WO2021215229A1 - シャント抵抗器 - Google Patents

シャント抵抗器 Download PDF

Info

Publication number
WO2021215229A1
WO2021215229A1 PCT/JP2021/014450 JP2021014450W WO2021215229A1 WO 2021215229 A1 WO2021215229 A1 WO 2021215229A1 JP 2021014450 W JP2021014450 W JP 2021014450W WO 2021215229 A1 WO2021215229 A1 WO 2021215229A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
resistor
shunt resistor
notch
length
Prior art date
Application number
PCT/JP2021/014450
Other languages
English (en)
French (fr)
Inventor
保 遠藤
Original Assignee
Koa株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa株式会社 filed Critical Koa株式会社
Priority to US17/919,107 priority Critical patent/US20230162894A1/en
Priority to EP21792601.3A priority patent/EP4141895A4/en
Priority to CN202180029182.3A priority patent/CN115398567B/zh
Publication of WO2021215229A1 publication Critical patent/WO2021215229A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • H01C1/144Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors the terminals or tapping points being welded or soldered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/01Mounting; Supporting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • H01C1/148Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors the terminals embracing or surrounding the resistive element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C13/00Resistors not provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors

Definitions

  • the present invention relates to a shunt resistor for current detection.
  • Such a shunt resistor includes a plate-shaped resistor and plate-shaped electrodes bonded to both ends of the resistor.
  • Such resistors are composed of alloys such as copper / nickel alloys, copper / manganese alloys, iron / chromium alloys, and nickel / chromium alloys, and such electrodes are highly conductive such as copper. It is composed of a sex metal.
  • the temperature coefficient of resistance (TCR) is small in order to detect a current with little temperature fluctuation.
  • the temperature coefficient of resistance (TCR) is an index showing the rate of change in resistance value due to temperature change.
  • an alloy having a small TCR such as manganin (registered trademark) is used as the material of the resistor.
  • an object of the present invention is to provide a shunt resistor in which the TCR can be easily adjusted regardless of the material of the resistor, that is, the desired TCR can be satisfied.
  • a shunt resistor having a plate-shaped resistor and electrodes connected to both end faces of the resistor, and the electrodes extend in parallel to the joint portion between the resistor and the electrode.
  • Each of the notches has a notch, and when the distance from the joint to the notch is Y and the length of the joint in the width direction of the electrode is X, A shunt resistor is provided in a position where the relationship Y ⁇ 0.80X-1.36 holds.
  • a voltage detection terminal is provided at the joint portion and the voltage detection portion sandwiched between the notch portions.
  • the width of the electrode at the position where the notch is formed is 1 ⁇ 2 or more of the length of the joint in the width direction of the electrode.
  • the notch is formed at a position where the relationship of Y ⁇ 0.80X-1.36 holds when the distance from the joint to the notch is Y and the length of the joint in the width direction of the electrode is X. And extends parallel to the joint.
  • the desired TCR can be met with a simple configuration. Further, by adjusting the length of the notch portion, the TCR of the shunt resistor can be easily adjusted.
  • FIG. 5 is a plan view showing still another embodiment of the shunt resistor.
  • FIG. 5 is a perspective view schematically showing still another embodiment of a shunt resistor. It is an exploded perspective view of the shunt resistor of FIG.
  • FIG. 1 is a perspective view schematically showing an embodiment of the shunt resistor 1
  • FIG. 2 is a plan view of the shunt resistor 1 shown in FIG.
  • the white arrows shown in FIG. 2 indicate the direction of the current flowing through the shunt resistor 1.
  • the shunt resistor 1 has a resistor 5 made of a plate-shaped alloy having a predetermined thickness and width, and a highly conductive resistor 5 connected to both end faces 5a and 5b of the resistor 5. It includes electrodes 6 and 7 made of a sex metal.
  • the electrode 6 is connected to the end face 5a, and the electrode 7 is connected to the end face 5b.
  • the configuration of the electrode 7, which is not particularly described, is the same as the configuration of the electrode 6, and the electrode 6 and the electrode 7 are arranged symmetrically with respect to the resistor 5.
  • the width of the electrode 6 and the width of the electrode 7 are equal to each other, and both are represented by the width W2.
  • the width direction of the electrodes 6 and 7 is a direction perpendicular to the current direction.
  • An example of an alloy constituting the resistor 5 is a nickel-chromium alloy. Copper is mentioned as an example of the highly conductive metal constituting the electrodes 6 and 7.
  • the inner end faces 6a and 7a of the electrodes 6 and 7 are welded (for example, electron beam welding, laser beam welding, or brazing) to both end faces 5a and 5b of the resistor 5. It is joined by means.
  • the inner end faces 6a and 7a are joint surfaces with the resistor 5.
  • the inner end surfaces 6a and 7a may be referred to as joint surfaces 6a and 7a.
  • the inner end surface 6a of the electrode 6 and the end surface 5a of the resistor 5 form a joint portion 8 between the resistor 5 and the electrode 6, and the inner end surface 7a of the electrode 7 and the end surface 5b of the resistor 5 are the resistor 5. It constitutes a joint portion 9 between the electrode 7 and the electrode 7.
  • Electrodes 6 and 7 have notches 11 and 12, respectively.
  • the cutout portions 11 and 12 extend in parallel to the joint portions 8 and 9 (joint surfaces 6a and 7a and both end surfaces 5a and 5b), respectively.
  • the cutout portions 11 and 12 of the present embodiment have a slit-like shape extending in a straight line.
  • the notch 11 extends linearly from the side surface 6b of the electrode 6 toward the center of the electrode 6, and the notch 12 extends straight from the side surface 7b of the electrode 7 toward the center of the electrode 7. It extends like a shape.
  • the configuration of the notch portion 12, which is not particularly described, is the same as that of the notch portion 11.
  • the notch portion 11 and the notch portion 12 are arranged symmetrically with respect to the resistor 5.
  • the notch portion 12 has the same width W1 as the notch portion 11.
  • the length of the notch portion 11 in the width direction of the electrodes 6 and 7 is the length of the notch portion 12 in the width direction of the electrodes 6 and 7. Equal to length, both represented by length t1.
  • the current flowing through the shunt resistor 1 flows avoiding the notches 11 and 12.
  • the state of the current flowing through the shunt resistor 1 is different from the state of the current flowing through the shunt resistor having no notch.
  • the TCR (temperature coefficient of resistance) of the shunt resistor 1 is different from the TCR (temperature coefficient of resistance) of the shunt resistor when the notch is not formed in the electrode.
  • the length of the joint portion 8 (joint surface 6a and end surface 5a) in the width direction of the electrode 6 is equal to the length of the joint portion 9 (joint surface 7a and end surface 5b) in the width direction of the electrode 7.
