WO2021153138A1 - 抵抗器の製造方法及び抵抗器 - Google Patents

抵抗器の製造方法及び抵抗器 Download PDF

Info

Publication number
WO2021153138A1
WO2021153138A1 PCT/JP2020/048953 JP2020048953W WO2021153138A1 WO 2021153138 A1 WO2021153138 A1 WO 2021153138A1 JP 2020048953 W JP2020048953 W JP 2020048953W WO 2021153138 A1 WO2021153138 A1 WO 2021153138A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
electrode material
resistance
base material
electrode
Prior art date
Application number
PCT/JP2020/048953
Other languages
English (en)
French (fr)
Inventor
陽平 常盤
航児 江藤
智史 野口
玲那 金子
Original Assignee
Koa株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa株式会社 filed Critical Koa株式会社
Priority to DE112020006627.4T priority Critical patent/DE112020006627T5/de
Priority to CN202080093554.4A priority patent/CN115004325A/zh
Priority to US17/759,487 priority patent/US20230146171A1/en
Publication of WO2021153138A1 publication Critical patent/WO2021153138A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/006Apparatus or processes specially adapted for manufacturing resistors adapted for manufacturing resistor chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/001Mass resistors

Definitions

  • the present invention relates to a method for manufacturing a resistor and a resistor.
  • the present invention has been made by paying attention to the above problems, and an object of the present invention is to reduce the size of a resistor while ensuring dimensional accuracy.
  • a resistor base material is formed by stacking an electrode material, a resistor material, and an electrode material in this order and applying pressure in the stacking direction to join them.
  • the resistor as one aspect of the present invention is a resistor mounted on a circuit board, and is a resistor material, a first electrode material bonded to one end face of the resistance material, and the resistance material. A second electrode material joined to the other end face is provided, and the surface of the resistor is in a direction orthogonal to the joining direction in which the first electrode material, the resistance material, and the second electrode material are connected. It is a resistor with streaky irregularities extending to.
  • the resistor can be miniaturized while ensuring dimensional accuracy.
  • FIG. 1 is a perspective view illustrating a resistor according to the first embodiment of the present invention.
  • FIG. 2 is a perspective view illustrating a resistor according to a second embodiment of the present invention.
  • FIG. 3 is a perspective view of the resistor according to the second embodiment as viewed from the mounting surface side on the circuit board.
  • FIG. 4 is a side view illustrating the resistor according to the first modification of the present invention.
  • FIG. 5 is a side view illustrating the resistor according to the second modification of the present invention.
  • FIG. 6 is a perspective view illustrating the resistor according to the third modification of the present invention.
  • FIG. 7 is a cross-sectional view illustrating a state in which the resistor according to the third modification is mounted on the circuit board.
  • FIG. 8 is a schematic view illustrating a method for manufacturing a resistor according to an embodiment of the present invention.
  • FIG. 9A is a front view of the die used in the step (c) shown in FIG. 8 as viewed from the upstream side in the drawing direction F.
  • FIG. 9B is a schematic view illustrating a process of processing a shape in the method for manufacturing a resistor according to the present embodiment.
  • FIG. 10 is a schematic view illustrating a step of adjusting the size of the resistor base material to a size that can be inserted into a die in the method for manufacturing a resistor according to the present embodiment.
  • FIG. 1 is a perspective view illustrating the structure of the resistor 1 according to the present embodiment.
  • the resistor 1 includes a resistance material 10, a first electrode material 11, and a second electrode material 12, and the first electrode material 11, the resistance material 10, and the second electrode material 12 are joined in this order. Is.
  • the resistor 1 is mounted on a circuit board or the like not shown in FIG.
  • the resistor 1 is arranged on a pair of electrodes formed on a land pattern of a circuit board.
  • the resistor 1 is used as a current detection resistor (shunt resistor).
  • the direction in which the first electrode material 11 and the second electrode material 12 are lined up is the X direction (the first electrode material 11 side is the + X direction, and the second electrode material 12 side is the second electrode material 12 side). -X direction).
  • the width direction of the resistor 1 is the Y direction (the front side of the paper surface in FIG. 1 is the + Y direction, the back side of the paper surface in FIG. 1 is the ⁇ Y direction)
  • the thickness direction of the resistor 1 is the Z direction
  • the X direction and the Y direction It is assumed that the directions and the Z directions are orthogonal to each other.
  • the resistor material 10 is preferably a resistor material having a small resistivity and a small temperature coefficient of resistance (TCR) from the viewpoint of accurately detecting a large current.
  • TCR temperature coefficient of resistance
  • copper / manganese / nickel alloys, copper / manganese / tin alloys, nickel / chromium alloys, copper / nickel alloys and the like can be used.
  • the resistance material 10 is formed in a square shape from the viewpoint of high-density mounting, but the shape of the resistance material 10 may be trapezoidal.
  • the first electrode material 11 and the second electrode material 12 are preferably conductive materials having good electrical conductivity and thermal conductivity from the viewpoint of ensuring stable detection accuracy.
  • copper, a copper-based alloy, or the like can be used as the first electrode material 11 and the second electrode material 12.
  • oxygen-free copper C1020
  • the same materials can be used.
  • the first electrode material 11 has an end face having substantially the same shape as one end face of the resistance material 10, and is joined to one end face of the resistance material 10 at this end face.
  • the second electrode material 12 has an end face having substantially the same shape as the other end face facing one end face of the resistance material 10, and is joined to the other end face of the resistance material 10 at this end face.
  • each of the joint surfaces of the joint portions 13 and 14 is a diffusion joint surface in which the metal atoms of both the resistance material 10 and the electrode materials 11 and 12 are diffused from each other.
  • the boundary between the resistance material 10 and the first electrode material 11 and the joint portion 13 is flat.
  • the resistance material 10 and the first electrode material 11 are smoothly continuous.
  • the boundary between the resistance material 10 and the second electrode material 12 is flat without a step, and the resistance material 10 and the second electrode material 12 are different from each other. , Smoothly continuous. That is, the surfaces of the joints 13 and 14 are formed flat (without a step) over the entire circumference of the resistor 1.
  • the resistor 1 has a streak-like unevenness 15 on the surface.
  • the streak-like unevenness 15 is formed on the mounting surface 16 of the resistor 1 on the circuit board and the opposite surface 17 of the mounting surface 16. Further, the streak-like unevenness 15 is formed over the width direction Y.
  • the mounting surface 16 of the resistor 1 means the entire surface of the resistor 1 facing the circuit board.
  • the streak-like unevenness 15 has a width on each of the opposite surface 11a with respect to the joint surface between the first electrode material 11 and the resistance material 10 and the opposite surface 12a with respect to the joint surface between the second electrode material 12 and the resistance material 10. It is formed over the direction Y.
  • the surface roughness due to the concave and convex portions of the streak-like unevenness 15 can be about 0.2 to 0.3 ⁇ m in arithmetic average roughness (Ra).
  • the length L of the resistor 1 in the X direction is 3.2 mm or less
  • the length W of the resistor 1 in the Y direction is 1.6 mm or less (product standard) from the viewpoint of adapting to a high-density circuit board. 3126 size or less).
  • the length L of the resistor 1 in the X direction is 1.0 mm or more in the Y direction.
  • the length W of the resistor 1 can be 0.5 mm or more (product standard 1005 size or more).
  • the resistance value of the resistor 1 is adjusted to be 2 m ⁇ or less from the viewpoint of realizing low resistance.
  • the low resistance here is a concept including a resistance value lower than the resistance value of a general resistor.
  • the edge portion P extending in the Y direction of the resistor 1 has a chamfered shape.
  • both the resistance material 10 and the electrode materials 11 and 12 are provided at the joint portion 13 between the resistance material 10 and the first electrode material 11 and the joint portion 14 between the resistance material 10 and the second electrode material 12.
  • a diffusion junction surface is formed in which the metal atoms of the above are diffused from each other.
  • the resistor 1 is formed in a square shape.
  • the resistance material 10 is square, the current flowing through the resistance material 10 from the first electrode material 11 and the second electrode material 12 joined to the end face of the resistance material 10 is formed in substantially the same shape as the end face of the resistance material 10. Since the path becomes linear, the resistance value can be stabilized. Further, in the resistor 1, since the resistance material 10 is bonded between the electrode materials 11 and 12, the resistance value can be adjusted by minimizing the volume of the resistance material 10.
  • the resistor 1 for example, welding by an electron beam is not used for joining the resistor material 10 and the first electrode material 11 and joining the resistor material 10 and the second electrode material 12, so that the resistor 1 is joined. There are no beads (welded marks having an uneven shape) in the portions 13 and 14. Therefore, the bondability is not impaired when wire bonding or the like is applied to the surface of the resistor 1.
  • the surfaces of the joint portions 13 and 14 are formed flat over the entire circumference of the resistor 1. Therefore, when the resistor 1 is mounted on the circuit board or the like, the suction property to the nozzle is enhanced in the work of picking up the resistor 1 while sucking it using the nozzle. Therefore, workability when mounting the resistor 1 on the circuit board is improved.
  • the streak-like unevenness 15 includes the mounting surface 16, the opposite surface 17 of the mounting surface 16, the opposite surface 11a of the surface of the first electrode material 11 joined to the resistor material 10, and the second electrode material 12. It is formed over the width direction Y on the opposite surface 12a of the surface joined with the resistance material 10 in the above. Therefore, for the operator who handles the resistor 1, the visibility of the mounting direction and the mounting posture of the resistor 1 is good when the resistor 1 is mounted on the circuit board.
  • streak-like unevenness 15 is smoother than the unevenness due to the bead, and does not impair the bondability in wire bonding.
  • the length L of the resistor 1 in the joining direction (X direction) is 3.2 mm or less, and the length W in the Y direction is 1.6 mm or less. Further, the resistance value of the resistor 1 is adjusted to be 2 m ⁇ or less.
  • the resistor 1 is formed by joining the resistor material 10 and the electrode materials 11 and 12 by diffusion welding, it can be designed to be compact and have low resistance.
  • the edge portion P of the resistor 1 has a chamfered shape.
  • the current density becomes high in the unchamfered corners, a phenomenon called electromigration occurs, and similarly, thermal stress concentrates in the corners, causing the resistor to become defective. Was more likely to occur. Further, since this electromigration has a non-negligible effect as the circuit size becomes smaller, there is a concern that the smaller the resistor, the more remarkable the electromigration becomes.
