JP2010135313A - 電気化学素子 - Google Patents

電気化学素子 Download PDF

Info

Publication number
JP2010135313A
JP2010135313A JP2009246226A JP2009246226A JP2010135313A JP 2010135313 A JP2010135313 A JP 2010135313A JP 2009246226 A JP2009246226 A JP 2009246226A JP 2009246226 A JP2009246226 A JP 2009246226A JP 2010135313 A JP2010135313 A JP 2010135313A
Authority
JP
Japan
Prior art keywords
porous layer
negative electrode
separator
filler
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009246226A
Other languages
English (en)
Inventor
Yo Yamashita
曜 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2009246226A priority Critical patent/JP2010135313A/ja
Publication of JP2010135313A publication Critical patent/JP2010135313A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】 低温での放電特性に優れ、かつ生産性が良好な電気化学素子を提供する。
【解決手段】 集電体の片面または両面に、アルゴンイオンレーザーラマンスペクトルにおける1580cm−1のピーク強度に対する1360cm−1のピーク強度比であるR値(I1360/I1580)が0.1〜0.5であり、002面の面間隔(d002)が0.338nm以下である黒鉛を含有する負極合剤層を有し、負極合剤層表面の算術平均粗さ(Ra)が0.7〜1.2μmの負極、および熱可塑性樹脂を主体とする微多孔膜からなる多孔質層(I)と、耐熱温度が150℃以上の板状フィラーが、その平板面で積層し、かつその積層数が5〜10の多孔質層(II)とを有するセパレータを備えており、セパレータの多孔質層(I)が負極の負極合剤層に対向している電気化学素子により、前記課題を解決する。
【選択図】 なし

