WO2018100815A1 - 非水電解質電池用無機粒子及びこれを用いた非水電解質電池 - Google Patents

非水電解質電池用無機粒子及びこれを用いた非水電解質電池 Download PDF

Info

Publication number
WO2018100815A1
WO2018100815A1 PCT/JP2017/031200 JP2017031200W WO2018100815A1 WO 2018100815 A1 WO2018100815 A1 WO 2018100815A1 JP 2017031200 W JP2017031200 W JP 2017031200W WO 2018100815 A1 WO2018100815 A1 WO 2018100815A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic particles
electrolyte battery
nonaqueous electrolyte
separator
aqueous electrolyte
Prior art date
Application number
PCT/JP2017/031200
Other languages
English (en)
French (fr)
Inventor
暢浩 伊藤
宏之 佐伯
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to KR1020197015647A priority Critical patent/KR102241566B1/ko
Priority to JP2018553662A priority patent/JP6810756B2/ja
Priority to CN201780074691.1A priority patent/CN110024175B/zh
Priority to US16/465,777 priority patent/US11489233B2/en
Priority to EP17875792.8A priority patent/EP3550634B1/en
Publication of WO2018100815A1 publication Critical patent/WO2018100815A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to inorganic particles for nonaqueous electrolyte batteries and nonaqueous electrolyte batteries using the same.
  • Lithium ion secondary batteries which are typical examples of power storage devices and typical examples of non-aqueous electrolyte batteries, have been used mainly as power sources for small devices, and in recent years as power sources for hybrid vehicles and electric vehicles. It is attracting attention.
  • Lithium ion secondary batteries are becoming more energy-efficient as devices become more sophisticated, and ensuring reliability is important.
  • a medium-sized or large-sized lithium ion secondary battery such as a vehicle-mounted power supply, it is necessary to ensure reliability particularly than a small device.
  • a lithium ion secondary battery capable of maintaining a charge / discharge capacity for a long period is required in accordance with a product cycle.
  • Patent Document 1 is a slurry for forming an insulating layer having ion permeability and heat resistance, which contains heat-resistant fine particles, a thickener, and a medium, and at least a part of the heat-resistant fine particles. Describes an insulating layer forming slurry in which is apatite and has a pH of 7-11.
  • Patent Document 2 is a laminate in which a porous layer containing fine particles is laminated on at least one surface of a porous film containing polyolefin as a main component, and a nail of N50 defined by JIS A5508 is used.
  • the difference between the test force at the time of conduction of the laminate and the test force at the time of dielectric breakdown (test force at the time of conduction-test force at the time of dielectric breakdown) in the nail penetration continuity test measured at a descent rate of 50 ⁇ m / min.
  • the laminated body which is a specific range is described.
  • Patent Document 3 is a laminate in which a porous layer containing fine particles is laminated on at least one surface of a porous film containing polyolefin as a main component, and a nail of N50 defined by JIS A5508 is used.
  • the laminate in which the displacement in the thickness direction of the laminate from the dielectric breakdown to conduction in the nail penetration conduction test measured under the condition of a descent rate of 50 ⁇ m / min is a specific range is described.
  • Patent Document 4 discloses a separator for a nonaqueous electrolyte secondary battery having a specific porosity variation rate, containing a specific resin such as polyolefin and a filler, and having a volume-based average particle diameter of the filler in a specific range. A porous layer is described.
  • JP 2011-018588 A Japanese Patent No. 597374 Japanese Patent No. 597675 Japanese Patent No. 5976947
  • metal ions that are present or may occur in the system can adversely affect the safety and life characteristics of the battery.
  • charging / discharging is performed by moving lithium (Li) ions between a positive electrode and a negative electrode.
  • Li ions such as cobalt ions (Co 2+ ), nickel ions (Ni 2+ ), and manganese ions (Mn 2+ ) are present in the battery, these metals are deposited on the negative electrode surface. It is known that the battery life is reduced, the deposited metal breaks the separator and reaches the positive electrode, causing a short circuit, and the safety is lowered.
  • Such metal ions may generally be derived from impurities in the material constituting the battery component, and other than that, the metal contained in the battery component such as the positive electrode active material is a side reaction in the battery. In some cases, it is derived from elution into the non-aqueous electrolyte.
  • hydrofluoric acid (HF) may be generated by a decomposition reaction of the nonaqueous electrolyte, and the metal contained in the positive electrode active material may be eluted by HF.
  • HF hydrofluoric acid
  • One of the problems to be solved by the present invention is to provide inorganic particles for non-aqueous electrolyte batteries that can provide a non-aqueous electrolyte battery excellent in safety and life characteristics. It is another object of the present invention to provide an efficient and effective method for examining the metal adsorption capacity of inorganic particles for nonaqueous electrolyte batteries.
  • the present inventors have used inorganic particles for non-aqueous electrolyte batteries containing a highly crystalline one-dimensional tunnel-like crystal structure cation exchanger, It has been found that a non-aqueous electrolyte battery excellent in safety and life characteristics can be provided.
  • a step of preparing a nonaqueous electrolyte solution containing a specific concentration of metal ions a step of adding a specific amount of inorganic particles for a nonaqueous electrolyte battery to the nonaqueous electrolyte solution to prepare a nonelectrolyte mixed solution;
  • a step of stirring the electrolyte mixture under specific conditions and a method including a step of quantifying the metal ion concentration in the non-electrolyte mixture after stirring with a specific analyzer, in an efficient and effective manner for inorganic for non-aqueous electrolyte batteries It has been found that the metal adsorption capacity of the particles can be examined. That is, the present invention is as follows.
  • Non-aqueous electrolyte battery inorganic particles comprising a highly crystalline one-dimensional tunnel-like crystal structure cation exchanger.
  • the highly crystalline one-dimensional tunnel crystal structure cation exchanger is hydroxyapatite, fluoroapatite, chlorapatite, protonated feldspar, manganese oxide, ⁇ -alumina, potassium hexatitanate, potassium tungstate, and Item 2.
  • the cation exchanger having the one-dimensional tunnel-like crystal structure is hydroxyapatite.
  • the hydroxyapatite has a diffraction angle (2 ⁇ ) of 25.
  • a (002) plane peak at 5 to 26.5 °
  • a (300) plane peak at a diffraction angle (2 ⁇ ) of 32.5 to 33.5 °
  • a half of the (002) plane peak Item 3.
  • the inorganic particle for nonaqueous electrolyte battery according to Item 3 wherein the half width of the peak of the (002) plane is 0.15 ° or less.
  • Item 5 The inorganic particles for nonaqueous electrolyte batteries according to any one of Items 1 to 4, wherein the BET specific surface area is 3 m 2 / g or more.
  • 0.035 parts by mass of the inorganic particles for a non-aqueous electrolyte battery is added to an atmosphere at 23 ° C. with respect to 100 parts by mass of a mixed solution of 5 ppm of Mn 2+ ions, 1 mol / L LiPF 6 and cyclic and / or chain carbonate. 6.
  • Item 8 The inorganic particles for nonaqueous electrolyte batteries according to Item 7, wherein the mixing inorganic particles have an average thickness greater than that of the cation exchanger.
  • Inorganic particles for batteries [11] A battery constituent member comprising the inorganic particles for a non-aqueous electrolyte battery according to any one of items 1 to 10.
  • a nonaqueous electrolyte battery comprising an inorganic particle-containing layer containing the inorganic particles for a nonaqueous electrolyte battery according to any one of items 1 to 10.
  • a non-aqueous electrolyte battery having a positive electrode, a negative electrode, a separator, a non-aqueous electrolyte, and an exterior body, 11.
  • a non-aqueous electrolyte battery, wherein at least one of the positive electrode, the negative electrode, the separator, the non-aqueous electrolyte, and the exterior body includes inorganic particles for a non-aqueous electrolyte battery according to any one of items 1 to 10.
  • the nonaqueous electrolyte battery according to item 12 comprising a positive electrode, a negative electrode, and a separator,
  • the inorganic particle-containing layer is formed in at least one part or all of the non-aqueous electrolyte selected from the inside of the separator, between the positive electrode and the separator, and between the negative electrode and the separator. battery.
  • Item 15 The nonaqueous electrolyte battery according to Item 14, wherein the inorganic particle-containing layer is formed in part or all between the positive electrode and the separator.
  • a separator for a non-aqueous electrolyte battery comprising the inorganic particles for a non-aqueous electrolyte battery according to any one of items 1 to 10.
  • a nonaqueous electrolyte battery paint comprising the inorganic particles for a nonaqueous electrolyte battery according to any one of items 1 to 10.
  • a method for inspecting the metal adsorption capacity of inorganic particles for a non-aqueous electrolyte battery comprising the following steps: By adding a metal compound to a cyclic and / or chain carbonate solution containing 0.1 to 6.0 mol / L LiPF 6 at a dew point of ⁇ 40 ° C.
  • the metal ion concentration is 0.1 to 10,000 ppm.
  • Preparing a non-aqueous electrolyte solution Adding 0.001 to 100 parts by mass of the inorganic particles for nonaqueous electrolyte battery to 100 parts by mass of the nonaqueous electrolyte solution to prepare a nonelectrolyte mixed solution; A step of stirring the non-electrolyte mixed solution at 0 to 45 ° C. for 1 second to 1000 hours; and the metal ion concentration in the non-electrolyte mixed solution after stirring is determined by inductively coupled plasma spectroscopy (IPC-AES) or inductively coupled plasma. Quantifying with a mass spectrometer (ICP-MS); Including a method.
  • the inorganic particles for a non-aqueous electrolyte battery of the present invention can efficiently adsorb metal ions present or generated in the non-aqueous electrolyte battery, so that a non-aqueous electrolyte battery excellent in safety and life characteristics can be obtained. Can be provided.
  • FIG. 1 is an X-ray diffraction diagram by X-ray diffraction measurement using the Cu—K ⁇ ray of hydroxyapatite used in Examples 1 to 3 as a light source.
  • the present embodiment an embodiment of the present invention (hereinafter referred to as “the present embodiment”) will be described in detail, but the present invention is not limited to the present embodiment.
  • the upper limit value and the lower limit value of each numerical range can be arbitrarily combined.
  • the nonaqueous electrolyte battery of the present embodiment includes an inorganic particle-containing layer containing the inorganic particles for a nonaqueous electrolyte battery of the present embodiment.
  • a nonaqueous electrolyte battery generally includes a positive electrode, a negative electrode, a separator, a nonaqueous electrolyte, and an exterior body.
  • the separator contains the inorganic particles for a non-aqueous electrolyte battery of the present embodiment.
  • the inorganic particles may be added in the separator, for example, in a microporous film or a nonwoven fabric as a base material.
  • the inorganic particle-containing layer is preferably formed in part or all of at least one selected from the inside of the separator, between the positive electrode and the separator, and between the negative electrode and the separator, and between the positive electrode and the separator. More preferably, it is formed on a part or all of the above.
  • a lithium ion secondary battery may be described as an example of the nonaqueous electrolyte battery. However, such description is intended only to assist the understanding of the present invention.
  • the nonaqueous electrolyte battery of the form is not limited to the lithium ion secondary battery.
  • battery constituent members members constituting a battery including a positive electrode, a negative electrode, a separator, a non-aqueous electrolyte, and an exterior body are collectively referred to as “battery constituent members”.
  • the material constituting the battery component include aluminum for an exterior body; nickel, cobalt, manganese, iron, zinc, copper, and aluminum for a positive electrode active material; and copper and aluminum for a current collector foil Are typically used.
  • These metals for example, come into contact with HF and are eluted as metal ions in the battery. The eluted metal ions are reduced and deposited at the negative electrode. For example, in a lithium ion secondary battery, a Li-containing compound is generated and the capacity is reduced.
  • the nonaqueous electrolyte battery according to the present embodiment includes specific inorganic particles to be described later, thereby effectively adsorbing metal ions present or generated in the battery, suppressing metal deposition, and battery life characteristics. Can be improved. Moreover, since precipitation of the metal in a negative electrode can be suppressed and a short circuit can be suppressed more effectively, it can contribute to the improvement of the safety
  • the positive electrode, the negative electrode, the separator, the nonaqueous electrolyte, and the outer package includes inorganic particles.
  • the inorganic particles for a nonaqueous electrolyte battery according to this embodiment include a cation exchanger having a highly crystalline one-dimensional tunnel-like crystal structure.
  • the inorganic particles for a non-aqueous electrolyte battery may be composed of a highly crystalline one-dimensional tunnel crystal structure cation exchanger, and a highly crystalline one-dimensional tunnel crystal structure cation exchange.
  • it may further contain inorganic particles for mixing, which will be described later, and may be composed of a highly crystalline cation exchanger having a one-dimensional tunnel crystal structure and inorganic particles for mixing.
  • a cation exchanger having a one-dimensional tunnel crystal structure has a one-dimensional tunnel crystal structure, and adsorbs cations existing or generated in a battery in the tunnel. Instead, it refers to a substance capable of releasing other cations (also referred to as “exchangeable cations”) present in the tunnel. Since the exchangeable cations are regularly arranged in one direction in the one-dimensional tunnel type crystal structure, there is a tendency that the mobility in the crystal is high and the adsorption ability of other cations is also excellent.
  • “high crystallinity” means that the peak shape derived from a one-dimensional tunnel-like crystal structure in an X-ray diffraction measurement using Cu—K ⁇ rays as a light source is sharp. More specifically, it means that the half width of the peak derived from the one-dimensional tunnel crystal structure is 0.3 ° or less. Due to the high crystallinity of the one-dimensional tunnel type crystal structure, the mobility of exchangeable cations in the crystal tends to be higher, and the adsorption ability of other cations tends to be better.
  • Examples of the cation exchanger having a one-dimensional tunnel-like crystal structure include, but are not limited to, for example, hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2 , also called “hydroxyapatite”), fluoroapatite (Ca 10 (PO 4 ) 6 F 2 , also called “fluorapatite”, chlorapatite (Ca 10 (PO 4 ) 6 Cl 2 ), protonated feldspar, manganese oxide (eg, pyrolucite type) , Ramsdelite type, hollandite type, romanesite type, RUB-7 type, todorokite type, etc.), ⁇ -alumina, potassium hexatitanate, potassium tungstate, potassium molybdate, mesoporous materials (FSM-16, etc.), nanotubes Aluminum silicates (such as imogolite), predelite, octo titanate, and gallottanogari Acid-free salt, and the like
  • hydroxyapatite, fluoroapatite, chlorapatite, protonated feldspar, manganese oxide, ⁇ -alumina, potassium hexatitanate, potassium tungstate, potassium molybdate, octitanium Preferred is at least one cation exchanger selected from the group consisting of acid salts and gallotitanogallates.
  • hydroxyapatite is preferred as the cation exchanger having a one-dimensional tunnel-like crystal structure.
  • a cation exchanger may be used individually by 1 type, and may use 2 or more types together.
  • each site may be partially substituted with another element and / or element group as long as a highly crystalline one-dimensional tunnel crystal structure is maintained.
  • the Ca site can be replaced with an element such as Na, K, Rb, Cs, Mg, Zn, Ba, Y, V, Sb, Ge, or Ti.
  • the PO 4 site can be replaced with an element group such as SO 4 , CO 3 , HPO 4 , AsO 4 , VO 4 , BO 3 , CrO 4 , SiO 4 , GeO 4 , BO 4 .
  • the OH site can be replaced with an element such as OH, F, Cl, Br, I, O, CO 3 , or H 2 O and / or a group of elements.
  • the said element and / or element group may be only 1 type, and may contain 2 or more types.
  • Hydroxyapatite has a (002) plane peak at a diffraction angle (2 ⁇ ) of 25.5 to 26.5 ° in an X-ray diffraction pattern by X-ray diffraction measurement using Cu—K ⁇ rays as a light source. It is preferable that a (300) plane peak exists at (2 ⁇ ) 32.5 to 33.5 °.
  • the full width at half maximum of the peak on the (002) plane of hydroxyapatite is preferably 0.3 or less, more preferably 0.20 or less, and still more preferably 0.15 or less.
  • the method for obtaining hydroxyapatite is not particularly limited, and a known method can be used.
  • Examples of the method for producing hydroxyapatite include a dry method and a wet method.
  • the dry method is a method in which calcium carbonate, calcium pyrophosphate, calcium hydrogen phosphate or the like is used as a raw material and heat treatment is performed at a high temperature of about 1200 ° C.
  • the wet method is a reaction in an aqueous solution, and hydroxyapatite is obtained by reacting calcium salt with phosphoric acid and / or phosphate under neutral to alkaline conditions near atmospheric pressure or under hydrothermal conditions. It is done.
  • Hydroxyapatite obtained by the wet method tends to be more excellent in purity and crystallinity than the dry method. Further, the hydroxyapatite obtained by a wet method may be subjected to a baking treatment at 200 to 1300 ° C. By performing the baking treatment, it is possible to remove adsorbed water that causes battery swelling in the non-aqueous electrolyte battery, and to increase the crystallinity, and hence the ability to adsorb eluted ions can be improved.
  • mixing inorganic particles refers to inorganic particles capable of improving the dispersibility of a cation exchanger having a one-dimensional tunnel crystal structure.
  • the inorganic particles preferably include mixing inorganic particles as well as a highly crystalline one-dimensional tunnel crystal structure cation exchanger. Further, it is more preferable that the mixing inorganic particles have an average thickness larger than that of the cation exchanger.
  • thickness refers to the length of the particle in the shortest axial direction.
  • the method for measuring the average thickness of the particles is not particularly limited.
  • the average thickness of the 100 particles can be measured by observing the length in the shortest axial direction of the 100 particles and calculating the average value. it can.
  • the inorganic particles for mixing are not particularly limited, but for example, those having a melting point of 200 ° C. or higher, high electrical insulation, and electrochemical stability within the use range of the nonaqueous electrolyte battery are preferable.
  • examples of such inorganic particles include, but are not limited to, cation exchangers such as anion exchangers, zirconium phosphates, titanium phosphates, titanates, niobates, niobium titanates, and zeolites.
  • Carbonates and sulfates such as calcium sulfate, magnesium sulfate, aluminum sulfate, gypsum, barium sulfate, alumina trihydrate (ATH), fumed silica, precipitated silica, yttria and other oxide ceramics, sodium oxide, oxidation Potassium, magnesium oxide, calcium oxide, barium oxide, strontium oxide, vanadium oxide, SiO 2 —MgO (magnesium silicate), SiO 2 —CaO (calcium silicate), sodium carbonate, potassium carbonate, magnesium carbonate, calcium carbonate, carbonate Barium, lanthanum carbonate, Nitride ceramics such as cerium silicon nitride, titanium nitride, boron nitride, layered silicates such as magnesium hydroxide, silicon carbide, talc, dickite, nacrite, halloysite, pyrophyllite, montmorillonite, sericite, amicite, bentonit
  • the mixing inorganic particles are preferably anion exchangers.
  • the “anion exchanger” refers to a substance that can adsorb an anion present or generated in a battery and release another anion instead. It is more preferable that the inorganic particles for mixing be an anion exchanger because not only the dispersibility of the cation exchanger in the inorganic particle layer can be improved but also metal ions can be adsorbed more efficiently.
  • the specific mechanism is not limited to theory, but by including an anion exchanger, the stability of the cation diffused from the cation exchanger into the non-aqueous electrolyte is improved in the non-aqueous electrolyte, Precipitation in the vicinity of the cation exchanger is suppressed, and as a result, it is presumed that the ion exchange capacity of the cation exchanger is prevented from decreasing.
  • anion exchanger examples include, but are not limited to, layered double hydroxide (Mg—Al type, Mg—Fe type, Ni—Fe type, Li—Al type), layered double hydroxide-alumina silica gel composite Boehmite, alumina, zinc oxide, lead oxide, iron oxide, iron oxyhydroxide, hematite, lanthanum oxide, bismuth oxide, tin oxide, titanium oxide, cerium oxide, zirconium oxide, basic copper acetate and basic lead sulfate, etc. Can be mentioned.
  • boehmite, alumina, zinc oxide, lead oxide, iron oxide, iron oxyhydroxide, hematite, lanthanum oxide, bismuth oxide, tin oxide can be used as anion exchangers. Titanium oxide, cerium oxide, and zirconium oxide are preferable.
  • An anion exchanger may be used individually by 1 type, and may use 2 or more types together.
  • the inorganic particles for a non-aqueous electrolyte battery of the present embodiment contain other inorganic particles other than the cation exchanger having a one-dimensional tunnel-like crystal structure and the mixing inorganic particles whose average thickness is thicker than that of the cation exchanger. May be.
  • the BET specific surface area of the cation exchanger is preferably 3 m 2 / g or more, more preferably 5 m 2 / g or more. When the BET specific surface area is 3 m 2 / g or more, the life characteristics and safety of the nonaqueous electrolyte battery can be further improved.
  • the BET specific surface area of the cation exchanger is preferably 2000 m 2 / g or less, more preferably 1000 m 2 / g or less, still more preferably 100 m 2 / g or less, and still more preferably 50 m 2 / g or less. When the BET specific surface area is 2000 m 2 / g or less, aggregation of inorganic particles is suppressed and the energy density of the nonaqueous electrolyte battery tends to be improved.
  • Inorganic particles for non-aqueous electrolyte battery include 0.035 parts by mass of inorganic particles with respect to 100 parts by mass of a mixed solution of 5 ppm of Mn 2+ ions, 1 mol / L LiPF 6 and cyclic and / or chain carbonate.
  • the adsorption rate of Mn 2+ ions to the inorganic particles is preferably 10% or more, more preferably 15% or more, and further preferably 20% or more.
  • security of a nonaqueous electrolyte battery can be improved more as the adsorption rate of Mn2 + ion to an inorganic particle is 10% or more.
  • the average secondary particle diameter (D50) of the inorganic particles for nonaqueous electrolyte batteries is preferably 0.05 ⁇ m to 4 ⁇ m, more preferably 0.1 ⁇ m to 3.5 ⁇ m, and still more preferably 0.2 ⁇ m to 3 ⁇ m.
  • D50 The average secondary particle diameter of the inorganic particles for nonaqueous electrolyte batteries.
  • the method for controlling the average secondary particle size of the inorganic particles for non-aqueous electrolyte batteries within the range of 0.05 ⁇ m to 4.0 ⁇ m is not particularly limited, but a conventionally known method such as an axial flow mill method, an annular method, etc. Examples thereof include a mold mill method, a roll mill method, a ball mill method, a bead mill method, a jet mill method, a container rotary compression shear type mill method, and a method of pulverizing with a porcelain mortar.
  • the shape of the inorganic particles for a non-aqueous electrolyte battery according to this embodiment may be spherical, plate-like, needle-like, etc., preferably plate-like or needle-like.
  • the aspect ratio of the inorganic particles is not limited.
  • the amount of the inorganic particles for mixing and the cation exchanger contained in the inorganic particles for non-aqueous electrolyte battery is, when the total mass of the inorganic particles for mixing and the cation exchanger is 100% by mass, the content of the cation exchanger The amount is preferably less than 50% by weight, more preferably 40% or less. When the total mass of the inorganic particles for mixing and the cation exchanger is 100% by mass, the content of the cation exchanger is preferably 1% or more, more preferably 5% or more, and further preferably 10% or more. .
  • the cation exchanger When the cation exchanger is less than 50% by mass, the energy density of the nonaqueous electrolyte battery is maintained high and the metal ion adsorption rate tends to be excellent.
  • a non-spherical, for example, acicular cation exchanger such as hydroxyapatite is used, the effect of making the cation exchanger less than 50% by mass becomes more remarkable.
  • the nonaqueous electrolyte battery separator (hereinafter also simply referred to as “separator”) is not limited as long as it has high ion permeability and has a function of electrically separating the positive electrode and the negative electrode.
  • a known separator used for a nonaqueous electrolyte battery can be used.
  • the material of the separator is not limited, but is a material that is stable and electrochemically stable with respect to the non-aqueous electrolyte in the battery, such as polyolefin, such as polyethylene (PE), polypropylene (PP), etc .; polyester; Polyimide; polyamide; polyurethane. Although it does not limit as a form of a separator, For example, a microporous film, a nonwoven fabric, etc. are mentioned.
  • the separator preferably has a property (also referred to as “shutdown function”) in which the pores are closed at 80 ° C. or higher and 180 ° C. or lower, more preferably 100 ° C. or higher and 150 ° C. or lower. Therefore, as a separator, the melting temperature measured using a differential scanning calorimeter (DSC) according to JIS K 7121 is preferably 80 ° C. or higher and 180 ° C. or lower, more preferably 100 ° C. or higher and 150 ° C. or lower. It is more preferable to use a microporous film or a nonwoven fabric containing polyolefin.
  • DSC differential scanning calorimeter
  • the microporous film or nonwoven fabric as the separator may be composed of, for example, PE, may be composed of PP, or may contain two or more materials.
  • the separator may be a laminate of a microporous membrane composed of PE and a microporous membrane composed of PP, for example, a three-layer laminate in which PP, PE, and PP are laminated in this order.
  • microporous membrane for example, an ion-permeable porous membrane having a large number of pores formed by a conventionally known solvent extraction method, dry method or wet stretching method can be used. It may be a microporous membrane widely used as a separator.
  • the separator for nonaqueous electrolyte batteries may have the inorganic particles for nonaqueous electrolyte batteries of this embodiment.
  • the separator has the inorganic particles of the present embodiment, (i) the microporous film or nonwoven fabric as the substrate may contain inorganic particles, and (ii) the substrate of at least one side of the present embodiment Inorganic particles may be included.
  • a porous inorganic particle-containing layer containing inorganic particles may be disposed on one side or both sides of a microporous membrane or nonwoven fabric (hereinafter referred to as “inorganic particle-containing layer”). It is also referred to as a “separator”.
  • the microporous film or the nonwoven fabric becomes a layer having an original function of transmitting a separator while preventing a short circuit between the positive electrode and the negative electrode, and the inorganic particle-containing layer is formed from the positive electrode active material. It plays a role of adsorbing metal ions eluted in the non-aqueous electrolyte.
  • the separator for a nonaqueous electrolyte battery according to this embodiment preferably has an inorganic particle-containing layer on at least one side of the substrate, preferably on the side facing the positive electrode.
  • the separator in order to ensure a shutdown function, preferably has a microporous film or a nonwoven fabric mainly composed of polyolefin having the melting temperature described above as a base material, and the melting temperature described above. It is more preferable to have a microporous film mainly composed of polyolefin having That is, it is particularly preferable that the separator having the inorganic particle-containing layer has the inorganic particle-containing layer on at least one surface of the porous layer mainly composed of the polyolefin having the above melting temperature as the base material.
  • the microporous film or the nonwoven fabric as the base material and the inorganic particle-containing layer may be integrated, and each exists as an independent film and is superposed in the battery. You may comprise the separator.
  • the porous layer "mainly composed of polyolefin” refers to a layer whose content of polyolefin is 30% by volume or more in the total volume of the constituent components (total volume excluding the pores), Preferably it is 70 volume% or more.
  • a porous layer mainly composed of polyolefin, particularly a microporous film, is likely to be thermally contracted when the temperature in the battery becomes high.
  • the inorganic particle-containing layer containing inorganic particles for nonaqueous electrolyte batteries that hardly heat shrinks functions as a heat-resistant layer, and heat shrinkage of the entire separator is suppressed, non-water that is superior in safety at higher temperatures An electrolyte battery can be obtained.
  • the inorganic particle-containing layer binds inorganic particles for non-aqueous electrolyte batteries and / or the inorganic particle-containing layer and a substrate (nonwoven fabric or microporous membrane) In order to bind these, it is preferable to contain a binder.
  • the binder in the inorganic particle-containing layer is not limited.
  • a binder that is insoluble or hardly soluble in the nonaqueous electrolyte to be used and is electrochemically stable is preferable.
  • a binder include, but are not limited to, polyolefins such as polyethylene and polypropylene; fluorine-containing resins such as vinylidene fluoride and polytetrafluoroethylene; vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer, ethylene Fluorine-containing rubber such as tetrafluoroethylene copolymer; styrene-butadiene copolymer and its hydride, acrylonitrile-butadiene copolymer and its hydride, acrylonitrile-butadiene-styrene copolymer and its hydride, methacrylic acid Ester-acrylic acid ester copolymer, styren
  • the binder is not particularly limited, but is more preferably at least one selected from the group consisting of non-conductive polymers or polymer particles having a core-shell structure.
  • the particles of the non-conductive polymer or the polymer having a core-shell structure include resins roughly classified into the following (b1) to (b4): (B1) Nitrile resin (b2) Acrylic resin (b3) Aliphatic conjugated diene resin (b4) Resins different from (b1) to (b3) above
  • a nitrile resin is a resin containing a polymer unit having a nitrile group as a main component.
  • a polymerization unit as a main component means that it is 50 mol% or more based on the total mol of all monomers charged at the time of polymerization.
  • the nitrile resin may optionally contain, in addition to the polymer unit having a nitrile group, an ethylenically unsaturated compound, a linear alkylene polymer unit having 4 or more carbon atoms, a polymer unit having a hydrophilic group, or a polymer unit having a reactive group.
  • Aromatic vinyl polymerized units and at least one selected from the group consisting of polymerized units having a thermally crosslinkable group.
  • thermally crosslinkable group examples include an epoxy group, an N-methylolamide group, an oxazoline group, and an allyl group.
  • the abundance of the monomer unit having a thermally crosslinkable group in the nitrile resin is the total amount of the (meth) acrylonitrile monomer unit and the (meth) acrylic acid ester monomer unit. 0.01 mass part or more and 4 mass parts or less are preferable with respect to 100 mass parts.
  • the iodine value of the nitrile resin is preferably 3 to 60 mg / 100 mg, more preferably 3 to 30 mg / 100 mg, and further preferably 3 to 10 mg / 100 mg.
  • the nitrile resin can be obtained by polymerization of a monomer having a nitrile group, or copolymerization of a monomer having a nitrile group and another monomer.
  • the monomer having a nitrile group include (meth) acrylonitrile.
  • (Meth) acrylonitrile means acrylonitrile or methacrylonitrile.
  • Other monomers include ethylenically unsaturated compounds such as acrylic acid, 2-methacrylic acid, 2-pentenoic acid, 2,3-dimethylacrylic acid, 3,3-dimethylacrylic acid, itaconic acid, and their Examples include (meth) acrylic acid such as alkali metal salt.
  • the (meth) acrylic acid ester means an acrylic acid ester or a methacrylic acid ester.
  • a part or all of the hydrogen of the alkyl group is substituted with a halogen such as fluorine. It may be a group.
  • the number of carbon atoms of the alkyl group bonded to the non-carbonyl oxygen atom of the (meth) acrylic acid alkyl ester is preferably 1 to 14, and more preferably 1 to 5.
  • Examples of (meth) acrylic acid alkyl esters in which the alkyl group bonded to the non-carbonyl oxygen atom has 1 to 5 carbon atoms include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, and n-acrylate.
  • -Acrylic acid alkyl esters such as butyl, t-butyl acrylate, hexyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate; 2 such as ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, and trimethylolpropane triacrylate
  • carboxylic acid esters having one or more carbon-carbon double bonds examples include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, and n-acrylate.
  • -Acrylic acid alkyl esters such as but
  • acrylic acid alkyl esters include non-carbonyl oxygen such as n-hexyl acrylate, 2-ethylhexyl acrylate, nonyl acrylate, lauryl acrylate, stearyl acrylate, cyclohexyl acrylate, and isobornyl acrylate
  • linear alkylene polymer unit having 4 or more carbon atoms examples include butadiene, isoprene, and pentadiene.
  • the hydrophilic group means a functional group that liberates protons in an aqueous solvent and a salt in which the proton is substituted with a cation. Specifically, a carboxylic acid group, a sulfonic acid group, a hydroxyl group, a phosphoric acid group, and These salts are mentioned.
  • the content ratio of the hydrophilic group is preferably in the range of 0.05 to 10% by mass.
  • hydrophilic group into the nitrile resin is carried out by polymerizing a monomer containing a carboxylic acid group, a sulfonic acid group, a hydroxyl group, a phosphoric acid group, and a metal salt or ammonium salt thereof.
  • Examples of the monomer having a carboxylic acid group include monocarboxylic acids and derivatives thereof, dicarboxylic acids, and derivatives thereof.
  • Examples of monocarboxylic acids include acrylic acid, methacrylic acid, 3-butenoic acid, and crotonic acid.
  • Examples of monocarboxylic acid derivatives include 2-ethylacrylic acid, isocrotonic acid, ⁇ -acetoxyacrylic acid, ⁇ -trans-aryloxyacrylic acid, ⁇ -chloro- ⁇ -E-methoxyacrylic acid, ⁇ -diaminoacrylic acid, trans -Butenedionic acid, cis-butenedionic acid and the like.
  • Examples of the dicarboxylic acid include maleic acid, fumaric acid, and itaconic acid.
  • Examples of the dicarboxylic acid derivative include methylmaleic acid, dimethylmaleic acid, phenylmaleic acid, chloromaleic acid, dichloromaleic acid, and fluoromaleic acid.
  • methylallyl maleate, diphenyl maleate, nonyl maleate, maleate And maleate esters such as decyl acid, dodecyl maleate, octadecyl maleate, and fluoroalkyl maleate.
  • generates a carboxyl group by hydrolysis can also be used.
  • Examples of the acid anhydride of dicarboxylic acid include maleic anhydride, acrylic anhydride, methyl maleic anhydride, and dimethyl maleic anhydride.
  • Monomers having a sulfonic acid group include vinyl sulfonic acid, methyl vinyl sulfonic acid, (meth) allyl sulfonic acid, styrene sulfonic acid, ethyl (meth) acrylic acid-2-sulfonate, 2-acrylamido-2-methylpropane sulfone. Acid, and 3-allyloxy-2-hydroxypropanesulfonic acid.