  • the distance from the joint portion 8 (joint surface 6a) to the notch portion 11 is equal to the distance from the joint portion 9 (joint surface 7a) to the notch portion 12.
  • the notch portions 11 and 12 have the distance from each of the joint portions 8 and 9 to each of the notch portions 11 and 12 as Y, and the notch portions 8 and 9 have the joint portions 8 and 9 in the width direction of the electrodes 6 and 7. Assuming that the length is X, it is in a position where the relationship of the following equation (1) holds. Y ⁇ 0.80X-1.36 (1)
  • the TCR of the shunt resistor 1 can be adjusted. Specifically, when the cutout portions 11 and 12 are formed at positions where the relationship of the above equation (1) holds, the shunt resistor 1 can be formed by changing the length t1 of the cutout portions 11 and 12. The TCR can be adjusted. In other words, the temperature coefficient of resistance of the shunt resistor 1 can be adjusted by adjusting the lengths t1 of the notches 11 and 12 to form the notches 11 and 12 at positions where the relationship of the above equation (1) holds.
  • Voltage detection terminals 16 and 17 are provided on the surfaces of the electrodes 6 and 7, respectively.
  • the voltage detection terminals 16 and 17 are terminals for measuring the voltage generated at both ends (between both end faces 5a and 5b) of the resistor 5. For example, by connecting an aluminum wire to the voltage detection terminals 16 and 17, the voltage generated at both ends of the resistor 5 is detected.
  • the voltage detection terminal 16 is provided in the voltage detection unit 20 on the electrode 6, and the voltage detection terminal 17 is provided in the voltage detection unit 21 on the electrode 7.
  • the voltage detection unit 20 is sandwiched between the joint portion 8 and the notch portion 11, and the voltage detection unit 21 is sandwiched between the joint portion 9 and the notch portion 12.
  • the voltage detection terminals 16 and 17 in the voltage detection units 20 and 21, respectively that is, by setting the voltage detection units 20 and 21 as the voltage detection positions, the voltage reflecting the adjusted TCR is measured. Can be done. That is, the voltage of the resistor 5 can be measured while the TCR of the shunt resistor 1 is affected by the notches 11 and 12. By arranging the voltage detection terminals 16 and 17 adjacent to the resistor 5, it is possible to measure the voltage in which the adjusted TCR is more reflected.
  • FIG. 3 is a graph showing the rate of change of the resistance value of the shunt resistor 1 due to a temperature change.
  • FIG. 3 shows the rate of change in the resistance value of the shunt resistor 1 due to a temperature change when a nickel-chromium alloy is used for the resistor 5 and copper is used for the electrodes 6 and 7.
  • the cutout portions 11 and 12 are formed at positions where the relationship of the above equation (1) holds.
  • the width W1 (see FIG. 2) of the notches 11 and 12 is 0.1 mm
  • the width W2 of the electrodes 6 and 7 (see FIG. 2) is 15 mm
  • the width W3 of the resistor 5 (see FIG. 2). 2) is 7 mm
  • the distance Y see FIG. 2) from each of the joint portions 8 and 9 (joint surfaces 6a and 7a) to each of the notch portions 11 and 12 is 3 mm.
  • FIG. 3 shows the rate of change of the resistance value due to the temperature change of each shunt resistor 1 when the lengths t1 of the cutout portions 11 and 12 are 2 mm, 2.5 mm, 3 mm, and 3.5 mm.
  • FIG. 3 also shows the rate of change in the resistance value of the shunt resistor in which the notches 11 and 12 are not formed.
  • Other configurations of the shunt resistor in which the cutout portions 11 and 12 are not formed are the same as those of the shunt resistor 1.
  • FIG. 3 shows that by forming notches 11 and 12 having a width W1 of 0.1 mm on the electrodes 6 and 7, the ratio of the rate of change of the resistance value to the amount of change in the temperature of the shunt resistor 1 is reduced. Shown. The ratio of the rate of change of the resistance value to the amount of change in the temperature of the shunt resistor 1 corresponds to the temperature coefficient of resistance (TCR) of the shunt resistor 1. Further, FIG. 3 shows that the temperature coefficient of resistance of the shunt resistor 1 depends on the lengths t1 of the notches 11 and 12. That is, in FIG.
  • the length t1 of the cutout portions 11 and 12 is adjusted, that is, the cutout portion 11 It is shown that the temperature coefficient of resistance (TCR) of the shunt resistor 1 can be adjusted by forming the shunt resistor 1 at a position where the relationship of the above equation (1) holds by adjusting the length t1.
  • TCR temperature coefficient of resistance
  • the resistance temperature coefficient of the shunt resistor 1 becomes smaller by increasing the length t1 of the cutout portions 11 and 12.
  • the absolute value of the temperature coefficient of resistance of the shunt resistor 1 is the smallest, and when the length t1 is 3.5 mm, the temperature coefficient of resistance of the shunt resistor 1 has a negative slope. Therefore, by adjusting the lengths t1 of the cutouts 11 and 12, that is, by adjusting the lengths t1 of the cutouts 11 and 12, the cutouts 11 and 12 are formed at positions where the relationship of the above equation (1) holds.
  • the temperature coefficient of resistance (TCR) of the shunt resistor 1 can be adjusted over a wide range (ie, the desired TCR can be met).
  • the optimum TCR adjustment can be performed not only when a nickel-chromium alloy is used for the resistor 5 but also when various alloys are used for the resistor 5.
  • the notch portions 11 and 12 satisfy the desired temperature coefficient of resistance with a simple structure in which the notches 11 and 12 are formed at positions where the above equation (1) holds by adjusting the length t1. be able to.
  • the width W3 of the resistor 5 is 7 mm, and the width W1 of the cutout portions 11 and 12 is 0.1 mm, but the width W3 and the width W1 are not limited to the present embodiment.
  • the TCR of the shunt resistor 1 can be adjusted by adjusting the length t1 of the cutout portions 11 and 12.
  • the TCR of the shunt resistor 1 can be facilitated. (Ie, the desired TCR can be met).
  • the width W4 of the electrode 6 (electrode 7) narrowed by forming the notch portion 11 (notch portion 12) is 1 ⁇ 2 or more of the length X of the joint portions 8 and 9. It is preferable to have.
  • the width W4 of the electrodes 6 and 7 is the width of the electrodes 6 and 7 at the position where the notches 11 and 12 are formed in the direction perpendicular to the width direction of the electrodes 6 and 7.
  • the electrodes 6 and 7 can have sufficient mechanical strength, and the high frequency characteristics of the shunt resistor 1 deteriorate due to the narrowing of the width W4. Can be prevented.
  • the result of FIG. 3 shows that when the cutout portions 11 and 12 are formed at positions where the relationship of the above equation (1) holds, the TCR is within a range in which the size of the width W4 is 1 ⁇ 2 or more of the length X. It shows that it changes widely.
  • FIG. 4 is a plan view showing another embodiment of the shunt resistor 1. Since the configuration of the present embodiment, which is not particularly described, is the same as that of the embodiment described with reference to FIGS. 1 and 2, the duplicate description thereof will be omitted.
  • the notch portion 12 extends from the side surface 7c of the electrode 7 toward the central portion of the electrode 7.