  • the edge portion P is chamfered, the bias of the current density in the edge portion P is alleviated. As a result, the occurrence of electromigration can be suppressed. Similarly, since the thermal stress concentration can be relaxed, the heat cycle resistance can be improved.
  • the resistor 1 can be made smaller while ensuring the dimensional accuracy.
  • the resistor 1 can meet the high-density demand for the circuit board for mounting the electronic components in recent years.
  • the distance between the electrodes can be easily secured, so that the resistance value can be easily reduced. Therefore, the resistor 1 can also meet the high power demand.
  • FIG. 2 is a perspective view for explaining the resistor 2 according to the second embodiment of the present invention
  • FIG. 3 is a perspective view of the resistor 2 according to the second embodiment as viewed from the mounting surface side on the circuit board. be.
  • the resistor 2 includes a resistor material 10, a first electrode material 21, and a second electrode material 22.
  • the resistance material 10, the first electrode material 21, and the second electrode material 22 are clad-bonded to each other at the joint portions 23 and 24.
  • the resistor 2 has a first electrode material 21 and a second electrode material 22 having different shapes from the resistor 1 according to the first embodiment.
  • the first electrode material 21 includes a body portion 31 joined to the resistance material 10 and an extension portion 32 extending from the body portion 31 in the ⁇ Z direction.
  • the second electrode material 22 includes a body portion 41 joined to the resistance material 10 and an extension portion 42 formed integrally with the body portion 41 and extending in the ⁇ Z direction from the body portion 41.
  • the body portion 31 is provided with a protruding portion 311 that protrudes toward the resistance material 10 and has an end surface having substantially the same shape as one end surface (+ X direction) of the resistance material 10.
  • the body portion 31 is joined in the protruding portion 311 so as to be abutted against the end face of the resistance material 10 in the + X direction.
  • the boundary between the resistance material 10 and the protruding portion 311 of the body portion 31 is flat without a step, and the resistance material 10 and the body portion 31 are smoothly continuous. There is. That is, the surface of the joint portion 23 is formed flat (without a step) over the entire circumference of the boundary between the resistance material 10 and the body portion 31.
  • the body portion 41 of the second electrode material 22 is also configured in the same manner as the body portion 31.
  • the body portion 41 is joined at the protruding portion 411 so as to be abutted against the end face of the resistor 10 in the ⁇ X direction.
  • the body portion 31 is formed with an extension portion 32 extending in the Z direction, when the resistor 2 is mounted on the circuit board, the extension portion 32 is directed toward the circuit board to form a circuit. Legs for joining to the substrate can be configured.
  • the extension portion 42 is also configured in the same manner as the extension portion 32.
  • the resistor 2 is a surface of the resistor 2 bonded to the mounting surface 51 on the circuit board, the opposite surface 52 of the mounting surface 51, and the resistor material 10 of the first electrode material 21.
  • Each of the opposite surface 21a and the opposite surface 22a of the surface joined to the resistor material 10 in the second electrode material 22 has a streak-like unevenness 50 over the Y direction orthogonal to the X direction.
  • the mounting surface 51 means the entire surface facing the circuit board, and includes not only the surface of the extension portions 32 and 42 on the circuit board side but also the surface of the resistor material 10 on the circuit board side.
  • Each of the joint surfaces in the joint portion 23 is a diffusion joint surface in which the metal atoms of the resistance material 10 and the electrode material 21 are diffused from each other. Therefore, even if the resistance material 10 and the first electrode material 21 are not welded by the electron beam, they are firmly joined to each other. The same applies to the resistance material 10 and the second electrode material 22. As a result, the resistor 2 can obtain good electrical characteristics.
  • the resistor 2 in addition to the visibility, bonding property, nozzle adsorption property, suppression of electromigration and heat cycle resistance described as the effect of the resistor 1 shown in FIG. 1, the following effects are exhibited.
  • the extension portions 32 and 42 can form the legs when the resistor 2 is mounted on the circuit board.
  • the resistor 2 is mounted on the circuit board, it is not necessary to provide a configuration for insulation between the circuit board and the resistor 10 so that the resistor 10 and the circuit board do not come into contact with each other.
  • FIG. 4 is a side view illustrating the resistor 3 according to the first modification of the present embodiment.
  • the resistor 3 includes a first electrode material 61 and a second electrode material 62 to be joined to the resistance material 10.
  • the first electrode material 61 includes a body portion 63 joined to the resistance material 10 and an extension portion 64 formed integrally with the body portion 63 and extending in the ⁇ Z direction from the body portion 63.
  • the second electrode material 62 includes a body portion 65 joined to the resistance material 10 and an extension portion 66 formed integrally with the body portion 65 and extending in the ⁇ Z direction from the body portion 65.
  • the body portion 63 includes a protruding portion 631 that protrudes toward the resistance material 10 and has an end surface having substantially the same shape as one end surface of the resistance material 10 (in the + X direction).
  • the body portion 63 is formed in the protruding portion 631. It is joined to the end face of the resistor material 10 in the + X direction so as to be abutted against each other.
  • the body portion 65 includes a protruding portion 651 that protrudes toward the resistance material 10 and has an end surface having substantially the same shape as one end surface of the resistance material 10 (in the ⁇ X direction).
  • the body portion 65 is formed in the protruding portion 651. It is joined to the end face of the resistor material 10 in the ⁇ X direction in an abutted manner.
  • streaky irregularities are also formed on the outer peripheral surface of the resistor 3 in the Y direction.
  • the length L0 of the resistance material 10 in the X direction is formed to be smaller than the length L1 of the first electrode material 61 and the length L2 of the second electrode material 62.
  • the length dr of the resistance material 10 in the resistor 3 in the Z direction, the length dr of the body portion 63 of the first electrode material 61, and the length dr of the body portion 65 of the second electrode material 62 are the second implementation. It is formed to be larger than the length dr of the resistance material 10 in the Z direction of the resistor 2 of the form, the length dr of the body portion 31 of the first electrode material 21, and the length dr of the body portion 41 of the second electrode material 22. ing.
  • the length dl of the extension portions 64 and 66 in the Z direction is smaller than the length dr of the resistance material 10, the body portion 63 and the body portion 65 in the resistor 3, that is, it is formed to be shorter.
  • the length L11 of the body portion 63 of the first electrode material 61 and the length L21 of the body portion 65 of the second electrode material 62 are the body portions 31 and 41 of the resistor 2 in the X direction, respectively. It is formed shorter than the length.
  • the first electrode material 61, the resistor material 10 and the second electrode material 62 are overlapped in this order. Since it has a joint surface by parallel bonding, the distance between the electrodes can be secured. Therefore, it is possible to reduce the resistance of the resistor 3 while ensuring the distance between the circuit board and the mounting surface of the resistor material 10. In addition, the degree of freedom in designing the circuit board on which the resistor 3 is mounted can be improved.
  • FIG. 5 is a side view illustrating the resistor 4 according to the second modification of the present embodiment.
  • the resistor 4 includes a first electrode material 71 and a second electrode material 22 to be joined to the resistance material 10.
  • the first electrode material 71 includes a body portion 73 and an extension portion 74 to be joined to the resistance material 10.
  • the second electrode material 72 includes a body portion 75 and an extension portion 76 to be joined to the resistance material 10.
  • the body portion 73 includes a protruding portion 731 having an end face having substantially the same shape as the end face of one side (+ X direction) of the resistance member 10.
  • the body portion 73 is joined in the protruding portion 731 so as to be abutted against the end face of the resistor member 10.
  • the body portion 75 includes a projecting portion 751 having an end surface having substantially the same shape as the other end surface of the resistance material 10 (in the ⁇ X direction), and the projecting portion 751 is abutted against the end surface of the resistance material 10. It is joined.
  • streaky irregularities are also formed on the outer peripheral surface of the resistor 4 in the Y direction.
  • the length dl of the extension portions 74 and 76 in the Z direction is the length dr of the resistor material 10, the length dr of the body portion 73 of the first electrode material 71, and the body portion of the second electrode material 72. It is formed larger than the length dr.
  • the resistance of the resistor 4 can be reduced while increasing the distance between the circuit board and the mounting surface of the resistor material 10 as compared with the first modification.
  • the degree of freedom in designing the circuit board on which the resistor 4 is mounted can be improved.
  • the length dl of the extension portions 64 and 66 in the Z direction can be determined in consideration of the TCR characteristic and the high frequency characteristic of the resistor 4.
  • FIG. 6 is a perspective view illustrating the resistor 5 according to the third modification of the present embodiment. Further, FIG. 7 is a cross-sectional view illustrating a state in which the resistor 5 is mounted on the circuit board.
  • the resistor 5 includes a first electrode material 81 and a second electrode material 82 to be joined to the resistance material 10.
  • the first electrode material 81 includes a body portion 83 and an extension portion 84 to be joined to the resistance material 10.
  • the second electrode material 82 includes a body portion 85 and an extension portion 86 to be joined to the resistance material 10.
  • the body portion 83 includes a protruding portion 831 to be joined to the resistance material 10. Further, the body portion 85 includes a protruding portion 851 that is joined to the resistance material 10.
  • the length d1 of the first electrode material 81 is larger than the length d2 of the second electrode material 82 in the Z direction (d1> d2).
  • the Z direction is used. It is possible to design the length d1 of the first electrode material 81 to be larger than the length d2 of the second electrode material 82. As a result, the thickness of the semiconductor 93 interposed between the resistor 5 and the circuit board can be absorbed, and the amount of protrusion of the resistor 5 from the circuit board can be kept within the specified value. In the resistor 5, another semiconductor having a thickness different from that of the semiconductor 93 may be interposed between the extension portion 86 and the circuit board.
  • FIG. 8 is a schematic diagram illustrating a method for manufacturing the resistor 2 according to the second embodiment.
  • the method for manufacturing the resistor 2 according to the second embodiment includes a step of preparing the material (a), a step of joining the materials (b), a step of processing the shape (c), and cutting into individual resistors.
