WO2016051809A1 - ポジ型感光性樹脂組成物、パターン硬化膜の製造方法、硬化物、層間絶縁膜、カバーコート層、表面保護膜及び電子部品 - Google Patents

ポジ型感光性樹脂組成物、パターン硬化膜の製造方法、硬化物、層間絶縁膜、カバーコート層、表面保護膜及び電子部品 Download PDF

Info

Publication number
WO2016051809A1
WO2016051809A1 PCT/JP2015/005021 JP2015005021W WO2016051809A1 WO 2016051809 A1 WO2016051809 A1 WO 2016051809A1 JP 2015005021 W JP2015005021 W JP 2015005021W WO 2016051809 A1 WO2016051809 A1 WO 2016051809A1
Authority
WO
WIPO (PCT)
Prior art keywords
photosensitive resin
resin composition
film
positive photosensitive
component
Prior art date
Application number
PCT/JP2015/005021
Other languages
English (en)
French (fr)
Inventor
大作 松川
榎本 哲也
明敏 谷本
篤太郎 吉澤
Original Assignee
日立化成デュポンマイクロシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2015/052382 external-priority patent/WO2016121035A1/ja
Application filed by 日立化成デュポンマイクロシステムズ株式会社 filed Critical 日立化成デュポンマイクロシステムズ株式会社
Priority to CN201580053869.5A priority Critical patent/CN106796399B/zh
Priority to JP2016551560A priority patent/JP6743701B2/ja
Priority to KR1020177008119A priority patent/KR102585279B1/ko
Publication of WO2016051809A1 publication Critical patent/WO2016051809A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor

Definitions

  • the present invention relates to a positive photosensitive resin composition, a method for producing a cured pattern film using the same, a cured product, an interlayer insulating film, a cover coat layer, a surface protective film, and an electronic component.
  • polyimide and polybenzoxazole having both excellent heat resistance, electrical characteristics, mechanical characteristics, and the like are used for the surface protective film and the interlayer insulating film of the semiconductor element.
  • a photosensitive polyimide having a photosensitive property imparted to the polyimide itself has been used, and if this is used, the manufacturing process of the pattern cured film can be simplified and the complicated manufacturing process can be shortened.
  • the pattern cured film provided on the outermost layer is formed using a positive photosensitive resin composition for the purpose of ensuring reliability by reinforcing the bumps. It is preferable to increase the thickness of the pattern cured film from the conventional film thickness (10 ⁇ m or less).
  • a thick film is formed from a positive photosensitive resin composition using a conventional naphthoquinonediazide compound, there is a problem that the transmittance at the photosensitive wavelength is lowered, the sensitivity is deteriorated, and the development time is increased.
  • the resin composition with high sensitivity has a problem that although the development time is short, an unexposed portion is also developed.
  • a dissolution-inhibiting positive photosensitive resin composition has been proposed as an alkaline positive photosensitive resin composition that does not use a naphthoquinonediazide compound (see Non-Patent Document 3).
  • Non-Patent Document 3 it has been technically difficult to apply the dissolution-inhibiting positive photosensitive resin composition to a thick film.
  • An object of the present invention is to form a positive-type photosensitive resin composition that has a sufficiently good dissolution contrast between an exposed area and an unexposed area when a thick patterned cured film is formed, and a patterned cured film using the same Manufacturing method, interlayer insulating film, cover coat layer, surface protective film, and electronic component.
  • the present inventors tried to form a thick film using a positive photosensitive resin composition in which an alkali-soluble resin and a naphthoquinonediazide compound were combined.
  • the transmittance at the photosensitive wavelength of the coating film was low, and a sufficient alkali dissolution rate was not obtained in the exposed area, and no opening was obtained in the development time within the practical range.
  • an alkali-soluble resin and an onium salt that generates an acid by i-line exposure hereinafter also referred to as an onium salt having i-line sensitivity. It has been found that by using the positive photosensitive resin composition, a practically usable dissolution contrast can be exhibited even when a thick pattern cured film is formed.
  • a positive photosensitive resin composition comprising (a) an alkali-soluble resin, (b) an onium salt that generates an acid by i-line exposure, (c) a solvent, and (d) a crosslinking agent.
  • a positive photosensitive resin composition containing (a) an alkali-soluble resin, (b) an onium salt that generates an acid upon i-line exposure, and (c) a solvent, wherein (a) 100 parts by mass of the component
  • a positive photosensitive resin composition containing 0 to 100 ppm of a naphthoquinonediazide compound or an acid-reactive protecting group-containing compound.
  • the positive photosensitive resin composition according to 2 further comprising (d) a crosslinking agent.
  • the component (b) is a compound that inhibits the dissolution of the component (a) in an alkaline aqueous solution before i-line exposure and does not inhibit the dissolution of the component (a) in an alkaline aqueous solution after i-line exposure. 5.
  • ⁇ 12> A cured product of the positive photosensitive resin composition according to any one of 1 to 9.
  • ⁇ 13> An interlayer insulating film, a cover coat layer or a surface protective film using the cured product according to 12.
  • ⁇ 14> An electronic component having the interlayer insulating film, cover coat layer or surface protective film according to ⁇ 13>.
  • the positive photosensitive resin composition which can implement
  • first and second positive photosensitive resin compositions of the present invention a method for producing a patterned cured film using the composition, and embodiments of electronic components will be described in detail.
  • the present invention is not limited to the following embodiments.
  • “A or B” may include either one of A or B, or may include both.
  • the material illustrated below may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the content of each component in the composition is the sum of the plurality of substances present in the composition unless there is a specific indication when there are a plurality of substances corresponding to each component in the composition. Means quantity.
  • the first and second positive photosensitive resin compositions may be collectively referred to as “the positive photosensitive resin composition (resin composition) of the present invention”.
  • the first embodiment of the first positive photosensitive resin composition of the present invention comprises (a) an alkali-soluble resin, (b) an onium salt that generates an acid upon i-line exposure, (c) a solvent, and (d) a crosslink.
  • the second embodiment of the first positive photosensitive resin composition of the present invention includes (a) an alkali-soluble resin, (b) an onium salt that generates an acid by i-line exposure, (c) a solvent, and (d ) A crosslinking agent is contained, and the naphthoquinonediazide compound is 0 or more and less than 100 ppm with respect to 100 parts by mass of the component (a).
  • the total of the components (a), (b), and (d) is 88% by mass or more based on the total mass of the positive photosensitive resin composition excluding the solvent (c). It is preferably 90% by mass or more, more preferably 95% by mass or more, still more preferably 98% by mass or more, and may be 100% by mass.
  • Each may be simply referred to as component (a), component (b), component (c), and component (d).
  • the first aspect and the second aspect are collectively referred to as a first positive photosensitive resin composition of the present invention. Hereinafter, each component will be described.
  • the alkali-soluble resin is not particularly limited, but a resin having high electrical insulation is preferable.
  • a resin having high electrical insulation is preferable.
  • polyimide, polyimide precursor, polybenzoxazole, polybenzoxazole precursor, polyamide, polyamideimide, polyhydroxystyrene, novolac resin, norbornene resin, epoxy resin, and acrylic resin can be used.
  • polyimide polyimide precursor, polybenzoxazole, polybenzoxazole precursor, novolac resin or polyhydroxystyrene from the viewpoint of achieving both insulation and mechanical properties.
  • the alkali-soluble resin is usually developed with an aqueous alkali solution. Therefore, it is preferable that it is soluble in alkaline aqueous solution.
  • the alkaline aqueous solution include an organic ammonium aqueous solution such as a tetramethylammonium hydroxide (TMAH) aqueous solution, a metal hydroxide aqueous solution, and an organic amine aqueous solution.
  • TMAH tetramethylammonium hydroxide
  • a metal hydroxide aqueous solution etramethylammonium hydroxide
  • organic amine aqueous solution e.g., it is preferable to use a TMAH aqueous solution having a concentration of 2.38% by weight.
  • the component (a) is preferably soluble in the TMAH aqueous solution.
  • the polyimide precursor preferably has a structure represented by the formula (1).
  • A is any one of tetravalent organic groups represented by the following formulas (2a) to (2e), and B is a divalent organic group represented by the following formula (3).
  • R 1 and R 2 are each independently a hydrogen atom or a monovalent organic group.
  • X and Y each independently represent a divalent group or a single bond that is not conjugated to the benzene ring to which each is bonded.
  • Z represents an oxygen atom or a sulfur atom.
  • R 3 to R 10 each independently represents a hydrogen atom, a fluorine atom or a monovalent organic group, and at least one of R 3 to R 10 is a fluorine atom, a methyl group or a trifluoromethyl group. Represents.
  • the monovalent organic group represented by R 1 and R 2 is an alkyl group having 1 to 10 carbon atoms (preferably 1 to 6 carbon atoms), 1 to 10 carbon atoms (preferably 1 carbon atom). -6) and the like.
  • examples of the divalent group that is not conjugated to the benzene ring include an oxygen atom, a dimethylmethylene group, a bis (trifluoromethyl) methylene group, a dimethylsilylene group, and a methyltrifluoromethylmethylene group.
  • B in Formula (1) is a structure derived from diamine used as a raw material, and is a divalent organic group represented by Formula (3).
  • Examples of the monovalent organic group represented by R 3 to R 10 include a methyl group and a trifluoromethyl group. From the viewpoint of good i-line transmittance and low stress, two or more are preferably a methyl group or a trifluoromethyl group.
  • polyimide examples include polyimide formed from the polyimide precursor described above.
  • the polybenzoxazole precursor is a precursor having a structural unit represented by the following formula (4).
  • U is a single bond or a divalent group
  • W is a divalent group.
  • the divalent group of U in the formula (4) is preferably a group containing an aliphatic chain structure having 1 to 30 carbon atoms, and a group containing a structure represented by the following formula (UV1) It is more preferable.
  • R 11 and R 12 are each independently a hydrogen atom, a fluorine atom, an alkyl group having 1 to 6 carbon atoms or a fluorinated alkyl group having 1 to 6 carbon atoms, and a is 1 to 30 (It is an integer.)
  • R 11 and R 12 in the formula (UV1) are preferably a methyl group or a trifluoromethyl group, and more preferably a trifluoromethyl group, from the viewpoint of polymer transparency.
  • a is preferably an integer of 1 to 5.
  • the divalent group of W is preferably a structure derived from dicarboxylic acid, and as such raw material dicarboxylic acid, dodecanedioic acid, isophthalic acid, terephthalic acid, 2,2-bis (4-carboxyphenyl) -1,1,1,3,3,3-hexafluoropropane, 4,4′-dicarboxybiphenyl, 4,4′-dicarboxydiphenyl ether, 4,4′-dicarboxytetraphenylsilane, bis (4- Carboxyphenyl) sulfone, 2,2-bis (p-carboxyphenyl) propane, 5-tert-butylisophthalic acid, 5-bromoisophthalic acid, 5-fluoroisophthalic acid, 5-chloroisophthalic acid, 2,6-naphthalenedicarboxylic An acid etc. are mentioned.
