WO2016063928A1 - 電流検出装置および電流検出用抵抗器 - Google Patents

電流検出装置および電流検出用抵抗器 Download PDF

Info

Publication number
WO2016063928A1
WO2016063928A1 PCT/JP2015/079760 JP2015079760W WO2016063928A1 WO 2016063928 A1 WO2016063928 A1 WO 2016063928A1 JP 2015079760 W JP2015079760 W JP 2015079760W WO 2016063928 A1 WO2016063928 A1 WO 2016063928A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
current detection
electrodes
electric current
detection device
Prior art date
Application number
PCT/JP2015/079760
Other languages
English (en)
French (fr)
Inventor
里志 知久
孝典 菊地
Original Assignee
Koa株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa株式会社 filed Critical Koa株式会社
Priority to JP2016555268A priority Critical patent/JP6650409B2/ja
Priority to DE112015004849.9T priority patent/DE112015004849T5/de
Priority to US15/516,179 priority patent/US10156587B2/en
Publication of WO2016063928A1 publication Critical patent/WO2016063928A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/20Modifications of basic electric elements for use in electric measuring instruments; Structural combinations of such elements with such instruments
    • G01R1/203Resistors used for electric measuring, e.g. decade resistors standards, resistors for comparators, series resistors, shunts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0092Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • H01C1/148Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors the terminals embracing or surrounding the resistive element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/16Resistor networks not otherwise provided for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00

