WO2019064955A1 - 発酵乳の製造方法 - Google Patents

発酵乳の製造方法 Download PDF

Info

Publication number
WO2019064955A1
WO2019064955A1 PCT/JP2018/029901 JP2018029901W WO2019064955A1 WO 2019064955 A1 WO2019064955 A1 WO 2019064955A1 JP 2018029901 W JP2018029901 W JP 2018029901W WO 2019064955 A1 WO2019064955 A1 WO 2019064955A1
Authority
WO
WIPO (PCT)
Prior art keywords
milk
raw material
fermented milk
fermented
ultra
Prior art date
Application number
PCT/JP2018/029901
Other languages
English (en)
French (fr)
Inventor
堀内 啓史
Original Assignee
株式会社明治
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社明治 filed Critical 株式会社明治
Publication of WO2019064955A1 publication Critical patent/WO2019064955A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/12Fermented milk preparations; Treatment using microorganisms or enzymes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/12Fermented milk preparations; Treatment using microorganisms or enzymes
    • A23C9/123Fermented milk preparations; Treatment using microorganisms or enzymes using only microorganisms of the genus lactobacteriaceae; Yoghurt

Definitions

  • the present invention relates to a method of producing fermented milk.
  • the present invention relates to a method for producing post-fermented fermented milk having a suitable hardness.
  • curd is a lactic acid bacteria fermentation product. It is desirable for the curd to have a certain degree of hardness so that the post-fermented fermented milk does not lose its shape when transported, while the texture is not excellent if the curd is too hard, so that the smoothness is appropriate. It is required to have
  • Patent Document 1 is sufficient to prevent the collapse of curd during circulation by performing an ultra-high-temperature sterilization process on the raw milk after the deoxidizing step of reducing the concentration of oxygen contained in the raw milk. It is reported that fermented milk with hardness and smooth texture can be produced. That is, it is thought that since the protein in raw milk is protected by the deoxygenation treatment, the softening of the fibers forming the curd is prevented even if the ultra-high temperature sterilization is performed thereafter.
  • the hardness (card tension) of fermented milk finally obtained is about 50 g Was considered to be the limit (see Patent Document 1 and Example 1).
  • the hardness of fermented milk is 40 g or more, it is considered that it has a certain level of strength that can withstand distribution, but the hardness of fermented milk should be higher considering individual differences in production at the time of mass production preferable.
  • the amount of protein that can be protected by the deoxidation process varies, and it is difficult for all fermented milk to have a certain strength that can withstand distribution, and such a production method may lower the yield rate. I am concerned.
  • an object of the present invention is to provide a fermented milk having an appropriate hardness which can sense richness even when the raw material milk is subjected to ultra-high temperature sterilization treatment.
  • the inventors of the present invention intensively studied the means for achieving the above object, and as a result, even if the raw milk was subjected to ultra-high-temperature sterilization, the fat content of the raw milk was adjusted to 5% by weight or more, It was found that the hardness of fermented milk can be maintained at a higher value by increasing the concentration of fat relatively. Thus, by enhancing the hardness of the fermented milk, a rich texture can be obtained. In addition, by adjusting the fat content in fermented milk to a high level, it contributes to making the flavor of fermented milk more concentrated. Then, the present inventors considered that the above object could be effectively achieved based on the above findings, and completed the present invention.
  • the present invention relates to a method of producing fermented milk.
  • the present invention includes an ultra-high temperature sterilization process and a fermentation process.
  • the ultra-high temperature sterilization process is a process of heating and sterilizing the raw material milk at 120 to 150 ° C. for 1 to 30 seconds.
  • the fermentation process is a process of fermenting the raw material milk after the ultra-high temperature sterilization process.
  • a fermentation process is a post-fermentation process made to carry out stationary fermentation, after stuffing raw material milk in which the lactic-acid-bacteria starter was inoculated into a container.
  • post-fermented fermented milk such as plain yogurt can be obtained.
  • raw material milk containing 5 to 15% by weight of fat is used.
  • fermented milk having an appropriate hardness can be obtained by setting the fat content of the raw material milk to 5 to 15% by weight even when ultra-high temperature sterilization is performed. That is, in general post-fermented fermented milk (plain yogurt etc.), the fat content of raw material milk is adjusted to around 3% by weight, but when such raw material milk is subjected to ultra-high-temperature sterilization treatment, curd It will be extremely softened. On the other hand, the inventors found that by increasing the fat content of the raw material milk to 5% by weight or more, a strong curd can be realized even when ultra-high-temperature sterilization is performed.
  • the fermented milk having a high fat composition as raw material milk has a hardness (card tension) of 40 g or more as shown in the examples to be described later, which is stronger than the prior art.
  • the composition of the raw material milk to strengthen the hardness of the fermented milk
  • the product produced has almost uniform strength enough to withstand distribution even at the time of mass production, and the yield rate is improved. Be done.
  • the consumer can easily obtain a rich feeling from the viewpoint of the texture.
  • the consumer can taste rich flavor from the viewpoint of taste.
  • the median particle diameter of the solid component contained in the raw material milk is preferably 0.7 ⁇ m or more and 1.2 ⁇ m.
  • the homogenization treatment may be performed on the raw material milk so that the median particle diameter of the solid component in the raw material milk is less than 1.2 ⁇ m.
  • the production method according to the present invention may further include a deoxidizing step of reducing the concentration of dissolved oxygen contained in the raw material milk before the ultra-high temperature sterilization step.
  • a deoxidizing step of reducing the concentration of dissolved oxygen contained in the raw material milk before the ultra-high temperature sterilization step.
  • the fermented milk finally obtained preferably has a hardness of 40 to 100 g as measured by a curd meter (Curdmeter MAX ME-500: manufactured by I Techno Engineering Co., Ltd.).
  • the hardness of the fermented milk may be 50 g or more or 60 g or more.
  • the present invention it is possible to provide a fermented milk having an appropriate hardness that can sense richness even when the raw material milk is subjected to ultra-high temperature sterilization treatment.
  • FIG. 1 shows an example of the flow of the method for producing fermented milk according to the present invention.
  • the present invention relates to a method for producing fermented milk having an appropriate hardness.
  • An example of fermented milk produced according to the invention is yoghurt.
  • the yogurt is preferably a post-fermented plain type or hard type.
  • the method for producing fermented milk comprises a raw material milk preparation step (S1), a homogenization step (S2), a heat sterilization step (S3), and a lactic acid bacteria starter inoculation step (S4). And fermentation step (S5).
  • a raw material milk preparation process (S1) is a process of preparing the raw material milk used as the origin of fermented milk.
  • Raw milk is also called yogurt base or yogurt mix.
  • Raw material milk is one selected from the group consisting of milk, concentrated milk, whole milk powder, skimmed milk, skimmed milk, skimmed milk, partially skimmed milk, partially skimmed milk, partially skimmed milk, partially skimmed milk, and milk protein concentrate Or contains two or more.
  • known raw materials can be used as raw material milk.
  • raw material milk may consist of only raw milk (100% raw milk).
  • the raw material milk may be prepared by mixing raw milk with skimmed milk powder, cream, water and the like.
  • raw material milk is, besides these, pasteurized milk, whole fat milk, skimmed milk, whole fat concentrated milk, skimmed concentrated milk, whole fat milk powder, butter milk, salted butter, unsalted butter, whey, whey powder, Prepared by mixing (adding) whey protein concentrate (WPC), whey protein isolate (WPI), ⁇ -La (alpha-lactalbumin), ⁇ -Lg (beta-lactoglobulin), lactose, etc. It may be. Also, raw material milk may be prepared by appropriately adding prewarmed gelatin, agar, thickener, gelling agent, stabilizer, emulsifier, sucrose, sweetener, flavor, vitamins, minerals, etc. Good.
  • additives for enhancing the hardness of fermented milk such as gelatin, agar, thickeners, gelling agents, stabilizers, etc., may not be added to the raw material milk as there is a concern that the flavor of the fermented milk may be impaired. preferable.
