乳の粘度は、20mPa・s(測定温度:10℃)、無脂乳固形分(SNF)は、8.4重量%、脂肪分(FAT)は、0.1重量%であった。なお、この加糖型の液状発酵乳を製造直後から冷蔵保存(10℃、14日間)したところ、離水や沈殿が認められなかった。
[試験例3] 発明品C、対照品Bの風味・物性の評価
 実施例3、比較例2の液状発酵乳(発明品C、対照品A)について、液状発酵乳のユーザーのうち、30~60歳代の既婚の女性の200名で官能検査(2点比較)し、これらの検査した結果を図1に示した。このとき、LMペクチンを使用しない比較例2(対照品B)に比べて、LMペクチンを使用した実施例3(発明品C)では、おいしさ、酸味の好み、甘味の好み、酸味と甘味のバランスの好み、すっきり感の好み、濃厚感(コク)の程度、濃厚感(コク)の好み、後味の好み、飲み飽きない風味、満足感の程度が高評価であった。つまり、実施例3(発明品C)の風味や食感は大変に良好であった。
[実施例4] 発明品Dの製造
 実施例3において、LMペクチン(DE値:23、アミド基含量:24のLMペクチン、「LMペクチン01」ともいう)を、LMペクチン(DE値:33~39、アミド基含量:13~17のLMペクチン、「LMペクチン02」ともいう)に替えた以外は、実施例3と同様にして、液状発酵乳と加糖型の液状発酵乳を調製した。なお、LMペクチン02の温水への溶解性は良好であった(4点、この評価の指標は後述する。表3)。一方、この加糖型の液状発酵乳の風味や食感は普通に良好であった(3点、この評価の指標は後述する。表3)。そして、この加糖型の液状発酵乳の粘度は、320mPa・s(測定温度:10℃)、無脂乳固形分(SNF)は、8.2重量%、脂肪分(FAT)は、0.1重量%であった。
[実施例5] 発明品Eの製造
 実施例3において、LMペクチン(DE値:23、アミド基含量:24のLMペクチン、「LMペクチン01」ともいう)を、LMペクチン(DE値26~32、アミド基含量17~22のLMペクチン、「LMペクチン03」ともいう)に替えた以外は、実施例3と同様にして、液状発酵乳と加糖型の液状発酵乳を調製した。なお、LMペクチン03の温水への溶解性は良好であった(4点、この評価の指標は後述する。表3)。一方、この加糖型の液状発酵乳の風味や食感は普通に良好であった(3点、この評価の指標は後述する。表3)。そして、この加糖型の液状発酵乳の粘度は、346mPa・s(測定温度:10℃)、無脂乳固形分(SNF)は、8.2重量%、脂肪分(FAT)は、0.1重量%であった。
 ここで、LMペクチンの温水への溶解性は、LMペクチンを温水(60℃)へ添加して撹拌・混合し、その状態を目視で確認して、次の基準で総合的に評価した。
 5点:温水を15秒間未満で撹拌すると、ダマが消えて、完全に溶解する。
 4点:温水を15秒間以上30秒間未満で撹拌すると、ダマが消えて、完全に溶解する。
 3点:温水を30秒間以上60秒間未満で撹拌すると、ダマが消えて、完全に溶解する。
 2点:温水を60秒間以上で撹拌しても、ダマが消えず、完全には溶解しない。
 1点:温水を60秒間以上で撹拌しても、ダマが残り、溶解しにくい。
 また、試料(検体)の風味は、専門パネルの6名の平均により、次の基準で総合的に評価した。
 5点:濃厚感が強く、後味の切れや、酸味と甘味のバランスが非常に良い。
 4点:濃厚感があり、後味の切れや、酸味と甘味のバランスが良い。
 3点:濃厚感が中程度で、後味の切れや、酸味と甘味のバランスが普通である。
 2点:濃厚感が幾らか弱く、後味の切れや、酸味と甘味のバランスが幾らか悪い。
 1点:濃厚感が弱く、後味の切れや、酸味と甘味のバランスが悪い。
[試験例4] 発明品C(実施例3)、発明品D(実施例4)、発明品E(実施例5)の風味・物性の評価
 実施例3、実施例4、実施例5の液状発酵乳(発明品C、発明品D、発明品E)について、LMペクチンの種類を変更して風味と物性等を評価し、これらの評価した結果と各種のLMペクチンの特性等を表3に示した。このとき、実施例3(発明品C)、実施例4(発明品D)、実施例5(発明品E)の何れも、LMペクチンの温水への溶解性は良好であった(4点)。一方、実施例3(発明品C)の風味や食感は大変に良好であり(5点)、実施例4(発明品D)と実施例5(発明品E)の風味や食感は普通に良好であった(3点)。
 以上の結果から、LMペクチンでは、DE値が16~46、アミド基含量が10~30であることが好ましく、DE値が18~44、アミド基含量が13~28であることがより好ましく、DE値が20~42、アミド基含量が16~27であることがさらに好ましく、DE値が22~40、アミド基含量が19~26であることが特に好ましいことが分かった。
Figure JPOXMLDOC01-appb-T000003
[比較例3] 対照品Cの製造
 脱脂粉乳(明治社):10.8kg、砂糖:5kgを、温水(60℃):84.2kgに分散・溶解し、原料乳(殺菌前)を小型のタンク(撹拌翼付き)で調製した。この分散・溶解後のLMペクチンを含まない原料乳を加温(60℃)してから、プレート式殺菌機(VHX、岩井機械工業社)に通液して殺菌(130℃、2秒間)した後に冷却(45℃)し、原料乳(殺菌後)を調製した。この殺菌後のLMペクチンを含まない原料乳に、乳酸菌スターター(「明治ブルガリアヨーグルト プレーン」より分離した、ブルガリア菌とサーモフィラス菌の混合物):2kgを添加してから、小型のタンク(撹拌翼付き)で保持(43℃、6時間)して、乳酸酸度が1.0%(pHが4.2)になるまで発酵し、固形状発酵乳を調製した。この固形状発酵乳のカードを撹拌翼で破砕し、糊状発酵乳を調製してから、この糊状発酵乳をスーパーミキサー(NRKマルチミキサー、ニチラク機械社、モーノポンプ:50Hz)で破砕(微粒化)した後に冷却(10℃)し、液状発酵乳を調製した。一方、ブドウ糖果糖液糖(群栄化学工業社):4kg、LMペクチン(DE値:23、アミド基含量:24のLMペクチン、「LMペクチン01」ともいう):0.1kgを、温水(50℃):15.9kgに分散・溶解し、糖液(殺菌前)を調製した。この分散・溶解後のLMペクチンを含む糖液を加温(60℃)してから、プレート式殺菌機(VHX、岩井機械工業社)に通液して殺菌(130℃、2秒間)した後に冷却し、糖液(殺菌後)を調製した。そして、この糖液と液状発酵乳を2:8の配合比率で混合したところ、この混合液がゲル化してしまい、液状発酵乳を調製できなかった。
 本発明によれば、濃厚感と後味の良さを両立した風味や食感の(濃厚感と後味の良さを同時に感じられる)液状発酵乳(ドリンクヨーグルト等)を提供できる。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更及び変形が可能であることは、当業者にとって明らかである。なお本出願は、2014年10月30日付で出願された日本特許出願(特願2014-221937)に基づいており、その全体が引用により援用される。