Description

本発明は、低温での充電特性に優れ、生産性も良好な電気化学素子に関するものである。
リチウム二次電池などの電気化学素子は、エネルギー密度が高いという特徴から、携帯電話やノート型パーソナルコンピューターなどの携帯機器の電源として広く用いられている。例えば、リチウム二次電池では、携帯機器の高性能化に伴って高容量化が更に進む傾向にあり、安全性の確保が重要となっている。
現行のリチウム二次電池では、正極と負極の間に介在させるセパレータとして、例えば厚みが20〜30μm程度のポリオレフィン系の微多孔膜が使用されている。また、セパレータの素材としては、電池の熱暴走温度以下でセパレータの構成樹脂を溶融させて空孔を閉塞させ、これにより電池の内部抵抗を上昇させて短絡の際などに電池の安全性を向上させる所謂シャットダウン効果を確保するため、融点の低いポリエチレンが適用されることがある。
ところで、こうしたセパレータとしては、例えば、多孔化と強度向上のために一軸延伸あるいは二軸延伸したフィルムが用いられている。このようなセパレータは、単独で存在する膜として供給されるため、作業性などの点で一定の強度が要求され、これを前記延伸によって確保している。しかし、このような延伸フィルムでは結晶化度が増大しており、シャットダウン温度も、電池の熱暴走温度に近い温度にまで高まっているため、電池の安全性確保のためのマージンが十分とは言い難い。
また、前記延伸によってフィルムにはひずみが生じており、これが高温に曝されると、残留応力によって収縮が起こるという問題がある。収縮温度は、融点、すなわちシャットダウン温度と非常に近いところに存在する。このため、ポリオレフィン系の微多孔膜セパレータを使用するときには、充電異常時などに電池の温度がシャットダウン温度に達すると、電流を直ちに減少させて電池の温度上昇を防止しなければならない。空孔が十分に閉塞せず電流を直ちに減少できなかった場合には、電池の温度は容易にセパレータの収縮温度にまで上昇するため、内部短絡の危険性があるからである。
このようなセパレータの熱収縮による短絡を防止し、電池の信頼性を高める技術として、例えば、シャットダウン機能を確保するための樹脂を主体として含む第1セパレータ層と、耐熱温度が150℃以上のフィラーを主体として含む第2セパレータ層とを有する多孔質のセパレータを用いて電気化学素子を構成することが提案されている(特許文献1)。
特許文献1の技術によれば、異常過熱した際にも熱暴走が生じ難い安全性に優れたリチウム二次電池などの電気化学素子を提供することができる。
国際公開第2007/66768号公報
ところで、最近のリチウム二次電池などの電気化学素子では、様々な温度環境下で使用されることを考慮すると、電気化学素子の反応性が低下する低温でも、実用に支障のない充電特性を備えることが求められる。
こうした要求に応える方法として、例えば、表面が低結晶性炭素材によって被覆された黒鉛を活物質として含有する負極合剤層を、集電体の片面または両面に有する負極を用いて電気化学素子を構成することが考えられる。しかし、このような負極では、負極合剤層の表面が粗くなるため、ポリオレフィン系の微多孔膜セパレータを用いる場合のみならず、特許文献1に記載のような、微多孔膜の表面にフィラーを主体として含む耐熱層が形成されたセパレータを用いる場合であっても、その構成によっては、電池の信頼性(その指標である検査工程での生産性を含む)が低下する虞のあることが、本発明者らの検討により明らかとなった。
本発明は、前記事情に鑑みてなされたものであり、その目的は、低温での充電特性に優れ、かつ生産性が良好な電気化学素子を提供することにある。
前記目的を達成し得た本発明の電気化学素子は、正極、負極、非水電解液およびセパレータを有する電気化学素子であって、前記負極は、集電体の片面または両面に、アルゴンイオンレーザーラマンスペクトルにおける1580cm−1のピーク強度に対する1360cm−1のピーク強度比であるR値(I1360/I1580)が0.1〜0.5で、002面の面間隔d002が0.338nm以下である黒鉛を負極活物質として含有し、かつ全負極活物質中における前記黒鉛の割合が30質量%以上である負極合剤層を有しており、前記負極合剤層表面の算術平均粗さ(Ra)が0.7〜1.2μmであり、前記セパレータは、熱可塑性樹脂を主体とする微多孔膜からなる多孔質層(I)と、耐熱温度が150℃以上の板状フィラーを主体として含む多孔質層(II)とを有しており、前記多孔質層(II)では、前記板状フィラーが、その平板面で積層しており、かつ前記板状フィラーの積層数が5〜10であり、前記セパレータの多孔質層(I)が、前記負極の負極合剤層に対向していることを特徴とするものである。
なお、後記の多孔質基体を除き、本明細書でいう「耐熱温度が150℃以上」とは、少なくとも150℃において軟化などの変形が見られないことを意味している。
また、本明細書でいうセパレータに係る多孔質層(I)における「熱可塑性樹脂を主体とする」とは、多孔質層(I)内の固形分比率で、熱可塑性樹脂が50体積%以上であることを意味している。更に、本明細書でいうセパレータに係る多孔質層(II)における「耐熱温度が150℃以上の板状フィラーを主体として含む」とは、層内の固形分比率(ただし、後記の多孔質基体を有する場合においては、多孔質基体を除いた固形分比率)で、耐熱温度が150℃以上の板状フィラーが50体積%以上であることを意味している。
本発明によれば、低温(例えば0℃以下の低温)での充電特性に優れ、かつ生産性が良好な電気化学素子を提供することができる。
本発明の電気化学素子(リチウム二次電池)の一例を模式的に示す図で、(a)はその平面図、(b)はその部分縦断面図である。 図1に示す電気化学素子(リチウム二次電池)の斜視図である。
本発明の電気化学素子は、熱可塑性樹脂を主体とする微多孔膜からなる多孔質層(I)と、耐熱温度が150℃以上であり、かつ板状のフィラーを主体として含む多孔質の多孔質層(II)とを有するセパレータを使用する。
セパレータに係る多孔質層(I)は、主にシャットダウン機能を確保するためのものである。本発明の電気化学素子の温度が多孔質層(I)の主体となる成分である熱可塑性樹脂[以下、樹脂(A)と称する]の融点以上に達したときには、多孔質層(I)に係る樹脂(A)が溶融してセパレータの空孔を塞ぎ、電気化学反応の進行を抑制するシャットダウンを生じる。
また、セパレータに係る多孔質層(II)は、電気化学素子の内部温度が上昇した際にも正極と負極との直接の接触による短絡を防止する機能を備えたものであり、耐熱温度が150℃以上の板状フィラーによって、その機能を確保している。すなわち、電気化学素子が高温となった場合には、喩え多孔質層(I)が収縮しても、収縮し難い多孔質層(II)によって、セパレータが熱収縮した場合に発生し得る正負極の直接の接触による短絡を防止することができる。また、後述するように多孔質層(I)と多孔質層(II)が一体化した構成の場合には、この耐熱性の多孔質層(II)が、セパレータの骨格として作用し、多孔質層(I)の熱収縮、すなわちセパレータ全体の熱収縮を抑制する。
更に、セパレータに係る多孔質層(II)では、前記板状フィラーが、その平板面で積層しており、かつ前記板状フィラーの積層数が5以上10以下である。
前記の通り、本発明の電気化学素子では、集電体の片面または両面に、アルゴンイオンレーザーラマンスペクトルにおける1580cm−1のピーク強度に対する1360cm−1のピーク強度比であるR値が0.1以上0.5以下で、002面の面間隔d002が0.338nm以下である黒鉛を負極活物質として含有し、かつ全負極活物質中における前記黒鉛の割合が30質量%以上である負極合剤層を有する負極を使用するが、かかる負極においては、負極合剤層の表面が、算術平均粗さ(Ra)で0.7〜1.2μmと、比較的粗くなる。そのため、負極とポリエチレン樹脂微多孔膜セパレータとを重ね合わせた際に、負極表面(負極合剤層表面)の凹凸によりセパレータが押し付けられ、電極間距離が短くなって、極端な場合には充放電の繰り返しに伴って微小な短絡が発生することから、充放電サイクルにおける信頼性(以下、「充放電サイクル信頼性」という)が低下する。
しかしながら、本発明に係るセパレータであれば、多孔質層(II)が前記の構成を有していることで、その強度(例えば、後述する測定方法により測定される貫通強度)が大きくなり、喩え表面の粗い負極と組み合わせても、負極表面の凸部によるセパレータの貫通を防止して、負極表面が正極と接触することによる微小短絡の発生を抑えることができる。そのため、本発明の電気化学素子では、前記の負極活物質の使用によって低温での充電特性を高めつつ、前記負極活物質の使用によるオフ品(耐電圧検査で電極間距離が基準より短いと判断されるもの:充放電サイクル信頼性が低下するポテンシャルを持ったもの)の発生確率を下げ、生産性の低下を抑制することができる。
セパレータの多孔質層(I)に係る樹脂(A)は、電気絶縁性を有しており、電気化学的に安定で、更に後で詳述する電気化学素子の有する非水電解液(以下、「電解液」と省略する場合がある)や、セパレータ製造の際に使用する溶媒(詳しくは後述する)に安定な熱可塑性樹脂であれば特に制限は無いが、ポリエチレン(PE)、ポリプロピレン(PP)、エチレン−プロピレン共重合体などのポリオレフィン;ポリエチレンテレフタレートや共重合ポリエステルなどのポリエステル;などが好ましい。
なお、セパレータは、80℃以上150℃以下(より好ましくは100℃以上)において、その孔が閉塞する性質(すなわちシャットダウン機能)を有していることが好ましい。そのため、多孔質膜(I)は、融点、すなわち、JIS K 7121の規定に準じて、示差走査熱量計(DSC)を用いて測定される融解温度が、80℃以上150℃(更に好ましくは100℃以上)の熱可塑性樹脂を、その構成成分とするものがより好ましく、PEを主成分とする単層の微多孔膜であるか、PEとPPとを2〜5層積層した積層微多孔膜などであることが好ましい。
PEのように融点が80℃以上150℃以下の熱可塑性樹脂と、PPなどのように、融点が150℃を超える熱可塑性樹脂とを併用して多孔質層(I)を構成する場合、例えば、PEと、PPなどのPEよりも高融点の樹脂とを混合して構成された微多孔膜を多孔質層(I)としたり、PE層と、PP層などのPEよりも高融点の樹脂で構成された層とを積層して構成された積層微多孔膜を多孔質層(I)としたりする場合には、多孔質層(I)を構成する樹脂(A)中、融点が80℃以上150℃以下の樹脂(例えばPE)が、30質量%以上であることが好ましく、50質量%以上であることがより好ましい。
前記のような微多孔膜としては、例えば、従来公知のリチウム二次電池などで使用されている前記例示の熱可塑性樹脂で構成された微多孔膜、すなわち、溶剤抽出法、乾式または湿式延伸法などにより作製されたイオン透過性の微多孔膜を用いることができる。
また、多孔質層(I)には、セパレータにシャットダウン機能を付与する作用を損なわ
ない範囲で、その強度などを向上するためにフィラーなどを含有させることもできる。多孔質層(I)に使用可能なフィラーとしては、例えば、後述する多孔質層(II)に使用可能なフィラー(耐熱温度が150℃以上の板状フィラー、およびその他の形状のフィラー)と同じものが挙げられる。
フィラーの粒径は、平均粒径で、例えば、好ましくは0.01μm以上、より好ましくは0.1μm以上であって、好ましくは10μm以下、より好ましくは1μm以下である。なお、本明細書でいう平均粒径は、例えば、レーザー散乱粒度分布計(例えば、HORIBA社製「LA−920」)を用い、フィラーを溶解しない媒体に、これら微粒子を分散させて測定した数平均粒子径として規定することができる[後述する多孔質層(II)に係るフィラーについても同じである。]。
前記のような構成の多孔質層(I)を備えることで、セパレータにシャットダウン機能を付与することが容易となり、電気化学素子の内部温度上昇時における安全性確保を容易に達成することが可能となる。
多孔質層(I)における樹脂(A)の含有量は、シャットダウンの効果をより得やすくするために、例えば、下記のようであることが好ましい。多孔質層(I)の全構成成分中において主体となる樹脂(A)の体積は、50体積%以上であり、70体積%以上であることがより好ましく、100体積%であってもよい。更に、後記の方法により求められる多孔質層(II)の空孔率が20〜60%であり、かつ樹脂(A)の体積が、多孔質層(II)の空孔体積の50%以上であることが好ましい。
多孔質層(II)に係るフィラーは、耐熱温度が150℃以上で、電気化学素子の有する電解液に対して安定であり、更に電気化学素子の作動電圧範囲において酸化還元されにくい電気化学的に安定なものであれば、有機粒子でも無機粒子でもよいが、分散などの点から微粒子であることが好ましく、安定性(特に耐酸化性)などの点から無機微粒子がより好ましく用いられる。
前記フィラーは板状である。多孔質層(II)が板状フィラーを含有することで、負極合剤層の表面が粗い負極と組み合わせても、電気化学素子の生産性の低下を抑制できる他、多孔質層(II)が多孔質層(I)と一体化した場合においても、板状フィラー同士の衝突によって多孔質膜(I)が収縮する力を抑制することが可能となる。また、板状フィラーを用いることでセパレータにおける正極負極間の経路、すなわち所謂曲路率が大きくなる。そのため、デンドライトが生成した場合でも、該デンドライトが負極から正極に到達し難くなり、デンドライトショートに対する信頼性を高めることができる。
前記の板状フィラーとしては、各種市販品が挙げられ、例えば、旭硝子エスアイテック社製「サンラブリー(商品名)」(SiO)、石原産業社製「NST−B1(商品名)」の粉砕品(TiO)、堺化学工業社製の板状硫酸バリウム「Hシリーズ(商品名)」、「HLシリーズ(商品名)」、林化成社製「ミクロンホワイト(商品名)」(タルク)、林化成社製「ベンゲル(商品名)」(ベントナイト)、河合石灰社製「BMM(商品名)」や「BMT(商品名)」(ベーマイト)、河合石灰社製「セラシュールBMT−B(商品名)」[アルミナ(Al)]、キンセイマテック社製「セラフ(商品名)」(アルミナ)、斐川鉱業社製「斐川マイカ Z−20(商品名)」(セリサイト)などが入手可能である。この他、SiO、Al、ZrO、CeOについては、特開2003−206475号公報に開示の方法により作製することができる。これらの中でも、ベーマイト、アルミナ、シリカ(SiO)が好ましい。