Definitions

  • the present invention relates to a current detection technique.
  • the chip resistor includes, for example, a resistor made of a noble metal alloy or a metal alloy, a highly conductive electrode, and a molten solder material.
  • Patent Document 1 discloses a mounting structure of a current detection resistor.
  • FIG. 13 is a side view showing an example of a mounting structure of a shunt resistor, which is an example of the current detection device (current detection resistor) described in Patent Document 1.
  • a metal substrate 102 such as aluminum for mounting the shunt resistor 100 is provided between the wiring patterns 103a and 103b and the wiring patterns 103a and 103b that are formed on the metal substrate 102 and allow current to flow through the resistor 100.
  • the resistor 101 includes solder layers 105a and 105b that connect the resistor 101 and the wiring patterns 103a and 103b.
  • a pair of voltage detection wirings 107 a and 107 b that detect voltages generated at both ends of the shunt resistor 100 formed on the substrate 102 are provided.
  • An example of the shunt resistor 100 is a resistor made of a metal material such as Cu—Mn or Ni—Cr.
  • the voltage detection wirings 107a and 107b are connected to the voltage detection positions at both ends of the shunt resistor 100 by bonding wires 109a and 109b.
  • the detection current I flows through the shunt resistor 100, and a voltage V obtained by multiplying the detection current I by the resistance value R of the shunt resistor 100 is taken out from the voltage detection wirings 107a and 107b to a voltage detection circuit (not shown).
  • the current concentrates particularly on the circled portion 111. If the use is continued for a long time in this state, the solder layers 105a and 105b of the circled portion 111 may be lost by electromigration. As a result, since the L dimension of the resistor is increased, the potential difference between the bonding wires 109a and 109b which are voltage detection terminals is increased. That is, the resistance value drifts to a higher one.
  • FIG. 14 is a side view showing a configuration example of a resistor having a so-called butt structure in which the resistor 201 and the electrodes 205a and 205b are connected in the vertical direction.
  • Reference numerals 203a and 203b are wiring patterns.
  • Reference numerals 206a and 206b are solder layers.
  • Reference numerals 209a and 209b are bonding wires. Even in a resistor having such a butt structure, when bonding is performed as shown in FIG. 9, the detection accuracy may be lowered due to the influence of the TCR (range indicated by reference numeral 221) of the Cu electrode.
  • the first object of the present invention is to maintain good current detection accuracy in a current detection device over a long period of time.
  • Another object of the present invention is to provide a highly accurate resistor used in such a current detection device.
  • a current detection resistor composed of a pair of electrodes and a resistor, a pair of lands on which the current detection resistor is mounted, and a connection between the electrodes and the lands And a pair of wires connected to the electrode for detecting voltage, and the connection position between the wire and the electrode is a region further inside than the inner end of the connection portion
  • a current sensing device is provided.
  • the ends of the pair of electrodes and the resistor may be abutted with each other.
  • the electrode may have a step between a connection side with the resistor and a connection side with the land.
  • At least one of the electrodes may be thicker than the resistor, and include a protruding surface having a step with the resistor surface, and the wire may be connected to the protruding surface.
  • the present invention is a current detection resistor comprising a resistor and a pair of electrodes fixed to the resistor, wherein a protruding portion is formed by protruding the resistor from a side portion of the resistor. It is a resistor for current detection provided.
  • the present invention is a current detection resistor comprising a resistor and a pair of electrodes fixed to the resistor, comprising a metal film formed across the resistor and the electrode.
  • a resistor for current detection wherein a part of the resistor is exposed from the metal film.
  • the current detection accuracy in the current detection device can be kept good for a long period of time.
  • FIG. 1 It is a perspective view which shows one structural example of the electric current detection apparatus by the 1st Embodiment of this invention. It is the top view and sectional drawing of the electric current detection apparatus corresponding to FIG. 1A. 1B is an equivalent circuit diagram for performing four-terminal measurement with the structure shown in FIG. 1A.
  • FIG. It is process drawing which shows the manufacturing method of the electric current detection apparatus by 2nd Embodiment. It is process drawing which shows the manufacturing method of the electric current detection apparatus by 2nd Embodiment. It is process drawing which shows the manufacturing method of the electric current detection apparatus by 2nd Embodiment. It is process drawing which shows the manufacturing method of the electric current detection apparatus by 2nd Embodiment. It is process drawing which shows the manufacturing method of the electric current detection apparatus by 2nd Embodiment.
  • FIG. 8A is a perspective view showing an example in which a metal film is not formed or an example in which the metal film is omitted in FIG. 8A.
  • process drawing which shows the manufacturing method of the current detection apparatus by 7th Embodiment.
  • process drawing which shows the manufacturing method of the current detection apparatus by 7th Embodiment.
  • FIG. 8A shows the mounting state of the electric current detection apparatus by 7th Embodiment.
  • FIG. 1A is a perspective view showing a configuration example of a current detection device according to a first embodiment of the present invention
  • FIG. 1B is a plan view and a cross-sectional view of the current detection device corresponding to FIG. 1A.
  • the current detection device 21 is formed on, for example, a metal substrate (not shown), and includes wiring patterns 3a and 3b for passing a current between both ends of a current detection resistor having the resistor 1.
  • the resistor for current detection is configured by joining a resistor 1 such as a Cu—Ni system and electrodes 5a and 5b made of Cu or the like.
  • the connection material constituting the connection portions 6a and 6b between the terminal portions 5a-1 and 5b-1 of the electrodes 5a and 5b and the wiring patterns 3a and 3b is, for example, a solder layer formed of Sn—Ag—Cu solder or the like It is.
  • As the connection material in addition to solder, a conductive adhesive, a brazing material, or the like may be used.
  • connection portion refers to a portion where the terminal portions 5a-1, 5b-1 and the wiring patterns 3a, 3b are directly connected by resistance welding or the like or indirectly via solder or the like, It does not matter whether solder or the like intervenes.
  • a pair of voltage detection wirings 11a and 11b (not shown) for detecting a voltage generated on both ends of the resistor formed on the substrate are bonded to the bonding wires at the voltage detection positions P1 and P2 in the electrodes 5a and 5b.
  • (Wires) 9a and 9b are connected.
  • the bonding wires 9a and 9b function as voltage detection terminals.
  • Both ends 1a and 1b of the resistor 1 of the resistor (the reference numerals 1a and 1b may indicate a junction between the resistor and the electrode) are connected to the side walls of the electrodes 5a and 5b, respectively.
  • the resistor 1 is made of a metal such as Cu—Ni, Cu—Mn—Ni, or Ni—Cr.
  • the electrodes 5a and 5b include terminal portions (lower step portions) 5a-1 and 5b-1, which are regions on the end side, and subsequent regions (upper step portion) 5a-2 on the resistor 1 side, 5b-2, and a step ⁇ h1 is formed between the two. That is, the electrodes 5a and 5b have a difference in level between the connection side with the resistor 1 and the connection side with the lands 3a and 3b.
  • the surface of the resistor 1 is lower than the surface of the regions 5a-2 and 5b-2 on the resistor 1 side by a step ⁇ h2.
  • the terminal portions 5a-1, 5b-1 and the wiring patterns 3a, 3b are connected by solders 6a, 6b.
  • At least one of the electrodes 5a and 5b is thicker than the resistor 1, and has a protruding surface (5a-2, 5b-2) having a step with the resistor surface, and the wires 9a, 9b are provided with a protruding surface (5a- 2, 5b-2).
  • the lines indicated by reference numerals M2 and M1 indicate the inner end portions of the connection portions 6a and 6b between the terminal portions 5a-1 and 5b-1 and the wiring patterns 3a and 3b.
  • the connection portion of the bonding wire 9a in the region 5a-2 is located on the inner side of the reference symbol M2, in other words, on the resistor 1 side.
  • the connection portion of the bonding wire 9b in the region 5b-2 is located on the inner side of the reference symbol M1, in other words, on the resistor 1 side. That is, the connection of the bonding wires 9b and 9a is not located outside the reference numerals M1 and M2, that is, in the regions where the solder layers (connection portions) 6a and 6b are formed (regions 5a-1 and 5b-1).
  • FIG. 2 is an equivalent circuit diagram in which 4-terminal measurement is performed using the structure shown in FIGS. 1A and 1B.
  • FIGS. 1A and 1B in the resistor of the current detection device 21, even if the solder 6 a and 6 b are scraped in the direction opposite to the resistor 1 (in the direction of increasing the distance between the solder layers),
  • the bonding wires 9a and 9b functioning as voltage detection terminals further inside than the inner end of the solder adhesion region are directly or indirectly connected at the voltage detection positions P1 and P2, and the distance between the voltage detection positions P1 and P2 Will not change. Therefore, the resistance value of R5 does not change.
  • the current detection device even if the solder is scraped off due to the electromigration effect and the resistance value in the mounted state of the resistor changes, the effect is not detected in the current detection in the four-terminal measurement. Since it is hard to receive, there exists an advantage that an electric current detection precision can be kept favorable over a long period of time.
  • terminal portions (lower step portions) 5a-1 and 5b-1 that are regions on the end portion side, and subsequent regions (upper step portions) 5a-2 and 5b-2 on the resistor 1 side. Since a step ⁇ h1 is formed between the two, the region (upper part) 5a-2, 5b-2 on the resistor 1 side is mistakenly connected to the end side area when wire bonding is performed. The possibility of wire bonding of certain terminal portions (lower step portions) 5a-1 and 5b-1 can be reduced.
  • the surface of the resistor 1 is lower than the surface of the region 5a-2, 5b-2 on the resistor 1 side by the step ⁇ h2, there is a possibility that wire bonding is performed on the surface of the resistor 1. Can be lowered. That is, the selectivity of the wire bonding position is improved by the difference in height.
  • FIG. 3A for example, a long flat plate-like resistance material 11 and the same long flat plate-like first electrode material 15a and second electrode material 15b as the resistance material 11 are prepared, As shown in FIG. 3B, the first electrode material 15a and the second electrode material 15b are arranged on both sides of the resistance material 11, and as shown in FIG. 3C, for example, 1 is formed by welding with an electron beam or a laser beam. A single flat plate is used (connected by L11 and L12). At this time, the irradiation site of the electron beam or the like is assumed to be FIG. 3C (a) or FIG. 3C (b). FIG.
  • FIG. 3C (a) is an example in which an electron beam or the like is irradiated on the flat surface side of the electrode materials 15a and 15b and the resistor 11.
  • FIG. 3C (b) shows an example in which an electron beam or the like is irradiated on the inner side of the recess formed by the electrode materials 15a and 15b and the resistor 11.
  • the surface of the electrode members 15a and 15b protruding from the resistor 11 is not irradiated with an electron beam or the like to reduce the influence.
  • a long through hole may be formed in the electrode material, and a long resistance material may be fitted.
  • the resistance value can also be adjusted by the difference in thickness between the resistance material 11 and the electrode materials 15a and 15b.
  • a step ( ⁇ h2) described later can be formed. It is also possible to perform various adjustments regarding the resistance value and the shape depending on the joining position.