  • Examples of the monomer having a hydroxyl group include ethylenically unsaturated alcohols such as (meth) allyl alcohol, 3-buten-1-ol, and 5-hexen-1-ol; 2-hydroxyethyl acrylate, acrylic acid-2- Ethylenics such as hydroxypropyl, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, di-2-hydroxyethyl maleate, di-4-hydroxybutyl maleate, and di-2-hydroxypropyl itaconate Alkanol esters of unsaturated carboxylic acids; general formula CH 2 ⁇ CR 1 —COO — ((CH 2 ) n O) m —H (m is an integer from 2 to 9, n is an integer from 2 to 4, R 1 is Esters of polyalkylene glycol represented by hydrogen or methyl group) and (meth) acrylic acid Mono (meth) acrylic acid esters of dihydroxy esters of dicarboxylic acids such as 2-hydroxyethyl
  • Examples of the monomer having a phosphoric acid group include phosphoric acid-2- (meth) acryloyloxyethyl, methyl-2- (meth) acryloyloxyethyl phosphate, and ethyl phosphate- (meth) acryloyloxyethyl phosphate.
  • the polymerized unit having a reactive group may be added to improve the reactivity with the surface functional groups of the inorganic particles and the dispersibility of the inorganic particles when producing a slurry.
  • the polymerization unit having a reactive group when the surface functional group of the inorganic particles is an amino group, the reactive group of the nitrile resin is preferably an epoxy group, a carbonyl group, or a carboxyl group, and more preferably an epoxy group.
  • the reactive group of the nitrile resin is preferably a sulfonic acid group, an amino group, a phosphoric acid group, a hydroxyl group, a mercapto group, and an isocyanate group, a sulfonic acid group, An amino group is more preferable.
  • the surface functional group of the inorganic particle mentioned above is a mercapto group, as a reactive group of a nitrile resin, an epoxy group and a mercapto group are preferable.
  • the reactive group of the nitrile resin is preferably an epoxy group or a hydroxyl group.
  • the surface functional group of the inorganic particle mentioned above is a hydroxyl group or a carboxyl group, a carbodiimide group, an epoxy group, an oxazoline group, a hydrazide group, and an isocyanato group are preferable.
  • the nitrile resin is not limited to the above-described repeating units (that is, (meth) acrylonitrile monomer units, (meth) acrylic acid ester monomer units, and monomer units having a thermally crosslinkable group),
  • Other arbitrary repeating units may be included.
  • monomers corresponding to the above arbitrary repeating units include styrene, chlorostyrene, vinyl toluene, t-butyl styrene, vinyl benzoic acid, methyl vinyl benzoate, vinyl naphthalene, chloromethyl styrene, ⁇ -methyl styrene.
  • styrene monomers such as divinylbenzene; olefins such as ethylene and propylene; halogen atom-containing monomers such as vinyl chloride and vinylidene chloride; vinyl esters such as vinyl acetate, vinyl propionate, and vinyl butyrate; Vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, and butyl vinyl ether; Vinyl ketones such as methyl vinyl ketone, ethyl vinyl ketone, butyl vinyl ketone, hexyl vinyl ketone, and isopropenyl vinyl ketone; N-vinyl pyrrolidone, vinyl Heterocycle-containing vinyl compounds such as lysine and vinylimidazole; amide monomers such as acrylamide; sulfonic acid esters such as acrylamide-2-methylpropanesulfonic acid; imino compounds, maleimides, unsaturated polyalkylene glycol ether monomers Bodies, ethylene functional silicon-
  • the nitrile resin may contain only one type of the above arbitrary repeating unit, or may contain two or more types in combination at an arbitrary ratio.
  • the amount of the arbitrary repeating unit is small. Preferably, it does not contain any of the above repeating units.
  • the weight average molecular weight of the nitrile resin is preferably 10,000 or more, more preferably 20,000 or more, preferably 2,000,000 or less, more preferably 50,000 or less.
  • weight average molecular weight of the nitrile resin is in the above range, the strength of the porous film of the present invention and the dispersibility of the nonconductive polymer are easily improved.
  • the volume average particle diameter D50 of the nitrile resin is preferably 0.01 ⁇ m or more, preferably 0.5 ⁇ m or less, and more preferably 0.2 ⁇ m or less.
  • the volume average particle diameter D50 of the nitrile resin is preferably 0.01 ⁇ m or more, preferably 0.5 ⁇ m or less, and more preferably 0.2 ⁇ m or less.
  • the glass transition temperature (Tg) of the nitrile resin is preferably 20 ° C. or lower, more preferably 15 ° C. or lower, and particularly preferably 5 ° C. or lower.
  • Tg glass transition temperature
  • the glass transition temperature of the water-insoluble particulate polymer can be adjusted by combining various monomers.
  • the lower limit of the glass transition temperature of the nitrile resin is not particularly limited, but can be ⁇ 50 ° C. or higher.
  • the dispersant used in the polymerization method may be one used in ordinary synthesis.
  • Specific examples include benzenesulfonic acid such as sodium dodecylbenzenesulfonate and sodium dodecylphenylethersulfonate.
  • Alkyl sulfates such as sodium lauryl sulfate and sodium tetradodecyl sulfate; sulfosuccinates such as sodium dioctyl sulfosuccinate and sodium dihexyl sulfosuccinate; fatty acid salts such as sodium laurate; polyoxyethylene lauryl ether sulfate sodium salt, polyoxy Ethoxysulfate salts such as ethylene nonylphenyl ether sulfate sodium salt; alkane sulfonate salt; alkyl ether phosphate sodium salt; polyoxyethylene Nonionic emulsifiers such as nylphenyl ether, polyoxyethylene sorbitan lauryl ester, and polyoxyethylene-polyoxypropylene block copolymer; gelatin, maleic anhydride-styrene copolymer, polyvinylpyrrolidone, sodium polyacrylate, and Examples thereof include water-soluble
  • benzenesulfonates such as sodium dodecylbenzenesulfonate and sodium dodecylphenylethersulfonate
  • alkyl sulfates such as sodium lauryl sulfate and sodium tetradodecylsulfate
  • oxidation resistance is more preferable.
  • it is a benzenesulfonate such as sodium dodecylbenzenesulfonate and sodium dodecylphenylethersulfonate.
  • the addition amount of the dispersant can be arbitrarily set, and is usually about 0.01 to 10 parts by mass with respect to 100 parts by mass of the total amount of monomers.
  • the pH when the nitrile resin is dispersed in the dispersion medium is preferably 5 to 13, more preferably 5 to 12, and most preferably 10 to 12.
  • the pH of the nitrile resin is within the above range, the storage stability of the nitrile resin is improved, and further, the mechanical stability is improved.
  • the pH adjuster for adjusting the pH of the nitrile resin includes alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, and potassium hydroxide, group 2 element oxides such as magnesium hydroxide, calcium hydroxide, and Alkali earth metal oxides such as barium hydroxide, hydroxides such as hydroxides of metals belonging to Group IIIA in the long periodic table such as aluminum hydroxide; alkali metal carbonates such as sodium carbonate and potassium carbonate, carbonic acid Examples of organic amines include alkyl amines such as ethylamine, diethylamine, and propylamine; monomethanolamine, monoethanolamine, monopropanolamine, and the like.
  • Alcohol amines such as ammonia water; It is.
  • alkali metal hydroxides are preferable from the viewpoints of binding properties and operability, and sodium hydroxide, potassium hydroxide, and lithium hydroxide are particularly preferable.
  • the nitrile resin may contain a crosslinking agent.
  • the crosslinking agent include carbodiimide compounds, polyfunctional epoxy compounds, oxazoline compounds, polyfunctional hydrazide compounds, isocyanate compounds, melamine compounds, urea compounds, and mixtures thereof.
  • the nitrile resin is specifically polyacrylonitrile, acrylonitrile-butadiene copolymer, acrylonitrile-styrene copolymer, acrylonitrile-butadiene-styrene copolymer, acrylonitrile-styrene-acrylate copolymer, or hydrogenation thereof. Things.
  • (B2) Acrylic resin
  • An acrylic resin is a resin obtained by using an acrylic compound as a main monomer. Using as a main monomer means that it is 50 mol% or more with respect to the total mol of all monomers charged at the time of superposition
  • the acrylic compound is a monomer having a (meth) acryloyl group which is an acryloyl group or a methacryloyl group.
  • the acrylic resin may optionally be added to the polymer unit having an acryloyl group, an ethylenically unsaturated compound containing (meth) acrylonitrile, a linear alkylene polymer unit having 4 or more carbon atoms, a polymer unit having a hydrophilic group, a reaction It may contain at least one selected from the group consisting of a polymer unit having a functional group, an aromatic vinyl polymer unit, and a polymer unit having a thermally crosslinkable group.
  • the thermally crosslinkable group include an epoxy group, an N-methylolamide group, an oxazoline group, and an allyl group.
  • the abundance of the monomer unit having a thermally crosslinkable group in the acrylic resin is the total amount of the (meth) acrylonitrile monomer unit and the (meth) acrylic acid ester monomer unit. 0.01 mass part or more and 4 mass parts or less are preferable with respect to 100 mass parts.
  • the acrylic resin can be obtained by polymerization of an acrylic compound or copolymerization of an acrylic compound and another monomer.
  • acrylic compound examples include, for example, acrylic acid, 2-methacrylic acid, 2-pentenoic acid, 2,3-dimethylacrylic acid, 3,3-dimethylacrylic acid, itaconic acid, and alkali metals thereof. Salt; and the like.
  • (meth) acrylic acid esters include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl (meth) acrylate, acrylic acid t (Meth) acrylic acid alkyl esters such as butyl, hexyl (meth) acrylate, and (meth) acrylic acid-2-ethylhexyl; two or more such as ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, and trimethylolpropane triacrylate And diacrylate compounds having a carbon-carbon double bond; triacrylate compounds, tetraacrylate compounds, dimethacrylate compounds, and trimethacrylate compounds.
  • Other monomers include ethylenically unsaturated compounds such as (meth) acrylonitrile, (meth) acrylic acid alkyl esters such as methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, acrylic Acrylic acid alkyl esters such as n-butyl acid, t-butyl acrylate, hexyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate; ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, and trimethylolpropane triacrylate And carboxylic acid esters having two or more carbon-carbon double bonds.
  • acrylic acid alkyl esters such as methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate
  • acrylic Acrylic acid alkyl esters such as n-butyl acid, t-butyl acrylate
  • acrylic acid alkyl esters include non-carbonyl oxygen such as n-hexyl acrylate, 2-ethylhexyl acrylate, nonyl acrylate, lauryl acrylate, stearyl acrylate, cyclohexyl acrylate, and isobornyl acrylate
  • the acrylic resin has the above-described repeating unit (that is, a (meth) acrylic monomer unit, a (meth) acrylonitrile monomer unit, a (meth) acrylic acid ester monomer unit, and a thermally crosslinkable group.
  • a (meth) acrylic monomer unit a (meth) acrylonitrile monomer unit
  • a (meth) acrylic acid ester monomer unit a thermally crosslinkable group.
  • other arbitrary repeating units may be included. Examples of monomers corresponding to the above arbitrary repeating units include linear alkylene polymer units having 4 or more carbon atoms, monomers having carboxylic acid groups, monomers having sulfonic acid groups, monomers having hydroxyl groups, and phosphoric acid groups.
  • Styrenes such as styrene, chlorostyrene, vinyltoluene, t-butylstyrene, vinylbenzoic acid, methyl vinylbenzoate, vinylnaphthalene, chloromethylstyrene, ⁇ -methylstyrene, and divinylbenzene Monomers; Olefins such as ethylene and propylene; Halogen atom-containing monomers such as vinyl chloride and vinylidene chloride; Vinyl esters such as vinyl acetate, vinyl propionate, and vinyl butyrate; Methyl vinyl ether, Ethyl vinyl ether, and Butyl Vinyl ethers such as Vier ether Vinyl ketones such as methyl vinyl ketone, ethyl vinyl ketone, butyl vinyl ketone, hexyl vinyl ketone, and isopropenyl vinyl ketone; heterocycle-containing vinyl compounds such as N-vinyl pyrrolidone, vinyl pyridine, and vinyl imidazo
  • the acrylic resin may contain only one type of the above arbitrary repeating unit, or may contain two or more types in combination at an arbitrary ratio.
  • the amount of the arbitrary repeating unit is small. Preferably, it does not contain any of the above repeating units.
  • the weight average molecular weight of the acrylic resin is preferably 10,000 or more, more preferably 20,000 or more, preferably 2,000,000 or less, more preferably 500,000 or less.
  • weight average molecular weight of the acrylic resin is in the above range, the strength of the porous film of the present invention and the dispersibility of the non-conductive polymer are easily improved.
  • the volume average particle diameter D50 of the acrylic resin is preferably 0.01 ⁇ m or more, preferably 0.5 ⁇ m or less, and more preferably 0.2 ⁇ m or less.
  • the volume average particle diameter D50 of the acrylic resin is preferably 0.01 ⁇ m or more, preferably 0.5 ⁇ m or less, and more preferably 0.2 ⁇ m or less.
  • the glass transition temperature (Tg) of the acrylic resin is preferably 20 ° C. or lower, more preferably 15 ° C. or lower, and particularly preferably 5 ° C. or lower.
  • Tg glass transition temperature
  • the glass transition temperature of the water-insoluble particulate polymer can be adjusted by combining various monomers.
  • the lower limit of the glass transition temperature of the acrylic resin is not particularly limited, but can be ⁇ 50 ° C. or higher.
  • the dispersant used in the polymerization method may be one used in ordinary synthesis.
  • the pH when the acrylic resin is dispersed in the dispersion medium is preferably 5 to 13, more preferably 5 to 12, and most preferably 10 to 12.
  • the pH of the acrylic resin is in the above range, the storage stability of the acrylic resin is improved, and further, the mechanical stability is improved.
  • the pH of the acrylic resin may be adjusted with a pH adjuster.
  • the acrylic resin may contain a crosslinking agent.
  • acrylic resin examples include an acrylic soft polymer, an acrylic hard polymer, an acrylic-styrene copolymer, a sulfonated acrylic polymer, a seed polymer thereof, a hydrogenated product, or a graft product.
  • the acrylic resin may be in the form of non-conductive organic particles.
  • the acrylic resin may be water-soluble when formed from an acrylic compound and a silicon-containing monomer.
  • the acrylic resin may contain carboxymethyl cellulose as a thickener.
  • the aliphatic conjugated diene resin is a resin obtained using an aliphatic monomer having a conjugated diene as a main component.
  • using as a main component means that it is 50 mol% or more with respect to the total mol of all the monomers prepared at the time of superposition
  • the aliphatic monomer having a conjugated diene is a substituted or unsubstituted chain diene, and may be linear or branched.
  • Specific examples of the aliphatic monomer having a conjugated diene include 1,3-butadiene, 1,3-isoprene, 1,4-dimethyl-1,3-butadiene, 1,2-dimethyl-1,3- Examples thereof include butadiene, 1,3-dimethyl-1,3-butadiene, 1,2,3-trimethyl-1,3-butadiene, 1,3,5-hexatriene, and alloocimene.
  • the aliphatic conjugated diene-based resin can be obtained by polymerization of an aliphatic monomer having a conjugated diene or copolymerization of an aliphatic monomer having a conjugated diene and another monomer.
  • Other monomers include ethylenically unsaturated carboxylic acid, sulfonic acid group-containing monomer, nitrile group-containing monomer, aromatic vinyl monomer, monomer having a thermally crosslinkable group, and aromatic Vinyl compounds and the like may be used.
  • the aliphatic conjugated diene-based resin may be a 1,3-butadiene polymer, a diene rubber, a thermoplastic elastomer, or a random copolymer, a block copolymer, a hydride, or an acid-modified product thereof.
  • the aliphatic conjugated diene resin may contain an anti-aging agent such as a combination of phenol and thioether, or a combination of phenol and phosphite.
  • Resins different from resins (b1) to (b3) Resins (b4) different from resins (b1) to (b3) include, for example, olefin resins, fluororesins, sulfonic acid group-containing resins, and cellulose resins Resin or the like.
  • the resin (b4) may be in the form of organic polymer particles, graft polymer, polymer latex, silicon-containing polymer, and the like.
  • the olefin resin examples include polyethylene, polypropylene, poly-1-butene, ethylene / ⁇ -olefin copolymer, propylene / ⁇ -olefin copolymer, ethylene / propylene / diene copolymer (EPDM), And a homopolymer of an olefin compound, such as an ethylene / propylene / styrene copolymer, or a copolymer with a monomer copolymerizable therewith.
  • fluororesin examples include polytetrafluoroethylene, polyvinylidene fluoride, polychlorotrifluoroethylene, polyvinyl fluoride, tetrafluoroethylene-ethylene copolymer, perfluoroalkoxy fluororesin, tetrafluoroethylene-hexafluoropropylene copolymer, ethylene -Chlorotrifluoroethylene copolymer, vinylidene fluoride rubber, and tetrafluoroethylene-propylene copolymer.
  • sulfonic acid group-containing resin examples include sulfonated polymers such as sulfonated polyethersulfone and sulfonated polysulfone.
  • cellulose resin examples include a cellulose semisynthetic polymer and a sodium salt or ammonium salt thereof.
  • Cellulosic resin may have a sulfur atom, a cationic group, an acid group, a propargyl group, and the like.
  • silicon-containing polymer examples include dimethylpolysiloxane, diphenylpolysiloxane, and dihydroxypolysiloxane.
  • the polymer particles having a core-shell structure have a core portion containing a polymer and a shell portion containing a polymer. Moreover, it is preferable that resin which has a core-shell structure has a segment which shows compatibility with a nonaqueous electrolyte, and a segment which is not shown.
  • the resins (b1) to (b4) described above can be used as the polymer of the core part or the shell part.
  • polymer particles having a core-shell structure are polymerized in stages by using a polymer monomer that forms the core part and a polymer monomer that forms the shell part, and changing the ratio of these monomers over time. By doing so, it can be manufactured. Specifically, first, polymer monomers forming the core part are polymerized to produce seed polymer particles. This seed polymer particle becomes the core of the particle. Thereafter, in a polymerization system including seed polymer particles, a polymer monomer that forms a shell portion is polymerized. Thereby, since a shell part is formed on the surface of the core part, polymer particles having a core-shell structure are obtained. At this time, if necessary, for example, a reaction medium, a polymerization initiator, a surfactant, or the like may be used.
  • the core part of the particles generally has a softening start point or decomposition point at 175 ° C. or higher, preferably 220 ° C. or higher, more preferably 225 ° C. or higher.
  • a core portion having a softening start point or a decomposition point in a temperature range of 175 ° C. or higher is not easily deformed during the use environment of the secondary battery and heat press, and can suppress clogging of pores of the microporous film.
  • contraction of a separator can also be suppressed. Therefore, it is possible to stably prevent a short circuit in a high temperature environment.
  • it is 450 degrees C or less.
  • a method for measuring the softening start point will be described below.
  • 10 mg of a measurement sample was weighed into an aluminum pan, and an empty aluminum pan was used as a reference with a differential thermal analysis measurement device, and the temperature was measured at a temperature range of ⁇ 100 ° C. to 500 ° C. at a rate of temperature increase of 10 ° C./min.
  • the DSC curve is measured under normal temperature and humidity. During this temperature rising process, the baseline immediately before the endothermic peak of the DSC curve where the differential signal (DDSC) becomes 0.05 mW / min / mg or more and the tangent line of the DSC curve at the first inflection point after the endothermic peak The point of intersection with is the glass transition point (Tg).
  • Tg glass transition point
  • a temperature 25 ° C. higher than the glass transition point is set as a softening start point.
  • the softening start point may not be observed due to decomposition.
  • the measurement sample is heated from 30 ° C. at a rate of temperature increase of 10 ° C./min with a differential thermogravimetric simultaneous measurement apparatus. At this time, the temperature at which the weight loss ratio reaches 10% by mass is defined as the decomposition point.
  • the lower temperature is regarded as the softening start point of the core part.
  • Examples of the polymer that forms the core part include highly crosslinked polymers of resins (b1) to (b4). Since the molecular motion of the polymer is suppressed even at a temperature equal to or higher than the glass transition point of the polymer due to the high degree of crosslinking, the core portion can maintain the shape.
  • the polymer forming the core part is preferably obtained by polymerizing a crosslinkable vinyl monomer.
  • the crosslinkable vinyl monomer include compounds having usually 2 or more, preferably 2 copolymerizable double bonds.
  • crosslinked vinyl monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • crosslinkable vinyl monomers examples include non-conjugated divinyl compounds and polyvalent acrylate compounds.
  • non-conjugated divinyl compounds include divinylbenzene.
  • polyvalent acrylates include polyethylene glycol diacrylate, 1,3-butylene glycol diacrylate, 1,6-hexane glycol diacrylate, neopentyl glycol diacrylate, polypropylene glycol diacrylate, 2,2′-bis (4 -Diacrylate compounds such as acryloxypropyloxyphenyl) propane and 2,2'-bis (4-acryloxydiethoxyphenyl) propane; trimethylolpropane triacrylate, trimethylolethane triacrylate, and tetramethylolmethane triacrylate Triacrylate compounds such as tetramethylol methane tetraacrylate; ethylene glycol dimethacrylate, diethylene glycol dimethacrylate , Triethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, 1,3-butylene glycol dimethacrylate, 1,4-butylene glycol dimethacrylate
  • the ratio of the crosslinkable vinyl monomer is preferably 20% by mass or more, more preferably 25% by mass or more, and further preferably 30% by mass or more based on the total monomers of the polymer forming the core part.
  • the upper limit is usually preferably 100% by mass or less, more preferably 98% by mass or less, and still more preferably 95% by mass or less.
  • the amount of the crosslinkable vinyl monomer is, for example, in terms of a pure product excluding diluents and impurities.
  • the softening start point of the shell part of the particles is preferably 85 ° C. or higher, more preferably 87 ° C. or higher, more preferably 89 ° C. or higher, on the other hand, 145 ° C. or lower is more preferable, 125 ° C. or lower is more preferable. 115 ° C. or lower.
  • the softening start point is 85 ° C. or higher, the blocking resistance of the microporous film can be improved.
  • the shell portion hardly melts at the use temperature of the secondary battery, it is possible to suppress the clogging of the separator holes, thereby improving the rate characteristics of the secondary battery.
  • the softening start point is 145 ° C. or lower, the shell part can be easily melted during heat pressing, thereby improving the adhesion of the separator and thereby improving the cycle characteristics of the secondary battery. Can be made.
  • the polymer forming the shell part it is preferable to use a polymer containing a (meth) acrylate unit.
  • the shell portion By forming the shell portion with a polymer containing a (meth) acrylate unit, the electrical stability of the porous film can be improved.
  • the acrylate include methyl acrylate, ethyl acrylate, butyl acrylate, and 2-ethylhexyl ethyl acrylate.
  • the methacrylate include methyl methacrylate, butyl methacrylate, and 2-ethylhexyl methacrylate.
  • the ratio of (meth) acrylate units in the polymer forming the shell part is preferably 50% by mass or more, more preferably 60% by mass or more, and further preferably 70% by mass or more. 100% by mass or less.
  • the number average particle diameter of the non-conductive particles is preferably 50 nm or more, more preferably 200 nm or more, further preferably 300 nm or more, and on the other hand, 1,500 nm or less is preferable, more preferably 1,200 nm or less, still more preferably. 500 nm or less.
  • the number average particle diameter of the particles can be measured as follows. 200 particles are arbitrarily selected from a photograph taken at a magnification of 25,000 times with a field emission scanning electron microscope. When the longest side of the particle image is La and the shortest side is Lb, the particle size is (La + Lb) / 2. The average particle size of 200 particles is determined as the average particle size.
  • the thickness of the shell part is preferably 3% or more, more preferably 5% or more, still more preferably 7% or more, and preferably 18% or less, more preferably 16% with respect to the number average particle diameter of the particles. % Or less, more preferably 14% or less. If the thickness average particle diameter of the shell part is 3% or more, the adhesion of the separator can be improved and the cycle characteristics of the secondary battery can be improved. Further, when the thickness of the shell portion is 18% or less with respect to the number average particle diameter, the pore diameter of the separator can be increased to an extent that does not hinder the movement of ions, thereby improving the rate characteristics of the secondary battery. it can. Moreover, since the core portion can be relatively enlarged by making the shell portion thinner, the rigidity of the particles can be increased. For this reason, the rigidity of the microporous film can be increased and the shrinkage of the separator can be suppressed.
  • the content ratio of the non-conductive particles or the polymer particles having a core-shell structure in the porous film is usually preferably 70% by mass or more, more preferably 75% by mass or more, further preferably 80% by mass or more, and usually 98% by mass. % Or less is more preferable, 96 mass% or less is more preferable, More preferably, it is 94 mass% or less.
  • a gap between the particles can be formed so that the movement of ions is not inhibited while the particles have a contact portion, thereby improving the separator strength and the battery. Short circuit can be stably prevented.
  • the amount of inorganic particles in the inorganic particle-containing layer is determined from the total volume of the constituent components of the porous layer (the whole excluding the void portion) from the viewpoint of ensuring a good effect due to its use.
  • Product is preferably 1% by volume or more, more preferably 5% by volume or more.
  • the separator may have other inorganic particles and / or resin particles other than the inorganic particles for nonaqueous electrolyte batteries of the present embodiment.
  • the separator has other inorganic particles and / or resin particles, for example, the shape stability of the entire separator at a high temperature can be further improved.
  • the cation exchanger having a one-dimensional tunnel-like crystal structure, and the average thickness is higher than that of the cation exchanger.
  • Other inorganic particles other than thick mixing inorganic particles can be used.
  • the resin particles are composed of an electrochemically stable resin that has heat resistance and electrical insulation, is stable with respect to the nonaqueous electrolyte in the battery, and is not easily oxidized or reduced within the battery operating voltage range. Those are preferred.
  • Materials for forming such resin particles include styrene resins (such as polystyrene), styrene butadiene rubber, acrylic resins (such as polymethyl methacrylate), polyalkylene oxides (such as polyethylene oxide), and fluororesins (such as polyvinylidene fluoride). And a crosslinked product of at least one resin selected from the group consisting of these derivatives; urea resins; and polyurethanes.
  • the resin particles may be used alone or in combination of two or more.
  • the resin particles may contain a known additive that can be added to the resin, for example, an antioxidant, if necessary.
  • the form of other inorganic particles and resin particles may be any form such as plate-like, scale-like, needle-like, columnar, spherical, polyhedral, and massive, from the viewpoint of improving permeability.
  • a polyhedral shape having a plurality of surfaces is preferred.
  • the average particle diameter (D50) of the other inorganic particles and resin particles is preferably independently from 0.1 ⁇ m to 4.0 ⁇ m, more preferably from 0.2 ⁇ m to 3.5 ⁇ m, still more preferably from 0.4 ⁇ m to 3 ⁇ m. 0.0 ⁇ m.
  • D50 The average particle diameter of the other inorganic particles and resin particles.
  • these particles are, for example, (i) a porous layer (inorganic particle-containing layer) containing the inorganic particles for a nonaqueous electrolyte battery of the present embodiment, Or (ii) You may make it contain in another porous layer (henceforth only another "other porous layer") different from an inorganic particle content layer and a base material.
  • the content of the inorganic particles for a non-aqueous electrolyte battery of the present embodiment falls within the preferred range described above. Thus, it is preferable to adjust the content of other inorganic particles and resin particles.
  • the other porous layer is, for example: on one side of a nonwoven fabric or a microporous membrane as a substrate (inorganic for a non-aqueous electrolyte battery of this embodiment) On the surface opposite to the surface on which the porous layer containing particles is provided; may be disposed between the inorganic particle-containing layer and the substrate; or You may arrange
  • porous layers containing other inorganic particles and / or resin particles may be integrated with the base material and / or the inorganic particle-containing layer, and exist as a film independent of these layers, and in the battery, It may be superposed to form a separator.
  • the content of the other inorganic particles and resin particles in the other porous layer is the same as that of the other porous layer. It is preferably 5% by volume or more, more preferably 10% by volume or more, and still more preferably 50% by volume or more in the total volume (the total volume excluding the voids).
  • the porous layer When other inorganic particles and / or resin particles are included in (ii) another porous layer, the porous layer preferably contains a binder.
  • the content of other inorganic particles and resin particles in the other porous layer is preferably 99.5% by volume or less in the total volume of the other porous layer (total volume excluding the pores).
  • a binder the thing similar to the binder illustrated as what can be used for the porous layer containing the inorganic particle for nonaqueous electrolyte batteries of this embodiment can be used.
  • the separator has the above-described nonwoven fabric or microporous membrane as a base material,
  • surface or both surfaces may be sufficient.
  • the porosity of the separator for a non-aqueous electrolyte battery is preferably 30% or more, more preferably 40% or more in a dry state of the separator in order to secure the amount of non-aqueous electrolyte and improve ion permeability. It is. From the viewpoint of ensuring the strength of the separator and preventing internal short circuit, the porosity of the separator is preferably 80% or less, more preferably 70% or less in the dry state of the separator. In the present specification, the porosity P (%) of the separator can be calculated by obtaining the sum of each component i from the thickness of the separator, the mass per unit area, and the density of the component using the following formula. .
  • a i is the ratio of component i when the total mass is 1
  • ⁇ i is the density (g / cm 3 ) of component i
  • m is the unit area of the separator Mass (g / cm 2 )
  • t is the thickness (cm) of the separator.
  • the total thickness of the nonaqueous electrolyte battery separator is preferably 2 ⁇ m or more and 200 ⁇ m or less, more preferably 5 ⁇ m or more and 100 ⁇ m or less, and even more preferably 7 ⁇ m or more and 30 ⁇ m or less, regardless of whether or not the porous layer is provided. It is.
  • the total thickness of the separator is 2 ⁇ m or more, the mechanical strength of the separator tends to be further improved.
  • the occupied volume of the separator in the battery is reduced when the total thickness of the separator is 200 ⁇ m or less, the nonaqueous electrolyte battery tends to have a higher capacity and the ion permeability tends to be further improved.
  • the air permeability of the separator for a nonaqueous electrolyte battery is preferably 10 seconds / 100 cc to 500 seconds / 100 cc, more preferably 20 seconds / 100 cc to 450 seconds / 100 cc, further preferably 30 seconds / 100 cc to 450 seconds / 100cc or less.
  • the air permeability is 10 seconds / 100 cc or more, self-discharge tends to be less when the separator is used in a non-aqueous electrolyte battery.
  • the air permeability is 500 seconds / 100 cc or less, better charge / discharge characteristics tend to be obtained.
  • the thickness of the porous layer is preferably 1 ⁇ m to 10 ⁇ m.
  • the thickness of the other porous layer is preferably 1 ⁇ m to 10 ⁇ m.
  • the thickness of the separator substrate itself is preferably 5 ⁇ m to 40 ⁇ m.
  • the porous layer containing the inorganic particles for non-aqueous electrolyte battery according to the present embodiment is a composition prepared by dispersing or dissolving the inorganic particles for non-aqueous electrolyte battery according to the present embodiment and a binder in water or an organic solvent.
  • a composition prepared by dispersing or dissolving the inorganic particles for non-aqueous electrolyte battery according to the present embodiment and a binder in water or an organic solvent. for example, paste, slurry, etc.
  • Other porous layers containing other inorganic particles or resin particles can also be formed in the same manner as described above.
  • the porous layer containing the inorganic particles for a non-aqueous electrolyte battery according to this embodiment may further contain a water-soluble polymer.
  • a water-soluble polymer a general aqueous dispersant or aqueous thickener generally known as an aqueous dispersant or aqueous thickener can be used.
  • aqueous dispersant examples include, for example, organosiloxane polymer KP341 (manufactured by Shin-Etsu Chemical Co., Ltd.), (meth) acrylic acid (co) polymer polyflow no. 75, no. 90, no.
  • Cationic surfactants such as 95 (manufactured by Kyoeisha Chemical Co., Ltd.), W001 (Yusho Co., Ltd.); polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene octyl phenyl ether , Nonionic surfactants such as polyoxyethylene nonylphenyl ether, polyethylene glycol dilaurate, polyethylene glycol distearate, sorbitan fatty acid ester; anionic surfactants such as W004, W005, W017 (Yusho Co., Ltd.); EFKA -46, EFKA-47, EFKA-47EA, EFKA polymer 100, EFKA polymer 400, EFKA polymer 401, EFKA polymer 450 (all manufactured by Ciba Specialty Chemicals), D Perth Aid 6, Disperse Aid 8, Disperse Aid 15, Disperse Aid 9100, SN Dispersant 5040, 50
  • the oligomer or polymer which has a polar group in a molecular terminal or a side chain other than the above, such as an acrylic copolymer is mentioned.
  • a dispersing agent may be used individually by 1 type, or may be used together 2 or more types.
  • aqueous thickener examples include, for example, SEPIGEL 305, NS, EG, FL, SEPPLUS 265, S, 400, SEPINOV EMT10, P88, SEPMAX ZEN (manufactured by Seiwa Kasei), Aron A-10H, A-20P-X, A-20L, A-30, A-7075, A-7100, A-7185, A-7195, A-7255, B-300K, B-500K, Jurimer (registered trademark) AC-10LHPK, AC-10SHP, Rheological 260H, 845H, Junron PW-120 (manufactured by Toagosei Co., Ltd.), DISPERBYK® 410, 411, 415, 420, 425, 428, 430, 431, 7410ET, 7411ES, 7420ES, OPTIFLO-L1400 (manufactured by Big Chemie), Koscut GA468 ( Big Organic chemical industry), fiber derivative
  • examples of the thickener include polyamide wax salt, acetylene glycol, zentane gum, oligomer or polymer having a polar group at the molecular end or side chain.
  • a thickener may be used individually by 1 type and may use 2 or more types together.
  • the content of the water-soluble polymer in the porous layer containing the inorganic particles for nonaqueous electrolyte batteries of the present embodiment is preferably 0.1% by mass to 100% by mass based on the total mass of the porous layer. More preferably, the content is 0.2% by mass to 10% by mass.
  • the positive electrode generally has a current collector and a positive electrode mixture layer formed thereon, and the positive electrode mixture layer preferably contains a positive electrode active material, a conductive additive, and a binder.
  • the positive electrode active material a known material that can electrochemically occlude and release lithium ions can be used.
  • a material containing lithium is preferable.
  • the positive electrode active material for example, following formula (1): Li x Mn 2- y My O z (1) ⁇ Wherein M represents at least one element selected from the group consisting of transition metal elements, 0 ⁇ x ⁇ 1.3, 0.2 ⁇ y ⁇ 0.8, and 3.5 ⁇ z ⁇ 4. .5.