板状の前記フィラーの形態としては、アスペクト比(板状フィラー中の最大長さと板状フィラーの厚みとの比)が、好ましくは5以上、より好ましくは10以上であって、好ましくは100以下、より好ましくは50以下である。板状フィラーにおけるアスペクト比は、例えば、走査型電子顕微鏡(SEM)により撮影した画像を画像解析することにより求めることができる。
また、板状の前記フィラーは、板厚が薄いと衝撃によって割れやすいという問題があることから、その平均厚みが、0.02μm以上であることが好ましく、0.05μm以上であることがより好ましい。ただし、板状の前記フィラーの厚みが大きすぎると、セパレータの厚みが厚くなって、放電容量が低下したり、電気化学素子の作製時に多孔質層(II)が割れやすくなることから、その平均厚みは、0.7μm以下であることが好ましく、0.5μm以下であることがより好ましい。
板状の前記フィラーの平均厚みは、セパレータの断面をSEMにより観察し、フィラー100個の厚みの平均値(数平均値)として求めることができる。
多孔質層(II)は、前記の板状フィラーと共に、板状以外の形状のフィラー(例えば、球状や略球状などのフィラー)を含有していてもよい。板状以外の形状のフィラーも、板状フィラーと同様に耐熱温度が150℃以上であることが好ましく、例えば、このような耐熱温度を有する無機粒子または有機粒子が挙げられる。
無機粒子の構成材料の具体例としては、例えば、酸化鉄、Al(アルミナ)、SiO(シリカ)、TiO、BaTiO、ZrOなどの無機酸化物;窒化アルミニウム、窒化ケイ素などの無機窒化物;フッ化カルシウム、フッ化バリウム、硫酸バリウムなどの難溶性のイオン結晶;シリコン、ダイヤモンドなどの共有結合性結晶;モンモリロナイトなどの粘土;などが挙げられる。ここで、前記無機酸化物は、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、マイカなどの鉱物資源由来物質またはこれらの人造物などであってもよい。また、金属、SnO、スズ−インジウム酸化物(ITO)などの導電性酸化物、カーボンブラック、グラファイトなどの炭素質材料などで例示される導電性材料の表面を、電気絶縁性を有する材料(例えば、前記の無機酸化物など)で被覆することにより電気絶縁性を持たせた粒子であってもよい。無機粒子としては、多孔質層(II)が正極に面するように電気化学素子を構成した場合に、その高温での貯蔵性や充放電サイクル特性を高め得る(詳しくは後述する)ことから、前記の無機酸化物の粒子(微粒子)が好ましく、中でも、アルミナ、シリカおよびベーマイトが特に好ましく用いられる。
また、有機粒子(有機粉末)としては、架橋ポリメタクリル酸メチル、架橋ポリスチレン、架橋ポリジビニルベンゼン、スチレン−ジビニルベンゼン共重合体架橋物、ポリイミド、メラミン樹脂、フェノール樹脂、ベンゾグアナミン−ホルムアルデヒド縮合物などの各種架橋高分子粒子や、ポリスルフォン、ポリアクリロニトリル、ポリアラミド、ポリアセタール、熱可塑性ポリイミドなどの耐熱性高分子粒子などが例示できる。また、これらの有機粒子を構成する有機樹脂(高分子)は、前記例示の材料の混合物、変性体、誘導体、共重合体(ランダム共重合体、交互共重合体、ブロック共重合体、グラフト共重合体)、架橋体(前記の耐熱性高分子の場合)であってもよい。
また、多孔質層(II)は、前記の板状フィラーと共に、一次粒子が凝集した二次粒子構造を有する微粒子を含有していてもよい。前記二次粒子構造のフィラーも、前記の板状前記フィラーと同様の熱収縮抑制作用や、デンドライトショートの抑制作用を有している。前記二次粒子構造のフィラーの例としては、大明化学社製「ベーマイト C06(商品名)」、「ベーマイト C20(商品名)」(ベーマイト)、米庄石灰工業社製「ED−1(商品名)」(CaCO)、J.M.Huber社製「Zeolex 94HP(商品名)」(クレイ)などが挙げられる。
なお、多孔質層(II)が、前記の板状フィラーと共に、板状以外の形状のフィラーも含有する場合には、前記の板状フィラーの使用による前記の効果をより良好に確保する観点から、多孔質層(II)が含有するフィラーの全量中、前記の板状フィラーが、80体積%以上であることが好ましく、90体積%以上であることがより好ましい。
多孔質層(II)に係る耐熱温度が150℃以上のフィラーの平均粒径(板状フィラーおよびその他の形状のフィラーの平均粒径。以下同じ。)は、小さすぎるとイオンの透過性が低下することから、好ましくは0.5μm以上、より好ましくは2μm以上である。また、大きすぎると電気特性が劣化しやすくなることから、耐熱温度が150℃以上のフィラーの平均粒径は、好ましくは15μm以下、より好ましくは8μm以下である。
多孔質層(II)における耐熱温度が150℃以上のフィラーの量[板状フィラーと共に板状以外の形状のフィラーを用いている場合には、それらの合計量。多孔質層(II)における耐熱温度が150℃以上のフィラーの量について、以下同じ。]は、多孔質層(II)の構成成分の全体積中[ただし、後記の多孔質基体を使用する場合には、多孔質基体を除く構成成分の全体積中。多孔質層(II)の各構成成分の含有量について、以下同じ。]、50体積%以上であり、70体積%以上であることが好ましく、80体積%以上であることがより好ましく、90体積%以上であることが更に好ましい。多孔質層(II)中のフィラーを前記のように高含有量とすることで、電気化学素子が高温となった際の正極と負極との直接の接触による短絡の発生をより良好に抑制することができ、また、特に多孔質層(I)と多孔質層(II)とを一体化した構成のセパレータの場合には、セパレータ全体の熱収縮を良好に抑制することができる。なお、前記の板状フィラーは、多孔質層(II)の主体をなすものであり、前記の通り、多孔質層(II)の構成成分の全体積中、50体積%以上である必要がある。
また、多孔質層(II)には、耐熱温度が150℃以上のフィラー同士を結着したり、必要に応じて多孔質層(I)と多孔質層(II)とを結着したりするために有機バインダを含有させることが好ましく、このような観点から、多孔質層(II)における耐熱温度が150℃以上のフィラー量の好適上限値は、例えば、多孔質層(II)の構成成分の全体積中、99.5体積%である。なお、多孔質層(II)における耐熱温度が150℃以上のフィラーの量を70体積%未満とすると、例えば、多孔質層(II)中の有機バインダ量を多くする必要が生じるが、その場合には多孔質層(II)の空孔が有機バインダによって埋められやすく、セパレータとしての機能が低下する虞があり、また、開孔剤などを用いて多孔質化した場合には、前記フィラー同士の間隔が大きくなりすぎて、熱収縮を抑制する効果が低下する虞がある。
前記の板状フィラーは、多孔質層(II)中において、それらの板状面で積層(平板を形成する広い面で厚み方向に積層されていれば、上下のフィラーの水平位置が互いにずれていてもよい)しており、かつ、板状フィラーの積層数が5以上である。セパレータに係る多孔質層(II)において、前記の板状フィラーがこのように存在していることで、セパレータの強度(例えば、後述する測定方法により測定される貫通強度)を高めることができる。ただし、前記の板状フィラーの多孔質層(II)中における積層数が多すぎると、多孔質層(II)の厚み、ひいてはセパレータの厚みの増大を引き起こし、電気化学素子のエネルギー密度低下が生じたり、電気化学素子のインピーダンスが上昇して、例えば低温での充電特性が低下する虞がある。そのため、多孔質層(II)における前記の板状フィラーの積層数は、10以下とする。
多孔質層(II)中における前記の板状フィラーの積層数は、クロスセクションポリッシャー法によって、セパレータを減圧雰囲気下で、アルゴンイオンレーザービームにより切断し、断面をSEMで観察することにより積層枚数を計測することにより求められる。計測を行う場所は任意であるが、本発明に係るセパレータでは、多孔質層(II)のいずれの場所においても積層枚数が5枚以上10枚以下となるように板状フィラーを分散させる。
また、前記の板状フィラーの多孔質層(II)中での板状粒子の存在形態は、平板面がセパレータの面に対して略平行であることが好ましく、より具体的には、セパレータの表面近傍における前記の板状フィラーについて、その平板面とセパレータ面との平均角度が30°以下であることが好ましい[最も好ましくは、当該平均角度が0°、すなわち、セパレータの表面近傍における板状の平板面が、セパレータの面に対して平行である]。ここでいう「表面近傍」とは、セパレータの表面から全体厚みに対しておよそ10%の範囲を指す。板状フィラーの存在形態が前記のような状態となるように板状フィラーの配向性を高めることで、前記の多孔質層(II)の熱収縮抑制作用をより強く発揮させることが可能になり、また、電極表面に析出するリチウムデンドライトや電極表面の活物質の突起により生じ得る内部短絡をより効果的に防ぐことができる。なお、多孔質層(II)中における前記の板状フィラーの存在形態は、セパレータの断面をSEMにより観察することにより把握することができる。
多孔質層(II)には、セパレータの形状安定性の確保や、多孔質層(II)と多孔質層(I)との一体化などのために、有機バインダを含有させることが好ましい。有機バインダとしては、エチレン−酢酸ビニル共重合体(EVA、酢酸ビニル由来の構造単位が20〜35モル%のもの)、エチレン−エチルアクリレート共重合体などのエチレン−アクリル酸共重合体、フッ素系ゴム、スチレンブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)、ヒドロキシエチルセルロース(HEC)、ポリビニルアルコール(PVA)、ポリビニルブチラール(PVB)、ポリビニルピロリドン(PVP)、架橋アクリル樹脂、ポリウレタン、エポキシ樹脂などが挙げられるが、特に、150℃以上の耐熱温度を有する耐熱性のバインダが好ましく用いられる。有機バインダは、前記例示のものを1種単独で用いてもよく、2種以上を併用してもよい。
前記例示の有機バインダの中でも、EVA、エチレン−アクリル酸共重合体、フッ素系ゴム、SBRなどの柔軟性の高いバインダが好ましい。このような柔軟性の高い有機バインダの具体例としては、三井デュポンポリケミカル社の「エバフレックスシリーズ(EVA)」、日本ユニカー社のEVA、三井デュポンポリケミカル社の「エバフレックス−EEAシリーズ(エチレン−アクリル酸共重合体)」、日本ユニカー社のEEA、ダイキン工業社の「ダイエルラテックスシリーズ(フッ素ゴム)」、JSR社の「TRD−2001(SBR)」、日本ゼオン社の「EM−400B(SBR)」などがある。
なお、前記の有機バインダを多孔質層(II)に使用する場合には、後述する多孔質層(II)形成用の組成物の溶媒に溶解させるか、または分散させたエマルジョンの形態で用いればよい。
また、セパレータの形状安定性や柔軟性を確保するために、多孔質層(II)において、繊維状物などを前記フィラーと混在させてもよい。繊維状物としては、耐熱温度が150℃以上であって、電気絶縁性を有しており、電気化学的に安定で、更に下記に詳述する電解液や、セパレータ製造の際に使用する溶媒に安定であれば、特に材質に制限はない。なお、本明細書でいう「繊維状物」とは、アスペクト比[長尺方向の長さ/長尺方向に直交する方向の幅(直径)]が4以上のものを意味しており、アスペクト比は10以上であることが好ましい。
繊維状物の具体的な構成材料としては、例えば、セルロースおよびその変成体[カルボキシメチルセルロース(CMC)、ヒドロキシプロピルセルロース(HPC)など]、ポリオレフィン[ポリプロピレン(PP)、プロピレンの共重合体など]、ポリエステル[ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンテレフタレート(PBT)など]、ポリアクリロニトリル(PAN)、ポリアラミド、ポリアミドイミド、ポリイミドなどの樹脂;ガラス、アルミナ、ジルコニア、シリカなどの無機酸化物;などを挙げることができ、これらの構成材料を2種以上併用して繊維状物を構成してもよい。また、繊維状物は、必要に応じて、公知の各種添加剤(例えば、樹脂である場合には酸化防止剤など)を含有していても構わない。
また、本発明に係るセパレータは、特に多孔質層(I)と多孔質層(II)を一体化せずに多孔質層(II)を独立膜として用いた場合において、その取り扱い性を高めるなどために、多孔質層(II)に多孔質基体を用いることができる。多孔質基体は、前記の繊維状物が織布、不織布(紙を含む)などのシート状物を形成してなる耐熱温度が150℃以上のものであり、市販の不織布などを基体として用いることができる。この態様のセパレータでは、多孔質基体の空隙内に耐熱温度が150℃以上の前記フィラーを含有させることが好ましいが、多孔質基体と前記フィラーとを結着させるために、前記の有機バインダを用いることもできる。
なお、多孔質基体の「耐熱性」は、軟化などによる実質的な寸法変化が生じないことを意味し、対象物の長さの変化、すなわち、多孔質基体においては、室温での長さに対する収縮の割合(収縮率)が5%以下を維持することのできる上限温度(耐熱温度)が、セパレータのシャットダウン温度よりも十分に高いか否かで耐熱性を評価する。シャットダウン後の電気化学素子の安全性を高めるために、多孔質基体は、シャットダウン温度よりも20℃以上高い耐熱温度を有することが望ましく、より具体的には、多孔質基体の耐熱温度は、150℃以上であることが好ましく、180℃以上であることがより好ましい。
多孔質基体を用いて多孔質層(II)を構成する場合には、耐熱温度が150℃以上のフィラーの全部または一部が、多孔質基体の空隙内に存在する形態とすることが好ましい。このような形態とすることで、前記フィラーの作用をより有効に発揮させることができる。
繊維状物(多孔質基体を構成する繊維状物、その他の繊維状物を含む)の直径は、多孔質層(II)の厚み以下であればよいが、例えば、0.01〜5μmであることが好ましい。繊維状物の径が大きすぎると、繊維状物同士の絡み合いが不足するため、例えばシート状物を形成して多孔質基体を構成する場合に、その強度が小さくなって取り扱いが困難となることがある。また、繊維状物の径が小さすぎると、セパレータの空孔が小さくなりすぎてイオン透過性が低下する傾向にあり、電気化学素子の負荷特性を低下させてしまうことがある。
多孔質層(II)に繊維状物を使用する場合(多孔質基体として繊維状物を使用する場合を含む)には、その含有量は、例えば、多孔質層(II)の全構成成分中、好ましくは10体積%以上、より好ましくは20体積%以上であって、好ましくは90体積%以下、より好ましくは80体積%以下である。多孔質層(II)中での繊維状物の存在状態は、例えば、長軸(長尺方向の軸)の、セパレータ面に対する角度が平均で30°以下であることが好ましく、20°以下であることがより好ましい。