  • the plate is removed from the state of FIG. 3B by punching a flat plate in a comb shape so as to include the region of the resistor 11 as indicated by reference numeral 17.
  • the cross-sectional shape shown in the lower view of FIG. 1B is obtained as shown in the cross-sectional view of FIG. 3D (b).
  • a resistor having a butt structure used in the current detection device according to the first embodiment can be formed.
  • Use of the manufacturing method according to the present embodiment has an advantage that resistors can be mass-produced.
  • welding marks 23a and 23b are formed on the resistor.
  • the surface of a welding mark caused by an electron beam or the like becomes rough.
  • the welding mark may become an obstacle.
  • FIG. 4 is a perspective view showing an example of a resistor that can be used in the current detection device according to the present embodiment.
  • the difference from the resistor shown in FIG. 1A is that there is no step between the surfaces of the regions 5a-2 and 5a-2 on the resistor 1 side of the electrodes 5a and 5b and the surface of the resistor 1. .
  • the boundary between the resistor and the electrode is difficult to understand because of the butt structure, but instead, the target positions P1 and P2 of wire bonding are indicated by markers (indicated by + signs as an example) or in the vicinity thereof.
  • FIG. 5 is a perspective view showing an example of a resistor that can be used in the current detection device according to the present embodiment.
  • the resistor 1 has a recess 31 formed on one exposed side surface.
  • the resistance value can be adjusted.
  • the boundaries 1a and 1b between the resistor 1 and the electrodes 5a and 5b are difficult to understand, but it is also possible to perform wire bonding aiming at P1 and P2 using the recess 31 as a reference mark.
  • the recess 31 can be formed in a state where the individual pieces of the resistor are partially connected (FIG. 3D), or can be formed after being cut into individual pieces.
  • FIG. 6A is a perspective view showing a first example of a resistor that can be used in the current detection device according to the present embodiment.
  • FIG. 1A differs from the resistor shown in FIG. 1A in that a metal coating 41 is formed on the entire resistor by metal plating such as Ni—P.
  • the resistor 1 As shown in FIG. 3F, a boundary between the resistor 1 and the electrodes 5a and 5b is marked between the surface of the electrode 5a and the region 5a-2 and 5b-2 on the resistor 1 side of the electrodes 5a and 5b. Is provided with a step ⁇ h3, which has an advantage of easy alignment of wire bonding.
  • the coating 41 may be partially formed.
  • the electrodes 5a and 5b may be formed at connection portions with the wiring pattern, or may be formed at bonding wire connection positions indicated by reference numerals 5a-2 and 5b-2.
  • FIG. 6B is a perspective view showing a second example of a resistor that can be used in the current detection device according to the fifth embodiment.
  • This resistor is a resistor having a resistor 1 and a pair of electrodes 5 a and 5 b fixed to the resistor 1.
  • the resistor shown in FIG. 6B has a structure in which a conductive metal film 41 is formed on almost the entire surface except a part of the resistor.
  • the conductive metal film 41 is formed from the electrodes 5 a and 5 b to the resistor 1.
  • P 1, P 2 is a mark indicating a reference position or reference position for connecting the wire.
  • the joint portions (welded portions) 1c and 1d between the resistor 1 and the electrodes 5a and 5b can be identified from the appearance as indicated by dotted lines. The reason is that the welded portions 1c and 1d have a surface shape having irregularities. The same applies to the following drawings.
  • the resistance value may change due to the formation of the metal film 41, it is necessary to adjust the resistance value after forming the conductive film.
  • FIG. 6B shows an example in which a part of the resistor portion of the resistor is notched in order to adjust the resistance value. Specifically, the resistance value of the resistor is measured before the notch process of the resistor, the resistance value adjustment amount is determined, the notch amount corresponding to this is calculated, and the notch 51 of the resistor 1 is calculated. By forming on one side, the structure of FIG. 6B can be realized.
  • the resistor width may be determined according to the target product to be manufactured, and the notch may be formed so as to have a width that matches this.
  • the method for forming the notch a method such as a punching method or a grinding method using a grinder can be used.
  • the notch 51 can also be formed using the visible joints (welded portions) 1c and 1d as marks.
  • Such a process results in a structure in which a part of the resistor 1 is exposed at the side surface at the side of the resistor. Further, since part of the electrode part is cut out, part of the side surfaces of the electrodes 5a and 5b are also exposed.
  • the resistance value can be adjusted by the notch in the structure in which the entire surface of the resistor is coated with plating.
  • the notch is formed in the side portion of the resistor, for example, the upper surface and the lower surface portion of the resistor can be cut. In this case, a part of the resistor 1 and a part of the electrodes 5a and 5b are exposed on the upper and lower surfaces of the resistor.
  • FIG. 7 is a perspective view showing an example of a resistor used in the current detection device according to the present embodiment.
  • the resistor is not a butt structure, but is formed by a structure in which electrodes and resistors are layered and joined at portions indicated by reference numerals 1a and 1b in FIG. Is a point.
  • FIG. 6B a structure in which the side of the resistor can be dented by adjusting the resistance value is shown.
  • wire bonding is possible particularly when the resistor is small. There is a possibility that the area is narrowed or the plating film is cracked during processing, and the surface condition of the bonding area may be hindered.
  • FIG. 8A is a perspective view showing an example of a resistor that can be used in the current detection device according to the seventh embodiment of the present invention.
  • the current path is not obstructed because processing is performed on a portion protruding to the side surface with respect to the electrode width. For this reason, the resistance value can be finely adjusted with high accuracy, and the characteristics of the resistor can be kept good without excessive influence on the potential distribution.
  • P 3 and P 4 indicate the positions of marks for bonding, and can be formed by forming recesses by punching, for example.
  • the resistor 1 and electrode 5a, 5b are exposed in the side surface.
  • FIG. 8B is a perspective view showing an example in which the metal film 41 in FIG. 8A is omitted.
  • the resistor 1 and the electrodes 5a and 5b are abutted and joined.
  • P 3 and P 4 are formed, for example, by forming a recess by punching.
  • the structure is as shown in FIG. 8B. Even with such a resistor, the first projecting portion (convex portion) 61a is formed and the resistance value is obtained by cutting this portion. Adjustments can be made.
  • FIG. 9A is a process diagram illustrating the method of manufacturing the current detection device according to the seventh embodiment.
  • FIG. 9B is a diagram following FIG. 9A.
  • the long resistor material 11 and the electrode materials 15a and 15b are prepared as hoop materials, and after the side surfaces of the both are abutted, the side surfaces abutted by laser, electron beam, etc. are welded. Thus, the joint portions L21 and L22 are formed.
  • the cut groove 71 is formed with the side portions of the electrode material portion of the hoop material directed inward by a predetermined width from both outer sides.
  • the terminal end of the cut groove 71 does not reach the resistance material 11 so that the electrode material remains slightly. This is for securing the strength of the connection.
  • marks P 3 and P 4 for marking at the time of bonding are formed (a dent is formed by a punch). Thereby, the structure used as a resistor in the future can be made into the shape where the structure connected by the connection part 75 between the cut grooves 71 is connected in multiple numbers. If necessary, the shape of the electrode portion is bent.
  • a metal film (41) is formed.
  • Ni—P is formed by electroless plating.
  • the coating method may be electrolytic plating, vapor deposition, sputtering, or the like. Electroless plating is preferable because a uniform and strong film is formed. Thereby, the whole surface including the front and back sides and side surfaces of the hoop material can be covered.
  • the marks P 3 and P 4 are formed with a depth that is visible even when the metal film 41 is formed.
  • the connecting portion 75 is cut into individual pieces.
  • the second convex portion 61b is left on the left side in the drawing, and the first convex portion 61a is left on the opposite side.
  • the resistor and the electrode are exposed on the side surface side in the first convex portion 61a and the second convex portion 61b.
  • the resistance value is measured before the cutting process of the resistor 1, the resistance value adjustment amount is determined, the cut amount corresponding to this is calculated, and the first projecting portion 61a is calculated.
  • the entire width is cut.
  • the resistor width may be determined according to the target product to be manufactured, and the notch may be formed to match this.
  • a method for forming the notches there are methods such as punching with a punch and cutting with a grinder.
  • the resistor 1 is exposed at the side of the resistor. Further, since part of the electrode part is cut out, part of the electrodes 5a and 5b is also exposed.
  • a metal film 41 is formed on the entire surface. Therefore, it is suitable when welding a bonding wire.
  • a metal film 41 is formed over the upper and lower surfaces and the end surface also at the electrode end. Therefore, a suitable joining state can be obtained in solder mounting.
  • a metal film can be formed also on the electrode end.
  • FIG. 10 is a perspective view showing a mounting state of the current detection device according to the seventh embodiment.
  • the positions of the marks P 3 and P 4 are detected by an image recognition device in order to determine the bonding position, and the wires 9c and 9d are bonded to the sides of the marks P 3 and P 4 respectively.
  • the mark formation position can be corrected as appropriate depending on the bonding position.
  • FIG. 11 is a perspective view showing a first modification of the convex portion of the current detection device according to the seventh embodiment.
  • the metal film 41 is a configuration example in which the illustration is omitted or the metal film 41 is not formed.
  • the 1st convex part 71a is formed so that only the resistor 1 may protrude. In FIG. 9A (b), such a structure can be realized by causing the end of the cut groove 71 to reach the resistance material 11.
  • FIG. 12 is a perspective view showing a second modification of the convex portion of the current detection device according to the seventh embodiment.
  • the metal film 41 is a configuration example in which the illustration is omitted or the metal film 41 is not formed.
  • a modified example of the protrusions is formed on one side of the resistor 1. That is, by having notches 81 in which only the resistor 1 is cut for resistance value adjustment, and recesses 83 and 83 formed in the electrodes 5a and 5b formed on both sides thereof, an effective protrusion Forming part.
  • the recesses 83 and 83 formed in the electrodes 5a and 5b can use, for example, a feed hole of a hoop material before cutting into individual pieces.
  • the resistor having the terminal portions connected to the both ends of the main body portion by wiring and solder, further inside than the inner end portion of the solder adhesion region.
  • a bonding wire functioning as a voltage detection terminal is connected to the resistor directly or indirectly at the voltage detection position.
  • a circular hole or the like may be provided in a limited range including the connection position as another structure for not bonding to the solder adhesion region, for example, a structure for restricting the connection position with the bonding wire.
  • a mark may be given to the connection target position.
  • Each component of the present invention can be arbitrarily selected, and an invention having a selected configuration is also included in the present invention.
  • the present invention can be used for a current detection device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Details Of Resistors (AREA)

