WO2016056289A1 - 積層体、積層体を含む非水電解液二次電池用セパレータ、および非水電解液二次電池 - Google Patents

積層体、積層体を含む非水電解液二次電池用セパレータ、および非水電解液二次電池 Download PDF

Info

Publication number
WO2016056289A1
WO2016056289A1 PCT/JP2015/070731 JP2015070731W WO2016056289A1 WO 2016056289 A1 WO2016056289 A1 WO 2016056289A1 JP 2015070731 W JP2015070731 W JP 2015070731W WO 2016056289 A1 WO2016056289 A1 WO 2016056289A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte secondary
secondary battery
aqueous electrolyte
porous film
laminate
Prior art date
Application number
PCT/JP2015/070731
Other languages
English (en)
French (fr)
Inventor
央江 吉丸
孝輔 倉金
村上 力
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to JP2015537060A priority Critical patent/JP5973674B1/ja
Priority to US14/771,149 priority patent/US9917289B2/en
Priority to KR1020157023469A priority patent/KR20160102331A/ko
Priority to CN201580000339.4A priority patent/CN105706270B/zh
Priority to KR1020177026834A priority patent/KR20170113699A/ko
Publication of WO2016056289A1 publication Critical patent/WO2016056289A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/32Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed at least two layers being foamed and next to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/423Polyamide resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/025Polyolefin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a laminate, a separator for a non-aqueous electrolyte secondary battery including the laminate, and a non-aqueous electrolyte secondary battery.
  • Non-aqueous electrolyte secondary batteries represented by lithium ion secondary batteries have high energy density. Therefore, non-aqueous electrolyte secondary batteries are currently widely used as batteries used in devices such as personal computers, mobile phones, and portable information terminals.
  • non-aqueous electrolyte secondary battery when an internal short circuit or an external short circuit occurs due to damage to the non-aqueous electrolyte secondary battery or to a device using the non-aqueous electrolyte secondary battery. A large current may flow and the non-aqueous electrolyte secondary battery may generate heat. For this reason, while maintaining various performances such as rate characteristics and resistance characteristics (liquid resistance) of the nonaqueous electrolyte secondary battery, it is high by preventing an internal short circuit due to breakage of the nonaqueous electrolyte secondary battery. Ensuring safety is required for non-aqueous electrolyte secondary batteries.
  • an inorganic compound composed of flaky particles is dispersed in a separator, and the inorganic compound is separated from the surface of the separator.
  • Nonaqueous electrolyte secondary battery oriented to be substantially parallel Patent Document 1
  • Patent Document 2 Nonaqueous in which an inorganic particle layer containing spherical inorganic particles and amorphous inorganic particles is laminated on the electrode surface
  • Patent Document 2 Nonaqueous in which an inorganic particle layer containing spherical inorganic particles and amorphous inorganic particles is laminated on the electrode surface
  • Patent Document 3 a first insulating inorganic filler made of metal hydroxide and / or metal oxide hydrate, and a thermal conductivity of 10 W / m ⁇ K or more
  • Patent Document 3 A non-aqueous electrolyte secondary battery (Patent Document 3) in which a porous layer containing a second insulating inorganic filler is laminated on a porous film has been proposed.
  • Japanese Published Patent Publication “Japanese Patent Laid-Open No. 2007-311367” published November 29, 2007) Japanese Patent Gazette “Patent No. 5219621” (registered on March 15, 2013) Japanese Patent Publication “JP 2013-149434” (released on August 1, 2013) Japanese Published Patent Publication “JP 2008-270090” (published Nov. 6, 2008) Japanese Published Patent Publication “Japanese Patent Laid-Open No. 2010-250954” (published on November 4, 2010) Japanese Patent Publication “JP 2009-158266” (released on July 16, 2009)
  • the non-aqueous electrolyte secondary battery is required to maintain various performances such as rate characteristics and resistance characteristics so that it can be used repeatedly.
  • each of the non-aqueous electrolyte secondary batteries described in Patent Documents 1 to 3 can prevent an internal short circuit due to damage or the like of the non-aqueous electrolyte secondary battery, but the non-aqueous electrolyte secondary battery However, it is not sufficient to maintain the various performances (this is in conflict with the improvement in safety). That is, none of the non-aqueous electrolyte secondary batteries described in Patent Documents 1 to 3 is sufficient to maintain various performances.
  • Patent Documents 4 and 5 evaluate the safety of the nonaqueous electrolyte secondary battery after the nonaqueous electrolyte secondary battery is assembled. Therefore, the safety of the separator before assembly cannot be evaluated.
  • the evaluation method of patent document 6 can evaluate durability of an insulating layer by measuring data until a separator fully conducts, it evaluates safety concerning prevention of an internal short circuit of a separator. Can not do it. Therefore, even if any of the evaluation methods described in Patent Documents 4 to 6 is adopted, a laminated body and a laminated body in which high safety is ensured while maintaining various performances of the nonaqueous electrolyte secondary battery. A separator for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery can not be provided.
  • the present invention has been made in consideration of the above-mentioned problems, and its main object is to maintain various performances such as rate characteristics and resistance characteristics of the non-aqueous electrolyte secondary battery, and then to the non-aqueous electrolyte secondary battery.
  • a separator for a non-aqueous electrolyte secondary battery including the laminate, and a non-aqueous electrolyte secondary battery that can ensure high safety by preventing an internal short circuit due to damage of the battery, etc. is there.
  • a laminated body in which a porous layer containing fine particles is laminated on at least one surface of a porous film mainly composed of polyolefin, which is defined by JIS A55508.
  • Difference between the test force at the time of conduction of the laminate and the test force at the time of dielectric breakdown in the nail penetration continuity test measured under the condition that the nail descending speed is 50 ⁇ m / min.
  • the dielectric strength test strength is 5N or more and 50N or less
  • the laminate maintains various performances such as rate characteristics and resistance characteristics of the non-aqueous electrolyte secondary battery, and non-aqueous electrolysis. It has been found that high safety can be ensured by preventing an internal short circuit due to breakage of the liquid secondary battery, and the present invention has been completed.
  • a laminate according to the present invention is a laminate in which a porous layer containing fine particles is laminated on at least one surface of a porous film containing polyolefin as a main component.
  • the difference between the test force at the time of conduction of the laminated body and the test force at the time of dielectric breakdown in the nail penetration test measured at a nail descent rate of 50 ⁇ m / min using an N50 nail specified in 5508 (during conduction) Test force—test force at dielectric breakdown) is 5N or more and 50N or less.
  • the volume (per side) of the porous layer constituting component contained per square meter of the porous layer is more preferably 0.5 to 20 cm 3 .
  • the thickness of the porous layer (per side) is 0.5 to 15 ⁇ m, and the thickness of the porous film is 5 to 30 ⁇ m.
  • the porosity of the porous film is more preferably 30 to 60% by volume.
  • the fine particles are more preferably inorganic fine particles.
  • the porous layer further contains a binder resin, and the fine particles are in point contact with the binder resin.
  • the fine particles have a cleavage property.
  • the laminate preferably has a basis weight per unit area of the porous film of 4 to 20 g / m 2 . Further, the laminate preferably has a basis weight per unit area (per side) of the porous layer of 1 to 20 g / m 2 .
  • the separator for a non-aqueous electrolyte secondary battery and the non-aqueous electrolyte secondary battery according to the present invention are characterized by including the laminate.
  • the separator according to the present invention and a separator for a non-aqueous electrolyte secondary battery including the laminate, while maintaining various performances such as rate characteristics and resistance characteristics (liquid resistance) of the non-aqueous electrolyte secondary battery, By preventing internal short circuit due to breakage of non-aqueous electrolyte secondary battery etc. (the occurrence of internal short circuit is in conflict with maintaining various performances), there is an effect that high safety can be ensured. .
  • a to B means “A or more and B or less”.
  • the laminate according to the present invention is a laminate in which a porous layer containing fine particles is laminated on at least one surface of a porous film mainly composed of polyolefin, and is an N50 nail defined by JIS A 5508. Difference between the test force at the time of conduction of the laminate and the test force at the time of dielectric breakdown in the nail penetration continuity test measured at a nail descending speed of 50 ⁇ m / min. Test force) is 5N or more and 50N or less.
  • the porous film in the present invention is a base material for a separator for a non-aqueous electrolyte secondary battery, and contains polyolefin as a main component.
  • the porous film has a large number of pores connected to each other in the inside thereof, thereby allowing gas or liquid to pass from one surface of the porous film to the other surface. It has become.
  • the proportion of polyolefin in the porous film is 50% by volume or more of the entire porous film, more preferably 90% by volume or more, and still more preferably 95% by volume or more.
  • the polyolefin preferably contains a high molecular weight component having a weight average molecular weight of 5 ⁇ 10 5 to 15 ⁇ 10 6 .
  • the polyolefin contains a high molecular weight component having a weight average molecular weight of 1,000,000 or more. This is because the strength of the porous film is improved and thereby the strength of the laminate including the porous film is also improved.
  • polystyrene resin examples include a homopolymer obtained by polymerizing monomers such as ethylene, propylene, 1-butene, 4-methyl-1-pentene, and 1-hexene (for example, For example, polyethylene, polypropylene, polybutene) or a copolymer obtained by copolymerizing the above monomers (for example, ethylene-propylene copolymer) can be mentioned.
  • a homopolymer obtained by polymerizing monomers such as ethylene, propylene, 1-butene, 4-methyl-1-pentene, and 1-hexene
  • polyethylene, polypropylene, polybutene polyethylene
  • copolymer obtained by copolymerizing the above monomers for example, ethylene-propylene copolymer
  • polyethylene examples include low density polyethylene, high density polyethylene, linear polyethylene (ethylene- ⁇ -olefin copolymer), and ultrahigh molecular weight polyethylene having a weight average molecular weight of 1 million or more.
  • ultra high molecular weight polyethylene having a weight average molecular weight of 1,000,000 or more is more preferable.
  • the film thickness of the porous film may be appropriately determined in consideration of the film thickness of the laminate.
  • a porous film as a base material and laminating a porous layer on one or both sides of the porous film to form a laminate, it is preferably 5 to 30 ⁇ m, more preferably 10 to 20 ⁇ m. preferable.
  • the thickness of the porous film is less than 5 ⁇ m, when the laminate is used as a separator for a nonaqueous electrolyte secondary battery, an internal short circuit due to damage of the nonaqueous electrolyte secondary battery is sufficiently prevented. I can't. In addition, the amount of electrolytic solution retained in the porous film is reduced. On the other hand, when the film thickness of the porous film exceeds 30 ⁇ m, when the laminate is used as a separator for a non-aqueous electrolyte secondary battery, the lithium ion permeation resistance in the entire separator increases.
  • the positive electrode of the nonaqueous electrolyte secondary battery deteriorates, and as a result, the rate characteristics and the cycle characteristics deteriorate.
  • the nonaqueous electrolyte secondary battery is increased in size.
  • the fabric weight per unit area of a porous film suitably in consideration of the intensity
  • the weight per unit area is usually preferably 4 to 20 g / m 2 and more preferably 5 to 12 g / m 2 .
  • the air permeability of the porous film is preferably a Gurley value of 30 to 500 ⁇ sec / 100 mL, and more preferably 50 to 300 ⁇ sec / 100 mL.
  • a Gurley value of 30 to 500 ⁇ sec / 100 mL, and more preferably 50 to 300 ⁇ sec / 100 mL.
  • the porosity of the porous film is preferably 30 to 60% by volume, more preferably 35 to 55% by volume.
  • the porosity of the porous film When the porosity of the porous film is less than 30% by volume, the resistance of the porous film increases. Moreover, when the porosity of a porous film exceeds 60 volume%, the mechanical strength of the said porous film will fall.
  • the pore diameter of the pores of the porous film is preferably 3 ⁇ m or less, and more preferably 1 ⁇ m or less.
  • the method for producing the porous film is not particularly limited.
  • Examples of the production method include a method of adding a plasticizer to a resin such as polyolefin to form a film, and then removing the plasticizer with an appropriate solvent.
  • a polyolefin resin composition prepared by kneading 100 parts by weight of ultrahigh molecular weight polyethylene, 5 to 200 parts by weight of a low molecular weight polyolefin having a weight average molecular weight of 10,000 or less, and 100 to 400 parts by weight of an inorganic filler such as calcium carbonate.
  • the commercial item which has the physical property mentioned above can also be used for a porous film.
  • the porous film is subjected to a hydrophilic treatment before forming a porous layer, that is, before coating a coating liquid described later.
  • a hydrophilic treatment is effective when the proportion of water in the solvent (dispersion medium) contained in the coating liquid is high.
  • Specific examples of the hydrophilic treatment include known treatments such as chemical treatment with acid, alkali, etc., corona treatment, and plasma treatment. Among these, corona treatment is more preferable. This is because, among the hydrophilization treatments, the porous film can be hydrophilized in a relatively short time, and the hydrophilization is limited to the vicinity of the surface of the porous film, and the inside of the porous film is not altered. It is.
  • the porous film may contain another porous layer in addition to the porous layer according to the present invention, if necessary.
  • the other porous layer include known porous layers such as a heat-resistant layer, an adhesive layer, and a protective layer.
  • Specific examples of the porous layer include a porous layer having the same composition as the porous layer according to the present invention described later.
  • the porous layer according to the present invention is a resin layer containing fine particles and usually containing a resin.
  • the porous layer according to the present invention is preferably a heat-resistant layer or an adhesive layer laminated on one side or both sides of the porous film.
  • the resin constituting the porous layer is preferably insoluble in the electrolyte of the non-aqueous electrolyte secondary battery and electrochemically stable in the usage range of the non-aqueous electrolyte secondary battery.
  • the porous layer is preferably the surface of the porous film when the porous film is a non-aqueous electrolyte secondary battery.
  • the non-aqueous electrolyte secondary battery is laminated on the surface facing the positive electrode, and more preferably on the surface in contact with the positive electrode.
  • the resin constituting the porous layer examples include polyolefins such as polyethylene, polypropylene, polybutene, and ethylene-propylene copolymers; fluorine-containing resins such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene; vinylidene fluoride -Fluorine-containing rubber such as hexafluoropropylene-tetrafluoroethylene copolymer and ethylene-tetrafluoroethylene copolymer; aromatic polyamide; wholly aromatic polyamide (aramid resin); styrene-butadiene copolymer and its hydride, Rubbers such as methacrylic acid ester copolymer, acrylonitrile-acrylic acid ester copolymer, styrene-acrylic acid ester copolymer, ethylene propylene rubber, and polyvinyl acetate; polyphenylene ether, polysulfone, Resins having a melting point
  • polyethersulfone polyphenylene sulfide
  • polyetherimide polyamideimide
  • polyetheramide and polyester
  • polyvinyl alcohol polyethylene glycol
  • cellulose ether sodium alginate
  • polyacrylic acid Water-soluble polymers such as polyacrylamide and polymethacrylic acid; and the like.
  • aromatic polyamide examples include poly (paraphenylene terephthalamide), poly (metaphenylene isophthalamide), poly (parabenzamide), poly (metabenzamide), and poly (4,4 ′).
  • -Benzanilide terephthalamide poly (paraphenylene-4,4'-biphenylenedicarboxylic acid amide), poly (metaphenylene-4,4'-biphenylenedicarboxylic acid amide), poly (paraphenylene-2,6-naphthalenedicarboxylic acid) Acid amide), poly (metaphenylene-2,6-naphthalenedicarboxylic acid amide), poly (2-chloroparaphenylene terephthalamide), paraphenylene terephthalamide / 2,6-dichloroparaphenylene terephthalamide copolymer, metaphenylene Terephthalamide / , 6-dichloro-para-phenylene terephthalamide copolymer and the like.
  • polyolefins polyolefins, fluorine-containing resins, aromatic polyamides, and water-soluble polymers are more preferable.
  • a fluorine-containing resin is especially preferable.
  • water-soluble polymer can use water as a solvent when forming a porous layer, it is more preferable from the viewpoint of process and environmental load, cellulose ether and sodium alginate are more preferable, and cellulose ether is particularly preferable.
  • the cellulose ether examples include carboxymethyl cellulose (CMC), hydroxyethyl cellulose (HEC), carboxyethyl cellulose, methyl cellulose, ethyl cellulose, cyanethyl cellulose, and oxyethyl cellulose.
  • CMC carboxymethyl cellulose
  • HEC hydroxyethyl cellulose
  • carboxyethyl cellulose methyl cellulose
  • ethyl cellulose cyanethyl cellulose
  • oxyethyl cellulose examples include carboxymethyl cellulose (CMC), hydroxyethyl cellulose (HEC), carboxyethyl cellulose, methyl cellulose, ethyl cellulose, cyanethyl cellulose, and oxyethyl cellulose.
  • CMC and HEC are more preferable, and CMC is particularly preferable. This is because these cellulose ethers have little deterioration in use over a long period of time and are excellent in chemical stability.
  • the porous layer contains fine particles.
  • the fine particles in the present specification are organic fine particles or inorganic fine particles generally called a filler. Therefore, the resin has a function as a binder resin that binds the fine particles to each other and the fine particles and the porous film.
  • organic fine particles contained in the porous layer in the present invention include monomers such as styrene, vinyl ketone, acrylonitrile, methyl methacrylate, ethyl methacrylate, glycidyl methacrylate, glycidyl acrylate, and methyl acrylate.
  • Fluorine-containing resin such as polytetrafluoroethylene, tetrafluoroethylene-6-fluoropropylene copolymer, tetrafluoroethylene-ethylene copolymer, polyvinylidene fluoride; melamine Resin; urea resin; polyethylene; polypropylene; polyacrylic acid, polymethacrylic acid;
  • the inorganic fine particles contained in the porous layer in the present invention include diamond, graphite, layered silicates such as mica (mica), talc (talc), and montmorillonite; dichalcogenides such as titanium disulfide; Boehmite; dihydric metal hydroxide such as magnesium hydroxide; layered double hydroxide such as hydrotalcite; layered titanate; layered phosphate such as hydroxyapatite (basic calcium phosphate); clay, silica, diatomaceous earth, carbonic acid Examples include magnesium, calcium carbonate, barium carbonate, magnesium sulfate, calcium sulfate, barium sulfate, aluminum hydroxide, magnesium oxide, calcium oxide, alumina (aluminum oxide), titanium oxide, aluminum nitride, titanium nitride, zeolite, and glass. .
  • fine particles having a cleavage property are suitable, and inorganic fine particles are most suitable.
  • Inorganic fine particles having cleavage properties such as oxide; layered titanate; layered phosphate such as hydroxyapatite; are more preferable, and mica and hydroxyapatite are particularly preferable.
  • ⁇ -alumina there are many crystal forms of alumina such as ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, and ⁇ -alumina, and any of them can be suitably used.
  • ⁇ -alumina is most preferred because of its particularly high thermal stability and chemical stability.
  • Cleavage is a property that a crystal is broken or peeled along a certain direction to reveal a smooth surface.
  • the atomic arrangement for example, crystal structure
  • the cleaving property can be evaluated by, for example, the “cleavage test” described in Japanese Published Patent Publication “JP 2000-254996”.
  • the shape of the fine particles varies depending on the production method of the organic or inorganic material as a raw material, the dispersion conditions of the fine particles when producing a coating liquid for forming the porous layer, and the like.
  • There are various shapes of the fine particles such as a spherical shape, an oval shape, a short shape, a bowl shape, or an indefinite shape having no specific shape. It is more preferable that any shape has a cleavage property. Since the fine particles have cleavage properties, an internal short circuit due to damage of the nonaqueous electrolyte secondary battery can be further prevented.
  • the fine particles are more preferably in point contact with the binder resin.
  • the fine particles and the binder resin are in point contact, an internal short circuit due to damage of the nonaqueous electrolyte secondary battery can be further prevented.
  • the inorganic fine particles may be wet pulverized using a wet pulverizer in order to control the average particle size. That is, coarse inorganic fine particles and a suitable solvent may be put in a wet pulverizer and wet pulverized to form inorganic fine particles having a desired average particle diameter.