  • the physical properties of the finally obtained fermented milk are not too soft. It is supposed to be maintained.
  • the lower limit of the fat content (especially milk fat content) contained in the raw material milk may be 5% by weight or more, and 6% by weight, 7% by weight, 8% by weight, 9% by weight or 10% by weight Good.
  • the upper limit of the fat content contained in the raw material milk is preferably 15% by weight or less, and may be 14% by weight, 13% by weight, 12% by weight, 11% by weight, or 10% by weight.
  • the fat content in raw material milk is directly reflected in the fat content of fermented milk.
  • By enhancing the fat content of fermented milk it is possible to make the flavor rich while enhancing the hardness of fermented milk.
  • the ratio of the material in the raw material milk and the material containing milk fat such as concentrated milk, whole milk powder, and cream may be increased.
  • the “cream” is “raw milk, milk or special milk from which special ingredients other than milk fat have been removed,” as defined in the “Ministry Ordinance on Ingredient Specifications of Milk and Dairy Products” (Ordinance of the Ministry of Milk etc.) of Japan Basically, it contains milk fat at 18.0% by weight or more.
  • the cream when the cream is mixed with the raw material milk and its milk fat content is adjusted to a high level, the cream may be a whipped cream in an appropriate whipped (foaming) state.
  • Whipped cream is one in which fresh cream or fresh cream is stirred to contain air.
  • whey protein concentrate may be mixed with raw material milk.
  • the “whey protein concentrate” is a concentrate of whey protein-based particles having an average particle size of 2 to 10 ⁇ m.
  • the raw material milk may contain whey protein concentrate at 1 to 20% by weight or 5 to 15% by weight.
  • the homogenization step (S2) is a step of homogenizing the raw material milk.
  • particles (fat globules) mainly composed of protein and / or fat contained in raw material milk are finely pulverized (refined).
  • the homogenization step may be performed only once, may be performed twice, or may be performed three or more times.
  • a method of homogenizing the raw material milk for example, there is a method of passing raw material milk under pressure and pushing it through a narrow gap, or a method of passing raw material milk under reduced pressure and suctioning it through a narrow gap.
  • the pressure at which the raw material milk is pressurized or sucked and the flow rate thereof are adjusted so that the median particle diameter of the solid component contained in the raw material milk is in the range of 0.7 to 1.2 ⁇ m.
  • the step of homogenizing the raw material milk may be performed until the median particle diameter of the raw material milk falls within the above-mentioned predetermined range until immediately before the step of fermenting the raw material milk.
  • the pressure for pressurizing (or sucking) the raw material milk in the homogenization step may be 10 to 20 MPa, or 12 to 18 MPa.
  • the homogenization treatment is not limited to treatment using a known homogenizer (homogenizer), but also includes known shearing treatment using stirring, a homomixer, an extruder or the like.
  • the "median particle diameter” means a particle diameter corresponding to 50% of the integrated distribution curve on a volume basis.
  • the heat sterilization step (S3) is a step of heating and sterilizing the raw material milk before fermenting the raw material milk.
  • Ultra high-temperature sterilization means that raw material milk is heat-sterilized at 120 to 150 ° C. for 1 to 30 seconds.
  • the heat sterilization step is performed after the homogenization step.
  • the heat sterilization process may be performed before the homogenization process.
  • not only ultra-high temperature sterilization of the raw material milk after preparation of the raw material milk but also ultra-high temperature sterilization may be performed on the raw material of the raw material milk containing protein such as skimmed milk and milk.
  • ultra-high temperature sterilization it is possible to perform ultra-high temperature sterilization on the raw material in the production line before preparation of the raw material milk, or to prepare separately the raw material subjected to the ultra-high temperature sterilization and mix with water etc. to adjust the raw material milk.
  • the ultra-high temperature sterilization may be performed again after adjusting the raw material milk using the raw material and before the fermentation process, or Sterilization can also be performed.
  • High temperature short time sterilization is a process of heat sterilizing the raw material milk at 90 to 115 ° C. for 1 to 10 minutes.
  • the lower limit of the heating temperature in ultra-high temperature sterilization may be 120 ° C. or higher, and may be 123 ° C., 125 ° C., 128 ° C., or 130 ° C.
  • the upper limit of the heating temperature in ultra-high temperature sterilization may be 150 ° C. or less, and may be 145 ° C., 140 ° C., or 135 ° C.
  • the lower limit of the heating time in the ultra-high temperature sterilization is preferably 1 second, 2 seconds, or 5 seconds, and the upper limit of the heating time is preferably 30 seconds, 20 seconds, or 15 seconds.
  • the fermentation temperature means a temperature at which a microorganism (such as a lactic acid bacterium) is activated to promote the growth of the microorganism.
  • the fermentation temperature range of raw material milk is generally 30 to 60 ° C.
  • it is preferable to cool the culture medium which has been heated to high temperature after heat sterilization for example, to a culture temperature range of 30 to 60 ° C., and more preferably to 40 to 50 ° C.
  • the lactic acid bacteria starter inoculation step (S4) is a step of inoculating (adding) the lactic acid bacteria starter to the raw material milk cooled to the fermentation temperature range after heat sterilization.
  • the lactic acid bacteria starter may be inoculated after the raw material milk has fallen to a predetermined temperature after heat sterilization, or the lactic acid bacteria starter may be in the middle of the raw material milk falling to a predetermined temperature after the heat sterilization process. You may inoculate.
  • the lactic acid bacteria starter is preferably added at 0.1% by weight or more to the raw material milk.
  • the lactic acid bacteria starter may be added at 0.1 to 15% by weight, 0.5 to 10% by weight, or 1 to 5% by weight based on the raw material milk.
  • raw material milk in which the lactic acid bacteria starter was inoculated is also called fermented milk base material.
  • the lactic acid bacteria starter preferably comprises Bulgarian bacteria. "Bulgaria” is Lactobacillus bulgaricus (L. bulgaricus). Also, the lactic acid bacteria starter preferably contains Thermophilus bacteria in addition to Bulgarian bacteria. "Thermophilus bacteria” is Streptococcus thermophilus (S. thermophilus). Furthermore, in the present invention, the lactic acid bacteria may contain known lactic acid bacteria in addition to the Bulgarian bacteria and the thermophilus bacteria. Examples of known lactic acid bacteria are: Lactobacillus gas (L. gasseri), Lactis bacteria (L. lactis), Cremoris bacteria (L. cremoris), Bifids There are bacteria (Bifidobacterium (Bifidobacterium)) and the like.
  • a fermentation process (S5) is a process which ferments raw material milk by a lactic-acid-bacteria starter.
  • fermented milk is obtained by fermenting raw material milk (fermented milk base material) inoculated with the lactic acid bacteria starter in a fermentation temperature range (for example, 30 to 60 ° C.).
  • post-fermentation is preferably employed as the fermentation process.
  • Post-fermentation means that stationary fermentation is carried out after the raw material milk inoculated with the lactic acid bacteria starter is filled in a container.
  • it is general to homogenize and sterilize the raw material milk and then to add the lactic acid bacteria starter to the raw material milk and then to fill the container with the starter.
  • the container should just be a container generally used in manufacture of fermented milk (dairy products), for example, containers made of plastic, glass, paper, etc. are employable. Moreover, it is preferable that the container with which the fermented milk base material was filled be settled in the sealed state.
  • “stationary” said here means that a fermented milk base material is not stirred, for example, even when moving the container which accommodated the fermented milk base material, fermented milk base It corresponds to "stationary” if the material is not stirred. According to post-fermentation, yogurt having a certain hardness such as so-called plain type or hard type can be obtained.
  • conditions for fermenting the raw material milk may be appropriately adjusted in consideration of the type and number of raw material milk and lactic acid bacteria, the flavor and texture of the fermented milk, etc.
  • the raw material milk be held in the fermentation temperature range for one hour or more.
  • the period for holding the raw material milk is preferably 1 hour to 12 hours, more preferably 2 hours to 8 hours, and 3 hours to 5 hours