  • the step (d) and the step (e) of adjusting the resistance value of the resistor using a laser are provided.
  • the resistance material 10 and the electrode materials 21 and 22 are prepared.
  • the resistance material 10 and the electrode materials 21 and 22 are long flat wire rods.
  • copper / manganese / nickel alloy and copper / manganese / tin alloy are used as the material of the resistor 10, and the electrode materials 21 and 22 are used. It is preferable to use oxygen-free copper (C1020) as the material.
  • the first electrode material 21, the resistor material 10, and the second electrode material 22 are laminated in this order, and pressure is applied in the stacking direction to join them to form the resistor base material 100. do.
  • step (b) so-called clad bonding between dissimilar metal materials is performed.
  • the joint surface between the first electrode material 21 and the resistor material 10 which have been clad-bonded, and the joint surface between the second electrode material 22 and the resistor material 10 are diffusion joint surfaces in which both metal atoms are diffused from each other.
  • the joint surface between the resistor material 10 and the first electrode material 21 and the joint surface between the resistor material 10 and the second electrode material 22 are strengthened to each other without performing conventional welding with an electron beam. Can be joined to. Further, good electrical characteristics can be obtained on the joint surface between the resistance material 10 and the first electrode material 21 and the joint surface between the resistance material 10 and the second electrode material 22.
  • FIG. 9A is a front view of the die 110 used in the step (c) shown in FIG. 8 as viewed from the upstream side in the drawing direction F.
  • FIG. 9B is a schematic diagram illustrating a step (c) of processing the shape in the method of manufacturing the resistor 2.
  • the die 110 is shown in cross-sectional view taken along line BB of FIG. 9A, and the resistor member 100 is shown in side view.
  • step (c) the resistor base material 100 obtained by clad bonding is passed through the die 110.
  • the die 110 shown in FIG. 9A can be used as an example.
  • An opening 111 is formed in the die 110.
  • the opening 111 has an inlet opening 112 set to a size into which the resistor base material 100 can be inserted, an outlet opening 113 set to a size smaller than the external dimension of the resistor base material 100, and an outlet from the inlet opening 112. It has an insertion portion 114 formed in a tapered shape toward the opening 113.
  • the opening 111 is formed in a rectangular shape in which the corner portion is processed into a chamfered shape.
  • a die 110 having a protruding shape 110a protruding toward the center of the opening is applied to a part of any side of the opening 111.
  • the resistor base material 100 By passing the resistor base material 100 through the die 110 having such a shape, the resistor base material 100 is compressed and deformed from all directions, and the resistor base material 100 is formed in the withdrawal direction F by the protruding shape 110a. A continuous groove 101 is formed.
  • step (c) when the resistor base material 100 is passed through the die 110, the resistor base material 100 is pulled out by the gripping tool 120, and a pulling method is applied. At this time, streaky irregularities are formed as sliding marks on the surface of the resistor base material 100.
  • step (c) instead of the drawing process in which molding is completed by one drawing, a plurality of dies having different sizes of the openings 111 are prepared and the drawing process is passed through the plurality of dies stepwise. May be given.
  • step (c) by changing the shape of the opening 111 of the die 110, for example, a resistor 1 having no extension portion, resistors 3, 4, 5 shown as modification examples, and the like are manufactured. be able to.
  • a die 110 having a shape protruding toward the center of the opening is applied to a part of one side of the opening 111.
  • a groove 101 continuous in the pulling direction F is formed by the protruding shape 110a provided on the die 110.
  • the groove 101 is formed by the body portion 31 and the extension portion 32 of the resistance material 10 and the first electrode material 21, and the body portion 41 and the extension portion 42 of the second electrode material 22. It constitutes an enclosed recess.
  • the resistor is cut out from the resistor base material 100 so as to have the designed size W in the width direction. Further, in the present embodiment, in the step (d), it is preferable to cut from the surface 100a in which the groove 101 is formed in the resistor base material 100 toward the opposite surface 100b.
  • the resistance value is adjusted by forming a defective portion in a predetermined portion of the resistor material 10 of the resistor 2 using a laser as needed.
  • the first electrode material 21, the resistance material 10, and the second electrode material 22 are overlapped and pressure is applied to integrate them by clad bonding.
  • the bonding strength between the resistance material 10 and the electrode materials 21 and 22 can be increased without using welding with an electron beam.
  • the resistor base material 100 is passed through the die 110 and compressed from all directions to form the outer shape of the resistor base material 100 while ensuring dimensional accuracy. be able to. Therefore, after the resistor base material 100 is formed, the individual resistor 2 can be manufactured only by going through the step (d) shown in FIG.
  • the bonding strength between the resistor material 10 and the electrode materials 11 and 12 is further increased by passing the clad-bonded resistor base material 100 through the die 110 and compressing it from all directions. be able to.
  • the first stage pressure welding is performed by a pair of rollers that pressurize the resistor base material from the thickness direction Z.
  • the resistor base material in the first-stage pressure welding process, is compressed in the thickness direction Z, but expands in the width direction Y. Further, in the subsequent pressure welding step of the second stage, the resistor base material is compressed in the width direction Y, but expands in the thickness direction Z. Due to the accumulation of manufacturing errors in this way, the dimensional accuracy is lowered, and the variation in the characteristics of each resistor and the variation in the temperature distribution when power is applied to the resistor become large.
  • the resistor base material 100 is set to one in the length direction X and the thickness direction Z. Can be compressed like this.
  • the resistor base material 100 forms an electrically advantageous bonding interface as compared with the resistor base material obtained by repeating compression from one direction and compression from the other direction using a roller. It is thought that it will be done. Therefore, the reliability of the characteristics of the resistor 2 as a finished product can be ensured.
  • a plurality of dies 110 having different openings 111 are used stepwise, and the size of the resistor base material 100 is compression-molded so as to be stepwise reduced.
  • the resistor base material 100 can be uniformly compressed in the length direction X and the thickness direction Z while reducing the load on the base material 100 and the die 110. As a result, it is possible to suppress the characteristic difference of the resistor 2 as a finished product.
  • the accuracy of the finished product is improved as compared with the extrusion method by applying the drawing step in the step (c) of passing the resistor base material 100 through the die 110.
  • this manufacturing method it is possible to realize stabilization of the characteristics of the resistor 1.
  • At least the outlet opening 113 of the opening 111 of the die 110 is continuously formed by a curved line.
  • the corner portion of the resistor 1 obtained through the die 110 will be rounded. As a result, it is possible to suppress the electromigration that occurs in the resistor 1 at the edge portion P. In addition, the heat cycle resistance of the resistor 1 can be increased.
  • the manufacturing method according to the present embodiment since the first electrode material 21, the resistance material 10, and the second electrode material 22 are joined to each other by diffusion bonding, there is no welding bead. In conventional welding joints, the weld bead may have a non-negligible effect on resistance characteristics as resistors become smaller. However, the resistors 1 to 5 obtained by the manufacturing method according to the present embodiment do not have such a concern.
  • the resistor base material 100 obtained by clad-bonding the resistor material 10 and the electrode materials 21 and 22 is molded through the die 110, so that for example, welding with an electron beam is performed. It is possible to increase the bonding strength between materials without using the above, and to secure high dimensional accuracy. Therefore, it is suitable for manufacturing small resistors 1 to 5.
  • the resistor base material 100 In manufacturing the resistor 2, in the step (d) shown in FIG. 8, it is preferable to cut the resistor base material 100 from the surface 100a on which the groove 101 is formed toward the opposite surface 100b. As a result, burrs generated by cutting can be accommodated in the space of the groove (recess) on the mounting surface side.
  • a step of adjusting the size of the clad-bonded resistor base material 100 to a size that can be inserted into the die 110 is included in the first stage of the step (c) of processing the shape. You may.
  • FIG. 10 is a schematic view illustrating a step of adjusting the size of the resistor base material 100 performed in the first stage of the step (c).
  • the resistor base material 100 is processed into a size suitable for the inlet opening 112 of the die 110 and inserted into the die 110.
  • the end surface of the resistor 2 in the Y direction (the end surface of the electrode materials 21 and 22 in the Y direction) and the joint surface between the resistor material 10 and the electrode materials 21 and 22 are represented substantially orthogonally in the drawings. ing. Further, the side surface of the resistor 2 along the Y direction (opposite surface 22a of the joint surface between the resistor material 10 and the electrode materials 21 and 22) and the joint surface between the resistor material 10 and the electrode materials 21 and 22 are substantially parallel to each other. It is represented by. However, the relationship between each aspect is not limited to this.
  • the joint surface between the resistance material 10 and the electrode materials 11 and 22 is represented by a straight line in FIGS. 2 and 3.
  • the joint surface between the resistance material 10 and the electrode materials 11 and 22 is a diffusion joint surface, microscopically, both the resistance material 10 and the electrode materials 11, 11 and 12 are smooth end faces. It is not in close contact.
  • the area of the resistance material 10 on the mounting surface 51 side may be larger than the area of the surface 52 opposite to the mounting surface 51.
  • the area of the resistance material 10 on the mounting surface 51 side may be smaller than the area of the opposite surface 52 with respect to the mounting surface 51.
  • the joint surface between the resistor material 10 and the electrode materials 21 and 22 differs depending on the cross-sectional shape of the electrode material or the resistor material before clad joining.
  • a high resistance resistance material may be used as the material of the resistance material 10 applied to the resistors 1 to 5. This makes it possible to miniaturize the resistor while ensuring the resistance value of the resistor.
  • Resistor 10 Resistor 111,21,61,71,81 First electrode material 11a, 12a, 21a, 22a Opposite surface 12,22,62,72,82 Second electrode material 13 , 14, 23, 24 Joints 15, 50 Streaks 16,51 Mounting surface 17, 52 Opposite surfaces 31, 41, 63, 65, 73, 75, 83, 85 Body 32, 42, 64, 66, 74 , 76, 84, 86 Extension 91, 92 Land pattern 93 Semiconductor 100 Resistor base material 100a Surface 100b Opposite surface 101 Groove 110 Die 110a Protruding shape 111 Opening 112 Entrance opening 113 Exit opening 114 Insertion part 120 Grab tool 311,411 , 631,651,731,751,831,851 protruding part