Abstract

一対の電極と抵抗体とから構成される電流検出用抵抗器と、前記電流検出用抵抗器が実装される一対のランドと、前記電極と前記ランドとの接続部と、前記電極に接続され、電圧を検出するための一対のワイヤと、を有し、前記ワイヤと前記電極との接続位置を、前記接続部の内側端部よりもさらに内側の領域とした電流検出装置。

Description

電流検出装置および電流検出用抵抗器
 本発明は、電流検出技術に関する。
 電流の検出用にミリオーム程度の極めて抵抗値が小さいチップ抵抗器を用いることは良く知られている。チップ抵抗器は、例えば、貴金属合金あるいは金属合金から作製される抵抗体および高伝導性の電極および溶融はんだ材から構成されている。
 下記特許文献1には、電流検出用抵抗器の実装構造が開示されている。
特開2012-233706号公報
 図13は、特許文献1に記載の電流検出装置(電流検出用抵抗器)の一例であるシャント抵抗器の実装構造の一例を示す側面図である。
 シャント抵抗器100を搭載するためのアルミ等の金属基板102には、金属基板102に形成され抵抗器100に電流を流すための配線パターン103a、103bと、配線パターン103a、103b間に設けられた抵抗体101と、抵抗体101と配線パターン103a、103bとを接続するはんだ層105a、105bとを有している。また、基板102に形成されシャント抵抗器100の両端に生じる電圧を検出する一対の電圧検出配線107a、107bを備える。シャント抵抗器100は、Cu-Mn系、Ni-Cr系などの金属材料を抵抗体とするものが一例としてあげられる。
 電圧検出配線107a、107bと、シャント抵抗器100の両端の電圧検出位置とが、ボンディングワイヤー109a、109bにより接続される。
 シャント抵抗器100には検出電流Iが流れ、検出電流Iにシャント抵抗器100の抵抗値Rを乗じた電圧Vが電圧検出配線107a、107bから図示しない電圧検出回路に取り出される。
 ところで、近年、部品の小型化の進展と、大電流化により、製品部における電流密度が増加している。電流密度の増加により、はんだによる接合部分にエレクトロマイグレーションが発生するという問題が注目されている。特に高温であり電流密度の高い個所ではエレクトロマイグレーションの発生の可能性が高い。
 図13の構造では、特に、○印部分111に電流が集中することになる。この状態で長期間使用を継続すると、○印部分111のはんだ層105a、105bがエレクトロマイグレーションにより消失する可能性がある。その結果として、抵抗体のL寸法が長くなるため、電圧検出端子であるボンディングワイヤー109a、109b間の電位差が大きくなる。つまり、抵抗値が高い方へドリフトすることになる。
 このため、例えば10年などの長期間の使用においては、電流検出装置(電流検出用抵抗器)の電流検出精度を良好に保つことが難しくなるという問題があった。
 図14は、抵抗体201と電極205a、205bとが垂直方向に接続するいわゆる突合せ構造の抵抗器の一構成例を示す側面図である。符号203a,203bは配線パターンである。符号206a,206bは、はんだ層である。符号209a,209bはボンディングワイヤーである。このような突合せ構造の抵抗器においても、図9のようにボンディングした場合、Cu電極のTCR(符号221で示す範囲)の影響によって、検出精度が下がる可能性がある。
 本発明の第1の課題は電流検出装置における電流検出精度を長期間にわたって良好に保つことを目的とする。また、本発明の第2の課題は、このような電流検出装置に用いられる高精度な抵抗器を提供することを目的とする。
 本発明の一観点によれば、一対の電極と抵抗体とから構成される電流検出用抵抗器と、前記電流検出用抵抗器が実装される一対のランドと、前記電極と前記ランドとの接続部と、前記電極に接続され、電圧を検出するための一対のワイヤと、を有し、前記ワイヤと前記電極との接続位置を、前記接続部の内側端部よりもさらに内側の領域とした電流検出装置が提供される。
 前記一対の電極と前記抵抗体とは、端部同士を突き合わされていても良い。
 前記電極は、前記抵抗体との接続側と、前記ランドとの接続側とで、段差を有するようにしても良い。
 前記電極の少なくとも一方は、その厚みが抵抗体よりも厚く、抵抗体表面と段差を有する突出面を備え、前記ワイヤは突出面に接続されるようにしても良い。
 また、本発明は、抵抗体と、前記抵抗体に固定した一対の電極と、を備えた電流検出用抵抗器であって、前記抵抗器の側部から前記抵抗体を突出させた突出部を備えた電流検出用抵抗器である。
 また、本発明は、抵抗体と、前記抵抗体に固定した一対の電極と、を備えた電流検出用抵抗器であって、前記抵抗体と前記電極とに亘って形成された金属皮膜を備え、
 前記抵抗体の一部が前記金属皮膜から露出している、電流検出用抵抗器である。
 本明細書は本願の優先権の基礎となる日本国特許出願番号2014-215255号の開示内容を包含する。
 本発明によれば、電流検出装置における電流検出精度を長期間にわたって良好に保つことができる。
本発明の第1の実施の形態による電流検出装置の一構成例を示す斜視図である。 図1Aに対応する電流検出装置の平面図及び断面図である。 図1Aに示す構造により4端子測定を行う等価回路図である。 第2の実施の形態による電流検出装置の製造方法を示す工程図である。 第2の実施の形態による電流検出装置の製造方法を示す工程図である。 第2の実施の形態による電流検出装置の製造方法を示す工程図である。 第2の実施の形態による電流検出装置の製造方法を示す工程図である。 第2の実施の形態による電流検出装置の製造方法を示す工程図である。 第2の実施の形態による電流検出装置の製造方法を示す工程図である。 第3の実施の形態による電流検出装置に用いることができる抵抗器の一例を示す斜視図である。 第4の実施の形態による電流検出装置に用いることができる抵抗器の一例を示す斜視図である。 第5の実施の形態による電流検出装置に用いることができる抵抗器の第1例を示す斜視図である。 第5の実施の形態による電流検出装置に用いることができる抵抗器の第2例を示す斜視図である。 第6の実施の形態による電流検出装置に用いることができる抵抗器の一例を示す斜視図である。 第7の実施の形態による電流検出装置に用いることができる抵抗器の例を示す斜視図である。 図8Aにおいて、金属皮膜を形成しない例又は金属皮膜を図示省略した例を示す斜視図である。 第7の実施の形態による電流検出装置の製造方法を示す工程図である。 第7の実施の形態による電流検出装置の製造方法を示す工程図である。 第7の実施の形態による電流検出装置の実装状態を示す斜視図である。 第7の実施の形態による電流検出装置の第1変形例を示す斜視図である。 第7の実施の形態による電流検出装置の第2変形例を示す斜視図である。 特許文献1に記載の電流検出装置(電流検出用抵抗器)の一例であるシャント抵抗器の実装構造の一例を示す側面図である。 抵抗体と電極とが垂直方向に接続するいわゆる突合せ構造の抵抗器の一構成例を示す側面図である。
 以下、本発明の実施の形態について図面を参照しながら詳細に説明する。
(第1の実施の形態)
 図1Aは、本発明の第1の実施の形態による電流検出装置の一構成例を示す斜視図であり、図1Bは、図1Aに対応する電流検出装置の平面図及び断面図である。
 電流検出装置21は、例えば金属基板(図示せず)に形成され、抵抗体1を有する電流検出用の抵抗器の両端間に電流を流すための配線パターン3a、3bを備える。電流検出用の抵抗器は、Cu-Ni系等の抵抗体1と、Cu等からなる電極5a、5bとを接合することにより構成される。電極5a、5bの端子部5a-1、5b-1と配線パターン3a、3bとのそれぞれの接続部6a、6bを構成する接続材は、例えばSn-Ag-Cuはんだなどにより形成されるはんだ層である。接続材としては、はんだ以外に、導電性接着剤、ろう材、等を用いてもよい。エレクトロマイグレーションによる影響に関しては、例えばSn系の接続材に対して本発明は特に有効である。なお、接続部とは、端子部5a-1、5b-1と配線パターン3a、3bとが抵抗溶接法等により直接的に、または、はんだ等を介して間接的に接続される部位を示し、はんだ等が介在するかどうかを問わない。
 また、電流検出装置21においては、基板に形成され抵抗器の両端に生じる電圧を検出する図示しない一対の電圧検出配線11a、11bが、電極5a、5bにおける電圧検出位置P1、P2において、ボンディングワイヤー(ワイヤ)9a、9bにより接続されている。ボンディングワイヤー9a、9bは電圧検出端子として機能する。抵抗器の抵抗体1の両端1a、1b(なお、符号1a、1bは抵抗体と電極との接合部を示すこともある)は、電極5a、5bの側壁とそれぞれ接続されている。抵抗体1は、例えば、Cu-Ni系、Cu-Mn-Ni系、Ni-Cr系などの金属からなる。
 図1Aの構造では、電極5a、5bは、端部側の領域である端子部(下段部)5a-1、5b-1と、それに続く抵抗体1側の領域(上段部)5a-2、5b-2とを有しており、両者には、段差Δh1が形成されている。すなわち、電極5a、5bは、抵抗体1との接続側と、ランド3a、3bとの接続側とで、段差を有する。抵抗体1側の領域5a-2、5b-2の表面に対して、抵抗体1の表面は段差Δh2だけ低くなっている。
 端子部5a-1、5b-1と、配線パターン3a、3bとは、はんだ6a、6bにより接続されている。電極5a、5bの少なくとも一方は、その厚みが抵抗体1よりも厚く、抵抗体表面と段差を有する突出面(5a-2,5b-2)を備え、ワイヤ9a、9bは突出面(5a-2,5b-2)に接続されている。