本発明に係るセパレータにおいては、多孔質層(II)の厚み[セパレータが多孔質層(II)を複数有する場合は、その総厚み]は、多孔質層(II)による前記の各作用をより有効に発揮させる観点から、1μm以上であることが好ましく、2μm以上であることが好ましい。ただし、多孔質層(II)が厚すぎると、電気化学素子のエネルギー密度の低下や生じたり、電気化学素子のインピーダンスが上昇して、例えば低温での充電特性が低下する虞があることから、多孔質層(II)の厚みは、8μm以下であることが好ましく、6m以下であることがより好ましい。
また、多孔質層(I)の厚み[セパレータが多孔質層(I)を複数有する場合は、その総厚み。以下同じ。]は、多孔質層(I)の使用による前記作用(特にシャットダウン作用)をより有効に発揮させる観点から、6μm以上であることが好ましく、10μm以上であることがより好ましい。ただし、多孔質層(I)が厚すぎると、電気化学素子のエネルギー密度の低下を引き起こす虞があることに加えて、多孔質層(I)が熱収縮しようとする力が大きくなり、例えば、多孔質層(I)と多孔質層(II)が一体化した構成では、セパレータ全体の熱収縮を抑える作用が小さくなる虞がある。そのため、多孔質層(I)の厚みは、25μm以下であることが好ましく、20μm以下であることがより好ましく、14μm以下であることが更に好ましい。
また、セパレータを構成する多孔質層(I)の厚みをA(μm)、多孔質層(II)の厚
みをB(μm)としたとき、AとBとの比率A/Bは、10以下であることが好ましく、5以下であることがより好ましく、また、1以上であることが好ましく、2以上であることがより好ましい。本発明に係るセパレータでは、多孔質層(I)の厚み比率を大きくし多孔質層(II)を薄くしても、良好なシャットダウン機能を確保しつつ、セパレータの熱収縮による短絡の発生を高度に抑制することができる。なお、セパレータにおいて、多孔質層(I)が複数存在する場合には、厚みAはその総厚みであり、多孔質層(II)が複数存在する場合には、厚みBはその総厚みである。
セパレータ全体の空孔率としては、電解液の保液量を確保してイオン透過性を良好にするために、乾燥した状態で、30%以上であることが好ましい。一方、セパレータ強度の確保と内部短絡の防止の観点から、セパレータの空孔率は、乾燥した状態で、70%以下であることが好ましい。なお、セパレータの空孔率:P(%)は、セパレータの厚み、面積あたりの質量、構成成分の密度から、下記(1)式を用いて各成分iについての総和を求めることにより計算できる。
P = 100−(Σa/ρ)×(m/t) (1)ここで、前記式中、a:質量%で表した成分iの比率、ρ:成分iの密度(g/cm)、m:セパレータの単位面積あたりの質量(g/cm)、t:セパレータの厚み(cm)である。
また、前記(1)式において、mを多孔質層(I)の単位面積あたりの質量(g/cm
)とし、tを多孔質層(I)の厚み(cm)とすることで、前記(1)式を用いて多孔
質層(I)の空孔率:P(%)を求めることもできる。この方法により求められる多孔質
層(I)の空孔率は、30〜70%であることが好ましい。
更に、前記(1)式において、mを多孔質層(II)の単位面積あたりの質量(g/cm)とし、tを多孔質層(II)の厚み(cm)とすることで、前記(1)式を用いて多孔質層(II)の空孔率:P(%)を求めることもできる。この方法により求められる多孔質層(II)の空孔率は、20〜60%であることが好ましい。
また、本発明に係るセパレータは、JIS P 8117に準拠した方法で測定され、0.879g/mmの圧力下で100mlの空気が膜を透過する秒数で示されるガーレー値が、10〜300secであることが望ましい。透気度が大きすぎると、イオン透過性が小さくなり、他方、小さすぎると、セパレータの強度が小さくなることがある。前記の構成を採用することにより、前記の透気度を有するセパレータとすることができる。
更に、本発明に係るセパレータは、下記の方法により求められる貫通強度が、3.0N以上であることが好ましい。このような貫通強度を有するセパレータであれば、前記のように表面の粗い負極と組み合わせて電気化学素子を構成しても、その生産性の低下を抑えることができる。なお、前記の構成を採用することにより、前記の貫通強度を有するセパレータとすることができる。
セパレータの前記貫通強度は、以下の方法により求める。直径2インチの穴があいた板上にセパレータを、しわやたわみのないように固定し、先端の直径が1.0mmの半円球状の金属ピンを、120mm/minの速度でセパレータに降下させて、セパレータに穴があく時の力を5回測定する。そして、前記5回の測定値のうち最大値と最小値とを除く3回の測定について平均値を求め、これをセパレータの貫通強度とする。
セパレータの平均孔径は、好ましくは0.01μm以上、より好ましくは0.05μm以上であって、好ましくは1μm以下、より好ましくは0.5μm以下である。また、多孔質層(I)の平均孔径は、0.01〜0.5μmであることが好ましく、多孔質層(II)の平均孔径は、0.05〜1μmであることが好ましい。
前記の構成を有するセパレータを有する電気化学素子(本発明の電気化学素子)のシャットダウン特性は、例えば、電気化学素子の内部抵抗の温度変化により求めることができる。具体的には、電気化学素子を恒温槽中に設置し、温度を室温から毎分1℃の割合で上昇させ、電気化学素子の内部抵抗が上昇する温度を求めることで測定することが可能である。この場合、150℃における電気化学素子の内部抵抗は、室温の5倍以上であることが好ましく、10倍以上であることがより好ましく、前記構成のセパレータを使用することで、このような特性を確保することができる。
また、本発明に係るセパレータは、150℃での熱収縮率を5%以下とすることが好ましい。このような特性のセパレータであれば、電気化学素子内部が150℃程度になっても、セパレータの収縮が殆ど生じないため、正負極の接触による短絡をより確実に防止することができ、高温での電気化学素子の安全性をより高めることができる。前記の構成を採用することで、前記のような熱収縮率を有するセパレータとすることができる。
ここでいう熱収縮率は、多孔質層(I)と多孔質層(II)が一体化している場合は、その一体化したセパレータ全体の収縮率を指し、多孔質層(I)と多孔質層(II)が独立している場合には、それぞれの収縮率の小さい方の値を指す。また、後述するように、多孔質層(I)および/または多孔質層(II)は、電極と一体化する構成とすることもできるが、その場合は、電極と一体化した状態で測定した熱収縮率を指す。
なお、前記の「150℃の熱収縮率」とは、セパレータまたは多孔質層(I)および多孔質層(II)(電極と一体化した場合には電極と一体化した状態で)を恒温槽に入れ、温度を150℃まで上昇させて3時間放置した後に取り出して、恒温槽に入れる前のセパレータまたは多孔質層(I)および多孔質層(II)の寸法と比較することで求められる寸法の減少割合を百分率で表したものである。
本発明に係るセパレータの製造方法としては、例えば、下記の(a)または(b)の方法を採用できる。製造方法(a)は、多孔質基体に、耐熱温度が150℃以上のフィラー(板状フィラーおよび必要に応じて使用されるその他の形状のフィラー。セパレータの製造方法について、以下同じ。)を含有する多孔質層(II)形成用組成物(スラリーなどの液状組成物など)を塗布した後、所定の温度で乾燥して多孔質層(II)を形成し、これを、前記の方法で作製された多孔質層(I)を構成するための微多孔膜と重ね合わせて、1つのセパレータとする方法である。この場合、多孔質層(I)と多孔質層(II)とは一体化されていてもよいし、それぞれ独立した膜であって、電気化学素子の組み立てにより、電気化学素子内で重ね合わされた状態で一体のセパレータとして機能するものであってもよい。
多孔質層(I)と多孔質層(II)を一体化するには、例えば、多孔質層(I)と多孔質層(II)とを重ね合わせ、ロールプレスなどにより両者を貼り合わせる方法などが採用できる。
前記の場合の多孔質基体としては、具体的には、前記例示の各材料を構成成分に含む繊維状物の少なくとも1種で構成される織布や、これら繊維状物同士が絡み合った構造を有する不織布などの多孔質シートなどが挙げられる。より具体的には、紙、PP不織布、ポリエステル不織布(PET不織布、PEN不織布、PBT不織布など)、PAN不織布などの不織布が例示できる。
多孔質層(II)形成用組成物は、耐熱温度が150℃以上のフィラーの他、必要に応じて有機バインダなどを含有し、これらを溶媒(分散媒を含む。以下同じ。)に分散させたものである。なお、有機バインダについては溶媒に溶解させることもできる。多孔質層(II)形成用組成物に用いられる溶媒は、前記フィラーなどを均一に分散でき、また、有機バインダを均一に溶解または分散できるものであればよいが、例えば、トルエンなどの芳香族炭化水素、テトラヒドロフランなどのフラン類、メチルエチルケトン、メチルイソブチルケトンなどのケトン類など、一般的な有機溶媒が好適に用いられる。なお、これらの溶媒に、界面張力を制御する目的で、アルコール(エチレングリコール、プロピレングリコールなど)、または、モノメチルアセテートなどの各種プロピレンオキサイド系グリコールエーテルなどを適宜添加してもよい。また、有機バインダが水溶性である場合、エマルジョンとして使用する場合などでは、水を溶媒としてもよく、この際にもアルコール類(メチルアルコール、エチルアルコール、イソプロピルアルコール、エチレングリコールなど)を適宜加えて界面張力を制御することもできる。
多孔質層(II)形成用組成物は、耐熱温度が150℃以上のフィラー、および有機バインダを含む固形分含量を、例えば10〜80質量%とすることが好ましい。
前記多孔質基体の空孔の開口径が比較的大きい場合、例えば、5μm以上の場合には、これが電気化学素子の短絡の要因となりやすい。よって、この場合には、前記の通り、耐熱温度が150℃以上のフィラーなどの全部または一部が、多孔質基体の空隙内に存在する構造とすることが好ましい。多孔質基体の空隙内に前記フィラーなどを存在させるには、例えば、これらを含有する多孔質層(II)形成用組成物を多孔質基体に塗布した後に一定のギャップを通し、余分の組成物を除去した後、乾燥するなどの工程を用いればよい。
また、多孔質層(II)において、前記のように、前記の板状フィラーの配向性を高めるには、多孔質層(II)形成用組成物を多孔質基体に塗布し含浸させた後、前記組成物にシェアや磁場をかけるといった方法を用いればよい。例えば、前記のように、多孔質層(II)形成用組成物を多孔質基体に塗布した後、一定のギャップを通すことで、前記組成物にシェアをかけることができる。
また、前記フィラーや多孔質層(II)を構成するその他の成分の持つ作用をより有効に発揮させるために、これらの成分を偏在させて、セパレータの面と平行または略平行に、前記成分が層状に集まった形態としてもよい。
セパレータの製造方法(b)は、多孔質層(II)形成用組成物に、更に必要に応じて繊維状物を含有させ、これをフィルムや金属箔などの基板上に塗布し、所定の温度で乾燥した後に、必要に応じて前記基板から剥離する方法である。これにより多孔質層(II)となる多孔質膜を形成することができる。
製造方法(b)でも、製造方法(a)と同様に、樹脂(A)を主体とする微多孔膜からなる多孔質層(I)と、フィラーを主体として含む多孔質層(II)とは、それぞれ独立した構成としてもよいし、一体化した構成としてもよい。多孔質層(I)と多孔質層(II)を一体化するには、個別に形成した多孔質層(II)と多孔質層(I)とをロールプレスなどにより貼り合わせる方法の他、前記の基板を使用する代わりに、多孔質層(I)の表面に多孔質層(II)形成用組成物を塗布し、乾燥して、多孔質層(I)の表面に直接多孔質層(II)を形成する方法を採用することもできる。
また、製造方法(b)によって、電気化学素子を構成する電極の表面に多孔質層(II)を形成して、セパレータと電極とが一体化した構造としてもよい。
(a)、(b)いずれの製造方法を採用する場合においても、多孔質層(I)を正極および負極の少なくとも一方の電極と一体化してもよい。多孔質層(I)を電極と一体化するには、例えば、多孔質層(I)となる微多孔膜と電極とを重ねてロールプレスする方法などが採用できる。更に、製造方法(b)により、正極の表面に多孔質層(II)を形成し、負極の表面に多孔質層(I)となる微多孔膜を貼り付けて一体化してもよいし、製造方法(a)または(b)により製造した多孔質層(I)と多孔質層(II)とを一体化したセパレータを、正極および負極のいずれか一方の表面に貼り付けて、一体化してもよい。多孔質層(I)と多孔質層(II)とが一体化したセパレータを電極の表面に貼り付けて一体化するには、例えば、セパレータと電極とを重ねてロールプレスする方法などが採用できる。
なお、多孔質層(I)と多孔質層(II)とは、それぞれ1層ずつである必要はなく、複数の層がセパレータ中にあってもよい。例えば、多孔質層(II)の両面に多孔質層(I)を配置した構成としたり、多孔質層(I)の両面に多孔質層(II)を配置した構成としてもよい。ただし、層数を増やすことで、セパレータの厚みを増やして電気化学素子の内部抵抗の増加やエネルギー密度の低下を招く虞があるので、層数を多くしすぎるのは好ましくなく、セパレータ中の多孔質層(I)と多孔質層(II)との合計層数は5層以下であることが好ましい。
また、前記の通り、多孔質層(I)と多孔質層(II)とは、一体化して独立膜としてセパレータを構成する以外に、それぞれ独立した構成要素とし、電気化学素子が組み立てられた段階で、電気化学素子内で重ね合わされた状態となり、正極と負極の間に介在するセパレータとして機能するようにすることもできる。更に、多孔質層(I)と多孔質層(II)とは接している必要はなく、それらの間に別の層、例えば、多孔質基体を構成する繊維状物の層などが介在していてもよい。
本発明の電気化学素子は、特に限定されるものではなく、非水電解液を用いるリチウム二次電池の他、リチウム一次電池やスーパーキャパシタなどが含まれ、特に高温での安全性が要求される用途であれば好ましく適用できる。