  • polybenzoxazole examples include polybenzoxazole formed from the above polybenzoxazole precursor.
  • novolak resin phenol, cresol, xylenol, resorcinol, hydroquinone and other aromatic hydroxy compounds and their alkyl-substituted or halogen-substituted aromatic compounds selected from phenols such as formaldehyde, acetaldehyde, benzaldehyde, etc.
  • phenols such as formaldehyde, acetaldehyde, benzaldehyde, etc.
  • Those obtained by polycondensation with an aldehyde compound are preferred, and examples thereof include phenol and formaldehyde resin, cresol and formaldehyde resin, phenol, cresol and formaldehyde co-condensation resin, and the like.
  • the weight average molecular weight in terms of polystyrene is preferably 10,000 to 100,000, more preferably 15,000 to 100,000, and further preferably 20,000 to 85,000. If the weight average molecular weight is less than 10,000, the solubility in an alkaline developer may be too high. If it is greater than 100,000, the solubility in a solvent may be reduced, or the viscosity of the solution may be increased and the handling property may be reduced. There is a risk of doing.
  • the weight average molecular weight can be measured by gel permeation chromatography and can be determined by conversion using a standard polystyrene calibration curve.
  • the component (b) component can be used without particular limitation as long as it is an onium salt having i-line sensitivity, but is preferably a compound having an iodonium structure or a sulfonium structure. From the viewpoint of achieving high contrast, a compound having an iodonium structure is more preferable.
  • the component (b) reacts with the light and has a difference in solubility in the developer between the exposed portion and the unexposed portion. It has the function to provide.
  • the component (b) is preferably highly compatible with the component (a).
  • the component (b) is preferably a compound that inhibits the dissolution of the component (a) in the alkaline aqueous solution before i-line exposure and does not inhibit the dissolution of the component (a) in the alkaline aqueous solution after i-line exposure.
  • component (b) for example, a compound represented by the following general formula (b-1) can be used.
  • X is a counter anion.
  • the aromatic ring may have a substituent.
  • the substituent on the aromatic ring is not particularly limited as long as it does not inhibit the effect of the present invention. Specifically, an alkyl group, an alkenyl group, an alkoxy group, a trialkylsilyl group, a group in which some or all of the hydrogen atoms in each group are substituted with a fluorine atom, a chlorine atom, a bromine atom, a fluorine atom, etc. It is done.
  • the aromatic ring may have a plurality of substituents.
  • X ⁇ includes p-toluenesulfonate ion, trifluoromethanesulfonate ion, hexafluoroborate ion, 9,10-dimethoxyanthracene-2-sulfonate ion, 8-anilinonaphthalene-1-sulfonate ion, methyl Examples include sulfonate ions, sulfate ions, nitrate ions, trichloroacetate ions, chloride ions, and the like.
  • the compound having an iodonium structure include diphenyliodonium-9,10-dimethoxyanthracene-2-sulfonate, diphenyliodonium-8-anilinonaphthalene-1-sulfonate, diphenyliodonium sulfonate, diphenyliodonium trifluoromethylsulfonate, Diphenyliodonium nonafluorobutane sulfonate, diphenyliodonium toluenesulfonate, diphenyliodonium chloride, diphenyliodonium bromide, diphenyliodonium iodide, diphenyliodonium hexafluorophosphate, 4-methoxyphenyliodonium nitrate, 4-methoxyphenyliodonium trifluoromethylsulfone Nate, 4,4'-di-t-butyldiphenyl
  • diphenyliodonium-9,10-dimethoxyanthracene-2-sulfonate which is a compound represented by the following formula (b-2), is preferably used from the viewpoints of high sensitivity and high dissolution contrast.
  • Me is a methyl group.
  • a compound represented by the following formula (b-3) is also preferable.
  • the content of the component (b) is preferably 2 to 50 parts by mass, more preferably 3 to 40 parts by mass, and further preferably 5 to 30 parts by mass with respect to 100 parts by mass of the component (a).
  • the dissolution inhibition of the component (a) is strongly caused in the unexposed area, and the dissolution inhibition effect disappears in the exposed area, so that the dissolution contrast between the unexposed area and the exposed area. Can be high. Since the dissolution contrast is high, it can be suitably used when forming a thick pattern cured film. Further, the development time can be shortened.
  • (C) component solvent
  • the content of the component (c) is not particularly limited, but is preferably 50 to 300 parts by mass, more preferably 100 to 200 parts by mass with respect to 100 parts by mass of the component (a).
  • ((D) component: crosslinking agent) The component (d) can react with the alkali-soluble resin (crosslinking reaction) in the step of heat-treating the pattern resin film after applying, exposing and developing the resin composition, or the crosslinking agent itself can be polymerized. Thereby, even when the resin composition is cured at a relatively low temperature, for example, 250 ° C. or less, good mechanical properties, chemical resistance and flux resistance can be imparted.
  • the component (d) is not particularly limited as long as it is a compound that crosslinks or polymerizes in the heat treatment step, but is a compound having an alkoxyalkyl group such as a methylol group or an alkoxymethyl group, an epoxy group, an oxetanyl group, or a vinyl ether group. It is preferable.
  • a compound in which these groups are bonded to a benzene ring, a melamine resin or a urea resin in which the N-position is substituted with a methylol group or an alkoxymethyl group are preferable.
  • a compound in which these groups are bonded to a benzene ring having a phenolic hydroxyl group is more preferable in that the sensitivity can be improved by increasing the dissolution rate of the exposed area during development.
  • two or more methylol groups or alkoxymethyl groups are used from the viewpoint of good sensitivity and varnish stability, and prevention of melting of the photosensitive resin film at the time of curing the photosensitive resin film after pattern formation.
  • the compound which has is preferable.
  • R 1 and R 2 are each independently an alkyl group having 1 to 30 carbon atoms.
  • the content of component (d) is preferably 1 to 50 parts by mass, more preferably 5 to 40 parts by mass, and even more preferably 10 to 30 parts by mass with respect to 100 parts by mass of component (a).
  • a naphthoquinone diazide compound is 0 or more and less than 100 ppm with respect to 100 mass parts of (a) component.
  • the content is more preferably 0 to 50 ppm, further preferably 0 to 10 ppm, and particularly preferably no naphthoquinonediazide compound (0 ppm).
  • the naphthoquinone diazide compound is within the above range, the first resin composition of the present invention can maintain good photosensitive characteristics even in a thick film having a film thickness of 20 ⁇ m or more after coating.
  • naphthoquinone diazide compound examples include a reaction product of a polyhydroxy compound and 1,2-naphthoquinone diazide-4-sulfonyl chloride or 1,2-naphthoquinone diazide-5-sulfonyl chloride.
  • polyhydroxy compound examples include hydroquinone, resorcinol, pyrogallol, bisphenol A, bis (2-hydroxyphenyl) methane, bis (4-hydroxyphenyl) methane, 2-hydroxyphenyl-4′-hydroxyphenylmethane, 2,2- Bis (4-hydroxyphenyl) hexafluoropropane, 2,3,4-trihydroxybenzophenone, 2,3,4,4′-tetrahydroxybenzophenone, 2,2 ′, 4,4′-tetrahydroxybenzophenone, 2, 3,4,2 ′, 3′-pentahydroxybenzophenone, 2,3,4,3 ′, 4 ′, 5′-hexahydroxybenzophenone, bis (2,3,4-trihydroxyphenyl) methane, bis (2 , 3,4-Trihydroxyphenyl) propane, 2- (4-hydroxyphene) ) -2- [4- [1,1-bis (4-hydroxyphenyl) ethyl] phenyl] propane, 4b, 5,9b,
  • the acid-reactive protecting group-containing compound is preferably 0 to 1000 ppm with respect to 100 parts by mass of the component (a).
  • the content is more preferably 0 to 100 ppm, further preferably 0 to 10 ppm, and particularly preferably no acid-reactive protecting group-containing compound (0 ppm).
  • Examples of the acid-reactive protecting group-containing compound include compounds in which a hydrogen atom of a carboxylic acid is substituted with a 1-alkoxyalkyl group or the like.
  • Examples of the carboxylic acid include phthalic acid, isophthalic acid, terephthalic acid, 4-carboxyphthalic acid, 5-tert-butylisophthalic acid, 5-bromoisophthalic acid, 5-fluoroisophthalic acid, 5-chloroisophthalic acid, 1,4 -Cyclohexanedicarboxylic acid, 4,4'-dicarboxydiphenyl ether, 2,6-naphthalenedicarboxylic acid, 2,2-bis (4-carboxyphenyl) -1,1,1,3,3,3-hexafluoropropane, 4,4'-dicarboxybiphenyl, 4,4'-dicarboxytetraphenylsilane, bis (4-carboxyphenyl) sulfone, 2,2-bis (p
  • Examples of the 1-alkoxyalkyl group include tertiary alkyl groups such as t-butyl group and t-amyl group, isobornyl group, ethoxymethyl group, 1-ethoxyethyl group, 1-butoxyethyl group, 1-isobutoxyethyl group. Etc.
  • the first resin composition of the present invention may contain a coupling agent, a dissolution accelerator, a dissolution inhibitor, a surfactant, a leveling agent and the like, if necessary.
  • the components (a) to (d) are preferably 91% by mass or more and 92% by mass or more based on the entire composition. More preferably, it is 93 mass% or more.
  • the second positive photosensitive resin composition of the present invention contains (a) an alkali-soluble resin, (b) an onium salt that generates an acid by i-line exposure, and (c) a solvent.
  • a naphthoquinone diazide compound or an acid-reactive protecting group-containing compound is contained in an amount of 0 to 100 ppm based on parts by mass.
  • Components (a) to (c) are the same as those in the first positive photosensitive resin composition.
  • the second positive photosensitive resin composition may or may not contain (d) a crosslinking agent.
  • the component (d) is the same as that of the first positive photosensitive resin composition.
  • the content of the naphthoquinone diazide compound is 0 to 100 ppm with respect to 100 parts by mass of the component (a). Further, it is preferably 0 to 50 ppm, more preferably 0 to 10 ppm, and further preferably no naphthoquinonediazide compound (0 ppm).
  • the naphthoquinone diazide compound is within the above range, the second resin composition can maintain good photosensitive characteristics even when the film thickness after coating is 20 ⁇ m or more.
  • the content of the acid-reactive protecting group-containing compound is 0 to 100 ppm with respect to 100 parts by mass of component (a). Further, it is preferably 0 to 50 ppm, more preferably 0 to 10 ppm, and further preferably no acid-reactive protecting group-containing compound (0 ppm).
  • a thick patterned cured film can be formed at a lower cost than a chemically amplified positive photosensitive resin composition in which a PEB (Post Exposure Bake) step is essential.
  • PEB Post Exposure Bake
  • the components (a) to (c) are preferably 91% by mass or more, more preferably 92% by mass or more, and 93% by mass with respect to the entire composition. % Or more, more preferably 94% by weight or more, particularly preferably 95% by weight or more, very particularly preferably 96% by weight or more, and 97% by weight or more. Is most preferable, and 98% by mass or more is most particularly preferable.