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Details Of Resistors (AREA)
  • Non-Adjustable Resistors (AREA)

Abstract

抵抗器の製造方法は、電極材と抵抗材と電極材とを、この順で重ね、重ね方向に圧力を加えて接合することにより抵抗器母材を形成し、抵抗器母材の外形寸法よりも小さい寸法の開口部が形成されたダイスに抵抗器母材を通し、ダイスに通された抵抗器母材から個別の抵抗器を得る。

Description

抵抗器の製造方法及び抵抗器
 本発明は、抵抗器の製造方法及び抵抗器に関する。
 基板上に実装される抵抗器において、低抵抗で高電流測定に適した電流経路を有する抵抗器が提案されている(JP2002-57009A参照)。
 近年、電子機器の高機能化に伴い、電子部品を実装するための回路基板に対して、高密度実装の要求が高まっている。しかし、JP2002-57009Aに記載された抵抗器では、寸法精度を維持しつつ、更に小型にすることが難しく、依然として改善の余地が残されていた。
 本発明は、上記問題点に着目してなされたものであり、寸法精度を確保しつつ、抵抗器を小型にすることを目的とする。
 本発明の一態様としての抵抗器の製造方法は、電極材と抵抗材と電極材とを、この順で重ね、重ね方向に圧力を加えて接合することにより抵抗器母材を形成し、前記抵抗器母材の外形寸法よりも小さい寸法の開口部が形成されたダイスに前記抵抗器母材を通し、前記ダイスに通された前記抵抗器母材から個別の抵抗器を得る、という製造方法である。
 また、本発明の一態様としての抵抗器は、回路基板に実装される抵抗器であって、抵抗材と、前記抵抗材の一方の端面に接合された第一電極材と、前記抵抗材の他方の端面に接合された第二電極材と、を備え、前記抵抗器の表面には、前記第一電極材と前記抵抗材と前記第二電極材とが連なる接合方向に対して直交する方向に延びる筋状の凹凸を有する、抵抗器である。
 これらの態様によれば、寸法精度を確保しつつ、抵抗器を小型にすることができる。
図1は、本発明の第一実施形態に係る抵抗器を説明する斜視図である。 図2は、本発明の第二実施形態に係る抵抗器を説明する斜視図である。 図3は、第二実施形態に係る抵抗器を回路基板への実装面側からみた斜視図である。 図4は、本発明の変形例1に係る抵抗器を説明する側面図である。 図5は、本発明の変形例2に係る抵抗器を説明する側面図である。 図6は、本発明の変形例3に係る抵抗器を説明する斜視図である。 図7は、変形例3に係る抵抗器が回路基板に実装された状態を説明する断面図である。 図8は、本発明の実施形態に係る抵抗器の製造方法を説明する模式図である。 図9Aは、図8に示す工程(c)に用いられるダイスを引き抜き方向Fの上流側からみた正面図である。 図9Bは、本実施形態に係る抵抗器の製造方法における形状を加工する工程を説明する模式図である。 図10は、本実施形態に係る抵抗器の製造方法において、抵抗器母材のサイズをダイスに挿通可能なサイズに調整する工程を説明する模式図である。
 [抵抗器の説明]
 <第一実施形態>
 本発明の第一実施形態に係る抵抗器1について、図1を用いて詳細に説明する。図1は、本実施形態に係る抵抗器1の構造を説明する斜視図である。
 抵抗器1は、抵抗材10と、第一電極材11と、第二電極材12とを備え、第一電極材11、抵抗材10、及び第二電極材12が、この順に接合されたものである。抵抗器1は、図1には示されていない回路基板等に実装される。例えば、抵抗器1は、回路基板のランドパターン上に形成された一対の電極の上に配置される。本実施形態では、抵抗器1は、電流検出用抵抗器(シャント抵抗器)として用いられる。
 なお、本実施形態では、第一電極材11と第二電極材12が並ぶ方向(抵抗器1の長手方向)をX方向(第一電極材11側を+X方向、第二電極材12側を-X方向)とする。そして、抵抗器1の幅方向をY方向(図1の紙面手前側を+Y方向、図1の紙面奥側を-Y方向)とし、抵抗器1の厚み方向をZ方向とし、X方向、Y方向、Z方向は互いに直交するものとする。
 抵抗材10は、用途に合わせて低抵抗から高抵抗の材料を用いることが可能である。本実施形態において、抵抗材10は、大電流を精度よく検出する観点から、比抵抗が小さく、且つ抵抗温度係数(TCR)が小さい抵抗体材料であることが好ましい。一例として、銅・マンガン・ニッケル系合金、銅・マンガン・スズ系合金、ニッケル・クロム系合金、銅・ニッケル系合金等を使用することができる。
 本実施形態においては、抵抗材10は、高密度実装の観点から、方形に形成されているが、抵抗材10の形状は台形状であってもよい。
 第一電極材11及び第二電極材12は、安定した検出精度を確保する観点から、電気伝導性及び熱伝導性の良好な導電性材料であることが好ましい。一例として、第一電極材11及び第二電極材12として、銅、銅系合金等を使用することができる。銅の中では、無酸素銅(C1020)を使用することが好ましい。第一電極材11と第二電極材12とは、互いに同一のものを使用できる。
 第一電極材11は、抵抗材10の一方の端面と略同形状の端面を有し、この端面において抵抗材10の一方の端面に接合されている。また、第二電極材12は、抵抗材10の一方の端面と向かい合う他方の端面に対して略同形状の端面を有し、この端面において抵抗材10の他方の端面に接合されている。
 本実施形態において、抵抗材10と第一電極材11との接合部13、及び抵抗材10と第二電極材12との接合部14は、互いにクラッド接合(固相接合)により接合している。すなわち、接合部13,14における接合面の各々は、抵抗材10と電極材11,12双方の金属原子が互いに拡散した拡散接合面となっている。
 抵抗材10と第一電極材11との接合部13では、抵抗材10と第一電極材11との境界に段差がなく平坦である。換言すれば、抵抗材10と第一電極材11とは、滑らかに連続している。抵抗材10と第二電極材12との接合部14においても同様に、抵抗材10と第二電極材12との境界に段差がなく平坦であり、抵抗材10と第二電極材12とは、滑らかに連続している。すなわち、接合部13,14の表面は、抵抗器1の全周に亘って平坦(段差がない状態)に形成されている。
 TCR(抵抗温度係数[ppm/℃])を確保しつつ、抵抗値を小さくする観点から、抵抗材10の長さ方向における抵抗材10の長さL0と、第一電極材11の長さL1と、第二電極材12の長さL2の比は、任意に設定することができ、一例として、L1:L0:L2=1:2:1とすることができる。
 更に、抵抗値を小さくする観点から、抵抗器1の長さL(=L1+L0+L2)に対する抵抗材10の長さL0の比率は、50%以下とすることができる。
 本実施形態において、抵抗器1は、表面に、筋状凹凸15を有する。本実施形態においては、筋状凹凸15は、抵抗器1における回路基板への実装面16と、実装面16の反対面17とに形成されている。また、筋状凹凸15は、幅方向Yに亘って形成されている。ここで、抵抗器1の実装面16とは、抵抗器1において回路基板に対向する面全体を意味する。
 また、筋状凹凸15は、第一電極材11と抵抗材10との接合面に対する反対面11aと、第二電極材12と抵抗材10との接合面に対する反対面12aとの各々に、幅方向Yに亘って形成されている。
 筋状凹凸15の凹部と凸部による表面粗さは、算術平均粗さ(Ra)で、約0.2~0.3μmとすることができる。
 本実施形態においては、高密度回路基板に適合させる観点から、X方向における抵抗器1の長さLが3.2mm以下、Y方向における抵抗器1の長さWが1.6mm以下(製品規格3126サイズ以下)とすることができる。また、後述する製造方法における取り扱い性、例えば、抵抗器1の基となる抵抗器母材の破断防止等の観点から、X方向における抵抗器1の長さLは1.0mm以上、Y方向における抵抗器1の長さWは0.5mm以上(製品規格1005サイズ以上)とすることができる。
 また、本実施形態においては、抵抗器1の抵抗値は、低抵抗を実現する観点から、2mΩ以下となるように調整されている。ここでの低抵抗とは、一般的な抵抗器の抵抗値よりも低い抵抗値を含む概念である。
 本実施形態において、抵抗器1のY方向に延びる縁辺部分Pは、いずれも面取り形状を有している。本実施形態では、縁辺部分Pに生じるエレクトロマイグレーションの抑制とヒートサイクル耐性向上の観点から、縁辺部分Pの曲率半径は、R=0.1mm以下であることが好ましい。
 <作用効果>
 次に、第一実施形態における作用効果について説明する。