  • the conditions for fermenting the raw material milk may be appropriately adjusted with the goal that the fermented milk has a predetermined lactic acid level (acidity) or pH.
  • the fermentation process is preferably continued until the lactic acid content of the fermented milk reaches 0.7% or 0.8%.
  • the acidity (lactate acidity) of raw material milk can be measured according to the "test method of ingredient specification of milk etc.” of the Minister of the Ministry of Milk etc. Specifically, 10 mL of ion-exchanged water containing no carbon dioxide gas is added to 10 g of the sample, and then 0.5 mL of a phenolphthalein solution is added as an indicator.
  • the phenolphthalein solution is prepared by dissolving 1 g of phenolphthalein in an ethanol solution (50%) and filling up to 100 mL.
  • the fermented milk After finishing the fermentation (for example after reaching a predetermined acidity), the fermented milk is cooled. Cooling the fermented milk suppresses the progress of the fermentation. At this time, the fermented milk is cooled to a temperature lower than the fermentation temperature range (eg, 30 to 60 ° C.). For example, fermented milk is preferably cooled to 15 ° C. or less. Specifically, the fermented milk is preferably cooled to 1 to 15 ° C., more preferably cooled to 3 to 12 ° C., and still more preferably cooled to 5 to 10 ° C. Thus, by cooling the fermented milk to a temperature suitable for food, it is possible to suppress or prevent the change in taste (such as acidity) or texture (such as texture) and physical properties (such as hardness) of the fermented milk.
  • the fermented milk is cooled. Cooling the fermented milk suppresses the progress of the fermentation. At this time, the fermented milk is cooled to a temperature lower than
  • the manufacturing method of this invention may further include the deoxidizing process.
  • the deoxygenation step is a step of reducing the concentration of dissolved oxygen contained in the raw material milk.
  • the deoxygenation step may be performed before the fermentation step, and may be performed, for example, between the raw material milk preparation step and the homogenization step, or between the homogenization step and the fermentation step.
  • the deoxygenation step is such that the dissolved oxygen concentration of the raw material milk at the start of fermentation is lower than usual.
  • the raw material milk subjected to the deoxygenation step has a dissolved oxygen concentration of 5 ppm or less, 3 ppm or less, or 1 ppm or less.
  • the method of reducing the dissolved oxygen concentration of the raw material milk may be, for example, a method of injecting an inert gas into the raw material milk to replace the oxygen and the inert gas of the raw material milk. It may be a method of removing the oxygen of the raw material milk by degassing while holding the The method and equipment for reducing the concentration of dissolved oxygen in the raw material milk may be not only the method described above but also known methods and equipment.
  • the appropriate hardness means specifically that the hardness of fermented milk measured with a curd meter (Curdmeter MAX ME-500: manufactured by I Techno Engineering Co., Ltd.) is in the range of 40 to 100 g. Do. If the hardness of the fermented milk is 40 g or more, it is possible to prevent the shape from being broken when the fermented milk product is distributed or displayed.
  • the hardness of fermented milk is 100 g or less, the texture at the time of eating or after stirring becomes smooth.
  • the lower limit of the hardness of fermented milk may be 40 g or more, preferably 50 g or 60 g, particularly preferably 70 g or 75 g, and the upper limit of the hardness of fermented milk may be 100 g or less , 95 g, 90 g, 85 g, or 80 g.
  • the fermented milk obtained by the above-mentioned production method reflects the fat content of the raw material milk as it is, the fat content of the fermented milk has a high fat composition in the range of 5 to 15% by weight. As described above, by performing the ultra-high temperature sterilization treatment and enhancing the fat content in the raw material milk and the hardness of the fermented milk, it is possible to provide a thick but well-fermented fermented milk.
  • the hardness (CT: curd tension) of fermented milk was evaluated using a curd meter (Curdmeter MAX ME-500: manufactured by I Techno Engineering Co., Ltd.). Specifically, a yogurt knife with a weight of 100 g is placed on the top face of the fermented milk, and the fermented milk is continuously elevated and weighted at a rate of about 2 g / sec to match the elapsed time of this weighting. Then, the measured value of this weight is expressed by a curve.
  • the elapsed time (seconds) of this weight is taken as the vertical axis, and the measured value of this weight is taken as the horizontal axis, and 10 g of the vertical axis and 4 seconds of the horizontal axis are expressed as the same distance.
  • the inflection point (breaking point) is generated in this time-load curve by invading the yoghurt knife from the top surface of the fermented milk, and the load to this break is the hardness It is the index of (g).
  • Example 1 High fat: Ultra high temperature sterilization in a system with 6% fat content
  • mix raw milk 500 g
  • skimmed milk powder 55 g
  • fresh cream 88 g
  • tap water 337 g
  • non-fat milk solid content SNF
  • fat content FAT
  • the yogurt base was prepared to be 0%.
  • this yogurt base was homogenized at a flow rate of 20 L / h and a pressure of 15 MPa, the median particle diameter of fat globules was 0.76 ⁇ m.
  • the homogenized yogurt base was subjected to ultra-high temperature sterilization at 130 ° C for 2 seconds and then cooled to 43 ° C.
  • the curd tension was 77 g and had sufficient strength to withstand distribution.
  • the fermented milk of Example 1 was eaten, it was possible to feel extremely good physical properties of melting in the mouth while feeling rich (sensory evaluation).
  • Example 2 High fat: ultra-high temperature sterilization in a system with 5% fat
  • Raw milk 862 g
  • skimmed milk powder 25 g
  • fresh cream 33 g
  • tap water 60 g in a stainless steel container
  • non-fat milk solids (SNF) 10.0%
  • fat (FAT) 5.
  • the yogurt base was prepared to be 0%.
  • the yogurt base was homogenized at a flow rate of 20 L / h and a pressure of 15 MPa, the median particle diameter of fat globules was 0.72 ⁇ m.
  • the homogenized yogurt base was subjected to ultra-high temperature sterilization at 130 ° C for 2 seconds and then cooled to 43 ° C.
  • LB 81 bulk starter seedling bacteria using lactic acid bacteria used in Meiji yogurt LB 81
  • a cup container volume: 100 g, made of plastic
  • the fermented milk was fermented until the lactic acid content reached 0.7%, and then cooled to 5 ° C. to obtain fermented milk according to Example 2.
  • the curd tension was 40 g, and the strength was able to withstand distribution.
  • the fermented milk of Example 2 was eaten, although it was inferior in thickness to Example 1, it had a richer feeling than ordinary fermented milk, and it was felt that it had extremely good physical properties of melt in the mouth (sensory evaluation).
  • Example 3 High fat: ultra-high temperature sterilization in a system of 10% fat
  • Raw milk 800 g
  • skimmed milk powder 25 g
  • fresh cream 145 g
  • tap water 10 g in a stainless steel container
  • fat content (FAT) 10.
  • the yogurt base was prepared to be 0%.
  • this yogurt base was homogenized at a flow rate of 20 L / h and a pressure of 15 MPa, the median particle diameter of fat globules was 0.84 ⁇ m.
  • the homogenized yogurt base was subjected to ultra-high temperature sterilization at 130 ° C for 2 seconds and then cooled to 43 ° C.
  • the curd tension was 96 g and had a sufficient strength to withstand distribution.
  • the fermented milk of Example 3 was eaten, while feeling more thick compared with Example 1, the physical property with a good mouth melting was felt (sensory evaluation).
  • fermented milk is produced at a fat content of 10% by weight, the hardness of the curd is felt strongly as a texture, so the fat content limit is considered to be about 15% by weight.
  • Comparative Example 1 (Ultra-high temperature sterilization in the system of usual amount of fat: 3.0%) Raw milk: 500 g, skimmed milk powder: 56 g, fresh cream: 22 g, tap water: 402 g in a stainless steel container, non-fat milk solid content (SNF): 10.0%, fat content (FAT): 3.
  • the yogurt base was prepared to be 0%.
  • the preparation conditions of the yogurt base were different from those in Example 1, the homogenization treatment, the ultra-high-temperature sterilization, and the fermentation treatment were performed under the same conditions as in Example 1 to produce fermented milk.
  • Comparative Example 1 when the yoghurt base was homogenized at a pressure of 15 MPa, the median particle diameter of fat globules was 0.76 ⁇ m, which was equal to that of Example 1.
  • the present invention relates to a method of producing fermented milk, and accordingly, the present invention can be suitably used in the fermented milk production industry.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Dairy Products (AREA)