  • the second positive photosensitive resin composition of the present invention is the same as the first positive photosensitive resin composition in matters other than those described above.
  • the above-described resin composition is applied on a substrate and dried to form a photosensitive resin film, and the resulting photosensitive resin film is exposed to a predetermined pattern, and exposed.
  • the pattern cured film can be produced by including a step of developing the resin film using an alkaline aqueous solution to obtain a pattern resin film and a step of heat-treating the pattern resin film.
  • the substrate examples include glass, semiconductors, metal oxide insulators such as TiO 2 and SiO 2 , silicon nitride, copper, and copper alloys.
  • the application is not particularly limited, but can be performed using a spinner or the like.
  • Drying can be performed using a hot plate, an oven, or the like.
  • the heating temperature is preferably 100 to 150 ° C.
  • the heating time is preferably 30 seconds to 5 minutes. Thereby, the resin film which formed the above-mentioned resin composition in the film form can be obtained.
  • the thickness of the resin film is preferably 5 to 100 ⁇ m, more preferably 8 to 50 ⁇ m, and even more preferably 10 to 40 ⁇ m.
  • a predetermined pattern can be exposed through a mask.
  • the actinic rays to be irradiated include ultraviolet rays including i-rays, visible rays, and radiation, but i-rays are preferable.
  • a parallel exposure machine, a projection exposure machine, a stepper, a scanner exposure machine, or the like can be used as the exposure apparatus.
  • a patterned resin film By performing the development treatment, a patterned resin film (pattern resin film) can be obtained.
  • the exposed portion is removed with a developer.
  • the aqueous alkali solution used as the developer include sodium hydroxide, potassium hydroxide, sodium silicate, ammonia, ethylamine, diethylamine, triethylamine, triethanolamine, tetramethylammonium hydroxide, and tetramethylammonium hydroxide is preferable.
  • the concentration of the aqueous alkaline solution is preferably 0.1 to 10% by mass.
  • the development time varies depending on the type of polymer used, but is preferably 10 seconds to 15 minutes, more preferably 10 seconds to 5 minutes, and from the viewpoint of productivity, 30 seconds to 4 minutes. More preferably.
  • An alcohol or a surfactant may be added to the developer.
  • the addition amount is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the developer.
  • the heating temperature is preferably 250 ° C. or less, more preferably 120 to 250 ° C., and further preferably 160 to 230 ° C.
  • the heating time is preferably 5 hours or less, more preferably 30 minutes to 3 hours. By being within the above range, the crosslinking reaction or dehydration ring-closing reaction can sufficiently proceed.
  • the atmosphere for the heat treatment may be in the air or in an inert atmosphere such as nitrogen. From the viewpoint of preventing the pattern resin film from being oxidized, a nitrogen atmosphere is preferable.
  • Examples of the apparatus used in the heat treatment step include a quartz tube furnace, a hot plate, rapid thermal annealing, a vertical diffusion furnace, an infrared curing furnace, an electron beam curing furnace, and a microwave curing furnace.
  • a microwave curing device or a frequency variable microwave curing device may be used for the heat treatment.
  • standing waves can be prevented and the substrate surface can be heated uniformly by irradiating the microwaves in pulses while changing the frequency.
  • a metal wiring is included as an electronic component as a substrate, the occurrence of discharge from the metal can be prevented and the electronic component can be protected from destruction by irradiating the microwave in pulses while changing the frequency.
  • the set heating temperature can be maintained, and damage to the pattern resin film and the substrate can be prevented.
  • the cured product of the present invention is a cured product of the positive photosensitive resin composition of the present invention.
  • the above-described heat treatment step can be employed.
  • the cured product of the present invention may be the aforementioned pattern cured film.
  • the pattern cured film and the cured product produced by the above method can be used as an interlayer insulating film, a cover coat layer, or a surface protective film.
  • an interlayer insulating film, cover coat layer, surface protective film, and the like highly reliable electronic components such as semiconductor devices, multilayer wiring boards, and various electronic devices can be manufactured.
  • a semiconductor device particularly a device having a package structure without a UBM layer can be manufactured.
  • the package structure without the UBM layer has solder bumps mounted directly on the copper rewiring, and the resin composition on the outermost layer reinforces the bumps in order to relieve the stress applied to the bumps and ensure reliability. It has a structure to do.
  • the manufacturing process is shown in FIG.
  • the photosensitive resin composition is applied onto the substrate 10 having the rewiring layer 20 and dried to form a resin film (1-1), and the obtained resin film 30 is exposed to a predetermined pattern.
  • the exposed resin film is developed using a developer (1-2), the patterned resin film obtained by the development is heat-treated, and then a conductive ball or conductive bump 40 is mounted (1- 3)
  • a package without the UBM layer can be manufactured.
  • FIG. 2 is a schematic cross-sectional view of a semiconductor device having a rewiring structure in which no UBM layer is provided.
  • metal (aluminum or the like) wiring 120 is provided on a wafer 110, and an insulating layer 130 is laminated so as to cover both ends of the wafer 110 and the metal wiring 120.
  • an interlayer insulating film 140 is provided so as to cover part of the insulating layer 130 and the metal wiring 120, so as to cover all the remaining exposed portions of the metal wiring 120 and the interlayer insulating film 140.
  • the rewiring layer 150 is laminated.
  • a conductive ball 170 is provided in contact with the rewiring layer 150, and a cover coat layer 160 is laminated on the rewiring layer 150 so as to fill a gap formed by the rewiring layer 150 and the conductive ball 170.
  • the semiconductor device is an embodiment of the electronic component of the present invention, but is not limited to the above, and can take various structures.
  • polystyrene precursor polyhydroxyamide (polybenzoxazole precursor) (hereinafter referred to as polymer I and To do).
  • polymer I and To do polyhydroxyamide (polybenzoxazole precursor)
  • the weight average molecular weight of polymer I determined by gel permeation chromatography (GPC) method standard polystyrene conversion was 33,100, and the degree of dispersion was 2.0.
  • Measuring device Detector L4000 UV manufactured by Hitachi, Ltd. Pump: Hitachi Ltd.
  • Synthesis example 2 In a 0.2 liter flask equipped with a stirrer and a thermometer, 60 g of N-methylpyrrolidone was charged, and 13.92 g (38 mmol) of 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane was added. And dissolved with stirring. Subsequently, while maintaining the temperature at 0 to 5 ° C., 11.86 g (40 mmol) of 4,4′-diphenyl ether dicarboxylic acid dichloride was added dropwise over 10 minutes, and then the temperature was returned to room temperature and the solution in the flask was stirred for 3 hours. The above solution was poured into 3 liters of water, and the precipitate was collected.
  • polymer II polyhydroxyamide
  • the weight average molecular weight of polymer II determined by GPC standard polystyrene conversion in the same manner as in Synthesis Example 1 was 22,400, and the degree of dispersion was 3.2.
  • Synthesis example 3 Except that 10.69 g (40 mmol) of dodecanedioic acid dichloride used in Synthesis Example 1 was replaced with 7.48 g (28 mmol) of dodecanedioic acid dichloride and 3.56 g (12 mmol) of 4,4′-diphenyl ether dicarboxylic acid dichloride. Synthesis was performed in the same manner as in Synthesis Example 1 to obtain polyhydroxyamide (hereinafter referred to as polymer III). The weight average molecular weight of the polymer III obtained by standard polystyrene conversion as in Synthesis Example 1 was 41,800, and the degree of dispersion was 2.0.
  • polymer IV polyamic acid
  • the weight average molecular weight of polymer IV determined by GPC standard polystyrene conversion as in Synthesis Example 1 was 39,000, and the degree of dispersion was 4.5.
  • diphenyliodonium chloride was poured into an aqueous solution of 9,10-dimethoxyanthracenesulfonic acid sodium salt and stirred for 3 hours until the temperature returned to room temperature.
  • the precipitate was collected, washed with pure water three times, and then dried under reduced pressure to obtain diphenyliodonium-9,10-dimethoxyanthracene-2-sulfonate (b1).
  • diphenyliodonium chloride was poured into an aqueous solution of 8-anilino-1-naphthalenesulfonic acid ammonium and stirred for 3 hours until the temperature returned to room temperature.
  • the precipitate was collected, washed with pure water three times, and then dried under reduced pressure to obtain diphenyliodonium-8-anilinonanaphthalene-1-sulfonate (b2).
  • the reaction was stopped by adding a few drops of saturated aqueous sodium hydrogen carbonate solution to the mother liquor, and the organic layer extracted with ethyl acetate was washed with saturated aqueous sodium hydrogen carbonate solution, water and saturated brine in that order, and dried over anhydrous sodium sulfate. . After filtering off anhydrous sodium sulfate, the solvent was distilled off under reduced pressure and dried to obtain an acid-reactive protecting group-containing compound (e1).
  • Examples 1 to 19 and Comparative Examples 1 to 13 Photosensitive resin compositions of Examples 1 to 19 and Comparative Examples 1 to 13 were prepared using the components and blending amounts shown in Tables 1 to 4.
  • the blending amounts in Tables 1 to 4 are the parts by mass of the components (b) to (d), (b′-1) and (e1) with respect to 100 parts by mass of each polymer as the component (a).
  • each component used is as follows.
  • D1 1,3,4,6-tetrakis (methoxymethyl) glycoluril having the following structure (trade name “MX-270”, manufactured by Sanwa Chemical Co., Ltd.)
  • Exposure part dissolution rate (nm / s) film thickness after drying / development time
  • Unexposed part dissolution rate (nm / s) (film thickness after drying ⁇ film thickness of unexposed part after development) / development time
  • Dissolution contrast exposed part dissolution rate / unexposed part dissolution rate The results are shown in Tables 1 to 4.
  • Examples 20 to 28 and Comparative Examples 14 to 15 Photosensitive resin compositions of Examples 20 to 28 and Comparative Examples 14 to 15 were prepared using the components and blending amounts shown in Table 5. The blending amounts in Table 5 are the same as those in Tables 1 to 4.
  • Pattern resin films were formed in the same manner as in Examples 1 to 19 and Comparative Examples 1 to 13, except that the film thickness after drying was 10 to 30 ⁇ m, the exposure amount was 800 mJ / cm 2 , and the development time was 150 seconds.
  • Examples 29 to 44 and Comparative Examples 16 to 28 Photosensitive resin compositions of Examples 29 to 44 and Comparative Examples 16 to 28 were prepared using the components and blending amounts shown in Tables 6 to 8.
  • the blending amounts in Tables 6 to 8 are parts by mass of the components (b) to (d) and the component (b ′) with respect to 100 parts by mass of each polymer as the component (a).
  • the component (b ′) is as follows.
  • (b′1) Acid-reactive protecting group-containing compound obtained in Synthesis Example 7 (Example (e1) in Examples 1 to 28 and Comparative Examples 1 to 15)
  • (b′2) Compound represented by the following structural formula (TPPA528 (trade name), naphthoquinone diazide compound manufactured by Daito Chemix Co., Ltd.)