 本実施形態において、抵抗材10と第一電極材11との接合部13、及び抵抗材10と第二電極材12との接合部14の各々には、抵抗材10と電極材11,12双方の金属原子が互いに拡散した拡散接合面が形成されている。これにより、抵抗材10と第一電極材11、及び抵抗材10と第二電極材12とが互いに強固に接合されるため、良好な電気的特性が得られる。
 本実施形態において、抵抗器1は、方形に形成されている。抵抗材10が方形であると、抵抗材10の端面と略同形状に形成され、抵抗材10の端面に接合された第一電極材11及び第二電極材12から抵抗材10を流れる電流の経路が直線的になるため抵抗値を安定させることができる。また、抵抗器1では、抵抗材10が電極材11,12の間に接合されているため、抵抗材10の体積を必要最小限にして抵抗値を調整することが可能である。
 また、抵抗器1では、抵抗材10と第一電極材11との接合、及び抵抗材10と第二電極材12との接合には、例えば、電子ビームによる溶接が用いられていないため、接合部13,14にはビード(凹凸形状の溶接痕)がない。したがって、抵抗器1の表面にワイヤーボンディング等を施す場合にボンディング性を損なうことがない。
 また、本実施形態において、接合部13,14の表面は、抵抗器1の全周に亘ってフラットに形成されている。このため、抵抗器1を回路基板へ実装する際などに、ノズルを用いて抵抗器1を吸着しながら拾い上げる作業において、ノズルへの吸着性が高められる。したがって、抵抗器1を回路基板へ実装する際の作業性が向上する。
 本実施形態において、筋状凹凸15は、実装面16と、実装面16の反対面17と、第一電極材11における抵抗材10と接合された面の反対面11aと、第二電極材12における抵抗材10と接合された面の反対面12aとに、幅方向Yに亘って形成されている。このため、抵抗器1を扱う作業者にとっては、回路基板への実装の際に、抵抗器1の取付方向や取付姿勢の視認性がよい。
 なお、この筋状凹凸15は、ビードによる凹凸よりも滑らかであり、ワイヤーボンディングにおけるボンディング性を損なうものではない。
 本実施形態において、抵抗器1の接合方向(X方向)における長さLは、3.2mm以下であり、Y方向における長さWは、1.6mm以下になるように形成される。また、抵抗器1の抵抗値が2mΩ以下になるように調整される。
 このサイズでは、抵抗材と電極材とを溶接する一般的な抵抗器であれば、寸法精度を確保する観点から、例えば、電子ビームによる溶接で生じるビードの影響を考慮する必要があるが、本実施形態に係る抵抗器1は、抵抗材10と電極材11,12とが拡散接合により接合されているため、このように小型で、かつ低抵抗に設計できる。
 本実施形態において、抵抗器1の縁辺部分Pは、面取り形状になっている。一般的な抵抗器では、面取りされていない角部分において電流密度が大となり、エレクトロマイグレーションと呼ばれる現象が発生したり、同様にして角部分に熱応力が集中したりすることにより、抵抗器の欠損が発生しやすくなっていた。また、このエレクトロマイグレーションは、回路サイズが微小化するにつれて無視できない影響を及ぼすため、抵抗器が小型になるほど、エレクトロマイグレーションが顕著化することが懸念されていた。
 これに対して、本実施形態に係る抵抗器1は、縁辺部分Pが面取りされていることにより、縁辺部分Pにおける電流密度の偏りが緩和される。これにより、エレクトロマイグレーションの発生を抑制することができる。また、同様にして、熱応力集中が緩和できるため、ヒートサイクル耐性を向上することができる。
 したがって、抵抗器1によれば、寸法精度を確保しつつ、抵抗器を小型にすることができる。これにより、抵抗器1は、近年の電子部品を実装するための回路基板に対する高密度要求に応えることができる。また、これに加えて、電極材11,12と抵抗材10の接合部13,14にビードがないことから、電極間距離が確保しやすいため、抵抗値を小さくすることが容易である。したがって、抵抗器1は、高電力要求にも応えることができる。
 <第二実施形態>
 図2は、本発明の第二実施形態に係る抵抗器2を説明する斜視図であり、図3は、第二実施形態に係る抵抗器2を回路基板への実装面側からみた斜視図である。
 抵抗器2は、抵抗材10と、第一電極材21と、第二電極材22とを備える。抵抗材10、第一電極材21、及び第二電極材22は、接合部23,24において互いにクラッド接合されている。抵抗器2は、第一実施形態に係る抵抗器1とは形状の異なる第一電極材21及び第二電極材22を有する。
 第一電極材21は、抵抗材10に接合する胴体部31と、胴体部31から-Z方向に延びる延長部32とを備える。また、第二電極材22は、抵抗材10に接合する胴体部41と、胴体部41と一体に形成され、胴体部41から-Z方向に延びる延長部42とを備える。
 胴体部31は、抵抗材10に向けて突出し、抵抗材10の一方(+X方向)の端面と略同形状の端面を有する突出部311を備える。胴体部31は、この突出部311において、抵抗材10の+X方向の端面と突き合わされた態様で接合されている。胴体部31と抵抗材10との接合部23では、抵抗材10と胴体部31の突出部311との境界に段差がなく平坦であり、抵抗材10と胴体部31とは滑らかに連続している。すなわち、接合部23の表面は、抵抗材10と胴体部31との境界の全周に亘って平坦(段差が無い状態)に形成されている。
 第二電極材22における胴体部41もまた、胴体部31と同様に構成されている。胴体部41は、突出部411において、抵抗材10の-X方向の端面と突き合わされた態様で接合されている。
 胴体部31には、Z方向に延びる延長部32が形成されているため、抵抗器2を回路基板に実装する際には、延長部32を回路基板側に向けることにより、延長部32が回路基板と接合するための脚部を構成することができる。延長部42も延長部32と同様に構成されている。
 また、本実施形態においては、抵抗器2は、抵抗器2における回路基板への実装面51と、実装面51の反対面52と、第一電極材21における抵抗材10と接合された面の反対面21aと、第二電極材22における抵抗材10と接合された面の反対面22aの各々に、X方向に直交するY方向に亘って筋状凹凸50を有する。ここで、実装面51とは、回路基板に対向する面全体を意味し、延長部32,42の回路基板側の面だけでなく、抵抗材10の回路基板側の面も含む。
 <作用効果>
 次に、第二実施形態における作用効果について説明する。
 接合部23における接合面の各々は、抵抗材10と電極材21の金属原子が互いに拡散した拡散接合面となっている。このため、抵抗材10と第一電極材21との間が電子ビームによって溶接されていなくとも、互いに強固に接合されている。また、抵抗材10と第二電極材22との間も同様である。これにより、抵抗器2は、良好な電気的特性が得られる。
 また、抵抗器2では、図1に示した抵抗器1による効果として説明した、視認性、ボンディング性、ノズル吸着性、エレクトロマイグレーションの抑制及びヒートサイクル耐性に加えて、以下の効果を奏する。
 すなわち、第一電極材21及び第二電極材22が延長部32,42を有することにより、抵抗器2が回路基板へ実装される際に、延長部32,42が脚部を構成できる。これにより、抵抗器2が回路基板へ実装される際、抵抗材10と回路基板とが接触しないように回路基板と抵抗材10との間に絶縁のための構成を設ける必要がない。
 <変形例>
 続いて、第二実施形態の変形例について説明する。
 (変形例1)
 図4は、本実施形態の変形例1に係る抵抗器3を説明する側面図である。
 抵抗器3は、抵抗材10に接合する第一電極材61と第二電極材62とを備える。第一電極材61は、抵抗材10に接合する胴体部63と、胴体部63と一体に形成されて、胴体部63から-Z方向に延びる延長部64とを備える。また、第二電極材62は、抵抗材10に接合する胴体部65と、胴体部65と一体に形成され、胴体部65から-Z方向に延びる延長部66とを備える。
 胴体部63は、抵抗材10に向けて突出し、抵抗材10の一方(+X方向)の端面と略同形状の端面を有する突出部631を備える。胴体部63は、この突出部631において、
抵抗材10の+X方向の端面と突き合わされた態様で接合されている。また、胴体部65は、抵抗材10に向けて突出し、抵抗材10の一方(-X方向)の端面と略同形状の端面を有する突出部651を備える。胴体部65は、この突出部651において、
抵抗材10の-X方向の端面と突き合わされた態様で接合されている。
 なお、図4には現れていないが、抵抗器3の外周面にも、Y方向に亘って筋状凹凸が形成されている。
 変形例1においては、X方向における抵抗材10の長さL0が、第一電極材61の長さL1及び第二電極材62の長さL2よりも小さくなるように形成されている。