  • the said solvent is not specifically limited, It is desirable to use water from a viewpoint of a process or an environmental load.
  • lower alcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, and t-butyl alcohol; acetone, toluene, xylene, hexane,
  • An organic solvent such as cyclohexane, tetrahydrofuran, N-methylpyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, or the like may be mixed.
  • the wet pulverizer is roughly classified into a stirring type and a media type such as a ball mill or a bead mill (Dyno mill), and an optimal pulverizer may be used according to the type of coarse inorganic fine particles.
  • a bead mill (dyno mill) having a high grinding ability.
  • the grinding power of the bead mill is greatly influenced by factors such as the bead material, the bead diameter, the bead filling rate (relative to the dyno mill vessel volume), the flow rate, and the peripheral speed.
  • a slurry of inorganic fine particles obtained by wet pulverization may be collected according to a desired residence time in consideration of the above factors.
  • the concentration of the inorganic fine particles in the slurry obtained by wet pulverization is preferably 6 to 50% by weight, and more preferably 10 to 40% by weight.
  • the residence time can be calculated from the following equation in each of the pass method and the circulation method.
  • Residence time (pass method) (min) [Bessel volume (L) ⁇ Bead filling volume (L) + Bead gap volume (L)] / Flow rate (L / min)
  • Residence time (circulation method) (minutes) [ ⁇ Bessel volume (L) ⁇ bead filling volume (L) + bead gap volume (L) ⁇ / slurry amount (L)] ⁇ circulation time (minutes)
  • the fine particles may be used in combination of two or more different particle diameters and specific surface areas.
  • the content of fine particles contained in the porous layer is preferably 1 to 99% by volume of the porous layer, and more preferably 5 to 95% by volume.
  • a coating liquid for forming a porous layer is usually prepared by dissolving the resin in a solvent and dispersing the fine particles.
  • the solvent (dispersion medium) is not particularly limited as long as it does not adversely affect the porous film, can dissolve the resin uniformly and stably, and can uniformly and stably disperse the fine particles.
  • Specific examples of the solvent (dispersion medium) include water; lower alcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, and t-butyl alcohol; acetone, toluene, xylene, hexane, N -Methylpyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide; and the like.
  • the solvent (dispersion medium) may be used alone or in combination of two or more.
  • the coating liquid may be formed by any method as long as the conditions such as the resin solid content (resin concentration) and the amount of fine particles necessary for obtaining a desired porous layer can be satisfied.
  • Specific examples of the method for forming the coating liquid include a mechanical stirring method, an ultrasonic dispersion method, a high-pressure dispersion method, and a media dispersion method.
  • fine particles may be dispersed in a solvent (dispersion medium) by using a conventionally known disperser such as a three-one motor, a homogenizer, a media type disperser, or a pressure disperser.
  • a solution obtained by dissolving or swelling a resin or an emulsion of a resin is supplied into a wet pulverization apparatus at the time of wet pulverization to obtain fine particles having a desired average particle size, and is applied simultaneously with the wet pulverization of the fine particles.
  • a liquid can also be prepared. That is, the wet pulverization of the fine particles and the preparation of the coating liquid may be performed simultaneously in one step.
  • the coating liquid may contain additives such as a dispersant, a plasticizer, a surfactant, or a pH adjuster as a component other than the resin and fine particles as long as the object of the present invention is not impaired. Good.
  • the addition amount of an additive should just be a range which does not impair the objective of this invention.
  • the method for applying the coating liquid to the porous film that is, the method for forming the porous layer on the surface of the porous film that has been subjected to hydrophilic treatment as necessary is not particularly limited.
  • a sequential laminating method of forming a porous layer on the other side, or a porous film It is possible to apply a simultaneous lamination method in which a porous layer is simultaneously formed on both sides of the substrate.
  • a method for forming the porous layer for example, a method in which the coating liquid is directly applied to the surface of the porous film and then the solvent (dispersion medium) is removed; the coating liquid is applied to a suitable support, and the solvent ( After the dispersion medium is removed to form a porous layer, the porous layer and the porous film are pressure-bonded, and then the support is peeled off; the coating liquid is applied to an appropriate support, and then the coated surface A method of removing a solvent (dispersion medium) after pressure-bonding the porous film to the substrate and then peeling off the support; and a solvent (dispersion medium) after immersing the porous film in a coating solution and performing dip coating And the like.
  • the thickness of the porous layer is the thickness of the coating film in the wet state (wet) after coating, the weight ratio between the resin and the fine particles, and the solid content concentration of the coating liquid (the sum of the resin concentration and the fine particle concentration). It can be controlled by adjusting etc.
  • the support for example, a resin film, a metal belt, a drum, or the like can be used.
  • the method for applying the coating solution to the porous film or the support is not particularly limited as long as it can realize a necessary weight per unit area and coating area.
  • a coating method of the coating liquid a conventionally known method can be employed.
  • a method specifically, for example, gravure coater method, small diameter gravure coater method, reverse roll coater method, transfer roll coater method, kiss coater method, dip coater method, knife coater method, air doctor blade coater method, blade Examples include a coater method, a rod coater method, a squeeze coater method, a cast coater method, a bar coater method, a die coater method, a screen printing method, and a spray coating method.
  • the coating liquid it is more preferable to apply the coating liquid using a coating apparatus equipped with a stretching mechanism so that the coating liquid can be uniformly applied, for example, with a base material (porous film).
  • the crease-stretching mechanism is more preferably a curved roll (for example, a bow roll, a banana roll, a curved roll), a flat expander roll, a helical roll, or a pinch expander.
  • a coating method of a coating solution having a high viscosity a bar coater method and a die coater method are preferably used.
  • a coating method of the coating liquid having a low viscosity a gravure coater method is preferable. And when using the gravure coater method, it is especially preferable to use the coating apparatus provided with the pinch expander as the above-mentioned stretching mechanism.
  • the coating liquid By applying the coating liquid while stretching the wrinkles of the base material using the above-described wrinkle-stretching mechanism, it is possible to effectively suppress the occurrence of bias and wrinkles in the porous layer. That is, since the coating liquid does not have uneven coating, it can be applied uniformly. As a result, the variation rate of the porosity of the porous layer tends to be small.
  • the coating apparatus is not particularly limited.
  • a coating apparatus provided with a heel stretching mechanism for example, a coating apparatus described in Japanese Patent Publication “JP 2001-316006” or Japanese Patent Publication “JP 2002-60102” can be used. Can be used.
  • the method for removing the solvent (dispersion medium) is generally a drying method.
  • the drying method include natural drying, air drying, heat drying, and reduced pressure drying, and any method may be used as long as the solvent (dispersion medium) can be sufficiently removed.
  • the solvent (dispersion medium) contained in the coating liquid may be replaced with another solvent before drying.
  • As a method for removing the solvent (dispersion medium) after replacing it with another solvent for example, it is possible to dissolve in the solvent (dispersion medium) contained in the coating liquid and not dissolve the resin contained in the coating liquid.
  • a porous film or support on which a coating solution is applied and a coating film is formed is immersed in the solvent X, and the coating film on the porous film or the support is used.
  • a method of evaporating the solvent X after replacing the solvent (dispersion medium) therein with the solvent X can be mentioned.
  • the solvent (dispersion medium) can be efficiently removed from the coating liquid.
  • heating is performed to remove the solvent (dispersion medium) or solvent X from the coating film of the coating liquid formed on the porous film or the support, the pores of the porous film contract and become transparent.
  • a method for removing the solvent (dispersion medium) in particular, a method of forming a porous layer by applying the coating liquid to the substrate and then drying the coating liquid is preferable. According to the above configuration, it is possible to realize a porous layer having a smaller variation rate of the porosity of the porous layer and less wrinkles.
  • a normal drying apparatus can be used for the above drying.
  • the film thickness of the porous layer according to the present invention formed by the above-described method may be appropriately determined in consideration of the film thickness of the laminate.
  • it is preferably 0.5 to 15 ⁇ m (per one side). More preferably, it is 10 ⁇ m (per one side).
  • the total thickness of the porous layer is less than 1 ⁇ m, when the laminate is used as a separator for a non-aqueous electrolyte secondary battery, internal short circuit due to damage to the non-aqueous electrolyte secondary battery is sufficient. Cannot be prevented. In addition, the amount of electrolytic solution retained in the porous layer decreases. On the other hand, if the total thickness of the porous layer exceeds 30 ⁇ m, when the laminate is used as a separator for a non-aqueous electrolyte secondary battery, the lithium ion permeation resistance increases across the separator, When the cycle is repeated, the positive electrode of the non-aqueous electrolyte secondary battery deteriorates, and the rate characteristics and the cycle characteristics deteriorate. In addition, since the distance between the positive electrode and the negative electrode is increased, the nonaqueous electrolyte secondary battery is increased in size.
  • the surface of the porous film facing the positive electrode when a non-aqueous electrolyte secondary battery is formed is used. It refers to at least the physical properties of the laminated porous layer.
  • the basis weight per unit area (per side) of the porous layer may be appropriately determined in consideration of the strength, film thickness, weight, and handling properties of the laminate.
  • the basis weight per unit area of the porous layer is usually preferably 1 to 20 g / m 2 and 4 to 10 g / m 2 . It is more preferable.
  • the basis weight per unit area of the porous layer can be increased.
  • the basis weight of the porous layer exceeds the above range, the non-aqueous electrolyte secondary battery becomes heavy when the laminate is used as a separator for a non-aqueous electrolyte secondary battery.
  • the volume (per side) of the porous layer constituting component contained per square meter of the porous layer is preferably 0.5 to 20 cm 3 , more preferably 1 to 10 cm 3. More preferably, it is 8 cm 3 . That is, the component volume basis weight (per side) of the porous layer is preferably 0.5 to 20 cm 3 / m 2 , more preferably 1 to 10 cm 3 / m 2 , and 2 to 8 cm 3 / m 2. 2 is more preferable.
  • the component volume per unit area of the porous layer is less than 0.5 cm 3 / m 2 , when the laminate is used as a separator for a non-aqueous electrolyte secondary battery, the non-aqueous electrolyte secondary battery may be damaged.
  • the porosity of the porous layer is preferably 20 to 90% by volume, and more preferably 30 to 80% by volume so that sufficient ion permeability can be obtained.
  • the pore diameter of the pores of the porous layer is preferably 3 ⁇ m or less, and more preferably 1 ⁇ m or less. By setting the pore diameter to these sizes, sufficient ion permeability can be obtained when the laminate including the porous layer is used as a separator for a non-aqueous electrolyte secondary battery.
  • test force at the time of conduction of the laminate and the dielectric breakdown in the nail penetration conduction test measured using the N50 nail specified by JIS A55508 under the condition of the nail descending speed of 50 ⁇ m / min.
  • "Difference from test force (test force during conduction-test force during dielectric breakdown)" is a numerical value measured by the following method.
  • a measuring device for nail penetration continuity test mounts a laminate 10 to be measured.
  • SUS plate 1 SUS304; thickness 1 mm
  • N50 nail 2 defined by JIS A55508 mounts a laminate 10 to be measured.
  • N50 nail 2 defined by JIS A55508
  • a drive unit (not shown) for moving the held nail 2 up and down at a constant speed
  • nail Mainly with a resistance measuring device 3 that measures the direct current resistance between 2 and the SUS plate 1 and a material testing machine (not shown) that measures the deformation amount in the thickness direction of the laminate 10 and the force required for the deformation. It is configured.
  • the size of the SUS plate 1 is not particularly limited as long as it is at least larger than the size of the laminate 10.
  • the drive unit is arranged above the SUS plate 1 and holds the nail so that the tip is perpendicular to the surface of the SUS plate 1 and moves it vertically.
  • the resistance measuring device 3 for example, a commercially available product such as a digital multimeter 7461P (manufactured by ADC Corporation) may be used.
  • a commercial item also as a material testing machine a small desktop testing machine EZ-L (manufactured by Shimadzu Corporation) can be diverted to a measuring apparatus, and a resistance measuring instrument and a material testing machine can be connected to this testing machine to form a measuring apparatus.
  • the measurement method of the test force at the time of conduction of the laminate 10 and the test force at the time of dielectric breakdown using the measuring device will be described below.
  • the nail 2 is fixed to a load cell built in the cross head of the driving unit of the material testing machine using a drill chuck type fixing jig.
  • a fixed base is placed on the jig mounting surface at the lower part of the material testing machine, and a negative electrode sheet 4 serving as a negative electrode of the nonaqueous electrolyte secondary battery is placed on the SUS plate 1 on the fixed base.
  • the laminate 10 is placed on the negative electrode sheet 4.
  • the amount of deformation in the thickness direction of the laminate 10 is measured by the stroke of the crosshead of the material testing machine, and the force required for the deformation is measured by a load cell to which the nail is fixed.
  • the nail 2 and the resistance measuring device 3 and the SUS plate 1 and the resistance measuring device 3 are electrically connected.
  • the electrical connection may be made using, for example, an electric cord and an alligator clip.
  • the negative electrode sheet 4 used in the above measurement can be produced by the following method. That is, 98 parts by weight of graphite powder as a negative electrode active material, 100 parts by weight of an aqueous solution of carboxymethyl cellulose as a thickener and a binder (concentration of carboxymethyl cellulose; 1% by weight), and an aqueous emulsion 2 of styrene-butadiene rubber After adding parts by weight (concentration of styrene / butadiene rubber; 50% by weight) and mixing, 22 parts by weight of water is further added to prepare a slurry having a solid content concentration of 45% by weight.
  • the obtained slurry was applied to a part of a rolled copper foil having a thickness of 20 ⁇ m, which is a negative electrode current collector, so that the basis weight was 140 g / m 2 and dried, and then the thickness was reduced to 120 ⁇ m by a press.
  • Roll the thickness of the negative electrode active material layer is 100 ⁇ m.
  • the rolled rolled copper foil is cut so that the size of the portion where the negative electrode active material layer is formed becomes 20 mm ⁇ 20 mm. Thereby, the negative electrode sheet 4 for a nail penetration conduction test is produced.
  • the drive unit is driven to lower the nail 2, and its tip is brought into contact with the surface (outermost layer) of the laminate 10 to stop it (preparation for measurement).
  • a state in which the tip of the nail 2 is in contact with the surface of the laminate 10 is defined as a displacement “0” in the thickness direction of the laminate 10.
  • the drive unit After completion of measurement preparation, the drive unit is driven to start the descent of the nail 2 at a descent rate of 50 ⁇ m / min. At the same time, (1) the amount of deformation and deformation in the thickness direction of the laminate 10 are required by the material testing machine. The force and (2) DC resistance between the nail 2 and the SUS plate 1 are measured by the resistance measuring device 3. After the start of measurement, the point at which the DC resistance first becomes 10,000 ⁇ is taken as the dielectric breakdown point, and the point at which the DC resistance becomes 100 ⁇ is taken as the conduction point.
  • test force (unit: N) which is the measuring force at the time of conduction
  • a test force (unit: N) which is a measurement force at the time of dielectric breakdown.
  • the difference (unit: N) between the test force at the time of conduction of the laminate 10 and the test force at the time of dielectric breakdown is measured (calculated).
  • the thickness of the negative electrode active material layer in the negative electrode sheet is set so as to be 20 ⁇ m or more thicker than the displacement in the thickness direction measured from the time of dielectric breakdown to the time of conduction of the laminate. That is, as a result of measuring the displacement in the thickness direction, when the difference between the measured displacement in the thickness direction and the thickness of the negative electrode active material layer in the negative electrode sheet is less than 20 ⁇ m, a thicker negative electrode active material layer The difference between the test force at the time of conduction of the laminate and the test force at the time of dielectric breakdown is measured again using the negative electrode sheet having the above.
  • the slurry is applied to a part of a rolled copper foil having a thickness of 20 ⁇ m so that the basis weight is 420 g / m 2 and dried, and then rolled to a thickness of 320 ⁇ m by a press machine.
  • a negative electrode sheet having a 300 ⁇ m negative electrode active material layer can be obtained.
  • such a negative electrode sheet may be used instead of the negative electrode sheet having the negative electrode active material layer having a thickness of 100 ⁇ m.
  • the test force during conduction-the test force during dielectric breakdown is preferably 5N or more and 50N or less, more preferably 5N or more and 40N or less, and further preferably 5N or more and 30N or less.
  • the difference in the test force is 5N or more and 50N or less, such as the rate characteristics and resistance characteristics of the non-aqueous electrolyte secondary battery. While maintaining the performance, high safety can be ensured by preventing an internal short circuit due to damage or the like of the non-aqueous electrolyte secondary battery.
  • the difference in the test force is less than 5N
  • the laminate when the laminate is used as a separator for a non-aqueous electrolyte secondary battery, an internal short circuit due to damage of the non-aqueous electrolyte secondary battery is sufficiently prevented. I can't.
  • the difference in the test force exceeds 50 N
  • the laminate when the laminate is used as a separator for a non-aqueous electrolyte secondary battery, the lithium ion permeation resistance increases across the separator. As a result, the rate characteristics and cycle characteristics of the non-aqueous electrolyte secondary battery deteriorate.
  • the difference between the test force at the time of conduction of the porous layer and the test force at the time of dielectric breakdown is the difference between the test force at the time of conduction of the laminate and the test force at the time of breakdown. It can be calculated by subtracting the difference between the test force during conduction of the porous film and the test force during dielectric breakdown from the difference from the test force.
  • the difference between the test force during conduction of the porous layer and the test force during dielectric breakdown is preferably 5N or more and 50N or less, more preferably 5N or more and 40N or less, and more preferably 5N or more and 30N or less. More preferably it is.
  • a laminate according to the present invention is formed by laminating a porous layer on one or both sides of a porous film by the method described above. That is, the laminate according to the present invention is configured by laminating the porous layer on one side or both sides of a porous film.
  • the air permeability of the laminate is preferably 30 to 1000 sec / 100 mL, more preferably 50 to 800 sec / 100 mL in terms of Gurley value.
  • the air permeability exceeds the above range, it means that the laminate structure is rough because the porosity of the laminate is high. Therefore, the strength of the laminate may be reduced, and shape stability (particularly shape stability at high temperature) may be insufficient.
  • the air permeability is less than the above range, when the laminate is used as a separator for a non-aqueous electrolyte secondary battery, sufficient ion permeability cannot be obtained, and the non-aqueous electrolyte secondary The battery characteristics of the battery may be degraded.
  • the laminate according to the present invention does not impair the object of the present invention with known porous films such as a heat-resistant layer, an adhesive layer, and a protective layer, if necessary. It may be included in the range.