  • dissolution rate and dissolution contrast evaluation The dissolution rate and dissolution contrast were evaluated in the same manner as in Examples 1 to 19 and Comparative Examples 1 to 13. In Examples 29 to 44 and Comparative Examples 16 to 28, the following evaluation criteria were used.
  • the case where the unexposed portion dissolution rate was 30 nm / s or less was A, the case where it was 30 to 100 nm / s was B, and the case where it was faster than 100 nm / s was C.
  • Examples 45 to 49 and Comparative Examples 29 and 30 Photosensitive resin compositions of Examples 45 to 49 and Comparative Examples 29 and 30 were prepared with the components and blending amounts shown in Table 8.
  • Pattern formation was evaluated in the same manner as in Examples 20 to 28 and Comparative Examples 14 and 15. The results are shown in Table 8.
  • the photosensitive resin composition of the present invention can be used for electronic parts such as semiconductor devices, multilayer wiring boards, and various electronic devices.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials For Photolithography (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)

Abstract

(a)アルカリ可溶性樹脂、(b)i線露光によって酸を発生するオニウム塩、(c)溶剤及び(d)架橋剤を含有するポジ型感光性樹脂組成物であって、前記(c)溶剤を除いたポジ型感光性樹脂組成物の合計質量に対して、(a)、(b)及び(d)成分の合計が88質量%以上であるポジ型感光性樹脂組成物。

Description

ポジ型感光性樹脂組成物、パターン硬化膜の製造方法、硬化物、層間絶縁膜、カバーコート層、表面保護膜及び電子部品
 本発明は、ポジ型感光性樹脂組成物、それを用いたパターン硬化膜の製造方法、硬化物、層間絶縁膜、カバーコート層、表面保護膜及び電子部品に関する。
 従来、半導体素子の表面保護膜及び層間絶縁膜には、優れた耐熱性と電気特性、機械特性等を併せ持つポリイミドやポリベンゾオキサゾールが用いられている。近年、ポリイミド自身に感光特性を付与した感光性ポリイミドが用いられており、これを用いるとパターン硬化膜の製造工程が簡略化でき、煩雑な製造工程を短縮できる。
 パターン硬化膜の製造において、現像の際はN-メチルピロリドン等の有機溶剤が用いられてきたが、環境への配慮から、ポリイミド又はポリイミド前駆体に感光剤としてナフトキノンジアジド化合物を混合する方法により、アルカリ水溶液で現像ができる樹脂組成物が提案されている(例えば、特許文献1又は2参照)。
 アルカリ水溶液で現像できる樹脂組成物として、ポリベンゾオキサゾール、ポリベンゾオキサゾール前駆体又はノボラック樹脂を含有する樹脂組成物が提案されている(例えば、特許文献3参照)。
 一方、近年、半導体素子の高集積化及び小型化が進み、パッケージ基板の薄膜化、小型化とともに低コスト化等の要求がある。そのため、半導体素子の信頼性を向上させるために使用していたアンダーバンプメタル(UBM)層を用いないパッケージ構造が提案されている(非特許文献1又は2参照)。
特開昭64-60630号公報 米国特許第4395482号明細書 特開2009-265520号公報
"ADVANCES IN WLCSP TECHNOLOGIES FOR GROWING MARKET NEEDS",Abstracts of 6th Annual International Wafer Level Packaging Conference,[2009-10-27/10-30] "TECHNOLOGY SOLUTIONS FOR A DYNAMIC AND DIVERSE WLCSP MARKET",Abstracts of 7th Annual International Wafer Level Packaging Conference,2010-11-14,Santa Clara,USA Hiroshi Ito et al.,Evaluation of Onium Salt Cationic Photoinitiators as Novel Dissolution Inhibitor for Novolac Resin,J.Electrochem.Soc.2322-2327(1988)
 前記アンダーバンプメタル(UBM)層を取り除いたパッケージ構造では、最外層に設けるパターン硬化膜がバンプを補強することで信頼性を確保する設計のため、ポジ型感光性樹脂組成物を用いて形成するパターン硬化膜の厚みを、従来の膜厚(10μm以下)から厚くすることが好ましい。
 しかし、従来のナフトキノンジアジド化合物を用いるポジ型感光性樹脂組成物により厚膜を形成すると、感光波長における透過率が低くなり、感度が悪化し、現像時間が長くなるという課題があった。一方、感度が高い樹脂組成物では、現像時間は短いが、未露光部も現像されてしまうという課題があった。
 また、ナフトキノンジアジド化合物を用いないアルカリポジ型感光性樹脂組成物として、溶解抑制型ポジ型感光性樹脂組成物が提案されている(非特許文献3参照)。しかし、上記溶解抑制型ポジ型感光性樹脂組成物は、厚膜適用が技術的に困難だった。
 本発明の目的は、厚膜のパターン硬化膜を形成する場合において、露光部と未露光部の溶解コントラストが実用可能な程度に良好なポジ型感光性樹脂組成物、それを用いたパターン硬化膜の製造方法、層間絶縁膜、カバーコート層、表面保護膜及び電子部品を提供することである。
 本発明者らは、アルカリ可溶性樹脂とナフトキノンジアジド化合物を組み合わせたポジ型感光性樹脂組成物を用いて厚膜の形成を試みた。しかしながら、塗布膜の感光波長での透過率が低くなり、露光部において十分なアルカリ溶解速度が得られず、実用範囲内での現像時間においては開口部が得られなかった。加えて、現像時間が長くなることで、現像液の未露光部への浸透が起こり、解像度の低下が起こることが判明した。
 そこで本発明者らは、上記問題を鑑み、更なる検討を重ねた結果、アルカリ可溶性樹脂とi線露光によって酸を発生するオニウム塩(以下、i線感度を有するオニウム塩ともいう)とを組み合わせたポジ型感光性樹脂組成物を用いることで、厚膜のパターン硬化膜を形成する際にも実用可能な溶解コントラストを発現できることを見出した。
 本発明によれば、以下のポジ型感光性樹脂組成物等が提供される。
<1>(a)アルカリ可溶性樹脂、(b)i線露光によって酸を発生するオニウム塩、(c)溶剤及び(d)架橋剤を含有するポジ型感光性樹脂組成物であって、前記(c)溶剤を除いたポジ型感光性樹脂組成物の合計質量に対して、(a)、(b)及び(d)成分の合計が88質量%以上であるポジ型感光性樹脂組成物。
<2>(a)アルカリ可溶性樹脂、(b)i線露光によって酸を発生するオニウム塩、及び(c)溶剤を含有するポジ型感光性樹脂組成物であって、(a)成分100質量部に対して、ナフトキノンジアジド化合物又は酸反応性保護基含有化合物を0~100ppm含有するポジ型感光性樹脂組成物。
<3>さらに、(d)架橋剤を含有する2に記載のポジ型感光性樹脂組成物。
<4>前記(a)成分が、ポリイミド、ポリイミド前駆体、ポリベンゾオキサゾール、ポリベンゾオキサゾール前駆体、ノボラック樹脂又はポリヒドロキシスチレンを含有する1~3のいずれか一項に記載のポジ型感光性樹脂組成物。
<5>前記(b)成分が、i線露光前はアルカリ水溶液に対する前記(a)成分の溶解を阻害し、i線露光後はアルカリ水溶液に対する前記(a)成分の溶解を阻害しない化合物である1~4のいずれか一項に記載のポジ型感光性樹脂組成物。
<6>前記(b)成分が、下記一般式(b-1)で表される化合物である1~5のいずれか一項に記載のポジ型感光性樹脂組成物。
Figure JPOXMLDOC01-appb-C000001
(式中、Xは対陰イオンである。また、芳香環には置換基を有していてもよい。)
<7>前記(b)成分が、下記式(b―2)で表される化合物である1~6のいずれか一項に記載のポジ型感光性樹脂組成物。
Figure JPOXMLDOC01-appb-C000002
(式中、Meはメチル基である。)
<8>層間絶縁膜、カバーコート層又は表面保護膜の形成に用いられる1~7のいずれか一項に記載のポジ型感光性樹脂組成物。
<9>UBMフリー構造を有する半導体装置の層間絶縁膜、カバーコート層又は表面保護膜の形成に用いられる1~7のいずれか一項に記載のポジ型感光性樹脂組成物。
<10>1~9のいずれか一項に記載のポジ型感光性樹脂組成物を基板上に塗布、乾燥し、感光性樹脂膜を形成する工程と、
 得られた感光性樹脂膜を所定のパターンに露光する工程と、
 露光した樹脂膜を、アルカリ水溶液を用いて現像して、パターン樹脂膜を得る工程と、
 前記パターン樹脂膜を加熱処理する工程と、
を含むパターン硬化膜の製造方法。
<11>前記加熱処理の温度が250℃以下である10に記載のパターン硬化膜の製造方法。
<12>1~9のいずれか一項に記載のポジ型感光性樹脂組成物の硬化物。
<13>12に記載の硬化物を用いた層間絶縁膜、カバーコート層又は表面保護膜。
<14>13に記載の層間絶縁膜、カバーコート層又は表面保護膜を有する電子部品。
 本発明によれば、厚膜のパターン硬化膜を形成する際にも実用可能な溶解コントラストを実現できるポジ型感光性樹脂組成物、それを用いたパターン硬化膜の製造方法、硬化物、層間絶縁膜、カバーコート層、表面保護膜及び電子部品を提供できる。
UBM層を設けていないパッケージ構造の作製方法を示す概略断面図である。 本発明の電子部品の一実施形態である再配線構造を有する半導体装置の概略断面図である。
 以下に、本発明の第1及び第2のポジ型感光性樹脂組成物、それを用いたパターン硬化膜の製造方法及び電子部品の実施の形態を詳細に説明する。尚、以下の実施の形態により本発明が限定されるものではない。