 また、抵抗器3における抵抗材10のZ方向の長さdr、第一電極材61の胴体部63の長さdr、及び第二電極材62の胴体部65の長さdrは、第二実施形態の抵抗器2のZ方向における抵抗材10の長さdr、第一電極材21の胴体部31の長さdr、及び第二電極材22の胴体部41の長さdrよりも大きく形成されている。
 また、延長部64,66のZ方向の長さdlは、抵抗器3における抵抗材10、胴体部63及び胴体部65の長さdrよりも小さく、つまり短く形成されている。
 また、X方向において、第一電極材61の胴体部63の長さL11と第二電極材62の胴体部65の長さL21とが、X方向における抵抗器2の胴体部31,41各々の長さよりも短く形成されている。
 このような構成にすることにより、第二実施形態に比べ抵抗体の長さL0を短くした場合でも、第一電極材61と抵抗材10と第二電極材62とがこの順で重ねられ、並接接合による接合面を有していることから、電極間距離を確保できる。このため、回路基板と抵抗材10の実装面との距離を確保しつつ、抵抗器3の低抵抗化を実現できる。また、抵抗器3が実装される回路基板の設計の自由度を向上させることができる。
 (変形例2)
 図5は、本実施形態の変形例2に係る抵抗器4を説明する側面図である。抵抗器4は、抵抗材10に接合する第一電極材71と第二電極材22とを備える。第一電極材71は、抵抗材10に接合する胴体部73と延長部74とを備える。また、第二電極材72は、抵抗材10に接合する胴体部75と延長部76とを備える。
 胴体部73は、抵抗材10の一方(+X方向)の端面と略同形状の端面を有する突出部731を備える。胴体部73は、この突出部731において、抵抗材10の端面と突き合わされた態様で接合されている。また、胴体部75は、抵抗材10の他方(-X方向)の端面と略同形状の端面を有する突出部751を備え、この突出部751において、抵抗材10の端面と突き合わされた態様で接合されている。
 なお、図5には現れていないが、抵抗器4の外周面にも、Y方向に亘って筋状凹凸が形成されている。
 抵抗器4は、延長部74,76のZ方向の長さdlが、抵抗材10の長さdr、第一電極材71の胴体部73の長さdr及び第二電極材72の胴体部の長さdrよりも大きく形成されている。これにより、変形例1に比べて、回路基板と抵抗材10の実装面との間隔を広げつつ、抵抗器4の低抵抗化を実現できる。また、変形例1と同様に、抵抗器4が実装される回路基板の設計の自由度を向上させることができる。本変形例においては、Z方向における延長部64,66の長さdlは、抵抗器4のTCR特性や高周波特性を考慮して決定することができる。
 (変形例3)
 図6は、本実施形態の変形例3に係る抵抗器5を説明する斜視図である。また、図7は、抵抗器5が回路基板に実装された状態を説明する断面図である。
 抵抗器5は、抵抗材10に接合する第一電極材81と第二電極材82とを備える。第一電極材81は、抵抗材10に接合する胴体部83と延長部84とを備える。また、第二電極材82は、抵抗材10に接合する胴体部85と延長部86とを備える。
 胴体部83は、抵抗材10に接合する突出部831を備える。また、胴体部85は、抵抗材10に接合する突出部851を備える。
 なお、抵抗器5の外周面にもY方向に亘って筋状凹凸が形成されているが、説明の都合上、図6では省略されている。
 本変形例に係る抵抗器5では、Z方向において、第一電極材81の長さd1が第二電極材82の長さd2よりも大きい(d1>d2)。
 本変形例によれば、図7に示すように、回路基板に形成されるランドパターン91,92と抵抗器5の一方の延長部86との間に別の半導体93を実装する際、Z方向における第一電極材81の長さd1を第二電極材82の長さd2よりも大きくする設計が可能である。これにより、抵抗器5と回路基板との間に介在する半導体93の厚さを吸収することができ、回路基板からの抵抗器5の突出量を規定値に納めることができる。なお、抵抗器5においては、延長部86と回路基板との間に、半導体93とは異なる厚さの別の半導体が介在してもよい。
 [抵抗器の製造方法の説明]
 次に、上述した実施形態に係る抵抗器1~5の製造方法について、図8を用いて詳細に説明する。上述した実施形態に係る抵抗器1,2、また変形例に係る抵抗器3,4,5の製造方法の基本構成は同じであるため、以下では、抵抗器2の製造方法について説明する。
 図8は、第二実施形態に係る抵抗器2の製造方法を説明する模式図である。
 第二実施形態に係る抵抗器2の製造方法は、材料を準備する工程(a)と、材料を接合する工程(b)と、形状を加工する工程(c)と、個々の抵抗器に切断する工程(d)と、レーザを用いて抵抗器の抵抗値を調整する工程(e)とを備える。
 材料を準備する工程(a)では、抵抗材10と電極材21、22を準備する。抵抗材10と電極材21、22は平角状の長尺の線材である。本実施形態では、抵抗器のサイズ、抵抗値及び加工性の観点から、抵抗材10の材料として銅・マンガン・ニッケル系合金、銅・マンガン・スズ系合金を使用し、電極材21、22の材料として無酸素銅(C1020)を使用することが好ましい。
 材料を接合する工程(b)では、第一電極材21と抵抗材10と第二電極材22とを、この順で重ね、重ね方向に圧力を加えて接合して抵抗器母材100を形成する。
 すなわち、工程(b)では、いわゆる異種金属材料間におけるクラッド接合が行われる。クラッド接合された第一電極材21と抵抗材10との接合面、及び第二電極材22と抵抗材10との接合面は、双方の金属原子が互いに拡散した拡散接合面となっている。
 これにより、従来のような、電子ビームによる溶接を行うことなく、抵抗材10と第一電極材21との接合面と、抵抗材10と第二電極材22との接合面とを、互いに強固に接合することができる。また、抵抗材10と第一電極材21との接合面及び抵抗材10と第二電極材22との接合面において、良好な電気的特性が得られる。
 図9Aは、図8に示す工程(c)に用いられるダイス110を引き抜き方向Fの上流側からみた正面図である。また、図9Bは、抵抗器2の製造方法における形状を加工する工程(c)を説明する模式図である。図9Bにおいて、ダイス110は、図9AのB-B線における断面図で示されており、抵抗器部材100は、側面図で示されている。
 工程(c)では、クラッド接合によって得られた抵抗器母材100をダイス110に通過させる。抵抗器2を製造するにあたっては、一例として、図9Aに示すダイス110を用いることができる。
 ダイス110には、開口部111が形成されている。開口部111は、抵抗器母材100が挿入可能な寸法に設定された入口開口112と、抵抗器母材100の外形寸法よりも小さい寸法に設定された出口開口113と、入口開口112から出口開口113に向けてテーパ状に形成された挿通部114とを有する。本実施形態においては、開口部111は、角部分が面取り形状に加工された矩形に形成されている。
 また、開口部111のいずれかの辺における一部に、開口中央に向けて突出した突出形状110aを有するダイス110を適用する。
 このような形状のダイス110に抵抗器母材100を通過させることにより、抵抗器母材100を全方向から圧縮変形させるとともに、抵抗器母材100には、突出形状110aにより、引き抜き方向Fに連続する溝101が形成される。
 また、本実施形態では、工程(c)において、抵抗器母材100をダイス110に通過させる際、抵抗器母材100をつかみ具120によって引き抜く、引き抜き工法が適用される。この際、筋状凹凸が抵抗器母材100の表面に摺動痕として形成される。
 工程(c)では、一回の引き抜きで成形が完了する引き抜き加工に代えて、開口部111のサイズを異ならせた複数のダイスを用意して、これら複数のダイスを段階的に通過させる引き抜き加工を施してもよい。
 また、工程(c)では、ダイス110の開口部111の形状を変更することにより、例えば、延長部を備えていない抵抗器1や、変形例として示す抵抗器3,4,5などを製造することができる。
 抵抗器2を製造するにあたっては、一例として、開口部111の一の辺における一部に、開口中央に向けて突出した形状を有するダイス110を適用する。抵抗器母材100には、ダイス110に設けられた突出形状110aにより、引き抜き方向Fに連続する溝101が形成される。
 抵抗器母材100を個々に切断した際に、この溝101は、抵抗材10と第一電極材21の胴体部31と延長部32、第二電極材22の胴体部41と延長部42によって囲まれる凹部を構成する。
 工程(c)に続く工程(d)では、設計された幅方向のサイズWになるように、抵抗器母材100から抵抗器を切り出す。また、本実施形態では、工程(d)において、抵抗器母材100に溝101が形成された面100aから反対面100bに向けて切断することが好ましい。