  • the side surfaces 6c and 7c shown in FIG. 4 are surfaces opposite to the side surfaces 6b and 7b.
  • the length t1 of the cutout portions 11 and 12 is adjusted, that is, the cutout portions 11,
  • the TCR of the shunt resistor 1 can be adjusted (that is, a desired TCR can be satisfied) by forming the 12 at a position where the relationship of the above equation (1) holds by adjusting the length t1.
  • the notch 11 is formed so as to extend from the side surface 6c of the electrode 6 toward the center of the electrode 6, and the notch 12 is formed from the side surface 7b of the electrode 7 to the center of the electrode 7. It may be formed so as to extend toward it.
  • FIG. 5 is a plan view showing still another embodiment of the shunt resistor 1. Since the configuration of the present embodiment, which is not particularly described, is the same as that of the embodiment described with reference to FIGS. 1 and 2, the duplicate description thereof will be omitted.
  • the electrode 6 further has a notch portion 13
  • the electrode 7 further has a notch portion 14.
  • the cutout portions 13 and 14 extend in parallel to the joint portions 8 and 9 (joint surfaces 6a and 7a and both end surfaces 5a and 5b), respectively.
  • the cutout portions 13 and 14 of the present embodiment have a slit-like shape extending in a straight line.
  • the notch 13 extends linearly from the side surface 6c of the electrode 6 toward the center of the electrode 6, and the notch 14 extends straight from the side surface 7c of the electrode 7 toward the center of the electrode 7. It extends like a shape.
  • the notch portion 13 is formed on an extension line of the notch portion 11, and the notch portion 14 is formed on an extension line of the notch portion 12. That is, the notch portions 13 and 14 are arranged at the same positions as the notch portions 11 and 12 in the direction perpendicular to the width direction of the electrodes 6 and 7, respectively.
  • the configuration of the notch portion 14, which is not particularly described, is the same as that of the notch portion 13.
  • the notch portion 13 and the notch portion 14 are arranged symmetrically with respect to the resistor 5.
  • the notch portion 14 has the same width W5 as the notch portion 13.
  • the length of the notch 13 in the width direction of the electrodes 6 and 7 is equal to the length of the notch 14 in the width direction of the electrodes 6 and 7, both of which are represented by the length t2.
  • Voltage detection terminals 18 and 19 are provided on the surfaces of the electrodes 6 and 7 of the present embodiment, respectively.
  • the voltage detection terminal 18 is provided in the voltage detection unit 22 on the electrode 6, and the voltage detection terminal 19 is provided in the voltage detection unit 23 on the electrode 7.
  • the voltage detection unit 22 is sandwiched between the joint portion 8 and the notch portion 13, and the voltage detection unit 23 is sandwiched between the joint portion 9 and the notch portion 14.
  • the configurations of the voltage detection terminals 18 and 19 and the voltage detection units 22 and 23, which are not particularly described, are the same as those of the voltage detection terminals 16 and 17 and the voltage detection units 20 and 21.
  • the length t1 of the cutout portions 11, 12 and the cutout portions 13, 14 By adjusting the length t2 of the above, that is, by adjusting the notches 11, 12, 13, and 14 by adjusting the length t1 and the length t2, the cutout portions 11, 12, 13, and 14 are formed at positions where the relationship of the above equation (1) holds.
  • the TCR of the shunt resistor 1 can be adjusted (ie, the desired TCR can be met).
  • the length t1 and the length t2 may be the same or different.
  • the width W1 and the width W5 may be the same or different.
  • the width W4 of the electrodes 6 and 7 narrowed by forming the notches 11, 12, 13, and 14 may be 1 ⁇ 2 or more of the length X of the joints 8 and 9. preferable.
  • FIG. 6 is a perspective view schematically showing still another embodiment of the shunt resistor 1
  • FIG. 7 is an exploded perspective view of the shunt resistor 1 of FIG. Since the configuration of the present embodiment, which is not particularly described, is the same as that of the embodiment described with reference to FIGS. 1 and 2, the duplicate description thereof will be omitted.
  • the shunt resistor 1 of the present embodiment further includes an insulator substrate 40 and a pedestal 35. Conductors 41 and 42 and voltage detection terminals 46 and 47 are formed on the surface of the substrate 40.
  • the white arrows shown in FIG. 6 indicate the direction of the current flowing through the shunt resistor 1.
  • the pedestal 35 has electrical contacts 36 and 37 on its surface.
  • the cutout portion 11 of the present embodiment has a first surface 11a extending parallel to the joint portion 8 and a second surface 11b extending in a direction perpendicular to the first surface 11a.
  • the cutout portion 12 has a first surface 12a extending parallel to the joint portion 9 and a second surface 12b extending in a direction perpendicular to the first surface 12a.
  • the outer end surface 6d of the electrode 6 and the first surface 11a are connected by the second surface 11b, and the outer end surface 7d of the electrode 7 and the first surface 12a are connected by the second surface 12b.
  • the electrode 6 is bent between the first surface 11a and the joint surface 6a, and the electrode 7 is bent between the first surface 12a and the joint surface 7a.
  • the electrodes 6 and 7 are bent symmetrically with respect to the resistor 5.
  • the outer end faces 6d and 7d are in contact with the conductors 41 and 42, respectively. With such a configuration, a current flows from the conductor 41 through the electrode 6, the resistor 5, and the electrode 7 to the conductor 42.
  • the first surfaces 11a and 12a are in contact with the electrical contacts 36 and 37, respectively.
  • the pedestal 35 further includes a plurality of conductors (not shown).
  • the electrical contact 36 is connected to the voltage detection terminal 46 via one of the plurality of conductors, and the electrical contact 37 is connected to the voltage detection terminal 47 via the other conductor.
  • the voltage generated at both ends (between both end faces 5a and 5b) of the resistor 5 can be measured via the voltage detection terminals 46 and 47. For example, by connecting an aluminum wire to the voltage detection terminals 46 and 47, the voltage generated at both ends of the resistor 5 is detected.
  • the current flows from the conductor 41 to the conductor 42, avoiding the notches 11 and 12. Therefore, similarly to the embodiment described with reference to FIGS. 1 and 2, in this embodiment as well, the length t1 of the notches 11 and 12 in the width direction of the electrodes 6 and 7 is adjusted, that is, that is, The temperature coefficient of resistance (TCR) of the shunt resistor 1 can be adjusted by forming the cutout portions 11 and 12 at positions where the relationship of the above equation (1) holds by adjusting the length t1 ( That is, the desired TCR can be satisfied). Also in this embodiment, the width W4 of the electrode 6 (electrode 7) narrowed by forming the notch portion 11 (notch portion 12) is 1 ⁇ 2 or more of the length X of the joint portions 8 and 9. Is preferable.
  • TCR temperature coefficient of resistance
  • the present invention can be used as a shunt resistor for current detection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Details Of Resistors (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