Abstract

【課題】原料乳に超高温殺菌処理を施した場合であっても,より濃厚さを感じられる適度な硬度を有する発酵乳を提供する。 【解決手段】発酵乳の製造方法は,原料乳を120~150℃で1~30秒間加熱殺菌する超高温殺菌工程と,超高温殺菌工程後の原料乳を発酵させる発酵工程とを含み,原料乳は脂肪分を5~15重量%で含む。

Description

発酵乳の製造方法
 本発明は,発酵乳の製造方法に関する。特に,本発明は,適度な硬度を有する後発酵型の発酵乳の製造方法に関するものである。
 いわゆるプレーンヨーグルトなどの後発酵型の発酵乳を製造する際には,一般的に発酵乳の原料乳に乳酸菌スターターを添加し,その原料を容器に充填した後に容器内にて静置発酵させて乳酸菌発酵生成物であるカード(凝乳)を形成する。後発酵型の発酵乳は,輸送される際に型崩れが起こらないように,カードがある程度の硬さを有することが望ましい一方,カードが硬すぎると食感が優れないので,適度な滑らかさを有することが求められる。
 ところで,発酵乳の原料乳に超高温殺菌処理(例えば120℃以上で1秒以上加熱する処理)を施すことで,極めて口どけの良い滑らかな食感の発酵乳が得られることが知られている(特許文献1等)。このように,超高温殺菌を施すとカードを形成する組織が軟化するため食感が滑らかなものになるが,その場合には流通時や陳列時においてカードが崩れてしまうという問題もある。
 この点,特許文献1には,生乳に含まれる酸素濃度を低減する脱酸素工程を行った後,その生乳に超高温殺菌処理を施すことで,流通時にカードの崩壊を防止するのに十分な硬さと,滑らかな食感を有する発酵乳を製造できることが報告されている。つまり,脱酸素処理により生乳中のタンパク質を保護されるため,その後に超高温殺菌を行ってもカードを形成する繊維の軟化が防止されると考えられている。
国際公開WO2008/068893号パンフレット
 しかしながら,超高温殺菌処理の前に原料乳(特に生乳)の酸素濃度を低下させる脱酸素処理を行った場合であっても,最終的に得られる発酵乳の硬度(カードテンション)は約50g程度が限界であるとされていた(特許文献1 実施例1参照)。通常,発酵乳の硬度は40g以上であれば流通に耐え得る一応の強度を有するとされているが,大量生産時における製造上の個体差などを考慮すると,発酵乳の硬度はより高いことが好ましい。また,脱酸素工程によって保護できるタンパク質の量にはバラツキがあり,すべての発酵乳が流通に耐えうる一定の強度を有するものとはなり難く,このような製造方法では歩留まり率が低くなることが懸念される。
 また,近年では,濃厚な風味を呈する発酵乳の需要が高まっている。発酵乳の硬度が高いと消費者は喫食時に濃厚さを感じることができる。このため,近年の需要に応えるためにも,超高温殺菌処理を施して喫食時における口溶けを良化しつつ,適度な濃厚感を提供するために発酵乳の硬度をより高いものとすることが好ましい。
 そこで,本発明は,原料乳に超高温殺菌処理を施した場合であっても,より濃厚さを感じられる適度な硬度を有する発酵乳を提供することを目的とする。
 本発明の発明者らは,上記目的を達成する手段について鋭意検討した結果,原料乳に超高温殺菌処理を行う場合であっても,その原料乳の脂肪分を5重量%以上に調整し,比較的脂肪分の濃度を高くすることで,発酵乳の硬度をより高い値に維持することができるという知見を得た。このように,発酵乳の硬度を高めることで,濃厚な食感を得ることができる。また,発酵乳中の脂肪含有量を高く調整することで,発酵乳の風味をより濃厚なものとするのに寄与する。そして,本発明者らは,上記知見に基づけば上記の目的を効果的に達成できることに想到し,本発明を完成させた。
 本発明は,発酵乳の製造方法に関する。本発明は,超高温殺菌工程と発酵工程とを含む。超高温殺菌工程は,原料乳を120~150℃で1~30秒間加熱殺菌する工程である。発酵工程は,超高温殺菌工程後の原料乳を発酵させる工程である。なお,発酵工程は,乳酸菌スターターが接種された原料乳を容器に充填した後に静置発酵させる後発酵工程であることが好ましい。この場合,プレーンヨーグルトなどの後発酵型の発酵乳を得ることができる。そして,本発明において,原料乳は脂肪分を5~15重量%で含むものが用いられる。
 上記のように,超高温殺菌を行う場合であっても,その原料乳の脂肪分を5~15重量%とすることで,適度な硬度を有する発酵乳が得られることが確認された。すなわち,一般的な後発酵型の発酵乳(プレーンヨーグルト等)は,原料乳の脂肪分が3重量%前後に調整されているが,このような原料乳に超高温殺菌処理を施すとカードが著しく軟化することとなる。これに対して,発明者らは,原料乳の脂肪分を5重量%以上に高めることで,超高温殺菌を行った場合であっても強固なカードを実現できることを見出した。特に,原料乳を高脂肪組成とした発酵乳は,後述する実施例に示すとおり,その硬度(カードテンション)が40g以上となり,従来技術に比してより強固なものとなった。また,原料乳の組成を調整して発酵乳の硬度を強化することで,大量生産時においても,生産された製品が流通に耐え得る一定の強度をほぼ均一に有するものとなり,歩留まり率が改善される。このように,発酵乳の硬度を高く維持することで,消費者は食感の観点から濃厚感を得やすくなる。さらに,原料乳の脂肪含有量を高めることで,消費者は味覚の観点からも濃厚な風味を味わうことができる。また,超高温殺菌を行うことで,カードを形成する繊維が軟化するため,発酵乳の口溶けが極めて滑らかなものとなる。
 本発明において,原料乳に含まれる固形成分のメディアン粒子径は0.7μm以上1.2μmであることが好ましい。例えば,原料乳中の固形成分のメディアン粒子径が1.2μm未満となるように,原料乳に対して均質化処理を行えばよい。このように,原料乳中のメディアン粒子径を小さくすることで,発酵乳の硬度が高くなるため,超高温殺菌処理を施した場合であっても適度な硬度を持つ発酵乳が得られる。
 本発明に係る製造方法は,超高温殺菌工程の前に,原料乳に含まれる溶存酸素濃度を低減させる脱酸素工程をさらに含むこととしてもよい。このように,脱酸素処理を施すことで生乳中のタンパク質が保護されるため,その後に超高温殺菌を行ってもカードを形成する繊維の軟化が防止される。このため,原料乳の溶存酸素濃度を低減させることで発酵乳の硬度を維持することができる。
 本発明において,最終的に得られた発酵乳は,カードメーター(Curdmeter MAX ME-500:アイテクノエンジニアリング社製)により測定された硬度が40~100gであることが好ましい。特に,発酵乳の硬度は,50g以上又は60g以上とすると良い。このように,発酵乳の硬度を一定値以上に維持することで,流通時におけるカードの崩壊を防ぐとともに,消費者に対して喫食時に濃厚さを感じさせることができる。
 本発明に拠れば,原料乳に超高温殺菌処理を施した場合であっても,より濃厚さを感じられる適度な硬度を有する発酵乳を提供することができる。
図1は,本発明に係る発酵乳の製造方法のフローの一例を示している。
 以下,図面を用いて本発明を実施するための形態について説明する。本発明は,以下に説明する形態に限定されるものではなく,以下の形態から当業者が自明な範囲で適宜変更したものも含む。