 最後に、工程(e)において、抵抗器2の抵抗材10の所定部分に、必要に応じてレーザを用いて欠損部分を形成することにより、抵抗値を調整する。
 以上の工程(a)~(e)を経ることにより、抵抗器母材100から個片の抵抗器1を得ることができる。
 <作用効果>
 次に、本実施形態における作用効果について説明する。
 本実施形態に係る製造方法によれば、第一電極材21と抵抗材10と第二電極材22とを重ねて圧力を加えて、クラッド接合により一体化する。これにより、例えば、電子ビームによる溶接を用いること無く、抵抗材10と電極材21、22の接合強度を高めることができる。
 また、本実施形態に係る製造方法によれば、抵抗器母材100をダイス110に通して全方向から圧縮することにより、寸法精度を確保しつつ、抵抗器母材100の外形状を成型することができる。このため、抵抗器母材100が形成された後は、図8に示した工程(d)を経るだけで個別の抵抗器2を製造できる。
 したがって、複数の加工工程を経ることによって抵抗器を製造した場合に生じる個体差を抑えることができる。また、これに加えて、本実施形態では、クラッド接合した抵抗器母材100をダイス110に通して全方向から圧縮することにより、抵抗材10と電極材11,12との接合強度を更に高めることができる。
 抵抗器母材を全方向から圧縮する方法としては、例えば、抵抗器母材が方形であれば、抵抗器母材を厚み方向Zから加圧する一対のローラによって第一段の圧接を施して、その後、幅方向(Y方向)から加圧する一対のローラによって第二段の圧接を施す方法がある。
 しかし、この方法では、第一段の圧接工程において、抵抗器母材は、厚み方向Zに圧縮されるものの、幅方向Yには膨張してしまう。また、続く第二段の圧接工程において、抵抗器母材は、幅方向Yに圧縮されるものの、厚み方向Zには膨張してしまう。このように製造誤差が蓄積することにより、寸法精度が低下し、個々の抵抗器の特性のばらつきや抵抗器への電力印加時の温度分布のばらつき等が大きくなってしまう。
 これに対して、本実施形態に係る製造方法によれば、抵抗器母材100をダイス110に通過させる引き抜き工程を行うことにより、抵抗器母材100を長さ方向X及び厚み方向Zに一様に圧縮できる。
 このため、ローラを用いて一方向からの圧縮と他方向からの圧縮とを繰り返すことで得られた抵抗器母材に比べて、抵抗器母材100は、電気的に有利な接合界面が形成されると考えられる。したがって、完成品としての抵抗器2の特性の信頼性を確保することができる。
 本実施形態に係る製造方法では、特に、開口部111の異なる複数のダイス110を段階的に用いて、抵抗器母材100のサイズを段階的に小さくなるように圧縮成型することにより、抵抗器母材100及びダイス110への負荷を低減しつつ、抵抗器母材100を長さ方向X及び厚み方向Zに一様に圧縮できる。これにより、完成品としての抵抗器2の特性差を抑えることができる。
 また、本実施形態に係る製造方法では、抵抗器母材100をダイス110に通す工程(c)において、引き抜き工程が適用されることにより、押し出し工法に比べて完成品の精度が高められる。この製造方法を用いることにより、抵抗器1としての特性の安定化を実現できる。
 特に、ダイス110の開口部111の、少なくとも出口開口113は曲線により連続して形成されている。これにより、抵抗器母材100が開口を通過する際にかかる応力を緩和することができ、抵抗器母材100やダイス110への負荷を低減することができる。これにより、完成品としての抵抗器1の特性差を抑えることができる。
 これに加え、少なくとも出口開口113は曲線により連続して形成されているので、ダイス110を通過して得られた抵抗器1の角部分はラウンドされることになる。これにより、縁辺部分Pにおいて抵抗器1に生じるエレクトロマイグレーションを抑制することができる。また、抵抗器1のヒートサイクル耐性を高めることができる。
 また、本実施形態に係る製造方法によれば、第一電極材21と抵抗材10と第二電極材22とが互いに拡散接合により接合されているため、溶接ビードがない。従来の溶接による接合では、抵抗器が小型化されるにつれて溶接ビードが抵抗値特性に無視できない影響を与えることがあった。しかし、本実施形態に係る製造方法によって得られた抵抗器1~5には、その懸念がない。
 このように、本実施形態に係る製造方法は、抵抗材10及び電極材21,22をクラッド接合して得られる抵抗器母材100をダイス110に通して成型するため、例えば、電子ビームによる溶接を用いなくとも材料間の接合強度を高めることができるとともに、高い寸法精度を確保することができる。それゆえ、小型の抵抗器1~5の製造に好適である。
 抵抗器2を製造するにあたって、図8に示した工程(d)では、抵抗器母材100において溝101が形成された面100aから反対面100bに向けて切断することが好ましい。これにより、切断によって生じるバリを、実装面側の溝(凹部)の空間に収めることができる。
 また、本実施形態に係る製造方法において、形状を加工する工程(c)の前段に、クラッド接合された抵抗器母材100のサイズをダイス110に挿通可能なサイズに調整する工程が含まれていてもよい。
 図10は、工程(c)の前段に行われる抵抗器母材100のサイズを調整する工程を説明する模式図である。
 この工程では、一例として、材料を接合する工程(b)を経て得られた抵抗器母材100を、図10(a)に示すように、ダイス110の入口開口112に挿入可能にするため、抵抗器母材100の、引き抜き方向Fに直交する方向における両端部、すなわち、図10(b)に示す点線部分よりも外側部分を引き抜き方向Fに沿って切断する。
 続いて、図10(c)に示すように、抵抗器母材100をダイス110の入口開口112に適合するサイズに加工し、ダイス110に挿入する。
 このように、形状を加工する工程(c)の前段に抵抗器母材100のサイズを調整する工程を追加することにより、ダイス110を通過させることによって生じる抵抗器母材100への圧縮応力の偏りを防止することができる。また、これにより、完成品としての抵抗器1の特性差を抑えることができる。
 [その他の実施形態]
 上述の本発明の実施形態は、本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 例えば、図2において、抵抗器2のY方向の端面(電極材21,22のY方向の端面)と、抵抗材10と電極材21,22との接合面は、図面では略直交に表されている。また、抵抗器2のY方向に沿った側面(抵抗材10と電極材21,22との接合面の反対面22a)と、抵抗材10と電極材21,22との接合面とは略平行に表されている。しかし、各面の関係は、この限りではない。
 また、抵抗材10と電極材11,22との接合面は、図2及び図3では直線で表されている。しかし、抵抗材10と電極材11,22との接合面は、拡散接合面となっているため、微視的には、抵抗材10と電極材11,11、12双方が平滑な端面同士で密着しているものではない。
 また、図2において、実装面51側の抵抗材10の面積が実装面51に対する反対面52の面積よりも大きくてもよい。また、これとは反対に、実装面51側の抵抗材10の面積が実装面51に対する反対面52の面積よりも小さくてもよい。抵抗器2の側面(すなわち、抵抗器母材100の断面)において、抵抗材10と電極材21、22との接合面は、クラッド接合前の電極材料或いは抵抗体材料の断面形状によって異なる。
 本実施形態においては、抵抗器1~5に適用する抵抗材10の材料として、高抵抗の抵抗材料を用いてもよい。これにより、抵抗器の抵抗値を確保しつつ、抵抗器を小型化することが可能である。
 本願は、2020年1月27日に日本国特許庁に出願された特願2020-011192に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。
 1,2,3,4,5  抵抗器
 10  抵抗材
 11,21,61,71,81  第一電極材
 11a,12a,21a,22a  反対面
 12,22,62,72,82  第二電極材
 13,14,23,24  接合部
 15,50  筋状凹凸
 16,51  実装面
 17,52  反対面
 31,41,63,65,73,75,83,85  胴体部
 32,42,64,66,74,76,84,86  延長部
 91,92  ランドパターン
 93  半導体
 100  抵抗器母材
 100a  面
 100b  反対面
 101  溝
 110  ダイス
 110a  突出形状
 111  開口部
 112  入口開口
 113  出口開口
 114  挿通部
 120  つかみ具
 311,411,631,651,731,751,831,851  突出部