本発明は、電流検出用のシャント抵抗器に関するものである。シャント抵抗器(1)は、板状の抵抗体(5)と、抵抗体(5)の両端面(5a,5b)に接続された電極(6,7)を有し、電極(6,7)は、抵抗体(5)と電極(6,7)との接合部(8,9)にそれぞれ平行に延びる切り欠き部(11,12)を有しており、切り欠き部(11,12)のそれぞれは、接合部(8,9)から切り欠き部(11,12)までの距離をYとし、電極(6,7)の幅方向における接合部(8,9)の長さをXとしたとき、Y≦0.80X-1.36の関係が成り立つ位置にある。

Description

シャント抵抗器
 本発明は、電流検出用のシャント抵抗器に関する。
 従来から、シャント抵抗器は、電流検出用途に広く用いられている。このようなシャント抵抗器は、板状の抵抗体と、抵抗体の両端に接合された板状の電極とを備えている。このような抵抗体は、銅・ニッケル系合金、銅・マンガン系合金、鉄・クロム系合金、ニッケル・クロム系合金等の合金で構成されており、このような電極は、銅等の高導電性金属から構成されている。
 このようなシャント抵抗器では、温度変動の少ない電流検出をするために、抵抗温度係数(TCR)が小さいことが要請されている。抵抗温度係数(TCR)とは、温度変化による抵抗値の変化の割合を示す指標である。シャント抵抗器のTCRを改善するために、例えば、マンガニン(登録商標)などのTCRが小さい合金を抵抗体の材料として使用することが行われている。
特開2007-329421号公報
 しかしながら、抵抗体材料の選定によるTCRの調整(改善)には限界がある。そこで、本発明は、抵抗体の材料によらずTCRを容易に調整することができる、すなわち所望のTCRを満たすことができるシャント抵抗器を提供することを目的とする。
 一態様では、板状の抵抗体と、前記抵抗体の両端面に接続された電極を有するシャント抵抗器であって、前記電極は、前記抵抗体と前記電極との接合部にそれぞれ平行に延びる切り欠き部を有しており、前記切り欠き部のそれぞれは、前記接合部から前記切り欠き部までの距離をYとし、前記電極の幅方向における前記接合部の長さをXとしたとき、Y≦0.80X-1.36の関係が成り立つ位置にある、シャント抵抗器が提供される。
 一態様では、前記接合部と、前記切り欠き部に挟まれた電圧検出部に電圧検出端子が設けられている。
 一態様では、前記切り欠き部が形成されている位置における前記電極の幅は、前記電極の幅方向における前記接合部の長さの1/2以上である。
 切り欠き部は、接合部から切り欠き部までの距離をYとし、電極の幅方向における接合部の長さをXとしたとき、Y≦0.80X-1.36の関係が成り立つ位置に形成されており、かつ接合部に平行に延びている。その結果、簡単な構成で所望のTCRを満たすことができる。また切り欠き部の長さを調整することで、シャント抵抗器のTCRを容易に調整することができる。
シャント抵抗器の一実施形態を模式的に示す斜視図である。 図1に示すシャント抵抗器の平面図である。 温度変化によるシャント抵抗器の抵抗値の変化率を示すグラフである。 シャント抵抗器の他の実施形態を示す平面図である。 シャント抵抗器のさらに他の実施形態を示す平面図である。 シャント抵抗器のさらに他の実施形態を模式的に示す斜視図である。 図6のシャント抵抗器の分解斜視図である。
 以下、本発明の実施形態について図面を参照して説明する。図1は、シャント抵抗器1の一実施形態を模式的に示す斜視図であり、図2は、図1に示すシャント抵抗器1の平面図である。図2に示す白抜き矢印はシャント抵抗器1を流れる電流の方向を表している。図1および図2に示すように、シャント抵抗器1は、所定の厚みと幅を有する板状の合金からなる抵抗体5と、前記抵抗体5の両端面5a,5bに接続された高導電性金属からなる電極6,7とを備えている。具体的には、電極6は、端面5aに接続されており、電極7は、端面5bに接続されている。特に説明しない電極7の構成は、電極6の構成と同じであり、電極6と電極7は抵抗体5に関して対称に配置されている。電極6の幅と、電極7の幅は等しく、共に幅W2で表される。電極6,7の幅方向は、電流方向に垂直な方向である。抵抗体5を構成する合金の一例として、ニッケルクロム系合金が挙げられる。電極6,7を構成する高導電性金属の一例として、銅が挙げられる。
 具体的には、電極6,7のそれぞれの内側端面6a,7aは、抵抗体5の両端面5a,5bのそれぞれに溶接(例えば、電子ビーム溶接、レーザービーム溶接、または、ろう接)などの手段によって接合されている。内側端面6a,7aは、抵抗体5との接合面である。以下、本明細書では、内側端面6a,7aを接合面6a,7aと呼ぶことがある。
 電極6の内側端面6aおよび抵抗体5の端面5aは、抵抗体5と電極6との接合部8を構成しており、電極7の内側端面7aおよび抵抗体5の端面5bは、抵抗体5と電極7との接合部9を構成している。
 電極6,7は、切り欠き部11,12をそれぞれ有している。切り欠き部11,12は、接合部8,9(接合面6a,7aおよび両端面5a,5b)にそれぞれ平行に延びている。本実施形態の切り欠き部11,12は、直線上に延びるスリット状の形状を有している。切り欠き部11は、電極6の側面6bから、電極6の中心部に向けて直線状に延びており、切り欠き部12は、電極7の側面7bから、電極7の中心部に向けて直線状に延びている。
 特に説明しない切り欠き部12の構成は、切り欠き部11と同じである。切り欠き部11と、切り欠き部12は、抵抗体5に関して対称に配置されている。本実施形態では、切り欠き部12は、切り欠き部11と同様の幅W1を有している。電極6,7の幅方向(接合面6a,7aに平行な方向であり、電流方向に垂直な方向)における切り欠き部11の長さは、電極6,7の幅方向における切り欠き部12の長さに等しく、共に長さt1で表される。
 電極6,7に切り欠き部11,12を形成することによって、シャント抵抗器1を流れる電流は、切り欠き部11,12を避けて流れる。その結果、シャント抵抗器1を流れる電流の状態は、切り欠き部を有さないシャント抵抗器を流れる電流の状態とは異なる。その結果、シャント抵抗器1のTCR(抵抗温度係数)は、電極に切り欠き部を形成しない場合のシャント抵抗器のTCR(抵抗温度係数)とは異なる。
 本実施形態では、電極6の幅方向における接合部8(接合面6aおよび端面5a)の長さは、電極7の幅方向における接合部9(接合面7aおよび端面5b)の長さに等しく、接合部8(接合面6a)から切り欠き部11までの距離は、接合部9(接合面7a)から切り欠き部12までの距離に等しい。本実施形態では、切り欠き部11,12は、接合部8,9のそれぞれから切り欠き部11,12のそれぞれまでの距離をYとし、電極6,7の幅方向における接合部8,9の長さをXとしたき、以下の(1)式の関係が成り立つ位置にある。