 なお,本願明細書において,「A~B」とは「A以上B以下」であることを意味する。
 本発明は,適度な硬度を有する発酵乳の製造方法に関する。本発明によって製造される発酵乳の例は,ヨーグルトである。ヨーグルトは,後発酵型のプレーンタイプやハードタイプであることが好ましい。
 図1に示されるように,本発明の実施形態に係る発酵乳の製造方法は,原料乳調製工程(S1),均質化工程(S2),加熱殺菌工程(S3),乳酸菌スターター接種工程(S4),及び発酵工程(S5)を含む。
 原料乳調製工程(S1)は,発酵乳の元となる原料乳を調製する工程である。原料乳は,ヨーグルトベースやヨーグルトミックスとも呼ばれる。原料乳は,乳,濃縮乳,全脂粉乳,脱脂乳,脱脂濃縮乳,脱脂粉乳,部分脱脂乳,部分脱脂濃縮乳,部分脱脂粉乳,及び乳たんぱく質濃縮物からなる群より選択される1種または2種以上を含む。本発明において,原料乳には公知のものを用いることができる。例えば,原料乳は,生乳のみからなるもの(生乳が100%のもの)であってもよい。また,原料乳は,生乳に,脱脂粉乳,クリーム,水などを混合して調製したものであってもよい。また,原料乳は,これらの他に,殺菌乳,全脂乳,脱脂乳,全脂濃縮乳,脱脂濃縮乳,全脂粉乳,バターミルク,有塩バター,無塩バター,ホエー,ホエー粉,ホエータンパク質濃縮物(WPC),ホエータンパク質単離物(WPI),α-La(アルファ-ラクトアルブミン),β-Lg(ベータ-ラクトグロブリン),乳糖などを混合(添加)して調製したものであってもよい。また,原料乳は,予め温めたゼラチン,寒天,増粘剤,ゲル化剤,安定剤,乳化剤,ショ糖,甘味料,香料,ビタミン,ミネラルなどを適宜添加して調製したものであってもよい。ただし,ゼラチン,寒天,増粘剤,ゲル化剤,安定剤などの発酵乳の硬度を高めるための添加剤は,発酵乳の風味を損なうことが懸念されるため,原料乳に添加しないことが好ましい。
 本発明では,原料乳の脂肪含有量を高く調整することで,原料乳に対して超高温殺菌を施した場合であっても,最終的に得られる発酵乳の物性を柔らか過ぎない適度な硬度に維持することとしている。原料乳に含まれる脂肪分(特に乳脂肪分)の下限は,5重量%以上であればよく,6重量%,7重量%,8重量%,9重量%,又は10重量%であってもよい。また,原料乳に含まれる脂肪分の上限は,15重量%以下であることが好ましく,14重量%,13重量%,12重量%,11重量%,又は10重量%であってもよい。基本的に原料乳中の脂肪含有量はそのまま発酵乳の脂肪含有量に反映される。発酵乳の脂肪含有量を高めることで,発酵乳の硬度を強化しつつ,その風味を濃厚なものとすることができる。原料乳の脂肪含有量を高めるためには,例えば原料乳中における乳や,濃縮乳,全脂粉乳,クリームなどの乳脂肪分を含有する材料の割合を高くすればよい。なお,「クリーム」は,日本の「乳及び乳製品の成分規格等に関する省令」(乳等省令)で定める「生乳,牛乳または特別牛乳から乳脂肪分以外の成分を除去したもの」であって,基本的に乳脂肪分を18.0重量%以上で含有している。また,原料乳にクリームを配合してその乳脂肪分を高く調整する場合,そのクリームは適度なホイップ(起泡)状態とされたホイップクリームを使用することとしてもよい。ホイップクリームは,生クリームやフレッシュクリームを撹拌して空気を含有させたものである。
 また,原料乳にホエータンパク質濃縮物(WPC)を混合することとしてもよい。「ホエータンパク質濃縮物」とは,平均粒子径が2~10μmであるホエータンパク質を主成分とする粒子の濃縮体である。ホエータンパク質濃縮物を原料乳に加えることで,原料乳の調製により,最終的に得られる発酵乳の強度をさらに向上させることができる。例えば,原料乳には,ホエータンパク質濃縮物が1~20重量%又は5~15重量%で含まれていることとしてもよい。
 均質化工程(S2)は,原料乳を均質化する工程である。均質化工程では,主に原料乳に含まれるタンパク質および/または脂肪分によって構成される粒子(脂肪球)を細かく粉砕(微細化)する。均質化工程は,1回のみ行われてもよいし,2回行われてもよいし,3回以上行われてもよい。原料乳を均質化する方法としては,例えば原料乳を加圧して押し出しながら狭い間隙を通過させる方法や,原料乳を減圧して吸引しながら狭い間隙を通過させる方法が挙げられる。均質化工程では,例えば原料乳に含まれる固形成分のメディアン粒子径が0.7~1.2μmの範囲となるように,原料乳を加圧又は吸引する圧力やその流速が調整される。また,原料乳を均質化する工程は,原料乳を発酵させる工程の直前まで,原料乳のメディアン粒子径が上記所定の範囲に収まる限度で行うようにしてもよい。また,均質化工程において,原料乳を加圧(又は吸引)する圧力は,10~20MPa,又は12~18MPaとすればよい。また,均質化処理は,公知の均質機(ホモゲナイザー)を用いた処理に限られず,その他に攪拌やホモミキサー,エクストルーダーなどによる公知の剪断処理も含まれる。なお,「メディアン粒子径」とは,体積基準での積算分布曲線の50%に相当する粒子径を意味する。
 加熱殺菌工程(S3)は,原料乳を発酵する前に,原料乳を加熱して殺菌する工程である。加熱殺菌工程では,超高温殺菌を行うことが好ましい。超高温殺菌とは,原料乳を120~150℃で1~30秒間加熱殺菌することを意味する。図1に示した実施形態において,加熱殺菌工程は,均質化工程後に行われる。ただし,加熱殺菌工程は,均質化工程前に行うこととしてもよい。また,本発明では,原料乳を調整した後にその原料乳を超高温殺菌することだけでなく,脱脂乳や牛乳といったタンパク質を含有する原料乳の原材料に超高温殺菌を行うこととしてもよい。また,原料乳の調整前に製造ラインにおいて原材料に超高温殺菌を施すこととしてもよいし,超高温殺菌を施した原材料を別途用意して水などと混合し原料乳を調整することもできる。また,原料乳の原材料に超高温殺菌を施す場合,その原材料を用いて原料乳を調整した後であって発酵工程の前に,超高温殺菌を再度行うこととしてもよいし,あるいは高温短時間殺菌を行うこともできる。高温短時間殺菌とは,90~115℃で1~10分間原料乳を加熱殺菌する工程である。
 超高温殺菌における加熱温度の下限は,120℃以上であればよく,123℃,125℃,128℃,又は130℃としてもよい。また,超高温殺菌における加熱温度の上限は,150℃以下であればよく,145℃,140℃,又は135℃としてもよい。また,超高温殺菌における加熱時間の下限は,1秒,2秒,又は5秒であることが好ましく,加熱時間の上限は,30秒,20秒,又は15秒であることが好ましい。
 また,加熱によって原料乳を殺菌した後,乳酸菌スターター添加工程の前に,高温になっている原料乳を発酵に適した温度域(発酵温度域)にまで冷却することが好ましい。発酵温度とは,微生物(乳酸菌など)が活性化して,当該微生物の増殖促進される温度を意味する。例えば原料乳の発酵温度域は,30~60℃が一般的である。本発明においては,加熱殺菌後に高温になっている培地を,例えば30~60℃の培養温度域にまで冷却することが好ましく,40~50℃まで冷却することがより好ましい。