なお、本発明の電気化学素子では、集電体の片面または両面に負極活物質などを含む負極合剤層を有する負極を使用する。そして、負極活物質には、アルゴンイオンレーザーラマンスペクトルにおける1580cm−1のピーク強度に対する1360cm−1のピーク強度比であるR値(I1360/I1580)が0.1以上0.5以下であり、002面の面間隔d002が0.338nm以下である黒鉛を、負極活物質全量中に30質量%以上(好ましくは70質量%以上、更に好ましくは80質量%以上)の割合で使用する。このような負極活物質を使用することで、電気化学素子の低温(0℃以下)での充電特性を高めることができる。
前記黒鉛としては、例えば、表面が低結晶性の炭素材で被覆された黒鉛を用いることができる。そのような黒鉛材料は、d002が0.338nm以下である天然黒鉛または人造黒鉛を球状に賦形した黒鉛を母材とし、その表面を有機化合物で被覆し、800〜1500℃で焼成した後、解砕し、篩を通して整粒することによって得ることができる。なお、前記母材を被覆する有機化合物としては、芳香族炭化水素;芳香族炭化水素を加熱加圧下で重縮合して得られるタールまたはピッチ類;芳香族炭化水素の混合物を主成分とするタール、ピッチまたはアスファルト類;などが挙げられる。前記母材を前記有機化合物で被覆するには、前記有機化合物に前記母材を含浸・混捏する方法が採用できる。また、プロパンやアセチレンなどの炭化水素ガスを熱分解により炭素化し、これをd002が0.338nm以下の黒鉛の表面に堆積させる気相法によっても、R値およびd002が前記の値を満足する黒鉛を作製することができる。
R値およびd002が前記の値を満足する前記黒鉛は、平均粒子径D50(セパレータに係る前記フィラーの数平均粒子径の測定の場合と同じ装置により測定できる)が10μm以上であることが好ましく、また、30μm以下であることが好ましい。更に、前記黒鉛の比表面積は、1.0m/g以上であることが好ましく、また、5.0m/g以下であることが好ましい。
また、負極活物質には、R値およびd002が前記の値を満足する黒鉛のみを使用してもよいが、前記黒鉛と共に、他の負極活物質を併用することもできる。このような負極活物質としては、例えば、R値が0.1未満の黒鉛(表面の結晶性が高い黒鉛)、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ(MCMB)、炭素繊維などの、Liイオンを吸蔵、放出可能な炭素系材料が挙げられる。
負極合剤層は、前記の負極活物質の他に、ポリフッ化ビニリデンなどのバインダ、更には必要に応じて使用される導電助剤(例えば、カーボンブラックなどの炭素材料など)などを含む負極合剤により、負極集電体の片面または両面に形成することができる。負極合剤層の厚みは、集電体の片面あたり10〜100μmであることが好ましい。
負極集電体としては、銅製やニッケル製の箔、パンチングメタル、網、エキスパンドメタルなどを用い得るが、通常、銅箔が用いられる。この負極集電体は、高エネルギー密度の電気化学素子を得るために負極全体の厚みを薄くする場合、厚みの上限は30μmであることが好ましく、下限は5μmであることが望ましい。
負極側のリード部は、通常、負極作製時に、集電体の一部に負極合剤層を形成せずに集電体の露出部を残し、そこをリード部とすることによって設けられる。ただし、リード部は必ずしも当初から集電体と一体化されたものであることは要求されず、集電体に銅製の箔などを後から接続することによって設けてもよい。
本発明に係る負極では、前記の負極活物質の使用によって、負極合剤層表面の算術平均粗さ(Ra)が0.7〜1.2μmと比較的粗くなるが、本発明の電気化学素子では、前記の通り、強度の大きな前記セパレータを使用しているため、負極表面の凸部がセパレータに押し付けられることによる短絡の発生を防止して、その生産性を高めることができる。
なお、本発明に係る負極の負極合剤層表面の算術平均粗さ(Ra)は、JIS B 0601に規定の算術平均粗さであり、具体的には、共焦点レーザー顕微鏡(レーザテック株式会社製「リアルタイム走査型レーザ顕微鏡 1LM−21D」)を用い、1mm×1mmの視野を512×512ピクセルで測定し、各点の平均線からの絶対値を算術平均することにより求めた数値である。
本発明の電気化学素子は、前記セパレータおよび前記負極を備えており、後に詳述するようにセパレータと負極とを配置していれば、その他の構成・構造については、特に制限はなく、従来公知の非水電解液を有する各種電気化学素子(リチウム二次電池、リチウム一次電池、スーパーキャパシタなど)で採用されている各種構成・構造を適用することができる。
以下、一例として、リチウム二次電池への適用を中心に説明する。リチウム二次電池の形態としては、スチール缶やアルミニウム缶などを外装缶として使用した筒形(角筒形や円筒形など)などが挙げられる。また、金属を蒸着したラミネートフィルムを外装体としたソフトパッケージ電池とすることもできる。
リチウム二次電池などの電気化学素子は、温度が上昇した際に電池(電気化学素子)内部のガスを外部に排出する機構を有していることが好ましい。かかる機構としては、従来公知の機構を用いることができる。すなわち、スチール缶やアルミニウム缶などの金属缶を外装缶とする電池(電気化学素子)では、一定の圧力で亀裂が生じる金属製の開裂ベント、一定の圧力で破れる樹脂製のベント、一定の圧力で蓋の開くゴム製のベントなどを用いることができるが、中でも金属製の開裂ベントを用いるのが好ましい。
一方、ソフトパッケージ電池(電気化学素子)では、封止部分が樹脂の熱融着により封止されているため、そもそも温度と内圧が上昇した場合に、こうした高温、高圧に耐えられる構造とすることが難しく、特別な機構を設けなくても温度が上昇した場合に電池(電気化学素子)内部のガスを外部に排出する構成とすることが可能である。すなわち、ソフトパッケージ電池(電気化学素子)においては、外装体の封止部(熱融着部)が、前記の電池(電気化学素子)内部のガスを外部に排出する機構として作用する。また、ソフトパッケージ電池(電気化学素子)の場合、封止部分の幅を特定の場所だけ狭くするなどの方法によっても、温度が上昇した場合に電池(電気化学素子)内部のガスを外部に排出する構成とすることができる[すなわち、前記特定の場所が、前記の電池(電気化学素子)内部のガスを外部に排出する機構として作用する]。
正極としては、従来公知のリチウム二次電池に用いられている正極、すなわち、Liイオンを吸蔵放出可能な活物質を含有する正極であれば特に制限はない。例えば、活物質として、Li1+xMO(−0.1<x<0.1、M:Co、Ni、Mn、Al、Mgなど。なお、元素MはLi以外の他の金属元素で10原子%まで置換されていてもよい。)で表される層状構造のリチウム含有遷移金属酸化物、LiMnやその元素の一部を他元素で置換したスピネル構造のリチウムマンガン酸化物、LiMPO(M:Co、Ni、Mn、Feなど)で表されるオリビン型化合物などを用いることが可能である。前記層状構造のリチウム含有遷移金属酸化物の具体例としては、LiCoOやLiNi1−xCox−yAl(0.1≦x≦0.3、0.01≦y≦0.2)などのほか、少なくともCo、NiおよびMnを含む酸化物(LiMn1/3Ni1/3Co1/3、LiMn5/12Ni5/12Co1/6、LiNi3/5Mn1/5Co1/5など)などを例示することができる。特に、Niを40%以上含む活物質の場合には、電池が高容量となるので好ましく、また、O(酸素原子)はフッ素、イオウ原子で1原子%まで置換されていてもよい。
導電助剤としては、カーボンブラックなどの炭素材料が用いられ、バインダとしては、ポリフッ化ビニリデン(PVDF)などフッ素樹脂が用いられ、これらの材料と活物質とが混合された正極合剤により正極合剤層が、例えば集電体の片面または両面に形成される。
また、正極の集電体としては、アルミニウムなどの金属の箔、パンチングメタル、網、エキスパンドメタルなどを用い得るが、通常、厚みが10〜30μmのアルミニウム箔が好適に用いられる。
正極側のリード部も負極のリード部と同様に、通常、正極作製時に、集電体の一部に正極合剤層を形成せずに集電体の露出部を残し、そこをリード部とすることによって設けられる。ただし、リード部は必ずしも当初から集電体と一体化されたものであることは要求されず、集電体にアルミニウム製の箔などを後から接続することによって設けてもよい。
電極は、前記の正極と前記の負極とを、本発明のセパレータを介して積層した積層電極体や、更にこれを巻回した巻回電極体の形態で用いることができる。
なお、本発明の電気化学素子では、セパレータに係る多孔質層(I)が負極の負極合剤層に対向するように、負極とセパレータとを配置する。よって、前記のような電極体は、セパレータの多孔質層(I)が負極の負極合剤層と対向するように形成する。
本発明では、前記の通り、セパレータに係る多孔質層(II)において、板状フィラーの積層数を10以下に制限して多孔質層(II)の厚みの増大を抑え、電気化学素子のエネルギー密度の低下やインピーダンスの上昇を抑制しているが、特に多孔質層(I)と多孔質層(II)とを一体化したセパレータの場合、多孔質層(II)を薄くすることでセパレータ全体の熱収縮を抑制する作用が小さくなる虞がある。ところが、セパレータに係る多孔質層(I)を負極の負極合剤層に対向するように配置することで、セパレータ全体の熱収縮が良好に抑制されて、高温時における安全性を良好に確保できるようになる。これは、本発明に係る負極では、前記の通り、負極合剤層の表面が、Raで0.7〜1.2μmと粗いため、このような面とセパレータの多孔質層(I)とを対向させることで、負極合剤層表面の凸部が多孔質層(I)に引っ掛かるアンカー効果によって多孔質層(I)の熱収縮が抑制され、これが、多孔質層(II)が薄くなることで低下するセパレータ全体の熱収縮を抑制する作用を補っているためであると考えられる。
また、詳細な理由は不明であるが、多孔質層(I)が負極に対向するようにセパレータを配置した場合には、正極側に配置した場合よりも、シャットダウンを生じた場合に、多孔質層(I)から溶融した樹脂(A)のうち、電極合剤層に吸収される割合が少なくなり、溶融した樹脂(A)がセパレータの孔を閉塞するのに、より有効に利用されるため、シャットダウンによる効果がより良好となる。
更に、例えば電気化学素子が、温度上昇により電気化学素子の内圧が上昇した際に、電気化学素子内部のガスを外部に排出して電気化学素子の内圧を下げる機構を有する場合には、この機構が作動した際に、内部の非水電解液が揮発して、電極が直接空気に曝される状態となる虞がある。電気化学素子が充電状態にある場合に、前記のような状態となり、負極と空気(酸素や水分)が接触すると、負極に吸蔵されたLiイオンや負極表面に析出したリチウムと空気とが反応して発熱し、時には発火することもある。また、この発熱により電気化学素子の温度が上昇して正極活物質の熱暴走反応を引き起こし、その結果、電気化学素子が発火に至ることもある。
しかしながら、樹脂(A)を主体とする多孔質層(I)を負極に対向させて電気化学素子を構成することで、高温時には多孔質層(I)の主体である樹脂(A)が溶融して負極表面を覆うことから、前記の電気化学素子内部のガスを外部に排出する機構の作動に伴う負極と空気との反応を抑制することができる。そのため、前記の電気化学素子内部のガスを外部に排出する機構が作動することによる発熱の虞をなくし、電気化学素子をより安全に保つことができる。
また、多孔質層(II)に用いる耐熱温度が150℃以上のフィラーとして、耐酸化性に優れた材料(例えば、無機酸化物)を用いた場合、多孔質層(II)を正極側に向けることによって、正極によるセパレータの酸化を抑制することが可能となり、高温時の保存特性や充放電サイクル特性に優れた電気化学素子とすることができるため、多孔質層(II)を正極側に向ける構成とすることがより好ましい。例えば、樹脂(A)を主体とする多孔質層(I)や、多孔質層(II)を複数有するセパレータの場合、負極側が多孔質層(I)となり、かつ正極側が多孔質層(II)となるようにセパレータを構成することがより好ましい。
なお、前記のような正極合剤層を有する正極や、負極合剤層を有する負極は、例えば、正極合剤をN−メチル−2−ピロリドン(NMP)などの溶媒に分散させてなる正極合剤層形成用組成物(スラリーなど)や、負極合剤をNMPなどの溶媒に分散させてなる負極合剤層形成用組成物(スラリーなど)を集電体表面に塗布し、乾燥することにより作製される。この場合、例えば、正極合剤層形成用組成物を集電体表面に塗布し、該組成物が乾燥する前に、多孔質層(II)形成用組成物を塗布して作製した正極と多孔質層(II)との一体化物や、負極合剤層形成用組成物を集電体表面に塗布し、該組成物が乾燥する前に、多孔質層(II)形成用組成物を塗布して作製した負極と多孔質層(II)との一体化物を用いて、リチウム二次電池(電気化学素子)を構成することもできる。
電解液(非水電解液)としては、リチウム塩を有機溶媒に溶解した溶液が用いられる。リチウム塩としては、溶媒中で解離してLiイオンを形成し、電池として使用される電圧範囲で分解などの副反応を起こしにくいものであれば特に制限は無い。例えば、LiClO、LiPF、LiBF、LiAsF、LiSbFなどの無機リチウム塩
、LiCFSO、LiCFCO、Li(SO、LiN(CFSO、LiC(CFSO、LiC2n+1SO(n≧2)、LiN(RfOSO〔ここでRfはフルオロアルキル基〕などの有機リチウム塩などを用いることができる。
電解液に用いる有機溶媒としては、前記のリチウム塩を溶解し、電池として使用される電圧範囲で分解などの副反応を起こさないものであれば特に限定されない。例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートなどの環状カーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネートなどの鎖状カーボネート;プロピオン酸メチルなどの鎖状エステル;γ−ブチロラクトンなどの環状エステル;ジメトキシエタン、ジエチルエーテル、1,3−ジオキソラン、ジグライム、トリグライム、テトラグライムなどの鎖状エーテル;ジオキサン、テトラヒドロフラン、2−メチルテトラヒドロフランなどの環状エーテル;アセトニトリル、プロピオニトリル、メトキシプロピオニトリルなどのニトリル類;エチレングリコールサルファイトなどの亜硫酸エステル類;などが挙げられ、これらは2種以上混合して用いることもできる。なお、より良好な特性の電池とするためには、エチレンカーボネートと鎖状カーボネートの混合溶媒など、高い導電率を得ることができる組み合わせで用いることが望ましい。また、これらの電解液に安全性や充放電サイクル性、高温貯蔵性といった特性を向上させる目的で、ビニレンカーボネート類、1,3−プロパンサルトン、ジフェニルジスルフィド、シクロヘキシルベンゼン、ビフェニル、フルオロベンゼン、t−ブチルベンゼンなどの添加剤を適宜加えることもできる。