  • a positive electrode active material may be used individually by 1 type, or may use 2 or more types together.
  • the positive electrode active material is preferably one that can be operated at a higher potential to increase the energy density of the battery.
  • the non-aqueous electrolyte battery of the present embodiment can effectively adsorb metal ions that are eluted from the positive electrode active material and deposited on the negative electrode, thereby degrading battery characteristics and causing a short circuit. Since the decrease can be suppressed, the positive electrode active material is at least one selected from the group consisting of a spinel-type lithium manganese composite oxide represented by the above formula (3) and a layered compound represented by the above formula (2). It is preferable to use seeds.
  • a well-known thing can be used for the conductive support material in a positive electrode, a binder, and a collector.
  • the positive electrode may have the inorganic particles for a nonaqueous electrolyte battery of the present embodiment.
  • the aspect is not limited.
  • the positive electrode mixture layer contains the inorganic particles for nonaqueous electrolyte battery of the present embodiment.
  • the porous layer containing the inorganic particles for a nonaqueous electrolyte battery of the present embodiment is formed by the same method as the porous layer described in the above section “ ⁇ Separator for nonaqueous electrolyte battery>”.
  • the configuration of the porous layer described above can also be used for the configuration.
  • the content of the inorganic particles for the nonaqueous electrolyte battery in the positive electrode is, for example, from the viewpoint of ensuring a good effect due to its use, for example, the total volume of the components of the positive electrode excluding the current collector (total volume excluding the voids) In the inside, it is preferable that it is 0.5 volume% or more, and it is more preferable that it is 1 volume% or more.
  • the content of the inorganic particles for the non-aqueous electrolyte battery in the positive electrode is the total volume of the components of the positive electrode excluding the current collector (the total volume excluding the void portion). It is preferably 10% by volume or less, and more preferably 6% by volume or less.
  • the content of the positive electrode active material is preferably 87% by mass to 97% by mass based on the total mass of the positive electrode mixture layer.
  • the content of is preferably 1.5% by mass to 6.5% by mass, and the content of the binder is preferably 1.5% by mass to 6.5% by mass.
  • the content of the positive electrode active material is preferably 79.4% by mass to 96.4% by mass based on the total mass of the positive electrode mixture layer.
  • the content of the conductive assistant is preferably 1.4% by mass to 6.5% by mass, and the content of the binder is preferably 1.4% by mass to 6.5% by mass.
  • the negative electrode generally has a current collector and a negative electrode mixture layer formed thereon, and the negative electrode mixture layer preferably contains a negative electrode active material and a binder.
  • Examples of the current collector in the negative electrode include, but are not limited to, metal foils such as copper, nickel, and stainless steel, expanded metal, punch metal, and foam metal; carbon materials such as carbon cloth and carbon paper.
  • the current collector in the negative electrode may be used alone or in combination of two or more.
  • the negative electrode active material a known material that can electrochemically occlude and release lithium ions can be used.
  • the negative electrode active material include, but are not limited to, carbon materials such as graphite powder, mesophase carbon fiber, and mesophase microspheres; and metals, alloys, oxides, and nitrides.
  • a negative electrode active material may be used individually by 1 type, or may use 2 or more types together.
  • binder in the negative electrode a known material capable of binding at least two of the negative electrode active material, the conductive additive, and the material constituting the negative electrode of the current collector can be used.
  • binders include, but are not limited to, carboxymethylcellulose, styrene-butadiene cross-linked rubber latex, acrylic latex, and polyvinylidene fluoride.
  • a binder may be used individually by 1 type, or may use 2 or more types together.
  • the negative electrode may include the inorganic particles for a nonaqueous electrolyte battery according to this embodiment.
  • the aspect is not limited.
  • the inorganic particles for nonaqueous electrolyte battery according to the present embodiment are contained in the negative electrode mixture layer.
  • the porous layer containing the inorganic particles for a nonaqueous electrolyte battery of the present embodiment is formed by the same method as the porous layer described in the above section “ ⁇ Separator for nonaqueous electrolyte battery>”.
  • the configuration of the porous layer described above can also be used for the configuration.
  • the content of the inorganic particles for the nonaqueous electrolyte battery in the negative electrode is, for example, from the viewpoint of ensuring a good effect due to its use, for example, the total volume of the components of the negative electrode excluding the current collector (the total volume excluding the void portion) In the inside, it is preferable that it is 1.5 volume% or more, and it is more preferable that it is 2 volume% or more.
  • the content of the inorganic particles for the non-aqueous electrolyte battery in the negative electrode is the total volume of the components of the negative electrode excluding the current collector (the total volume excluding the void portion). It is preferably 25% by volume or less, and more preferably 15% by volume or less.
  • the content of the negative electrode active material is preferably 88% by mass to 99% by mass based on the total mass of the negative electrode mixture layer, The amount is preferably 1% by mass to 12% by mass, and when a conductive auxiliary is used, the content of the conductive auxiliary is preferably 0.5% by mass to 6% by mass.
  • the content of the negative electrode active material is preferably 68% by mass to 98% by mass based on the total mass of the negative electrode mixture layer, The amount is preferably 0.8% by mass to 11.8% by mass, and when a conductive auxiliary is used, the content of the conductive auxiliary is 0.9% by mass to 5.9% by mass. Is preferred.
  • Nonaqueous electrolyte Although it does not limit as a nonaqueous electrolyte, the solution which melt
  • the lithium salt include, but are not limited to, LiPF 6 (lithium hexafluorophosphate), LiClO 4 , LiBF 4 , LiAsF 6 , Li 2 SiF 6 , LiOSO 2 C k F 2k + 1 (wherein k is 1 to 8), LiN (SO 2 C k F 2k + 1 ) 2 (wherein k is an integer of 1 to 8), LiPF n (C k F 2k + 1 ) 6-n (where n is 1) And an integer of 1 to 8), LiPF 4 (C 2 O 4 ), LiPF 2 (C 2 O 4 ) 2 and the like.
  • LiPF 6 is preferable. By using LiPF 6 , the battery characteristics and safety tend to be superior even at high temperatures.
  • a lithium salt may be used individually
  • the non-aqueous solvent used for the non-aqueous electrolyte is not limited, and a known one can be used.
  • an aprotic polar solvent is preferable.
  • aprotic polar solvent examples include, but are not limited to, ethylene carbonate, propylene carbonate, 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 2,3-pentylene carbonate, Cyclic carbonates such as trifluoromethylethylene carbonate, fluoroethylene carbonate and 4,5-difluoroethylene carbonate; Lactones such as ⁇ -ptyrolactone and ⁇ -valerolactone; Cyclic sulfones such as sulfolane; Cyclic ethers such as tetrahydrofuran and dioxane; Ethylmethyl carbonate, dimethyl Carbonate, diethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, dipropyl carbonate, methyl butyl carbonate Chain carbonates such as sulfonate, dibutyl carbonate, ethyl propyl carbonate and methyl trifluoroeth
  • the concentration of the lithium salt contained in the nonaqueous electrolyte is preferably 0.5 mol / L to 1.5 mol / L, more preferably 0.9 mol / L to 1.25 mol / L.
  • the non-aqueous electrolyte may be a liquid electrolyte (non-aqueous electrolyte) or a solid electrolyte.
  • the nonaqueous electrolyte may contain the inorganic particles for a nonaqueous electrolyte battery according to this embodiment.
  • the content of the inorganic particles for a non-aqueous electrolyte battery in the non-aqueous electrolyte is preferably 5 mg or more, more preferably 10 mg or more, per 1 mL of the non-aqueous electrolyte from the viewpoint of ensuring a good effect due to its use.
  • the non-aqueous electrolyte may contain other additives as necessary.
  • additives include, but are not limited to, lithium salts other than those exemplified above, unsaturated bond-containing carbonates, halogen atom-containing carbonates, carboxylic acid anhydrides, sulfur atom-containing compounds (for example, sulfides, disulfides). Sulfonic acid ester, sulfite, sulfate, sulfonic acid anhydride, etc.), nitrile group-containing compounds and the like.
  • Lithium salts for example, lithium monofluorophosphate, lithium difluorophosphate, lithium bis (oxalato) borate, lithium difluoro (oxalato) borate, lithium tetrafluoro (oxalato) phosphate, lithium difluorobis (oxalato) phosphate, etc .
  • Unsaturated bond-containing carbonate for example, vinylene carbonate, vinyl ethylene carbonate, etc .
  • Halogen atom-containing carbonate for example, fluoroethylene carbonate, trifluoromethylethylene carbonate, etc .
  • Carboxylic anhydride for example, acetic anhydride, benzoic anhydride, succinic anhydride, maleic anhydride, etc .
  • Sulfur atom-containing compounds for example, ethylene sulfite, 1,3-propane sultone, 1,3-propene sultone, 1,4-butane s
  • the cycle characteristics of the battery tend to be further improved.
  • at least one selected from the group consisting of lithium difluorophosphate and lithium monofluorophosphate is preferable from the viewpoint of further improving the cycle characteristics of the battery.
  • the content of at least one additive selected from the group consisting of lithium difluorophosphate and lithium monofluorophosphate is preferably 0.001% by mass or more with respect to 100% by mass of the nonaqueous electrolyte, and 0.005 More preferably, it is more preferably 0.02% by mass or more. When the content is 0.001% by mass or more, the cycle life of the lithium ion secondary battery tends to be further improved.
  • the content is preferably 3% by mass or less, more preferably 2% by mass or less, and further preferably 1% by mass or less.
  • the content is 3% by mass or less, the ion conductivity of the lithium ion secondary battery tends to be further improved.
  • the content of other additives in the non-aqueous electrolyte can be confirmed by, for example, NMR measurement such as 31P-NMR, 19F-NMR.
  • ⁇ Exterior body> Although it does not limit as an exterior body, for example, metal cans, such as a steel can and an aluminum can, are mentioned. Examples of the form of the exterior body include a cylindrical shape such as a rectangular tube shape and a cylindrical shape. In addition, a non-aqueous electrolyte battery can be formed by using a laminated film on which a metal is deposited as an exterior body.
  • the coating material for a nonaqueous electrolyte battery according to this embodiment includes inorganic particles for a nonaqueous electrolyte battery according to this embodiment.
  • the nonaqueous electrolyte battery paint of the present embodiment may be a liquid paint containing additional components such as a resin, a dispersant, water, and an organic solvent in addition to the inorganic particles for the nonaqueous electrolyte battery of the present embodiment.
  • it may be a powder paint containing a film-forming component such as a resin in addition to the inorganic particles for a non-aqueous electrolyte battery of the present embodiment.
  • the resin contained in the paint the various resins described above for forming the components of the water electrolyte battery may be used.
  • the paint can be formed by a known method such as mixing, stirring, and dispersion.
  • the solid resin material for nonaqueous electrolyte batteries of this embodiment includes the inorganic particles for nonaqueous electrolyte batteries of this embodiment and a resin.
  • the resin contained in the resin solid material the resin described above can be used to form the constituent elements of the nonaqueous electrolyte battery.
  • the resin solid can be formed by mixing the inorganic particles for a non-aqueous electrolyte battery of this embodiment and a resin using a known method such as kneading, mixing, extrusion, or molding. You may form the porous layer containing the inorganic particle of this embodiment using this resin solid substance.
  • the manufacturing method of the nonaqueous electrolyte battery according to the present embodiment is not limited.
  • a positive electrode and a negative electrode are laminated via a separator to obtain a laminated body, or the laminated body is further wound to obtain a wound body.
  • the obtained laminate or wound body can be produced by housing the outer body together with the nonaqueous electrolyte.
  • the positive electrode, the negative electrode, the separator, the nonaqueous electrolyte, and the outer body are manufactured. At least one of them includes the inorganic particles for a non-aqueous electrolyte battery in the present embodiment.
  • a positive electrode, an inorganic particle-containing layer containing inorganic particles for a nonaqueous electrolyte battery according to the present embodiment, a separator, and a negative electrode are laminated in this order to obtain a laminate, or the laminate is wound.
  • a wound body is obtained, and the obtained laminate or wound body and the nonaqueous electrolyte are accommodated in an exterior body.
  • the nonaqueous electrolyte battery is, for example, a lithium ion secondary battery
  • the nonaqueous electrolyte battery is, for example, a lithium ion secondary battery
  • by arranging a plurality of components of the lithium ion secondary battery in such a procedure movement of lithium ions within the battery is ensured,
  • the adsorption of metal ions that affect the life characteristics or safety of the battery becomes significant.
  • the porous layer containing the inorganic particles for non-aqueous electrolyte battery of the present embodiment may be formed using the resin solid for non-aqueous electrolyte battery described above, or previously formed as a part of the separator described above. can do.
  • the metal adsorption capacity of the inorganic particles for a nonaqueous electrolyte battery of the present embodiment is as follows: By adding a metal compound to a cyclic and / or chain carbonate solution containing 0.1 to 6.0 mol / L LiPF 6 at a dew point of ⁇ 40 ° C. or less, the metal ion concentration is 0.1 to 10,000 ppm.
  • Preparing a non-aqueous electrolyte solution Adding 0.001 to 100 parts by mass of non-aqueous electrolyte battery inorganic particles to 100 parts by mass of the non-aqueous electrolyte solution to prepare a non-electrolyte mixed solution; Stirring the non-electrolyte mixture at 0 to 45 ° C. for 1 second to 1000 hours; A metal ion concentration in the non-electrolyte mixed solution after stirring is evaluated by an inspection method including a step of quantifying by inductively coupled plasma spectroscopy (IPC-AES) or inductively coupled plasma mass spectrometry (ICP-MS). it can.
  • IPC-AES inductively coupled plasma spectroscopy
  • ICP-MS inductively coupled plasma mass spectrometry
  • the method may include a step of obtaining a filtrate by filtering the non-electrolyte mixed solution after stirring through a filter having a pore size of 0.1 to 1.0 ⁇ m.
  • the metal ion concentration in the filtrate can be quantified by inductively coupled plasma spectroscopy (IPC-AES) or inductively coupled plasma mass spectrometry (ICP-MS).
  • the amount of inorganic particles in the non-electrolyte mixed solution may be added so that the inorganic particles are 0.001 to 100 parts by mass with respect to 100 parts by mass of the non-aqueous electrolyte solution.
  • One separator may be sufficient and it may be divided.
  • LiPF 6 When LiPF 6 is exposed to H 2 O, it decomposes to generate HF, and the quantification of the metal adsorption capacity is lowered. Therefore, it is preferable to evaluate in an atmosphere from which moisture has been removed.
  • the dew point is preferably ⁇ 40 ° C. or lower, more preferably ⁇ 45 ° C. or lower, and further preferably ⁇ 50 ° C. or lower.
  • the metal adsorption capacity is more preferably evaluated in an inert gas atmosphere, more preferably in nitrogen gas or argon gas, and most preferably in an argon gas atmosphere.
  • the composition of the mixture of LiPF 6 and cyclic and / or chain carbonate is not particularly limited as long as LiPF 6 is 0.1 to 6.0 mol / L with respect to the cyclic and / or chain carbonate solution.
  • a non-aqueous electrolyte solution having a metal ion concentration of 0.1 to 10,000 ppm is prepared by dissolving a metal compound in a cyclic and / or chain carbonate mixed solution containing LiPF 6 .
  • the metal compound is not particularly limited, but the metal compound is selected from trifluoromethanesulfonic acid, tetrafluoroboric acid, and acetylacetonate because it has sufficient solubility in the non-aqueous electrolyte and has excellent metal adsorption ability. More preferably, it contains at least one kind of anion.
  • the method for dissolving the metal compound in the nonaqueous electrolytic solution is not particularly limited, and examples thereof include propeller stirring, shaking stirring, a mix rotor, vortex, and ultrasonic waves. From the viewpoint of accuracy of quantification, the concentration of metal ions in the electrolyte is preferably higher than a certain concentration, preferably 0.5 ppm or more, and more preferably 3 ppm or more. Moreover, about the upper limit, in order to reproduce the state in an actual battery, 10,000 ppm or less is preferable, 5,000 ppm or less is preferable, and 1,000 ppm or less is still more preferable.
  • the container used for the reaction is not particularly limited as long as it has chemical resistance, particularly acid resistance.
  • the amount of inorganic particles is preferably higher than a certain concentration, and is preferably more than 0.01 parts by weight, and 0.02 parts by weight with respect to 100 parts by weight of the nonaqueous electrolyte solution. More is more preferable.
  • the upper limit is preferably 100 parts by mass or less, more preferably 50 parts by mass or less, and still more preferably 30 parts by mass or less from the viewpoint of not impairing the fluidity of the nonaqueous electrolyte solution.
  • the temperature of the adsorption reaction is preferably 0 ° C. or higher from the viewpoint of fluidity, more preferably 20 ° C.
  • the upper limit is preferably a temperature at which the non-aqueous electrolyte solution hardly evaporates. It is preferably 80 ° C. or lower, more preferably 70 ° C. or lower, and further preferably 60 ° C. or lower.
  • stirring is always performed so as not to form a concentration gradient of metal ions in the non-aqueous electrolyte solution, and the stirring method is not particularly limited.
  • the stirring time is preferably 1 second or longer, more preferably 1 hour or longer, and even more preferably 5 hours or longer from the viewpoint of sufficient adsorption.
  • the upper limit is preferably 1000 hours or less from the viewpoint of evaluation throughput, more preferably 100 hours or less, and still more preferably 80 hours or less.
  • a filter When the powder remains in the nonaqueous electrolyte solution after stirring, it is preferable to pass through a filter.
  • a membrane filter can be used.
  • the pore diameter is preferably 0.1 to 1.0 ⁇ m from the viewpoint of filtration. In order to reliably filter the particles, the filter diameter is more preferably 0.5 ⁇ m or less, and further preferably 0.2 ⁇ m or less. The lower limit is preferably 0.1 ⁇ m or more from the viewpoint of evaluation throughput.
  • the type of filter that can be used is not particularly limited as long as powder filtration can be achieved as described above. For example, a PP or PTFE membrane filter can be used. If the powder does not fall off from the separator, the filtration step is not essential.
  • the measurement of the metal ion concentration in the filtrate is not particularly limited as long as the metal ions can be quantified.
  • chelate titration, ion chromatography, atomic absorption analysis, inductively coupled plasma spectroscopy (IPC-AES), inductively coupled plasma mass spectrometry (ICP-MS), capillary electrophoresis, ion selective electrode method, fluorescent X-ray analysis , Etc. can be used.
  • IPC-AES inductively coupled plasma spectroscopy
  • ICP-MS inductively coupled plasma mass spectrometry
  • the separator When evaluating the metal ion adsorption capacity of the separator, the separator may be used as a diaphragm, and an electrolyte solution containing a known concentration of metal ions may be allowed to pass therethrough, and the metal ion concentration in the electrolyte solution after passing may be measured.
  • the metal ion adsorption ability of inorganic particles can be evaluated by placing the separator on a Swinex holder, pumping the electrolyte with a syringe, and measuring the metal ion concentration of the electrolyte that has passed through the separator. .
  • the amount of electrolytic solution per unit area that passes through the separator per unit area is preferably 100 ml / h / m 2 or more, preferably 500 ml / h / m 2 or more. More preferably, it is 1,000,000 ml / h / m 2 or more.
  • the upper limit from the viewpoint of adsorbing metal ions in the separator is preferably from 10,000,000ml / h / m 2, more preferably less 5,000,000ml / h / m 2, 1 , More preferably, it is 000,000 ml / h / m 2 or less.
  • the metal ion concentration is preferably obtained by collecting 10 ⁇ l or more of the passed electrolyte solution, measuring the metal ion concentration a plurality of times, and adopting an average value, more preferably 100 ⁇ l or more, and 500 ⁇ l. It is still more preferable that it is above. From the viewpoint of throughput, the upper limit is preferably 1 l or less, more preferably 500 ml or less, and even more preferably 250 ml or less.
  • the adsorption isotherm by nitrogen was measured by the constant volume method. Nitrogen was supplied to the glass tube containing the pretreated inorganic particles at the adsorption temperature while increasing the relative pressure of nitrogen until the relative pressure of nitrogen was about 0.5. While supplying nitrogen, the amount of nitrogen adsorbed on the inorganic particles was measured. An adsorption isotherm was obtained from the amount of nitrogen adsorbed on the inorganic particles measured in the step of increasing the relative pressure of nitrogen and the relative pressure of nitrogen.
  • the BET specific surface area was calculated by the BET method (multi-point method, 5 points in the relative pressure range of about 0.1 to 0.2).
  • the obtained hydroxyapatite A had a BET specific surface area of 6.5 m 2 / g.
  • the inorganic particles put in the glass tube were vacuum degassed at 200 ° C. for 8 hours.
  • Adsorption temperature 77K
  • Adsorbate Nitrogen saturated vapor pressure: Measured adsorbate cross section: 0.162 nm 2
  • Equilibrium waiting time 500 sec The equilibrium waiting time is a waiting time after reaching the adsorption equilibrium state (a state in which the pressure change during adsorption / desorption becomes a predetermined value or less).
  • ⁇ X-ray diffraction measurement> The obtained hydroxyapatite A was subjected to an acceleration voltage of 30 kV, a tube current of 10 mA, a diverging slit of 1 mm, a solar slit of 4 °, an air scatter using an X-ray diffractometer (D2 PHASER manufactured by Bruker) using Cu-K ⁇ rays. Powder X-ray diffraction measurement was performed under the conditions of a screen of 1 mm, a K ⁇ filter of 0.5 mm, a counting time of 0.15 seconds, a 0.02 ° step, and a measurement range of 5 ° to 40 °. Standard silicon powder was used for correction of the X-ray diffractometer.
  • the obtained diffraction pattern is shown in FIG. From this diffraction pattern, a diffraction peak derived from the (002) plane is observed near 25.9 ° (2 ⁇ ), and a diffraction peak derived from the (300) plane is observed near 32.8 ° (2 ⁇ ), indicating a hydroxyapatite structure. I confirmed that there was.
  • the half width of the diffraction peak derived from the (002) plane was 0.14 °.
  • the obtained polyolefin resin composition was substituted with nitrogen, and then supplied to the twin-screw extruder with a feeder under a nitrogen atmosphere. Further, liquid paraffin (kinematic viscosity at 37.78 ° C .: 7.59 ⁇ 10 ⁇ 5 m 2 / s) was injected into the extruder cylinder by a plunger pump. The feeder and the pump were adjusted so that the mass ratio of liquid paraffin in the entire mixture to be extruded was 66 mass% (resin composition concentration was 34 mass%).
  • the melt kneading conditions were a set temperature of 200 ° C., a screw rotation speed of 100 rpm, and a discharge rate of 12 kg / h.
  • the melt-kneaded product was extruded and cast on a cooling roll controlled at a surface temperature of 25 ° C. through a T-die, to obtain a gel sheet having a thickness of 1600 ⁇ m.
  • the obtained gel sheet was guided to a simultaneous biaxial tenter stretching machine, and biaxial stretching was performed.
  • the set stretching conditions were an MD magnification of 7.0 times, a TD magnification of 6.1 times, and a preset temperature of 123 ° C.
  • the biaxially stretched gel sheet was introduced into a methyl ethyl ketone bath and sufficiently immersed in methyl ethyl ketone to extract and remove liquid paraffin, and then methyl ethyl ketone was removed by drying.
  • the dried gel sheet was guided to a TD tenter, and stretched and thermally relaxed to obtain a polyolefin microporous membrane.
  • the stretching temperature was 125 ° C.
  • the thermal relaxation temperature was 133 ° C.
  • the TD maximum magnification was 1.65 times
  • the relaxation rate was 0.9.
  • the resulting polyolefin microporous membrane had a thickness of 12 ⁇ m and a porosity of 40%.
  • the average particle size of the inorganic particles in the above dispersion is a particle whose particle size distribution is 50% by measuring the particle size distribution using a laser particle size distribution measuring device (Microtrack MT3300EX manufactured by Nikkiso Co., Ltd.). The diameter was defined as an average particle diameter ( ⁇ m).
  • the average particle diameter of the resin latex binder was determined as the average particle diameter by measuring the volume average particle diameter (nm) using a particle size measuring apparatus (LEC & TRATCHUPA 150 manufactured by LEED & NORTHRUP) using a light scattering method.
  • the composition for forming a porous layer is applied to the surface of the polyolefin microporous film using a micro gravure coater, dried at 60 ° C. to remove water, and 5 ⁇ m thick on the polyolefin microporous film.
  • An inorganic particle-containing layer containing boehmite and hydroxyapatite A was disposed to obtain a separator having an inorganic particle-containing layer.
  • the volume ratio of the inorganic particles in the inorganic particle-containing layer containing boehmite and hydroxyapatite A in this separator was 95% by volume.
  • the rolled sample is cut so that the size of the coated part is 30 mm ⁇ 50 mm and includes the exposed part of the aluminum foil, and an aluminum lead piece for taking out the current is welded to the exposed part of the aluminum foil.
  • a positive electrode was obtained.
  • Graphite powder as a negative electrode active material and styrene butadiene rubber and carboxymethyl cellulose aqueous solution as a binder were mixed at a solid content mass ratio of 97.5: 1.5: 1.0.
  • the obtained mixture was added to water as a dispersion solvent so that the solid content concentration was 45% by mass to prepare a slurry-like solution.
  • This slurry solution was applied to one and both sides of a 10 ⁇ m thick copper foil. At this time, a part of the copper foil was exposed. Then, the solvent was removed by drying and rolled with a roll press.
  • the sample after rolling is cut so that the size of the coated part is 32 mm ⁇ 52 mm and includes the exposed part of the copper foil, and a nickel lead piece for taking out the current is welded to the exposed part of the copper foil.
  • a negative electrode was obtained.
  • LiPF 6 was dissolved in a mixed solvent in which ethylene carbonate (EC) and ethyl methyl carbonate (EMC) were mixed at a volume ratio of 1: 2 so as to be 1 mol / L, and a non-aqueous electrolyte ( A non-aqueous electrolyte solution was obtained.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • nonaqueous electrolyte battery ⁇ Production of nonaqueous electrolyte battery>
  • the positive electrode and the negative electrode were overlapped with the separator interposed therebetween to obtain a laminated electrode body.
  • the separator was arrange
  • This laminated electrode body was inserted into an aluminum laminate outer package of 80 ⁇ 60 mm.
  • the nonaqueous electrolyte nonaqueous electrolyte
  • the rated capacity of the obtained nonaqueous electrolyte battery was 90 mAh.
  • the mixture was shaken and stirred at 100 rpm for 6 hours in an atmosphere at 23 ° C. Then, it filtered with the membrane filter made from PTFE with the hole diameter of 0.2 micrometer.
  • Mn concentration (Mx) (unit: ppm) in this filtrate was measured, and the adsorption rate (Ax) (unit:%) was calculated from the following formula.
  • the adsorption rate was less than 10%: “ ⁇ ”, 10-20%: “ ⁇ ”, greater than 20%: “ ⁇ ”.
  • Ax [(5-Mx) / 5] ⁇ 100
  • concentration of Mn was measured by ICP emission-spectral-analysis (ICP emission-spectral-analysis apparatus: Optima8300 (made by Perkin Elmer)).
  • Example 2 Hydroxyapatite B was obtained in the same manner as in Example 1 except that the heating temperature of the aqueous suspension was 80 ° C.
  • the obtained hydroxyapatite B had a BET specific surface area of 52 m 2 / g.
  • the average thickness of 100 particles observed with a transmission electron microscope was 140 nm.
  • X-ray diffraction measurement was performed in the same manner as in Example 1.
  • the obtained diffraction pattern is shown in FIG. From this diffraction pattern, a diffraction peak derived from the (002) plane is observed near 25.9 ° (2 ⁇ ), and a diffraction peak derived from the (300) plane is observed near 32.8 ° (2 ⁇ ), indicating a hydroxyapatite structure. It was confirmed.
  • the half width of the diffraction peak derived from the (002) plane was 0.18 °.
  • a separator having an inorganic particle-containing layer containing boehmite (average thickness: 250 nm) and hydroxyapatite B was obtained in the same manner as in Example 1 except that hydroxyapatite B was used instead of hydroxyapatite A.
  • the volume ratio of the inorganic particles in the inorganic particle-containing layer containing boehmite and hydroxyapatite B was 95% by volume. Further, metal adsorption ability and life characteristics / safety evaluation were performed in the same manner as in Example 1.
  • Example 3 Hydroxyapatite B was calcined at 1000 ° C. for 5 hours in an air atmosphere and pulverized to obtain hydroxyapatite C.
  • the resulting hydroxyapatite C had a BET specific surface area of 7 m 2 / g.
  • the average thickness of 100 particles observed with a transmission electron microscope was 145 nm.
  • X-ray diffraction measurement was performed in the same manner as in Example 1. The obtained diffraction pattern is shown in FIG.
  • a diffraction peak derived from the (002) plane is observed near 25.9 ° (2 ⁇ ), and a diffraction peak derived from the (300) plane is observed near 32.8 ° (2 ⁇ ), indicating a hydroxyapatite structure. It was confirmed.
  • the half width of the diffraction peak derived from the (002) plane was 0.14 °.
  • a separator having an inorganic particle-containing layer containing boehmite (average thickness: 250 nm) and hydroxyapatite C was obtained in the same manner as in Example 1 except that hydroxyapatite C was used instead of hydroxyapatite A.
  • the volume ratio of the inorganic particles in the inorganic particle-containing layer containing boehmite and hydroxyapatite C was 95% by volume. Further, metal adsorption ability and life characteristics / safety evaluation were performed in the same manner as in Example 1.
  • Example 4 A separator having an inorganic particle-containing layer containing only hydroxyapatite A was obtained in the same manner as in Example 1 except that hydroxyapatite A was used as the inorganic particles. In addition, the volume ratio of the inorganic particles in the inorganic particle-containing layer containing hydroxyapatite of this separator was 90% by volume. In addition, life characteristics / safety evaluation was performed in the same manner as in Example 1. In addition, the value of Example 1 was used for the measurement result of the metal adsorption capacity.
  • Example 5 A separator having an inorganic particle-containing layer containing boehmite and hydroxyapatite A was obtained in the same manner as in Example 1 except that boehmite was changed from average thickness: 250 nm to average thickness: 150 nm. In addition, the volume ratio of the idle particle in the inorganic particle containing layer containing boehmite and hydroxyapatite A in this separator was 95% by volume. Further, life characteristics / safety evaluation was performed in the same manner as in Example 1. In addition, the value of Example 1 was used for the measurement result of the metal adsorption capacity.
  • Example 6 A separator having an inorganic particle-containing layer containing boehmite and hydroxyapatite A was obtained in the same manner as in Example 1 except that boehmite was changed from average thickness: 250 nm to average thickness: 100 nm. In addition, the volume ratio of the idle particle in the inorganic particle containing layer containing boehmite and hydroxyapatite A in this separator was 95% by volume. In addition, life characteristics / safety evaluation was performed in the same manner as in Example 1. In addition, the value of Example 1 was used for the measurement result of the metal adsorption capacity.
  • Example 1 A separator having an inorganic particle-containing layer containing zeolite was obtained in the same manner as in Example 1 except that zeolite (specific surface area: 550 m 2 / g) was used as the inorganic particles. In addition, the volume ratio of the inorganic particles in the inorganic particle-containing layer containing zeolite of this separator was 97% by volume. In addition, metal adsorption ability and lifetime characteristics were evaluated in the same manner as in Example 1.
  • Example 2 A separator having an inorganic particle-containing layer containing aluminum silicate was obtained in the same manner as in Example 1 except that aluminum silicate (Al 2 O 3 .2SiO 2 ) was used as the inorganic particles. In addition, the volume ratio of the inorganic particles in the inorganic particle-containing layer containing aluminum silicate of this separator was 97% by volume. Further, metal adsorption ability and life characteristics / safety evaluation were performed in the same manner as in Example 1.
  • Example 3 A separator having an inorganic particle-containing layer containing boehmite was obtained in the same manner as in Example 1 except that boehmite (average thickness: 250 nm) was used as the inorganic particles. In addition, the volume ratio of the inorganic particles in the inorganic particle-containing layer containing boehmite of this separator was 97% by volume. Further, metal adsorption ability and life characteristics / safety evaluation were performed in the same manner as in Example 1.
  • Hydroxyapatite D was obtained in the same manner as in Example 1 except that the heating temperature of the aqueous suspension was 60 ° C.
  • the obtained hydroxyapatite D had a BET specific surface area of 96 m 2 / g.
  • the average thickness of 100 particles observed with a transmission electron microscope was 110 nm.
  • X-ray diffraction measurement was performed in the same manner as in Example 1. The obtained diffraction pattern is shown in FIG.
  • the separator which has is obtained. In this separator, the volume ratio of the inorganic particles in the inorganic particle-containing layer containing boehmite and hydroxyapatite D was 94% by volume. Further, metal adsorption ability and life characteristics / safety evaluation were performed in the same manner as in Example 1.
  • a separator having an inorganic particle-containing layer containing boehmite (average thickness: 250 nm) and fluoroapatite A was obtained in the same manner as in Comparative Example 5 except that fluoroapatite A was used instead of hydroxyapatite D.
  • the volume ratio of the inorganic particles in the inorganic particle-containing layer containing boehmite and fluoroapatite A was 93% by volume. Further, metal adsorption ability and life characteristics / safety evaluation were performed in the same manner as in Example 1.
  • the inorganic particles for nonaqueous electrolyte batteries of the present invention can be used for nonaqueous electrolyte batteries, for example, lithium ion secondary batteries.
  • the inorganic particles for a non-aqueous electrolyte battery of the present invention can be preferably used for a separator for a non-aqueous electrolyte battery, for example, a separator for a lithium ion secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Separators (AREA)