Claims (9)

  1.  粘度が200~800mPa・s(測定温度:10℃)、平均粒子径が20μm以下である、液状発酵乳。
  2.  カチオン反応性の安定化剤を含む、請求項1に記載の液状発酵乳。
  3.  カチオン反応性の安定化剤を0.05~0.5重量%含む、請求項2に記載の液状発酵乳。
  4.  カチオン反応性の安定化剤がκ-カラギナン、ι-カラギナン、脱アシルジェランガム、アルギン酸塩、ローメトキシルペクチン(LMペクチン)の何れか1種の単独又は2種以上の組合せである、請求項2又は3に記載の液状発酵乳。
  5.  製造の直後から10℃、14日間保存して、離水や沈殿が認められない、請求項1~4の何れか1項に記載の液状発酵乳。
  6.  原料乳にカチオン反応性の安定化剤を配合し、乳酸菌を添加してpHが3~5になるまで発酵させた後に、粘度が200~800mPa・s(測定温度:10℃)、平均粒子径が20μm以下となるように液状化させる、液状発酵乳の製造方法。
  7.  カチオン反応性の安定化剤を0.05~0.5重量%配合する、請求項6に記載の液状発酵乳の製造方法。
  8.  カチオン反応性の安定化剤がκ-カラギナン、ι-カラギナン、脱アシルジェランガム、アルギン酸塩、ローメトキシルペクチン(LMペクチン)の何れか1種の単独又は2種以上の組合せである、請求項6又は7に記載の液状発酵乳の製造方法。
  9.  スーパーミキサーを用いて液状化させる、請求項6~8の何れか1項に記載の液状発酵乳の製造方法。
PCT/JP2015/080658 2014-10-30 2015-10-30 液状発酵乳及びその製造方法 WO2016068276A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016556650A JP6719383B2 (ja) 2014-10-30 2015-10-30 液状発酵乳及びその製造方法
CN201580055607.2A CN106793792B (zh) 2014-10-30 2015-10-30 液体发酵乳及其产生方法
SG11201703019QA SG11201703019QA (en) 2014-10-30 2015-10-30 Liquid fermented milk and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014221937 2014-10-30
JP2014-221937 2014-10-30