  • the nonaqueous electrolyte secondary battery according to the present invention includes the laminate as a separator for a nonaqueous electrolyte secondary battery. More specifically, the non-aqueous electrolyte secondary battery according to the present invention includes a non-aqueous electrolyte secondary battery member in which a positive electrode, a laminate, and a negative electrode are arranged in this order.
  • a lithium ion secondary battery will be described as an example of the nonaqueous electrolyte secondary battery.
  • the components of the non-aqueous electrolyte secondary battery other than the laminate are not limited to the components described below.
  • a non-aqueous electrolyte secondary battery for example, a non-aqueous electrolyte obtained by dissolving a lithium salt in an organic solvent can be used.
  • the lithium salt include LiClO 4 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , Li 2 B 10 Cl 10 , lower aliphatic carboxylic acid lithium salt, LiAlCl 4 and the like.
  • the lithium salt may be used alone or in combination of two or more.
  • lithium salts at least one selected from the group consisting of LiPF 6 , LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , and LiC (CF 3 SO 2 ) 3. More preferred are fluorine-containing lithium salts.
  • organic solvent constituting the non-aqueous electrolyte include, for example, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, 4-trifluoromethyl-1,3-dioxolan-2-one Carbonates such as 1,2-di (methoxycarbonyloxy) ethane; 1,2-dimethoxyethane, 1,3-dimethoxypropane, pentafluoropropyl methyl ether, 2,2,3,3-tetrafluoropropyl difluoromethyl Ethers such as ether, tetrahydrofuran and 2-methyltetrahydrofuran; Esters such as methyl formate, methyl acetate and ⁇ -butyrolactone; Nitriles such as acetonitrile and butyronitrile; N, N-dimethylformamide and N, N-dimethyl Amides such as cetamide; Carbamates such as 3-methyl-2-ox
  • Fluorine organic solvent Only one kind of the organic solvent may be used, or two or more kinds may be used in combination.
  • the organic solvents carbonates are more preferable, and a mixed solvent of cyclic carbonate and acyclic carbonate, or a mixed solvent of cyclic carbonate and ethers is more preferable.
  • a mixed solvent of cyclic carbonate and non-cyclic carbonate ethylene carbonate has a wide operating temperature range and is difficult to decompose even when a graphite material such as natural graphite or artificial graphite is used as the negative electrode active material. More preferred is a mixed solvent containing dimethyl carbonate and ethyl methyl carbonate.
  • the positive electrode a sheet-like positive electrode in which a positive electrode mixture containing a positive electrode active material, a conductive material, and a binder is usually supported on a positive electrode current collector is used.
  • the positive electrode active material examples include materials that can be doped and dedoped with lithium ions.
  • the material include lithium composite oxides containing at least one transition metal such as V, Mn, Fe, Co, and Ni.
  • lithium composite oxides since the average discharge potential is high, lithium nickel oxide and lithium composite oxides having an ⁇ -NaFeO 2 type structure such as lithium cobaltate, lithium having a spinel type structure such as lithium manganese spinel A composite oxide is more preferable.
  • the lithium composite oxide may contain various metal elements, and composite lithium nickelate is more preferable.
  • the number of moles of at least one metal element selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, Cu, Ag, Mg, Al, Ga, In, and Sn, and in the lithium nickelate When the composite lithium nickelate containing the metal element is used so that the ratio of the at least one metal element is 0.1 to 20 mol% with respect to the sum of the number of moles of Ni, the non-aqueous electrolyte 2
  • the secondary battery is particularly preferable because it is excellent in cycle characteristics when used at a high capacity.
  • Examples of the conductive material include natural graphite, artificial graphite, cokes, carbon black, pyrolytic carbons, carbon fibers, and carbonaceous materials such as organic polymer compound fired bodies. Only one type of the conductive material may be used, or two or more types may be used in combination, such as a mixture of artificial graphite and carbon black.
  • binder examples include polyvinylidene fluoride, vinylidene fluoride copolymer, polytetrafluoroethylene, tetrafluoroethylene-hexafluoropropylene copolymer, and tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer. , Ethylene-tetrafluoroethylene copolymer, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer, and thermoplastic resins such as thermoplastic polyimide, polyethylene, and polypropylene.
  • the binder also has a function as a thickener.
  • a method for obtaining the positive electrode mixture for example, a method of obtaining a positive electrode mixture by pressurizing a positive electrode active material, a conductive material and a binder on a positive electrode current collector; and a positive electrode active material using an appropriate organic solvent And a method of obtaining a positive electrode mixture by pasting a conductive material and a binder into a paste.
  • Examples of the positive electrode current collector include conductors such as Al, Ni, and stainless steel, and Al is more preferable because it is easily processed into a thin film and is inexpensive.
  • Examples of a method for producing a sheet-like positive electrode that is, a method of supporting a positive electrode mixture on a positive electrode current collector include (1) a positive electrode active material, a conductive material, and a binder that become a positive electrode mixture. (2) A positive electrode active material, a conductive material and a binder are made into a paste using an appropriate organic solvent to obtain a positive electrode mixture, and then the positive electrode mixture is collected into a positive electrode current collector. Examples thereof include a method of pressurizing a sheet-like positive electrode mixture obtained by coating on a body and drying to fix the positive electrode current collector.
  • a sheet-like negative electrode in which a negative electrode mixture containing a negative electrode active material is usually supported on a negative electrode current collector is used.
  • the negative electrode active material examples include materials that can be doped and dedoped with lithium ions, and lithium metals or lithium alloys.
  • Specific examples of the material include carbonaceous materials such as natural graphite, artificial graphite, cokes, carbon black, pyrolytic carbons, carbon fibers, and organic polymer compound fired bodies; and lower than the positive electrode. Examples thereof include chalcogen compounds such as oxides and sulfides that dope and dedope lithium ions at a potential.
  • carbonaceous materials mainly composed of graphite materials such as natural graphite and artificial graphite are more preferable. This is because the potential flatness is high and the average discharge potential is low, so that a large energy density can be obtained when combined with the positive electrode.
  • the negative electrode active material is pressurized on the negative electrode current collector to obtain the negative electrode mixture, and the negative electrode active material is made into a paste using an appropriate organic solvent.
  • the method etc. which obtain an agent are mentioned.
  • Examples of the negative electrode current collector include Cu, Ni, and stainless steel, and Cu is particularly preferable. This is because Cu is difficult to form an alloy with lithium in a lithium ion secondary battery and is easy to process into a thin film.
  • Examples of a method for producing a sheet-like negative electrode that is, a method for supporting a negative electrode mixture on a negative electrode current collector include, for example, (1) a method of pressure molding a negative electrode active material to be a negative electrode mixture on a negative electrode current collector And (2) a sheet obtained by pasting the negative electrode active material into a paste using an appropriate organic solvent to obtain a negative electrode mixture, coating the negative electrode mixture on the negative electrode current collector, and drying For example, a method of pressurizing the negative electrode mixture and fixing it to the negative electrode current collector.
  • the non-aqueous electrolyte secondary battery is placed in a container serving as a casing of the non-aqueous electrolyte secondary battery. After putting the battery member and then filling the container with a non-aqueous electrolyte, the container is sealed while decompressing. Thereby, the non-aqueous electrolyte secondary battery according to the present invention can be manufactured.
  • the shape of the non-aqueous electrolyte secondary battery is not particularly limited, and may be any shape such as a thin plate (paper) type, a disc type, a cylindrical type, and a rectangular column type such as a rectangular parallelepiped.
  • the manufacturing method of a nonaqueous electrolyte secondary battery is not specifically limited, A conventionally well-known manufacturing method is employable.
  • the non-aqueous electrolyte secondary battery according to the present invention is a laminate in which a porous layer containing fine particles is laminated on at least one surface of a porous film containing polyolefin as a main component, and is specified in JIS A5550. Difference between the test force at the time of conduction of the laminated body and the test force at the time of dielectric breakdown in the nail penetration conduction test measured under the condition of a nail descending speed of 50 ⁇ m / min. -A laminate having a test force at the time of dielectric breakdown) of 5N or more and 50N or less is included as a separator for a nonaqueous electrolyte secondary battery.
  • the non-aqueous electrolyte secondary battery according to the present invention maintains various performances such as rate characteristics and resistance characteristics (liquid resistance) of the non-aqueous electrolyte secondary battery, and is contrary to the maintenance of various performances. Prevents internal short circuit due to breakage of related nonaqueous electrolyte secondary battery. Thereby, high safety can be ensured.
  • the physical properties and the like of the laminated porous film (laminated body), the A layer (porous film), and the B layer (porous layer) in Examples and Comparative Examples were measured by the following methods.
  • Film thickness (unit: ⁇ m): The thickness of the laminated porous film (that is, the total thickness), the thickness of the A layer, and the thickness of the B layer were measured using a high-precision digital length measuring machine manufactured by Mitutoyo Corporation.
  • Component volume basis weight of B layer (porous layer) (unit: cm 3 / m 2 ): The basis weight of each component was calculated by multiplying the basis weight of the B layer calculated by the above method (2) by the weight concentration of each component constituting the B layer (weight concentration in the B layer). Then, the basis weight of each component obtained was divided by the true specific gravity of each component, and the sum of the obtained numerical values was defined as the component volume basis weight of the B layer.
  • a laminated porous film (laminated body) 1 was formed using the following A layer (porous film) and B layer (porous layer).
  • the porous film 1 which is a base material was produced using polyethylene which is polyolefin.
  • the sheet was immersed in an aqueous hydrochloric acid solution (containing 4 mol / L hydrochloric acid and 0.5% by weight of a nonionic surfactant) to dissolve and remove calcium carbonate. Then, the said sheet
  • aqueous hydrochloric acid solution containing 4 mol / L hydrochloric acid and 0.5% by weight of a nonionic surfactant
  • ⁇ B layer> As the binder resin, sodium carboxymethylcellulose (CMC) (manufactured by Daicel Corporation; CMC1110) was used. As the inorganic fine particles, mica (manufactured by Wako Pure Chemical Industries, Ltd .; non-swelling mica) was used. The mica is a fine particle having a cleavage property.
  • CMC carboxymethylcellulose
  • mica manufactured by Wako Pure Chemical Industries, Ltd .; non-swelling mica
  • the mica, CMC, and solvent mixed solvent of water and isopropyl alcohol
  • the solvent was mixed so as to be 5% by weight of alcohol.
  • a mica dispersion was obtained.
  • the coating liquid 1 was produced by carrying out the high pressure dispersion
  • ⁇ Laminated porous film> One side of the A layer was subjected to corona treatment at 20 W / (m 2 / min). Subsequently, the said coating liquid 1 was coated on the surface of the A layer which performed the corona treatment using the gravure coater. At this time, tension was applied to the A layer by sandwiching the front and rear of the coating position with a pinch roll so that the coating liquid 1 could be uniformly applied to the A layer. Then, B layer was formed by drying a coating film. Thereby, the laminated porous film 1 in which the B layer was laminated on one side of the A layer was obtained.
  • the rolled aluminum foil is cut out so that the size of the portion where the positive electrode active material layer is formed is 40 mm ⁇ 35 mm, and the portion where the width is 13 mm and the positive electrode active material layer is not formed remains on the outer periphery.
  • a positive electrode was obtained.
  • the density of the positive electrode active material layer was 2.50 g / cm 3 .
  • the rolled rolled copper foil is cut out so that the portion where the negative electrode active material layer is formed has a size of 50 mm ⁇ 40 mm and the outer periphery thereof has a width of 13 mm and no negative electrode active material layer is formed.
  • the density of the negative electrode active material layer was 1.40 g / cm 3 .
  • the layer B of the laminated porous film 1 and the positive electrode active material layer of the positive electrode are in contact with each other, and the A layer of the laminated porous film 1 and the negative electrode active material layer of the negative electrode are in contact with each other.
  • the positive electrode, the laminated porous film 1, and the negative electrode were laminated (arranged) in this order. In this way, a laminate type non-aqueous electrolyte secondary battery member was obtained.
  • the positive electrode and the negative electrode were disposed so that the entire main surface of the positive electrode active material layer of the positive electrode was included in the range of the main surface of the negative electrode active material layer of the negative electrode (overlaid on the main surface).
  • size of the laminated porous film 1 was made larger than the said negative electrode.
  • the laminate type non-aqueous electrolyte secondary battery member was put in a bag in which an aluminum layer and a heat seal layer were laminated, and 0.25 mL of the non-aqueous electrolyte was put in this bag.
  • the non-aqueous electrolyte was prepared by dissolving LiPF 6 at 1 mol / L in a mixed solvent obtained by mixing ethylene carbonate, ethyl methyl carbonate, and diethyl carbonate at a ratio of 3: 5: 2 (volume ratio).
  • the laminated type nonaqueous electrolyte secondary battery was produced by heat-sealing the said bag, decompressing the inside of a bag.
  • a fixed amount of water was put into the kneader to dissolve the binder resin 2. Thereafter, the positive electrode active material, the conductive agent, and the binder resin 1 were added and kneaded. Next, an appropriate amount of water was added to the kneaded material, and the viscosity of the kneaded material was adjusted to 2700 ⁇ 1000 cp at 25 ° C. to obtain a positive electrode mixture.
  • the positive electrode mixture was uniformly applied to a predetermined portion of both surfaces of a 20 ⁇ m thick aluminum foil having no gap, which was a positive electrode current collector, and dried.
  • the dried product was rolled with a roll press until the thickness of the coating film (film thickness of the positive electrode mixture) reached 140 ⁇ m (apparent density 3.5 g / cm 3 ).
  • the rolled aluminum foil was cut out to obtain a positive electrode having a width of 54 mm and a length of 560 mm.
  • Negative electrode active material 1 Choetsu Graphite Industrial Co., Ltd .; BF15SP, true specific gravity 2.2 g / cm 3
  • Negative electrode active material 2 manufactured by Nippon Graphite Shoji Co., Ltd .; CG-RA, true specific gravity 2.2 g / cm 3
  • Binder resin (Daiichi Kogyo Seiyaku Co., Ltd .; Serogen 4H, true specific gravity 1.4 g / cm 3 ): In this order, each component was weighed so that the weight ratio (composition) was 58.8: 39.2: 2.
  • the negative electrode active material 1 and the negative electrode active material 2 were added and knead
  • an appropriate amount of water was added to the kneaded product to adjust the viscosity of the kneaded product to 2100 ⁇ 500 cp at 25 ° C. to obtain a negative electrode mixture.
  • the negative electrode mixture was uniformly applied to a predetermined portion on both surfaces of a 12 ⁇ m thick copper foil without gaps, which was a negative electrode current collector, and dried.
  • the dried product was rolled with a roll press until the thickness of the coating film (the film thickness of the negative electrode mixture) reached 140 ⁇ m (apparent density 1.45 g / cm 3 ).
  • the rolled copper foil was cut out to obtain a negative electrode having a width of 56 mm and a length of 600 mm.
  • a laminated porous film 1 having a width of 60 mm and a length of 700 mm was used as the laminate.
  • the positive electrode tab made from aluminum was welded to the positive electrode
  • the negative electrode tab made from nickel was welded to the negative electrode.
  • the positive electrode, the laminated porous film 1 and the negative electrode are laminated (arranged) in this order, and wound to obtain a cylindrical nonaqueous solution.
  • An electrolyte solution secondary battery member was obtained.
  • the cylindrical non-aqueous electrolyte secondary battery member is put into a battery can for 18650 cylindrical battery and necked with a desktop lathe to weld the negative electrode tab to the bottom of the can and the positive electrode tab to the lid. Then, vacuum drying was performed. Thereafter, 5 g (corresponding to 1.1 times the total volume of voids in the positive electrode, the laminated porous film 1 and the negative electrode) was put in a battery can in a glove box in an argon gas atmosphere.
  • non-aqueous electrolyte As the non-aqueous electrolyte, a commercially available product (manufactured by Kishida Chemical Co., Ltd .; specific gravity 1.21 g / cm 3 ) in which 1.3 mol / L of LiPF 6 was contained in a carbonate-based solvent was used. And the cylindrical non-aqueous-electrolyte secondary battery (18650 cylindrical battery) was produced by crimping a battery can and a lid
  • the safety of the cylindrical nonaqueous electrolyte secondary battery at the above test voltage was evaluated according to the following criteria.
  • Although fever and smoke are generated, the battery can and lid are not damaged; X: Rupture or ignition occurs, or the lid blows away; Then, the initial test voltage is set to an arbitrary voltage between 3.8 and 4.2 V and the nail penetration test is started. In the case of “ ⁇ ”, the test voltage is increased by 0.05 V and the same test is performed. In the case of “x”, the test voltage was lowered by 0.05 V and the same test was conducted. The nail penetration test was performed on a total of 10 or more cylindrical non-aqueous electrolyte secondary batteries at the same test voltage.
  • the laminated porous film 2 was formed using the following A layer and B layer.
  • a coating liquid 2 was prepared by performing the same operation as in Example 1 except that hydroxyapatite (manufactured by Wako Pure Chemical Industries, Ltd.) was used as the inorganic fine particles.
  • the hydroxyapatite is a fine particle having a cleavage property.
  • a laminated nonaqueous electrolyte secondary battery was produced by performing the same operation as in Example 1 except that the laminated porous film 2 was used.
  • a cylindrical non-aqueous electrolyte secondary battery was produced by performing the same operation as in Example 1 except that the laminated porous film 2 was used.
  • a laminated porous film (1) for comparison was formed using the following A layer and B layer.
  • a coating solution 3 was prepared in the same manner as in Example 1, except that silica (manufactured by Sigma-Aldrich; average particle size of 0.5 to 10 ⁇ m) was used as the inorganic fine particles. Note that the silica is a fine particle having no cleavage property.
  • Example 2 Except for using the coating solution 3, the same operation as in Example 1 was performed to obtain a comparative laminated porous film (1) in which the B layer was laminated on one side of the A layer.
  • a laminate type nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the comparative laminated porous film (1) was used.
  • Example 3 A laminated porous film 3 was obtained in the same manner as in Example 2 except that the coating layer 2 was applied to both sides of the A layer to form the B layer on both sides of the A layer.
  • a laminate type nonaqueous electrolyte secondary battery was produced by performing the same operation as that of Example 1 except that the laminated porous film 3 was used.
  • a laminated nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the comparative laminated porous film (2) was used.
  • the non-aqueous electrolyte secondary battery including the laminate according to the present invention and the separator for the non-aqueous electrolyte secondary battery has various performances such as rate characteristics and resistance characteristics (liquid resistance) of the non-aqueous electrolyte secondary battery. It can be seen that an internal short circuit due to damage to the non-aqueous electrolyte secondary battery (which has a reciprocal relationship with maintaining various performances) can be prevented. Since the rated voltage of commercially available batteries is approximately 3.8V, a 50% breakdown voltage of 3.9V or higher is required to ensure safety. It can be said that the non-aqueous electrolyte secondary battery of an example with a low risk of explosion or ignition at 3.9 V can secure high safety.
  • the laminate according to the present invention and the separator for non-aqueous electrolyte secondary batteries including the laminate can be widely used in the field of manufacturing non-aqueous electrolyte secondary batteries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)
  • Laminated Bodies (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