このリチウム塩の電解液中の濃度としては、0.5〜1.5mol/lとすることが好ましく、0.9〜1.25mol/lとすることがより好ましい。
本発明の電気化学素子は、低温での充電特性が優れていることから、こうした特性を生かして、特に低温で使用される機器の電源用途を始めとして、従来公知のリチウム二次電池などの電気化学素子が適用されている各種用途と同じ用途に好ましく用いることができる。
以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は、本発明を制限するものではない。
実施例1
<負極の作製>
平均粒径D50が18μm、d002が0.338nm、ラマンスペクトルにおけるR値が0.18であり、比表面積が3.2m/gである黒鉛粒子と、平均粒径D50が16μm、d002が0.336nmでR値が0.05の黒鉛とを質量比85:15で混合した混合物:95質量部と、バインダであるPVDF:5質量部とを、NMPを溶剤として均一になるように混合して負極合剤含有ペーストを調製した。この負極合剤含有ペーストを、銅箔からなる厚さ10μmの集電体の両面に、間欠塗布し、乾燥した後、カレンダー処理を行って全厚が142μmになるように負極合剤層の厚みを調整した。その後、幅45mmになるように切断して、負極を作製した。更にこの負極の銅箔の露出部にタブを溶接してリード部を形成した。
なお、共焦点レーザー顕微鏡を用いて求めた前記負極の負極合剤層表面の算術平均粗さ(Ra)は、0.75μmであった。
<正極の作製>
正極活物質であるLiCoO:85質量部、導電助剤であるアセチレンブラック:10質量部、およびバインダであるPVDF:5質量部を、NMPを溶剤として均一になるように混合して、正極合剤含有ペーストを調製した。このペーストを、集電体となる厚さ15μmのアルミニウム箔の両面に、間欠塗布し、乾燥した後、カレンダー処理を行って、全厚が150μmになるように正極合剤層の厚みを調整し、幅43mmになるように切断して、正極を作製した。更にこの正極のアルミニウム箔の露出部にタブを溶接してリード部を形成した。
<セパレータの作製>
有機バインダであるSBRのエマルジョン(固形分比率40質量%):100gと、水:6000gとを容器に入れ、均一に分散するまで室温で攪拌した。この分散液に耐熱温度が150℃以上のフィラーであるベーマイト粉末(板状、平均粒径1μm、アスペクト比10):2000gを4回に分けて加え、ディスパーにより2800rpmで5時間攪拌して均一なスラリー[多孔質層(II)形成用スラリー、固形分比率25.3質量%]を調製した。PE製微多孔膜[多孔質層(I):厚み12μm、空孔率40%、平均孔径0.02μm、融点135℃]上に、前記のスラリーをマイクログラビアコーターによって塗布し、乾燥して、厚みが2.6μmの多孔質層(II)を形成した。
得られたセパレータにおける多孔質層(II)は、単位面積あたりの質量が3.4g/mであった。また、前記の方法により測定したセパレータの貫通強度(後記の各実施例および比較例においても、同じ方法でセパレータの貫通強度を測定した。)は3.9Nであり、前記フィラーの体積含有率は88体積%であり、多孔質層(II)の空孔率は55%であった。更に、前記方法により求めた多孔質層(II)中における板状ベーマイトの積層枚数は6〜8枚であった(後記の各実施例および比較例においても、同じ方法で板状フィラーの積層枚数を測定した。)。
<電池の組み立て>
前記のようにして得た正極と負極とを、多孔質層(I)が負極の負極合剤層に対向するようにセパレータを介在させつつ重ね、渦巻状に巻回して巻回電極体を作製した。得られた巻回電極体を押しつぶして扁平状にし、厚み6mm、高さ50mm、幅34mmでのアルミニウム製外装缶に入れ、電解液(エチレンカーボネートとエチルメチルカーボネートを体積比で1対2に混合した溶媒にLiPFを濃度1.2mol/lで溶解させ、更にビニレンカーボネートを3質量%添加したもの)を注入した後に封止を行って、図1に示す構造で、図2に示す外観のリチウム二次電池を作製した。なお、この電池は、缶の上部に内圧が上昇した場合に圧力を下げるための開裂ベントを備えている。
ここで図1および図2に示す電池について説明すると、図1の(a)は平面図、(b)はその部分断面図であって、図1(b)に示すように、正極1と負極2は前記のようにセパレータ3を介して渦巻状に巻回した後、扁平状になるように加圧して扁平状の巻回電極体6として、角筒形の外装缶4に電解液と共に収容されている。ただし、図1では、煩雑化を避けるため、正極1や負極2の作製にあたって使用した集電体としての金属箔や電解液などは図示していない。また、セパレータの各層も区別して示していない。
外装缶6はアルミニウム合金製で電池の外装体を構成するものであり、この外装缶4は正極端子を兼ねている。そして、外装缶4の底部にはポリエチレンシートからなる絶縁体5が配置され、正極1、負極2およびセパレータ3からなる扁平状巻回電極体6からは、正極1および負極2のそれぞれ一端に接続された正極リード体7と負極リード体8が引き出されている。また、外装缶4の開口部を封口するアルミニウム合金製の封口用蓋板9にはポリプロピレン製の絶縁パッキング10を介してステンレス鋼製の端子11が取り付けられ、この端子11には絶縁体12を介してステンレス鋼製のリード板13が取り付けられている。
そして、この蓋板9は外装缶4の開口部に挿入され、両者の接合部を溶接することによって、外装缶4の開口部が封口され、電池内部が密閉されている。また、図1の電池では、蓋板9に非水電解液注入口14が設けられており、この非水電解液注入口14には、封止部材が挿入された状態で、例えばレーザー溶接などにより溶接封止されて、電池の密閉性が確保されている(従って、図1および図2の電池では、実際には、非水電解液注入口14は、非水電解液注入口と封止部材であるが、説明を容易にするために、非水電解液注入口14として示している)。更に、蓋板9には、電池の温度が上昇した際に内部のガスを外部に排出する機構として、開裂ベント15が設けられている。
この実施例1の電池では、正極リード体7を蓋板9に直接溶接することによって外装缶5と蓋板9とが正極端子として機能し、負極リード体8をリード板13に溶接し、そのリード板13を介して負極リード体8と端子11とを導通させることによって端子11が負極端子として機能するようになっているが、外装缶4の材質などによっては、その正負が逆になる場合もある。
図2は前記図1に示す電池の外観を模式的に示す斜視図であり、この図2は前記電池が角形電池であることを示すことを目的として図示されたものであって、この図1では電池を概略的に示しており、電池の構成部材のうち特定のものしか図示していない。また、図1においても、電極群の内周側の部分は断面にしていない。
実施例2
負極活物質におけるR値が0.18の前記黒鉛とR値が0.05の前記黒鉛との質量比を90:10とした以外は実施例1と同様にして、負極を作製した。得られた負極は、カレンダー処理後の全厚が144μmであり、共焦点レーザー顕微鏡を用いて求めた負極合剤層表面の算術平均粗さ(Ra)は、0.9μmであった。
前記の負極を用いた以外は、実施例1と同様にしてリチウム二次電池を作製した。
実施例3
負極活物質に、実施例1で用いたものと同じR値が0.18の黒鉛のみを用いた以外は実施例1と同様にして、負極を作製した。得られた負極は、カレンダー処理後の全厚が145μmであり、共焦点レーザー顕微鏡を用いて求めた負極合剤層表面の算術平均粗さ(Ra)は、1.1μmであった。
前記の負極を用いた以外は、実施例1と同様にしてリチウム二次電池を作製した。
実施例4
<負極の作製>
平均粒径D50が18μm、d002が0.338nm、ラマンスペクトルにおけるR値が0.18であり、比表面積が3.2m/gである黒鉛粒子と、平均粒径D50が16μm、d002が0.336nmでR値が0.05の黒鉛とを質量比85:15で混合した混合物:98質量部と、粘度が1500〜5000mPa・sの範囲に調整された1質量%濃度のCMC水溶液:1.0質量部と、SBR:1.0質量部とを、比伝導度が2.0×10Ω/cm以上のイオン交換水を溶剤として混合し、水系の負極合剤含有ペーストを調製した。この負極合剤含有ペーストを用いた以外は、実施例1と同様にして負極を作製し、この負極の銅箔の露出部にタブを溶接してリード部を形成した。
前記の負極を用いた以外は、実施例1と同様にしてリチウム二次電池を作製した。
比較例1
負極活物質に実施例1で用いたものと同じR値が0.05の黒鉛のみを用いた以外は実施例1と同様にして作製した負極を用い、また、実施例1でセパレータの作製に用いたものと同じPE製微多孔膜を、多孔質層(II)を形成することなくセパレータとして用いた以外は、実施例1と同様にしてリチウム二次電池を作製した。なお、前記のセパレータは、貫通強度が3.7Nであった。
比較例2
実施例1でセパレータの作製に用いたものと同じPE製微多孔膜を、多孔質層(II)を形成することなくセパレータとして用いた以外は、実施例1と同様にしてリチウム二次電池を作製した。
比較例3
実施例1でセパレータの作製に用いたものと同じPE製微多孔膜を、多孔質層(II)を形成することなくセパレータとして用いた以外は、実施例3と同様にしてリチウム二次電池を作製した。
比較例4
負極活物質におけるR値が0.18の前記黒鉛と、R値が0.05の前記黒鉛との質量比を20:80とした以外は実施例1と同様にして、負極を作製し、この負極を用いた以外は比較例1と同様にして、リチウム二次電池を作製した。
実施例1〜4および比較例1〜4のリチウムイオン二次電池について、下記の常温放電容量測定、−5℃・10%充電深度での充電電流測定、耐電圧実験、および電池の高温貯蔵試験を行った。これらの結果を表1に示す。
<常温放電容量測定>
実施例1〜4および比較例1〜4のリチウムイオン二次電池について、常温(25℃)で、240mA(0.2C)の定電流で電池電圧が3.0Vになるまで定電流放電を行い、続いて4.2Vまで240mA(0.2C)の定電流で充電後、総充電時間が8時間となるまで4.2Vで定電圧充電を行い、続いて240mA(0.2C)の定電流で電池電圧が3.0Vになるまで定電流放電を行って、放電容量を測定した。なお、表1では、各電池の常温放電容量を、比較例1の電池の値を100とした場合の相対値で示す。
<−5℃・10%充電での充電電流測定>
実施例1〜4および比較例1〜4のリチウム二次電池を−5℃の恒温槽内に5時間静置し、その後、各電池について、4.2Vまで1200mA(1.0C)の定電流で充電を行い、4.2Vに達した後は4.2Vで定電圧充電を行い、充電深度(規格容量に対する実際に充電した容量の割合)が10%に達したときの電流値を測定した。なお、表1では、各電池の前記充電電流を、比較例1の電池の値を100とした場合の相対値で示す。
<耐電圧実験>
非水電解液注入前の実施例1〜4および比較例1〜4のリチウム二次電池各20個に対して、500V(AC60Hz)の電圧を印可し、7mA以上の電流が流れた電池を不良とし、その発生個数を調べた。
耐電圧実験は、短絡をしていなくても電極間の距離が小さくなり、極端な場合、充放電サイクルに伴って、容量低下しやすくなる充放電サイクル信頼性を、どの程度確保できるか知るための試験手段である。一定の耐電圧に対して、絶縁破壊が起こらなければ電極間距離が基準以上に保たれていることを意味する。ここでは差異を明確にするために高めの値で試験している。すなわち、この耐電圧試験において、不良の発生個数が少ないということは、電池(電気化学素子)の生産時における不良の発生割合が少なく、その電池(電気化学素子)は生産性に優れていると評価できる。
耐電圧の試験電圧は、通常の短絡のチェックだけであれば正の電圧なら1Vでも良いが、さらに信頼性を上げるためには50V以上が望ましく、100V以上がより望ましい、300V以上が特に望ましい。また、試験電圧は高いに越したことはないが、過剰品質になるので2000V以下が望ましい。更に、判定電流は、コンデンサとしての電流は流れるので、電池の0.2C放電容量をAh値で表した時の値をGとしたとき、2G(mA)以上が望ましく、4G(mA)以上がより望ましい。また、判定電流は、高く設定しすぎると検出率が下がるので、20G(mA)以下が望ましく、10G(mA)以下がより望ましい。この耐電圧試験を電池製造工程で組み合わせて行うことにより、製造された電池の信頼性がさらに高くなるので望ましい。実施例1〜3および比較例1〜4の電池の0.2Cの放電容量は1.2AhであるのでG=1.2であり、7mAは、4G以上であり、10G以下である。
耐電圧試験による信頼性向上効果はセパレータの多孔質層(I)の厚みが20μm以下で明らかとなるが、14μm以下でさらに効果が高く、12μm以下での導入時にさらに顕著となる。
<高温貯蔵試験>
実施例1〜4および比較例1〜4のリチウム二次電池について、1.0Cの電流値で電池電圧が4.25Vになるまで定電流充電を行い、次いで、4.25Vでの定電圧充電を行う定電流−定電圧充電を行った。充電終了までの総充電時間は2.5時間とした。前記条件で充電した各電池を恒温槽に入れ、30℃から150℃まで、毎分5℃の割合で昇温し、その後引き続き150℃で3時間放置し、電池の表面温度を測定した。表1では、前記の電池表面温度が、160℃以上まで上昇したものを「×」と示し、このような温度上昇が認められなかったものを「○」と示している。
Figure 2010135313
表1から明らかなように、実施例1〜4の電池では、−5℃・10%充電での充電電流値が大きく、低温での充電特性に優れている。
また、実施例1〜4の電池では、耐電圧不良数が0/20個であり、信頼性の高い電池を良好に製造できることが確認できた。これは、多孔質層(II)の板状フィラーを積層させることにより、負極表面の凸部によるセパレータの貫通を防止しているためと推測される。
更に、実施例1〜4の電池では、150℃で3時間保持しても電池の表面温度が161℃以上に上昇するといった異常は見られなかった。これらの電池を電子機器に用いると、高温でも電子機器の電池収納部付近の温度上昇が抑えられ、信頼性の高い電子機器を得ることができる。また、耐電圧試験で不良品が発生しなかった実施例の電池は充放電サイクルの増加に伴って容量劣化が起こりやすい現象は認められなかったが、耐電圧試験で不良品が発生した比較例3の電池は、充放電サイクル後に放置しておくと、容量低下の大きい電池が存在していた。
1 正極
2 負極
3 セパレータ