 本明細書において、「A又はB」とは、AとBのどちらか一方を含んでいればよく、両方とも含んでいてもよい。また、以下で例示する材料は、特に断らない限り、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。さらに、本明細書において組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
 第1及び第2のポジ型感光性樹脂組成物を総括して「本発明のポジ型感光性樹脂組成物(樹脂組成物)」という場合がある。
[第1のポジ型感光性樹脂組成物]
 本発明の第1のポジ型感光性樹脂組成物の第1の態様は、(a)アルカリ可溶性樹脂、(b)i線露光によって酸を発生するオニウム塩、(c)溶剤及び(d)架橋剤を含有するポジ型感光性樹脂組成物であって、前記(c)溶剤を除いたポジ型感光性樹脂組成物の合計質量に対して、(a)、(b)、及び(d)成分の合計が88質量%以上である。上記(a)、(b)、及び(d)成分の合計は、90質量%以上が好ましく、95質量%以上がより好ましく、98質量%以上がさらに好ましく、100質量%でもよい。
 また、本発明の第1のポジ型感光性樹脂組成物の第2の態様は、(a)アルカリ可溶性樹脂、(b)i線露光によって酸を発生するオニウム塩、(c)溶剤及び(d)架橋剤を含有し、(a)成分100質量部に対して、ナフトキノンジアジド化合物が0以上100ppm未満である。第2の態様は、前記(c)溶剤を除いたポジ型感光性樹脂組成物の合計質量に対して、(a)、(b)、及び(d)成分の合計が88質量%以上であることが好ましく、90質量%以上がより好ましく、95質量%以上がさらに好ましく、98質量%以上がさらに好ましく、100質量%でもよい。
 それぞれ単に(a)成分、(b)成分、(c)成分及び(d)成分と記す場合がある。第1の態様及び第2の態様を総括して、本発明の第1のポジ型感光性樹脂組成物という。以下、各成分について説明する。
((a)成分:アルカリ可溶性樹脂)
 アルカリ可溶性樹脂としては、特に制限はないが、電気絶縁性が高いものが好ましい。例えば、ポリイミド、ポリイミド前駆体、ポリベンゾオキサゾール、ポリベンゾオキサゾール前駆体、ポリアミド、ポリアミドイミド、ポリヒドロキシスチレン、ノボラック樹脂、ノルボルネン樹脂、エポキシ樹脂及びアクリル樹脂を挙げることができる。
 特に、絶縁性と機械特性の両立の観点から、ポリイミド、ポリイミド前駆体、ポリベンゾオキサゾール、ポリベンゾオキサゾール前駆体、ノボラック樹脂又はポリヒドロキシスチレンを用いることが好ましい。
 アルカリ可溶性樹脂は、通常、アルカリ水溶液で現像する。そのため、アルカリ水溶液に可溶であることが好ましい。
 アルカリ水溶液としては、テトラメチルアンモニウムヒドロキシド(TMAH)水溶液等の有機アンモニウム水溶液、金属水酸化物水溶液、有機アミン水溶液などが挙げられる。一般には、濃度が2.38重量%のTMAH水溶液を用いることが好ましい。よって、(a)成分はTMAH水溶液に対して可溶であることが好ましい。
 尚、(a)成分がアルカリ水溶液に可溶であることの1つの基準を以下に説明する。(a)成分を任意の溶剤に溶かして溶液とした後、シリコンウエハ等の基板上にスピン塗布して膜厚5μm程度の樹脂膜を形成する。これをテトラメチルアンモニウムヒドロキシド水溶液、金属水酸化物水溶液、有機アミン水溶液のいずれか一つに、20~25℃において浸漬する。この結果、溶解して溶液となったとき、用いた(a)成分はアルカリ水溶液に可溶であると判断する。
 ポリイミド前駆体は、式(1)で表される構造を有することが好ましい。
Figure JPOXMLDOC01-appb-C000003
 式(1)中、Aは下記式(2a)~(2e)で表される4価の有機基のいずれかであり、Bは下記式(3)で表される2価の有機基である。R及びRは各々独立に水素原子又は1価の有機基である。
Figure JPOXMLDOC01-appb-C000004
 上記式(2d)中、X及びYは、各々独立に、各々が結合するベンゼン環と共役しない2価の基又は単結合を示す。式(2e)中、Zは酸素原子又は硫黄原子を示す。
Figure JPOXMLDOC01-appb-C000005
 式(3)中、R~R10は、各々独立に水素原子、フッ素原子又は1価の有機基を表し、R~R10の少なくとも1つはフッ素原子、メチル基又はトリフルオロメチル基を表す。
 上記式(1)中のR及びRの1価の有機基としては、炭素数1~10(好ましくは炭素数1~6)のアルキル基、炭素数1~10(好ましくは炭素数1~6)のフッ化アルキル基等が挙げられる。
 上記式(2d)中のX及びYにおいて、ベンゼン環と共役しない2価の基としては、酸素原子、ジメチルメチレン基、ビス(トリフルオロメチル)メチレン基、ジメチルシリレン基、メチルトリフルオロメチルメチレン基等が挙げられる。
 式(1)中のBは原料として用いるジアミンに由来する構造であり、式(3)で表される2価の有機基である。
 R~R10の1価の有機基としては、メチル基、トリフルオロメチル基等が挙げられる。良好なi線透過率及び低応力の観点から、2つ以上がメチル基又はトリフルオロメチル基であることが好ましい。
 ポリイミドとしては、上記のポリイミド前駆体から形成するポリイミドが挙げられる。
 ポリベンゾオキサゾール前駆体は、下記式(4)で表される構造単位を有する前駆体である。
Figure JPOXMLDOC01-appb-C000006
(式(4)中、Uは単結合又は2価の基であり、Wは2価の基である。)
 式(4)中のUの2価の基としては、炭素数1~30の脂肪族鎖状構造を含む基であることが好ましく、下記式(UV1)で表される構造を含む基であることがより好ましい。
Figure JPOXMLDOC01-appb-C000007
(式(UV1)中、R11及びR12は各々独立に水素原子、フッ素原子、炭素数1~6のアルキル基又は炭素数1~6のフッ素化アルキル基であり、aは1~30の整数である。)
 式(UV1)中のR11及びR12は、ポリマーの透明性の観点から、メチル基又はトリフルオロメチル基が好ましく、トリフルオロメチル基がより好ましい。
 aは1~5の整数が好ましい。
 Wの2価の基は、ジカルボン酸に由来する構造であることが好ましく、そのような原料ジカルボン酸としては、ドデカン二酸、イソフタル酸、テレフタル酸、2,2-ビス(4-カルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、4,4’-ジカルボキシビフェニル、4,4’-ジカルボキシジフェニルエーテル、4,4’-ジカルボキシテトラフェニルシラン、ビス(4-カルボキシフェニル)スルホン、2,2-ビス(p-カルボキシフェニル)プロパン、5-tert-ブチルイソフタル酸、5-ブロモイソフタル酸、5-フルオロイソフタル酸、5-クロロイソフタル酸、2,6-ナフタレンジカルボン酸等が挙げられる。
 ポリベンゾオキサゾールとしては、上記のポリベンゾオキサゾール前駆体から形成するポリベンゾオキサゾールが挙げられる。
 ノボラック樹脂としては、フェノール、クレゾール、キシレノール、レゾルシノール、ハイドロキノン等の芳香族ヒドロキシ化合物及びこれらのアルキル置換、又はハロゲン置換芳香族化合物から選ばれる少なくとも1種であるフェノール類をホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド等のアルデヒド化合物と重縮合して得られるものが好ましく、例えば、フェノール及びホルムアルデヒド樹脂、クレゾール及びホルムアルデヒド樹脂、フェノール、クレゾール及びホルムアルデヒド共縮合樹脂等が挙げられる。
 (a)成分のポリマーの分子量は、ポリスチレン換算での重量平均分子量が10000~100000であることが好ましく、15000~100000であることがより好ましく、20000~85000であることがさらに好ましい。重量平均分子量が10000より小さいと、アルカリ現像液への溶解性が高くなりすぎる恐れがあり、100000より大きいと、溶剤への溶解性が低下したり、溶液の粘度が増大して取り扱い性が低下したりする恐れがある。
 重量平均分子量は、ゲルパーミエーションクロマトグラフ法によって測定することができ、標準ポリスチレン検量線を用いて換算することによって求めることができる。
((b)成分:i線感度を有するオニウム塩)
 (b)成分は、i線感度を有するオニウム塩であれば特に制限なく用いることができるが、ヨードニウム構造又はスルホニウム構造を有する化合物であることが好ましい。高コントラスト化の観点から、ヨードニウム構造を有する化合物がより好ましい。
 (b)成分は、例えば、樹脂組成物を基板上に塗布し、形成した樹脂膜に光を照射した場合に、光に反応して、露光部と未露光部の現像液に対する溶解性に差異を付与する機能を有するものである。
 (b)成分は、(a)成分と相溶性の高いものであることが好ましい。
 (b)成分は、i線露光前はアルカリ水溶液に対する(a)成分の溶解を阻害し、i線露光後はアルカリ水溶液に対する(a)成分の溶解を阻害しない化合物であることが好ましい。i線露光後に露光部における溶解阻害を開放することで、本発明の樹脂組成物を用いて厚膜のパターン硬化膜を形成した場合に、実用範囲内の感度及び現像時間でパターニングすることができる。
 (b)成分としては、例えば、下記一般式(b-1)で表される化合物を用いることができる。
Figure JPOXMLDOC01-appb-C000008
(式中、Xは対陰イオンである。また、芳香環には置換基を有していてもよい。)
 芳香環上の置換基としては、本発明の効果を阻害しない範囲であれば特に制限はない。具体的には、アルキル基、アルケニル基、アルコキシ基、トリアルキルシリル基、前記各基の水素原子の一部又は全部がフッ素原子に置換された基、塩素原子、臭素原子、フッ素原子等が挙げられる。また、芳香環は複数の置換基を有していてもよい。
 Xとしては、p-トルエンスルホン酸イオン、トリフルオロメタンスルホン酸イオン、ヘキサフルオロホウ化物イオン、9,10-ジメトキシアントラセン-2-スルホン酸イオン、8-アニリノナフタレン-1-スルホン酸イオン、メチルスルホン酸イオン、硫酸イオン、硝酸イオン、トリクロロ酢酸イオン、塩化物イオン等が挙げられる。
 ヨードニウム構造を有する化合物の具体例として、ジフェニルヨードニウム-9,10-ジメトキシアントラセン-2-スルホナート、ジフェニルヨードニウム-8-アニリノナフタレン-1-スルホナート、ジフェニルヨードニウムスルホナート、ジフェニルヨードニウムトリフルオロメチルスルホナート、ジフェニルヨードニウムノナフルオロブタンスルホナート、ジフェニルヨードニウムトルエンスルホナート、ジフェニルヨードニウムクロリド、ジフェニルヨードニウムブロミド、ジフェニルヨードニウムヨージド、ジフェニルヨードニウムヘキサフルオロホスフェート、4-メトキシフェニルヨードニウムニトラート、4-メトキシフェニルヨードニウムトリフルオロメチルスルホナート、4,4’-ジ-t-ブチルジフェニルヨードニウムトリフルオロメチルスルホナート、フェニル(5-トリフルオロメチルスルホニル-4-オクテン―4―イル)ヨードニウムヘキサフルオロボラート等が挙げられる。
 これらのうち、高感度化及び高溶解コントラスト化の観点から、下記式(b-2)で表される化合物であるジフェニルヨードニウム-9,10-ジメトキシアントラセン-2-スルホナートを用いることが好ましい。