 非水電解液二次電池の各種性能を維持した上で、非水電解液二次電池の破損等による内部短絡を防止することによって高い安全性を確保することができる積層体を提供する。ポリオレフィンを主成分とする多孔質フィルムの少なくとも一方の面に、微粒子を含む多孔質層を積層させた積層体(10)は、JIS A 5508で規定されるN50の釘(2)を用い、釘(2)の降下速度50μm/分の条件で測定した釘刺し導通試験における、積層体(10)の導通時の試験力と絶縁破壊時の試験力との差(導通時の試験力-絶縁破壊時の試験力)が、5N以上、50N以下である。

Description

積層体、積層体を含む非水電解液二次電池用セパレータ、および非水電解液二次電池
 本発明は、積層体、積層体を含む非水電解液二次電池用セパレータ、および非水電解液二次電池に関する。
 リチウムイオン二次電池に代表される非水電解液二次電池は、エネルギー密度が高い。それゆえ、非水電解液二次電池は、現在、パーソナルコンピュータ、携帯電話、および携帯情報端末等の機器に用いる電池として広く使用されている。
 ところが、非水電解液二次電池においては、当該非水電解液二次電池の破損或いは当該非水電解液二次電池を用いている機器の破損によって内部短絡または外部短絡が生じた場合には、大電流が流れて当該非水電解液二次電池が発熱することがある。このため、非水電解液二次電池のレート特性や抵抗特性(液抵抗)等の各種性能を維持した上で、当該非水電解液二次電池の破損等による内部短絡を防止することによって高い安全性を確保することが非水電解液二次電池には求められている。
 内部短絡を防止することによって安全性が向上した非水電解液二次電池としては、例えば、(1)セパレータ内に薄片状の粒子からなる無機化合物を分散させ、当該無機化合物をセパレータの表面と略平行になるように配向させた非水電解液二次電池(特許文献1)、(2)電極表面に球状の無機粒子と不定形の無機粒子とを含む無機粒子層を積層させた非水電解液二次電池(特許文献2)、および(3)金属水酸化物および/または金属酸化物の水和物からなる第1の絶縁性無機フィラーと、熱伝導率が10W/m・K以上である第2の絶縁性無機フィラーと、を含む多孔質層を多孔質フィルムに積層させた非水電解液二次電池(特許文献3)が提案されている。
 尚、非水電解液二次電池の安全性を評価する方法としては、例えば、(1)正極と負極とが対向する箇所に異物を混入させて非水電解液二次電池を加圧し、正負極間に介在する絶縁層を局所的に破壊して内部短絡を発生させることによって安全性を評価する方法(特許文献4)、(2)導電性部材を備えた絶縁性の棒を、非水電解液二次電池の先端から内部短絡が発生する深さまで刺し込むことによって安全性を評価する方法(特許文献5)、および(3)導電性部材からなる先端部を備えた針に荷重をかけ、電極に積層された絶縁層に上記針を挿入して電極まで到達させ、このときの、上記荷重と、針の先端部と電極との間の電気抵抗と、を経時的に測定することによって安全性を評価する方法(特許文献6)が提案されている。
日本国公開特許公報「特開2007-311367号」(2007年11月29日公開) 日本国特許公報「特許第5219621号」(2013年3月15日登録) 日本国公開特許公報「特開2013-149434号」(2013年8月1日公開) 日本国公開特許公報「特開2008-270090号」(2008年11月6日公開) 日本国公開特許公報「特開2010-250954号」(2010年11月4日公開) 日本国公開特許公報「特開2009-158266号」(2009年7月16日公開)
 上記非水電解液二次電池には、繰り返し使用することができるように、レート特性や抵抗特性等の各種性能を維持することが求められている。
 しかしながら、特許文献1~3に記載の非水電解液二次電池は、何れも、非水電解液二次電池の破損等による内部短絡を防止することはできるものの、非水電解液二次電池の各種性能を維持することが充分ではない(このことは、安全性の向上とは相反関係にある)という課題を有している。つまり、特許文献1~3に記載の非水電解液二次電池は、何れも、各種性能を維持することが充分ではない。
 それゆえ、非水電解液二次電池のレート特性や抵抗特性(液抵抗)等の各種性能を維持した上で、非水電解液二次電池の破損等による内部短絡(各種性能の維持とは相反関係にある)を防止することによって、高い安全性が確保された積層体、および積層体を含む非水電解液二次電池用セパレータが求められている。
 尚、特許文献4,5に記載の評価方法は、非水電解液二次電池を組み立ててから当該非水電解液二次電池の安全性を評価している。そのため、組み立て前のセパレータの安全性を評価することができない。また、特許文献6に記載の評価方法は、セパレータが完全に導通するまでデータを測定することによって絶縁層の耐久性を評価することができるものの、セパレータの内部短絡の防止に係る安全性を評価することができない。従って、これら特許文献4~6に記載の何れの評価方法を採用しても、非水電解液二次電池の各種性能を維持した上で、高い安全性が確保された積層体、積層体を含む非水電解液二次電池用セパレータ、および非水電解液二次電池を提供することはできない。
 本発明は上記課題を考慮してなされたものであり、その主たる目的は、非水電解液二次電池のレート特性や抵抗特性等の各種性能を維持した上で、非水電解液二次電池の破損等による内部短絡を防止することによって高い安全性を確保することができる積層体、積層体を含む非水電解液二次電池用セパレータ、および非水電解液二次電池を提供することにある。
 本発明者らが鋭意検討を行った結果、ポリオレフィンを主成分とする多孔質フィルムの少なくとも一方の面に、微粒子を含む多孔質層を積層させた積層体であって、JIS A 5508で規定されるN50の釘を用い、釘の降下速度50μm/分の条件で測定した釘刺し導通試験における、積層体の導通時の試験力と絶縁破壊時の試験力との差(導通時の試験力-絶縁破壊時の試験力)が、5N以上、50N以下である場合に、当該積層体が、非水電解液二次電池のレート特性や抵抗特性等の各種性能を維持した上で、非水電解液二次電池の破損等による内部短絡を防止することによって高い安全性を確保することができることを見出して、本発明を完成するに至った。
 上記課題を解決するために、本発明に係る積層体は、ポリオレフィンを主成分とする多孔質フィルムの少なくとも一方の面に、微粒子を含む多孔質層を積層させた積層体であって、JIS A 5508で規定されるN50の釘を用い、釘の降下速度50μm/分の条件で測定した釘刺し導通試験における、積層体の導通時の試験力と絶縁破壊時の試験力との差(導通時の試験力-絶縁破壊時の試験力)が、5N以上、50N以下であることを特徴としている。
 上記積層体は、上記多孔質層の1平方メートル当たりに含まれる多孔質層構成成分の体積(片面当たり)が、0.5~20cmであることがより好ましい。
 上記積層体は、上記多孔質層の膜厚(片面当たり)が0.5~15μm、上記多孔質フィルムの膜厚が5~30μmであることがより好ましい。
 上記積層体は、上記多孔質フィルムの空隙率が30~60体積%であることがより好ましい。
 上記積層体は、上記微粒子が無機微粒子であることがより好ましい。
 上記積層体は、上記多孔質層がバインダー樹脂をさらに含み、上記微粒子が、バインダー樹脂と点接触していることがより好ましい。
 上記積層体は、上記微粒子が劈開性を有することがより好ましい。
 上記積層体は、上記多孔質フィルムの単位面積当たりの目付が4~20g/mであることがより好ましい。また、上記積層体は、上記多孔質層の単位面積当たりの目付(片面当たり)が1~20g/mであることがより好ましい。
 さらに、本発明に係る非水電解液二次電池用セパレータおよび非水電解液二次電池は、上記積層体を含むことを特徴としている。
 本発明に係る積層体、および積層体を含む非水電解液二次電池用セパレータは、非水電解液二次電池のレート特性や抵抗特性(液抵抗)等の各種性能を維持した上で、非水電解液二次電池の破損等による内部短絡(内部短絡の発生は各種性能の維持とは相反関係にある)を防止することによって、高い安全性を確保することができる、という効果を奏する。
本発明における、釘刺し導通試験の測定装置を示す概略の斜視図である。 実施例1で得られた積層多孔質フィルムの表面を走査型電子顕微鏡で観察した画像である。
 以下、本発明の一実施の形態について、詳細に説明する。尚、本出願において、「A~B」とは、「A以上、B以下」であることを示している。
 本発明に係る積層体は、ポリオレフィンを主成分とする多孔質フィルムの少なくとも一方の面に、微粒子を含む多孔質層を積層させた積層体であって、JIS A 5508で規定されるN50の釘を用い、釘の降下速度50μm/分の条件で測定した釘刺し導通試験における、積層体の導通時の試験力と絶縁破壊時の試験力との差(導通時の試験力-絶縁破壊時の試験力)が、5N以上、50N以下である。
 <多孔質フィルム>
 本発明における多孔質フィルムは、非水電解液二次電池用セパレータの基材であり、ポリオレフィンを主成分としている。また、上記多孔質フィルムは、その内部に、互いに連結した細孔を多数有しており、これにより、当該多孔質フィルムの一方の面から他方の面に気体や液体を通過させることが可能となっている。
 多孔質フィルムに占めるポリオレフィンの割合は、多孔質フィルム全体の50体積%以上であり、90体積%以上であることがより好ましく、95体積%以上であることがさらに好ましい。また、上記ポリオレフィンには、重量平均分子量が5×10~15×10の高分子量成分が含まれていることがより好ましい。特に、ポリオレフィンに重量平均分子量が100万以上の高分子量成分が含まれていることがより好ましい。なぜなら、多孔質フィルムの強度が向上し、これにより該多孔質フィルムを含む積層体の強度も向上するからである。
 熱可塑性樹脂である上記ポリオレフィンとしては、具体的には、例えば、エチレン、プロピレン、1-ブテン、4-メチル-1-ペンテン、1-ヘキセン等の単量体を重合してなる単独重合体(例えば、ポリエチレン、ポリプロピレン、ポリブテン)、または上記単量体を共重合してなる共重合体(例えば、エチレン-プロピレン共重合体)が挙げられる。このうち、過大電流が流れることをより低温で阻止(シャットダウン)することができるため、上記ポリオレフィンとしては、ポリエチレンを適用することがより好ましい。当該ポリエチレンとしては、低密度ポリエチレン、高密度ポリエチレン、線状ポリエチレン(エチレン-α-オレフィン共重合体)、および重量平均分子量が100万以上の超高分子量ポリエチレン等が挙げられる。中でも、重量平均分子量が100万以上の超高分子量ポリエチレンがさらに好ましい。
 多孔質フィルムの膜厚は、積層体の膜厚を考慮して適宜決定すればよい。多孔質フィルムを基材として用い、多孔質フィルムの片面または両面に多孔質層を積層して積層体を形成する場合においては、5~30μmであることが好ましく、10~20μmであることがより好ましい。
 多孔質フィルムの膜厚が5μm未満であると、積層体を非水電解液二次電池用セパレータとして用いた場合に、当該非水電解液二次電池の破損等による内部短絡を充分に防止することができない。加えて、多孔質フィルムにおける電解液の保持量が低下する。一方、多孔質フィルムの膜厚が30μmを超えると、積層体を非水電解液二次電池用セパレータとして用いた場合に、当該セパレータ全域におけるリチウムイオンの透過抵抗が増加する。従って、サイクルを繰り返すと、非水電解液二次電池の正極が劣化し、その結果、レート特性やサイクル特性が低下する。また、正極および負極間の距離が増加するので、非水電解液二次電池が大型化する。
 多孔質フィルムの単位面積当たりの目付は、積層体の強度、膜厚、重量、およびハンドリング性を考慮して適宜決定すればよい。積層体を非水電解液二次電池用セパレータとして用いた場合、上記目付は、通常、4~20g/mであることが好ましく、5~12g/mであることがより好ましい。多孔質フィルムの単位面積当たりの目付をこれらの数値範囲とすることにより、当該多孔質フィルムを備えた非水電解液二次電池の重量エネルギー密度や体積エネルギー密度を高くすることができる。
 多孔質フィルムの透気度は、ガーレ値で30~500 sec/100mLであることが好ましく、50~300 sec/100mLであることがより好ましい。多孔質フィルムが上記透気度を有することにより、積層体を非水電解液二次電池用セパレータとして用いた場合に、充分なイオン透過性を得ることができる。
 多孔質フィルムの空隙率は、30~60体積%であることが好ましく、35~55体積%であることがより好ましい。上記空隙率をこのように設定することにより、多孔質フィルムによる電解液の保持量を高めると共に、過大電流が流れることをより低温で確実に阻止(シャットダウン)する機能を得ることができる。
 多孔質フィルムの空隙率が30体積%を下回ると、当該多孔質フィルムの抵抗が増加する。また、多孔質フィルムの空隙率が60体積%を上回ると、当該多孔質フィルムの機械的強度が低下する。
 また、多孔質フィルムが有する細孔の孔径は、3μm以下であることが好ましく、1μm以下であることがより好ましい。上記孔径をこのような値とすることにより、当該多孔質フィルムを含む積層体を非水電解液二次電池用セパレータとして用いた場合に、充分なイオン透過性を得ることができ、かつ、正極や負極への粒子の入り込みを防止することができる。
 多孔質フィルムの製造方法は特に限定されない。該製造方法としては、例えば、ポリオレフィン等の樹脂に可塑剤を加えてフィルムに成形した後、可塑剤を適当な溶媒で除去する方法が挙げられる。
 具体的には、例えば、超高分子量ポリエチレンと、重量平均分子量が1万以下の低分子量ポリオレフィンとを含むポリオレフィン樹脂を用いて多孔質フィルムを製造する場合には、製造コストの観点から、以下に示す方法によって当該多孔質フィルムを製造することが好ましい。
(1)超高分子量ポリエチレン100重量部と、重量平均分子量が1万以下の低分子量ポリオレフィン5~200重量部と、炭酸カルシウム等の無機充填剤100~400重量部とを混練してポリオレフィン樹脂組成物を得る工程、
(2)上記ポリオレフィン樹脂組成物を用いてシートを成形する工程、
次いで、
(3)工程(2)で得られたシートから無機充填剤を除去する工程、
(4)工程(3)で無機充填剤を除去したシートを延伸して多孔質フィルムを得る工程。
或いは、
(3’)工程(2)で得られたシートを延伸する工程、
(4’)工程(3’)で延伸したシートから無機充填剤を除去して多孔質フィルムを得る工程。
 尚、多孔質フィルムは、上述した物性を有する市販品を用いることもできる。
 また、多孔質フィルムには、多孔質層を形成する前に、つまり、後述する塗工液を塗工する前に、親水化処理を施しておくことがより好ましい。多孔質フィルムに親水化処理を施しておくことにより、塗工液の塗工性がより向上する。その結果、より均一な多孔質層が形成される。この親水化処理は、塗工液に含まれる溶媒(分散媒)に占める水の割合が高い場合に有効である。上記親水化処理としては、具体的には、例えば、酸やアルカリ等による薬剤処理、コロナ処理、およびプラズマ処理等の公知の処理が挙げられる。中でも、コロナ処理がより好ましい。なぜなら、上記親水化処理のうち、比較的短時間で多孔質フィルムを親水化することができる上に、親水化が多孔質フィルムの表面近傍のみに限られ、多孔質フィルムの内部を変質しないからである。
 多孔質フィルムは、必要に応じて、本発明に係る多孔質層の他に、別の多孔質層を含んでいてもよい。当該別の多孔質層としては、耐熱層や接着層、および保護層等の公知の多孔質層が挙げられる。具体的な別の多孔質層としては、後述する本発明に係る多孔質層と同じ組成の多孔質層が挙げられる。
 <多孔質層>
 本発明に係る多孔質層は、微粒子を含むと共に、通常、樹脂を含んでなる樹脂層である。本発明に係る多孔質層は、好ましくは、多孔質フィルムの片面または両面に積層される耐熱層または接着層である。多孔質層を構成する樹脂は、非水電解液二次電池の電解液に不溶であると共に、その非水電解液二次電池の使用範囲において電気化学的に安定であることが好ましい。多孔質フィルムの片面に多孔質層が積層される場合には、当該多孔質層は、好ましくは、当該多孔質フィルムを非水電解液二次電池としたときの、多孔質フィルムの面のうち、当該非水電解液二次電池の正極と対向する面に積層され、より好ましくは、上記正極と接する面に積層される。
 多孔質層を構成する上記樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリブテン、およびエチレン-プロピレン共重合体等のポリオレフィン;ポリフッ化ビニリデン(PVDF)やポリテトラフルオロエチレン等の含フッ素樹脂;フッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレン共重合体やエチレン-テトラフルオロエチレン共重合体等の含フッ素ゴム;芳香族ポリアミド;全芳香族ポリアミド(アラミド樹脂);スチレン-ブタジエン共重合体およびその水素化物、メタクリル酸エステル共重合体、アクリロニトリル-アクリル酸エステル共重合体、スチレン-アクリル酸エステル共重合体、エチレンプロピレンラバー、およびポリ酢酸ビニル等のゴム類;ポリフェニレンエーテル、ポリスルホン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリエーテルイミド、ポリアミドイミド、ポリエーテルアミド、およびポリエステル等の融点やガラス転移温度が180℃以上の樹脂;ポリビニルアルコール、ポリエチレングリコール、セルロースエーテル、アルギン酸ナトリウム、ポリアクリル酸、ポリアクリルアミド、およびポリメタクリル酸等の水溶性ポリマー;等が挙げられる。
 また、上記芳香族ポリアミドとしては、具体的には、例えば、ポリ(パラフェニレンテレフタルアミド)、ポリ(メタフェニレンイソフタルアミド)、ポリ(パラベンズアミド)、ポリ(メタベンズアミド)、ポリ(4,4’-ベンズアニリドテレフタルアミド)、ポリ(パラフェニレン-4,4’-ビフェニレンジカルボン酸アミド)、ポリ(メタフェニレン-4,4’-ビフェニレンジカルボン酸アミド)、ポリ(パラフェニレン-2,6-ナフタレンジカルボン酸アミド)、ポリ(メタフェニレン-2,6-ナフタレンジカルボン酸アミド)、ポリ(2-クロロパラフェニレンテレフタルアミド)、パラフェニレンテレフタルアミド/2,6-ジクロロパラフェニレンテレフタルアミド共重合体、メタフェニレンテレフタルアミド/2,6-ジクロロパラフェニレンテレフタルアミド共重合体等が挙げられる。このうち、ポリ(パラフェニレンテレフタルアミド)がより好ましい。