 乳酸菌スターター接種工程(S4)は,加熱殺菌後に発酵温度域にまで冷却された原料乳に,乳酸菌スターターを接種(添加)する工程である。なお,乳酸菌スターター接種工程では,加熱殺菌後に原料乳が所定温度まで低下した後に乳酸菌スターターを接種してもよいし,加熱殺菌工程後に原料乳が所定温度まで低下している最中に乳酸菌スターターを接種してもよい。乳酸菌スターターは,原料乳に対して,0.1重量%以上で添加することが好ましい。具体的には,乳酸菌スターターは,原料乳に対して,0.1~15重量%,0.5~10重量%,又は1~5重量%で添加すればよい。なお,乳酸菌スターターが接種された原料乳を発酵乳基材ともいう。
 乳酸菌スターターは,ブルガリア菌を含むことが好ましい。「ブルガリア菌」とは,ラクトバチルス・ブルガリクス(L. bulgaricus)である。また,乳酸菌スターターは,ブルガリア菌に加えて,サーモフィルス菌を含むことが好ましい。「サーモフィルス菌」とは,ストレプトコッカス・サーモフィルス(S.thermophilus)である。また,本発明において,乳酸菌には,ブルガリア菌とサーモフィルス菌の他に,公知の乳酸菌が含まれていてもよい。公知の乳酸菌の例は,ガセリ菌(ラクトバチルス・ガッセリ(L. gasseri)),ラクティス菌(ラクトコッカス・ラクティス(L. lactis)),クレモリス菌(ラクトコッカス・クレモリス(L. cremoris)),ビフィズス菌(ビフィドバクテリウム(Bifidobacterium))などある。
 発酵工程(S5)は,乳酸菌スターターによって原料乳を発酵させる工程である。発酵工程では,乳酸菌スターターが接種された原料乳(発酵乳基材)を発酵温度域(例えば30~60℃)に保持しながら発酵させて発酵乳を得る。本発明において,発酵工程としては,後発酵を採用することが好ましい。後発酵とは,乳酸菌スターターが接種された原料乳を容器に充填した後に静置発酵させることを意味する。後発酵型の発酵乳を製造する際には,原料乳を均質化及び殺菌してから,その原料乳に乳酸菌スターターを添加した後に,容器に充填することが一般的である。なお,容器は,発酵乳(乳製品)の製造において一般的に用いられる容器であればよく,例えばプラスチック製,ガラス製,又は紙製等の容器を採用することができる。また,発酵乳基材が充填された容器は密封された状態で静置されることが好ましい。なお,ここにいう「静置」とは,発酵乳基材を攪拌しないことを意味するものであり,例えば発酵乳基材を収容した容器を移動するような場合であっても,発酵乳基材が撹拌されないのであれば「静置」に該当する。後発酵によれば,いわゆるプレーンタイプやハードタイプといった一定の硬度を持つヨーグルトが得られる。
 ここで,発酵工程では,原料乳を発酵させる条件を,原料乳や乳酸菌の種類や数量,発酵乳の風味や食感などを考慮して,発酵温度や発酵時間などを適宜調整すればよい。例えば,発酵工程では,原料乳が発酵温度域に1時間以上で保持されていることが好ましい。具体的には,発酵工程では,原料乳を保持する期間(発酵時間)は,1時間~12時間であることが好ましく,2時間~8時間であることがより好ましく,3時間~5時間であることがさらに好ましい。また,発酵工程では,原料乳を発酵させる条件を,発酵後の発酵乳が所定の乳酸酸度(酸度)やpHになることを目標にして適宜調節してもよい。具体的に,発酵工程は,発酵乳の乳酸酸度が0.7%又は0.8%に到達するまで継続することが好ましい。なお,原料乳の酸度(乳酸酸度)は,乳等省令の「乳等の成分規格の試験法」に従って測定することができる。具体的には,試料の10gに,炭酸ガスを含まないイオン交換水を10mLで添加してから,指示薬として,フェノールフタレイン溶液を0.5mLで添加する。そして,水酸化ナトリウム溶液(0.1mol/L)を添加しながら,微紅色が消失しないところを限度として滴定し,その水酸化ナトリウム溶液の滴定量から試料の100g当たりの乳酸の含量を求めて,酸度(乳酸酸度)とする。なお,フェノールフタレイン溶液は,フェノールフタレインの1gをエタノール溶液(50%)に溶かして100mLにフィルアップして調整される。
 発酵を終えた後(例えば所定の酸度に達した後),発酵乳は冷却される。発酵乳を冷却することで,発酵の進行が抑制される。このとき,発酵乳を発酵温度域(例えば30~60℃)よりも低温になるまで冷却する。例えば発酵乳は15℃以下まで冷却されることが好ましい。具体的には,発酵乳は,1~15℃に冷却されていることが好ましく,3~12℃に冷却されていることがより好ましく,5~10℃に冷却されていることがさらに好ましい。このように,発酵乳を食用に適した温度に冷却することで,発酵乳の風味(酸味など)や食感(舌触りなど)や物性(硬さなど)が変化することを抑制や防止できる。
 また,図示は省略するが,本発明の製造方法は,さらに脱酸素工程を含んでいてもよい。脱酸素工程は,原料乳に含まれる溶存酸素濃度を低減させる工程である。脱酸素工程は,上記発酵工程の前に行えばよく,例えば原料乳調整工程と均質化工程の間や,均質化工程と発酵工程の間に行うことができる。脱酸素工程は,発酵開始時における原料乳の溶存酸素濃度が通常よりも低くなるようにする。例えば,脱酸素工程を行った原料乳は,溶存酸素濃度が5ppm以下,3ppm以下,又は1ppm以下となることが好ましい。原料乳の溶存酸素濃度を低減することで乳酸酸度が所定の数値に早く到達するため,発酵時間が短縮し生産効率を向上させることができる。
 原料乳の溶存酸素濃度を低減する方法は,例えば原料乳に不活性ガスを注入して原料乳の酸素と不活性ガスを置換する方法であってもよいし,原料乳を低圧または真空の状態に保持して脱気することによって原料乳の酸素を除去する方法であってもよい。原料乳の溶存酸素濃度を低減する方法および設備は,上述した方法に限らず公知の方法および設備を用いることができる。
 上述した本発明の実施形態に係る製造方法によれば,発酵乳が滑らかな口溶けを呈するように原料乳に超高温殺菌処理を行った場合であっても,適度な硬度を有し,食感及び風味の観点で消費者に濃厚さを感じさせることのできる発酵乳を得ることができる。ここにいう,適度な硬度とは,具体的にはカードメーター(Curdmeter MAX ME-500:アイテクノエンジニアリング社製)により測定された発酵乳の硬度が,40~100gの範囲内であることを意味する。発酵乳の硬度が40g以上であれば,発酵乳製品の流通時や陳列時に形状が崩れることを防止できる。また,発酵乳の硬度が100g以下であれば,撹拌後あるは喫食時の食感が滑らかなものとなる。発酵乳の硬度の下限は,40g以上であればよく,50g又は60gであることが好ましく,70g又は75gであることが特に好ましい,また,発酵乳の硬度の上限は,100g以下であればよく,95g,90g,85g,又は80gであってもよい。また,上記製造方法により得られた発酵乳は,原料乳の脂肪分がそのまま反映されるため,発酵乳の脂肪分は5~15重量%の範囲の高脂肪組成となる。このように,超高温殺菌処理を行うとともに,原料乳中の脂肪含有量と発酵乳の硬度を高めることで,濃厚でありながら口溶けの良い発酵乳を提供することができる。