Publications (1)

Publication Number Publication Date
WO2016068276A1 true WO2016068276A1 (ja) 2016-05-06

Family

ID=55857611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080658 WO2016068276A1 (ja) 2014-10-30 2015-10-30 液状発酵乳及びその製造方法

Country Status (4)

Country Link
JP (1) JP6719383B2 (ja)
CN (1) CN106793792B (ja)
SG (1) SG11201703019QA (ja)
WO (1) WO2016068276A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018007639A (ja) * 2016-07-15 2018-01-18 株式会社明治 微生物培養液の濃縮方法及び微生物濃縮物
JP6403858B1 (ja) * 2017-11-21 2018-10-10 アイリスオーヤマ株式会社 発酵乳生成方法及び発酵乳生成装置
JP2018201504A (ja) * 2017-06-02 2018-12-27 三栄源エフ・エフ・アイ株式会社 酸性殺菌タンパク質含有飲食品、酸性殺菌タンパク質含有飲食品の製造方法、酸性殺菌タンパク質含有飲食品の凝集抑制方法、酸性殺菌タンパク質含有飲食品の流通方法及び酸性殺菌タンパク質含有飲食品の保存方法
JP2019037188A (ja) * 2017-08-28 2019-03-14 ユニテックフーズ株式会社 発酵乳飲料の製造方法
JP2019092498A (ja) * 2018-09-11 2019-06-20 アイリスオーヤマ株式会社 発酵乳生成方法及び発酵乳生成装置
JP2019170274A (ja) * 2018-03-28 2019-10-10 株式会社明治 発酵乳及びその製造方法
JP2020022406A (ja) * 2018-08-08 2020-02-13 株式会社明治 液状発酵乳の製造方法
CN117367918A (zh) * 2023-12-04 2024-01-09 内蒙古蒙牛乳业(集团)股份有限公司 一种发酵乳感官品质评价模型及构建方法与应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61132140A (ja) * 1984-12-01 1986-06-19 Morinaga Milk Ind Co Ltd 殺菌ヨ−グルトの製造法
JP2002281895A (ja) * 2001-03-26 2002-10-02 Snow Brand Milk Prod Co Ltd 弱酸性乳飲料及びその製造方法
JP2004033208A (ja) * 2002-02-06 2004-02-05 Indopco Inc 酸性化乳飲料用の安定剤
JP2004215563A (ja) * 2003-01-14 2004-08-05 Sanei Gen Ffi Inc 乳製品用の品質改良剤
JP2005245278A (ja) * 2004-03-03 2005-09-15 Morinaga Milk Ind Co Ltd 液状発酵乳製品の製造方法
US20060240149A1 (en) * 2002-04-12 2006-10-26 Amy Konkoly Dairy beverage and method of preparation thereof
JP2007502611A (ja) * 2003-08-19 2007-02-15 ダニスコ エイ/エス 解重合ペクチンを安定剤として使用して食品を調製するためのプロセス
JP2008167683A (ja) * 2007-01-11 2008-07-24 Nippon Luna Kk 起泡性クリーム
WO2013149808A1 (en) * 2012-04-03 2013-10-10 Cp Kelco Aps Stable fermented milk products and methods
JP2014521340A (ja) * 2011-08-02 2014-08-28 シーピー ケルコ エイピーエス 安定化酸性化乳製品
JP2014525258A (ja) * 2011-08-31 2014-09-29 ヴァリオ・リミテッド 製品及びその製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61132140A (ja) * 1984-12-01 1986-06-19 Morinaga Milk Ind Co Ltd 殺菌ヨ−グルトの製造法
JP2002281895A (ja) * 2001-03-26 2002-10-02 Snow Brand Milk Prod Co Ltd 弱酸性乳飲料及びその製造方法
JP2004033208A (ja) * 2002-02-06 2004-02-05 Indopco Inc 酸性化乳飲料用の安定剤
US20060240149A1 (en) * 2002-04-12 2006-10-26 Amy Konkoly Dairy beverage and method of preparation thereof
JP2004215563A (ja) * 2003-01-14 2004-08-05 Sanei Gen Ffi Inc 乳製品用の品質改良剤
JP2007502611A (ja) * 2003-08-19 2007-02-15 ダニスコ エイ/エス 解重合ペクチンを安定剤として使用して食品を調製するためのプロセス
JP2005245278A (ja) * 2004-03-03 2005-09-15 Morinaga Milk Ind Co Ltd 液状発酵乳製品の製造方法
JP2008167683A (ja) * 2007-01-11 2008-07-24 Nippon Luna Kk 起泡性クリーム
JP2014521340A (ja) * 2011-08-02 2014-08-28 シーピー ケルコ エイピーエス 安定化酸性化乳製品
JP2014525258A (ja) * 2011-08-31 2014-09-29 ヴァリオ・リミテッド 製品及びその製造方法
WO2013149808A1 (en) * 2012-04-03 2013-10-10 Cp Kelco Aps Stable fermented milk products and methods