 上記樹脂のうち、ポリオレフィン、含フッ素樹脂、芳香族ポリアミド、および水溶性ポリマーがより好ましい。中でも、多孔質層が非水電解液二次電池の正極に対向して配置される場合には、含フッ素樹脂が特に好ましい。含フッ素樹脂を適用した場合、非水電解液二次電池作動時の酸性劣化による、非水電解液二次電池のレート特性や抵抗特性(液抵抗)等の各種性能を維持し易い。水溶性ポリマーは、多孔質層を形成するときの溶媒として水を用いることができるため、プロセスや環境負荷の観点からより好ましく、セルロースエーテル、アルギン酸ナトリウムがさらに好ましく、セルロースエーテルが特に好ましい。
 セルロースエーテルとしては、具体的には、例えば、カルボキシメチルセルロース(CMC)、ヒドロキシエチルセルロース(HEC)、カルボキシエチルセルロース、メチルセルロース、エチルセルロース、シアンエチルセルロース、およびオキシエチルセルロース等が挙げられる。これらのセルロースエーテルの中では、CMCおよびHECがより好ましく、CMCが特に好ましい。なぜなら、これらのセルロースエーテルは、長時間にわたる使用における劣化が少なく、化学的な安定性に優れているからである。
 上記多孔質層は、微粒子を含んでいる。本明細書における微粒子とは、一般にフィラーと称される有機微粒子または無機微粒子のことである。従って、上記樹脂は、微粒子同士、並びに微粒子と多孔質フィルムとを結着させるバインダー樹脂としての機能を有することとなる。
 本発明において多孔質層に含まれる有機微粒子としては、具体的には、例えば、スチレン、ビニルケトン、アクリロニトリル、メタクリル酸メチル、メタクリル酸エチル、グリシジルメタクリレート、グリシジルアクリレート、アクリル酸メチル等の単量体の単独重合体或いは2種類以上の共重合体;ポリテトラフルオロエチレン、4フッ化エチレン-6フッ化プロピレン共重合体、4フッ化エチレン-エチレン共重合体、ポリフッ化ビニリデン等の含フッ素樹脂;メラミン樹脂;尿素樹脂;ポリエチレン;ポリプロピレン;ポリアクリル酸、ポリメタクリル酸;等が挙げられる。
 本発明において多孔質層に含まれる無機微粒子としては、具体的には、例えば、ダイヤモンド、グラファイト;マイカ(雲母)、タルク(滑石)、モンモリロナイト等の層状ケイ酸塩;チタニウムジスルフィド等のダイカルコゲナイド;ベーマイト;水酸化マグネシウム等の水酸化二価金属;ハイドロタルサイト等の層状複水酸化物;層状チタン酸塩;ヒドロキシアパタイト(塩基性リン酸カルシウム)等の層状リン酸塩;クレー、シリカ、珪藻土、炭酸マグネシウム、炭酸カルシウム、炭酸バリウム、硫酸マグネシウム、硫酸カルシウム、硫酸バリウム、水酸化アルミニウム、酸化マグネシウム、酸化カルシウム、アルミナ(酸化アルミニウム)、酸化チタン、窒化アルミニウム、窒化チタン、ゼオライト、ガラス;等が挙げられる。
 微粒子は、1種類のみを用いてもよく、2種類以上を組み合わせて用いてもよい。
 微粒子の中でも、劈開性を有する微粒子が好適であり、無機微粒子が最適である。ダイヤモンド、グラファイト;マイカ(雲母)、タルク(滑石)、モンモリロナイト等の層状ケイ酸塩;チタニウムジスルフィド等のダイカルコゲナイド;ベーマイト;水酸化マグネシウム等の水酸化二価金属;ハイドロタルサイト等の層状複水酸化物;層状チタン酸塩;ヒドロキシアパタイト等の層状リン酸塩;等の劈開性を有する無機微粒子がより好ましく、マイカおよびヒドロキシアパタイトが特に好ましい。尚、アルミナには、α-アルミナ、β-アルミナ、γ-アルミナ、θ-アルミナ等の多くの結晶形が存在するが、何れも好適に使用することができる。この中でも、熱的安定性および化学的安定性が特に高いため、α-アルミナが最も好ましい。
 劈開性とは、結晶がある特定の方向に沿って割れたり、剥がれたりして、平滑な面を現す性質である。劈開性を有する無機鉱物の場合、当該鉱物を構成する原子配列(例えば、結晶構造)において、原子同士の結合力の弱い部分に沿って割れる特徴がある。劈開性に関しては、例えば、日本国公開特許公報「特開2000-254996号」に記載された「劈開性試験」によって、評価することができる。
 微粒子の形状は、原料である有機物または無機物の製造方法や、多孔質層を形成するための塗工液を作製するときの微粒子の分散条件等によって変化する。微粒子の形状には、球形、長円形、短形、瓢箪形等の形状、或いは特定の形状を有さない不定形等、様々な形状が存在する。何れの形状においても劈開性を有することがより好ましい。微粒子が劈開性を有していることにより、非水電解液二次電池の破損等による内部短絡をより一層防止することができる。
 また、多孔質層において、微粒子は、バインダー樹脂と点接触していることがより好ましい。微粒子とバインダー樹脂とが点接触している場合、非水電解液二次電池の破損等による内部短絡をより一層防止することができる。
 無機微粒子は、平均粒子径を制御するために、湿式粉砕装置を用いて湿式粉砕してもよい。つまり、粗大無機微粒子と適当な溶媒とを湿式粉砕装置に入れて湿式粉砕し、所望の平均粒子径を有する無機微粒子としてもよい。上記溶媒は、特に限定されるものではないが、プロセスや環境負荷の観点から、水を用いることが望ましい。また、後述する塗工液の塗工性を考慮して、水に、メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール、t-ブチルアルコール等の低級アルコール;アセトン、トルエン、キシレン、ヘキサン、シクロヘキサン、テトラヒドロフラン、N-メチルピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド;等の有機溶媒を混合しておいてもよい。
 上記湿式粉砕装置は、撹拌型、およびボールミルやビーズミル(ダイノーミル)等のメディア型に大別されており、粗大無機微粒子の種類に応じて最適な粉砕装置を用いればよい。粗大無機微粒子の硬度が高い場合には、粉砕能力が高いビーズミル(ダイノーミル)を使用するのが最適である。ビーズミルの粉砕力は、ビーズ材質、ビーズ径、(ダイノーミルのベッセル容積に対する)ビーズ充填率、流量、周速等の因子に大きく影響される。それゆえ、所望の平均粒子径を有する無機微粒子を得るには、上記因子を考慮の上、湿式粉砕で得られる無機微粒子のスラリーを所望の滞留時間に従って採取すればよい。湿式粉砕で得られるスラリーにおける無機微粒子の濃度は、6~50重量%が好ましく、10~40重量%がより好ましい。
 尚、滞留時間は、パス方式、循環方式のそれぞれにおいて、次式から算出することができる。
  滞留時間(パス方式)(分)=[ベッセル容積(L)-ビーズ充填容積(L)+ビーズ間隙容積(L)]/流量(L/分)
  滞留時間(循環方式)(分)=[{ベッセル容積(L)-ビーズ充填容積(L)+ビーズ間隙容積(L)}/スラリー量(L)]×循環時間(分)
 微粒子は、粒子径や比表面積が互いに異なる2種類以上を組み合わせて用いてもよい。
 多孔質層に含まれる微粒子の含有量は、多孔質層の1~99体積%であることが好ましく、5~95体積%であることがより好ましい。微粒子の含有量を上記範囲とすることにより、微粒子同士の接触によって形成される空隙が、樹脂等によって閉塞されることが少なくなる。その結果、充分なイオン透過性を得ることができると共に、多孔質フィルムの単位面積当たりの目付を適切な値にすることができる。
 本発明においては、通常、上記樹脂を溶媒に溶解させると共に、上記微粒子を分散させることにより、多孔質層を形成するための塗工液を作製する。
 上記溶媒(分散媒)は、多孔質フィルムに悪影響を及ぼさず、上記樹脂を均一かつ安定に溶解し、上記微粒子を均一かつ安定に分散させることができればよく、特に限定されるものではない。上記溶媒(分散媒)としては、具体的には、例えば、水;メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール、t-ブチルアルコール等の低級アルコール;アセトン、トルエン、キシレン、ヘキサン、N-メチルピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド;等が挙げられる。上記溶媒(分散媒)は、1種類のみを用いてもよく、2種類以上を組み合わせて用いてもよい。
 塗工液は、所望の多孔質層を得るのに必要な樹脂固形分(樹脂濃度)や微粒子量等の条件を満足することができれば、どのような方法で形成されてもよい。塗工液の形成方法としては、具体的には、例えば、機械攪拌法、超音波分散法、高圧分散法、およびメディア分散法等が挙げられる。また、例えば、スリーワンモーター、ホモジナイザー、メディア型分散機、圧力式分散機等の従来公知の分散機を使用して微粒子を溶媒(分散媒)に分散させてもよい。さらに、樹脂を溶解若しくは膨潤させた液、或いは樹脂の乳化液を、所望の平均粒子径を有する微粒子を得るための湿式粉砕時に、湿式粉砕装置内に供給し、微粒子の湿式粉砕と同時に塗工液を調製することもできる。つまり、微粒子の湿式粉砕と塗工液の調製とを一つの工程で同時に行ってもよい。また、上記塗工液は、本発明の目的を損なわない範囲で、上記樹脂および微粒子以外の成分として、分散剤や可塑剤、界面活性剤、またはpH調整剤等の添加剤を含んでいてもよい。尚、添加剤の添加量は、本発明の目的を損なわない範囲であればよい。
 塗工液の多孔質フィルムへの塗布方法、つまり、必要に応じて親水化処理が施された多孔質フィルムの表面への多孔質層の形成方法は、特に制限されるものではない。多孔質フィルムの両面に多孔質層を積層する場合においては、多孔質フィルムの一方の面に多孔質層を形成した後、他方の面に多孔質層を形成する逐次積層方法や、多孔質フィルムの両面に多孔質層を同時に形成する同時積層方法を適用することができる。多孔質層の形成方法としては、例えば、塗工液を多孔質フィルムの表面に直接塗布した後、溶媒(分散媒)を除去する方法;塗工液を適当な支持体に塗布し、溶媒(分散媒)を除去して多孔質層を形成した後、この多孔質層と多孔質フィルムとを圧着させ、次いで支持体を剥がす方法;塗工液を適当な支持体に塗布した後、塗布面に多孔質フィルムを圧着させ、次いで支持体を剥がした後に溶媒(分散媒)を除去する方法;および、塗工液中に多孔質フィルムを浸漬し、ディップコーティングを行った後に溶媒(分散媒)を除去する方法;等が挙げられる。多孔質層の厚さは、塗工後の湿潤状態(ウェット)の塗工膜の厚さ、樹脂と微粒子との重量比、塗工液の固形分濃度(樹脂濃度と微粒子濃度との和)等を調節することによって制御することができる。尚、支持体として、例えば、樹脂製のフィルム、金属製のベルト、またはドラム等を用いることができる。
 上記塗工液を多孔質フィルムまたは支持体に塗布する方法は、必要な目付や塗工面積を実現し得る方法であればよく、特に制限されるものではない。塗工液の塗布方法としては、従来公知の方法を採用することができる。このような方法として、具体的には、例えば、グラビアコーター法、小径グラビアコーター法、リバースロールコーター法、トランスファロールコーター法、キスコーター法、ディップコーター法、ナイフコーター法、エアドクターブレードコーター法、ブレードコーター法、ロッドコーター法、スクイズコーター法、キャストコーター法、バーコーター法、ダイコーター法、スクリーン印刷法、およびスプレー塗布法等が挙げられる。
 本発明においては、塗工液を例えば基材(多孔質フィルム)により均一に塗布することができるように、皺伸ばし機構を備えた塗工装置を用いて塗工液を塗布することがより好ましい。具体的には、当該皺伸ばし機構は、湾曲ロール(例えば、弓型ロール、バナナ型ロール、曲線ロール)、フラットエキスパンダロール、ヘリカルロール、または、ピンチエキスパンダであることがより好ましい。
 粘度が高い塗工液の塗工方法としては、好ましくは、バーコーター法およびダイコーター法が挙げられる。粘度が低い塗工液の塗工方法としては、好ましくは、グラビアコーター法が挙げられる。そして、グラビアコーター法を用いる場合には、上記皺伸ばし機構として、ピンチエキスパンダを備えた塗工装置を用いることが特に好ましい。
 上記皺伸ばし機構を用いて基材の皺を伸ばしながら塗工液を塗布することによって、多孔質層に偏りおよび皺が発生することを、効果的に抑制することができる。つまり、塗工液の塗工ムラが無くなるので、均一に塗工することができる。その結果、多孔質層の空隙率の変動率が小さくなる傾向がある。
 塗工装置としては、特に限定されるものではない。皺伸ばし機構を備えた塗工装置としては、例えば、日本国公開特許公報「特開2001-316006号」、または、日本国公開特許公報「特開2002-60102号」に記載の塗工装置を用いることができる。
 溶媒(分散媒)の除去方法は、乾燥による方法が一般的である。乾燥方法としては、自然乾燥、送風乾燥、加熱乾燥、および減圧乾燥等が挙げられるが、溶媒(分散媒)を充分に除去することができるのであれば如何なる方法でもよい。また、塗工液に含まれる溶媒(分散媒)を他の溶媒に置換してから乾燥を行ってもよい。溶媒(分散媒)を他の溶媒に置換してから除去する方法としては、例えば、塗工液に含まれる溶媒(分散媒)に溶解し、かつ、塗工液に含まれる樹脂を溶解しない他の溶媒(以下、溶媒X)を使用し、塗工液が塗布されて塗膜が形成された多孔質フィルムまたは支持体を上記溶媒Xに浸漬し、多孔質フィルム上または支持体上の塗膜中の溶媒(分散媒)を溶媒Xで置換した後に、溶媒Xを蒸発させる方法が挙げられる。この方法によれば、塗工液から溶媒(分散媒)を効率よく除去することができる。尚、多孔質フィルムまたは支持体に形成された塗工液の塗膜から溶媒(分散媒)或いは溶媒Xを除去するために加熱を行う場合には、多孔質フィルムの細孔が収縮して透気度が低下することを回避するために、多孔質フィルムの透気度が低下しない温度、具体的には、10~120℃、より好ましくは20~80℃で行うことが望ましい。
 本実施の形態では、溶媒(分散媒)の除去方法として、特に、塗工液を基材に塗布した後、当該塗工液を乾燥させることによって多孔質層を形成する方法が好ましい。上記構成によれば、多孔質層の空隙率の変動率がより小さく、また、皺の少ない多孔質層を実現することができる。
 上記乾燥には、通常の乾燥装置を用いることができる。
 上述した方法により形成される本発明に係る多孔質層の膜厚は、積層体の膜厚を考慮して適宜決定すればよい。多孔質フィルムを基材として用い、多孔質フィルムの片面または両面に多孔質層を積層して積層体を形成する場合においては、0.5~15μm(片面当たり)であることが好ましく、2~10μm(片面当たり)であることがより好ましい。
 多孔質層の膜厚が両面の合計で1μm未満であると、積層体を非水電解液二次電池用セパレータとして用いた場合に、非水電解液二次電池の破損等による内部短絡を充分に防止することができない。また、多孔質層における電解液の保持量が低下する。一方、多孔質層の膜厚が両面の合計で30μmを超えると、積層体を非水電解液二次電池用セパレータとして用いた場合に、当該セパレータ全域におけるリチウムイオンの透過抵抗が増加するので、サイクルを繰り返すと非水電解液二次電池の正極が劣化し、レート特性やサイクル特性が低下する。また、正極および負極間の距離が増加するので非水電解液二次電池が大型化する。
 多孔質層の物性に関する下記説明においては、多孔質フィルムの両面に多孔質層が積層される場合には、非水電解液二次電池としたときの、多孔質フィルムにおける正極と対向する面に積層された多孔質層の物性を少なくとも指す。
 多孔質層の単位面積当たりの目付(片面当たり)は、積層体の強度、膜厚、重量、およびハンドリング性を考慮して適宜決定すればよい。積層体を非水電解液二次電池用セパレータとして用いた場合、多孔質層の単位面積当たりの目付は、通常、1~20g/mであることが好ましく、4~10g/mであることがより好ましい。多孔質層の単位面積当たりの目付をこれらの数値範囲とすることにより、当該多孔質層を備えた非水電解液二次電池の重量エネルギー密度や体積エネルギー密度を高くすることができる。多孔質層の目付が上記範囲を超える場合には、積層体を非水電解液二次電池用セパレータとして用いたときに、非水電解液二次電池が重くなる。
 また、多孔質層の1平方メートル当たりに含まれる多孔質層構成成分の体積(片面当たり)は、0.5~20cmであることが好ましく、1~10cmであることがより好ましく、2~8cmであることがさらに好ましい。つまり、多孔質層の成分体積目付(片面当たり)は、0.5~20cm/mであることが好ましく、1~10cm/mであることがより好ましく、2~8cm/mであることがさらに好ましい。多孔質層の成分体積目付が0.5cm/mを下回る場合には、積層体を非水電解液二次電池用セパレータとして用いたときに、非水電解液二次電池の破損等による内部短絡を充分に防止することができない。また、多孔質層の成分体積目付が20cm/mを上回る場合には、積層体を非水電解液二次電池用セパレータとして用いたときに、当該セパレータ全域におけるリチウムイオンの透過抵抗が増加する。そのため、サイクルを繰り返すと正極が劣化し、当該非水電解液二次電池のレート特性やサイクル特性が低下する。尚、多孔質層の成分体積目付の算出方法は後述する。
 多孔質層の空隙率は、充分なイオン透過性を得ることができるように、20~90体積%であることが好ましく、30~80体積%であることがより好ましい。また、多孔質層が有する細孔の孔径は、3μm以下であることが好ましく、1μm以下であることがより好ましい。細孔の孔径をこれらのサイズとすることにより、当該多孔質層を含む積層体を非水電解液二次電池用セパレータとして用いたときに、充分なイオン透過性を得ることができる。
 本発明における積層体の「JIS A 5508で規定されるN50の釘を用い、釘の降下速度50μm/分の条件で測定した釘刺し導通試験における、積層体の導通時の試験力と絶縁破壊時の試験力との差(導通時の試験力-絶縁破壊時の試験力)」とは、下記方法によって測定される数値である。
 先ず、釘刺し導通試験の測定装置を、図1を参照しながら以下に説明する。
 図1に示すように、釘刺し導通試験の測定装置、つまり、積層体の導通時の試験力および絶縁破壊時の試験力を測定する測定装置は、測定対象となる積層体10を載置する載置台としてのSUS板1(SUS304;厚さ1mm)、JIS A 5508で規定されるN50の釘2を保持し、保持した釘2を一定の速度で上下動させる駆動部(図示しない)、釘2とSUS板1との間の直流抵抗を測定する抵抗測定器3、並びに、積層体10の厚さ方向の変形量および変形に要した力を測定する材料試験機(図示しない)で主に構成されている。上記SUS板1の大きさは、少なくとも積層体10の大きさよりも大きければよく、特に限定されるものではない。また、上記駆動部は、SUS板1の上方に配され、SUS板1の表面に対してその先端が垂直となるように釘を保持し、垂直に上下動させるようになっている。抵抗測定器3としては、例えば、デジタル・マルチメータ 7461P(株式会社エーディーシー製)等の市販品を用いればよい。また、材料試験機としても、市販品を用いればよい。尚、小型卓上試験機EZ-L(株式会社島津製作所製)を測定装置に転用し、この試験機に抵抗測定器および材料試験機を接続して測定装置とすることもできる。