 図1Bにおいて、符号M2、M1に示す線は、端子部5a-1、5b-1と配線パターン3a、3bとの接続部6a、6bにおけるそれぞれの内側端部を示している。ボンディングワイヤー9aの領域5a-2における接続部位は、符号M2よりも内側、言い換えると抵抗体1側に位置している。また、ボンディングワイヤー9bの領域5b-2における接続部位は、符号M1よりも内側、言い換えると抵抗体1側に位置している。すなわち、ボンディングワイヤー9b、9aの接続は、符号M1、M2の外側、即ち、はんだ層(接続部)6a、6bが形成された領域(領域5a-1、5b-1)に位置していない。
 図2は、図1A、図1Bに示す構造により4端子測定を行う等価回路図である。電流検出装置21の抵抗器においては、はんだ6a、6bが抵抗体1とは反対側の方向(はんだ層間の距離を広げる方向)に削れていったとしても、図1A、図1Bに示すように、はんだ付着領域の内側端部よりもさらに内側において電圧検出端子として機能するボンディングワイヤー9a、9bにより直接又は間接に電圧検出位置P1、P2で接続されており、電圧検出位置P1、P2間の距離は変わらない。従って、R5の抵抗値は変わらない。また、電圧検出位置P1、P2間において電流をまっすぐに流した場合には、電圧検出位置P1、P2に変化がなく、また、はんだ付着領域の対向する内側端部間の距離が長くなるが内側端部が平行に保たれた状態ではんだが削れていく傾向にあるため、抵抗体1内の電位分布にも経時変化の影響は殆どない。
 従って、本実施の形態による電流検出装置によれば、エレクトロマイグレーションの影響によりはんだが削れていって抵抗器の実装状態における抵抗値は変化しても、4端子測定における電流検出においてはその影響を受けにくいため、長期間に亘って電流検出精度を良好に保つことができるという利点がある。
 さらに、図1Aに示すように、端部側の領域である端子部(下段部)5a-1、5b-1と、それに続く抵抗体1側の領域(上段部)5a-2、5b-2との両者の間には、段差Δh1が形成されているため、抵抗体1側の領域(上段部)5a-2、5b-2にワイヤーボンディングを行う際に、間違って端部側の領域である端子部(下段部)5a-1、5b-1のワイヤーボンディングしてしまう可能性を低くすることができる。また、抵抗体1側の領域5a-2、5b-2の表面に対して、抵抗体1の表面は段差Δh2だけ低くなっているため、抵抗体1の表面にワイヤーボンディングしてしまう可能性を低くすることができる。すなわち、高さの違いによりワイヤーボンディン位置の選択性を向上させている。
(第2の実施の形態)
 以下に、第1の実施の形態による電流検出装置の製造方法について図面を参照しながら説明する。
 図3Aに示すように、例えば、長尺の平板状等の抵抗材11と、抵抗材11と同様の長尺の平板状の第1の電極材15a、第2の電極材15bを準備し、図3Bに示すように、抵抗材11の両側に第1の電極材15a、第2の電極材15bを配置し、図3Cにも示すように、例えば電子ビームやレーザービームなどで溶接して1枚の平板とする(L11、L12で接続する)。このとき、電子ビーム等の照射部位は、図3C(a)もしくは図3C(b)とする。図3C(a)は、電極材15a、15bと抵抗体11とによる平坦面側に電子ビーム等を照射した例である。図3C(b)は、電極材15a、15bと抵抗体11とによる凹みの内側に電子ビーム等を照射した例である。電極材15a、15bにおける抵抗体11より突出した面には、電子ビーム等が照射されないようにして影響を少なくする。図3Bに近い構造を形成するために、電極材に長い貫通孔を形成して、長い抵抗材を嵌合させるようにしても良い。抵抗材11と電極材15a、15bとの厚さの差により、抵抗値を調整することもできる。また、後述する段差(Δh2)を形成することができる。接合位置により、抵抗値や形状に関する種々の調整を行うことも可能である。
 次いで、図3D(a)に示すように、図3Bの状態から、符号17で示すように、抵抗体11の領域を含むように、くし歯状に、平板を打ち抜くなどにより取り除く。次いで、第1の電極材15a、第2の電極材15bの一部をプレスなどで曲げ加工することで、図3D(b)に断面図で示すように、図1Bの下図に示す断面形状を有する構造を形成する。次いで、図3Eに示すように、電極の切り離されていない他端側(5b)を、L31に沿って、残りの領域(基部)15b’から切り離す。第1の実施の形態による電流検出装置に用いる突合せ構造の抵抗器を形成することができる。本実施の形態による製造方法を用いると、抵抗器の量産化が可能となるという利点がある。
 なお、図3Fに示すように、抵抗器には溶接痕23a、23bが形成される。一般に電子ビーム等による溶接痕の表面は荒れた状態になる。精密な電流検出のためには、ボンディングワイヤーをなるべく抵抗体に近い位置に固定するのが好ましいが、このとき溶接痕が邪魔になることがある。本実施例によれば、図3Cの説明で詳述した方法により、ボンディング面となる領域5a-2、5b-2に溶接痕が形成されることを避けることができる。したがって、抵抗体に近い位置にワイヤを固定することができるという利点がある。
(第3の実施の形態)
 以下に、第3の実施の形態による電流検出装置について図面を参照しながら説明する。図4は、本実施の形態による電流検出装置に用いることができる抵抗器の一例を示す斜視図である。図1Aに示す抵抗器との相違点は、電極5a、5bの抵抗体1側の領域5a-2、5a-2の表面と、抵抗体1の表面とに段差がない構造であることである。突合せ構造であるために抵抗体と電極との境界がわかりにくくなっているが、その代わりに、ワイヤーボンディングの目標位置P1、P2をマーカ(例として+印で示す。)で示したり、その付近をパンチや研磨で表面を平滑にしボンディングしやすくすることで、ボンディング位置を把握しやすいようにしている。
(第4の実施の形態)
 以下に、第4の実施の形態による電流検出装置について図面を参照しながら詳細に説明する。図5は、本実施の形態による電流検出装置に用いることができる抵抗器の一例を示す斜視図である。図1Aに示す抵抗器との相違点は、抵抗体1が、その露出する一側面に凹部31を形成した点である。このような凹部31を設けることにより、抵抗値を調整することができる。突合せ構造であるために抵抗体1と電極5a、5bとの境界1a、1bがわかりにくくなっているが、凹部31を基準目印として、P1、P2をねらうワイヤーボンディングを行うことも可能である。凹部31は、抵抗器の個片が一部で連結した状態(図3D)において形成したり、個片に切断した後に形成することができる。
(第5の実施の形態)
 以下に、第5の実施の形態による電流検出装置について図面を参照しながら説明する。図6Aは、本実施の形態による電流検出装置に用いることができる抵抗器の第1例を示す斜視図である。
 図1Aに示す抵抗器との相違点は、抵抗器全体を、Ni-Pなどの金属メッキにより金属の被覆41を形成した点である。
 この構造では、突合せ構造である上に、被覆41で全体が覆われているため、抵抗体1と電極5a、5bとの境界がわかりにくくなっているが、本実施の形態では、抵抗体1の表面と電極5a、5bの抵抗体1側の領域(上段部)5a-2、5b-2との間に図3Fと同様に抵抗体1と電極5a、5bとの境界の目印となるように段差Δh3を設けているため、ワイヤーボンディングの位置合わせがしやすいという利点がある。なお、被覆41は、部分的に形成してもよい。例えば、電極5a、5bの配線パターンとの接続部に形成してもよく、また、符号5a-2、5b-2に示す、ボンディングワイヤーの接続位置に形成してもよい。
 図6Bは、第5の実施の形態による電流検出装置に用いることができる抵抗器の第2例を示す斜視図である。この抵抗器は、抵抗体1と、抵抗体1に固定した一対の電極5a、5bとを有する抵抗器である。
 図6Bに示す抵抗器は、抵抗器の一部を除いてほぼ全面に導電性の金属皮膜41を形成した構造である。換言すると、電極5a、5bから抵抗体1に亘って導電性の金属被膜41を形成した構造である。P、Pは、ワイヤーを接続する際基準位置、もしくは基準位置を示すマークである。全面に導電性の金属皮膜を形成すると、抵抗値の変動が生じる。そのため、抵抗値の変動を調整することが好ましい。
 尚、金属皮膜41を形成しても、抵抗体1と電極5a、5bとの接合部(溶接部分)1c、1dは、点線で示すように外観から識別可能である。その理由は、溶接部分1c、1dは凹凸を有する表面形状になっているためである。以下の図においても同様である。
 金属被膜41の形成によって抵抗値が変化することがあるため、導電性の被膜を形成した後に、抵抗値を調整する必要がある。
 図6Bにおいては、抵抗値調整のために、抵抗器の抵抗体部分の一部を切り欠いた例を示している。具体的には、抵抗体の切欠き工程の前に抵抗器の抵抗値を測定し、抵抗値調整量を定め、これに対応する切欠き量を算出して、切欠き51を抵抗体1の一側面に形成することによって、図6Bの構造を実現することができる。
 或いは、製造する対象製品に応じて抵抗体幅を定めておき、これに合う幅になるように切欠きを形成してもよい。
 切欠きの形成方法としては、パンチで打ち抜く方法、グラインダーなどで削る方法等の方法を用いることができる。この際、目視可能な接合部(溶接部分)1c、1dを目印にして切欠き51を形成することもできる。
 このような工程によって、抵抗器の側部において、抵抗体1の一部が側面で露出した構造になる。また、電極部分の一部も含めて切り欠いているため、電極5a、5bの側面の一部も露出している。