Claims (4)

  1. 正極、負極、非水電解液およびセパレータを有する電気化学素子であって、
    前記負極は、集電体の片面または両面に、アルゴンイオンレーザーラマンスペクトルにおける1580cm−1のピーク強度に対する1360cm−1のピーク強度比であるR値が0.1〜0.5で、002面の面間隔d002が0.338nm以下である黒鉛を負極活物質として含有し、かつ全負極活物質中における前記黒鉛の割合が30質量%以上である負極合剤層を有しており、
    前記負極合剤層表面の算術平均粗さ(Ra)が0.7〜1.2μmであり、
    前記セパレータは、熱可塑性樹脂を主体とする微多孔膜からなる多孔質層(I)と、耐熱温度が150℃以上の板状フィラーを主体として含む多孔質層(II)とを有しており、
    前記多孔質層(II)では、前記板状フィラーが、その平板面で積層しており、かつ前記板状フィラーの積層数が5〜10であり、
    前記セパレータの多孔質層(I)が、前記負極の負極合剤層に対向していることを特徴とする電気化学素子。
  2. セパレータにおける多孔質層(II)の厚みが、1〜10μmである請求項1に記載の電気化学素子。
  3. セパレータにおける多孔質層(II)に含まれる板状フィラーが、アルミナ、シリカおよびベーマイトよりなる群から選択される少なくとも1種の粒子である請求項1または2に記載の電気化学素子。
  4. セパレータにおける多孔質層(I)が、融点が100〜150℃のポリオレフィンを含有している請求項1〜3のいずれかに記載の電気化学素子。