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018007639A (ja) * 2016-07-15 2018-01-18 株式会社明治 微生物培養液の濃縮方法及び微生物濃縮物
JP2018201504A (ja) * 2017-06-02 2018-12-27 三栄源エフ・エフ・アイ株式会社 酸性殺菌タンパク質含有飲食品、酸性殺菌タンパク質含有飲食品の製造方法、酸性殺菌タンパク質含有飲食品の凝集抑制方法、酸性殺菌タンパク質含有飲食品の流通方法及び酸性殺菌タンパク質含有飲食品の保存方法
JP2019037188A (ja) * 2017-08-28 2019-03-14 ユニテックフーズ株式会社 発酵乳飲料の製造方法
JP6403858B1 (ja) * 2017-11-21 2018-10-10 アイリスオーヤマ株式会社 発酵乳生成方法及び発酵乳生成装置
JP2019092423A (ja) * 2017-11-21 2019-06-20 アイリスオーヤマ株式会社 発酵乳生成方法及び発酵乳生成装置
JP2019170274A (ja) * 2018-03-28 2019-10-10 株式会社明治 発酵乳及びその製造方法
JP7178789B2 (ja) 2018-03-28 2022-11-28 株式会社明治 発酵乳及びその製造方法
JP2020022406A (ja) * 2018-08-08 2020-02-13 株式会社明治 液状発酵乳の製造方法
WO2020031785A1 (ja) * 2018-08-08 2020-02-13 株式会社明治 液状発酵乳の製造方法
JP7246877B2 (ja) 2018-08-08 2023-03-28 株式会社明治 液状発酵乳の製造方法
US12082594B2 (en) 2018-08-08 2024-09-10 Meiji Co., Ltd. Method for producing liquid fermented milk
JP2019092498A (ja) * 2018-09-11 2019-06-20 アイリスオーヤマ株式会社 発酵乳生成方法及び発酵乳生成装置
CN117367918A (zh) * 2023-12-04 2024-01-09 内蒙古蒙牛乳业(集团)股份有限公司 一种发酵乳感官品质评价模型及构建方法与应用
CN117367918B (zh) * 2023-12-04 2024-02-13 内蒙古蒙牛乳业(集团)股份有限公司 一种发酵乳感官品质评价模型的构建方法与应用

Also Published As

Publication number Publication date
JPWO2016068276A1 (ja) 2017-08-10
JP6719383B2 (ja) 2020-07-08
CN106793792B (zh) 2020-11-27
CN106793792A (zh) 2017-05-31
SG11201703019QA (en) 2017-05-30

Similar Documents

Publication Publication Date Title
WO2016068276A1 (ja) 液状発酵乳及びその製造方法
JP5665141B2 (ja) トロミヨーグルトの製造方法
JP3351343B2 (ja) 酸性蛋白食品及びその製造法
JP6955907B2 (ja) 発酵乳の製造方法
JP2009082023A (ja) トロミヨーグルトの製造方法
JP6203050B2 (ja) 液状発酵乳及びその製造方法
JP6639043B2 (ja) 高タンパク質ヨーグルト様発酵乳の製造方法
ES2359182T3 (es) Productos fermentados a base de fibras alimenticias y sus proecedimientos de preparación.
BRPI0619277A2 (pt) bebida láctea acidulada e processo para produzir a mesma
JP2022529440A (ja) 乳製品および方法
CN102858183A (zh) 包含大豆蛋白和柑桔纤维的饮料
JP7496701B2 (ja) 発酵乳およびその製造方法
JPH07104A (ja) 発酵乳及びその製造方法
JP6901350B2 (ja) 発酵乳飲料の製造方法
JP6705635B2 (ja) 発酵乳の製造方法
CN111093378A (zh) 可常温饮用的发酵乳制品
JP7349814B2 (ja) 液状発酵乳及びその製造方法
JP3937095B2 (ja) 酸性乳飲料の製造方法
RU2729358C1 (ru) Способ получения функционального кисломолочного продукта
JP3910597B2 (ja) 液状発酵乳製品の製造方法
JP7107506B2 (ja) カルシウム強化発酵乳食品
JP3726173B2 (ja) ソフトクリームミックス用安定化組成物
JP4248993B2 (ja) 糸引き粘性を有する殺菌発酵乳の製造方法
JP7372113B2 (ja) 常温保存酸乳食品の製造方法及び物性安定性向上方法、並びに酸乳食品の加熱殺菌方法
WO2019064955A1 (ja) 発酵乳の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15854862

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016556650

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 11201703019Q

Country of ref document: SG

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15854862

Country of ref document: EP

Kind code of ref document: A1