 上記測定装置を用いた積層体10の導通時の試験力および絶縁破壊時の試験力の測定方法を、以下に説明する。
 先ず、釘2を、ドリルチャック式の固定治具を用いて材料試験機の駆動部のクロスヘッドに内蔵されたロードセルに固定する。また、材料試験機の下部の治具取付面に固定台を載置し、当該固定台上のSUS板1の上に非水電解液二次電池の負極となる負極シート4を載置し、当該負極シート4の上に積層体10を載置する。積層体10の厚さ方向の変形量は、材料試験機のクロスヘッドのストロークで測定し、変形に要した力は、釘が固定されたロードセルにて測定する。そして、釘2と抵抗測定器3、および、SUS板1と抵抗測定器3を、電気的に接続する。尚、電気的な接続は、例えば電気コードおよびワニ口クリップ等を用いて行えばよい。
 上記測定で用いる負極シート4は、次の方法で作製することができる。即ち、負極活物質である黒鉛粉末98重量部に、増粘剤および結着剤であるカルボキシメチルセルロースの水溶液100重量部(カルボキシメチルセルロースの濃度;1重量%)、およびスチレン・ブタジエンゴムの水性エマルジョン2重量部(スチレン・ブタジエンゴムの濃度;50重量%)を加えて混合した後に、さらに水22重量部を加えて、固形分濃度が45重量%のスラリーを作製する。得られたスラリーを、負極集電体である厚さ20μmの圧延銅箔の一部に、坪量が140g/mとなるように塗布して乾燥させた後、プレス機により厚さ120μmに圧延する(負極活物質層の厚さは100μm)。次いで、負極活物質層が形成された部分の大きさが20mm×20mmとなるように、圧延した圧延銅箔を裁断する。これにより、釘刺し導通試験用の負極シート4を作製する。
 次に、駆動部を駆動させて釘2を降下させ、その先端を積層体10の表面(最表層)に接触させて停止させる(測定準備完了)。そして、釘2の先端が積層体10の表面に接触している状態を、積層体10の厚さ方向の変位「0」とする。
 測定準備完了後、駆動部を駆動させ、50μm/分の降下速度で釘2の降下を開始させると同時に、(1)材料試験機で積層体10の厚さ方向の変形量および変形に要した力、および、(2)抵抗測定器3で釘2とSUS板1との間の直流抵抗、を測定する。測定開始後、上記直流抵抗が最初に10,000Ωとなった時点を絶縁破壊点とし、直流抵抗が100Ωとなった時点を導通点とする。そして、上記導通点での積層体10の厚さ方向の変形量から、導通時の測定力である試験力(単位:N)を求めると共に、上記絶縁破壊点での積層体10の厚さ方向の変形量から、絶縁破壊時の測定力である試験力(単位:N)を求める。次いで、導通時の試験力から絶縁破壊時の試験力を差し引くことにより、積層体10の導通時の試験力と絶縁破壊時の試験力との差(単位:N)を測定(算出)する。
 尚、当該負極シートにおける負極活物質層の厚さは、積層体の絶縁破壊時から導通時までに測定される厚さ方向の変位よりも20μm以上厚い状態となるように設定する。即ち、厚さ方向の変位を測定した結果、測定された厚さ方向の変位と、負極シートにおける負極活物質層の厚さとの差が20μm未満であった場合には、より厚い負極活物質層を有する負極シートを用いて積層体の導通時の試験力と絶縁破壊時の試験力との差を再度測定する。例えば、厚さ20μmの圧延銅箔の一部に、坪量が420g/mとなるように上記スラリーを塗布して乾燥させた後、プレス機により厚さ320μmに圧延することで、厚さ300μmの負極活物質層を有する負極シートを得ることができる。上記厚さ方向の変位が80μmを超える場合には、上述した厚さ100μmの負極活物質層を有する負極シートに替えて、このような負極シートを用いればよい。
 JIS A 5508で規定されるN50の釘を用い、釘の降下速度50μm/分の条件で測定した釘刺し導通試験において、積層体の導通時の試験力と絶縁破壊時の試験力との差(導通時の試験力-絶縁破壊時の試験力)は、5N以上、50N以下であることが好ましく、5N以上、40N以下であることがより好ましく、5N以上、30N以下であることがさらに好ましい。
 上記試験力の差が5N以上、50N以下であることにより、積層体を非水電解液二次電池用セパレータとして用いたときに、非水電解液二次電池のレート特性や抵抗特性等の各種性能を維持した上で、当該非水電解液二次電池の破損等による内部短絡を防止することによって高い安全性を確保することができる。
 上記試験力の差が5N未満であると、積層体を非水電解液二次電池用セパレータとして用いた場合に、当該非水電解液二次電池の破損等による内部短絡を充分に防止することができない。また、上記試験力の差が50Nを超えると、積層体を非水電解液二次電池用セパレータとして用いた場合に、当該セパレータ全域におけるリチウムイオンの透過抵抗が増加するので、サイクルを繰り返すと正極が劣化し、当該非水電解液二次電池のレート特性やサイクル特性が低下する。
 尚、多孔質層の導通時の試験力と絶縁破壊時の試験力との差(導通時の試験力-絶縁破壊時の試験力)は、積層体の導通時の試験力と絶縁破壊時の試験力との差から、多孔質フィルムの導通時の試験力と絶縁破壊時の試験力との差を差し引くことによって算出することができる。多孔質層の導通時の試験力と絶縁破壊時の試験力との差は、5N以上、50N以下であることが好ましく、5N以上、40N以下であることがより好ましく、5N以上、30N以下であることがさらに好ましい。
 <積層体>
 上述した方法によって多孔質フィルムの片面または両面に多孔質層を積層することにより、本発明に係る積層体が形成される。即ち、本発明に係る積層体は、多孔質フィルムの片面または両面に上記多孔質層が積層されて構成されている。
 積層体の透気度は、ガーレ値で30~1000 sec/100mLであることが好ましく、50~800 sec/100mLであることがより好ましい。積層体が上記透気度を有することにより、積層体を非水電解液二次電池用セパレータとして用いた場合に、充分なイオン透過性を得ることができる。一方、透気度が上記範囲を超える場合には、積層体の空隙率が高いために積層構造が粗になっていることを意味する。そのため、積層体の強度が低下して、形状安定性(特に高温での形状安定性)が不充分になるおそれがある。また、透気度が上記範囲未満の場合には、積層体を非水電解液二次電池用セパレータとして用いた場合に、充分なイオン透過性を得ることができず、非水電解液二次電池の電池特性を低下させることがある。
 尚、本発明に係る積層体は、上記多孔質フィルムおよび多孔質層の他に、必要に応じて、耐熱層や接着層、保護層等の公知の多孔膜を、本発明の目的を損なわない範囲で含んでいてもよい。
 <非水電解液二次電池>
 本発明に係る非水電解液二次電池は、積層体を非水電解液二次電池用セパレータとして含んでいる。より具体的には、本発明に係る非水電解液二次電池は、正極、積層体、および負極がこの順で配置されてなる非水電解液二次電池用部材を含んでいる。以下、非水電解液二次電池として、リチウムイオン二次電池を例に挙げて説明する。尚、積層体以外の非水電解液二次電池の構成要素は、下記説明の構成要素に限定されるものではない。
 本発明に係る非水電解液二次電池においては、例えばリチウム塩を有機溶媒に溶解してなる非水電解液を用いることができる。リチウム塩としては、例えば、LiClO、LiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(CFSO、LiC(CFSO、Li10Cl10、低級脂肪族カルボン酸リチウム塩、およびLiAlCl等が挙げられる。上記リチウム塩は、1種類のみを用いてもよく、2種類以上を組み合わせて用いてもよい。上記リチウム塩のうち、LiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(CFSO、およびLiC(CFSOからなる群から選択される少なくとも1種のフッ素含有リチウム塩がより好ましい。
 非水電解液を構成する有機溶媒としては、具体的には、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、4-トリフルオロメチル-1,3-ジオキソラン-2-オン、1,2-ジ(メトキシカルボニルオキシ)エタン等のカーボネート類;1,2-ジメトキシエタン、1,3-ジメトキシプロパン、ペンタフルオロプロピルメチルエーテル、2,2,3,3-テトラフルオロプロピルジフルオロメチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフラン等のエーテル類;ギ酸メチル、酢酸メチル、γ-ブチロラクトン等のエステル類;アセトニトリル、ブチロニトリル等のニトリル類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド類;3-メチル-2-オキサゾリドン等のカーバメート類;スルホラン、ジメチルスルホキシド、1,3-プロパンサルトン等の含硫黄化合物;並びに、上記有機溶媒にフッ素基が導入されてなる含フッ素有機溶媒;等が挙げられる。上記有機溶媒は、1種類のみを用いてもよく、2種類以上を組み合わせて用いてもよい。上記有機溶媒のうち、カーボネート類がより好ましく、環状カーボネートと非環状カーボネートとの混合溶媒、または、環状カーボネートとエーテル類との混合溶媒がさらに好ましい。環状カーボネートと非環状カーボネートとの混合溶媒としては、作動温度範囲が広く、かつ、負極活物質として天然黒鉛や人造黒鉛等の黒鉛材料を用いた場合においても難分解性を示すことから、エチレンカーボネート、ジメチルカーボネートおよびエチルメチルカーボネートを含む混合溶媒がさらに好ましい。
 正極としては、通常、正極活物質、導電材および結着剤を含む正極合剤を正極集電体上に担持したシート状の正極を用いる。
 上記正極活物質としては、例えば、リチウムイオンをドープおよび脱ドープ可能な材料が挙げられる。当該材料としては、具体的には、例えば、V、Mn、Fe、Co、およびNi等の遷移金属を少なくとも1種類含んでいるリチウム複合酸化物が挙げられる。上記リチウム複合酸化物のうち、平均放電電位が高いことから、ニッケル酸リチウム、およびコバルト酸リチウム等のα-NaFeO型構造を有するリチウム複合酸化物、リチウムマンガンスピネル等のスピネル型構造を有するリチウム複合酸化物がより好ましい。当該リチウム複合酸化物は、種々の金属元素を含んでいてもよく、複合ニッケル酸リチウムがさらに好ましい。さらに、Ti、V、Cr、Mn、Fe、Co、Cu、Ag、Mg、Al、Ga、In、およびSnからなる群から選択される少なくとも1種の金属元素のモル数とニッケル酸リチウム中のNiのモル数との和に対して、上記少なくとも1種の金属元素の割合が0.1~20モル%となるように当該金属元素を含む複合ニッケル酸リチウムを用いると、非水電解液二次電池の高容量での使用におけるサイクル特性に優れるので特に好ましい。
 上記導電材としては、例えば、天然黒鉛、人造黒鉛、コークス類、カーボンブラック、熱分解炭素類、炭素繊維、および有機高分子化合物焼成体等の炭素質材料等が挙げられる。上記導電材は、1種類のみを用いてもよく、或いは、例えば人造黒鉛とカーボンブラックとを混合して用いる等、2種類以上を組み合わせて用いてもよい。
 上記結着剤としては、例えば、ポリフッ化ビニリデン、フッ化ビニリデンの共重合体、ポリテトラフルオロエチレン、テトラフルオロエチレン-ヘキサフルオロプロピレンの共重合体、テトラフルオロエチレン-パーフルオロアルキルビニルエーテルの共重合体、エチレン-テトラフルオロエチレンの共重合体、フッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレンの共重合体、および熱可塑性ポリイミド、ポリエチレン、ポリプロピレン等の熱可塑性樹脂が挙げられる。尚、結着剤は、増粘剤としての機能も有している。
 正極合剤を得る方法としては、例えば、正極活物質、導電材および結着剤を正極集電体上で加圧して正極合剤を得る方法;および、適当な有機溶剤を用いて正極活物質、導電材および結着剤をペースト状にして正極合剤を得る方法;等が挙げられる。
 上記正極集電体としては、例えば、Al、Ni、ステンレス等の導電体が挙げられ、薄膜に加工し易く、安価であることから、Alがより好ましい。
 シート状の正極の製造方法、即ち、正極集電体に正極合剤を担持させる方法としては、例えば、(1)正極合剤となる正極活物質、導電材および結着剤を正極集電体上で加圧成型する方法、および(2)適当な有機溶剤を用いて正極活物質、導電材および結着剤をペースト状にして正極合剤を得た後、当該正極合剤を正極集電体に塗工し、乾燥して得られたシート状の正極合剤を加圧して正極集電体に固着する方法等が挙げられる。
 負極として、通常、負極活物質を含む負極合剤を負極集電体上に担持したシート状の負極を用いる。
 上記負極活物質としては、例えば、リチウムイオンをドープおよび脱ドープ可能な材料、および、リチウム金属またはリチウム合金等が挙げられる。当該材料としては、具体的には、例えば、天然黒鉛、人造黒鉛、コークス類、カーボンブラック、熱分解炭素類、炭素繊維、有機高分子化合物焼成体等の炭素質材料;および、正極よりも低い電位でリチウムイオンのドープおよび脱ドープを行う酸化物、硫化物等のカルコゲン化合物;が挙げられる。上記負極活物質のうち、天然黒鉛、人造黒鉛等の黒鉛材料を主成分とする炭素質材料がより好ましい。なぜなら、電位平坦性が高く、また平均放電電位が低いために正極と組み合わせた場合に大きなエネルギー密度が得られるからである。
 負極合剤を得る方法としては、例えば、負極活物質を負極集電体上で加圧して負極合剤を得る方法、および、適当な有機溶剤を用いて負極活物質をペースト状にして負極合剤を得る方法等が挙げられる。
 上記負極集電体としては、例えば、Cu、Ni、およびステンレス等が挙げられ、特にCuがより好ましい。なぜなら、Cuは、リチウムイオン二次電池においてはリチウムと合金を作り難く、かつ薄膜に加工し易いからである。
 シート状の負極の製造方法、即ち、負極集電体に負極合剤を担持させる方法としては、例えば、(1)負極合剤となる負極活物質を負極集電体上で加圧成型する方法、および、(2)適当な有機溶剤を用いて負極活物質をペースト状にして負極合剤を得た後、当該負極合剤を負極集電体に塗工し、乾燥して得られたシート状の負極合剤を加圧して負極集電体に固着する方法等が挙げられる。
 上記正極、積層体、および負極をこの順で配置して非水電解液二次電池用部材を形成した後、非水電解液二次電池の筐体となる容器に当該非水電解液二次電池用部材を入れ、次いで、当該容器内を非水電解液で満たした後、上記容器を減圧しつつ密閉する。これにより、本発明に係る非水電解液二次電池を製造することができる。非水電解液二次電池の形状は、特に限定されるものではなく、薄板(ペーパー)型、円盤型、円筒型、直方体等の角柱型等のどのような形状であってもよい。尚、非水電解液二次電池の製造方法は、特に限定されるものではなく、従来公知の製造方法を採用することができる。
 本発明に係る非水電解液二次電池は、ポリオレフィンを主成分とする多孔質フィルムの少なくとも一方の面に、微粒子を含む多孔質層を積層させた積層体であって、JIS A 5508で規定されるN50の釘を用い、釘の降下速度50μm/分の条件で測定した釘刺し導通試験における、積層体の導通時の試験力と絶縁破壊時の試験力との差(導通時の試験力-絶縁破壊時の試験力)が、5N以上、50N以下である積層体を、非水電解液二次電池用セパレータとして含んでいる。それゆえ、本発明に係る非水電解液二次電池は、非水電解液二次電池のレート特性や抵抗特性(液抵抗)等の各種性能を維持した上で、各種性能の維持とは相反関係にある非水電解液二次電池の破損等による内部短絡を防止する。これにより、高い安全性を確保することができる。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
 以下、実施例および比較例により、本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。
 実施例および比較例における積層多孔質フィルム(積層体)、A層(多孔質フィルム)、およびB層(多孔質層)の物性等は、以下の方法で測定した。
 (1)膜厚(単位:μm):
 積層多孔質フィルムの膜厚(即ち、全体の膜厚)、A層の膜厚、およびB層の膜厚は、株式会社ミツトヨ製の高精度デジタル測長機を用いて測定した。
 (2)目付(単位:g/m):
 積層多孔質フィルムから、一辺の長さ8cmの正方形をサンプルとして切り取り、当該サンプルの重量W(g)を測定した。そして、次式
  目付(g/m)=W/(0.08×0.08)
に従い、積層多孔質フィルムの目付(即ち、全体の目付)を算出した。同様にして、A層の目付を算出した。B層の目付は、全体の目付からA層の目付を差し引いて算出した。
 (3)B層(多孔質層)の成分体積目付(単位:cm/m):
 上記(2)の方法で算出されたB層の目付に、当該B層を構成する各成分の重量濃度(B層中の重量濃度)を乗じて、成分毎の目付を算出した。そして、得られた各成分の目付を、各々、各成分の真比重で除し、得られた数値の総和を、B層の成分体積目付とした。
 具体的には、B層を構成する成分が3成分(成分C~E)である場合には、B層の成分体積目付は、次式
  B層の成分体積目付(cm/m)=Wb×Xc/ρc+Wb×Xd/ρd+Wb×Xe/ρe
から算出される。ここで、
  Wb(g/m):B層の目付
  Xc(重量%):成分Cの重量濃度
  Xd(重量%):成分Dの重量濃度
  Xe(重量%):成分Eの重量濃度
  ρc(g/cm):成分Cの真比重
  ρd(g/cm):成分Dの真比重
  ρe(g/cm):成分Eの真比重
である(Xc+Xd+Xe=100(重量%))。
 (4)積層体の試験力の差(単位:N):
 積層体の導通時の試験力と絶縁破壊時の試験力との差(導通時の試験力-絶縁破壊時の試験力)は、上述した釘刺し導通試験によって測定した。
 〔実施例1〕
 下記A層(多孔質フィルム)、およびB層(多孔質層)を用いて、積層多孔質フィルム(積層体)1を形成した。
 <A層>
 ポリオレフィンであるポリエチレンを用いて基材である多孔質フィルム1を作製した。