 本実施の形態によれば、抵抗器の全面にメッキで被覆した構造において、切欠きにより抵抗値を調整することができる。抵抗器の側部において切欠きを形成する構成の他に、例えば、抵抗器の上面や下面部分を削ることも可能である。この場合は、抵抗器の上面や下面において、抵抗体1の一部や電極5a、5bの一部が露出する。
(第6の実施の形態)
 以下に、第6の実施の形態による電流検出装置について図面を参照しながら説明する。図7は、本実施の形態による電流検出装置に用いられる抵抗器の一例を示す斜視図である。図1Aに示す抵抗器との相違点は、抵抗器が突合せ構造でなく、図7の符号1a、1bに示す部位において電極と抵抗体とを層状に重ね合せて接合した構造により形成されている点である。
 この場合でも、抵抗体1と電極5a、5bの抵抗体1側の領域(上段部)5a-2、5b-2との境界に段差が形成されているため、ワイヤーボンディングの際にP1、P2に位置合わせがしやすい。
(第7の実施の形態)
 以下に、第7の実施の形態による電流検出装置について図面を参照しながら説明する。
 図6Bに示す例では、抵抗値調整によって、抵抗器の側部に凹みができる構造を示したが、その構造の場合には、特に抵抗器が小型である場合等において、ワーヤーボンディングが可能なエリアが狭くなったり、加工時にメッキ被膜の割れが生じてボンディングエリアの表面状態に支障が出たりする可能性がある。
 図8Aは、本発明の第7の実施の形態による電流検出装置に用いることができる抵抗器の例を示す斜視図である。
 本実施の形態では、抵抗器のほぼ全面が導電性の金属皮膜41に覆われている。抵抗体1を含む抵抗器の側部を突出させている。一側面に形成されている第1の突出部61aには、抵抗体1と電極5a、5bの一部が露出した露出面63を形成している。この第1の突出部61a(凸部)の一部をカットすることで抵抗値調整を行うことができる。
 この方法によれば、電極幅に対して側面側に突出した部分に加工を行うため、電流経路を遮らない。このため抵抗値の高精度な微調整が可能であり、電位分布に対する過度な影響もなく、抵抗器の特性を良好に保つことができる。
 尚、P、Pは、ボンディングを行う目印の位置を示し、例えば、パンチにより凹部とすることで形成することができる。
 尚、第1の突出部61aと反対側の側面に形成された第2の突出部61bにおいても、抵抗体1と電極5a,5bが側面において露出している。
 図8Bは、図8Aにおける金属皮膜41を省略した例を示す斜視図である。抵抗体1と電極5a、5bが突合せて接合されている。電極部分には、P、Pが、例えば、パンチにより凹部とすることで形成されている。
 なお、金属皮膜41を形成しない抵抗器の場合は図8Bの構造になり、そのような抵抗器でも第1の突出部(凸部)61aを形成して、この部分をカットすることによる抵抗値調整を行うことができる。
 次に、このような抵抗器の製造工程について簡単に説明する。図9Aは、第7の実施の形態による電流検出装置の製造方法を示す工程図である。図9Bは、図9Aに続く図である。
 図9A(a)に示すように、長尺の抵抗材11と電極材15a、15bとを、フープ材として準備し、両者の側面を突き合わせた後に、レーザー、電子ビーム等で突き合わせた側面を溶接して接合部L21、L22を形成する。
 次いで、図9A(b)に示すように、フープ材の電極材部分の側部を両方の外側から所定の幅だけ内側に向けてカット溝71を形成する。カット溝71の終端は、抵抗材11に到達せず、電極材がわずかに残るようにしている。連結の強度を確保する等の理由である。また、ボンディング時の目印用のマークP、Pを形成する(パンチで凹みを形成する)。これにより、将来、抵抗器となる構造が、カット溝71間の連結部75により繋がった構造が複数接続している形状とすることができる。必要に応じて、電極部分の形状の曲げ加工を行う。
 次いで、図9A(c)に示すように、金属皮膜(41)を形成する。例えば、無電解めっきによりNi-Pを形成する。被覆方法は、電解めっき、蒸着、スパッタリング等でもよい。無電解めっきは、均一で強固な被膜が形成されるので好ましい。これにより、フープ材の表裏、側面を含めて全面を被覆することができる。マークP、Pは、金属膜41を形成しても視認可能な程度の深さで形成されている。
 図9B(d)に示すように、個片化(チップ化)工程において、連結部75において、カットして個片化する。図9B(d)において、破線で示すカット位置において個片化された部材には、図における左側に、第2の凸部61bが、その反対側に第1の凸部61aが残されている。全面に金属皮膜41を形成した後にカットするため、第1の凸部61a、第2の凸部61bにおいては、抵抗体や電極が側面側において露出する。
 図9B(e)に示すように、例えば位置P21において第1の凸部61aをカットして抵抗値を調整する。
 図9B(e)に示す例では、抵抗体1のカット工程の前に抵抗値を測定し、抵抗値調整量を定め、これに対応するカット量を算出して、第1の突出部61aの全幅をカットしている。また、製造する対象製品に応じて抵抗体幅を定めておき、これに合うように切欠きを形成してもよい。切欠きの形成方法としては、パンチで打ち抜く、グラインダーなどで削る等の方法がある。
 このような工程によって、抵抗器の側部において、抵抗体1が露出した構造になる。また、電極部分の一部も含めて切り欠いているため、電極5a、5bの一部も露出している。
 図9B(f)に示すように、全面に金属皮膜41が形成されている。従って、ボンディングワイヤーを溶接する場合に好適である。また、電極端部においても、上下面および端面に亘って金属皮膜41が形成されている。従って、はんだ実装において、好適な接合状態が得られる。図9A(b)~(c)の工程のとおり、抵抗体1部分で連結保持されているため、電極端部にも金属皮膜を形成することができる。
 図10は、第7の実施の形態による電流検出装置の実装状態を示す斜視図である。マークP、Pは、ボンディング位置を定めるため、画像認識装置で位置検出され、このマークP、Pの側部にそれぞれワイヤ9c、9dがボンディングされる。マークの形成位置は、ボンディング位置によって適宜修正することができる。
 図11は、第7の実施の形態による電流検出装置の凸部の第1変形例を示す斜視図である。金属皮膜41は図示省略、または、金属皮膜41が形成されない構成例である。抵抗体1のみが突出するように、第1の凸部71aを形成している。図9A(b)において、カット溝71の終端を抵抗材11に到達させることでこのような構造を実現できる。
 図12は、第7の実施の形態による電流検出装置の凸部の第2変形例を示す斜視図である。金属皮膜41は図示省略、または、金属皮膜41が形成されない構成例である。抵抗器の一方側の両端部に凹部を形成することで、抵抗体1の一側面には、凸部の変形例が形成される。すなわち、抵抗値調整のために抵抗体1のみを切り欠いた切欠き81と、その両側に形成されている電極5a、5bに形成した凹部83、83と、を有することで、実効的な凸部を形成する。
 尚、電極5a、5bに形成した凹部83、83は、例えば、個片状に切断する前の、フープ材の送り穴を利用することができる。
 以上のように、様々な変形例を示したが、当業者が、さらなる変形例を思い付くことは自由であり、それらも、本発明の範疇に入る。
 以上に説明したように、本発明の各実施の形態によれば、本体部の両端に配線とはんだにより接続される端子部を有する抵抗器において、はんだ付着領域の内側端部よりもさらに内側において電圧検出端子として機能するボンディングワイヤーが抵抗体に直接又は間接に電圧検出位置で接続される。
 このように、はんだ付着領域を避けた内側の領域にワイヤーボンディングを行うことができるため、抵抗体と配線パターンとの接合部分において、エレクトロマイグレーションによりはんだが削れたり、また、熱収縮や衝撃等のなんらかの原因でクラックが入る等、はんだ付着領域である接合領域の対向する内側端部間の距離が長くなる方向に接合状態が変化したとしても、電圧検出端子である電圧検出位置間の抵抗は変わらないため、電流検出精度を長期間にわたって保つことができる。
 変形例として、例えば、はんだ付着領域にボンディングしないためのその他構造、例えばボンディングワイヤーとの接続位置を規制する構造として、接続位置を含むある程度限定された範囲に円孔などを設けても良い。その他、接続目標位置に目印を付与するようにしても良い。
 上記の実施の形態において、添付図面に図示されている構成等については、これらに限定されるものではなく、本発明の効果を発揮する範囲内で適宜変更することが可能である。その他、本発明の目的の範囲を逸脱しない限りにおいて適宜変更して実施することが可能である。
 本発明の各構成要素は、任意に取捨選択することができ、取捨選択した構成を具備する発明も本発明に含まれるものである。
 本発明は、電流検出装置に利用可能である。
P1、P2…電圧検出位置
1…抵抗体
3…配線パターン(ランド)
5a、5b…電極
5a-1、5b-1…端部側の領域である端子部(下段部)
5a-2、5b-2…抵抗体側の領域(上段部)
6a、6b…はんだ(接続材)層(接続部)
9a、9b…ボンディングワイヤー(ワイヤ)
11a、11b…電圧検出配線
21…電流検出装置
41…金属被膜
51…切欠き
61a…第1の凸部
61b…第2の凸部
71a…第1の凸部
81…切欠き
83…凹部
 本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。
 