Figure JPOXMLDOC01-appb-C000009
(式中、Meはメチル基である。)
 また、下記式(b-3)で表される化合物も好ましい。
Figure JPOXMLDOC01-appb-C000010
 (b)成分の含有量は、(a)成分100質量部に対して、2~50質量部が好ましく、3~40質量部がより好ましく、5~30質量部がさらに好ましい。
 (b)成分が上記範囲であることにより、未露光部では(a)成分の溶解阻害を強く引き起し、露光部では溶解阻害効果が消失することで、未露光部と露光部の溶解コントラストを高くすることができる。溶解コントラストが高いため、厚膜のパターン硬化膜を形成する際にも好適に用いることができる。また、現像時間を短縮することができる。
((c)成分:溶剤)
 (c)成分としては、γ-ブチロラクトン、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート、酢酸ベンジル、n-ブチルアセテート、エトキシエチルプロピオネート、3-メチルメトキシプロピオネート、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホリルアミド、テトラメチレンスルホン、シクロヘキサノン、シクロペンタノン、ジエチルケトン、ジイソブチルケトン、メチルアミルケトン等が挙げられる。通常、感光性樹脂組成物中の他の成分を充分に溶解できるものであれば特に制限はない。
 この中でも、各成分の溶解性と樹脂膜形成時の塗布性に優れる観点から、γ-ブチロラクトン、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシドを用いることが好ましい。
 (c)成分の含有量に、特に制限はないが、(a)成分100質量部に対して、50~300質量部が好ましく、100~200質量部がより好ましい。
 ((d)成分:架橋剤)
 (d)成分は、樹脂組成物を塗布、露光及び現像後にパターン樹脂膜を加熱処理する工程において、アルカリ可溶性樹脂と反応(架橋反応)する、又は、架橋剤自身が重合することができる。これにより、樹脂組成物を比較的低い温度、例えば250℃以下で硬化した場合も、良好な機械特性、薬品耐性及びフラックス耐性を付与させることができる。
 (d)成分は、加熱処理する工程において架橋又は重合する化合物であれば特に制限はないが、メチロール基、アルコキシメチル基等のアルコキシアルキル基、エポキシ基、オキセタニル基又はビニルエーテル基を有する化合物であることが好ましい。
 これらの基がベンゼン環に結合している化合物、N位がメチロール基若しくはアルコキシメチル基で置換されたメラミン樹脂又は尿素樹脂が好ましい。また、これらの基がフェノール性水酸基を有するベンゼン環に結合している化合物は、現像する際に露光部の溶解速度が増加して感度が向上させることが出来る点でより好ましい。
 中でも良好な感度及びワニスの安定性、並びに、パターン形成後の感光性樹脂膜の硬化時に、感光性樹脂膜の溶融を防ぐことができるという観点から、2個以上のメチロール基又はアルコキシメチル基を有する化合物が好ましい。
 (d)成分としては、樹脂組成物を250℃以下の低温で硬化した場合に、優れた耐薬品性を有する硬化膜が得られるため、下記式(5)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000011
(式(5)中、R及びRは、それぞれ独立に炭素数1~30のアルキル基である。)
 また、(d)成分としては、以下の化合物を用いることも好ましい。
Figure JPOXMLDOC01-appb-C000012
 (d)成分の含有量は、(a)成分100質量部に対して、1~50質量部が好ましく、5~40質量部がより好ましく、10~30質量部がさらに好ましい。
 本発明の第1の樹脂組成物の第1の態様において、ナフトキノンジアジド化合物が、(a)成分100質量部に対して、0以上100ppm未満であることが好ましい。本発明の第1の樹脂組成物において、0~50ppmであることがより好ましく、0~10ppmであることがさらに好ましく、ナフトキノンジアジド化合物を含まないこと(0ppm)が特に好ましい。
 ナフトキノンジアジド化合物が上記範囲内であることにより、本発明の第1の樹脂組成物は、塗布後膜厚20μm以上の厚膜においても、良好な感光特性を保つことができる。
 ナフトキノンジアジド化合物としては、例えばポリヒドロキシ化合物と1,2-ナフトキノンジアジド-4-スルホニルクロリド、又は1,2-ナフトキノンジアジド-5-スルホニルクロリドの反応物が挙げられる。
 上記ポリヒドロキシ化合物としては、ヒドロキノン、レゾルシノール、ピロガロール、ビスフェノールA、ビス(2-ヒドロキシフェニル)メタン、ビス(4-ヒドロキシフェニル)メタン、2-ヒドロキシフェニル-4’-ヒドロキシフェニルメタン、2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン、2,3,4-トリヒドロキシベンゾフェノン、2,3,4,4’-テトラヒドロキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノン、2,3,4,2’,3’-ペンタヒドロキシベンゾフェノン、2,3,4,3’,4’,5’-ヘキサヒドロキシベンゾフェノン、ビス(2,3,4-トリヒドロキシフェニル)メタン、ビス(2,3,4-トリヒドロキシフェニル)プロパン、2-(4-ヒドロキシフェニル)-2-[4-[1,1-ビス(4-ヒドロキシフェニル)エチル]フェニル]プロパン、4b,5,9b,10-テトラヒドロ-1,3,6,8-テトラヒドロキシ-5,10-ジメチルインデノ[2,1-a]インデン、トリス(4-ヒドロキシフェニル)メタン、1,1,1-トリス(4-ヒドロキシフェニル)エタン等が挙げられる。また、必ずしもここに挙げられたものに限定されない。
 本発明の第1の樹脂組成物において、酸反応性保護基含有化合物が、(a)成分100質量部に対して、0~1000ppmであることが好ましい。本発明の第1の樹脂組成物においては、0~100ppmであることがより好ましく、0~10ppmであることがさらに好ましく、酸反応性保護基含有化合物を含まないこと(0ppm)が特に好ましい。
 上記範囲であることにより、PEB(Post Exposure Bake)工程が必須の化学増幅型のポジ型感光性樹脂組成物に比べ、低コストで厚膜のパターンを形成することができる。
 酸反応性保護基含有化合物としては、カルボン酸の水素原子を1-アルコキシアルキル基等で置換した化合物が挙げられる。上記カルボン酸としては、フタル酸、イソフタル酸、テレフタル酸、4-カルボキシフタル酸、5-tert-ブチルイソフタル酸、5-ブロモイソフタル酸、5-フルオロイソフタル酸、5-クロロイソフタル酸、1,4-シクロヘキサンジカルボン酸、4,4’-ジカルボキシジフェニルエーテル、2,6-ナフタレンジカルボン酸、2,2-ビス(4-カルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、4,4'-ジカルボキシビフェニル、4,4'-ジカルボキシテトラフェニルシラン、ビス(4-カルボキシフェニル)スルホン、2,2-ビス(p-カルボキシフェニル)プロパン、コール酸、デオキシコール酸、リトコール酸が挙げられる。上記1-アルコキシアルキル基としては、t-ブチル基、t-アミル基等の3級アルキル基、イソボロニル基、エトキシメチル基、1-エトキシエチル基、1-ブトキシエチル基、1-イソブトキシエチル基等が挙げられる。
 本発明の第1の樹脂組成物は、必要に応じて、カップリング剤、溶解促進剤、溶解阻害剤、界面活性剤、レベリング剤等を含有してもよい。
 尚、本発明の第1の感光性樹脂組成物は、(a)~(d)成分が、組成物全体に対して、91質量%以上であることが好ましく、92質量%以上であることがより好ましく、93質量%以上であることがさらに好ましい。
[第2のポジ型感光性樹脂組成物]
 本発明の第2のポジ型感光性樹脂組成物は、(a)アルカリ可溶性樹脂、(b)i線露光によって酸を発生するオニウム塩、及び(c)溶剤を含有し、(a)成分100質量部に対して、ナフトキノンジアジド化合物又は酸反応性保護基含有化合物を0~100ppm含有する。
 (a)~(c)成分は第1のポジ型感光性樹脂組成物と同様である。第2のポジ型感光性樹脂組成物は、(d)架橋剤を含有してもよいし含有しなくてもよい。(d)成分は第1のポジ型感光性樹脂組成物と同様である。
 第2の樹脂組成物において、ナフトキノンジアジド化合物の含有量は、(a)成分100質量部に対して、0~100ppmである。また、0~50ppmであることが好ましく、0~10ppmであることがより好ましく、ナフトキノンジアジド化合物を含まないこと(0ppm)がさらに好ましい。
 ナフトキノンジアジド化合物が上記範囲内であることにより、第2の樹脂組成物は、塗布後の膜厚が20μm以上のような厚膜であっても、良好な感光特性を保つことができる。
 第2の樹脂組成物において、酸反応性保護基含有化合物の含有量は、(a)成分100質量部に対して、0~100ppmである。また、0~50ppmであることが好ましく、0~10ppmであることがより好ましく、酸反応性保護基含有化合物を含まないこと(0ppm)がさらに好ましい。
 上記範囲であることにより、PEB(Post Exposure Bake)工程が必須の化学増幅型のポジ型感光性樹脂組成物に比べ、低コストで厚膜のパターン硬化膜を形成することができる。
 第2の感光性樹脂組成物は、(a)~(c)成分が、組成物全体に対して、91質量%以上であることが好ましく、92質量%以上であることがより好ましく、93質量%以上であることがさらに好ましく、94質量%以上であることが特に好ましく、95質量%以上であることが極めて好ましく、96質量%以上であることが極めて特に好ましく、97質量%以上であることが最も好ましく、98質量%以上であることが最も特に好ましい。
 本発明の第2のポジ型感光性樹脂組成物は、上述した以外の事項については第1のポジ型感光性樹脂組成物と同じである。
[パターン硬化膜の製造方法]
 本発明の製造方法では、上述の樹脂組成物を基板上に塗布、乾燥し、感光性樹脂膜を形成する工程と、得られた感光性樹脂膜を所定のパターンに露光する工程と、露光した樹脂膜を、アルカリ水溶液を用いて現像して、パターン樹脂膜を得る工程と、パターン樹脂膜を加熱処理する工程とを含むことで、パターン硬化膜を製造することができる。
(樹脂膜形成工程)
 基板としては、ガラス、半導体、TiO、SiO等の金属酸化物絶縁体、窒化ケイ素、銅、銅合金などが挙げられる。
 塗布は、特に制限はないが、スピナー等を用いて行うことができる。
 乾燥は、ホットプレート、オーブン等を用いて行うことができる。加熱温度は100~150℃であることが好ましい。加熱時間は、30秒間~5分間が好ましい。これにより、上述の樹脂組成物を膜状に形成した樹脂膜を得ることができる。
 樹脂膜の膜厚は、5~100μmが好ましく、8~50μmがより好ましく、10~40μmがさらに好ましい。
(露光工程)
 露光工程では、マスクを介して所定のパターンに露光することができる。照射する活性光線は、i線を含む紫外線、可視光線、放射線等が挙げられるが、i線であることが好ましい。露光装置としては、平行露光機、投影露光機、ステッパ、スキャナ露光機等を用いることができる。