 即ち、超高分子量ポリエチレン粉末(340M、三井化学株式会社製)70重量部と、重量平均分子量1000のポリエチレンワックス(FNP-0115、日本精鑞株式会社製)30重量部とを混合して混合ポリエチレンを得た。得られた混合ポリエチレン100重量部に対して、酸化防止剤(Irg1010、チバ・スペシャリティ・ケミカルズ株式会社製)0.4重量部、酸化防止剤(P168、チバ・スペシャリティ・ケミカルズ株式会社製)0.1重量部、およびステアリン酸ナトリウム1.3重量部を加え、さらに、全体積に占める割合が38体積%となるように、平均粒子径0.1μmの炭酸カルシウム(丸尾カルシウム株式会社製)を加えた。この組成物を粉末のまま、ヘンシェルミキサーで混合した後、二軸混練機で溶融混練した。これにより、ポリエチレン樹脂組成物を得た。次いで、このポリエチレン樹脂組成物を、表面温度が150℃に設定された一対のロールにて圧延することにより、シートを作製した。このシートを塩酸水溶液(塩酸4mol/L、非イオン系界面活性剤0.5重量%を配合)に浸漬させることで炭酸カルシウムを溶解して除去した。続いて、当該シートを105℃で6倍に延伸することにより、ポリエチレン製の多孔質フィルム(A層)を作製した。
 <B層>
 バインダー樹脂として、カルボキシメチルセルロースナトリウム(CMC)(株式会社ダイセル製;CMC1110)を用いた。無機微粒子として、マイカ(和光純薬工業株式会社製;非膨潤性雲母)を用いた。尚、当該マイカは、劈開性を有する微粒子である。
 上記マイカ、CMC、および溶媒(水およびイソプロピルアルコールの混合溶媒)を、下記割合となるように混合した。即ち、上記マイカ100重量部に対してCMCを3重量部混合すると共に、得られる混合液における固形分濃度(マイカ+CMC)を27.7重量%とし、かつ、溶媒組成が水95重量%およびイソプロピルアルコール5重量%となるように溶媒を混合した。これにより、マイカの分散液を得た。そして、得られた分散液を、高圧分散装置(株式会社スギノマシン製;スターバースト)を用いて高圧分散(高圧分散条件;100MPa×3パス)することにより、塗工液1を作製した。
 <積層多孔質フィルム>
 上記A層の片面に、20W/(m/分)でコロナ処理を施した。次いで、コロナ処理を施したA層の面に、グラビアコーターを用いて、上記塗工液1を塗工した。このとき、A層に塗工液1を均一に塗工することができるように、塗工位置の前後をピンチロールで挟んでA層に張力を与えた。その後、塗膜を乾燥することでB層を形成した。これにより、A層の片面にB層が積層された積層多孔質フィルム1を得た。
 <物性評価>
 得られた積層多孔質フィルム1の物性等を、上述した方法で測定した。結果を表1に示す。
 <非水電解液二次電池の作製>
 ≪ラミネート型非水電解液二次電池の作製≫
 (正極の作製)
 正極活物質であるLiNi1/3Mn1/3Co1/390重量部に、アセチレンブラック6重量部、およびポリフッ化ビニリデン(株式会社クレハ製)4重量部を加えて混合して混合物を得た。このようにして得られた混合物を、N-メチル-2-ピロリドンに分散させてスラリーを作製した。このようにして得られたスラリーを、正極集電体であるアルミニウム箔の一部に均一に塗布して乾燥させた後、プレス機により厚さ80μmに圧延した。次いで、正極活物質層が形成された部分の大きさが40mm×35mmであり、かつその外周に幅13mmで正極活物質層が形成されていない部分が残るように、圧延したアルミニウム箔を切り取って正極とした。正極活物質層の密度は2.50g/cmであった。
 (負極の作製)
 負極活物質である黒鉛粉末98重量部に、増粘剤および結着剤であるカルボキシメチルセルロースの水溶液100重量部(カルボキシメチルセルロースの濃度;1重量%)、およびスチレン・ブタジエンゴムの水性エマルジョン1重量部を加えて混合して、スラリーを作製した。このようにして得られたスラリーを、負極集電体である厚さ20μmの圧延銅箔の一部に塗布して乾燥させた後、プレス機により厚さ80μmに圧延した。次いで、負極活物質層が形成された部分の大きさが50mm×40mmであり、かつその外周に幅13mmで負極活物質層が形成されていない部分が残るように、圧延した圧延銅箔を切り取って負極とした。負極活物質層の密度は1.40g/cmであった。
 (ラミネート型非水電解液二次電池の作製)
 ラミネートパウチ内で、積層多孔質フィルム1のB層と正極の正極活物質層とが接するようにして、かつ、積層多孔質フィルム1のA層と負極の負極活物質層とが接するようにして、上記正極、積層多孔質フィルム1、および負極をこの順で積層(配置)した。このようにして、ラミネート型非水電解液二次電池用部材を得た。このとき、正極の正極活物質層における主面の全部が、負極の負極活物質層における主面の範囲に含まれる(主面に重なる)ように、正極および負極を配置した。尚、積層多孔質フィルム1の大きさは、上記負極よりも大きくした。
 続いて、上記ラミネート型非水電解液二次電池用部材を、アルミニウム層とヒートシール層とが積層されてなる袋に入れ、さらにこの袋に非水電解液を0.25mL入れた。上記非水電解液は、エチレンカーボネート、エチルメチルカーボネート、ジエチルカーボネートを3:5:2(体積比)で混合してなる混合溶媒に、LiPFを1mol/Lとなるように溶解して調製した。そして、袋内を減圧しつつ、当該袋をヒートシールすることにより、ラミネート型非水電解液二次電池を作製した。
 <ラミネート型非水電解液二次電池の液抵抗の算出>
 上記ラミネート型非水電解液二次電池に対して、25℃で電圧範囲;4.1~2.7V、電流値;0.2C(1時間率の放電容量による定格容量を1時間で放電する電流値を1Cとする、以下も同様)を1サイクルとして、4サイクルの初期充放電を行った。
 続いて、ケミカルインピーダンスメータ(日置電機株式会社製;3532-80)を用いて、25℃で上記ラミネート型非水電解液二次電池に振幅10mVの交流信号を印加して、交流インピーダンスの測定を行い、ナイキスト線図を作成した。ここで、ナイキスト線図とは、交流インピーダンスの実効成分(X軸成分)と虚数成分(Y軸成分)とを複素平面上に表した線図である。そして、ナイキスト線図から、その虚数成分がゼロ(Y=0)となる実効成分の値(=X軸の切片)を算出して液抵抗(単位:Ω)とした。結果を表2に示す。
 ≪円筒型非水電解液二次電池の作製≫
 (正極の作製)
 下記正極活物質、導電剤、バインダー樹脂1、およびバインダー樹脂2
 正極活物質:LiCoO(日本化学工業株式会社製;セルシードC-10N、真比重4.8g/cm):
 導電剤:アセチレンブラック(電気化学工業株式会社製;真比重2.2g/cm):
 バインダー樹脂1(三井・デュポンフロロケミカル株式会社製;PTFE31-JR、真比重2.2g/cm):
 バインダー樹脂2(第一工業製薬株式会社製;セロゲン4H、真比重1.4g/cm):
を用い、この順で重量比(組成)が92:2.7:4.55:0.75となるように、各成分をそれぞれ秤量した。そして、混練機に一定量の水を入れ、バインダー樹脂2を溶解した。その後、正極活物質、導電剤、およびバインダー樹脂1を加えて混練した。次いで、混練物に適切な量の水を加えて、当該混練物の粘度が25℃で2700±1000cpとなるように調節して、正極合剤を得た。当該正極合剤を、正極集電体である、空隙の無い厚さ20μmのアルミニウム箔の両面における所定部分に均一に塗布して乾燥させた。その後、乾燥物を、ロールプレス機により、塗布膜の厚さ(正極合剤の膜厚)が140μm(見かけ密度3.5g/cm)になるまで圧延した。次いで、圧延したアルミニウム箔を切り取って、幅54mm、長さ560mmの正極を得た。
 (負極の作製)
 下記負極活物質1、負極活物質2、およびバインダー樹脂
 負極活物質1(株式会社中越黒鉛工業所;BF15SP、真比重2.2g/cm):
 負極活物質2(日本黒鉛商事株式会社製;CG-R-A、真比重2.2g/cm):
 バインダー樹脂(第一工業製薬株式会社製;セロゲン4H、真比重1.4g/cm):
を用い、この順で重量比(組成)が58.8:39.2:2となるように、各成分をそれぞれ秤量した。そして、混練機に一定量の水を入れ、バインダー樹脂を溶解した後、負極活物質1、および負極活物質2を加えて混練した。次いで、混練物に適切な量の水を加えて、当該混練物の粘度が25℃で2100±500cpとなるように調節して、負極合剤を得た。当該負極合剤を、負極集電体である、空隙の無い厚さ12μmの銅箔の両面における所定部分に均一に塗布して乾燥させた。その後、乾燥物を、ロールプレス機により、塗布膜の厚さ(負極合剤の膜厚)が140μm(見かけ密度1.45g/cm)になるまで圧延した。次いで、圧延した銅箔を切り取って、幅56mm、長さ600mmの負極を得た。
 (円筒型非水電解液二次電池の作製)
 積層体として幅60mm、長さ700mmの積層多孔質フィルム1を用いた。また、正極にアルミニウム製の正極タブを溶接し、負極にニッケル製の負極タブを溶接した。そして、上述したラミネート型非水電解液二次電池の作製時と同様に、正極、積層多孔質フィルム1、および負極をこの順で積層(配置)し、巻回することにより、円筒型非水電解液二次電池用部材を得た。
 続いて、上記円筒型非水電解液二次電池用部材を、18650円筒電池用の電池缶に入れて卓上旋盤でネッキングを行い、負極タブの缶底への溶接と正極タブの蓋への溶接とを行った後、真空乾燥を行った。その後、アルゴンガス雰囲気のグローブボックス内で、電池缶に非水電解液を5g(正極、積層多孔質フィルム1、および負極における空隙の合計体積の1.1倍に相当)入れた。上記非水電解液は、カーボネート系溶剤にLiPFを1.3mol/L含有させた市販品(キシダ化学株式会社製;比重1.21g/cm)を用いた。そして、電池缶および蓋のカシメを行うことにより、円筒型非水電解液二次電池(18650円筒電池)を作製した。
 <円筒型非水電解液二次電池の50%破壊電圧の算出(釘刺し試験)>
 円筒型非水電解液二次電池を所定の試験電圧まで充電した後、当該電池の中心部に2.77mmφの釘を1mm/sec の降下速度で刺して貫通させる釘刺し試験を行い、安全性の評価(良否判定)を行った。
 下記基準に従って、上記試験電圧における円筒型非水電解液二次電池の安全性を評価した。
  ○:発熱や発煙は生じるものの、電池缶および蓋が損傷しない;
  ×:破裂や発火が生じる、或いは、蓋が吹き飛ぶ;
そして、初回の試験電圧を3.8~4.2Vの間の任意の電圧に設定して釘刺し試験を開始し、「○」の場合には試験電圧を0.05V上げて同様の試験を行い、「×」の場合には試験電圧を0.05V下げて同様の試験を行った。釘刺し試験は、同一の試験電圧において、総数10個以上の円筒型非水電解液二次電池に対して行った。
 この試験結果を用い、「JIS K 7211 硬質プラスチックの落錘衝撃試験方法通則」に記載されている方法を模して、以下の通りに50%破壊電圧(単位:V)を算出した。結果を表2に示す。
 上記50%破壊電圧(単位:V)は、次式
  V50=VI+d[Σ(i×ni)/N±1/2]
から算出される。ここで、
  V50:50%破壊電圧(単位:V)
  VI:電圧水準(i)が0のときの試験電圧(「○」と「×」とが共存する試験電圧であり、かつ、「×」の数が多い試験電圧)(単位:V)
  i:試験電圧がVIのときを0とし、一つずつ増減する電圧水準(i=…,-3,-2,-1,0,1,2,3,…)
  ni:各電圧水準での試験において、「×」となった(または「○」となった)電池の数
  d:試験電圧を上下させるときの電圧間隔(単位:V)
  N:全ての釘刺し試験で「○」となった(または「×」となった)電池の総数(N=Σni)
である。そして、評価である「○」、「×」の数を数える場合には、全ての釘刺し試験に亘って、どちらか多い方の結果を使用する。尚、同数の場合にはどちらを使用してもよい。また、「±1/2」の値は、評価である「○」、「×」の数を数える場合に「×」のデータを使用した場合は負号を採用し、「○」のデータを使用した場合は正号を採用する。
 <顕微鏡観察>
 積層多孔質フィルム1の表面を走査型電子顕微鏡で観察した。得られた画像を図2に示す。当該画像から、マイカ(雲母)Aの微粒子にバインダー樹脂Bが点接触していることを確認することができた。
 〔実施例2〕
 下記A層、およびB層を用いて、積層多孔質フィルム2を形成した。
 <A層>
 実施例1と同様にしてポリエチレン製の多孔質フィルム(A層)を作製した。
 <B層>
 無機微粒子として、ヒドロキシアパタイト(和光純薬工業株式会社製)を用いた以外は、実施例1の操作と同様の操作を行って塗工液2を作製した。尚、当該ヒドロキシアパタイトは、劈開性を有する微粒子である。
 <積層多孔質フィルム>
 上記塗工液2を用いた以外は、実施例1の操作と同様の操作を行って、A層の片面にB層が積層された積層多孔質フィルム2を得た。
 <物性評価>
 得られた積層多孔質フィルム2の物性等を、上述した方法で測定した。結果を表1に示す。
 <ラミネート型非水電解液二次電池の作製>
 上記積層多孔質フィルム2を用いた以外は、実施例1の操作と同様の操作を行って、ラミネート型非水電解液二次電池を作製した。
 <ラミネート型非水電解液二次電池の液抵抗の算出>
 実施例1の操作と同様の操作を行って、ラミネート型非水電解液二次電池の液抵抗を算出した。結果を表2に示す。
 <円筒型非水電解液二次電池の作製>
 上記積層多孔質フィルム2を用いた以外は、実施例1の操作と同様の操作を行って、円筒型非水電解液二次電池を作製した。
 <円筒型非水電解液二次電池の50%破壊電圧の算出(釘刺し試験)>
 実施例1の操作と同様の操作を行って、円筒型非水電解液二次電池の50%破壊電圧を算出した。結果を表2に示す。
 〔比較例1〕
 下記A層、およびB層を用いて、比較用の積層多孔質フィルム(1) を形成した。
 <A層>
 実施例1と同様にしてポリエチレン製の多孔質フィルム(A層)を作製した。
 <B層>
 無機微粒子として、シリカ(シグマアルドリッチ社製;平均粒子径0.5~10μm)を用いた以外は、実施例1の操作と同様の操作を行って塗工液3を作製した。尚、当該シリカは、劈開性を有さない微粒子である。
 <積層多孔質フィルム>
 上記塗工液3を用いた以外は、実施例1の操作と同様の操作を行って、A層の片面にB層が積層された比較用の積層多孔質フィルム(1) を得た。
 <物性評価>
 得られた比較用の積層多孔質フィルム(1) の物性等を、上述した方法で測定した。結果を表1に示す。
 <ラミネート型非水電解液二次電池の作製>
 上記比較用の積層多孔質フィルム(1) を用いた以外は、実施例1の操作と同様の操作を行って、ラミネート型非水電解液二次電池を作製した。
 <ラミネート型非水電解液二次電池の液抵抗の算出>
 実施例1の操作と同様の操作を行って、ラミネート型非水電解液二次電池の液抵抗を算出した。結果を表2に示す。
 <円筒型非水電解液二次電池の50%破壊電圧の算出(釘刺し試験)>
 JIS A 5508で規定されるN50の釘を用いて釘の降下速度50μm/分の条件で測定された釘刺し導通試験における、積層体の絶縁破壊から導通までの厚さ方向の変位と、円筒型非水電解液二次電池の50%破壊電圧との関係は、正の相関を示す。比較例1では、積層体の導通時の試験力と絶縁破壊時の試験力との差が0.5N~20Nとなる範囲で測定した6点の50%破壊電圧の値から、比較用の積層多孔質フィルム(1) を用いた場合の50%破壊電圧を算出した。結果を表2に示す。
 〔実施例3〕
 A層の両面に塗工液2を塗工することによってA層の両面にB層を形成した以外は、実施例2と同様にして、積層多孔質フィルム3を得た。
 <物性評価>
 得られた積層多孔質フィルム3の物性等を、上述した方法で測定した。結果を表1に示す。
 <ラミネート型非水電解液二次電池の作製>
 上記積層多孔質フィルム3を用いた以外は、実施例1の操作と同様の操作を行って、ラミネート型非水電解液二次電池を作製した。
 <ラミネート型非水電解液二次電池の液抵抗の算出>
 実施例1の操作と同様の操作を行って、ラミネート型非水電解液二次電池の液抵抗を算出した。結果を表2に示す。
 <円筒型非水電解液二次電池の作製>
 積層多孔質フィルム3を用いた以外は、実施例1の操作と同様の操作を行って、円筒型非水電解液二次電池を作製した。
 <円筒型非水電解液二次電池の50%破壊電圧の算出(釘刺し試験)>
 実施例1の操作と同様の操作を行って、円筒型非水電解液二次電池の50%破壊電圧を算出した。結果を表2に示す。
 〔比較例2〕
 下記A層、およびB層を用いて、比較用の積層多孔質フィルム(2) を作製した。
 <A層>
 実施例1と同様にしてポリエチレン製の多孔質フィルム(A層)を作製した。
 <B層>
 塗工液3の塗工量を、B層の膜厚が13.7μmとなるように変えた以外は、実施例1の操作と同様の操作を行って、A層の片面にB層が積層された比較用の積層多孔質フィルム(2) を作製した。
 <物性評価>
 得られた比較用の積層多孔質フィルム(2) の物性等を、上述した方法で測定した。結果を表1に示す。
 <ラミネート型非水電解液二次電池の作製>
 比較用の積層多孔質フィルム(2) を用いた以外は、実施例1の操作と同様の操作を行って、ラミネート型非水電解液二次電池を作製した。
 <ラミネート型非水電解液二次電池の液抵抗の算出>
 実施例1の操作と同様の操作を行って、ラミネート型非水電解液二次電池の液抵抗を算出した。結果を表2に示す。
 <円筒型非水電解液二次電池の50%破壊電圧の算出(釘刺し試験)>
 比較例1と同じ方法によって、比較用の積層多孔質フィルム(2) を用いた場合の50%破壊電圧を算出した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明に係る積層体および非水電解液二次電池用セパレータを含む非水電解液二次電池は、当該非水電解液二次電池のレート特性や抵抗特性(液抵抗)等の各種性能を維持した上で、非水電解液二次電池の破損等による内部短絡(各種性能の維持とは相反関係にある)を防止することができることが判る。市販の電池の定格電圧は概ね3.8Vであるため、安全性を確保するためには、3.9V以上の50%破壊電圧が求められる。3.9Vにおいて破裂や発火等の危険性が低い実施例の非水電解液二次電池は、高い安全性を確保することができていると言える。
 本発明に係る積層体、および積層体を含む非水電解液二次電池用セパレータは、非水電解液二次電池の製造分野において広範に利用することができる。
  1 SUS板
  2 釘
  3 抵抗測定器
  4 負極シート
 10 積層体
  A マイカ
  B バインダー樹脂