Abstract

安全性及び寿命特性に優れる非水電解質電池を提供することができる、非水電解質電池用無機粒子を提供することを目的とする。本発明は、非水電解質電池用無機粒子の金属吸着能力を検査するための、効率的で実効的な方法を提供することもまた目的とする。本発明の非水電解質電池用無機粒子は、高結晶性の一次元トンネル状結晶構造の陽イオン交換体を含む。本実施形態の非水電解質電池用無機粒子の金属吸着能力の検査方法は:特定濃度の金属イオンを含む非水電解質液を調製する工程;上記非水電解質液に、特定量の非水電解質電池用無機粒子を添加して非電解質混合液を調製する工程;上記非電解質混合液を特定条件で撹拌する工程;撹拌後の非電解質混合液中の金属イオン濃度を、特定の分析機で定量する工程を含む。

Description

非水電解質電池用無機粒子及びこれを用いた非水電解質電池
 本発明は、非水電解質電池用無機粒子及びこれを用いた非水電解質電池に関する。
 近年の電子技術の発展又は環境技術への関心の高まりに伴い、様々な電気化学デバイスが開発されている。特に、省エネルギー化への要請が多くあり、それらに貢献できる電気化学デバイスへの期待はますます高くなっている。
 蓄電デバイスの代表例であり、かつ非水電解質電池の代表例でもあるリチウムイオン二次電池は、従来、主に小型機器用電源として使用されており、近年ではハイブリッド自動車及び電気自動車用電源としても着目されている。
 リチウムイオン二次電池では、デバイスの高性能化に伴い高エネルギー密度化が進展しており、信頼性の確保が重要となっている。また、車載用電源などの中型又は大型のリチウムイオン二次電池では、小型機器よりも特に信頼性が確保される必要がある。さらに、車載用電源としては、製品サイクルに合わせて、長い期間にわたって充放電容量を維持可能なリチウムイオン二次電池が求められている。
 例えば、特許文献1は、イオン透過性および耐熱性を有する絶縁層を形成するためのスラリーであって、耐熱性微粒子、増粘剤および媒体を含有しており、前記耐熱性微粒子の少なくとも一部がリン灰石であり、pHが7~11である、絶縁層形成用スラリーを記載している。
 特許文献2は、ポリオレフィンを主成分とする多孔質フィルムの少なくとも一方の面に、微粒子を含む多孔質層を積層させた積層体であって、JIS A5508で規定されるN50の釘を用い、釘の降下速度50μm/分の条件で測定した釘刺し導通試験における、積層体の導通時の試験力と絶縁破壊時の試験力との差(導通時の試験力-絶縁破壊時の試験力)が特定範囲である、積層体を記載している。
 特許文献3は、ポリオレフィンを主成分とする多孔質フィルムの少なくとも一方の面に、微粒子を含む多孔質層を積層させた積層体であって、JIS A5508で規定されるN50の釘を用い、釘の降下速度50μm/分の条件で測定した釘刺し導通試験における、積層体の絶縁破壊から導通までの積層体の厚さ方向の変位が特定範囲である、積層体を記載している。
 特許文献4は、特定の空隙率変動率を有し、ポリオレフィン等の特定の樹脂及びフィラーを含有し、フィラーの体積基準の平均粒子径が特定範囲である、非水電解液二次電池のセパレータ用の多孔質層を記載している。
特開2011-018588号公報 特許第5973674号公報 特許第5973675号公報 特許第5976947号公報
 非水電解質電池では、その系中に存在する又は生じることがある金属イオンが、電池の安全性及び寿命特性に悪影響を及ぼすことがある。例えば、リチウムイオン二次電池では、リチウム(Li)イオンが正極-負極間を移動することで充放電が行われる。ここで、電池内にLiイオン以外の微量の金属イオン、例えばコバルトイオン(Co2+)、ニッケルイオン(Ni2+)、マンガンイオン(Mn2+)が存在すると、これらの金属が負極表面に析出して、電池寿命低下の原因となったり、析出した金属がセパレータを破って正極に到達することで短絡の原因となったり、安全性が低下することが知られている。このような金属イオンは、一般的に電池構成部材を構成する材料の不純物に由来することがあり、また、それ以外にも正極活物質等の電池構成部材に含まれる金属が電池内の副反応に伴い非水電解質に溶出することに由来することもある。例えば、非水電解質の分解反応等によってフッ化水素酸(HF)が発生し、HFによって正極活物質に含まれる金属が溶出することがある。さらに、このような金属の溶出は、電池が高温下に晒された場合に、より顕著になることが指摘されている。
 また、金属イオンを吸着するための材料を検討する場合、一般的に、(i)材料を電池内に入れて、充放電後の負極における金属析出量を検査する方法や、(ii)金属イオンを含み、電解質を含まない環状及び/又は鎖状カーボネート溶液に、材料を入れて、金属イオンの減少量を検査する方法が採用される。しかし、(i)の方法では、電池組立工程が煩雑であり、材料検討に時間を要すという課題があり、(ii)の方法では、金属イオンの吸着を阻害する可能性のあるリチウムイオンが含まれておらず、実際の電池内での吸着反応を再現できないという課題があった。
 本発明の解決しようとする課題のひとつは、安全性及び寿命特性に優れる非水電解質電池を提供することができる、非水電解質電池用無機粒子を提供することである。本発明は、非水電解質電池用無機粒子の金属吸着能力を検査するための、効率的で実効的な方法を提供することもまた目的とする。
 本願発明者らは、上記課題を解決するため鋭意検討を重ねた結果、高結晶性の一次元トンネル状結晶構造の陽イオン交換体を含む、非水電解質電池用無機粒子を使用することにより、安全性及び寿命特性に優れる非水電解質電池を提供することができることを見いだした。また、特定濃度の金属イオンを含む非水電解質液を調製する工程;上記非水電解質液に、特定量の非水電解質電池用無機粒子を添加して非電解質混合液を調製する工程;上記非電解質混合液を特定条件で撹拌する工程;撹拌後の非電解質混合液中の金属イオン濃度を、特定の分析機で定量する工程を含む方法によって、効率的かつ実効的に非水電解質電池用無機粒子の金属吸着能力を検査することができることを見出した。すなわち、本発明は以下のとおりである。
[1]
 高結晶性の一次元トンネル状結晶構造の陽イオン交換体を含む、非水電解質電池用無機粒子。
[2]
 上記高結晶性の一次元トンネル状結晶構造の陽イオン交換体が、ヒドロキシアパタイト、フルオロアパタイト、塩素燐灰石、プロトン化曹長石、マンガン酸化物、β‐アルミナ、六チタン酸カリウム、タングステン酸カリウム、及びモリブデン酸カリウム、オクトチタン酸塩、及びガロチタノガリウム酸塩から選ばれる1種類以上である、項目1に記載の非水電解質電池用無機粒子。
[3]
 上記一次元トンネル状結晶構造の陽イオン交換体がヒドロキシアパタイトであり、上記ヒドロキシアパタイトは、Cu-Kα線を光源として用いたX線回折測定によるX線回折図形において、回折角(2θ)25.5~26.5°に(002)面のピークが存在し、回折角(2θ)32.5~33.5°に(300)面のピークが存在し、上記(002)面のピークの半値幅が0.3°以下である、項目1又は2に記載の非水電解質電池用無機粒子。
[4]
 上記(002)面のピークの半値幅が0.15°以下である、項目3に記載の非水電解質電池用無機粒子。
[5]
 BET比表面積が3m/g以上である、項目1~4のいずれか一項に記載の非水電解質電池用無機粒子。
[6]
 5ppmのMn2+イオンと、1mol/LのLiPFと、環状及び/又は鎖状カーボネートとの混合液100質量部に対し、上記非水電解質電池用無機粒子0.035質量部を23℃の雰囲気下で6時間浸漬したとき、上記非水電解質電池用無機粒子への上記Mn2+イオンの吸着率が10%以上である、項目1~5のいずれか一項に記載の非水電解質電池用無機粒子。
[7]
 混合用無機粒子を更に含む、項目1~6のいずれか一項に記載の非水電解質電池用無機粒子。
[8]
 上記混合用無機粒子の平均厚みが上記陽イオン交換体よりも厚い、項目7に記載の非水電解質電池用無機粒子。
[9]
 上記混合用無機粒子が陰イオン交換体である、項目7又は8に記載の非水電解質電池用無機粒子。
[10]
 上記陽イオン交換体及び上記混合用無機粒子の合計質量を100質量%としたとき、上記陽イオン交換体が50質量%未満である、項目7~9のいずれか一項に記載の非水電解質電池用無機粒子。
[11]
 項目1~10のいずれか一項に記載の非水電解質電池用無機粒子を含む、電池構成部材。
[12]
 項目1~10のいずれか一項に記載の非水電解質電池用無機粒子を含む無機粒子含有層を備える、非水電解質電池。
[13]
 正極と、負極と、セパレータと、非水電解質と、外装体とを有する非水電解質電池であって、
 上記正極、上記負極、上記セパレータ、上記非水電解質、及び上記外装体の少なくとも1つが、項目1~10のいずれか一項に記載の非水電解質電池用無機粒子を含む、非水電解質電池。
[14]
 正極と、負極と、セパレータとを含む、項目12に記載の非水電解質電池であって、
 上記無機粒子含有層は、上記セパレータ内部、上記正極と上記セパレータとの間、及び上記負極と上記セパレータとの間から選択される少なくとも一つの、一部又は全部に形成されている、非水電解質電池。
[15]
 上記無機粒子含有層は上記正極と上記セパレータとの間の一部又は全部に形成されている、項目14に記載に非水電解質電池。
[16]
 項目1~10のいずれか一項に記載の非水電解質電池用無機粒子を含む、非水電解質電池用セパレータ。
[17]
 項目12に記載の無機粒子含有層を少なくとも片面に有する、非水電解質電池用セパレータ。
[18]
 項目1~10のいずれか一項に記載の非水電解質電池用無機粒子を含む、非水電解質電池用塗料。
[19]
 項目1~10のいずれか一項に記載の非水電解質電池用無機粒子と樹脂とを含む、非水電解質電池用樹脂固形物。
[20]
 正極、項目1~10のいずれか一項に記載の非水電解質電池用無機粒子を含む無機粒子含有層、セパレータ、及び負極がこの順に積層されている、積層体又は上記積層体の捲回体と、非水電解質とを有する、リチウムイオン二次電池。
[21]
 非水電解質電池用無機粒子の金属吸着能力の検査方法であって、上記方法は、以下の工程:
 露点-40℃以下において、0.1~6.0mol/LのLiPFを含む環状及び/又は鎖状カーボネート溶液に金属化合物を添加することにより、金属イオン濃度が0.1~10,000ppmの非水電解質液を調製する工程;
 上記非水電解質液100質量部に、上記非水電解質電池用無機粒子0.001~100質量部を添加し、非電解質混合液を調製する工程;
 上記非電解質混合液を0~45℃で1秒~1000時間撹拌する工程;及び
 撹拌後の非電解質混合液中の金属イオン濃度を、誘導結合プラズマ分光分析機(IPC-AES)または誘導結合プラズマ質量分析機(ICP-MS)で定量する工程;
を含む、方法。
 本発明の非水電解質電池用無機粒子は、非水電解質電池内に存在する又は生じることのある金属イオンを効率的に吸着することができるため、安全性及び寿命特性に優れる非水電解質電池を提供することができる。
図1は、実施例1~3に用いたヒドロキシアパタイトのCu-Kα線を光源として用いたX線回折測定によるX線回折図である。
 以下、本発明の実施形態(以下、「本実施形態」という。)を例示する目的で詳細に説明するが、本発明は本実施形態に限定されるものではない。本願明細書において、各数値範囲の上限値及び下限値は任意に組み合わせることができる。
 《非水電解質電池》
 本実施形態の非水電解質電池は、本実施形態の非水電解質電池用無機粒子を含有する無機粒子含有層を備えることがより好ましい。非水電解質電池は、一般的に、正極と、負極と、セパレータと、非水電解質と、外装体とを有する。一実施形態において、正極、負極、セパレータ、非水電解質、及び外装体の少なくとも1つが、本実施形態の非水電解質電池用無機粒子を含むことが好ましい。セパレータが本実施形態の非水電解質電池用無機粒子を含むことがより好ましい。セパレータに無機粒子を添加する具体的な方法としては、セパレータ内、例えば基材としての微多孔膜又は不織布内に無機粒子を添加してもよい。また、セパレータの基材としての微多孔膜又は不織布の片面又は両面に、本実施形態の非水電解質電池用無機粒子を含有する無機粒子含有層を配置してもよい。無機粒子含有層は、セパレータ内部、正極とセパレータとの間、及び負極とセパレータとの間から選択される少なくとも一つの、一部又は全部に形成されていることが好ましく、正極とセパレータとの間の一部又は全部に形成されていることがより好ましい。本願明細書において、非水電解質電池としてリチウムイオン二次電池を例に挙げて説明することがあるが、そのような説明は本発明の理解を助けることのみを目的とするものであり、本実施形態の非水電解質電池はリチウムイオン二次電池に限定されるものではない。
 本願明細書において、正極、負極、セパレータ、非水電解質、及び外装体を含む、電池を構成する部材を総称して「電池構成部材」という。電池構成部材を構成する材料として、例えば外装体にはアルミニウム等;正極活物質にはニッケル、コバルト、マンガン、鉄、亜鉛、銅、及びアルミニウム等;また、集電箔には銅、及びアルミニウム等が典型的に用いられる。これらの金属は、例えばHFと接触することで金属イオンとなって電池内に溶出する。溶出した金属イオンは負極で還元されて析出し、例えばリチウムイオン二次電池ではLi含有化合物を生じて容量の低下を招く。その結果、電池の安全性及び寿命特性が著しく低下してしまうことがある。本実施形態の非水電解質電池は、後述する特定の無機粒子を含むことで、電池内に存在する又は生じる金属イオンを効果的に吸着することができ、金属の析出を抑え、電池の寿命特性を向上させることができる。また、負極における金属の析出を抑制することができ、短絡をより効果的に抑制することが可能であるため、電池の安全性の向上に寄与することができる。
 〈非水電解質電池用無機粒子〉
 本発明において、正極、負極、セパレータ、非水電解質、及び外装体のうち少なくとも1つは、無機粒子を含む。本実施形態の非水電解質電池用無機粒子は、高結晶性の一次元トンネル状結晶構造の陽イオン交換体を含む。一実施形態において、非水電解質電池用無機粒子は、高結晶性の一次元トンネル状結晶構造の陽イオン交換体から構成されてもよく、高結晶性の一次元トンネル状結晶構造の陽イオン交換体に加えて、後述する混合用無機粒子を更に含んでもよく、高結晶性の一次元トンネル状結晶構造の陽イオン交換体と混合用無機粒子とから構成されてもよい。
 (陽イオン交換体)
 本願明細書において、「一次元トンネル状結晶構造の陽イオン交換体」とは、一次元トンネル型結晶構造を有し、電池内に存在する又は発生する陽イオンをそのトンネル内に吸着することができ、その代わりにトンネル内に存在する他の陽イオン(「交換性陽イオン」とも呼ばれる)を放出することができる物質をいう。交換性陽イオンは、一次元トンネル型結晶構造内で、一方向に規則的に配列しているため、結晶内における移動性が高く、他の陽イオンの吸着能力も優れる傾向がある。
 本願明細書において、「高結晶性」とは、Cu-Kα線を光源としたX線回折測定における一次元トンネル状結晶構造に由来するピーク形状がシャープであることをいう。より具体的には、一次元トンネル状結晶構造に由来するピークの半値幅が0.3°以下であることをいう。
 一次元トンネル型結晶構造の結晶性が高いことで、交換性陽イオンの結晶内における移動性がより高く、他の陽イオンの吸着能力もより優れる傾向がある。
 一次元トンネル状結晶構造の陽イオン交換体としては、限定されないが、例えば、ヒドロキシアパタイト(Ca10(PO(OH)、「水酸リン灰石」とも呼ばれる)、フルオロアパタイト(Ca10(PO、「フッ素リン灰石」とも呼ばれる)、塩素リン灰石(Ca10(POCl)、プロトン化曹長石、マンガン酸化物(例えば、パイロルーサイト型、ラムズデライト型、ホランダイト型、ロマネサイト型、RUB-7型、トドロカイト型等)、β‐アルミナ、六チタン酸カリウム、タングステン酸カリウム、モリブデン酸カリウム、メソポーラス物質(FSM-16等)、ナノチューブ状アルミニウムケイ酸塩(イモゴライト等)、プリデライト、オクトチタン酸塩、及びガロチタノガリウム酸塩等が挙げられる。
 これらの中で、結晶性を高めやすいことから、ヒドロキシアパタイト、フルオロアパタイト、塩素燐灰石、プロトン化曹長石、マンガン酸化物、β‐アルミナ、六チタン酸カリウム、タングステン酸カリウム、モリブデン酸カリウム、オクトチタン酸塩、及びガロチタノガリウム酸塩からなる群から選ばれる少なくとも一つの陽イオン交換体が好ましい。
 電池の膨れを防ぐ等の観点から、一次元トンネル状結晶構造の陽イオン交換体としては、ヒドロキシアパタイトが好ましい。陽イオン交換体は、1種を単独で用いてもよく、2種以上を併用してもよい。
 ヒドロキシアパタイトは、高結晶性の一次元トンネル状結晶構造が保持されていれば、各サイトが部分的に他の元素及び又は元素群に置換されていてもよい。例えば、Caサイトは、Na、K、Rb、Cs、Mg、Zn、Ba、Y、V、Sb、Ge、Ti等の元素に置換することができる。POサイトは、SO、CO、HPO、AsO、VO、BO、CrO、SiO、GeO、BO等の元素群に置換することができる。OHサイトは、OH、F、Cl、Br、I、O、CO、HO等の元素及び又は元素群に置換することができる。上記元素及び又は元素群は、1種類のみでもよく、2種類以上を含んでいてもよい。
 ヒドロキシアパタイトは、Cu-Kα線を光源として用いたX線回折測定によるX線回折図形において、回折角(2θ)25.5~26.5°に(002)面のピークが存在し、回折角(2θ)32.5~33.5°に(300)面のピークが存在するものであることが好ましい。
 ヒドロキシアパタイトの(002)面のピークの半値幅は、好ましくは0.3以下、より好ましくは0.20以下、更に好ましくは0.15以下である。
 ヒドロキシアパタイトを得る方法としては、特に限定されず、公知の方法を用いることができる。ヒドロキシアパタイトの製造方法としては、例えば、乾式法、湿式法が挙げられる。乾式法は、炭酸カルシウム、ピロリン酸カルシウム、リン酸水素カルシウムなどを原料にし、1200℃程度の高温で熱処理する方法である。一方、湿式法は、水溶液中での反応であり、常圧付近や水熱条件下、カルシウム塩とリン酸及び/又はリン酸塩を中性からアルカリ性の条件で反応させることでヒドロキシアパタイトが得られる。乾式法に比べ湿式法で得られたヒドロキシアパタイトの方が純度や結晶性に優れる傾向にある。また、湿式法により得られたヒドロキシアパタイトは、200~1300℃で焼成処理を行っても良い。焼成処理を行うことで、非水電解質電池において電池の膨れの原因となる吸着水を除去できると共に、結晶性も高まり、それ故、溶出イオンの吸着能力も向上することができる。
 (混合用無機粒子)
 本願明細書において、「混合用無機粒子」とは、一次元トンネル状結晶構造の陽イオン交換体の分散性を向上させることができる無機粒子をいう。本実施形態において、無機粒子は、高結晶性の一次元トンネル状結晶構造の陽イオン交換体だけでなく、混合用無機粒子を含むことが好ましい。また、上記混合用無機粒子は、平均厚みが上記陽イオン交換体より厚いことがより一層好ましい。ここでいう「厚み」とは、粒子の最短軸方向の長さをいう。無機粒子は、陽イオン交換体とともに、この特定の平均厚みを有する混合用無機粒子を含有することで、陽イオン交換体の分散性が特に高まり、金属イオンを効率的に吸着することができる。
 粒子の平均厚みを測定する方法としては、特に制限されないが、例えば、透過型電子顕微鏡で、100個の粒子の最短軸方向の長さを観察し、平均値を算出することにより測定することができる。
 混合用無機粒子としては、限定されないが、例えば、200℃以上の融点を有し、電気絶縁性が高く、かつ非水電解質電池の使用範囲で電気化学的に安定であるものが好ましい。このような無機粒子としては、特に限定されないが、例えば、陰イオン交換体、リン酸ジルコニウム、リン酸チタニウム、チタン酸塩、ニオブ酸塩、ニオブ・チタン酸塩、ゼオライト、などの陽イオン交換体、硫酸カルシウム、硫酸マグネシウム、硫酸アルミニウム、石膏、硫酸バリウムなどの炭酸塩および硫酸塩、アルミナ三水和物(ATH)、ヒュームドシリカ、沈殿シリカ、イットリアなどの酸化物系セラミックス、酸化ナトリウム、酸化カリウム、酸化マグネシウム、酸化カルシウム、酸化バリウム、酸化ストロンチウム、酸化バナジウム、SiO-MgO(ケイ酸マグネシウム)、SiO-CaO(ケイ酸カルシウム)、炭酸ナトリウム、炭酸カリウム、炭酸マグネシウム、炭酸カルシウム、炭酸バリウム、炭酸ランタン、炭酸セリウム窒化ケイ素、窒化チタン、窒化ホウ素等の窒化物系セラミックス、水酸化マグネシウム、シリコンカーバイド、タルク、ディカイト、ナクライト、ハロイサイト、パイロフィライト、モンモリロナイト、セリサイト、アメサイト、ベントナイトなどの層状シリケート、アスベスト、ケイ藻土、ガラス繊維などの合成層状シリケート、例えば、雲母またはフルオロ雲母などの中性層状シリケート、例えば、ヘクトライト、サポナイト、またはバーミキュライト、ナノクレイなどのインターカレーションおよび剥離を改善する改良剤を含有する天然または合成層状シリケート、およびホウ酸亜鉛からなる群から選択される無機粒子などが挙げられる。
 混合用無機粒子は、陰イオン交換体であることが好ましい。本願明細書において、「陰イオン交換体」とは、電池内に存在する又は生じる陰イオンを吸着し、代わりに他の陰イオンを放出することができる物質をいう。混合用無機粒子が陰イオン交換体であることで、陽イオン交換体の無機粒子層内における分散性を向上するだけでなく、金属イオンをより効率的に吸着することができるため、より好ましい。その具体的なメカニズムとしては、理論に限定されないが、陰イオン交換体を含むことで、陽イオン交換体から非水電解質中へ拡散した陽イオンの非水電解質中での安定性が向上し、陽イオン交換体近傍での析出が抑制され、結果として、陽イオン交換体のイオン交換能力が低下することを防いでいるものと推測される。
 陰イオン交換体としては、限定されないが、例えば、層状複水酸化物(Mg-Alタイプ、Mg-Feタイプ、Ni-Feタイプ、Li-Alタイプ)、層状複水酸化物-アルミナシリカゲル複合体、ベーマイト、アルミナ、酸化亜鉛、酸化鉛、酸化鉄、オキシ水酸化鉄、ヘマタイト、酸化ランタン、酸化ビスマス、酸化スズ、酸化チタン、酸化セリウム、酸化ジルコニウム、塩基性酢酸銅及び塩基性硫酸鉛等が挙げられる。水分量が比較的少なく、電池の膨れを防ぐ観点から、陰イオン交換体としては、ベーマイト、アルミナ、酸化亜鉛、酸化鉛、酸化鉄、オキシ水酸化鉄、ヘマタイト、酸化ランタン、酸化ビスマス、酸化スズ、酸化チタン、酸化セリウム、酸化ジルコニウムが好ましい。陰イオン交換体は、1種を単独で用いてもよく、2種以上を併用してもよい。
 本実施形態の非水電解質電池用無機粒子は、一次元トンネル状結晶構造の陽イオン交換体、及び平均厚みが上記陽イオン交換体よりも厚い混合用無機粒子以外の、その他の無機粒子を含有してもよい。
 (非水電解質電池用無機粒子の他の特徴)
 陽イオン交換体のBET比表面積は、好ましくは3m/g以上、より好ましくは5m/g以上である。BET比表面積が3m/g以上であることによって、非水電解質電池の寿命特性及び安全性をより向上させることができる。陽イオン交換体のBET比表面積は、好ましくは2000m/g以下、より好ましくは1000m/g以下、更に好ましくは100m/g以下、より更に好ましくは50m/g以下である。BET比表面積が2000m/g以下であることにより、無機粒子の凝集が抑えられ、非水電解質電池のエネルギー密度が向上する傾向にある。
 非水電解質電池用無機粒子は、5ppmのMn2+イオンと、1mol/LのLiPFと、環状及び/又は鎖状カーボネートとの混合液100質量部に対して、無機粒子0.035質量部を23℃の雰囲気下で6時間浸漬したとき、無機粒子へのMn2+イオンの吸着率は、好ましくは10%以上、より好ましくは15%以上、更に好ましくは20%以上である。無機粒子へのMn2+イオンの吸着率が10%以上であると、非水電解質電池の寿命特性及び安全性をより向上させることができる。
 非水電解質電池用無機粒子の平均二次粒子径(D50)は、好ましくは0.05μm~4μm、より好ましくは0.1μm~3.5μm、更に好ましくは0.2μm~3μmである。平均二次粒子径が0.05μm~4μmであることによって、非水電解質電池のエネルギー密度が高まる傾向にある。
 非水電解質電池用無機粒子の平均二次粒子径を0.05μm~4.0μmの範囲内に制御する方法としては、特に限定されないが、従来公知の方法、例えば、軸流型ミル法、アニュラー型ミル法、ロールミル法、ボールミル法、ビーズミル法、ジェットミル法、容器回転式圧縮剪断型ミル法、磁器乳鉢で粉砕する方法等が挙げられる。
 本実施形態に係る非水電解質電池用無機粒子の形状は、球状、板状、針状などでよく、好ましくは板状又は針状である。無機粒子のアスペクト比は限定されない。
 非水電解質電池用無機粒子中に含まれる混合用無機粒子及び陽イオン交換体の量は、混合用無機粒子及び陽イオン交換体の合計質量を100質量%としたとき、陽イオン交換体の含有量は、好ましくは50質量%未満、より好ましくは40%以下である。混合用無機粒子及び陽イオン交換体の合計質量を100質量%としたとき、陽イオン交換体の含有量は、好ましくは1%以上、より好ましくは5%以上、更に好ましくは10%以上である。陽イオン交換体が50質量%未満であると、非水電解質電池のエネルギー密度を高く維持し、かつ金属イオン吸着率に優れる傾向にある。特に、非球形、例えば針状の陽イオン交換体、例えばヒドロキシアパタイトを使用したとき、陽イオン交換体を50質量%未満とする効果はより顕著になる。
 〈非水電解質電池用セパレータ〉
 非水電解質電池セパレータ(以下、単に「セパレータ」ともいう。)は、イオンの透過性が高く、かつ正極と負極とを電気的に隔離する機能を有するものであれば限定されない。非水電解質電池に用いられる公知のセパレータを用いることができる。
 セパレータの材料としては、限定されないが、電池中の非水電解質に対して安定であり、かつ電気化学的に安定な材料、例えば、ポリオレフィン、例えばポリエチレン(PE)、ポリプロピレン(PP)など;ポリエステル;ポリイミド;ポリアミド;ポリウレタンが挙げられる。セパレータの形態としては、限定されないが、例えば微多孔膜、及び不織布等が挙げられる。
 セパレータは、好ましくは80℃以上180℃以下、より好ましくは100℃以上150℃以下において、その孔が閉塞する性質(「シャットダウン機能」ともいう。)を有することが好ましい。したがって、セパレータとしては、JIS K 7121の規定に準じて示差走査熱量計(DSC)を用いて測定される融解温度が、好ましくは80℃以上180℃以下、より好ましくは100℃以上150℃以下のポリオレフィンを含む、微多孔膜又は不織布を用いることがより好ましい。
 セパレータとしての微多孔膜又は不織布は、例えば、PEから構成されていてもよく、PPから構成されていてもよく、又は2種以上の材料を含んでいてもよい。セパレータは、PEから構成される微多孔膜とPPから構成される微多孔膜との積層体、例えば、PP、PE、PPの順に積層された三層積層体であってもよい。
 微多孔膜としては、例えば、従来から知られている溶剤抽出法、乾式又は湿式延伸法などにより形成された孔を多数有するイオン透過性の多孔質膜を用いることができ、非水電解質電池のセパレータとして汎用されている微多孔膜であってよい。
 非水電解質電池用セパレータは、本実施形態の非水電解質電池用無機粒子を有していてもよい。セパレータが本実施形態の無機粒子を有する場合には、(i)基材としての微多孔膜又は不織布中に無機粒子を含有させてもよく、(ii)基材の少なくとも片面に本実施形態の無機粒子を有してもよく、例えば、微多孔膜又は不織布の片面又は両面上に、無機粒子を含有する多孔質な無機粒子含有層を配置してもよい(以下、「無機粒子含有層を有するセパレータ」ともいう。)。
 無機粒子含有層を有するセパレータの場合、微多孔膜又は不織布が、正極と負極との短絡を防止しつつイオンを透過するセパレータ本来の機能を有する層となり、無機粒子含有層が、正極活物質から非水電解質中に溶出した金属イオンを吸着する役割を担う。このような観点から、本実施形態の非水電解質電池用セパレータは、基材の少なくとも片面に、好ましくは正極に対向する面上に、無機粒子含有層を有することが好ましい。
 無機粒子含有層を有するセパレータにおいては、シャットダウン機能を確保するために、セパレータは、上述した融解温度を有するポリオレフィンを主体とする微多孔膜又は不織布を基材として有することが好ましく、上述した融解温度を有するポリオレフィンを主体とする微多孔膜を基材として有することがより好ましい。すなわち、無機粒子含有層を有するセパレータは、基材としての上述の融解温度を有するポリオレフィンを主体とする多孔質層の少なくとも片面上に、無機粒子含有層を有することが特に好ましい。
 無機粒子含有層を有するセパレータにおいては、基材としての微多孔膜又は不織布と、無機粒子含有層とは一体であってもよく、それぞれが独立の膜として存在し、電池内で重ね合わせられてセパレータを構成していてもよい。
 本願明細書において、ポリオレフィンを「主体とする」多孔質層とは、その構成成分の全体積(空孔部分を除く全体積)中におけるポリオレフィンの含有量が30体積%以上であるものをいい、好ましくは70体積%以上である。
 ポリオレフィンを主体とする多孔質層、特に微多孔膜は、電池内が高温になることによって熱収縮し易い。しかしながら、熱収縮し難い非水電解質電池用無機粒子を含有する無機粒子含有層が耐熱層として機能し、セパレータ全体の熱収縮が抑制されるため、より高温下での安全性に優れた非水電解質電池を得ることができる。
 無機粒子含有層を有するセパレータを使用する場合、無機粒子含有層は、非水電解質電池用無機粒子同士を結着させるため、及び/又は無機粒子含有層と基材(不織布若しくは微多孔膜)とを結着させるために、バインダーを含有することが好ましい。
 無機粒子含有層におけるバインダーとしては、限定されないが、例えば、使用する非水電解質に対して不溶又は難溶であり、かつ電気化学的に安定なものが好ましい。このようなバインダーとしては、限定されないが、例えば、ポリエチレンやポリプロピレン等のポリオレフィン;フッ化ビニリデン、ポリテトラフルオロエチレン等の含フッ素樹脂;フッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレン共重合体、エチレン-テトラフルオロエチレン共重合体等の含フッ素ゴム;スチレン-ブタジエン共重合体及びその水素化物、アクリロニトリル-ブタジエン共重合体及びその水素化物、アクリロニトリル-ブタジエン-スチレン共重合体及びその水素化物、メタクリル酸エステル-アクリル酸エステル共重合体、スチレン-アクリル酸エステル共重合体、アクリロニトリル-アクリル酸エステル共重合体、エチレンプロピレンラバー、ポリビニルアルコール、ポリ酢酸ビニル等のゴム類;エチルセルロース、メチルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース等のセルロース誘導体;ポリフェニレンエーテル、ポリスルホン、ポリエーテルスルホン、ポリフェニルスルホン、ポリフェニレンスルフィド、ポリエーテルイミド、ポリアミドイミド、ポリエステル等の融点及び/又はガラス転移温度が180℃以上の樹脂等が挙げられる。
 上記バインダーとしては、特に限定はされないが、非導電性重合体又はコアシェル構造を有する重合体の粒子からなる群から選択される少なくとも1つであることが更に好ましい。
 非導電性重合体又はコアシェル構造を有する重合体の粒子は、下記(b1)~(b4)に大別される樹脂を含む:
 (b1)ニトリル系樹脂
 (b2)アクリル系樹脂
 (b3)脂肪族共役ジエン系樹脂
 (b4)上記(b1)~(b3)とは異なる樹脂
(b1)ニトリル系樹脂