JP2009246226A 2008-10-31 2009-10-27 電気化学素子 Pending JP2010135313A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009246226A JP2010135313A (ja) 2008-10-31 2009-10-27 電気化学素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008280721 2008-10-31
JP2009246226A JP2010135313A (ja) 2008-10-31 2009-10-27 電気化学素子

Publications (1)

Publication Number Publication Date
JP2010135313A true JP2010135313A (ja) 2010-06-17

Family

ID=42346373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009246226A Pending JP2010135313A (ja) 2008-10-31 2009-10-27 電気化学素子

Country Status (1)

Country Link
JP (1) JP2010135313A (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2395765A2 (en) 2010-06-14 2011-12-14 Nintendo Co., Ltd. Storage medium having stored therein stereoscopic image display program, stereoscopic image display device, stereoscopic image display system, and stereoscopic image display method
JP2012202834A (ja) * 2011-03-25 2012-10-22 Tokyo Electric Power Co Inc:The 高分子材料の微細構造の観察方法
WO2013051155A1 (ja) * 2011-10-07 2013-04-11 トヨタ自動車株式会社 リチウムイオン二次電池
JP2013222581A (ja) * 2012-04-16 2013-10-28 Gs Yuasa Corp 蓄電素子
WO2014002561A1 (ja) * 2012-06-29 2014-01-03 トヨタ自動車株式会社 非水電解質二次電池
JP2015053116A (ja) * 2013-09-05 2015-03-19 トヨタ自動車株式会社 非水電解質二次電池
JP2016106376A (ja) * 2016-03-08 2016-06-16 トヨタ自動車株式会社 リチウムイオン二次電池
JP5973675B1 (ja) * 2014-10-10 2016-08-23 住友化学株式会社 積層体、積層体を含む非水電解液二次電池用セパレータ、および非水電解液二次電池
JP5973674B1 (ja) * 2014-10-10 2016-08-23 住友化学株式会社 積層体、積層体を含む非水電解液二次電池用セパレータ、および非水電解液二次電池
WO2020149039A1 (ja) * 2019-01-16 2020-07-23 ニッポン高度紙工業株式会社 アルミニウム電解コンデンサ用セパレータ及びアルミニウム電解コンデンサ

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2395765A2 (en) 2010-06-14 2011-12-14 Nintendo Co., Ltd. Storage medium having stored therein stereoscopic image display program, stereoscopic image display device, stereoscopic image display system, and stereoscopic image display method
EP2395764A2 (en) 2010-06-14 2011-12-14 Nintendo Co., Ltd. Storage medium having stored therein stereoscopic image display program, stereoscopic image display device, stereoscopic image display system, and stereoscopic image display method
EP2395766A2 (en) 2010-06-14 2011-12-14 Nintendo Co., Ltd. Storage medium having stored therein stereoscopic image display program, stereoscopic image display device, stereoscopic image display system, and stereoscopic image display method
EP2395763A2 (en) 2010-06-14 2011-12-14 Nintendo Co., Ltd. Storage medium having stored therein stereoscopic image display program, stereoscopic image display device, stereoscopic image display system, and stereoscopic image display method
JP2012202834A (ja) * 2011-03-25 2012-10-22 Tokyo Electric Power Co Inc:The 高分子材料の微細構造の観察方法
JPWO2013051155A1 (ja) * 2011-10-07 2015-03-30 トヨタ自動車株式会社 リチウムイオン二次電池
WO2013051155A1 (ja) * 2011-10-07 2013-04-11 トヨタ自動車株式会社 リチウムイオン二次電池
JP2013222581A (ja) * 2012-04-16 2013-10-28 Gs Yuasa Corp 蓄電素子
WO2014002561A1 (ja) * 2012-06-29 2014-01-03 トヨタ自動車株式会社 非水電解質二次電池
JP2014011071A (ja) * 2012-06-29 2014-01-20 Toyota Motor Corp 非水電解質二次電池
JP2015053116A (ja) * 2013-09-05 2015-03-19 トヨタ自動車株式会社 非水電解質二次電池
US9917289B2 (en) 2014-10-10 2018-03-13 Sumitomo Chemical Company, Limited Laminate, non-aqueous electrolyte secondary battery separator including the laminate, and non-aqueous electrolyte secondary battery including the laminate
JP5973675B1 (ja) * 2014-10-10 2016-08-23 住友化学株式会社 積層体、積層体を含む非水電解液二次電池用セパレータ、および非水電解液二次電池
JP5973674B1 (ja) * 2014-10-10 2016-08-23 住友化学株式会社 積層体、積層体を含む非水電解液二次電池用セパレータ、および非水電解液二次電池
US9923181B2 (en) 2014-10-10 2018-03-20 Sumitomo Chemical Company, Limited Laminate, non-aqueous electrolyte secondary battery separator including the laminate, and non-aqueous electrolyte secondary battery including the laminate
JP2016106376A (ja) * 2016-03-08 2016-06-16 トヨタ自動車株式会社 リチウムイオン二次電池
WO2020149039A1 (ja) * 2019-01-16 2020-07-23 ニッポン高度紙工業株式会社 アルミニウム電解コンデンサ用セパレータ及びアルミニウム電解コンデンサ
JP2020113689A (ja) * 2019-01-16 2020-07-27 ニッポン高度紙工業株式会社 アルミニウム電解コンデンサ用セパレータ及びアルミニウム電解コンデンサ
CN113287182A (zh) * 2019-01-16 2021-08-20 日本高度纸工业株式会社 铝电解电容器用分隔件及铝电解电容器
EP3913646A4 (en) * 2019-01-16 2022-11-02 Nippon Kodoshi Corporation SEPARATOR FOR ALUMINUM ELECTROLYTIC CAPACITOR, AND ALUMINUM ELECTROLYTIC CAPACITOR
CN113287182B (zh) * 2019-01-16 2022-12-30 日本高度纸工业株式会社 铝电解电容器用分隔件及铝电解电容器
JP7333694B2 (ja) 2019-01-16 2023-08-25 ニッポン高度紙工業株式会社 アルミニウム電解コンデンサ用セパレータ及びアルミニウム電解コンデンサ
US11742148B2 (en) 2019-01-16 2023-08-29 Nippon Kodoshi Corporation Separator for aluminum electrolytic capacitor, and aluminum electrolytic capacitor

Similar Documents

Publication Publication Date Title
JP5421358B2 (ja) 電気化学素子
JP5576740B2 (ja) 電気化学素子
JP5937776B2 (ja) 電池用セパレータおよび電池
JP6352870B2 (ja) 電気化学素子およびその製造方法
JP5334281B2 (ja) リチウム二次電池
JP5334282B2 (ja) リチウム二次電池
US8405957B2 (en) Separator for electrochemical device and method for producing the same, and electrochemical device and method for producing the same
JP5650738B2 (ja) 電池用セパレータおよび電池
TWI390788B (zh) Electrochemical components
JP2010135313A (ja) 電気化学素子
JP2009272153A (ja) リチウム二次電池
JP2011054298A (ja) 電気化学素子
JP5451426B2 (ja) 電池用セパレータおよびそれを用いたリチウムイオン二次電池
JP2012155914A (ja) 電気化学素子用セパレータおよび電気化学素子
JP2012009150A (ja) 非水二次電池
JP2010277723A (ja) 電気化学素子
JPWO2012005152A1 (ja) 非水電池用セパレータおよび非水電池
JP5376622B2 (ja) 電気化学素子用セパレータおよび電気化学素子
JP2012204243A (ja) 非水二次電池
JP5334795B2 (ja) 非水二次電池およびその製造方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110520

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110526