Claims (6)

  1.  一対の電極と抵抗体とから構成される電流検出用抵抗器と、
     前記電流検出用抵抗器が実装される一対のランドと、
     前記電極と前記ランドとの接続部と、
     前記電極に接続され、電圧を検出するための一対のワイヤと、を有し、
     前記ワイヤと前記電極との接続位置を、前記接続部の内側端部よりもさらに内側の領域とした電流検出装置。
  2.  前記一対の電極と前記抵抗体とは、端部同士が突き合わされている請求項1に記載の電流検出装置。
  3.  前記電極は、前記抵抗体との接続側と、前記ランドとの接続側とで、段差を有する請求項2に記載の電流検出装置。
  4.  前記電極の少なくとも一方は、その厚みが前記抵抗体よりも厚く、抵抗体表面と段差を有する突出面を備え、
     前記ワイヤは前記突出面に接続される請求項3に記載の電流検出装置。
  5.  抵抗体と、前記抵抗体に固定した一対の電極と、を備えた電流検出用抵抗器であって、
     前記電流検出用抵抗器の側部から前記抵抗体を突出させた突出部を備えた電流検出用抵抗器。
  6.  抵抗体と、前記抵抗体に固定した一対の電極と、を備えた電流検出用抵抗器であって、
     前記抵抗体と前記電極とに亘って形成された金属皮膜を備え、
     前記抵抗体の一部が前記金属皮膜から露出している、電流検出用抵抗器。
     
PCT/JP2015/079760 2014-10-22 2015-10-22 電流検出装置および電流検出用抵抗器 WO2016063928A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016555268A JP6650409B2 (ja) 2014-10-22 2015-10-22 電流検出用抵抗器
DE112015004849.9T DE112015004849T5 (de) 2014-10-22 2015-10-22 Stromerfassungsvorrichtung und Stromerfassungswiderstand
US15/516,179 US10156587B2 (en) 2014-10-22 2015-10-22 Current detecting device and current detecting resistor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-215255 2014-10-22
JP2014215255 2014-10-22

Publications (1)

Publication Number Publication Date
WO2016063928A1 true WO2016063928A1 (ja) 2016-04-28

Family

ID=55760959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079760 WO2016063928A1 (ja) 2014-10-22 2015-10-22 電流検出装置および電流検出用抵抗器

Country Status (4)

Country Link
US (1) US10156587B2 (ja)
JP (1) JP6650409B2 (ja)
DE (1) DE112015004849T5 (ja)
WO (1) WO2016063928A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018003361A1 (ja) * 2016-06-27 2018-01-04 Koa株式会社 シャント抵抗器の実装構造および実装基板
JP2018014420A (ja) * 2016-07-21 2018-01-25 株式会社デンソー シャント抵抗器およびその実装方法
JP2018132386A (ja) * 2017-02-14 2018-08-23 Koa株式会社 電流測定装置および電流検出用抵抗器
US10083781B2 (en) 2015-10-30 2018-09-25 Vishay Dale Electronics, Llc Surface mount resistors and methods of manufacturing same
WO2019077872A1 (ja) * 2017-10-19 2019-04-25 株式会社デンソー シャント抵抗器及びその製造方法
US10438729B2 (en) 2017-11-10 2019-10-08 Vishay Dale Electronics, Llc Resistor with upper surface heat dissipation
JP2020025026A (ja) * 2018-08-07 2020-02-13 Koa株式会社 シャント抵抗器およびその製造方法
JP2020027847A (ja) * 2018-08-10 2020-02-20 Koa株式会社 シャント装置
WO2021153138A1 (ja) * 2020-01-27 2021-08-05 Koa株式会社 抵抗器の製造方法及び抵抗器
WO2021215229A1 (ja) * 2020-04-20 2021-10-28 Koa株式会社 シャント抵抗器
WO2021220758A1 (ja) * 2020-04-28 2021-11-04 Koa株式会社 シャント抵抗器
WO2021220526A1 (ja) * 2020-04-27 2021-11-04 Koa株式会社 シャント抵抗器、シャント抵抗器の製造方法、および電流検出装置
WO2021241204A1 (ja) * 2020-05-29 2021-12-02 Koa株式会社 シャント抵抗器

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6622491B2 (ja) * 2015-06-22 2019-12-18 Koa株式会社 電流検出装置及びその製造方法
USD883227S1 (en) * 2017-11-08 2020-05-05 Central Glass Company, Limited Connecting terminal
JP2019165057A (ja) * 2018-03-19 2019-09-26 サンコール株式会社 シャント抵抗器及びその製造方法
JP7173755B2 (ja) * 2018-05-17 2022-11-16 Koa株式会社 シャント抵抗器の実装構造
DE102019114524A1 (de) * 2019-05-29 2020-12-03 Valeo Siemens Eautomotive Germany Gmbh Anordnung mit einem Leistungselektroniksubstrat und einem Kontaktelement, Leistungselektronikeinheit und Stromrichter
DE102020214083A1 (de) * 2020-11-10 2022-05-12 Continental Automotive Gmbh Widerstandsbaugruppe und Batteriesensor mit Widerstandsbaugruppe
DE102021103241A1 (de) 2021-02-11 2022-08-11 Isabellenhütte Heusler Gmbh & Co. Kg Strommesswiderstand