 ニトリル系樹脂は、ニトリル基を有する重合単位を主成分として含む樹脂である。本明細書では、重合単位を主成分として含むことは、重合時に仕込まれる全単量体の合計モルに対して50モル%以上であることを意味する。ニトリル系樹脂は、所望により、ニトリル基を有する重合単位に加えて、エチレン性不飽和化合物、炭素数4以上の直鎖アルキレン重合単位、親水性基を有する重合単位、反応性基を有する重合単位、芳香族ビニル重合単位、熱架橋性基を有する重合単位から成る群から選択される少なくとも1つを含んでよい。
 熱架橋性基としては、例えば、エポキシ基、N-メチロールアミド基、オキサゾリン基、アリル基などが挙げられる。熱架橋性基を有する場合、ニトリル系樹脂における熱架橋性基を有する単量体単位の存在量は、(メタ)アクリロニトリル単量体単位と(メタ)アクリル酸エステル単量体単位との合計量100質量部に対して、0.01質量部以上4質量部以下が好ましい。
 ニトリル系樹脂のヨウ素価は、3~60mg/100mgが好ましく、3~30mg/100mgがより好ましく、3~10mg/100mgであることがさらに好ましい。
 ニトリル系樹脂は、ニトリル基を有する単量体の重合、又はニトリル基を有する単量体と他の単量体との共重合により得られることができる。ニトリル基を有する単量体は、例えば、(メタ)アクリロニトリルなどである。(メタ)アクリロニトリルは、アクリロニトリル又はメタクリロニトリルを意味する。
 他の単量体は、エチレン性不飽和化合物、例えば、アクリル酸、2-メタクリル酸、2-ペンテン酸、2,3-ジメチルアクリル酸、3,3-ジメチルアクリル酸、イタコン酸、及びそれらのアルカリ金属塩などの(メタ)アクリル酸などが挙げられる。(メタ)アクリル酸エステルは、アクリル酸エステル又はメタクリル酸エステルを意味し、(メタ)アクリル酸エステル単量体において、アルキル基の水素の一部または全部は、フッ素などのハロゲンに置換されたハロアルキル基であってもよい。(メタ)アクリル酸アルキルエステルの非カルボニル性酸素原子に結合するアルキル基の炭素数は好ましくは1~14であり、より好ましくは1~5である。
 非カルボニル性酸素原子に結合するアルキル基の炭素数が1~5である(メタ)アクリル酸アルキルエステルとしては、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸t-ブチル、(メタ)アクリル酸ヘキシル、及び(メタ)アクリル酸2-エチルヘキシルなどのアクリル酸アルキルエステル;エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、及びトリメチロールプロパントリアクリレートなどの2つ以上の炭素-炭素二重結合を有するカルボン酸エステル類が挙げられる。
 その他の(メタ)アクリル酸アルキルエステルとしては、アクリル酸n-ヘキシル、アクリル酸2-エチルヘキシル、アクリル酸ノニル、アクリル酸ラウリル、アクリル酸ステアリル、アクリル酸シクロヘキシル、およびアクリル酸イソボルニルなどの非カルボニル性酸素原子に結合するアルキル基の炭素数が6~18であるアクリル酸アルキルエステル;メタクリル酸n-ヘキシル、メタクリル酸2-エチルヘキシル、メタクリル酸オクチル、メタクリル酸イソデシル、メタクリル酸ラウリル、メタクリル酸トリデシル、メタクリル酸ステアリル、およびメタクリル酸シクロヘキシルなどの非カルボニル性酸素原子に結合するアルキル基の炭素数が6~18であるメタクリル酸アルキルエステル;アクリル酸2-(パーフルオロヘキシル)エチル、アクリル酸2-(パーフルオロオクチル)エチル、アクリル酸2-(パーフルオロノニル)エチル、アクリル酸2-(パーフルオロデシル)エチル、アクリル酸2-(パーフルオロドデシル)エチル、アクリル酸2-(パーフルオロテトラデシル)エチル、及びアクリル酸2-(パーフルオロヘキサデシル)エチルなどの非カルボニル性酸素原子に結合するアルキル基の炭素数が6~18であるアクリル酸2-(パーフルオロアルキル)エチル;メタクリル酸2-(パーフルオロヘキシル)エチル、メタクリル酸2-(パーフルオロオクチル)エチル、メタクリル酸2-(パーフルオロノニル)エチル、メタクリル酸2-(パーフルオロデシル)エチル、メタクリル酸2-(パーフルオロドデシル)エチル、メタクリル酸2-(パーフルオロテトラデシル)エチル、及びメタクリル酸2-(パーフルオロヘキサデシル)エチルなどの非カルボニル性酸素原子に結合するアルキル基の炭素数が6~18であるメタクリル酸2-(パーフルオロアルキル)エチル;が挙げられる。
 炭素数4以上の直鎖アルキレン重合単位は、例えば、ブタジエン、イソプレン、ペンタジエンなどである。
 親水性基とは、水性溶媒中でプロトンを遊離する官能基及び、プロトンがカチオンに置換された塩のことをいい、具体的には、カルボン酸基、スルホン酸基、水酸基、リン酸基およびこれらの塩などが挙げられる。上記親水性基の含有割合は、好ましくは0.05~10質量%の範囲にある。
 ニトリル系樹脂中への親水性基の導入は、カルボン酸基、スルホン酸基、水酸基、リン酸基およびこれらの金属塩やアンモニウム塩などを含むモノマーを重合して行われる。
 カルボン酸基を有するモノマーとしては、モノカルボン酸及びその誘導体やジカルボン酸、及びこれらの誘導体などが挙げられる。モノカルボン酸としては、アクリル酸、メタクリル酸、3-ブテン酸、及びクロトン酸などが挙げられる。モノカルボン酸誘導体としては、2-エチルアクリル酸、イソクロトン酸、α―アセトキシアクリル酸、β-trans-アリールオキシアクリル酸、α-クロロ-β-E-メトキシアクリル酸、β-ジアミノアクリル酸、トランス-ブテンジオン酸、及びシス-ブテンジオン酸などが挙げられる。ジカルボン酸としては、マレイン酸、フマル酸、及びイタコン酸などが挙げられる。ジカルボン酸誘導体としては、メチルマレイン酸、ジメチルマレイン酸、フェニルマレイン酸、クロロマレイン酸、ジクロロマレイン酸、及びフルオロマレイン酸などが挙げられ、さらに、マレイン酸メチルアリル、マレイン酸ジフェニル、マレイン酸ノニル、マレイン酸デシル、マレイン酸ドデシル、マレイン酸オクタデシル、及びマレイン酸フルオロアルキルなどのマレイン酸エステル;が挙げられる。また、加水分解によりカルボキシル基を生成する酸無水物も使用できる。ジカルボン酸の酸無水物としては、無水マレイン酸、アクリル酸無水物、メチル無水マレイン酸、及びジメチル無水マレイン酸などが挙げられる。
 スルホン酸基を有するモノマーとしては、ビニルスルホン酸、メチルビニルスルホン酸、(メタ)アリルスルホン酸、スチレンスルホン酸、(メタ)アクリル酸-2-スルホン酸エチル、2-アクリルアミド-2-メチルプロパンスルホン酸、及び3-アリロキシ-2-ヒドロキシプロパンスルホン酸などが挙げられる。
 水酸基を有するモノマーとしては、(メタ)アリルアルコール、3-ブテン-1-オール、及び5-ヘキセン-1-オールなどのエチレン性不飽和アルコール;アクリル酸-2-ヒドロキシエチル、アクリル酸-2-ヒドロキシプロピル、メタクリル酸-2-ヒドロキシエチル、メタクリル酸-2-ヒドロキシプロピル、マレイン酸ジ-2-ヒドロキシエチル、マレイン酸ジ-4-ヒドロキシブチル、及びイタコン酸ジ-2-ヒドロキシプロピルなどのエチレン性不飽和カルボン酸のアルカノールエステル類;一般式CH=CR-COO-((CHO)-H(mは2ないし9の整数、nは2ないし4の整数、Rは水素またはメチル基を表す)で表されるポリアルキレングリコールと(メタ)アクリル酸とのエステル類;2-ヒドロキシエチル-2’-(メタ)アクリロイルオキシフタレート、2-ヒドロキシエチル-2’-(メタ)アクリロイルオキシサクシネートなどのジカルボン酸のジヒドロキシエステルのモノ(メタ)アクリル酸エステル類;2-ヒドロキシエチルビニルエーテル、2-ヒドロキシプロピルビニルエーテルなどのビニルエーテル類;(メタ)アリル-2-ヒドロキシエチルエーテル、(メタ)アリル-2-ヒドロキシプロピルエーテル、(メタ)アリル-3-ヒドロキシプロピルエーテル、(メタ)アリル-2-ヒドロキシブチルエーテル、(メタ)アリル-3-ヒドロキシブチルエーテル、(メタ)アリル-4-ヒドロキシブチルエーテル、及び(メタ)アリル-6-ヒドロキシヘキシルエーテルなどのアルキレングリコールのモノ(メタ)アリルエーテル類;ジエチレングリコールモノ(メタ)アリルエーテル、ジプロピレングリコールモノ(メタ)アリルエーテルなどのポリオキシアルキレングリコール(メタ)モノアリルエーテル類やグリセリンモノ(メタ)アリルエーテル;(メタ)アリル-2-クロロ-3-ヒドロキシプロピルエーテル、(メタ)アリル-2-ヒドロキシ-3-クロロプロピルエーテルなどの(ポリ)アルキレングリコールのハロゲン及びヒドロキシ置換体のモノ(メタ)アリルエーテル;オイゲノール、イソオイゲノールなどの多価フェノールのモノ(メタ)アリルエーテル及びそのハロゲン置換体;(メタ)アリル-2-ヒドロキシエチルチオエーテル、(メタ)アリル-2-ヒドロキシプロピルチオエーテルなどのアルキレングリコールの(メタ)アリルチオエーテル類;などが挙げられる。
 リン酸基を有するモノマーとしては、リン酸-2-(メタ)アクリロイルオキシエチル、リン酸メチル-2-(メタ)アクリロイルオキシエチル、及びリン酸エチル-(メタ)アクリロイルオキシエチルなどが挙げられる。
 反応性基を有する重合単位は、無機粒子の表面官能基との反応性や、スラリーを製造する際の無機粒子の分散性の向上のためにいれてもよい。反応性基を有する重合単位としては、無機粒子の表面官能基がアミノ基の場合、ニトリル系樹脂の反応性基としてはエポキシ基、カルボニル基、及びカルボキシル基が好ましく、エポキシ基がより好ましい。
 また、上述した無機粒子の表面官能基がエポキシ基の場合、ニトリル樹脂の反応性基としてはスルホン酸基、アミノ基、リン酸基、水酸基、メルカプト基、及びイソシアネート基が好ましく、スルホン酸基、アミノ基がより好ましい。
 また、上述した無機粒子の表面官能基がメルカプト基の場合、ニトリル系樹脂の反応性基としてはエポキシ基、メルカプト基が好ましい。
 また、上述した無機粒子の表面官能基がイソシアネート基の場合、ニトリル系樹脂の反応性基としてはエポキシ基、水酸基が好ましい。
 また、上述した無機粒子の表面官能基が水酸基またはカルボキシル基の場合、カルボジイミド基、エポキシ基、オキサゾリン基、ヒドラジド基、及びイソシアナト基が好ましい。
 更に、ニトリル系樹脂は、上述した繰り返し単位(すなわち、(メタ)アクリロニトリル単量体単位、(メタ)アクリル酸エステル単量体単位、および熱架橋性基を有する単量体単位)以外にも、その他の任意の繰り返し単位を含んでいてもよい。上記任意の繰り返し単位に対応する単量体の例を挙げると、スチレン、クロロスチレン、ビニルトルエン、t-ブチルスチレン、ビニル安息香酸、ビニル安息香酸メチル、ビニルナフタレン、クロロメチルスチレン、α-メチルスチレン、及びジビニルベンゼン等のスチレン系単量体;エチレン、プロピレン等のオレフィン類;塩化ビニル、塩化ビニリデン等のハロゲン原子含有単量体;酢酸ビニル、プロピオン酸ビニル、及び酪酸ビニル等のビニルエステル類;メチルビニルエーテル、エチルビニルエーテル、及びブチルビエルエーテル等のビニルエーテル類;メチルビニルケトン、エチルビニルケトン、ブチルビニルケトン、ヘキシルビニルケトン、及びイソプロペニルビニルケトン等のビニルケトン類;N-ビニルピロリドン、ビニルピリジン、及びビニルイミダゾール等の複素環含有ビニル化合物;アクリルアミドなどのアミド系単量体、アクリルアミド-2-メチルプロパンスルホン酸などのスルホン酸エステル;イミノ化合物、マレイミド、不飽和ポリアルキレングリコールエーテル系単量体、エチレン官能性ケイ素含有単量体、キレート化合物、イソチアゾリン類、シロキサン類、スルホコハク酸エステル及びその塩などが挙げられる。なお、ニトリル系樹脂は、上記任意繰り返し単位を、1種類だけ含んでいてもよく、2種類以上を任意の比率で組み合わせて含んでいてもよい。ただし、上述したような(メタ)アクリロニトリル単量体単位及び(メタ)アクリル酸エステル単量体単位を含むことによる利点を顕著に発揮する観点からは、上記任意の繰り返し単位の量は少ないことが好ましく、上記任意の繰り返し単位を含まないことが特に好ましい。
 ニトリル系樹脂の重量平均分子量は、好ましくは10,000以上、より好ましくは20,000以上であり、好ましくは2,000,000以下、より好ましくは50,0000以下である。ニトリル系樹脂の重量平均分子量が上記範囲にあると、本発明の多孔膜の強度及び非導電性重合体の分散性を良好にし易い。
 ニトリル系樹脂の体積平均粒子径D50は、0.01μm以上が好ましく、及び0.5μm以下が好ましく、0.2μm以下がより好ましい。ニトリル系樹脂の体積平均粒子径D50を上記範囲の下限値以上にすることで、本発明の多孔膜の多孔性を高く維持して多孔膜の抵抗を抑制し、電池物性を良好に保つことができ、また、上記範囲の上限値以下にすることで、非導電性粒子と非水溶性粒子状重合体との接着点を多くして結着性を高くすることができる。
 ニトリル系樹脂のガラス転移温度(Tg)は、20℃以下であることが好ましく、15℃以下であることがより好ましく、5℃以下であることが特に好ましい。上記ガラス転移温度(Tg)が上記範囲であることにより、本発明の多孔膜の柔軟性が上がり、電極及びセパレータの耐屈曲性が向上し、本発明の多孔膜が割れることによる不良率を下げることができる。また、本発明の多孔膜、セパレータ及び電極をロールに巻き取る時や捲回時にヒビ、欠け等を抑制することもできる。なお、非水溶性粒子状重合体のガラス転移温度は、様々な単量体を組み合わせることによって調整可能である。ニトリル系樹脂のガラス転移温度の下限は特に限定されないが、-50℃以上とすることができる。
 ニトリル系樹脂の製造工程において、重合法に用いられる分散剤は、通常の合成で使用されるものでよく、具体例としては、ドデシルベンゼンスルホン酸ナトリウム、ドデシルフェニルエーテルスルホン酸ナトリウムなどのベンゼンスルホン酸塩;ラウリル硫酸ナトリウム、テトラドデシル硫酸ナトリウムなどのアルキル硫酸塩;ジオクチルスルホコハク酸ナトリウム、ジヘキシルスルホコハク酸ナトリウムなどのスルホコハク酸塩;ラウリン酸ナトリウムなどの脂肪酸塩;ポリオキシエチレンラウリルエーテルサルフェートナトリウム塩、ポリオキシエチレンノニルフェニルエーテルサルフェートナトリウム塩などのエトキシサルフェート塩;アルカンスルホン酸塩;アルキルエーテルリン酸エステルナトリウム塩;ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンソルビタンラウリルエステル、及びポリオキシエチレン-ポリオキシプロピレンブロック共重合体などの非イオン性乳化剤;ゼラチン、無水マレイン酸-スチレン共重合体、ポリビニルピロリドン、ポリアクリル酸ナトリウム、及び重合度700以上かつケン化度75%以上のポリビニルアルコールなどの水溶性高分子などが例示され、これらは単独でも2種類以上を併用して用いても良い。これらの中でも好ましくは、ドデシルベンゼンスルホン酸ナトリウム、ドデシルフェニルエーテルスルホン酸ナトリウムなどのベンゼンスルホン酸塩;ラウリル硫酸ナトリウム、テトラドデシル硫酸ナトリウムなどのアルキル硫酸塩であり、更に好ましくは、耐酸化性に優れるという点から、ドデシルベンゼンスルホン酸ナトリウム、ドデシルフェニルエーテルスルホン酸ナトリウムなどのベンゼンスルホン酸塩である。分散剤の添加量は任意に設定でき、モノマー総量100質量部に対して通常0.01~10質量部程度である。
 ニトリル系樹脂が分散媒に分散している時のpHは、5~13が好ましく、更には5~12、最も好ましくは10~12である。ニトリル系樹脂のpHが上記範囲にあることにより、ニトリル系樹脂の保存安定性が向上し、さらには、機械的安定性が向上する。
 ニトリル系樹脂のpHを調整するpH調整剤は、水酸化リチウム、水酸化ナトリウム、及び水酸化カリウムなどのアルカリ金属水酸化物、第2族元素酸化物である水酸化マグネシウム、水酸化カルシウム、及び水酸化バリウムなどのアルカリ土類金属酸化物、水酸化アルミニウムなどの長周期律表でIIIA属に属する金属の水酸化物などの水酸化物;炭酸ナトリウム、炭酸カリウムなどのアルカリ金属炭酸塩、炭酸マグネシウムなどの2族元素炭酸塩などの炭酸塩;などが例示され、有機アミンとしては、エチルアミン、ジエチルアミン、及びプロピルアミンなどのアルキルアミン類;モノメタノールアミン、モノエタノールアミン、及びモノプロパノールアミンなどのアルコールアミン類;アンモニア水などのアンモニア類;などが挙げられる。これらのなかでも、結着性や操作性の観点からアルカリ金属水酸化物が好ましく、特に水酸化ナトリウム、水酸化カリウム、及び水酸化リチウムが好ましい。
 ニトリル系樹脂は架橋剤を含んでいてもよい。架橋剤の例としては、カルボジイミド化合物、多官能エポキシ化合物、オキサゾリン化合物、多官能ヒドラジド化合物、イソシアネート化合物、メラミン化合物、尿素化合物、及びこれらの混合物が挙げられる。
 ニトリル系樹脂は、具体的には、ポリアクリロニトリル、アクリロニトリル-ブタジエン共重合体、アクリロニトリル-スチレン共重合体、アクリロニトリル-ブタジエン-スチレン共重合体、アクリロニトリル-スチレン-アクリレート共重合体、又はそれらの水素添加物などである。
(b2)アクリル系樹脂
 アクリル系樹脂は、アクリル化合物を主な単量体として使用して得られる樹脂である。主な単量体として使用することは、重合時に仕込まれる全単量体の合計モルに対して50モル%以上であることを意味する。アクリル化合物は、アクリロイル基又はメタクリロイル基である(メタ)アクリロイル基を有する単量体である。
 アクリル系樹脂は、所望により、アクリロイル基を有する重合単位に加えて、(メタ)アクリロニトリルを含むエチレン性不飽和化合物、炭素数4以上の直鎖アルキレン重合単位、親水性基を有する重合単位、反応性基を有する重合単位、芳香族ビニル重合単位、熱架橋性基を有する重合単位から成る群から選択される少なくとも1つを含んでよい。熱架橋性基としては、例えば、エポキシ基、N-メチロールアミド基、オキサゾリン基、及びアリル基などが挙げられる。熱架橋性基を有する場合、アクリル系樹脂における熱架橋性基を有する単量体単位の存在量は、(メタ)アクリロニトリル単量体単位と(メタ)アクリル酸エステル単量体単位との合計量100質量部に対して、0.01質量部以上4質量部以下が好ましい。
 アクリル系樹脂は、アクリル化合物の重合、又はアクリル化合物と他の単量体との共重合により得られることができる。
 アクリル化合物としては、以下の単量体を使用してよい:
 (メタ)アクリル酸の例を挙げると、例えば、アクリル酸、2-メタクリル酸、2-ペンテン酸、2,3-ジメチルアクリル酸、3,3-ジメチルアクリル酸、イタコン酸、及びそれらのアルカリ金属塩;などが挙げられる。
 (メタ)アクリル酸エステルの例を挙げると、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、アクリル酸t-ブチル、(メタ)アクリル酸ヘキシル、及び(メタ)アクリル酸-2エチルヘキシルなどの(メタ)アクリル酸アルキルエステル;エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、及びトリメチロールプロパントリアクリレートなどの2つ以上の炭素-炭素二重結合を有するジアクリレート化合物;トリアクリレート化合物、テトラアクリレート化合物、ジメタクリレート化合物、及びトリメタクリレート化合物;などが挙げられる。また、含フッ素アクリル酸エステル、アミド基含有(メタ)アクリル酸又はアミド基含有(メタ)アクリレート;(メタ)アクリル官能性ケイ素含有単量体等も挙げられる。
 他の単量体は、エチレン性不飽和化合物、例えば、(メタ)アクリロニトリルをはじめ、(メタ)アクリル酸アルキルエステルとして、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸t-ブチル、(メタ)アクリル酸ヘキシル、及び(メタ)アクリル酸-2エチルヘキシルなどのアクリル酸アルキルエステル;エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、及びトリメチロールプロパントリアクリレートなどの2つ以上の炭素-炭素二重結合を有するカルボン酸エステル類が挙げられる。
 その他の(メタ)アクリル酸アルキルエステルとしては、アクリル酸n-ヘキシル、アクリル酸2-エチルヘキシル、アクリル酸ノニル、アクリル酸ラウリル、アクリル酸ステアリル、アクリル酸シクロヘキシル、およびアクリル酸イソボルニルなどの非カルボニル性酸素原子に結合するアルキル基の炭素数が6~18であるアクリル酸アルキルエステル;メタクリル酸n-ヘキシル、メタクリル酸2-エチルヘキシル、メタクリル酸オクチル、メタクリル酸イソデシル、メタクリル酸ラウリル、メタクリル酸トリデシル、メタクリル酸ステアリル、およびメタクリル酸シクロヘキシルなどの非カルボニル性酸素原子に結合するアルキル基の炭素数が6~18であるメタクリル酸アルキルエステル;アクリル酸2-(パーフルオロヘキシル)エチル、アクリル酸2-(パーフルオロオクチル)エチル、アクリル酸2-(パーフルオロノニル)エチル、アクリル酸2-(パーフルオロデシル)エチル、アクリル酸2-(パーフルオロドデシル)エチル、アクリル酸2-(パーフルオロテトラデシル)エチル、及びアクリル酸2-(パーフルオロヘキサデシル)エチルなどの非カルボニル性酸素原子に結合するアルキル基の炭素数が6~18であるアクリル酸2-(パーフルオロアルキル)エチル;メタクリル酸2-(パーフルオロヘキシル)エチル、メタクリル酸2-(パーフルオロオクチル)エチル、メタクリル酸2-(パーフルオロノニル)エチル、メタクリル酸2-(パーフルオロデシル)エチル、メタクリル酸2-(パーフルオロドデシル)エチル、メタクリル酸2-(パーフルオロテトラデシル)エチル、及びメタクリル酸2-(パーフルオロヘキサデシル)エチルなどの非カルボニル性酸素原子に結合するアルキル基の炭素数が6~18であるメタクリル酸2-(パーフルオロアルキル)エチル;が挙げられる。
 さらに、アクリル系樹脂は、上述した繰り返し単位(すなわち、(メタ)アクリル単量体単位、(メタ)アクリロニトリル単量体単位、(メタ)アクリル酸エステル単量体単位、および熱架橋性基を有する単量体単位)以外にも、その他の任意の繰り返し単位を含んでいてもよい。上記任意の繰り返し単位に対応する単量体の例を挙げると、炭素数4以上の直鎖アルキレン重合単位、カルボン酸基を有するモノマー、スルホン酸基を有するモノマー、水酸基を有するモノマー、リン酸基を有するモノマー、反応性重合単位、スチレン、クロロスチレン、ビニルトルエン、t-ブチルスチレン、ビニル安息香酸、ビニル安息香酸メチル、ビニルナフタレン、クロロメチルスチレン、α-メチルスチレン、及びジビニルベンゼン等のスチレン系単量体;エチレン、プロピレン等のオレフィン類;塩化ビニル、塩化ビニリデン等のハロゲン原子含有単量体;酢酸ビニル、プロピオン酸ビニル、及び酪酸ビニル等のビニルエステル類;メチルビニルエーテル、エチルビニルエーテル、及びブチルビエルエーテル等のビニルエーテル類;メチルビニルケトン、エチルビニルケトン、ブチルビニルケトン、ヘキシルビニルケトン、及びイソプロペニルビニルケトン等のビニルケトン類;N-ビニルピロリドン、ビニルピリジン、及びビニルイミダゾール等の複素環含有ビニル化合物;アクリルアミドなどのアミド系単量体、アクリルアミド-2-メチルプロパンスルホン酸などのスルホン酸エステル;イミノ化合物、マレイミド、不飽和ポリアルキレングリコールエーテル系単量体、エチレン官能性ケイ素含有単量体、キレート化合物、イソチアゾリン類、シロキサン類、スルホコハク酸エステル及びその塩などが挙げられる。なお、アクリル系樹脂は、上記任意繰り返し単位を、1種類だけ含んでいてもよく、2種類以上を任意の比率で組み合わせて含んでいてもよい。ただし、上述したような(メタ)アクリロニトリル単量体単位及び(メタ)アクリル酸エステル単量体単位を含むことによる利点を顕著に発揮する観点からは、上記任意の繰り返し単位の量は少ないことが好ましく、上記任意の繰り返し単位を含まないことが特に好ましい。
 アクリル系樹脂の重量平均分子量は、好ましくは10,000以上、より好ましくは20,000以上であり、好ましくは2,000,000以下、より好ましくは500,000以下である。アクリル系樹脂の重量平均分子量が上記範囲にあると、本発明の多孔膜の強度及び非導電性重合体の分散性を良好にし易い。
 アクリル系樹脂の体積平均粒子径D50は、0.01μm以上が好ましく、また、0.5μm以下が好ましく、0.2μm以下がより好ましい。アクリル系樹脂の体積平均粒子径D50を上記範囲の下限値以上にすることで、本発明の多孔膜の多孔性を高く維持して多孔膜の抵抗を抑制し、電池物性を良好に保つことができ、また、上記範囲の上限値以下にすることで、非導電性重合体と非水溶性粒子状重合体との接着点を多くして結着性を高くすることができる。
 アクリル系樹脂のガラス転移温度(Tg)は、20℃以下であることが好ましく、15℃以下であることがより好ましく、5℃以下であることが特に好ましい。上記ガラス転移温度(Tg)が上記範囲であることにより、本発明の多孔膜の柔軟性が上がり、電極及びセパレータの耐屈曲性が向上し、本発明の多孔膜が割れることによる不良率を下げることができる。また、本発明の多孔膜、セパレータ及び電極をロールに巻き取る時や捲回時にヒビ、欠け等を抑制することもできる。なお、非水溶性粒子状重合体のガラス転移温度は、様々な単量体を組み合わせることによって調整可能である。アクリル系樹脂のガラス転移温度の下限は特に限定されないが、-50℃以上とすることができる。
 アクリル系樹脂の製造工程において、重合法に用いられる分散剤は、通常の合成で使用されるものでよい。
 アクリル系樹脂が分散媒に分散している時のpHは、5~13が好ましく、更には5~12、最も好ましくは10~12である。アクリル系樹脂のpHが上記範囲にあることにより、アクリル系樹脂の保存安定性が向上し、さらには、機械的安定性が向上する。
 アクリル系樹脂のpHはpH調整剤で調節してよい。
 アクリル系樹脂は架橋剤を含んでいてもよい。
 アクリル系樹脂は、具体的には、アクリル軟質重合体、アクリル硬質重合体、アクリル-スチレン共重合体、スルホン化アクリル重合体、又はそれらのシード重合体、水素添加物若しくはグラフト体などである。
 アクリル系樹脂は、非導電性有機粒子の形態でよい。アクリル系樹脂は、アクリル化合物とケイ素含有単量体から形成されるときに、水溶性でよい。アクリル系樹脂は、増粘剤としてカルボキシメチルセルロースを含んでよい。
(b3)脂肪族共役ジエン系樹脂
 脂肪族共役ジエン系樹脂は、共役ジエンを有する脂肪族単量体を主成分として使用して得られる樹脂である。本明細書では、主成分として使用することは、重合時に仕込まれる全単量体の合計モルに対して50モル%以上であることを意味する。
 共役ジエンを有する脂肪族単量体は、置換又は非置換の鎖状ジエンであり、かつ直鎖又は分岐鎖でよい。共役ジエンを有する脂肪族単量体は、具体的には、1,3-ブタジエン、1,3-イソプレン、1、4-ジメチル-1,3-ブタジエン、1、2-ジメチル-1,3-ブタジエン、1、3-ジメチル-1,3-ブタジエン、1,2,3-トリメチル-1,3-ブタジエン、1,3,5-ヘキサトリエン、及びアロオシメンなどである。
 脂肪族共役ジエン系樹脂は、共役ジエンを有する脂肪族単量体の重合、又は共役ジエンを有する脂肪族単量体と他の単量体との共重合により得られることができる。
 他の単量体としては、エチレン系不飽和カルボン酸、スルホン酸基含有単量体、ニトリル基含有単量体、芳香族ビニル単量体、熱架橋性基を有する単量体、及び芳香族ビニル化合物などを使用してよい。
 脂肪族共役ジエン系樹脂は、具体的には、1,3-ブタジエン重合体、ジエン系ゴム、熱可塑性エラストマー、又はそれらのランダム共重合体、ブロック共重合体、水素化物又は酸変性物でよい。脂肪族共役ジエン系樹脂は、所望により、フェノール系とチオエーテル系との組み合わせ、又はフェノール系化合物と亜リン酸エステル系化合物との組み合わせなどの老化防止剤を含んでよい。
(b4)樹脂(b1)~(b3)とは異なる樹脂
 樹脂(b1)~(b3)とは異なる樹脂(b4)は、例えば、オレフィン系樹脂、フッ素樹脂、スルホン酸基含有樹脂、及びセルロース系樹脂等である。樹脂(b4)は、有機重合体の粒子、グラフトポリマー、ポリマーラテックス、及びケイ素含有重合体等の形態でよい。
 オレフィン系樹脂は、具体的には、ポリエチレン、ポリプロピレン、ポリ-1-ブテン、エチレン・α-オレフィン共重合体、プロピレン・α-オレフィン共重合体、エチレン・プロピレン・ジエン共重合体(EPDM)、及びエチレン・プロピレン・スチレン共重合体などの、オレフィン化合物の単独重合体またはそれと共重合可能な単量体との共重合体などが挙げられる。
 フッ素樹脂としては、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリクロロトリフルオロエチレン、ポリフッ化ビニル、テトラフルオロエチレン-エチレン共重合体、ペルフルオロアルコキシフッ素樹脂、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、エチレン-クロロトリフルオロエチレン共重合体、フッ化ビニリデン系ゴム、及びテトラフルオロエチレン-プロピレン共重合体などが挙げられる。
 スルホン酸基含有樹脂としては、スルホン化ポリマー、例えば、スルホン化ポリエーテルスルホン、スルホン化ポリサルフォンなどが挙げられる。
 セルロース系樹脂としては、例えば、セルロース系半合成高分子、及びそのナトリウム塩又はアンモニウム塩などが挙げられる。セルロース系樹脂は、硫黄原子、カチオン性基、酸基、及びプロパルギル基等を有してよい。
 ケイ素含有重合体としては、例えば、ジメチルポリシロキサン、ジフェニルポリシロキサン、及びジヒドロキシポリシロキサン等が挙げられる。
 コアシェル構造を有する重合体の粒子は、重合体を含むコア部と、重合体を含むシェル部とを有する。また、コアシェル構造を有する樹脂は、非水電解質に対する相溶性を示すセグメントと示さないセグメントを有することが好ましい。コア部又はシェル部の重合体としては、上記で説明された樹脂(b1)~(b4)を使用することができる。
 コアシェル構造を有する重合体の粒子は、例えば、コア部を形成する重合体のモノマーとシェル部を形成する重合体のモノマーとを用い、経時的にそれらのモノマーの比率を変えて段階的に重合することにより、製造することができる。具体的には、先ず、コア部を形成する重合体のモノマーを重合してシードポリマー粒子を製造する。このシードポリマー粒子は、粒子のコア部となる。その後、シードポリマー粒子を含む重合系において、シェル部を形成する重合体のモノマーを重合する。これにより、コア部の表面にシェル部が形成されるので、コアシェル構造を有する重合体の粒子が得られる。この際、必要に応じて、例えば反応媒、重合開始剤、界面活性剤などを用いてもよい。
(コア部)
 粒子のコア部は、一般に175℃以上、好ましくは220℃以上、より好ましくは225℃以上に、軟化開始点又は分解点を有する。175℃以上の温度範囲に軟化開始点又は分解点を有するコア部は、二次電池の使用環境及びヒートプレス時に変形し難く、微多孔性フィルムの孔の閉塞を抑制できる。また、微多孔性フィルムの剛性が低下することを抑制できるので、セパレータの収縮も抑制することができる。したがって、高温環境における短絡を安定して防止することが可能である。また、コア部の軟化開始点又は分解点の上限に制限は無いが、通常450℃以下である。
 軟化開始点の測定法を以下に説明する。
 先ず、測定試料10mgをアルミパンに計量し、示差熱分析測定装置にて、リファレンスとして空のアルミパンを用い、測定温度範囲-100℃~500℃の間で、昇温速度10℃/分で、常温常湿下で、DSC曲線を測定する。この昇温過程で、微分信号(DDSC)が0.05mW/分/mg以上となるDSC曲線の吸熱ピークが出る直前のベースラインと、吸熱ピーク後に最初に現れる変曲点でのDSC曲線の接線との交点を、ガラス転移点(Tg)とする。さらに、そのガラス転移点より25℃高い温度を、軟化開始点とする。