  Y≦0.80X-1.36    (1)
 切り欠き部11,12を、上記(1)式の関係が成り立つ位置に形成することにより、シャント抵抗器1のTCRの調整が可能となる。具体的には、切り欠き部11,12が上記(1)式の関係が成り立つ位置に形成される場合において、切り欠き部11,12の長さt1を変化させることによって、シャント抵抗器1のTCRを調整することができる。言い換えれば、切り欠き部11,12を、長さt1を調整して、上記(1)式の関係が成り立つ位置に形成することで、シャント抵抗器1の抵抗温度係数を調整できることができる。
 電極6,7の表面には、電圧検出端子16,17がそれぞれ設けられている。電圧検出端子16,17は、抵抗体5の両端(両端面5a,5b間)に発生する電圧を測定するための端子である。例えば、電圧検出端子16,17にアルミワイヤーを接続することにより抵抗体5の両端に発生した電圧を検出する。電圧検出端子16は、電極6上の電圧検出部20に設けられており、電圧検出端子17は、電極7上の電圧検出部21に設けられている。電圧検出部20は、接合部8と、切り欠き部11に挟まれており、電圧検出部21は、接合部9と、切り欠き部12に挟まれている。
 電圧検出端子16,17を電圧検出部20,21のそれぞれに設けること、すなわち、電圧検出部20,21を電圧の検出位置とすることで、調整されたTCRが反映された電圧を測定することができる。すなわち、シャント抵抗器1のTCRが切り欠き部11,12の影響を受けた状態で、抵抗体5の電圧を測定することができる。電圧検出端子16,17を抵抗体5に隣接して配置することで、調整されたTCRがより反映された電圧を測定することができる。
 図3は、温度変化によるシャント抵抗器1の抵抗値の変化率を示すグラフである。図3は、抵抗体5にニッケルクロム系合金を使用し、電極6,7に銅を使用した場合の温度変化によるシャント抵抗器1の抵抗値の変化率を示している。切り欠き部11,12は、上記(1)式の関係が成り立つ位置に形成されている。図3において、切り欠き部11,12の幅W1(図2参照)は0.1mmであり、電極6,7の幅W2(図2参照)は15mmであり、抵抗体5の幅W3(図2参照)は7mmであり、接合部8,9(接合面6a,7a)のそれぞれから切り欠き部11,12のそれぞれまでの距離Y(図2参照)は3mmである。
 図3は、切り欠き部11,12の長さt1が2mm、2.5mm、3mm、および3.5mmのときのそれぞれのシャント抵抗器1の温度変化による抵抗値の変化率を示している。図3には、比較のため、切り欠き部11,12が形成されていないシャント抵抗器の抵抗値の変化率も図示されている。切り欠き部11,12が形成されていないシャント抵抗器のその他の構成は、シャント抵抗器1と同じである。
 図3は、電極6,7に幅W1が0.1mmの切り欠き部11,12を形成することで、シャント抵抗器1の温度の変化量に対する抵抗値の変化率の割合が低減することを示している。シャント抵抗器1の温度の変化量に対する抵抗値の変化率の割合は、シャント抵抗器1の抵抗温度係数(TCR)に相当する。さらに図3は、シャント抵抗器1の抵抗温度係数は、切り欠き部11,12の長さt1に依存することを示している。すなわち、図3は、上記(1)式の関係が成り立つ位置に切り欠き部11,12を形成した場合において、切り欠き部11,12の長さt1を調整すること、すなわち、切り欠き部11,12を、長さt1を調整して、上記(1)式の関係が成り立つ位置に形成することで、シャント抵抗器1の抵抗温度係数(TCR)を調整することができることを示している。
 図3に示すように、切り欠き部11,12の長さt1を大きくすることで、シャント抵抗器1の抵抗温度係数が小さくなる。長さt1が3mmのとき、シャント抵抗器1の抵抗温度係数の絶対値が最も小さくなり、長さt1を3.5mmにすると、シャント抵抗器1の抵抗温度係数は、負の傾きを有する。したがって、切り欠き部11,12の長さt1を調整すること、すなわち、切り欠き部11,12を、長さt1を調整して、上記(1)式の関係が成り立つ位置に形成することによって、シャント抵抗器1の抵抗温度係数(TCR)を広範囲に調整することができる(すなわち、所望のTCRを満たすことができる)。結果として、抵抗体5にニッケルクロム系合金を使用した場合に限らず、抵抗体5に種々の合金を使用した場合において、最適なTCR調整を行うことができる。結果として、本実施形態によれば、切り欠き部11,12を、長さt1を調整して上記(1)式が成り立つ位置に形成するだけの簡単な構造で、所望の抵抗温度係数を満たすことができる。
 本実施形態では、抵抗体5の幅W3は7mmであり、切り欠き部11,12の幅W1は0.1mmであるが、幅W3および幅W1は本実施形態に限定されない。幅W3および幅W1の大きさにかかわらず、切り欠き部11,12の長さt1を調整することで、シャント抵抗器1のTCRを調整することができる。上記(1)式の関係が成り立つ位置に切り欠き部11,12を形成し、かつ切り欠き部11,12が接合部8,9に平行に延びている場合において、切り欠き部11,12の長さt1を調整すること、すなわち、切り欠き部11,12を、長さt1を調整して、上記(1)式の関係が成り立つ位置に形成することで、シャント抵抗器1のTCRを容易に調整することができる(すなわち、所望のTCRを満たすことができる)。
 図2に示すように、切り欠き部11(切り欠き部12)を形成したことによって狭まった電極6(電極7)の幅W4は、接合部8,9の長さXの1/2以上であることが好ましい。言い換えれば、電極6,7の幅W4は、電極6,7の幅方向に垂直な方向に関して切り欠き部11,12が形成されている位置における電極6,7の幅である。幅W4を長さXの1/2以上とすることで、電極6,7は、十分な機械的強度を有することができ、幅W4が狭くなることによるシャント抵抗器1の高周波特性の低下を防止することができる。図3の結果は、切り欠き部11,12を上記(1)式の関係が成り立つ位置に形成した場合、幅W4の大きさが長さXの1/2以上となる範囲内で、TCRが広範囲に変化することを示している。
 図4は、シャント抵抗器1の他の実施形態を示す平面図である。特に説明しない本実施形態の構成は、図1および図2を参照して説明した実施形態と同じであるので、その重複する説明を省略する。本実施形態では、切り欠き部12は、電極7の側面7cから、電極7の中心部に向けて延びている。図4に示す側面6c,7cは、側面6b,7bの反対側の面である。
 本実施形態でも、上記(1)式の関係が成り立つ位置に切り欠き部11,12を形成した場合において、切り欠き部11,12の長さt1を調整すること、すなわち、切り欠き部11,12を、長さt1を調整して、上記(1)式の関係が成り立つ位置に形成することで、シャント抵抗器1のTCRを調整することができる(すなわち、所望のTCRを満たすことができる)。一実施形態では、切り欠き部11を電極6の側面6cから、電極6の中心部に向けて延びるように形成し、かつ切り欠き部12を電極7の側面7bから、電極7の中心部に向けて延びるように形成してもよい。