Claims (11)

  1.  ポリオレフィンを主成分とする多孔質フィルムの少なくとも一方の面に、微粒子を含む多孔質層を積層させた積層体であって、
     JIS A 5508で規定されるN50の釘を用いて釘の降下速度50μm/分の条件で測定した釘刺し導通試験における、積層体の導通時の試験力と絶縁破壊時の試験力との差(導通時の試験力-絶縁破壊時の試験力)が、5N以上、50N以下であることを特徴とする積層体。
  2.  上記多孔質層の1平方メートル当たりに含まれる多孔質層構成成分の体積(片面当たり)が、0.5~20cmであることを特徴とする、請求項1に記載の積層体。
  3.  上記多孔質層の膜厚(片面当たり)が0.5~15μm、上記多孔質フィルムの膜厚が5~30μmであることを特徴とする、請求項1または2に記載の積層体。
  4.  上記多孔質フィルムの空隙率が30~60体積%であることを特徴とする、請求項1から3の何れか1項に記載の積層体。
  5.  上記微粒子が無機微粒子であることを特徴とする、請求項1から4の何れか1項に記載の積層体。
  6.  上記多孔質層がバインダー樹脂をさらに含み、上記微粒子が、バインダー樹脂と点接触していることを特徴とする、請求項1から5の何れか1項に記載の積層体。
  7.  上記微粒子が劈開性を有することを特徴とする、請求項1から6の何れか1項に記載の積層体。
  8.  上記多孔質フィルムの単位面積当たりの目付が4~20g/mであることを特徴とする、請求項1から7の何れか1項に記載の積層体。
  9.  上記多孔質層の単位面積当たりの目付(片面当たり)が1~20g/mであることを特徴とする、請求項1から8の何れか1項に記載の積層体。
  10.  請求項1から9の何れか1項に記載の積層体を含む非水電解液二次電池用セパレータ。
  11.  請求項1から9の何れか1項に記載の積層体を含む非水電解液二次電池。
PCT/JP2015/070731 2014-10-10 2015-07-21 積層体、積層体を含む非水電解液二次電池用セパレータ、および非水電解液二次電池 WO2016056289A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015537060A JP5973674B1 (ja) 2014-10-10 2015-07-21 積層体、積層体を含む非水電解液二次電池用セパレータ、および非水電解液二次電池
US14/771,149 US9917289B2 (en) 2014-10-10 2015-07-21 Laminate, non-aqueous electrolyte secondary battery separator including the laminate, and non-aqueous electrolyte secondary battery including the laminate
KR1020157023469A KR20160102331A (ko) 2014-10-10 2015-07-21 적층체, 적층체를 포함하는 비수 전해액 이차 전지용 세퍼레이터, 및 비수 전해액 이차 전지
CN201580000339.4A CN105706270B (zh) 2014-10-10 2015-07-21 层叠体、包含层叠体的非水电解液二次电池用间隔件、以及非水电解液二次电池
KR1020177026834A KR20170113699A (ko) 2014-10-10 2015-07-21 적층체, 적층체를 포함하는 비수 전해액 이차 전지용 세퍼레이터, 및 비수 전해액 이차 전지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-209416 2014-10-10
JP2014209416 2014-10-10

Publications (1)

Publication Number Publication Date
WO2016056289A1 true WO2016056289A1 (ja) 2016-04-14

Family

ID=55652914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070731 WO2016056289A1 (ja) 2014-10-10 2015-07-21 積層体、積層体を含む非水電解液二次電池用セパレータ、および非水電解液二次電池

Country Status (5)

Country Link
US (1) US9917289B2 (ja)
JP (2) JP5973674B1 (ja)
KR (2) KR20170113699A (ja)
CN (1) CN105706270B (ja)
WO (1) WO2016056289A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018070423A1 (ja) * 2016-10-13 2018-04-19 国立研究開発法人産業技術総合研究所 リチウムイオン二次電池及びこれを用いた電気機器
WO2018100815A1 (ja) * 2016-12-02 2018-06-07 旭化成株式会社 非水電解質電池用無機粒子及びこれを用いた非水電解質電池
JP2018147885A (ja) * 2017-03-03 2018-09-20 住友化学株式会社 非水電解液二次電池用セパレータ
WO2020189795A1 (ja) 2019-03-20 2020-09-24 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190252658A1 (en) * 2016-10-24 2019-08-15 Sumitomo Chemical Company, Limited Separator and secondary battery including the separator
CN110024202A (zh) * 2016-12-02 2019-07-16 旭化成株式会社 非水电解质电池用无机颗粒
JP6543291B2 (ja) * 2017-03-03 2019-07-10 住友化学株式会社 非水電解液二次電池用セパレータ
JP6472822B2 (ja) 2017-03-03 2019-02-20 住友化学株式会社 非水電解液二次電池用セパレータ
JP2018152236A (ja) 2017-03-13 2018-09-27 リチウム エナジー アンド パワー ゲゼルシャフト ミット ベシュレンクテル ハフッング ウント コンパニー コマンディトゲゼルシャフトLithium Energy and Power GmbH & Co. KG 袋詰正極板、積層電極体及び蓄電素子
JP6933129B2 (ja) * 2017-12-26 2021-09-08 トヨタ自動車株式会社 蓄電デバイスの評価方法、評価治具および蓄電デバイスの製造方法
KR101980844B1 (ko) 2018-02-26 2019-05-21 주식회사 엘지화학 전기화학소자용 분리막의 절연 특성 평가 방법
JP7161359B2 (ja) * 2018-09-27 2022-10-26 東京応化工業株式会社 加熱処理装置、イミド系樹脂膜製造システム、及び加熱処理方法
EP3883886A4 (en) * 2018-11-22 2022-08-31 Phinergy Ltd. SEPARATORS WITH DOUBLE LAMELLAR HYDROXIDES FOR ELECTROCHEMICAL CELLS
KR20210043895A (ko) 2019-10-14 2021-04-22 주식회사 엘지화학 전기화학소자용 분리막의 절연 및 리튬 이온전도도 특성 평가 방법 및 시스템
KR20210046405A (ko) * 2019-10-18 2021-04-28 주식회사 엘지화학 전기화학소자용 분리막, 상기 분리막을 포함하는 전기화학소자 및 상기 분리막의 제조방법
KR20210048224A (ko) 2019-10-23 2021-05-03 주식회사 엘지화학 가압식 분리막 저항 측정 장치 및 측정 방법
CN113299917B (zh) * 2021-05-25 2022-10-14 中创新航技术研究院(江苏)有限公司 负极浆料的制备方法及电池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013015228A1 (ja) * 2011-07-22 2013-01-31 住友化学株式会社 積層多孔質フィルム及び非水電解液二次電池
WO2013031872A1 (ja) * 2011-08-31 2013-03-07 住友化学株式会社 塗工液、積層多孔質フィルム及び積層多孔質フィルムの製造方法
JP2014040580A (ja) * 2012-07-27 2014-03-06 Sumitomo Chemical Co Ltd 積層多孔質フィルムの製造方法

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000156216A (ja) * 1998-11-20 2000-06-06 Matsushita Electric Ind Co Ltd 非水電解液二次電池およびそのセパレータ
US6627346B1 (en) 1999-11-10 2003-09-30 Ube Industries, Ltd. Battery separator and lithium secondary battery
JP4470248B2 (ja) * 1999-11-10 2010-06-02 宇部興産株式会社 電池用セパレータ
JP2002141049A (ja) * 2000-11-06 2002-05-17 Nitto Denko Corp 非水電解液電池用セパレータ及び非水電解液電池
JP2006156229A (ja) * 2004-11-30 2006-06-15 Sanyo Electric Co Ltd 非水電解質二次電池
WO2006062153A1 (ja) 2004-12-08 2006-06-15 Hitachi Maxell, Ltd. 電気化学素子用セパレータおよび電気化学素子
JP4979217B2 (ja) 2005-09-29 2012-07-18 日本バイリーン株式会社 非水電解質二次電池用セパレータ、非水電解質二次電池用セパレータの製造方法、及び非水電解質二次電池
CN102244221A (zh) 2005-12-08 2011-11-16 日立麦克赛尔株式会社 电化学元件用隔板
JP5093882B2 (ja) 2006-10-16 2012-12-12 日立マクセル株式会社 電気化学素子用セパレータ、電気化学素子および電気化学素子の製造方法
JP2008192497A (ja) * 2007-02-06 2008-08-21 Matsushita Electric Ind Co Ltd 内部短絡安全性評価方法及び内部短絡安全性評価装置並びに電池及び電池パック
CN101276895B (zh) 2007-03-27 2013-05-29 比亚迪股份有限公司 锂离子二次电池多孔隔膜层用组合物及锂离子二次电池
JP5209896B2 (ja) 2007-04-24 2013-06-12 パナソニック株式会社 電池の内部短絡安全性評価方法
US20090053609A1 (en) 2007-08-22 2009-02-26 Sanyo Electric Co., Ltd. Non-aqueous electrolyte battery
JP5219621B2 (ja) 2007-08-22 2013-06-26 三洋電機株式会社 非水電解質電池
JP2007311367A (ja) 2007-08-30 2007-11-29 Matsushita Electric Ind Co Ltd 電池
JP5223329B2 (ja) 2007-12-26 2013-06-26 Tdk株式会社 電気化学素子の評価方法及び電気化学素子の評価装置
JP5308118B2 (ja) * 2008-10-30 2013-10-09 帝人株式会社 非水系二次電池用セパレータ、その製造方法、および非水系二次電池
JP2010135313A (ja) * 2008-10-31 2010-06-17 Hitachi Maxell Ltd 電気化学素子
JP2012033268A (ja) * 2008-11-06 2012-02-16 Hitachi Maxell Ltd 電気化学素子
JP5503183B2 (ja) 2009-04-10 2014-05-28 株式会社Kri 蓄電デバイスの安全性評価方法
JP2010277723A (ja) * 2009-05-26 2010-12-09 Hitachi Maxell Ltd 電気化学素子
JP2011054298A (ja) 2009-08-31 2011-03-17 Hitachi Maxell Ltd 電気化学素子
JP5576740B2 (ja) * 2009-12-14 2014-08-20 日立マクセル株式会社 電気化学素子
JP5804712B2 (ja) 2010-02-08 2015-11-04 日立マクセル株式会社 非水電解質二次電池
JP5483706B2 (ja) 2010-03-18 2014-05-07 日立マクセル株式会社 リチウムイオン二次電池
JP5552040B2 (ja) 2010-12-22 2014-07-16 三菱製紙株式会社 リチウム二次電池用セパレータ
CN102244223A (zh) 2011-05-26 2011-11-16 东莞新能源科技有限公司 电化学装置及其无机/有机复合多孔性薄膜
JP5994354B2 (ja) 2011-09-05 2016-09-21 ソニー株式会社 セパレータおよび非水電解質電池、並びに、電池パック、電子機器、電動車両、蓄電装置および電力システム
JP5834940B2 (ja) 2012-01-18 2015-12-24 トヨタ自動車株式会社 非水電解質二次電池用のセパレータ、及び非水電解質二次電池
JP2013173862A (ja) * 2012-02-27 2013-09-05 Toray Battery Separator Film Co Ltd 積層多孔質膜、電池用セパレーター及び電池
JP6115909B2 (ja) 2012-10-22 2017-04-19 国立研究開発法人産業技術総合研究所 リチウム二次電池用負極およびその製造方法、並びに該負極を用いたリチウム二次電池および該電池を用いた電気機器
JP5756192B2 (ja) * 2014-01-23 2015-07-29 日立マクセル株式会社 リチウムイオン二次電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013015228A1 (ja) * 2011-07-22 2013-01-31 住友化学株式会社 積層多孔質フィルム及び非水電解液二次電池
WO2013031872A1 (ja) * 2011-08-31 2013-03-07 住友化学株式会社 塗工液、積層多孔質フィルム及び積層多孔質フィルムの製造方法
JP2014040580A (ja) * 2012-07-27 2014-03-06 Sumitomo Chemical Co Ltd 積層多孔質フィルムの製造方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018070423A1 (ja) * 2016-10-13 2018-04-19 国立研究開発法人産業技術総合研究所 リチウムイオン二次電池及びこれを用いた電気機器
JPWO2018070423A1 (ja) * 2016-10-13 2019-08-08 国立研究開発法人産業技術総合研究所 リチウムイオン二次電池及びこれを用いた電気機器
US11289706B2 (en) 2016-10-13 2022-03-29 National Institute Of Advanced Industrial Science And Technology Lithium ion secondary battery and electric device using same
WO2018100815A1 (ja) * 2016-12-02 2018-06-07 旭化成株式会社 非水電解質電池用無機粒子及びこれを用いた非水電解質電池
JPWO2018100815A1 (ja) * 2016-12-02 2019-06-27 旭化成株式会社 非水電解質電池用無機粒子及びこれを用いた非水電解質電池
EP3550634A4 (en) * 2016-12-02 2020-07-15 Asahi Kasei Kabushiki Kaisha NON-AQUEOUS ELECTROLYTE BATTERY INORGANIC PARTICLES, AND NON-AQUEOUS ELECTROLYTE BATTERY USING THE SAME
US11489233B2 (en) 2016-12-02 2022-11-01 Asahi Kasei Kabushiki Kaisha Nonaqueous electrolyte battery inorganic particles, and nonaqueous electrolyte battery using these
JP2018147885A (ja) * 2017-03-03 2018-09-20 住友化学株式会社 非水電解液二次電池用セパレータ
WO2020189795A1 (ja) 2019-03-20 2020-09-24 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
KR20210126707A (ko) 2019-03-20 2021-10-20 데이진 가부시키가이샤 비수계 이차전지용 세퍼레이터 및 비수계 이차전지
CN113574730A (zh) * 2019-03-20 2021-10-29 帝人株式会社 非水系二次电池用隔膜及非水系二次电池
CN113574730B (zh) * 2019-03-20 2023-06-02 帝人株式会社 非水系二次电池用隔膜及非水系二次电池

Also Published As

Publication number Publication date
JP5973674B1 (ja) 2016-08-23
US9917289B2 (en) 2018-03-13
JP2016190499A (ja) 2016-11-10
KR20160102331A (ko) 2016-08-30
CN105706270A (zh) 2016-06-22
JPWO2016056289A1 (ja) 2017-04-27
KR20170113699A (ko) 2017-10-12
US20160365559A1 (en) 2016-12-15
CN105706270B (zh) 2018-05-11

Similar Documents

Publication Publication Date Title
JP5973674B1 (ja) 積層体、積層体を含む非水電解液二次電池用セパレータ、および非水電解液二次電池
JP5973675B1 (ja) 積層体、積層体を含む非水電解液二次電池用セパレータ、および非水電解液二次電池
JP5976947B2 (ja) 多孔質層、多孔質層を積層してなるセパレータ、および多孔質層またはセパレータを含む非水電解液二次電池
JP6185133B2 (ja) 積層多孔質フィルム及びその製造方法、積層電極シート並びに非水電解液二次電池
JP5938512B1 (ja) 非水電解液二次電池用セパレータ、非水電解液二次電池用積層セパレータ、非水電解液二次電池用部材および非水電解液二次電池
JP5952504B1 (ja) 多孔質層、多孔質層を積層してなるセパレータ、および多孔質層またはセパレータを含む非水電解液二次電池
JP6153992B2 (ja) 非水電解液二次電池用セパレータ
JP6053903B1 (ja) 非水電解液二次電池用セパレータ
US20170155114A1 (en) Nonaqueous electrolyte secondary battery separator
JP6122936B1 (ja) 非水電解液二次電池用セパレータおよびその利用
JP6041970B1 (ja) 非水電解液二次電池用セパレータ
WO2018078711A1 (ja) セパレータ、およびセパレータを含む二次電池
JP2017117779A (ja) 非水電解液二次電池用セパレータ
JP2017103211A (ja) 非水電解液二次電池用セパレータおよびその利用
JP2017103228A (ja) 非水電解液二次電池用セパレータ
JP2017103199A (ja) 非水電解液二次電池用セパレータ、非水電解液二次電池用積層セパレータ、非水電解液二次電池用部材および非水電解液二次電池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015537060

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14771149

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157023469

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15849659

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15849659

Country of ref document: EP

Kind code of ref document: A1