 なお、非導電性粒子のコア部の軟化開始点より分解点の方が低いときには、分解により軟化開始点が観測されないことがある。
 分解点の測定法を以下に説明する。
 窒素雰囲気下において、測定試料を、示差熱熱重量同時測定装置により30℃から昇温速度10℃/分で加熱する。この際、減量割合が10質量%に達する温度を、分解点とする。
 なお、粒子のコア部の軟化開始点及び分解点の両方が観測されるときには、より低い温度の方をコア部の軟化開始点と見なす。
 コア部を形成する重合体としては、例えば、樹脂(b1)~(b4)の高度に架橋された重合体が挙げられる。高度な架橋により、重合体のガラス転移点以上の温度においても重合体の分子運動が抑制されるので、コア部は形状を維持することができる。
 コア部を形成する重合体は、好ましくは、架橋性ビニルモノマーを重合することにより得られる。架橋性ビニルモノマーとしては、例えば、通常2個以上、好ましくは2個の共重合性二重結合を有する化合物が挙げられる。また、架橋性ビニルモノマーは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 好適な架橋性ビニルモノマーとしては、例えば、非共役ジビニル化合物、多価アクリレート化合物などが挙げられる。
 非共役ジビニル化合物の例としては、ジビニルベンゼン等が挙げられる。
 多価アクリレートの例としては、ポリエチレングリコールジアクリレート、1,3-ブチレングリコールジアクリレート、1,6-ヘキサングリコールジアクリレート、ネオペンチルグリコールジアクリレート、ポリプロピレングリコールジアクリレート、2,2’-ビス(4-アクリロキシプロピロキシフェニル)プロパン、及び2,2’-ビス(4-アクリロキシジエトキシフェニル)プロパン等のジアクリレート化合物;トリメチロールプロパントリアクリレート、トリメチロールエタントリアクリレート、及びテトラメチロールメタントリアクリレート等のトリアクリレート化合物;テトラメチロールメタンテトラアクリレート等のテトラアクリレート化合物;エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、ポリエチレングリコールジメタクリレート、1,3-ブチレングリコールジメタクリレート、1,4-ブチレングリコールジメタクリレート、1,6-ヘキサングリコールジメタクリレート、ネオペンチルグリコールジメタクリレート、ジプロピレングリコールジメタクリレート、ポリプロピレングリコールジメタクリレート、及び2,2’-ビス(4-メタクリロキシジエトキシフェニル)プロパン等のジメタクリレート化合物;トリメチロールプロパントリメタクリレート、トリメチロールエタントリメタクリレート等のトリメタクリレート化合物;などが挙げられる。
 架橋性ビニルモノマーの割合は、コア部を形成する重合体の全モノマーに対して、20質量%以上が好ましく、より好ましくは25質量%以上、さらに好ましくは30質量%以上である。架橋性ビニルモノマーの割合を20質量%以上とすることにより、コア部の硬度、耐熱性及び耐溶剤性を向上させることができる。また、上限は、通常100質量%以下が好ましく、より好ましくは98質量%以下、さらに好ましくは95質量%以下である。ここで、架橋性ビニルモノマーの量は、例えば希釈剤及び不純物などを除いた純品換算による。
(シェル部)
 粒子のシェル部の軟化開始点は、85℃以上が好ましく、より好ましくは87℃以上、さらに好ましくは89℃以上であり、他方、145℃以下が好ましく、より好ましくは125℃以下、さらに好ましくは115℃以下である。軟化開始点が85℃以上であることにより、微多孔性フィルムの耐ブロッキング性を向上させることができる。また、二次電池の使用温度においてシェル部が融解し難くなるので、セパレータの孔の閉塞を抑制でき、それにより、二次電池のレート特性を向上させることができる。また、軟化開始点が145℃以下であることにより、ヒートプレスの際にシェル部を容易に融解させることができるので、セパレータの接着性を向上させ、それにより、二次電池のサイクル特性を向上させることができる。
 シェル部を形成する重合体としては、(メタ)アクリレート単位を含む重合体を用いることが好ましい。(メタ)アクリレート単位を含む重合体によってシェル部を形成することにより、多孔膜の電気的安定性を向上させることができる。アクリレートとしては、例えば、メチルアクリレート、エチルアクリレート、ブチルアクリレート、及び2-エチルヘキシルエチルアクリレート等が挙げられる。メタクリレートとしては、例えば、メチルメタクリレート、ブチルメタクリレート、及び2-エチルヘキシルメタクリレート等が挙げられる。
 シェル部を形成する重合体における(メタ)アクリレート単位の比率は、電気的安定性の観点から、好ましくは50質量%以上、より好ましくは60質量%以上、さらに好ましくは70質量%以上であり、100質量%以下である。
(非導電性粒子又はコアシェル構造を有する重合体の粒子の大きさ)
 非導電性粒子の個数平均粒子径は、50nm以上が好ましく、より好ましくは200nm以上、さらに好ましくは300nm以上であり、他方、1,500nm以下が好ましく、より好ましくは1,200nm以下、さらに好ましくは500nm以下である。粒子の個数平均粒径をこのような範囲とすることにより、粒子同士が接触部を有しつつ、イオンの移動が阻害されない程度に、粒子同士の隙間を形成できる。したがって、微多孔性フィルムの強度が向上し、且つ電池の短絡を防止することができ、かつ二次電池のサイクル特性を向上させることができる。
 粒子の個数平均粒子径は、以下のようにして測定しうる。電界放出形走査電子顕微鏡にて25,000倍の倍率で撮影した写真から、200個の粒子を任意に選択する。その粒子像の最長辺をLa、最短辺をLbとしたとき、(La+Lb)/2を粒径とする。200個の粒子の粒径の平均を、平均粒径として求める。
 シェル部の厚みは、粒子の個数平均粒子径に対して、3%以上が好ましく、より好ましくは5%以上、さらに好ましくは7%以上であり、また、18%以下が好ましく、より好ましくは16%以下、さらに好ましくは14%以下である。シェル部の厚み個数平均粒子径に対して3%以上であると、セパレータの接着性を高めて二次電池のサイクル特性を向上させることができる。また、シェル部の厚みが個数平均粒子径に対して18%以下であると、セパレータの孔径を、イオンの移動を妨げない程度に大きくでき、それにより二次電池のレート特性を向上させることができる。また、シェル部を薄くすることで相対的にコア部を大きくできるので、粒子の剛性を高めることができる。このため、微多孔性フィルムの剛性を高めて、セパレータの収縮を抑制することができる。
 シェル部の厚み(S)は、例えば、シェル部を形成する前のシードポリマー粒子の個数平均粒子径(D1)およびシェル部を形成した後の非導電性粒子の個数平均粒子径(D2)から、以下の式:
  (D2-D1)/2=S
により算出しうる。
(非導電性粒子又はコアシェル構造を有する重合体の粒子の量)
 多孔膜における非導電性粒子又はコアシェル構造を有する重合体の粒子の含有割合は、通常70質量%以上が好ましく、より好ましくは75質量%以上、さらに好ましくは80質量%以上であり、通常98質量%以下が好ましく、より好ましくは96質量%以下、さらに好ましくは94質量%以下である。粒子の含有割合が上記範囲内であると、粒子同士が接触部を有しつつ、イオンの移動が阻害されない程度に、粒子同士の隙間を形成でき、それにより、セパレータ強度を向上させ、電池の短絡を安定して防止することができる。
 セパレータが、無機粒子含有層を有する場合、無機粒子含有層における無機粒子の量は、その使用による効果を良好に確保する観点から、多孔質層の構成成分の全体積(空孔部分を除く全体積)を基準として、好ましくは1体積%以上、より好ましくは5体積%以上である。
 セパレータは、本実施形態の非水電解質電池用無機粒子以外のその他の無機粒子、及び/又は樹脂粒子を有してもよい。セパレータがその他の無機粒子及び/又は樹脂粒子を有することによって、例えば、高温下におけるセパレータ全体の形状安定性を更に高めることができる。
 その他の無機粒子としては、上記「〈非水電解質電池用無機粒子〉」の欄で説明したように、一次元トンネル状結晶構造の陽イオン交換体、及び平均厚みが上記陽イオン交換体よりも厚い混合用無機粒子以外のその他の無機粒子を用いることができる。
 樹脂粒子としては、耐熱性及び電気絶縁性を有し、電池中の非水電解質に対して安定であり、かつ電池の作動電圧範囲において酸化還元され難い電気化学的に安定な樹脂で構成されるものが好ましい。このような樹脂粒子を形成するための材料としては、スチレン樹脂(ポリスチレンなど)、スチレンブタジエンゴム、アクリル樹脂(ポリメチルメタクリレートなど)、ポリアルキレンオキシド(ポリエチレンオキシドなど)、フッ素樹脂(ポリフッ化ビニリデンなど)、及びこれらの誘導体から成る群から選択される少なくとも1種の樹脂の架橋体;尿素樹脂;及びポリウレタン等が挙げられる。樹脂粒子は、1種を単独で用いてもよく、2種以上を併用してもよい。また、樹脂粒子は、必要に応じて、樹脂に添加することができる公知の添加剤、例えば酸化防止剤などを含有してもよい。
 その他の無機粒子及び樹脂粒子の形態は、それぞれ独立して、板状、鱗片状、針状、柱状、球状、多面体状、塊状など、いずれの形態であってもよく、透過性向上の観点から、複数の面を有する多面体状が好ましい。
 その他の無機粒子及び樹脂粒子の平均粒子径(D50)は、それぞれ独立して、好ましくは0.1μm~4.0μm、より好ましくは0.2μm~3.5μm、更に好ましくは0.4μm~3.0μmである。平均粒子径が0.1μm~4.0μmであることによって、高温におけるセパレータの熱収縮がより抑制される傾向にある。
 セパレータがその他の無機粒子及び/又は樹脂粒子を有する場合、これらの粒子は、例えば、(i)本実施形態の非水電解質電池用無機粒子を含有する多孔質層(無機粒子含有層)に、又は(ii)無機粒子含有層及び基材とは別の、他の多孔質層(以下、単に「他の多孔質層」ともいう。)に含有させてもよい。
 その他の無機粒子及び/又は樹脂粒子を、(i)無機粒子含有層に含有させる場合には、本実施形態の非水電解質電池用無機粒子の含有量が上記で説明した好適な範囲内になるように、その他の無機粒子及び樹脂粒子の含有量を調整することが好ましい。
 樹脂粒子を、(ii)他の多孔質層に含有させる場合、当該他の多孔質層は、例えば:基材としての不織布又は微多孔膜の片面上(本実施形態の非水電解質電池用無機粒子を含む多孔質層が設けられた面とは反対側の面上)に配置してもよく;無機粒子含有層と基材との間に配置してもよく;又は、無機粒子含有層の表面のうち基材と接する面とは反対の面上に配置してもよい。
 その他の無機粒子及び/又は樹脂粒子を含む他の多孔質層は、基材及び/又は無機粒子含有層と一体化していてもよく、これらとは独立した膜として存在し、電池内でこれらと重ね合わせられてセパレータを構成していてもよい。
 その他の無機粒子及び/又は樹脂粒子を、(ii)他の多孔質層に含有させる場合、当該他の多孔質層における、その他の無機粒子及び樹脂粒子の含有量は、他の多孔質層の全体積(空孔部分を除く全体積)中、好ましくは5体積%以上、より好ましくは10体積%以上、更に好ましくは50体積%以上である。
 その他の無機粒子及び/又は樹脂粒子を、(ii)他の多孔質層に含有させる場合、当該多孔質層はバインダーを含有することが好ましい。他の多孔質層におけるその他の無機粒子及び樹脂粒子の含有量は、他の多孔質層の全体積(空孔部分を除く全体積)中、好ましくは99.5体積%以下である。バインダーとしては、本実施形態の非水電解質電池用無機粒子を含有する多孔質層に用いることができるものとして例示したバインダーと同様のものを使用することができる。
 非水電解質電池用セパレータが本実施形態の非水電解質電池用無機粒子を含有する多孔質層を有しない場合であっても、セパレータは、上述した不織布又は微多孔膜を基材として有し、その片面又は両面上に、その他の無機粒子又は樹脂粒子を含む他の多孔質層を有するセパレータであってもよい。
 非水電解質電池用セパレータの空孔率は、非水電解質の保持量を確保してイオン透過性を良好にするために、セパレータの乾燥した状態で好ましくは30%以上、より好ましくは40%以上である。セパレータ強度の確保と内部短絡の防止の観点から、セパレータの空孔率は、セパレータの乾燥した状態で好ましくは80%以下、より好ましくは70%以下である。本願明細書において、セパレータの空孔率P(%)は、セパレータの厚み、単位面積当たりの質量、及び構成成分の密度から、下記式を用いて各成分iについての総和を求めることにより計算できる。
  P={1-(m/t)/(Σa・ρ)}×100
{式中、aは、全体の質量を1としたときの成分iの比率であり、ρは、成分iの密度(g/cm)であり、mは、セパレータの単位面積当たりの質量(g/cm)であり、かつtは、セパレータの厚み(cm)である。}
 非水電解質電池用セパレータの総厚は、上述の多孔質層を有する場合及び有しない場合のいずれにおいても、好ましくは2μm以上200μm以下、より好ましくは5μm以上100μm以下、更に好ましくは7μm以上30μm以下である。セパレータの総厚が2μm以上であることにより、セパレータの機械強度がより向上する傾向にある。また、セパレータの総厚が200μm以下であることにより、電池内におけるセパレータの占有体積が減るため、非水電解質電池がより高容量化し、イオン透過性がより向上する傾向にある。
 非水電解質電池用セパレータの透気度は、好ましくは10秒/100cc以上500秒/100cc以下、より好ましくは20秒/100cc以上450秒/100cc以下、さらに好ましくは30秒/100cc以上450秒/100cc以下である。透気度が10秒/100cc以上であることにより、セパレータを非水電解質電池に用いた際の自己放電がより少なくなる傾向にある。透気度が500秒/100cc以下であることにより、より良好な充放電特性が得られる傾向にある。
 セパレータが本実施形態の非水電解質電池用無機粒子を含有する多孔質層を有する場合、多孔質層の厚みは、1μm~10μmであることが好ましい。
 セパレータがその他の無機粒子又は樹脂粒子を含む他の多孔質層を有する場合、当該他の多孔質層の厚みは、1μm~10μmであることが好ましい。
 セパレータの基材自体、例えば不織布又は多孔質膜自体の厚みは、5μm~40μmであることが好ましい。
 本実施形態の非水電解質電池用無機粒子を含有する多孔質層は、本実施形態の非水電解質電池用無機粒子、及びバインダーなどを、水又は有機溶媒に分散又は溶解させて調製した組成物(例えば、ペースト、スラリーなど)を、多孔質層を形成したい箇所に塗布して乾燥させることにより形成してもよく、組成物を樹脂フィルムなどの基材上に塗布して乾燥させた後に剥離して、独立した膜として形成してもよい。その他の無機粒子又は樹脂粒子を含む他の多孔質層もまた、上記と同様に形成することができる。
 本実施形態の非水電解質電池用無機粒子を含有する多孔質層は、水溶性ポリマーを更に含んでもよい。水溶性ポリマーとしては、一般に水系分散剤や水系増粘剤として知られる一般の水系分散剤や水系増粘剤を用いることができる。
 水系分散剤としては、例えば、オルガノシロキサンポリマーKP341(信越化学工業(株)製)、(メタ)アクリル酸系(共)重合体ポリフローNo.75、No.90、No.95(共栄社化学(株)製)、W001(裕商(株))等のカチオン系界面活性剤; ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート、ソルビタン脂肪酸エステル等のノニオン系界面活性剤;W004、W005、W017(裕商(株))等のアニオン系界面活性剤;EFKA-46、EFKA-47、EFKA-47EA、EFKAポリマー100、EFKAポリマー400、EFKAポリマー401、EFKAポリマー450(いずれもチバ・スペシャルティ・ケミカルズ社製)、ディスパースエイド6、ディスパースエイド8、ディスパースエイド15、ディスパースエイド9100、SNディスパーサント5040,5033,5034,5468,5020(いずれもサンプノコ(株)製)、(いずれもサンノプコ(株)製)、ソルスパース3000、5000、9000、12000、13240、13940、17000、24000、26000、28000、41000などの各種ソルスパース分散剤(Lubrizol社製)等の高分子分散剤;アデカプルロニックL31,F38,L42,L44,L61,L64,F68,L72,P95,F77,P84,F87、P94,L101,P103,F108、L121、P-123(ADEKA(株)製)及びイオネットS-20(三洋化成工業(株)製)、DISPERBYK 101,103,106,108,109,110,111,112,116,118,130,140,142,162,163,164,166,167,170,171,174,176,180,182,184,190,191,194N,2000,2001,2010,2015,2050,2055,2150,2152,2155,2164(ビックケミー社製)などの分散剤;デモールEP,ポイズ520,ポイズ521,ポイズ530,ポイズ535,デモールP,(花王社製)などの分散剤;アロンT-50,A-6012,A-6017,AT-40H,A-6001,A-30SL,A-6114,A-210,SD-10,A-6712,A-6330,CMA-101,ジュリマー(登録商標)AC-10NPD(いずれも東亞合成(株)製)及びNuosperse FX-605,FX-609,FX-600,FX-504(Elementis社製)などの各種ポリカルボン酸系分散剤が挙げられる。また、分散剤としては、上記以外にもアクリル系共重合体などの分子末端若しくは側鎖に極性基を有するオリゴマー又はポリマーが挙げられる。分散剤は、1種単独で使用しても、2種以上併用してもよい。
 水系増粘剤としては、例えば、SEPIGEL 305、NS、EG、FL、SEPIPLUS265、S、400、SEPINOV EMT10、P88、SEPIMAX ZEN(成和化成社製)、アロンA-10H、A-20P-X、A-20L、A-30、A-7075、A-7100、A-7185、A-7195、A-7255、B-300K、B-500K、ジュリマー(登録商標)AC-10LHPK、AC-10SHP、レオジック260H、845H、ジュンロンPW-120(東亞合成社製)、DISPERBYK 410、411、415、420、425、428、430、431、7410ET、7411ES、7420ES、OPTIFLO-L1400(ビックケミー社製)、コスカットGA468(大阪有機化学工業社製)、繊維素誘導体系材料(カルボキシメチルセルロース、メチルセルロース、ヒドロキシセルロース等)、タンパク質系材料(カゼイン、カゼイン酸ソーダ、カゼイン酸アンモニウム等)、アルギン酸系材料(アルギン酸ソーダ等)ポリビニル系材料(ポリビニルアルコール、ポリビニルピロリドン、ポリビニルベンジルエーテル共重合物等)、ポリアクリル酸系材料(ポリアクリル酸ソーダ、ポリアクリル酸-(メタ)アクリル酸共重合物等)、ポリエーテル系材料(プルロニックポリエーテル、ポリエーテルジアルキルエステル、ポリエーテルジアルキルエーテル、ポリエーテルウレタン変性物、ポリエーテルエポキシ変性物等)、無水マレイン酸共重合体系材料(ビニルエーテル-無水マレイン酸共重合物の部分エステル、乾性油脂肪酸アリルアルコールエステル-無水マレイン酸のハーフエステル等)が挙げられる。増粘剤としては、上記以外にも、ポリアマイドワックス塩、アセチレングリコール、ゼンタンガム、分子末端若しくは側鎖に極性基を有するオリゴマー又はポリマーが挙げられる。増粘剤は、1種を単独で使用してもよく、2種以上を併用してもよい。
 本実施形態の非水電解質電池用無機粒子を含有する多孔質層中の水溶性ポリマーの含有量は、当該多孔質層の全質量を基準として、好ましくは0.1質量%~100質量%、より好ましくは0.2質量%~10質量%である。
 〈正極〉
 正極は、一般に、集電体と、その上に形成された正極合剤層とを有し、正極合剤層は、正極活物質と、導電助材と、バインダーとを含むことが好ましい。
 正極活物質としては、電気化学的にリチウムイオンを吸蔵及び放出可能な公知のものを用いることができる。正極活物質としては、リチウムを含む材料が好ましい。正極活物質としては、例えば、
 下記式(1):
  LiMn2-y    (1)
{式中、Mは、遷移金属元素から成る群より選ばれる少なくとも1種の元素を示し、0<x≦1.3、0.2<y<0.8、かつ3.5<z<4.5である。}
で表される酸化物;
 下記式(2):
  Li    (2)
{式中、Mは、遷移金属元素から成る群より選ばれる少なくとも1種の元素を示し、0<x≦1.3、0.8<y<1.2、かつ1.8<z<2.2である。}
で表される層状酸化物;
 下記式(3):
  LiMn2-xMa    (3)
{式中、Maは、遷移金属元素から成る群より選ばれる少なくとも1種の元素を示し、かつ0.2≦x≦0.7である。}
で表されるスピネル型酸化物;
 下記式(4):
  LiMcO    (4)
{式中、Mcは、遷移金属元素から成る群より選ばれる少なくとも1種の元素を示す。}で表される酸化物と下記式(5):
  LiMdO    (5)
{式中、Mdは、遷移金属元素から成る群より選ばれる少なくとも1種の元素を示す。}で表される酸化物との複合酸化物であって、下記式(6):
  zLiMcO-(1-z)LiMdO    (6)
{式中、Mc及びMdは、それぞれ上記式(4)及び(5)におけるMc及びMdと同義であり、かつ0.1≦z≦0.9である。}
で表される、Liが過剰な層状の酸化物正極活物質;
 下記式(7):
  LiMb1-yFePO    (7)
{式中、Mbは、Mn及びCoから成る群より選ばれる少なくとも1種の元素を示し、かつ0≦y≦1.0である。}
で表されるオリビン型正極活物質;及び
 下記式(8):
  LiMePO F    (8)
{式中、Meは、遷移金属元素から成る群より選ばれる少なくとも1種の元素を示す。}で表される化合物が挙げられる。正極活物質は、1種を単独で用いてもよく、又は2種以上を併用してもよい。
 正極活物質は、より高電位で作動させて電池のエネルギー密度を高めることができるものが好ましい。本実施形態の非水電解質電池は、正極活物質から溶出して負極に析出することで電池特性を低下させたり短絡を引き起こしたりする金属イオンを効果的に吸着することができ、これにより電池性能低下を抑制できるので、正極活物質としては、上記式(3)で表されるスピネル型リチウムマンガン複合酸化物、及び上記式(2)で表される層状化合物からなる群から選択される少なくとも1種を用いることが好ましい。
 正極における導電助材、バインダー、及び集電体は、公知のものを使用することができる。
 正極は、本実施形態の非水電解質電池用無機粒子を有してもよい。正極が本実施形態の非水電解質電池用無機粒子を有する場合、その態様としては、限定されないが、例えば、(i)正極合剤層中に本実施形態の非水電解質電池用無機粒子を含有させる方法、又は(ii)正極合剤層の表面に本実施形態の非水電解質電池用無機粒子を含有する多孔質層を形成する方法が挙げられる。後者の方法の場合、本実施形態の非水電解質電池用無機粒子を含有する多孔質層は、上記の「〈非水電解質電池用セパレータ〉」の欄において説明した多孔質層と同じ方法により形成することができ、その構成もまた、上述の多孔質層の構成を援用することができる。
 正極中の非水電解質電池用無機粒子の含有量は、その使用による効果を良好に確保する観点から、例えば、集電体を除く正極の構成成分の全体積(空孔部分を除く全体積)中、0.5体積%以上であることが好ましく、1体積%以上であることがより好ましい。また、電池のエネルギー密度及び内部抵抗の観点から、正極における非水電解質電池用無機粒子の含有量は、集電体を除く正極の構成成分の全体積(空孔部分を除く全体積)中、10体積%以下であることが好ましく、6体積%以下であることがより好ましい。
 正極が非水電解質電池用無機粒子を含有しない場合には、正極合剤層の全質量を基準として、正極活物質の含有量は87質量%~97質量%であることが好ましく、導電助剤の含有量は1.5質量%~6.5質量%であることが好ましく、バインダーの含有量は1.5質量%~6.5質量%であることが好ましい。
 正極が非水電解質電池用無機粒子を含有する場合には、正極合剤層の全質量を基準として、正極活物質の含有量は79.4質量%~96.4質量%であることが好ましく、導電助剤の含有量は1.4質量%~6.5質量%であることが好ましく、バインダーの含有量は1.4質量%~6.5質量%であることが好ましい。
 〈負極〉
 負極は、一般に、集電体と、その上に形成された負極合剤層とを有し、負極合剤層は、負極活物質と、バインダーとを含むことが好ましい。
 負極における集電体としては、限定されないが、例えば、銅、ニッケル、及びステンレス等の金属の箔、エキスパンドメタル、パンチメタル、発泡メタル;炭素材料、例えばカーボンクロス、及びカーボンペーパー等が挙げられる。負極における集電体は、1種を単独で用いてもよく、又は2種以上を併用してもよい。
 負極活物質としては、電気化学的にリチウムイオンを吸蔵及び放出可能な公知のものを用いることができる。負極活物質としては、限定されないが、例えば、黒鉛粉末、メソフェーズ炭素繊維、及びメソフェーズ小球体などの炭素材料;並びに金属、合金、酸化物及び窒化物が挙げられる。負極活物質は1種を単独で用いてもよく、又は2種以上を併用してもよい。
 負極におけるバインダーとしては、負極活物質、導電助材、及び集電体の負極を構成する材料のうち少なくとも2つを結着できる公知のものを用いることができる。このようなバインダーとしては、限定されないが、例えば、カルボキシメチルセルロース、スチレン-ブタジエンの架橋ゴムラテックス、アクリル系ラテックス、及びポリフッ化ビニリデンが挙げられる。バインダーは1種を単独で用いてもよく、又は2種以上を併用してもよい。
 負極は、本実施形態の非水電解質電池用無機粒子を含んでもよい。負極が本実施形態の非水電解質電池用無機粒子を有する場合、その態様としては、限定されないが、例えば、(i)負極合剤層中に本実施形態の非水電解質電池用無機粒子を含有させる方法、又は(ii)負極合剤層の表面に本実施形態の非水電解質電池用無機粒子を含有する多孔質層を形成する方法が挙げられる。後者の方法の場合、本実施形態の非水電解質電池用無機粒子を含有する多孔質層は、上記の「〈非水電解質電池用セパレータ〉」の欄において説明した多孔質層と同じ方法により形成することができ、その構成もまた、上述の多孔質層の構成を援用することができる。
 負極中の非水電解質電池用無機粒子の含有量は、その使用による効果を良好に確保する観点から、例えば、集電体を除く負極の構成成分の全体積(空孔部分を除く全体積)中、1.5体積%以上であることが好ましく、2体積%以上であることがより好ましい。また、電池のエネルギー密度及び内部抵抗の観点から、負極における非水電解質電池用無機粒子の含有量は、集電体を除く負極の構成成分の全体積(空孔部分を除く全体積)中、25体積%以下であることが好ましく、15体積%以下であることがより好ましい。
 負極が非水電解質電池用無機粒子を含有しない場合には、負極合剤層の全質量を基準として、負極活物質の含有量は88質量%~99質量%であることが好ましく、バインダーの含有量は1質量%~12質量%であることが好ましく、導電助剤を使用する場合には、導電助剤の含有量は0.5質量%~6質量%であることが好ましい。
 負極が非水電解質電池用無機粒子を含有する場合には、負極合剤層の全質量を基準として、負極活物質の含有量は68質量%~98質量%であることが好ましく、バインダーの含有量は0.8質量%~11.8質量%であることが好ましく、導電助剤を使用する場合には、導電助剤の含有量は0.9質量%~5.9質量%であることが好ましい。
 〈非水電解質〉
 非水電解質としては、限定されないが、例えば、リチウム塩を有機溶媒に溶解した溶液であってよい。リチウム塩としては、限定されないが、例えば、LiPF(六フッ化リン酸リチウム)、LiClO、LiBF、LiAsF、LiSiF、LiOSO2k+1(式中、kは1~8の整数である)、LiN(SO2k+1(式中、kは1~8の整数である)、LiPF(C2k+16-n(式中、nは1~5の整数であり、かつkは1~8の整数である)、LiPF(C)、及びLiPF(C等が挙げられる。これらの中でも、リチウム塩としては、LiPFが好ましい。LiPFを用いることにより、高温時においても電池特性及び安全性により優れる傾向にある。リチウム塩は、1種を単独で用いてもよく、又は2種以上を併用してもよい。
 非水電解質に用いられる非水溶媒としては限定されず、公知のものを用いることができ、例えば、非プロトン性極性溶媒が好ましい。
 非プロトン性極性溶媒としては、限定されないが、例えば、エチレンカーボネート、プロピレンカーボネート、1,2-ブチレンカーボネート、2,3-ブチレンカーボネート、1,2-ペンチレンカーボネート、2,3-ペンチレンカーボネート、トリフルオロメチルエチレンカーボネート、フルオロエチレンカーボネート及び4,5-ジフルオロエチレンカーボネートなどの環状カーボネート;γープチロラクトン及びγーバレロラクトンなどのラクトン;スルホランなどの環状スルホン;テトラヒドロフラン及びジオキサンなどの環状エーテル;エチルメチルカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、メチルイソプロビルカーボネート、ジプロピルカーボネート、メチルブチルカーボネート、ジブチルカーボネート、エチルプロピルカーボネート及びメチルトリフルオロエチルカーボネートなどの鎖状カーボネート;アセトニトリルなどのニトリル;ジメチルエーテルなどの鎖状エーテル;プロピオン酸メチルなどの鎖状カルボン酸エステル;並びにジメトキシエタンなどの鎖状エーテルカーボネート化合物が挙げられる。非水電解質は、1種を単独で用いてもよく、又は2種以上を併用してもよい。
 非水電解質に含まれるリチウム塩の濃度は、好ましくは0.5mol/L~1.5mol/L、より好ましくは0.9mol/L~1.25mol/Lである。
 非水電解質は、液体電解質(非水電解液)であってもよく、固体電解質であってもよい。
 非水電解質は、本実施形態の非水電解質電池用無機粒子を含有してもよい。非水電解質における非水電解質電池用無機粒子の含有量は、その使用による効果を良好に確保する観点から、非水電解質1mL当たり、好ましくは5mg以上、より好ましくは10mg以上である。
 非水電解質は、必要に応じて、その他の添加剤を含有してもよい。このような添加剤としては、特に限定されないが、例えば、上記に例示した以外のリチウム塩、不飽和結合含有カーボネート、ハロゲン原子含有カーボネート、カルボン酸無水物、硫黄原子含有化合物(例えば、スルフィド、ジスルフィド、スルホン酸エステル、スルフィト、スルフェート、スルホン酸無水物等)、ニトリル基含有化合物等が挙げられる。
 その他の添加剤の具体例は、以下の通りである:
 リチウム塩:例えば、モノフルオロリン酸リチウム、ジフルオロリン酸リチウム、リチウムビス(オキサラト)ボレート、リチウムジフルオロ(オキサラト)ボレート、リチウムテトラフルオロ(オキサラト)ホスフェート、リチウムジフルオロビス(オキサラト)ホスフェート等;
 不飽和結合含有カーボネート:例えば、ビニレンカーボネート、ビニルエチレンカーボネート等;
 ハロゲン原子含有カーボネート:例えば、フルオロエチレンカーボネート、トリフルオロメチルエチレンカーボネート等;
 カルボン酸無水物:例えば、無水酢酸、無水安息香酸、無水コハク酸、無水マレイン酸等;
 硫黄原子含有化合物:例えば、エチレンスルフィト、1,3-プロパンスルトン、1,3-プロペンスルトン、1,4-ブタンスルトン、エチレンスルフェート、ビニレンスルフェート等;