 図5は、シャント抵抗器1のさらに他の実施形態を示す平面図である。特に説明しない本実施形態の構成は、図1および図2を参照して説明した実施形態と同じであるので、その重複する説明を省略する。本実施形態では、電極6は切り欠き部13をさらに有し、電極7は切り欠き部14をさらに有している。
 切り欠き部13,14は、接合部8,9(接合面6a,7aおよび両端面5a,5b)にそれぞれ平行に延びている。本実施形態の切り欠き部13,14は、直線上に延びるスリット状の形状を有している。切り欠き部13は、電極6の側面6cから、電極6の中心部に向けて直線状に延びており、切り欠き部14は、電極7の側面7cから、電極7の中心部に向けて直線状に延びている。切り欠き部13は、切り欠き部11の延長線上に形成されており、切り欠き部14は、切り欠き部12の延長線上に形成されている。すなわち、切り欠き部13,14は、電極6,7の幅方向と垂直な方向において切り欠き部11,12と同じ位置にそれぞれ配置されている。
 特に説明しない切り欠き部14の構成は、切り欠き部13と同じである。切り欠き部13と、切り欠き部14は、抵抗体5に関して対称に配置されている。本実施形態では、切り欠き部14は、切り欠き部13と同様の幅W5を有している。電極6,7の幅方向における切り欠き部13の長さは、電極6,7の幅方向における切り欠き部14の長さに等しく、共に長さt2で表される。
 本実施形態の電極6,7の表面には、電圧検出端子18,19がそれぞれ設けられている。電圧検出端子18は、電極6上の電圧検出部22に設けられており、電圧検出端子19は、電極7上の電圧検出部23に設けられている。電圧検出部22は、接合部8と、切り欠き部13に挟まれており、電圧検出部23は、接合部9と、切り欠き部14に挟まれている。特に説明しない電圧検出端子18,19および電圧検出部22,23の構成は、電圧検出端子16,17、および電圧検出部20,21と同じである。
 本実施形態においても、上記(1)式の関係が成り立つ位置に切り欠き部11,12,13,14を形成した場合において、切り欠き部11,12の長さt1および切り欠き部13,14の長さt2を調整すること、すなわち、切り欠き部11,12,13,14を、長さt1および長さt2を調整して、上記(1)式の関係が成り立つ位置に形成することで、シャント抵抗器1のTCRを調整することができる(すなわち、所望のTCRを満たすことができる)。長さt1と長さt2は、同じでもよく異なっていてもよい。幅W1と幅W5は、同じでもよく異なっていてもよい。本実施形態においても、切り欠き部11,12,13,14を形成したことによって狭まった電極6,7の幅W4は、接合部8,9の長さXの1/2以上であることが好ましい。
 図6は、シャント抵抗器1のさらに他の実施形態を模式的に示す斜視図であり、図7は図6のシャント抵抗器1の分解斜視図である。特に説明しない本実施形態の構成は、図1および図2を参照して説明した実施形態と同じであるので、その重複する説明を省略する。本実施形態のシャント抵抗器1は、絶縁体の基板40と、台座35をさらに備えている。基板40の表面には導体41,42および電圧検出端子46,47が形成されている。図6に示す白抜き矢印はシャント抵抗器1を流れる電流の方向を表している。台座35はその表面に電気接点36,37を有している。
 図6および図7に示すように、本実施形態の切り欠き部11は、接合部8に平行に延びる第1の面11aと、第1の面11aに垂直な方向に延びる第2の面11bを有しており、切り欠き部12は、接合部9に平行に延びる第1の面12aと、第1の面12aに垂直な方向に延びる第2の面12bを有している。電極6の外側端面6dと、第1の面11aは、第2の面11bによって接続されており、電極7の外側端面7dと、第1の面12aは、第2の面12bによって接続されている。
 電極6は、第1の面11aと接合面6aの間で折り曲げられており、電極7は、第1の面12aと接合面7aの間で折り曲げられている。電極6,7は、抵抗体5に関して対称に折り曲げられている。外側端面6d,7dは、導体41,42にそれぞれ接触している。このような構成により、導体41から電極6、抵抗体5、および電極7を通って導体42に電流が流れる。
 第1の面11a,12aは電気接点36,37にそれぞれ接触している。台座35は図示しない複数の導線をさらに備えている。電気接点36は、複数の導線のうちの1つを介して電圧検出端子46に接続されており、電気接点37は、他の導線を介して電圧検出端子47に接続されている。このような構成により、電圧検出端子46,47を介して抵抗体5の両端(両端面5a,5b間)に発生する電圧を測定することができる。例えば、電圧検出端子46,47にアルミワイヤーを接続することにより抵抗体5の両端に発生した電圧を検出する。
 本実施形態においても、電流は、切り欠き部11,12を避けて、導体41から導体42に流れる。したがって、図1および図2を参照して説明した実施形態と同様に、本実施形態においても、電極6,7の幅方向における切り欠き部11,12の長さt1を調整すること、すなわち、切り欠き部11,12を、長さt1を調整して、上記(1)式の関係が成り立つ位置に形成することで、シャント抵抗器1の抵抗温度係数(TCR)を調整することができる(すなわち所望のTCRを満たすことができる)。本実施形態においても、切り欠き部11(切り欠き部12)を形成したことによって狭まった電極6(電極7)の幅W4は、接合部8,9の長さXの1/2以上であることが好ましい。
 上述した実施形態は、本発明が属する技術分野における通常の知識を有する者が本発明を実施できることを目的として記載されたものである。上記実施形態の種々の変形例は、当業者であれば当然になしうることであり、本発明の技術的思想は他の実施形態にも適用しうる。したがって、本発明は、記載された実施形態に限定されることはなく、特許請求の範囲によって定義される技術的思想に従った最も広い範囲に解釈されるものである。
 本発明は、電流検出用のシャント抵抗器に利用可能である。
 1   シャント抵抗器
 6,7   電極
 6a,7a  内側端面(接合面)
 6b,7b  側面
 6c,7c  側面
 6d,7d  外側端面
 8,9  接合部
11,12,13,14  切り欠き部
11a,12a  第1の面
11b,12b  第2の面
16,17,18,19  電圧検出端子
20,21,22,23  電圧検出部
35   台座
36,37  電気接点
40   基板
41,42  導体
46,47  電圧検出端子