(現像工程)
 現像処理することで、パターン形成された樹脂膜(パターン樹脂膜)を得ることができる。一般的に、ポジ型感光性樹脂組成物を用いた場合には、露光部を現像液で除去する。
 現像液として用いるアルカリ水溶液は、水酸化ナトリウム、水酸化カリウム、ケイ酸ナトリウム、アンモニア、エチルアミン、ジエチルアミン、トリエチルアミン、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド等が挙げられ、テトラメチルアンモニウムヒドロキシドが好ましい。
 アルカリ水溶液の濃度は、0.1~10質量%が好ましい。
 現像時間は、用いるポリマーの種類によっても異なるが、10秒間~15分間であることが好ましく、10秒間~5分間であることがより好ましく、生産性の観点からは、30秒間~4分間であることがさらに好ましい。
 上記現像液にアルコール類又は界面活性剤を添加してもよい。添加量としては、現像液100質量部に対して、0.01~10質量部が好ましく、0.1~5質量部がより好ましい。
(加熱処理工程)
 パターン樹脂膜を加熱処理することにより、(a)成分の官能基同士、又は、(a)成分と(d)成分間等に架橋構造を形成し、パターン硬化膜を得ることができる。(a)成分がポリイミド前駆体又はポリベンゾオキサゾール前駆体を含む場合、各前駆体が脱水閉環反応を起こし、対応するポリマーとすることができる。
 加熱温度は、250℃以下が好ましく、120~250℃がより好ましく、160~230℃がさらに好ましい。
 上記範囲内であることにより、基板やデバイスへのダメージを小さく抑えることができ、デバイスを歩留り良く生産することが可能となり、プロセスの省エネルギー化を実現することができる。
 加熱時間は、5時間以下が好ましく、30分間~3時間がより好ましい。
 上記範囲内であることにより、架橋反応又は脱水閉環反応を充分に進行することができる。
 また、加熱処理の雰囲気は大気中であっても、窒素等の不活性雰囲気中であってもよいが、パターン樹脂膜の酸化を防ぐことができる観点から、窒素雰囲気下が好ましい。
 加熱処理工程に用いられる装置としては、石英チューブ炉、ホットプレート、ラピッドサーマルアニール、縦型拡散炉、赤外線硬化炉、電子線硬化炉、マイクロ波硬化炉等が挙げられる。
 また、加熱処理に、マイクロ波硬化装置又は周波数可変マイクロ波硬化装置を用いてもよい。
 これらを用いることにより、基板やデバイスの温度を、例えば220℃以下に保ったままで、パターン樹脂膜のみを効果的に加熱することができる(例えば、特許第2587148号公報参照)。マイクロ波を用いて硬化を行う場合、周波数を変化させながらマイクロ波をパルス状に照射すると、定在波を防ぐことができ、基板面を均一に加熱することができる。
 基板として電子部品のように金属配線を含む場合は、周波数を変化させながらマイクロ波をパルス状に照射すると金属からの放電等の発生を防ぐことができ、電子部品を破壊から守ることができる。
 マイクロ波をパルス状に照射すると、設定した加熱温度を保持することができ、パターン樹脂膜や基板へのダメージを防ぐことができる。
[硬化物]
 本発明の硬化物は、本発明のポジ型感光性樹脂組成物の硬化物である。硬化物を得る方法としては、前述の加熱処理工程を採用することができる。
 本発明の硬化物は、前述のパターン硬化膜であってもよい。
[電子部品]
 上記方法により製造したパターン硬化膜及び硬化物は、層間絶縁膜、カバーコート層又は表面保護膜として用いることができる。
 上記層間絶縁膜、カバーコート層、表面保護膜等を用いて、信頼性の高い、半導体装置、多層配線板、各種電子デバイス等の電子部品を製造することができる。
[半導体装置の製造工程]
 本発明の方法を用いて、半導体装置、特にUBM層を設けていないパッケージ構造を有する装置を製造することができる。
 UBM層を設けていないパッケージ構造は、銅の再配線上に直接はんだバンプを搭載しており、バンプにかかる応力を緩和して信頼性を確保するため、最外層の樹脂組成物がバンプを補強する構造となっている。
 製造工程を図1に示す。上記感光性樹脂組成物を、再配線層20を有する基板10上に塗布、乾燥し、樹脂膜を形成し(1-1)、得られた樹脂膜30を所定のパターンに露光する。露光後の樹脂膜を、現像液を用いて現像し(1-2)、現像により得られたパターン樹脂膜を加熱処理した後、導電性ボール又は導電性バンプ40を搭載することで(1-3)、UBM層を設けていないパッケージを製造することができる。
 上記パッケージでは、最外層のパターン樹脂膜がバンプを補強することで信頼性を確保するため、パターン硬化膜の厚みを、従来の膜厚(10μm以下)から厚くすることが好ましい。
 図2は、UBM層を設けていない再配線構造を有する半導体装置の概略断面図である。図2の半導体装置100では、ウエハ110上に金属(アルミニウム等)配線120が設けられており、ウエハ110及び金属配線120の両端部を覆うようにして絶縁層130を積層する。絶縁層130上には、絶縁層130及び金属配線120の一部を覆うようにして層間絶縁膜140が設けられており、金属配線120の残りの露出部の全て及び層間絶縁膜140を覆うようにして再配線層150が積層される。再配線層150に接して導電性ボール170が設けられており、再配線層150及び導電性ボール170が形成する空隙を埋めるようにカバーコート層160が再配線層150上に積層される。
 本発明の樹脂組成物を用い、カバーコート層160を厚膜形成することで、複雑な形成プロセスのUBM層を設けることなく、半導体装置を製造することができる。
 上記半導体装置は、本発明の電子部品の一実施形態であるが、上記に限定されず、様々な構造をとることができる。
 以下、実施例及び比較例に基づき、本発明についてさらに具体的に説明する。尚、本発明は下記実施例に限定されるものではない。
[ポリベンゾオキサゾール前駆体の合成]
合成例1
 攪拌機、温度計を備えた0.2リットルのフラスコ中に、N-メチルピロリドン60gを仕込み、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン13.92g(38mmol)を添加し、攪拌溶解した。続いて、温度を0~5℃に保ちながら、ドデカン二酸ジクロリド10.69g(40mmol)を10分間で滴下した後、フラスコ中の溶液を60分間攪拌した。上記溶液を3リットルの水に投入し、析出物を回収し、これを純水で3回洗浄した後、減圧してポリヒドロキシアミド(ポリベンゾオキサゾール前駆体)を得た(以下、ポリマーIとする)。ゲルパーミエーションクロマトグラフ(GPC)法標準ポリスチレン換算により求めた、ポリマーIの重量平均分子量は33,100、分散度は2.0であった。
 尚、GPC法による重量平均分子量の測定条件は以下のとおりである。ポリマー0.5mgに対して溶剤[テトラヒドロフラン(THF)/ジメチルホルムアミド(DMF)=1/1(容積比)]1mlの溶液を用いて測定した。
測定装置:検出器 株式会社日立製作所製L4000 UV
ポンプ :株式会社日立製作所製L6000
     株式会社島津製作所製C-R4A Chromatopac
測定条件:カラム Gelpack GL-S300MDT-5×2本
溶離液 :THF/DMF=1/1(容積比)
     LiBr(0.03mol/l)、HPO(0.06mol/l)
流速  :1.0ml/min、検出器:UV270nm
合成例2
 攪拌機、温度計を備えた0.2リットルのフラスコ中に、N-メチルピロリドン60gを仕込み、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン13.92g(38mmol)を添加し、攪拌溶解した。続いて、温度を0~5℃に保ちながら、4,4’-ジフェニルエーテルジカルボン酸ジクロリド11.86g(40mmol)を10分間で滴下した後、室温に戻しフラスコ中の溶液を3時間攪拌した。上記溶液を3リットルの水に投入し、析出物を回収し、これを純水で3回洗浄した後、減圧してポリヒドロキシアミドを得た(以下、ポリマーIIとする)。合成例1と同様にGPC法標準ポリスチレン換算により求めた、ポリマーIIの重量平均分子量は22,400、分散度は3.2であった。
合成例3
 合成例1で使用したドデカン二酸ジクロリド10.69g(40mmol)を、ドデカン二酸ジクロリド7.48g(28mmol)及び4,4’-ジフェニルエーテルジカルボン酸ジクロリド3.56g(12mmol)に置き換えた以外は、合成例1と同様に合成を行い、ポリヒドロキシアミドを得た(以下、ポリマーIIIとする)。合成例1と同様に標準ポリスチレン換算により求めた、ポリマーIIIの重量平均分子量は41,800、分散度は2.0であった。
[ポリイミド前駆体の合成]
合成例4
 攪拌機、温度計を備えた0.2リットルのフラスコ中に、N-メチルピロリドン50gを仕込み、4,4’-ジアミノ-2,2’-ジメチルビフェニル13.82g(18mmol)を添加し、攪拌溶解した。続いて、温度を0~5℃に保ちながら、4,4’-オキシジフタル酸二無水物6.20g(20mmol)を10分間で滴下した後、室温に戻しフラスコ中の溶液を3時間攪拌した。上記溶液を3リットルの水に投入し、析出物を回収し、これを純水で3回洗浄した後、減圧してポリアミド酸を得た(以下、ポリマーIVとする)。合成例1と同様にGPC法標準ポリスチレン換算により求めた、ポリマーIVの重量平均分子量は39,000、分散度は4.5であった。
[(b)成分の合成]
合成例5
 攪拌機、温度計を備えた0.5リットルのフラスコ中に、イオン交換水150mLを仕込み、ジフェニルヨードニウムクロリド4.3g(14mmol)を添加し、100℃で加熱しながら撹拌溶解した。また、別途、攪拌機、温度計を備えた1.0リットルのフラスコ中に、イオン交換水300mLを仕込み、9,10-ジメトキシアントラセンスルホン酸ナトリウム4.7g(14mmol)を添加し、100℃で加熱しながら撹拌溶解した。続いて、ジフェニルヨードニウムクロリド水溶液を9,10-ジメトキシアントラセンスルホン酸ナトリウム水溶液に注ぎ、室温に戻るまで3時間撹拌した。析出物を回収し、これを純水で3回洗浄した後、減圧して乾燥することで、ジフェニルヨードニウム-9,10-ジメトキシアントラセン-2-スルホナート(b1)を得た。
合成例6
 攪拌機、温度計を備えた0.5リットルのフラスコ中に、イオン交換水300mLを仕込み、ジフェニルヨードニウムクロリド10.0g(32mmol)を添加し、100℃で加熱しながら撹拌溶解した。また、別途、攪拌機、温度計を備えた1.0リットルのフラスコ中に、イオン交換水300mLを仕込み、8-アニリノ-1-ナフタレンスルホン酸アンモニウム10.0g(32mmol)を添加し、100℃で加熱しながら撹拌溶解した。続いて、ジフェニルヨードニウムクロリド水溶液を8-アニリノ-1-ナフタレンスルホン酸アンモニウム水溶液に注ぎ、室温に戻るまで3時間撹拌した。析出物を回収し、これを純水で3回洗浄した後、減圧して乾燥することで、ジフェニルヨードニウム-8-アニリノナフタレン-1-スルホナート(b2)を得た。
[酸反応性保護基含有化合物の合成]
合成例7