 続いて,実施例を参照して,本発明の内容をさらに具体的に説明する。ただし,本発明は,以下の実施例に限定されることなく,公知の手法に基づく様々な改良を加えることができるものである。
[評価方法]
(メディアン粒子径の測定方法)
 メディアン粒子径は,各実施例及び比較例において各種条件で調整した原料乳について,レーザー回折式の粒度分布測定装置SALD-2200(島津製作所製)を用いて測定した。具体的には,原料乳又は撹拌後の糊状の発酵乳をイオン交換水で希釈し,その回折・散乱の光強度の分布の最大値が35~75%(絶対値:700~1500)になるように調整した。そして,粒度分布測定装置用のソフトウェアWingSALD IIを用いて,その光強度の分布を解析しメディアン粒子径を求めた。なお,発酵乳の撹拌は,B型粘度計TVB-10(東機産業)の4号(M23)ローターを用いて,60rpmで30秒間撹拌した。「メディアン粒子径」とは,体積基準での積算分布曲線の50%に相当する粒子径を意味する。
(発酵乳の硬度の測定方法)
 発酵乳の硬度(CT:カードテンション)は,カードメーター(Curdmeter MAX ME-500:アイテクノエンジニアリング社製)を用いて評価した。具体的には,100gの重りを付けたヨーグルトナイフを発酵乳の天面に静置し,発酵乳を継続的に上昇させて,2g/秒程度で加重しながら,この加重の経過時間に合わせて,この加重の測定値を曲線で表現した。このとき,この加重の経過時間(秒)を縦軸,この加重の測定値を横軸とし,縦軸の10gと横軸の4秒を同じ距離として表現した。そして,発酵乳が破断に至った場合,発酵乳の天面からヨーグルトナイフが侵入することで,この時間-荷重曲線に変曲点(破断点)が生じ,この破断に至るまでの加重を硬度(g)の指標とした。
[実施例1]
(高脂肪:脂肪分6%の系における超高温殺菌)
 ステンレス容器にて,生乳:500g,脱脂粉乳:55g,生クリーム:88g,水道水:337gを混合して,無脂乳固形分(SNF):10.0%,脂肪分(FAT):6.0%となるように,ヨーグルトベースを調製した。このヨーグルトベースを,20L/hの流量,15MPaの圧力で均質化したところ,脂肪球のメディアン粒子径が0.76μmとなった。均質化後のヨーグルトベースを,130℃で2秒間超高温殺菌処理をした後に,43℃に冷却した。そして,LB81バルクスターター(明治社製ブルガリアヨーグルトLB81に用いられている乳酸菌を用いた種菌)を20g(2重量%)接種した後,カップ容器(容量:100g,プラスチック製)へ充填し,発酵室(43℃)で,乳酸酸度が0.7%に到達するまで発酵し,その後5℃まで冷却して,実施例1に係る発酵乳を得た。
 実施例1の発酵乳について硬度を測定したところ,カードテンションが77gであり,流通に耐え得る十分な強度を有していた。また,実施例1の発酵乳を喫食したところ,濃厚感がありながら,極めて口溶けの良い物性を感じられた(官能評価)。
[実施例2]
(高脂肪:脂肪分5%の系における超高温殺菌)
 ステンレス容器にて,生乳:862g,脱脂粉乳:25g,生クリーム:33g,水道水:60gを混合して,無脂乳固形分(SNF):10.0%,脂肪分(FAT):5.0%となるように,ヨーグルトベースを調製した。このヨーグルトベースを,20L/hの流量,15MPaの圧力で均質化したところ,脂肪球のメディアン粒子径が0.72μmとなった。均質化後のヨーグルトベースを,130℃で2秒間超高温殺菌処理をした後に,43℃に冷却した。そして,LB81バルクスターター(明治社製ブルガリアヨーグルトLB81に用いられている乳酸菌を用いた種菌)を20g(2重量%)接種した後,カップ容器(容量:100g,プラスチック製)へ充填し,発酵室(43℃)で,乳酸酸度が0.7%に到達するまで発酵し,その後5℃まで冷却して,実施例2に係る発酵乳を得た。
 実施例2の発酵乳について硬度を測定したところ,カードテンションが40gであり,流通に耐え得る強度を有していた。また,実施例2の発酵乳を喫食したところ,実施例1に比べて濃厚さは劣るものの,通常の発酵乳よりは濃厚感があり,極めて口溶けの良い物性を感じられた(官能評価)。
[実施例3]
(高脂肪:脂肪分10%の系における超高温殺菌)
 ステンレス容器にて,生乳:800g,脱脂粉乳:25g,生クリーム:145g,水道水:10gを混合して,無脂乳固形分(SNF):10.0%,脂肪分(FAT):10.0%となるように,ヨーグルトベースを調製した。このヨーグルトベースを,20L/hの流量,15MPaの圧力で均質化したところ,脂肪球のメディアン粒子径が0.84μmとなった。均質化後のヨーグルトベースを,130℃で2秒間超高温殺菌処理をした後に,43℃に冷却した。そして,LB81バルクスターター(明治社製ブルガリアヨーグルトLB81に用いられている乳酸菌を用いた種菌)を20g(2重量%)接種した後,カップ容器(容量:100g,プラスチック製)へ充填し,発酵室(43℃)で,乳酸酸度が0.7%に到達するまで発酵し,その後5℃まで冷却して,実施例3に係る発酵乳を得た。
 実施例3の発酵乳について硬度を測定したところ,カードテンションが96gであり,流通に耐え得る十分な強度を有していた。また,実施例3の発酵乳を喫食したところ,実施例1に比べてより濃厚さを感じるとともに,口溶けの良い物性を感じられた(官能評価)。なお,脂肪分10重量%として発酵乳を製造するとカードの硬さが食感として強く感じられるようになったため,脂肪分の限度は15重量%程度であると考えられる。
[比較例1]
(通常量の脂肪分:3.0%の系における超高温殺菌)
 ステンレス容器にて,生乳:500g,脱脂粉乳:56g,生クリーム:22g,水道水:402gを混合して,無脂乳固形分(SNF):10.0%,脂肪分(FAT):3.0%となるように,ヨーグルトベースを調製した。比較例1では,ヨーグルトベースの調製条件を実施例1と異ならせた以外は,上記実施例1とすべて同じ条件で均質化処理,超高温殺菌,及び発酵処理を行い,発酵乳を製造した。なお,比較例1では,ヨーグルトベースを15MPaの圧力で均質化したところ,脂肪球のメディアン粒子径が実施例1と等しい0.76μmであった。
 比較例1の発酵乳は,官能評価において口溶けの良い物性を感じられたものの,カードテンションは25gであり,流通に耐え得る十分な強度を有していなかった。
 上記比較例1の試験の結果,超高温殺菌を行うことで発酵乳の口溶けが良化されるものの,通常の脂肪含有量ではカードの強度が維持できないことが確認された。他方で,実施例1の試験の結果,超高温殺菌を行った場合でも,ヨーグルトベースの脂肪含有量を高めることでカードの強度が維持されて,濃厚かつ口溶けの良い発酵乳が得られることが確認された。
 以上,本願明細書では,本発明の内容を表現するために,本発明の実施形態及びその実施例の説明を行った。ただし,本発明は,上記実施形態及び実施例に限定されるものではなく,本願明細書に記載された事項に基づいて当業者が自明な変更形態や改良形態を包含するものである。
 本発明は,発酵乳の製造方法に関する,従って,本発明は,発酵乳の製造業において好適に利用しうる。