Claims (3)

  1.  板状の抵抗体と、前記抵抗体の両端面に接続された電極を有するシャント抵抗器であって、
     前記電極は、前記抵抗体と前記電極との接合部にそれぞれ平行に延びる切り欠き部を有しており、
     前記切り欠き部のそれぞれは、前記接合部から前記切り欠き部までの距離をYとし、前記電極の幅方向における前記接合部の長さをXとしたとき、Y≦0.80X-1.36の関係が成り立つ位置にある、シャント抵抗器。
  2.  前記接合部と、前記切り欠き部に挟まれた電圧検出部に電圧検出端子が設けられている、請求項1に記載のシャント抵抗器。
  3.  前記切り欠き部が形成されている位置における前記電極の幅は、前記電極の幅方向における前記接合部の長さの1/2以上である、請求項1または2に記載のシャント抵抗器。
PCT/JP2021/014450 2020-04-20 2021-04-05 シャント抵抗器 WO2021215229A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/919,107 US20230162894A1 (en) 2020-04-20 2021-04-05 Shunt resistor
EP21792601.3A EP4141895A4 (en) 2020-04-20 2021-04-05 SHUNT RESISTANCE
CN202180029182.3A CN115398567B (zh) 2020-04-20 2021-04-05 分流电阻器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020074778A JP7491723B2 (ja) 2020-04-20 2020-04-20 シャント抵抗器
JP2020-074778 2020-04-20