Claims (8)

  1.  電極材と抵抗材と電極材とを、この順で重ね、重ね方向に圧力を加えて接合することにより抵抗器母材を形成し、
     前記抵抗器母材の外形寸法よりも小さい寸法の開口部が形成されたダイスに前記抵抗器母材を通し、
     前記ダイスに通された前記抵抗器母材から個別の抵抗器を得る、
    抵抗器の製造方法。
  2.  請求項1に記載の抵抗器の製造方法であって、
     前記抵抗器母材を、前記開口部よりも小さい寸法の開口部が形成された別のダイスに通す、
    抵抗器の製造方法。
  3.  請求項1または2に記載の抵抗器の製造方法であって、
     引き抜き工法を用いて前記抵抗器母材を前記ダイスに通す、
    抵抗器の製造方法。
  4.  請求項1から3のいずれか1項に記載の抵抗器の製造方法であって、
     前記開口部が矩形である、
    抵抗器の製造方法。
  5.  請求項4に記載の抵抗器の製造方法であって、
     前記開口部は、前記矩形の一の辺における一部が開口中央に向けて突出した形状であり、
     前記突出した形状により前記抵抗器母材に溝が形成され、
     前記溝が形成された前記抵抗器母材の一の面側から該一の面の反対面側に向けて、前記抵抗器母材を切断する、
    抵抗器の製造方法。
  6.  回路基板に実装される抵抗器であって、
     抵抗材と、
     前記抵抗材の一方の端面に接合された第一電極材と、
     前記抵抗材の他方の端面に接合された第二電極材と、を備え、
     前記抵抗器の表面には、前記第一電極材と前記抵抗材と前記第二電極材とが連なる接合方向に対して直交する方向に延びる筋状の凹凸を有する、
    抵抗器。
  7.  請求項6に記載の抵抗器であって、
     前記抵抗材が方形であり、
     前記回路基板への実装面と、前記実装面の反対面と、前記第一電極材において前記抵抗材と接合された面の反対面と、前記第二電極材において前記抵抗材と接合された面の反対面とに、前記接合方向に直交する方向に延びる筋状の凹凸を有する、
    抵抗器。
  8.  請求項6または7に記載の抵抗器であって、
     前記抵抗器の前記接合方向における長さが3.2mm以下であり、前記抵抗器の抵抗値が2mΩ以下である、
    抵抗器。
PCT/JP2020/048953 2020-01-27 2020-12-25 抵抗器の製造方法及び抵抗器 WO2021153138A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112020006627.4T DE112020006627T5 (de) 2020-01-27 2020-12-25 Herstellungsverfahren für einen widerstand und widerstand
CN202080093554.4A CN115004325A (zh) 2020-01-27 2020-12-25 电阻器的制造方法以及电阻器
US17/759,487 US20230146171A1 (en) 2020-01-27 2020-12-25 Manufacturing method of resistor and resistor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-011192 2020-01-27
JP2020011192A JP2021118278A (ja) 2020-01-27 2020-01-27 抵抗器の製造方法及び抵抗器

Publications (1)

Publication Number Publication Date
WO2021153138A1 true WO2021153138A1 (ja) 2021-08-05

Family

ID=77078883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/048953 WO2021153138A1 (ja) 2020-01-27 2020-12-25 抵抗器の製造方法及び抵抗器

Country Status (5)

Country Link
US (1) US20230146171A1 (ja)
JP (1) JP2021118278A (ja)
CN (1) CN115004325A (ja)
DE (1) DE112020006627T5 (ja)
WO (1) WO2021153138A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000232007A (ja) * 1999-02-12 2000-08-22 Matsushita Electric Ind Co Ltd 抵抗器およびその製造方法
JP2009182144A (ja) * 2008-01-30 2009-08-13 Koa Corp 抵抗器およびその製造方法
WO2013076817A1 (ja) * 2011-11-22 2013-05-30 株式会社シンテック 抵抗器および抵抗器の製造方法
WO2016063928A1 (ja) * 2014-10-22 2016-04-28 Koa株式会社 電流検出装置および電流検出用抵抗器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1173375C (zh) * 1997-10-02 2004-10-27 松下电器产业株式会社 低电阻电阻器及其制造方法
JP3846987B2 (ja) * 1997-11-21 2006-11-15 北陸電気工業株式会社 チップ抵抗器の製造方法
JPH11238610A (ja) * 1998-02-20 1999-08-31 Murata Mfg Co Ltd 高圧用可変抵抗器
JP4138215B2 (ja) 2000-08-07 2008-08-27 コーア株式会社 チップ抵抗器の製造方法
TW594801B (en) * 2001-05-17 2004-06-21 Shipley Co Llc Resistors
JP2003022901A (ja) * 2001-07-06 2003-01-24 Keparu:Kk チップ型抵抗器、チップ型抵抗器の製造方法及び抵抗器
JP2020011192A (ja) 2018-07-18 2020-01-23 宇部興産機械株式会社 除塵装置の制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000232007A (ja) * 1999-02-12 2000-08-22 Matsushita Electric Ind Co Ltd 抵抗器およびその製造方法
JP2009182144A (ja) * 2008-01-30 2009-08-13 Koa Corp 抵抗器およびその製造方法
WO2013076817A1 (ja) * 2011-11-22 2013-05-30 株式会社シンテック 抵抗器および抵抗器の製造方法
WO2016063928A1 (ja) * 2014-10-22 2016-04-28 Koa株式会社 電流検出装置および電流検出用抵抗器

Also Published As

Publication number Publication date
DE112020006627T5 (de) 2022-12-01
US20230146171A1 (en) 2023-05-11
CN115004325A (zh) 2022-09-02
JP2021118278A (ja) 2021-08-10

Similar Documents

Publication Publication Date Title
WO2016204038A1 (ja) 抵抗器及びその製造方法
TWI442427B (zh) Electronic Parts
WO2014038372A1 (ja) 電流検出用抵抗器
WO1999018584A1 (fr) Resistance et son procede de production
JPH06224014A (ja) 電気抵抗の製造方法
JP6087279B2 (ja) チップ抵抗器の製造方法
WO2021153138A1 (ja) 抵抗器の製造方法及び抵抗器
WO2021153151A1 (ja) 抵抗器
JP6038439B2 (ja) チップ抵抗器、チップ抵抗器の実装構造
US20200243228A1 (en) Method for manufacturing resistor
JP2017174843A (ja) シャント抵抗器
JP2010161352A (ja) リード型電子部品
WO2021153153A1 (ja) 抵抗器の製造方法、及び抵抗器
WO2021153152A1 (ja) 抵抗器、及び抵抗器の製造方法
JP7421416B2 (ja) 抵抗器
JPS63250082A (ja) 薄板導体重ね合せ型の可撓性接続端子の製造方法
JP2022168158A (ja) 半導体装置
US11817255B2 (en) Inductor element
JP2005197394A (ja) 金属抵抗器
JP2022027164A (ja) 電流検出装置
JP4729211B2 (ja) 表面実装用抵抗器及びその製造方法
EP4138204B1 (en) Bus bar
WO2023100858A1 (ja) チップ抵抗器およびその製造方法
JP2007235110A (ja) 角形チップ抵抗器
JP2022123429A (ja) シャント抵抗器と電圧信号検出基板との接続方法、および電流検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20916758

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20916758

Country of ref document: EP

Kind code of ref document: A1