 ニトリル基含有化合物:例えば、スクシノニトリル等。
 非水電解質がこのようなその他の添加剤を含むことにより、電池のサイクル特性がより向上する傾向にある。
 中でも、電池のサイクル特性を更に向上させるという観点から、ジフルオロリン酸リチウム及びモノフルオロリン酸リチウムから成る群から選択される少なくとも1種が好ましい。ジフルオロリン酸リチウム及びモノフルオロリン酸リチウムから成る群から選択される少なくとも1種の添加剤の含有量は、非水電解質100質量%に対して、0.001質量%以上が好ましく、0.005質量%以上がより好ましく、0.02質量%以上がさらに好ましい。この含有量が0.001質量%以上であると、リチウムイオン二次電池のサイクル寿命がより向上する傾向にある。また、この含有量は、3質量%以下が好ましく、2質量%以下がより好ましく、1質量%以下がさらに好ましい。この含有量が3質量%以下であると、リチウムイオン二次電池のイオン伝導性がより向上する傾向にある。
 非水電解質中のその他の添加剤の含有量は、例えば、31P-NMR、19F-NMR等のNMR測定により確認することができる。
 〈外装体〉
 外装体としては、限定されないが、例えば、スチール缶、アルミニウム缶などの金属缶が挙げられる。外装体の形態としては、筒形、例えば角筒形、円筒形などが挙げられる。また、金属を蒸着したラミネートフィルムを外装体として使用して、非水電解質電池を形成することもできる。
 〈非水電解質電池用塗料〉
 本実施形態の非水電解質電池用塗料は、本実施形態の非水電解質電池用無機粒子を含む。本実施形態の非水電解質電池用塗料は、本実施形態の非水電解質電池用無機粒子に加えて、樹脂、分散剤、水、及び有機溶剤等の追加成分を含む液体塗料であってよく、又は、本実施形態の非水電解質電池用無機粒子に加えて樹脂等の造膜成分を含む粉末塗料であってもよい。塗料に含まれる樹脂としては、水電解質電池の構成要素を形成するために上記で説明された各種の樹脂を使用してよい。塗料は、例えば、混合、撹拌、分散等の既知の方法により形成されることができる。
 〈非水電解質電池用樹脂固形物〉
 本実施形態の非水電解質電池用樹脂固形物は、本実施形態の非水電解質電池用無機粒子と樹脂とを含む。樹脂固形物に含まれる樹脂としては、非水電解質電池の構成要素を形成するために上記で説明した樹脂を使用することができる。樹脂固形物は、例えば、混練、混合、押出、成形等の既知の方法を用いて、本実施形態の非水電解質電池用無機粒子と樹脂とを混合することにより形成することができる。この樹脂固形物を用いて、本実施形態の無機粒子を含有する多孔質層を形成してもよい。
 《非水電解質電池の製造方法》
 本実施形態の非水電解質電池の製造方法は、限定されず、例えば、正極及び負極を、セパレータを介して積層して積層体を得て、又は積層体を更に巻回して巻回体を得て、得られた積層体又は巻回体を、非水電解質と共に外装体内に収容することにより製造することができ、いずれかの工程において、正極、負極、セパレータ、非水電解質、及び外装体のうち少なくとも1つが本実施形態における非水電解質電池用無機粒子を含むようにする。
 好ましくは、正極と、本実施形態による非水電解質電池用無機粒子を含む無機粒子含有層と、セパレータと、負極とをこの順に積層して積層体を得て、又はこの積層体を捲回して捲回体を得て、得られた積層体又は捲回体と非水電解質とを、外装体内に収容する方法が挙げられる。非水電解質電池が例えばリチウムイオン二次電池である場合には、このような手順でリチウムイオン二次電池の複数の構成要素を配列することによって、電池内でのリチウムイオンの移動が確保され、かつ電池の寿命特性又は安全性に影響する金属イオンの吸着が顕著になる。
 本実施形態の非水電解質電池用無機粒子を含む多孔質層は、上記で説明した非水電解質電池用樹脂固形物を用いて形成してもよく、又は上記で説明したセパレータの一部分として予め形成することができる。
 《非水電解質電池用無機粒子の検査方法》
 本実施形態の非水電解質電池用無機粒子の金属吸着能力は、以下:
 露点-40℃以下において、0.1~6.0mol/LのLiPFを含む環状及び/又は鎖状カーボネート溶液に金属化合物を添加することにより、金属イオン濃度が0.1~10,000ppmの非水電解質液を調製する工程と;
 上記非水電解質液100質量部に、非水電解質電池用無機粒子0.001~100質量部を添加し、非電解質混合液を調製する工程と;
 上記非電解質混合液を0~45℃で1秒~1000時間撹拌する工程と;
 撹拌後の上記非電解質混合液中の金属イオン濃度を、誘導結合プラズマ分光分析(IPC-AES)または誘導結合プラズマ質量分析(ICP-MS)で定量する工程と
を含む検査方法によって評価することができる。
 任意に、方法は、撹拌する工程の後、撹拌後の非電解質混合液を孔径0.1~1.0μmのフィルターでろ過してろ液を得る工程を有してもよい。この場合、ろ液中の金属イオン濃度を、誘導結合プラズマ分光分析(IPC-AES)または誘導結合プラズマ質量分析(ICP-MS)で定量することができる。
 セパレータを評価する際は、上記非電解質混合液中の無機粒子の量が、非水電解質液100質量部に対して無機粒子が0.001~100質量部であるように加えればよい。セパレータは一枚でもよく、分割されていてもよい。
 LiPFはHOに晒されると分解し、HFが発生し、金属吸着能力の定量性が低下するため、水分を除去した雰囲気において評価することが好ましい。露点としては、-40℃以下が好ましく、-45℃以下であることがより好ましく、-50℃以下であることが更に好ましい。特に金属吸着能力は不活性ガス雰囲気下で評価されることがより好ましく、窒素ガスやアルゴンガス中で評価されることが更に好ましく、アルゴンガス雰囲気下で評価されることが最も好ましい。
 LiPFと環状及び/又は鎖状カーボネートとの混合液の組成は、環状及び/又は鎖状カーボネート溶液に対してLiPFが0.1~6.0mol/Lであれば、特に限定されない。
 LiPFを含む環状及び/又は鎖状カーボネート混合液に金属化合物を溶解することで、金属イオン濃度が0.1~10,000ppmの非水電解質液を調製する。
 金属化合物としては、特に限定されないが、非水電解液に十分な溶解度を持ち、金属吸着能力の定量性に優れることから、金属化合物が、トリフルオロメタンスルホン酸、テトラフルオロほう酸、アセチルアセトナートから選ばれる1種類以上の陰イオンを含むことがより好ましい。
 金属化合物を非水電解液に溶解する方法としては、特に限定されず、例えば、プロペラ撹拌、振とう撹拌、ミックスローター、ボルテックス、超音波などが挙げられる。
 定量の精度の観点から、上記電解質中の金属イオンの濃度は一定の濃度よりも濃いことが好ましく、0.5ppm以上であることが好ましく、3ppm以上であることが好ましい。また、その上限については、実際の電池内の状態を再現するため、10,000ppm以下が好ましく、5,000ppm以下が好ましく、1,000ppm以下が更に好ましい。
 反応に用いる容器は、化学的耐性、特に酸耐性のあるものであれば、特に限定されない。
 定量精度の観点から、無機粒子の量は、一定の濃度よりも濃いことが好ましく、該非水電解質液100質量部に対して、0.01質量部よりも多いことが好ましく、0.02質量部より多いことが更に好ましい。またその上限については、該非水電解質液の流動性を損なわない観点から、100質量部以下であることが好ましく、50質量部以下であることがより好ましく、30質量部以下であることが更に好ましい。
 吸着反応の温度は、流動性の観点から0℃以上であることが好ましく、20℃以上であることがより好ましい、また上限については、該非水電解質液が蒸発しにくい温度であることが好ましく、80℃以下であることが好ましく、70℃以下であることがより好ましく、60℃以下であることが更に好ましい。
 また、該非水電解質液中に金属イオンの濃度勾配を作らないよう、常に撹拌していることが好ましく、その撹拌方法については特に限定されず、例えば、プロペラ撹拌、振とう撹拌、ミックスローター、ボルテックス、超音波などが挙げられる。撹拌時間は、十分に吸着させる観点から1秒以上であることが好ましく、1時間以上であることがより好ましく、5時間以上であることが更に好ましい。またその上限については、評価のスループットの観点から1000時間以下であることが好ましく、100時間以下であることがより好ましく、80時間以下であることが更に好ましい。
 撹拌後に該非水電解質液中に粉体が残る場合、フィルターを通して漉すことが好ましい。例えば、メンブレンフィルターを用いることができる。孔径はろ過の観点から0.1~1.0μmが好ましい。粒子を確実にろ過するためには、フィルター径は0.5μm以下であることがより好ましく、0.2μm以下であることが更に好ましい。またその下限については、評価のスループットの観点から、0.1μm以上であることが好ましい。使用できるフィルターの種類は、上記のように紛体ろ過が達成できれば、特に限定されない。例えば、PP製、PTFE製メンブレンフィルター等を用いることができる。
 セパレータから粉落ちしない場合は、ろ過の工程は必須ではない。一方で、粉落ちが懸念される場合には、ろ過の工程を含むことが好ましい。
 ろ液中の金属イオン濃度の測定は、金属イオンが定量可能であれば、特に限定されない。例えば、キレート滴定、イオンクロマトグラフィー、原子吸光分析、誘導結合プラズマ分光分析(IPC-AES)、誘導結合プラズマ質量分析(ICP-MS)、キャピラリー電気泳動法、イオン選択性電極法、蛍光X線分析、等を用いることができる。微小量の定量性という観点から、誘導結合プラズマ分光分析(IPC-AES)または誘導結合プラズマ質量分析(ICP-MS)が好ましい。
 セパレータの金属イオン吸着能を評価する際は、セパレータを隔膜として、既知濃度の金属イオンを含有する電解液を通過させて、通過後の電解液中の金属イオン濃度を測定してもよい。例えば、セパレータをスウィネクスホルダーに載置し、シリンジにて電解液を圧送し、セパレータを通過した電解液の金蔵イオン濃度を測定することで、無機粒子の金属イオン吸着能を評価することができる。
 単位面積あたりのセパレータを通過させる電解液の単位時間あたりの量は、スループットの観点から、100ml/h/m以上であることが好ましく、500ml/h/m以上であることが好ましく、1,000ml/h/m以上であることがより好ましい。その上限は金属イオンをセパレータに吸着させる観点から、10,000,000ml/h/m以下であることが好ましく、5,000,000ml/h/m以下であることがより好ましく、1,000,000ml/h/m以下であることがより好ましい。
 金属イオン濃度は、定量性の観点から、通過させた電解液を10μl以上集めて金属イオン濃度を複数回測定し、平均した値を採用することが好ましく、100μl以上であることがより好ましく、500μl以上であることが更に好ましい。またスループットの観点から、その上限は、1l以下であることが好ましく、500ml以下であることがより好ましく、250ml以下であることが更に好ましい。
 以下、実施例及び比較例により本発明の実施形態を具体的に説明するが、本発明はこれらの実施例及び比較例に限定されるものではない。なお、特に記載のない限り各種測定および評価は、室温23℃、1気圧、及び相対湿度50%の条件下で行った。
 [実施例1]
 <ヒドロキシアパタイトの調製>
 リン酸水素カルシウム・二水和物と炭酸カルシウムの10%水懸濁液を90℃で加熱・撹拌して、ヒドロキシアパタイトを合成した。このとき、CaとPのモル比は、Ca:P=5:3とした。得らえた固体を、120℃で真空乾燥し、粉末状のヒドロキシアパタイトAを得た。また、透過型電子顕微鏡で観察した100個の粒子の平均厚みは、150nmであった。
 <BET比表面積の測定>
 得られたヒドロキシアパタイトAについて、定容法により、窒素による吸着等温線を測定した。吸着温度で、前処理した無機粒子が入っているガラスチューブに、窒素の相対圧が約0.5となるまで、窒素の相対圧を上げながら、窒素を供給した。窒素を供給しながら、無機粒子への窒素の吸着量を測定した。窒素の相対圧を上げる工程で測定した無機粒子への窒素の吸着量と、窒素の相対圧から、吸着等温線を得た。
 得られた吸着等温線から、BET法(多点法、相対圧約0.1~0.2の範囲の5点)によって、BET比表面積を算出した。得られたヒドロキシアパタイトAのBET比表面積は6.5m/gであった。
(装置)
測定装置:BELSORP-mini(日本ベル(株)製)
前処理装置:BELPREP-vacII(日本ベル(株)製)
(前処理方法)
ガラスチューブに入れた無機粒子に、200℃で8時間、真空脱気を行った。
(測定条件)
吸着温度:77K
吸着質:窒素
飽和蒸気圧:実測
吸着質断面積:0.162nm
平衡待ち時間:500sec
 平衡待ち時間は、吸着平衡状態(吸脱着の際の圧力変化が所定の値以下になる状態)に達してからの待ち時間である。
 <X線回折測定>
 得られたヒドロキシアパタイトAについて、X線回折装置(ブルカー社製D2 PHASER)で、Cu-Kα線を用いて、加速電圧30kV、管電流10mA、発散スリット1mm、ソラースリット4°、エアスキャッタースクリーン1mm、Kβフィルター0.5mm、計数時間0.15秒、0.02°ステップ、及び測定範囲5°~40°の条件下で粉末X線回折測定を行った。なお、X線回折装置の補正には標準シリコン粉末を用いた。得られた回折パターンを図1に示す。この回折パターンから、25.9°(2θ)付近に(002)面由来の回折ピークと、32.8°(2θ)付近に(300)面由来の回折ピークが見られ、ヒドロキシアパタイトの構造であることを確認した。また、(002)面由来の回折ピークの半値幅は0.14°であった。
 <セパレータの作製>
 粘度平均分子量(Mv)700,000のホモポリマーのポリエチレン47.5質量部と、Mv250,000のホモポリマーのポリエチレン47.5質量部と、Mv400,000のホモポリマーのポリプロピレン5質量部とを、タンブラーブレンダーを用いてドライブレンドして、ポリオレフィン樹脂混合物を得た。得られたポリオレフィン樹脂混合物99質量%に対して、酸化防止剤としてペンタエリスリチル-テトラキス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]を1質量%添加し、再度タンブラーブレンダーを用いてドライブレンドすることにより、ポリオレフィン樹脂組成物を得た。
 得られたポリオレフィン樹脂組成物を、窒素で置換を行った後に、二軸押出機へ窒素雰囲気下でフィーダーにより供給した。また、流動パラフィン(37.78℃における動粘度:7.59×10-5/s)を、押出機シリンダーにプランジャーポンプにより注入した。二軸押出機で溶融混練し、押し出される全混合物中に占める流動パラフィンの質量比が66質量%(樹脂組成物濃度が34質量%)となるように、フィーダー及びポンプを調整した。溶融混練条件は、設定温度200℃、スクリュー回転数100rpm、及び吐出量12kg/hであった。
 続いて、溶融混練物を、T-ダイを経て表面温度25℃に制御された冷却ロール上に押出しキャストすることにより、厚み1600μmのゲルシートを得た。次に、得られたゲルシートを同時二軸テンター延伸機に導き、二軸延伸を行った。設定延伸条件は、MD倍率7.0倍、TD倍率6.1倍、及び設定温度123℃であった。次に、二軸延伸後のゲルシートをメチルエチルケトン槽に導き、メチルエチルケトン中に充分に浸漬して流動パラフィンを抽出除去し、その後メチルエチルケトンを乾燥除去した。最後に、乾燥後のゲルシートをTDテンターに導き、延伸及び熱緩和を行って、ポリオレフィン微多孔膜を得た。延伸温度は125℃であり、熱緩和温度は133℃であり、TD最大倍率は1.65倍であり、かつ緩和率は0.9であった。得られたポリオレフィン微多孔膜は、厚みが12μmであり、かつ空孔率が40%であった。
 イオン交換水100質量部中に、ヒドロキシアパタイトA:ベーマイト(平均厚み:250nm)=40:60(質量比)とした無機粒子を29質量部と、ポリカルボン酸アンモニウム水溶液(サンノプコ社製SNディスパーサント5468)0.29質量部とを混合した。混合後、ビーズミル処理を行い、平均粒径(D50)を1.5μmに調整し、分散液を得た。さらに、得られた分散液100質量部に対して、バインダーとしてアクリルラテックス懸濁液(固形分濃度40%、平均粒子径150nm)2.2質量部を混合して均一な多孔質層形成用組成物を調製した。なお、上記の分散液における無機粒子の平均粒子径は、レーザー式粒度分布測定装置(日機装(株)製マイクロトラックMT3300EX)を用いて粒径分布を測定し、体積累積頻度が50%となる粒径を平均粒子径(μm)とした。また、樹脂製ラテックスバインダーの平均粒径は、光散乱法による粒径測定装置(LEED&NORTHRUP社製MICROTRACTMUPA150)を用い、体積平均粒子径(nm)を測定し、平均粒子径として求めた。
 次に、上記ポリオレフィン微多孔膜の表面にマイクログラビアコーターを用いて上記多孔質層形成用組成物を塗布し、60℃で乾燥して水を除去し、ポリオレフィン微多孔膜上に厚さ5μmのベーマイトとヒドロキシアパタイトAを含む無機粒子含有層を配置し、無機粒子含有層を有するセパレータを得た。なお、このセパレータの、ベーマイトとヒドロキシアパタイトAを含む無機粒子含有層における無機粒子の体積割合は、95体積%であった。
 <正極の作製>
 正極活物質としてLiNi0.5o0.2Mn0.3と、導電助剤としてアセチレンブラックの粉末と、バインダーとしてポリフッ化ビニリデン溶液とを固形分比で93.9:3.3:2.8の質量比で混合した。得られた混合物に、分散溶媒としてN-メチル-2-ピロリドンを固形分35質量%となるように投入して更に混合して、スラリー状の溶液を調製した。このスラリー状の溶液を厚さ10μmのアルミニウム箔の両面に塗布した。このとき、アルミニウム箔の一部が露出するようにした。その後、溶剤を乾燥除去し、ロールプレスで圧延した。圧延後の試料を塗布部の大きさが30mm×50mmであり、かつアルミニウム箔の露出部を含むように裁断し、更に、電流を取り出すためのアルミニウム製リード片をアルミニウム箔の露出部に溶接して正極を得た。
 <負極の作製>
 負極活物質としてグラファイト粉末と、バインダーとしてスチレンブタジエンゴム及びカルボキシメチルセルロース水溶液とを、97.5:1.5:1.0の固形分質量比で混合した。得られた混合物を、固形分濃度が45質量%となるように、分散溶媒としての水に添加して、スラリー状の溶液を調製した。このスラリー状の溶液を厚さ10μmの銅箔の片面及び両面に塗布した。このとき、銅箔の一部が露出するようにした。その後、溶剤を乾燥除去し、ロールプレスで圧延した。圧延後の試料を塗布部の大きさが32mm×52mmであり、かつ銅箔の露出部を含むように裁断し、更に、電流を取り出すためのニッケル製リード片を銅箔の露出部に溶接して負極を得た。
 <非水電解質の作製>
 アルゴンガス雰囲気下で、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とを体積比1:2で混合した混合溶媒に、LiPFを1mol/Lとなるように溶解して、非水電解質(非水電解液)を得た。
 <非水電解質電池の作製>
 上記正極と上記負極とを、上記セパレータを介在させつつ重ね合わせて積層電極体とした。なお、セパレータは、ベーマイトとヒドロキシアパタイトA含む無機粒子含有層が正極に対向するように配置した。この積層電極体を80×60mmのアルミニウムラミネート外装体内に挿入した。次に、上記非水電解質(非水電解液)を外装体内に注入し、その後、外装体の開口部を封止して、積層電極体を内部に有する非水電解質電池(リチウムイオン二次電池)を作製した。得られた非水電解質電池の定格容量は90mAhであった。
 <金属吸着能力の評価>
(1)Mn吸着能力の測定
 アルゴンガス雰囲気下で、上記非水電解質電池に用いた非水電解質に、トリフルオロメタンスルホン酸マンガン〔Mn(CFSO〕を、Mnの濃度が5ppmとなるように溶解した。アルゴンガス雰囲気下で、このMnを溶解した非水電解質100質量部と、ヒドロキシアパタイトA0.035質量部とをポリプロピレン製の密閉容器に入れ、バリアブルミックスローターVMR-5R(アズワン社製)を用いて23℃の雰囲気下で、100rpmで6時間に亘って振とう撹拌した。その後、孔径0.2μmのPTFE製メンブレンフィルターでろ過した。このろ液中のMnの濃度(Mx)(単位:ppm)を測定し、以下の式から、吸着率(Ax)(単位:%)を算出し、吸着率が10%未満:「×」、10~20%:「△」、20%より大きい:「〇」として評価した。
 Ax=〔(5-Mx)/5〕×100
 なお、Mnの濃度の測定は、ICP発光分光分析(ICP発光分光分析装置:Optima8300(パーキンエルマー社製))にて測定した。なお、測定試料の前処理には酸分解(マイクロウェーブ法)を行った。
(2)Co吸着能力の測定
 トリフルオロメタンスルホン酸マンガンの代わりにコバルト(II)アセチルアセトナートを用いたこと以外は、上記のMn吸着能力の測定と同様にして、Co吸着率を算出し、評価した。
(3)Cu吸着能力の測定
 トリフルオロメタンスルホン酸マンガンの代わりにトリフルオロメタンスルホン酸銅〔Cu(CFSO〕を用いたこと以外は、上記のMn吸着能力の測定と同様にして、Cu吸着率を算出し、評価した。
(4)Zn吸着能力の測定
 トリフルオロメタンスルホン酸マンガンの代わりにトリフルオロメタンスルホン酸亜鉛〔Zn(CFSO〕を用いたこと以外は、上記のMn吸着能力の測定と同様にして、Zn吸着率を算出し、評価した。
 <寿命特性/安全性の評価>
 ・初期充放電
 得られた非水電解質二次電池(以下、単に「電池」ともいう。)を、25℃に設定した恒温槽(二葉科学社製、恒温槽PLM-73S)に収容し、充放電装置(アスカ電子(株)製、充放電装置ACD-01)に接続した。次いで、その電池を0.05Cの定電流で充電し、4.35Vに到達した後、4.35Vの定電圧で2時間充電し、0.2Cの定電流で3.0Vまで放電した。なお、1Cとは電池が1時間で放電される電流値である。
 ・フロート試験
 上記初期充電後の電池を、50℃に設定した恒温槽(二葉科学社製、恒温槽PLM-73S)に収容し、充放電装置(アスカ電子(株)製、充放電装置ACD-01)に接続した。次いで、その電池を0.5Cの定電流で4.35Vまで充電し、4.35Vに到達した後、4.35Vの定電圧で充電した。このとき、微短絡に至るまでの時間について評価した。
 微短絡に至るまでの時間は、上記の充電過程において、充電容量が定格容量の2倍となるまでの時間を測定し、30日未満:「××」、30日以上40日未満:「×」、40日以上50日未満:「△」、50日以上60日未満:「○」、60日以上70日未満:「◎」、70日以上:「◎◎」として評価した。
 [実施例2]
 水懸濁液の加熱温度を80℃にしたこと以外は、実施例1と同様にして、ヒドロキシアパタイトBを得た。得られたヒドロキシアパタイトBのBET比表面積は52m/gであった。また、透過型電子顕微鏡で観察した100個の粒子の平均厚みは、140nmであった。また、実施例1と同様の方法でX線回折測定を行った。得られた回折パターンを図1に示す。この回折パターンから25.9°(2θ)付近に(002)面由来の回折ピークと、32.8°(2θ)付近に(300)面由来の回折ピークが見られ、ヒドロキシアパタイトの構造であることを確認した。また、(002)面由来の回折ピークの半値幅は0.18°であった。
 ヒドロキシアパタイトAの代わりにヒドロキシアパタイトBを用いたこと以外は、実施例1と同様の方法で、ベーマイト(平均厚み:250nm)とヒドロキシアパタイトBを含む無機粒子含有層を有するセパレータを得た。なお、このセパレータの、ベーマイトとヒドロキシアパタイトBを含む無機粒子含有層における無機粒子の体積割合は、95体積%であった。また、実施例1と同様の方法で、金属吸着能力及び寿命特性/安全性評価を行った。
 [実施例3]
 ヒドロキシアパタイトBを空気雰囲気下において1000℃で5時間焼成し、粉砕して、ヒドロキシアパタイトCを得た。得られたヒドロキシアパタイトCのBET比表面積は7m/gであった。また、透過型電子顕微鏡で観察した100個の粒子の平均厚みは、145nmであった。また、実施例1と同様の方法でX線回折測定を行った。得られた回折パターンを図1に示す。この回折パターンから25.9°(2θ)付近に(002)面由来の回折ピークと、32.8°(2θ)付近に(300)面由来の回折ピークが見られ、ヒドロキシアパタイトの構造であることを確認した。また、(002)面由来の回折ピークの半値幅は0.14°であった。
 ヒドロキシアパタイトAの代わりにヒドロキシアパタイトCを用いたこと以外は、実施例1と同様の方法で、ベーマイト(平均厚み:250nm)とヒドロキシアパタイトCを含む無機粒子含有層を有するセパレータを得た。なお、このセパレータの、ベーマイトとヒドロキシアパタイトCを含む無機粒子含有層における無機粒子の体積割合は、95体積%であった。また、実施例1と同様の方法で、金属吸着能力及び寿命特性/安全性評価を行った。
 [実施例4]
 無機粒子として、ヒドロキシアパタイトAを用いたこと以外は、実施例1と同様の方法で、ヒドロキシアパタイトAのみを含む無機粒子含有層を有するセパレータを得た。なお、このセパレータのヒドロキシアパタイトを含む無機粒子含有層における無機粒子の体積割合は、90体積%であった。
 また、実施例1と同様の方法で、寿命特性/安全性評価を行った。なお、金属吸着能力の測定結果は実施例1の値を用いた。
 [実施例5]
 ベーマイトを平均厚み:250nmから平均厚み:150nmに変更したこと以外は、実施例と1と同様の方法で、ベーマイトとヒドロキシアパタイトAを含む無機粒子含有層を有するセパレータを得た。なお、このセパレータの、ベーマイトとヒドロキシアパタイトAを含む無機粒子含有層における無為粒子の体積割合は、95体積%であった。また、実施例1と同様の方法で寿命特性/安全性評価を行った。なお、金属吸着能力の測定結果は実施例1の値を用いた。
 [実施例6]
 ベーマイトを平均厚み:250nmから平均厚み:100nmに変更したこと以外は、実施例と1と同様の方法で、ベーマイトとヒドロキシアパタイトAを含む無機粒子含有層を有するセパレータを得た。なお、このセパレータの、ベーマイトとヒドロキシアパタイトAを含む無機粒子含有層における無為粒子の体積割合は、95体積%であった。また、実施例1と同様の方法で、寿命特性/安全性評価を行った。なお、金属吸着能力の測定結果は実施例1の値を用いた。
 [比較例1]
 無機粒子として、ゼオライト(比表面積:550m/g)を用いたこと以外は、実施例1と同様の方法で、ゼオライトを含む無機粒子含有層を有するセパレータを得た。なお、このセパレータの、ゼオライトを含む無機粒子含有層における無機粒子の体積割合は、97体積%であった。
 また、実施例1と同様の方法で、金属吸着能力及び寿命特性評価を行った。
 [比較例2]
 無機粒子として、ケイ酸アルミニウム(Al・2SiO)を用いたこと以外は、実施例1と同様の方法で、ケイ酸アルミニウムを含む無機粒子含有層を有するセパレータを得た。なお、このセパレータの、ケイ酸アルミニウムを含む無機粒子含有層における無機粒子の体積割合は、97体積%であった。
 また、実施例1と同様の方法で、金属吸着能力及び寿命特性/安全性評価を行った。
 [比較例3]
 無機粒子として、ベーマイト(平均厚み:250nm)を用いたこと以外は、実施例1と同様の方法で、ベーマイトを含む無機粒子含有層を有するセパレータを得た。なお、このセパレータの、ベーマイトを含む無機粒子含有層における無機粒子の体積割合は、97体積%であった。
 また、実施例1と同様の方法で、金属吸着能力及び寿命特性/安全性評価を行った。
 [比較例4]
 水懸濁液の加熱温度を60℃にしたこと以外は、実施例1と同様にして、ヒドロキシアパタイトDを得た。得られたヒドロキシアパタイトDのBET比表面積は96m/gであった。また、透過型電子顕微鏡で観察した100個の粒子の平均厚みは、110nmであった。また、実施例1と同様の方法でX線回折測定を行った。得られた回折パターンを図1に示す。この回折パターンから25.9°(2θ)付近に(002)面由来の回折ピークと、32.8°(2θ)付近に(300)面由来の回折ピークが見られ、ヒドロキシアパタイトの構造であることを確認した。また、(002)面由来の回折ピークの半値幅は0.35°であった。
 無機粒子としてヒドロキシアパタイトD:ベーマイト(平均厚み:250nm)=50:50(質量比)を用いたこと以外は、実施例1と同様の方法で、ベーマイトとヒドロキシアパタイトDを含む無機粒子含有層を有するセパレータを得た。なお、このセパレータの、ベーマイトとヒドロキシアパタイトDを含む無機粒子含有層における無機粒子の体積割合は、94体積%であった。また、実施例1と同様の方法で、金属吸着能力及び寿命特性/安全性評価を行った。
 [比較例5]
 無機粒子としてヒドロキシアパタイトD:ベーマイト(平均厚み:110nm)=50:50(質量比)を用いたこと以外は、実施例1と同様の方法で、ベーマイトとヒドロキシアパタイトDを含む無機粒子含有層を有するセパレータを得た。なお、このセパレータの、ベーマイトとヒドロキシアパタイトDを含む無機粒子含有層における無機粒子の体積割合は、93体積%であった。また、実施例1と同様の方法で、寿命特性/安全性評価を行った。なお、金属吸着能力の測定結果は比較例4の値を用いた。
 [比較例6]
無機粒子としてヒドロキシアパタイトD:ベーマイト(平均厚み:80nm)=50:50(質量比)を用いたこと以外は、実施例1と同様の方法で、ベーマイトとヒドロキシアパタイトDを含む無機粒子含有層を有するセパレータを得た。なお、このセパレータの、ベーマイトとヒドロキシアパタイトDを含む無機粒子含有層における無機粒子の体積割合は、91体積%であった。また、実施例1と同様の方法で、寿命特性/安全性評価を行った。なお、金属吸着能力の測定結果は比較例4の値を用いた。
 [比較例7]
 リン酸水素カルシウム・二水和物と炭酸カルシウムとフッ化カルシウムの10%水懸濁液を60℃で加熱・撹拌して、フルオロアパタイトAを合成した。このとき、CaとPのモル比は、Ca:P=5:3とした。得られた固体を、120℃で真空乾燥し、粉末状のフルオロアパタイトAを得た。得られたフルオロアパタイトAのBET比表面積は110m/gであった。また、透過型電子顕微鏡で観察した100個の粒子の平均厚みは、100nmであった。
 ヒドロキシアパタイトDの代わりにフルオロアパタイトAを用いたこと以外は、比較例5と同様の方法で、ベーマイト(平均厚み:250nm)とフルオロアパタイトAを含む無機粒子含有層を有するセパレータを得た。なお、このセパレータの、ベーマイトとフルオロアパタイトAを含む無機粒子含有層における無機粒子の体積割合は、93体積%であった。また、実施例1と同様の方法で、金属吸着能力及び寿命特性/安全性評価を行った。
 [比較例8]
 無機粒子としてフルオロアパタイトA:ベーマイト(平均厚み:250nm)=40:60(質量比)を用いたこと以外は、実施例1と同様の方法で、ベーマイトとヒドロキシアパタイトDを含む無機粒子含有層を有するセパレータを得た。なお、このセパレータの、ベーマイトとヒドロキシアパタイトDを含む無機粒子含有層における無機粒子の体積割合は、94体積%であった。また、実施例1と同様の方法で、寿命特性/安全性評価を行った。なお、金属吸着能力の測定結果は比較例7の値を用いた。
 実施例1~6及び比較例1~8の測定及び評価結果を下記表1及び2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明の非水電解質電池用無機粒子は、非水電解質電池、例えばリチウムイオン二次電池に用いることができる。本発明の非水電解質電池用無機粒子は、好ましくは非水電解質電池用セパレータ、例えばリチウムイオン二次電池用セパレータに用いることができる。