Publications (1)

Publication Number Publication Date
WO2021215229A1 true WO2021215229A1 (ja) 2021-10-28

Family

ID=78269149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014450 WO2021215229A1 (ja) 2020-04-20 2021-04-05 シャント抵抗器

Country Status (5)

Country Link
US (1) US20230162894A1 (ja)
EP (1) EP4141895A4 (ja)
JP (1) JP7491723B2 (ja)
CN (1) CN115398567B (ja)
WO (1) WO2021215229A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023087721A (ja) * 2021-12-14 2023-06-26 Koa株式会社 シャント抵抗器および電流検出装置
JP2023103546A (ja) * 2022-01-14 2023-07-27 Koa株式会社 電流検出装置およびその製造方法
JP2023144451A (ja) * 2022-03-28 2023-10-11 Koa株式会社 シャント抵抗器および電流検出装置
CN116959830A (zh) * 2023-08-14 2023-10-27 深圳市业展电子有限公司 一种l形结构的分流器电阻及其加工方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007329421A (ja) 2006-06-09 2007-12-20 Koa Corp 金属板抵抗器
JP2011018759A (ja) * 2009-07-08 2011-01-27 Koa Corp シャント抵抗器
JP2011511472A (ja) * 2008-02-06 2011-04-07 ヴィシェイ デール エレクトロニクス インコーポレイテッド 抵抗器とその製造方法
WO2016063928A1 (ja) * 2014-10-22 2016-04-28 Koa株式会社 電流検出装置および電流検出用抵抗器
JP2020009838A (ja) * 2018-07-04 2020-01-16 Koa株式会社 シャント装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0325994A (ja) * 1989-06-23 1991-02-04 Nec Corp 混成集積回路
JPH10289803A (ja) * 1997-04-16 1998-10-27 Matsushita Electric Ind Co Ltd 抵抗器およびその製造方法
JP2007078599A (ja) * 2005-09-16 2007-03-29 Hitachi Ltd 電流検出用抵抗器及び制御装置
JP5263733B2 (ja) * 2008-04-24 2013-08-14 コーア株式会社 金属板抵抗器
DE102010035485A1 (de) * 2010-08-26 2012-03-01 Isabellenhütte Heusler Gmbh & Co. Kg Strommesswiderstand
JP6370602B2 (ja) * 2014-05-09 2018-08-08 Koa株式会社 電流検出用抵抗器
JP6594631B2 (ja) * 2015-02-18 2019-10-23 Koa株式会社 抵抗器及びその製造方法
JP6637250B2 (ja) * 2015-04-28 2020-01-29 Koa株式会社 電流検出装置
JP6400051B2 (ja) * 2016-07-12 2018-10-03 Koa株式会社 シャント抵抗式電流検出装置
JP2019165057A (ja) * 2018-03-19 2019-09-26 サンコール株式会社 シャント抵抗器及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007329421A (ja) 2006-06-09 2007-12-20 Koa Corp 金属板抵抗器
JP2011511472A (ja) * 2008-02-06 2011-04-07 ヴィシェイ デール エレクトロニクス インコーポレイテッド 抵抗器とその製造方法
JP2011018759A (ja) * 2009-07-08 2011-01-27 Koa Corp シャント抵抗器
WO2016063928A1 (ja) * 2014-10-22 2016-04-28 Koa株式会社 電流検出装置および電流検出用抵抗器
JP2020009838A (ja) * 2018-07-04 2020-01-16 Koa株式会社 シャント装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4141895A4

Also Published As

Publication number Publication date
CN115398567B (zh) 2024-06-18
US20230162894A1 (en) 2023-05-25
EP4141895A1 (en) 2023-03-01
JP2021174802A (ja) 2021-11-01
EP4141895A4 (en) 2024-07-03
JP7491723B2 (ja) 2024-05-28
CN115398567A (zh) 2022-11-25

Similar Documents

Publication Publication Date Title
WO2021215229A1 (ja) シャント抵抗器
US7053749B2 (en) Metal plate resistor
WO2021220526A1 (ja) シャント抵抗器、シャント抵抗器の製造方法、および電流検出装置
WO2013005824A1 (ja) シャント抵抗器およびその製造方法
JPH05223850A (ja) 高性能分流器
WO2021220758A1 (ja) シャント抵抗器
US20230187105A1 (en) Shunt resistor and current detection apparatus
WO2019097925A1 (ja) シャント抵抗器
CN117378018A (zh) 电流检测装置
WO2024084761A1 (ja) シャント抵抗器およびシャント抵抗器の製造方法
JP2005197394A (ja) 金属抵抗器
WO2023112438A1 (ja) シャント抵抗器および電流検出装置
JP2022027164A (ja) 電流検出装置
WO2023013351A1 (ja) 抵抗器および抵抗器の製造方法
JP5143353B2 (ja) 抵抗器の製造方法
WO2024111254A1 (ja) シャント抵抗器
WO2023199611A1 (ja) シャント抵抗器およびシャント抵抗装置
JPH11508996A (ja) 電流測定用の分路アセンブリ
WO2022085255A1 (ja) シャント抵抗器およびシャント抵抗装置
JP3670593B2 (ja) 抵抗器を用いる電子部品及びその使用方法
JP2023083751A (ja) 抵抗器
JP2003197403A (ja) 低抵抗器
KR20200027497A (ko) 동축 저항기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21792601

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021792601

Country of ref document: EP

Effective date: 20221121