Claims (4)

  1.  原料乳を120~150℃で1~30秒間加熱殺菌する超高温殺菌工程と,
     前記超高温殺菌工程後の原料乳を発酵させる発酵工程と,を含み,
     前記原料乳は脂肪分を5~15重量%で含む,
     発酵乳の製造方法。
  2.  前記原料乳のメディアン粒子径が0.7μm以上1.2μm未満である
     請求項1に記載の発酵乳の製造方法。
  3.  前記超高温殺菌工程の前に,原料乳に含まれる溶存酸素濃度を低減させる脱酸素工程をさらに含む
     請求項1又は請求項2に記載の発酵乳の製造方法。
  4.  前記発酵乳は,カードメーター(Curdmeter MAX ME-500:アイテクノエンジニアリング社製)により測定された硬度が40~100g以上である
     請求項1から請求項3のいずれかに記載の発酵乳の製造方法。
PCT/JP2018/029901 2017-09-26 2018-08-09 発酵乳の製造方法 WO2019064955A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017185455A JP2019058104A (ja) 2017-09-26 2017-09-26 発酵乳の製造方法
JP2017-185455 2017-09-26

Publications (1)

Publication Number Publication Date
WO2019064955A1 true WO2019064955A1 (ja) 2019-04-04

Family

ID=65902821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/029901 WO2019064955A1 (ja) 2017-09-26 2018-08-09 発酵乳の製造方法

Country Status (2)

Country Link
JP (1) JP2019058104A (ja)
WO (1) WO2019064955A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114343016A (zh) * 2022-01-19 2022-04-15 黑龙江省绿色食品科学研究院 一种零添加酸奶的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1099019A (ja) * 1996-09-26 1998-04-21 Snow Brand Milk Prod Co Ltd ハードヨーグルトおよびその製造法
JP2010104376A (ja) * 2010-01-15 2010-05-13 Meiji Milk Prod Co Ltd 発酵乳の製造法及び発酵乳
WO2017014290A1 (ja) * 2015-07-23 2017-01-26 株式会社明治 発酵乳およびその製造方法
JP2017042061A (ja) * 2015-08-24 2017-03-02 雪印メグミルク株式会社 洋酒入り発酵乳

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1099019A (ja) * 1996-09-26 1998-04-21 Snow Brand Milk Prod Co Ltd ハードヨーグルトおよびその製造法
JP2010104376A (ja) * 2010-01-15 2010-05-13 Meiji Milk Prod Co Ltd 発酵乳の製造法及び発酵乳
WO2017014290A1 (ja) * 2015-07-23 2017-01-26 株式会社明治 発酵乳およびその製造方法
JP2017042061A (ja) * 2015-08-24 2017-03-02 雪印メグミルク株式会社 洋酒入り発酵乳

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114343016A (zh) * 2022-01-19 2022-04-15 黑龙江省绿色食品科学研究院 一种零添加酸奶的制备方法
CN114343016B (zh) * 2022-01-19 2022-11-25 哈尔滨果垒生物科技有限公司 一种零添加酸奶的制备方法

Also Published As

Publication number Publication date
JP2019058104A (ja) 2019-04-18

Similar Documents

Publication Publication Date Title
JP7382360B2 (ja) 発酵乳およびその製造方法
JP6719383B2 (ja) 液状発酵乳及びその製造方法
JP7046492B2 (ja) 低酸味発酵乳の製造方法
AU2006285858B2 (en) Process for producing fermented milk and fermented milk
WO2012133015A1 (ja) 液状発酵乳及びその製造方法
US20200045985A1 (en) Choline ester-containing composition for oral ingestion
JP6656963B2 (ja) 後発酵型ドリンクヨーグルトおよびその製造方法
JP6955907B2 (ja) 発酵乳の製造方法
JP6901837B2 (ja) 低温殺菌した原料ミックスを用いた発酵乳の製造方法
JP6641275B2 (ja) ブルガリア菌の増殖が促進された発酵乳及びその製造方法
WO2019064955A1 (ja) 発酵乳の製造方法
WO2016009951A1 (ja) ブルガリア菌の増殖が促進された発酵乳及びその製造方法
JP6334639B2 (ja) 二層タイプの発酵乳製品及びその製造方法
WO2019064954A1 (ja) 発酵乳及びその製造方法
JP2019037188A (ja) 発酵乳飲料の製造方法
WO2019064956A1 (ja) 発酵乳の製造方法
JP7246877B2 (ja) 液状発酵乳の製造方法
JP7471046B2 (ja) 低温発酵による発酵乳の製造方法および該方法により製造された発酵乳
JP7385984B2 (ja) 発酵乳の高pH製造方法および該方法により製造された発酵乳
WO2024058229A1 (ja) 殺菌発酵乳及びその製造方法
JP7496701B2 (ja) 発酵乳およびその製造方法
JPWO2018056455A1 (ja) 超高温殺菌処理した材料を含む原料ミックスを用いた発酵乳の製造方法
JP2021141853A (ja) 発酵乳およびその製造方法
JP2023047901A (ja) 発酵乳及びその製造方法
JP5571534B2 (ja) 発酵乳及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18860449

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18860449

Country of ref document: EP

Kind code of ref document: A1