Claims (21)

  1.  高結晶性の一次元トンネル状結晶構造の陽イオン交換体を含む、非水電解質電池用無機粒子。
  2.  前記高結晶性の一次元トンネル状結晶構造の陽イオン交換体が、ヒドロキシアパタイト、フルオロアパタイト、塩素燐灰石、プロトン化曹長石、マンガン酸化物、β‐アルミナ、六チタン酸カリウム、タングステン酸カリウム、及びモリブデン酸カリウム、オクトチタン酸塩、及びガロチタノガリウム酸塩から選ばれる1種類以上である、請求項1に記載の非水電解質電池用無機粒子。
  3.  前記一次元トンネル状結晶構造の陽イオン交換体がヒドロキシアパタイトであり、前記ヒドロキシアパタイトは、Cu-Kα線を光源として用いたX線回折測定によるX線回折図形において、回折角(2θ)25.5~26.5°に(002)面のピークが存在し、回折角(2θ)32.5~33.5°に(300)面のピークが存在し、前記(002)面のピークの半値幅が0.3°以下である、請求項1又は2に記載の非水電解質電池用無機粒子。
  4.  前記(002)面のピークの半値幅が0.15°以下である、請求項3に記載の非水電解質電池用無機粒子。
  5.  BET比表面積が3m/g以上である、請求項1~4のいずれか一項に記載の非水電解質電池用無機粒子。
  6.  5ppmのMn2+イオンと、1mol/LのLiPFと、環状及び/又は鎖状カーボネートとの混合液100質量部に対し、前記非水電解質電池用無機粒子0.035質量部を23℃の雰囲気下で6時間浸漬したとき、前記非水電解質電池用無機粒子への前記Mn2+イオンの吸着率が10%以上である、請求項1~5のいずれか一項に記載の非水電解質電池用無機粒子。
  7.  混合用無機粒子を更に含む、請求項1~6のいずれか一項に記載の非水電解質電池用無機粒子。
  8.  前記混合用無機粒子の平均厚みが前記陽イオン交換体よりも厚い、請求項7に記載の非水電解質電池用無機粒子。
  9.  前記混合用無機粒子が陰イオン交換体である、請求項7又は8に記載の非水電解質電池用無機粒子。
  10.  前記陽イオン交換体及び前記混合用無機粒子の合計質量を100質量%としたとき、前記陽イオン交換体が50質量%未満である、請求項7~9のいずれか一項に記載の非水電解質電池用無機粒子。
  11.  請求項1~10のいずれか一項に記載の非水電解質電池用無機粒子を含む、電池構成部材。
  12.  請求項1~10のいずれか一項に記載の非水電解質電池用無機粒子を含む無機粒子含有層を備える、非水電解質電池。
  13.  正極と、負極と、セパレータと、非水電解質と、外装体とを有する非水電解質電池であって、
     前記正極、前記負極、前記セパレータ、前記非水電解質、及び前記外装体の少なくとも1つが、請求項1~10のいずれか一項に記載の非水電解質電池用無機粒子を含む、非水電解質電池。
  14.  正極と、負極と、セパレータとを含む、請求項12に記載の非水電解質電池であって、
     前記無機粒子含有層は、前記セパレータ内部、前記正極と前記セパレータとの間、及び前記負極と前記セパレータとの間から選択される少なくとも一つの、一部又は全部に形成されている、非水電解質電池。
  15.  前記無機粒子含有層は前記正極と前記セパレータとの間の一部又は全部に形成されている、請求項14に記載に非水電解質電池。
  16.  請求項1~10のいずれか一項に記載の非水電解質電池用無機粒子を含む、非水電解質電池用セパレータ。
  17.  請求項12に記載の無機粒子含有層を少なくとも片面に有する、非水電解質電池用セパレータ。
  18.  請求項1~10のいずれか一項に記載の非水電解質電池用無機粒子を含む、非水電解質電池用塗料。
  19.  請求項1~10のいずれか一項に記載の非水電解質電池用無機粒子と樹脂とを含む、非水電解質電池用樹脂固形物。
  20.  正極、請求項1~10のいずれか一項に記載の非水電解質電池用無機粒子を含む無機粒子含有層、セパレータ、及び負極がこの順に積層されている、積層体又は前記積層体の捲回体と、非水電解質とを有する、リチウムイオン二次電池。
  21.  非水電解質電池用無機粒子の金属吸着能力の検査方法であって、前記方法は、以下の工程:
     露点-40℃以下において、0.1~6.0mol/LのLiPFを含む環状及び/又は鎖状カーボネート溶液に金属化合物を添加することにより、金属イオン濃度が0.1~10,000ppmの非水電解質液を調製する工程;
     前記非水電解質液100質量部に、前記非水電解質電池用無機粒子0.001~100質量部を添加し、非電解質混合液を調製する工程;
     前記非電解質混合液を0~45℃で1秒~1000時間撹拌する工程;及び
     撹拌後の前記非電解質混合液中の金属イオン濃度を、誘導結合プラズマ分光分析機(IPC-AES)または誘導結合プラズマ質量分析機(ICP-MS)で定量する工程;
    を含む、方法。
PCT/JP2017/031200 2016-12-02 2017-08-30 非水電解質電池用無機粒子及びこれを用いた非水電解質電池 WO2018100815A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020197015647A KR102241566B1 (ko) 2016-12-02 2017-08-30 비수 전해질 전지용 무기 입자 및 이것을 사용한 비수 전해질 전지
JP2018553662A JP6810756B2 (ja) 2016-12-02 2017-08-30 非水電解質電池用無機粒子及びこれを用いた非水電解質電池
CN201780074691.1A CN110024175B (zh) 2016-12-02 2017-08-30 非水电解质电池用无机颗粒及使用其的非水电解质电池
US16/465,777 US11489233B2 (en) 2016-12-02 2017-08-30 Nonaqueous electrolyte battery inorganic particles, and nonaqueous electrolyte battery using these
EP17875792.8A EP3550634B1 (en) 2016-12-02 2017-08-30 Nonaqueous electrolyte battery inorganic particles, and nonaqueous electrolyte battery using these

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016235126 2016-12-02
JP2016-235126 2016-12-02

Publications (1)

Publication Number Publication Date
WO2018100815A1 true WO2018100815A1 (ja) 2018-06-07

Family

ID=62241409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031200 WO2018100815A1 (ja) 2016-12-02 2017-08-30 非水電解質電池用無機粒子及びこれを用いた非水電解質電池

Country Status (8)

Country Link
US (1) US11489233B2 (ja)
EP (1) EP3550634B1 (ja)
JP (1) JP6810756B2 (ja)
KR (1) KR102241566B1 (ja)
CN (1) CN110024175B (ja)
HU (1) HUE061620T2 (ja)
TW (1) TWI696495B (ja)
WO (1) WO2018100815A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020047456A (ja) * 2018-09-19 2020-03-26 積水化学工業株式会社 二次電池および電解液
JP2020140921A (ja) * 2019-03-01 2020-09-03 三菱自動車工業株式会社 リチウムイオン二次電池
JP7113995B1 (ja) 2022-06-01 2022-08-05 住友精化株式会社 リチウムイオン電池用電極及びリチウムイオン電池

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019104181A1 (en) * 2017-11-22 2019-05-31 President And Fellows Of Harvard College Solid state electrolytes and methods of production thereof
JP6992614B2 (ja) * 2018-03-12 2022-01-13 トヨタ自動車株式会社 正極、リチウムイオン二次電池、および正極の製造方法
CN109004158A (zh) * 2018-09-03 2018-12-14 河南克莱威纳米碳材料有限公司 一种高温抗腐蚀无纺布锂离子电池隔膜及其制备方法
JP7166115B2 (ja) * 2018-09-18 2022-11-07 株式会社東芝 二次電池、電池パック、車両及び定置用電源
CN110739488B (zh) * 2019-09-06 2023-03-28 江汉大学 一种超交联聚合物电解质的制备方法
CN111370161B (zh) * 2020-03-17 2021-10-08 无锡鑫宏业线缆科技股份有限公司 新能源汽车用充电电缆
CN111509307B (zh) * 2020-04-22 2023-08-15 中南大学 一种水系锌离子电池无机胶体电解质的制备方法及其应用
EP4367730A1 (en) 2021-07-07 2024-05-15 Specialty Operations France Inorganic additive to trap transition metal ions in sodium ion batteries
CN116314807B (zh) * 2023-03-20 2023-10-27 江苏一特新材料有限责任公司 一种锂离子电池负极浆料用悬浮剂及其制备方法和应用
CN116969432B (zh) * 2023-09-12 2024-05-17 北京化工大学 无机超离子导体材料及其制备方法和应用、无机固态电解质膜和锂电池

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001222987A (ja) * 2000-02-08 2001-08-17 Furukawa Battery Co Ltd:The 密閉型鉛蓄電池
JP2003197477A (ja) * 2001-12-27 2003-07-11 Nec Tokin Corp 蓄電素子およびその製造方法
JP2004185956A (ja) * 2002-12-03 2004-07-02 Matsushita Electric Ind Co Ltd ニッケル水素蓄電池
JP2011018588A (ja) 2009-07-10 2011-01-27 Hitachi Maxell Ltd 絶縁層形成用スラリー、リチウムイオン二次電池用セパレータおよびその製造方法、並びにリチウムイオン二次電池
WO2013015228A1 (ja) * 2011-07-22 2013-01-31 住友化学株式会社 積層多孔質フィルム及び非水電解液二次電池
WO2016056289A1 (ja) * 2014-10-10 2016-04-14 住友化学株式会社 積層体、積層体を含む非水電解液二次電池用セパレータ、および非水電解液二次電池
JP2016108210A (ja) * 2014-12-10 2016-06-20 三菱樹脂株式会社 アルミナスラリー及びその製造方法
JP5973675B1 (ja) 2014-10-10 2016-08-23 住友化学株式会社 積層体、積層体を含む非水電解液二次電池用セパレータ、および非水電解液二次電池
JP5976947B2 (ja) 2014-08-29 2016-08-24 住友化学株式会社 多孔質層、多孔質層を積層してなるセパレータ、および多孔質層またはセパレータを含む非水電解液二次電池

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000077103A (ja) 1998-08-31 2000-03-14 Hitachi Ltd リチウム二次電池および機器
JP5305663B2 (ja) 2006-02-01 2013-10-02 丸尾カルシウム株式会社 多孔質樹脂フィルム用微孔形成剤及び、これを配合してなる多孔質樹脂フィルム用組成物
JP5193998B2 (ja) 2007-03-15 2013-05-08 日立マクセル株式会社 電気化学素子用セパレータ、電気化学素子用電極および電気化学素子
KR101243931B1 (ko) 2010-06-14 2013-03-14 한양대학교 산학협력단 리튬 이차 전지용 세퍼레이터 및 이의 제조 방법
JP5551525B2 (ja) * 2010-06-22 2014-07-16 帝人株式会社 極細径不織布からなるセパレータ
WO2012040407A1 (en) * 2010-09-22 2012-03-29 Daramic Llc Batteries, separators, components, and compositions with heavy metal removal capability and related methods
JP5853639B2 (ja) 2011-11-25 2016-02-09 ソニー株式会社 リチウムイオン電池およびリチウムイオン電池用のセパレータ、並びに電池パック、電子機器、電動車両、蓄電装置および電力システム
US9570741B2 (en) * 2012-03-21 2017-02-14 Duracell U.S. Operations, Inc. Metal-doped nickel oxide active materials
JP5626602B2 (ja) 2012-06-29 2014-11-19 トヨタ自動車株式会社 非水電解質二次電池
HUE048838T2 (hu) 2012-11-30 2020-08-28 Lg Chemical Ltd Elkülönítõ szekunder telephez, amely tartalmazza különbözõ felületi jellemzõkkel bíró szervetlen részecskék kettõs porózus rétegét, az ezt tartalmazó szekunder telep, és eljárás az elkülönítõ elkészítéséhez
CN104956518B (zh) 2014-01-27 2016-09-28 住友化学株式会社 涂布液及层叠多孔膜
KR102207927B1 (ko) 2014-07-14 2021-01-26 삼성전자주식회사 전해질, 상기 전해질을 포함하는 리튬전지 및 리튬금속전지, 및 상기 전해질의 제조방법
KR20160063912A (ko) 2014-11-27 2016-06-07 삼성에스디아이 주식회사 양극 활물질, 이를 채용한 리튬 전지, 및 상기 양극 활물질의 제조방법

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001222987A (ja) * 2000-02-08 2001-08-17 Furukawa Battery Co Ltd:The 密閉型鉛蓄電池
JP2003197477A (ja) * 2001-12-27 2003-07-11 Nec Tokin Corp 蓄電素子およびその製造方法
JP2004185956A (ja) * 2002-12-03 2004-07-02 Matsushita Electric Ind Co Ltd ニッケル水素蓄電池
JP2011018588A (ja) 2009-07-10 2011-01-27 Hitachi Maxell Ltd 絶縁層形成用スラリー、リチウムイオン二次電池用セパレータおよびその製造方法、並びにリチウムイオン二次電池
WO2013015228A1 (ja) * 2011-07-22 2013-01-31 住友化学株式会社 積層多孔質フィルム及び非水電解液二次電池
JP5976947B2 (ja) 2014-08-29 2016-08-24 住友化学株式会社 多孔質層、多孔質層を積層してなるセパレータ、および多孔質層またはセパレータを含む非水電解液二次電池
WO2016056289A1 (ja) * 2014-10-10 2016-04-14 住友化学株式会社 積層体、積層体を含む非水電解液二次電池用セパレータ、および非水電解液二次電池
JP5973675B1 (ja) 2014-10-10 2016-08-23 住友化学株式会社 積層体、積層体を含む非水電解液二次電池用セパレータ、および非水電解液二次電池
JP5973674B1 (ja) 2014-10-10 2016-08-23 住友化学株式会社 積層体、積層体を含む非水電解液二次電池用セパレータ、および非水電解液二次電池
JP2016108210A (ja) * 2014-12-10 2016-06-20 三菱樹脂株式会社 アルミナスラリー及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3550634A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020047456A (ja) * 2018-09-19 2020-03-26 積水化学工業株式会社 二次電池および電解液
JP2020140921A (ja) * 2019-03-01 2020-09-03 三菱自動車工業株式会社 リチウムイオン二次電池
JP7113995B1 (ja) 2022-06-01 2022-08-05 住友精化株式会社 リチウムイオン電池用電極及びリチウムイオン電池
WO2023234017A1 (ja) * 2022-06-01 2023-12-07 住友精化株式会社 リチウムイオン電池用電極及びリチウムイオン電池
JP2023176985A (ja) * 2022-06-01 2023-12-13 住友精化株式会社 リチウムイオン電池用電極及びリチウムイオン電池

Also Published As

Publication number Publication date
US20190296305A1 (en) 2019-09-26
KR102241566B1 (ko) 2021-04-16
EP3550634A4 (en) 2020-07-15
HUE061620T2 (hu) 2023-07-28
KR20190070354A (ko) 2019-06-20
US11489233B2 (en) 2022-11-01
TWI696495B (zh) 2020-06-21
CN110024175B (zh) 2022-08-02
JPWO2018100815A1 (ja) 2019-06-27
CN110024175A (zh) 2019-07-16
EP3550634A1 (en) 2019-10-09
JP6810756B2 (ja) 2021-01-06
TW201822888A (zh) 2018-07-01
EP3550634B1 (en) 2023-01-04

Similar Documents

Publication Publication Date Title
WO2018100815A1 (ja) 非水電解質電池用無機粒子及びこれを用いた非水電解質電池
KR102233536B1 (ko) 비수 전해질 전지용 무기 입자
KR102233533B1 (ko) 비수 전해질 전지용 무기 입자 및 비수 전해질 전지
KR100733738B1 (ko) 전기화학 소자
WO2011162178A1 (ja) リチウムイオン二次電池
WO2011002057A1 (ja) 二次電池用正極及び二次電池
JP7100514B2 (ja) 無機有機複合膜、及び、電気化学素子用隔膜
JP2018200795A (ja) 非水電解質電池用無機粒子及び非水電解質電池
WO2020004205A1 (ja) 微細パタンを有するセパレータ、捲回体および非水電解質電池
JP2019046586A (ja) 非水電解質電池用添加剤及びこれを用いた非水電解質電池
JP7053192B2 (ja) 非水電解質電池用吸着層並びにこれを用いた非水電解質電池用セパレータ及び非水電解質電池
JP2019169336A (ja) 微細パタンを有する多孔質フィルム
KR102576176B1 (ko) 다공성 분리층 및 이를 포함하는 전기화학소자
JP6998155B2 (ja) 二次電池用無機粒子結着物並びにこれを用いた二次電池用セパレータ及び二次電池
JP6585843B2 (ja) 非水電解質二次電池
JP6585842B2 (ja) 非水電解質二次電池
KR20240045595A (ko) 리튬 이차전지용 양극 활물질의 제조방법 및 이에 의해 제조된 양극 활물질

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17875792

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018553662

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197015647

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017875792

Country of ref document: EP

Effective date: 20190702