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008039571A (ja) * 2006-08-04 2008-02-21 Denso Corp 電流センサ
JP2008082957A (ja) * 2006-09-28 2008-04-10 Denso Corp シャント抵抗器
JP2009135286A (ja) * 2007-11-30 2009-06-18 Taiyosha Electric Co Ltd チップ抵抗器及びチップ抵抗器の製造方法
US20090174522A1 (en) * 2008-01-08 2009-07-09 Infineon Technologies Ag Arrangement comprising a shunt resistor and method for producing an arrangement comprising a shunt resistor
JP2011018759A (ja) * 2009-07-08 2011-01-27 Koa Corp シャント抵抗器
WO2013015219A1 (ja) * 2011-07-22 2013-01-31 コーア株式会社 シャント抵抗装置
JP2014078538A (ja) * 2012-10-08 2014-05-01 Denso Corp シャント抵抗器およびその実装方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6798189B2 (en) * 2001-06-14 2004-09-28 Koa Corporation Current detection resistor, mounting structure thereof and method of measuring effective inductance
JP4452196B2 (ja) * 2004-05-20 2010-04-21 コーア株式会社 金属板抵抗器
JP4681964B2 (ja) * 2005-07-15 2011-05-11 北陸電気工業株式会社 電流検出用金属板抵抗器のトリミング方法及びこの方法により製造された電流検出用金属板抵抗器
US9305687B2 (en) * 2010-05-13 2016-04-05 Cyntec Co., Ltd. Current sensing resistor
JP5683339B2 (ja) * 2010-05-18 2015-03-11 ローム株式会社 面実装型抵抗器及びそれが実装される面実装基板
JP5516286B2 (ja) * 2010-09-30 2014-06-11 ミツミ電機株式会社 電流電圧検出回路および電流制御回路
JP2012233706A (ja) 2011-04-28 2012-11-29 Koa Corp シャント抵抗器の実装構造
JP5851916B2 (ja) * 2012-04-05 2016-02-03 ルネサスエレクトロニクス株式会社 半導体装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008039571A (ja) * 2006-08-04 2008-02-21 Denso Corp 電流センサ
JP2008082957A (ja) * 2006-09-28 2008-04-10 Denso Corp シャント抵抗器
JP2009135286A (ja) * 2007-11-30 2009-06-18 Taiyosha Electric Co Ltd チップ抵抗器及びチップ抵抗器の製造方法
US20090174522A1 (en) * 2008-01-08 2009-07-09 Infineon Technologies Ag Arrangement comprising a shunt resistor and method for producing an arrangement comprising a shunt resistor
JP2011018759A (ja) * 2009-07-08 2011-01-27 Koa Corp シャント抵抗器
WO2013015219A1 (ja) * 2011-07-22 2013-01-31 コーア株式会社 シャント抵抗装置
JP2014078538A (ja) * 2012-10-08 2014-05-01 Denso Corp シャント抵抗器およびその実装方法

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10418157B2 (en) 2015-10-30 2019-09-17 Vishay Dale Electronics, Llc Surface mount resistors and methods of manufacturing same
US10083781B2 (en) 2015-10-30 2018-09-25 Vishay Dale Electronics, Llc Surface mount resistors and methods of manufacturing same
JP2018004267A (ja) * 2016-06-27 2018-01-11 Koa株式会社 シャント抵抗器の実装構造および実装基板
WO2018003361A1 (ja) * 2016-06-27 2018-01-04 Koa株式会社 シャント抵抗器の実装構造および実装基板
CN109478450A (zh) * 2016-07-21 2019-03-15 株式会社电装 分流电阻器及其安装方法
JP2018014420A (ja) * 2016-07-21 2018-01-25 株式会社デンソー シャント抵抗器およびその実装方法
US11187724B2 (en) 2017-02-14 2021-11-30 Koa Corporation Current measuring device and current sensing resistor
JP2018132386A (ja) * 2017-02-14 2018-08-23 Koa株式会社 電流測定装置および電流検出用抵抗器
WO2018150869A1 (ja) * 2017-02-14 2018-08-23 Koa株式会社 電流測定装置および電流検出用抵抗器
CN110268276A (zh) * 2017-02-14 2019-09-20 Koa株式会社 电流测量装置以及用于电流检测的电阻器
DE112018000816T5 (de) 2017-02-14 2019-10-24 Koa Corporation Strommessvorrichtung und Stromerfassungswiderstand
DE112018000816B4 (de) 2017-02-14 2024-10-17 Koa Corporation Stromerfassungsvorrichtung und Stromerfassungswiderstand
WO2019077872A1 (ja) * 2017-10-19 2019-04-25 株式会社デンソー シャント抵抗器及びその製造方法
US10438729B2 (en) 2017-11-10 2019-10-08 Vishay Dale Electronics, Llc Resistor with upper surface heat dissipation
JP7273469B2 (ja) 2018-08-07 2023-05-15 Koa株式会社 シャント抵抗器の製造方法
JP2020025026A (ja) * 2018-08-07 2020-02-13 Koa株式会社 シャント抵抗器およびその製造方法
JP2020027847A (ja) * 2018-08-10 2020-02-20 Koa株式会社 シャント装置
WO2021153138A1 (ja) * 2020-01-27 2021-08-05 Koa株式会社 抵抗器の製造方法及び抵抗器
WO2021215229A1 (ja) * 2020-04-20 2021-10-28 Koa株式会社 シャント抵抗器
CN115398567A (zh) * 2020-04-20 2022-11-25 Koa株式会社 分流电阻器
JP7491723B2 (ja) 2020-04-20 2024-05-28 Koa株式会社 シャント抵抗器
CN115398567B (zh) * 2020-04-20 2024-06-18 Koa株式会社 分流电阻器
WO2021220526A1 (ja) * 2020-04-27 2021-11-04 Koa株式会社 シャント抵抗器、シャント抵抗器の製造方法、および電流検出装置
CN115461826A (zh) * 2020-04-27 2022-12-09 Koa株式会社 分流电阻器、分流电阻器的制造方法、以及电流检测装置
WO2021220758A1 (ja) * 2020-04-28 2021-11-04 Koa株式会社 シャント抵抗器
JP7491727B2 (ja) 2020-04-28 2024-05-28 Koa株式会社 シャント抵抗器
WO2021241204A1 (ja) * 2020-05-29 2021-12-02 Koa株式会社 シャント抵抗器

Also Published As

Publication number Publication date
US10156587B2 (en) 2018-12-18
US20170307658A1 (en) 2017-10-26
JPWO2016063928A1 (ja) 2017-08-03
JP6650409B2 (ja) 2020-02-19
DE112015004849T5 (de) 2017-07-06

Similar Documents

Publication Publication Date Title
WO2016063928A1 (ja) 電流検出装置および電流検出用抵抗器
KR100857961B1 (ko) 칩 저항기 및 그 제조 방법
US11187724B2 (en) Current measuring device and current sensing resistor
JP2013157596A (ja) チップ抵抗器、およびチップ抵抗器の製造方法
JP5812248B2 (ja) 抵抗器の製造方法
US20170162302A1 (en) Current detection resistor
WO2016175016A1 (ja) シャント抵抗器及びその製造方法
JP4460564B2 (ja) チップ抵抗器
WO2015146433A1 (ja) 電流検出装置
JP2017174843A (ja) シャント抵抗器
JP6594631B2 (ja) 抵抗器及びその製造方法
JP6892339B2 (ja) 抵抗器
JP4189005B2 (ja) チップ抵抗器
JP5039867B1 (ja) 抵抗器および抵抗器の製造方法
JP2022092581A (ja) 抵抗アセンブリおよび抵抗アセンブリを製造する方法
JP5242614B2 (ja) チップ抵抗器およびその製造方法
JP5037288B2 (ja) チップ抵抗器およびその製造方法
JP4867487B2 (ja) チップ抵抗器の製造方法
JP2004186248A (ja) チップ抵抗器およびその製造方法
JP5490861B2 (ja) チップ抵抗器およびその製造方法
JP5845392B2 (ja) チップ型抵抗器およびその製造方法
WO2023286552A1 (ja) 基板内蔵用のチップ型抵抗器、抵抗器内蔵モジュール、抵抗器内蔵モジュールの製造方法、及びトリミング方法
JP2024021437A (ja) 抵抗器及び抵抗器の製造方法
JP2007141908A (ja) 抵抗器の製造方法
JP2019080075A (ja) シャント抵抗器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15853454

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016555268

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15516179

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015004849

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15853454

Country of ref document: EP

Kind code of ref document: A1