 100mLの3口フラスコに4,4’-ジカルボキシジフェニルエーテル 4.54g(17.6mmol)を入れ、30gのN-メチルピロリドンに懸濁させた。氷冷しながらクロロメチルエチルエーテルを3.74g (39.6 mmol)加え、続けてトリエチルアミンを3.55g (35.1 mmol)加えた。氷浴中で3時間攪拌した後に、析出した結晶をろ過により除いた。母液に飽和炭酸水素ナトリウム水溶液を数滴加えて反応を停止し、酢酸エチルにて抽出した有機層を飽和炭酸水素ナトリウム水溶液、水、飽和食塩水の順で洗浄し、無水硫酸ナトリウムにて乾燥した。無水硫酸ナトリウムをろ別後、溶剤を減圧下溜去し、乾燥することで、酸反応性保護基含有化合物(e1)を得た。
[第1のポジ型感光性樹脂組成物の実施例]
実施例1~19及び比較例1~13
 表1~4に示した成分及び配合量にて、実施例1~19及び比較例1~13の感光性樹脂組成物を調製した。表1~4の配合量は、(a)成分である各ポリマー100質量部に対する、(b)~(d)成分、(b’-1)及び(e1)の質量部である。
 尚、用いた各成分は以下の通りである。
(a)成分:
ポリマーI:合成例1で得られたポリマーI
ポリマーII:合成例2で得られたポリマーII
ポリマーIII:合成例3で得られたポリマーIII
ポリマーIV:合成例4で得られたポリマーIV
ポリマーV:クレゾールノボラックEP4020G(旭有機材工業株式会社製)
(b)成分:
(b1):合成例5で得られたジフェニルヨードニウム-9,10-ジメトキシアントラセン-2-スルホナート
(b2):合成例6で得られたジフェニルヨードニウム-8-アニリノナフタレン-1-スルホナート
Figure JPOXMLDOC01-appb-C000013
(c)成分:
BLO:γ-ブチロラクトン
NMP:N-メチルピロリドン
EL:乳酸エチル
(d)成分:
D1:下記の構造を有する1,3,4,6-テトラキス(メトキシメチル)グリコウリル(株式会社三和ケミカル製、商品名「MX-270」)
Figure JPOXMLDOC01-appb-C000014
D2:下記の構造を有する「ニカラックMX-280」(株式会社三和ケミカル製、商品名)
Figure JPOXMLDOC01-appb-C000015
 また、(a)~(d)成分以外の用いた化合物は以下の通りである。
(b’-1):2-(4-ヒドロキシフェニル)-2-[4-[1,1-ビス(4-ヒドロキシフェニル)エチル]フェニル]プロパンとナフトキノン-1,2-ジアジド-5-スルホニルクロリドとを1:3のモル比で反応させた化合物
Figure JPOXMLDOC01-appb-C000016
e1:合成例7で得られた酸反応性保護基含有化合物
[溶解速度及び溶解コントラスト評価]
 実施例1~19及び比較例1~13の感光性樹脂組成物を、それぞれシリコン基板上にスピンコートし、120℃で3分間乾燥して、乾燥後膜厚が10又は25μmの樹脂膜を形成した。得られた樹脂膜に、干渉フィルターを介して、超高圧水銀灯、プロキシミティ露光装置UX-1000SM-XJ01(ウシオ電機株式会社製)を用いて露光を行い、400mJ/cmのi線を所定のパターンに照射した。
 露光後、TMAHの2.38質量%水溶液にて、23℃で、露光部のシリコン基板が露出するまで現像(各例において要した現像時間をそれぞれの現像時間とする)した後、水でリンスして、パターン樹脂膜を得た。
 乾燥後膜厚を現像時間で除した値を、露光部溶解速度とした。
露光部溶解速度(nm/s)=乾燥後膜厚/現像時間
 また、現像後の未露光部膜厚を測定し、乾燥後膜厚から現像後の未露光部膜厚を引いたものを、現像時間で除すことで、未露光部溶解速度を求めた。
未露光部溶解速度(nm/s)=(乾燥後膜厚-現像後の未露光部膜厚)/現像時間
 また、溶解コントラストは、露光部溶解速度を未露光部溶解速度で除することで求めた。
溶解コントラスト=露光部溶解速度/未露光部溶解速度
 結果を表1~4に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 上記パターン樹脂膜をそれぞれ200℃で1時間加熱処理したところ、良好なパターン硬化膜が得られた。
実施例20~28及び比較例14~15
 表5に示した成分及び配合量にて、実施例20~28及び比較例14~15の感光性樹脂組成物を調製した。表5の配合量は、表1~4と同様である。
[パターン形成性評価]
 乾燥後膜厚を10~30μmとし、露光量を800mJ/cmとし、現像時間を150秒間とした以外、実施例1~19及び比較例1~13と同様にパターン樹脂膜を形成した。
 上記パターン樹脂膜において、線幅20μmのラインアンドスペースパターンを顕微鏡、デジタルマイクロスコープVHX-100F(KEYENCE株式会社製)で観察して、スカムの有無を確認した。スカムなくパターニングできた場合をA、スカムがあった場合をBとした。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 上記パターン樹脂膜をそれぞれ200℃で1時間加熱処理したところ、良好なパターン硬化膜が得られた。
[第2のポジ型感光性樹脂組成物の実施例]
実施例29~44及び比較例16~28
 表6~8に示した成分及び配合量にて、実施例29~44及び比較例16~28の感光性樹脂組成物を調製した。表6~8の配合量は、(a)成分である各ポリマー100質量部に対する、(b)~(d)成分、及び(b’)成分の質量部である。
 (b’)成分は以下の通りである。
(b’1):合成例7で得られた酸反応性保護基含有化合物(実施例1~28、比較例1~15における(e1))
(b’2):下記構造式で示される化合物(ダイトーケミックス株式会社製TPPA528(商品名)、ナフトキノンジアジド化合物)
Figure JPOXMLDOC01-appb-C000017
[溶解速度及び溶解コントラスト評価]
 実施例1~19及び比較例1~13と同様にして溶解速度及び溶解コントラストを評価した。実施例29~44及び比較例16~28においては、以下の評価基準を用いた。
 露光部溶解速度が150nm/s以上の場合をA、50以上150nm/sの場合をB、50nm/sより遅い場合をCとした。
 未露光部溶解速度が30nm/s以下の場合をA、30以上100nm/sの場合をB、100nm/sより速い場合をCとした。
 溶解コントラストが6以上をA、4以上6より小さい場合をB、2以上4より小さい場合をC、2より小さい場合をDとした。
 結果を表6,7に示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 上記パターン樹脂膜をそれぞれ200℃で1時間加熱処理したところ、良好なパターン硬化膜が得られた。
実施例45~49及び比較例29,30
 表8に示した成分及び配合量にて、実施例45~49及び比較例29,30の感光性樹脂組成物を調製した。
[パターン形成性評価]
 実施例20~28、比較例14、15と同様にしてパターン形成性を評価した。結果を表8に示す。
Figure JPOXMLDOC01-appb-T000008
 上記パターン樹脂膜をそれぞれ200℃で1時間加熱処理したところ、良好なパターン硬化膜が得られた。
 本発明の感光性樹脂組成物は、半導体装置や多層配線板、各種電子デバイス等の電子部品に使用できる。
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 この明細書に記載の文献及び本願のパリ優先の基礎となる日本出願明細書の内容を全てここに援用する。

Claims (14)

  1.  (a)アルカリ可溶性樹脂、(b)i線露光によって酸を発生するオニウム塩、(c)溶剤及び(d)架橋剤を含有するポジ型感光性樹脂組成物であって、前記(c)溶剤を除いたポジ型感光性樹脂組成物の合計質量に対して、(a)、(b)及び(d)成分の合計が88質量%以上であるポジ型感光性樹脂組成物。
  2.  (a)アルカリ可溶性樹脂、(b)i線露光によって酸を発生するオニウム塩、及び(c)溶剤を含有するポジ型感光性樹脂組成物であって、(a)成分100質量部に対して、ナフトキノンジアジド化合物又は酸反応性保護基含有化合物を0~100ppm含有するポジ型感光性樹脂組成物。
  3.  さらに、(d)架橋剤を含有する請求項2に記載のポジ型感光性樹脂組成物。
  4.  前記(a)成分が、ポリイミド、ポリイミド前駆体、ポリベンゾオキサゾール、ポリベンゾオキサゾール前駆体、ノボラック樹脂又はポリヒドロキシスチレンを含有する請求項1~3のいずれか一項に記載のポジ型感光性樹脂組成物。
  5.  前記(b)成分が、i線露光前はアルカリ水溶液に対する前記(a)成分の溶解を阻害し、i線露光後はアルカリ水溶液に対する前記(a)成分の溶解を阻害しない化合物である請求項1~4のいずれか一項に記載のポジ型感光性樹脂組成物。
  6.  前記(b)成分が、下記一般式(b-1)で表される化合物である請求項1~5のいずれか一項に記載のポジ型感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000018
    (式中、Xは対陰イオンである。また、芳香環には置換基を有していてもよい。)
  7.  前記(b)成分が、下記式(b―2)で表される化合物である請求項1~6のいずれか一項に記載のポジ型感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000019
    (式中、Meはメチル基である。)
  8.  層間絶縁膜、カバーコート層又は表面保護膜の形成に用いられる請求項1~7のいずれか一項に記載のポジ型感光性樹脂組成物。
  9.  UBMフリー構造を有する半導体装置の層間絶縁膜、カバーコート層又は表面保護膜の形成に用いられる請求項1~7のいずれか一項に記載のポジ型感光性樹脂組成物。
  10.  請求項1~9のいずれか一項に記載のポジ型感光性樹脂組成物を基板上に塗布、乾燥し、感光性樹脂膜を形成する工程と、
     得られた感光性樹脂膜を所定のパターンに露光する工程と、
     露光した樹脂膜を、アルカリ水溶液を用いて現像して、パターン樹脂膜を得る工程と、
     前記パターン樹脂膜を加熱処理する工程と、
    を含むパターン硬化膜の製造方法。
  11.  前記加熱処理の温度が250℃以下である請求項10に記載のパターン硬化膜の製造方法。
  12.  請求項1~9のいずれか一項に記載のポジ型感光性樹脂組成物の硬化物。
  13.  請求項12に記載の硬化物を用いた層間絶縁膜、カバーコート層又は表面保護膜。
  14.  請求項13に記載の層間絶縁膜、カバーコート層又は表面保護膜を有する電子部品。
PCT/JP2015/005021 2014-10-02 2015-10-01 ポジ型感光性樹脂組成物、パターン硬化膜の製造方法、硬化物、層間絶縁膜、カバーコート層、表面保護膜及び電子部品 WO2016051809A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580053869.5A CN106796399B (zh) 2014-10-02 2015-10-01 正型感光性树脂组合物、图案固化膜的制造方法、固化物、层间绝缘膜、覆盖涂层、表面保护膜和电子部件
JP2016551560A JP6743701B2 (ja) 2014-10-02 2015-10-01 ポジ型感光性樹脂組成物、パターン硬化膜の製造方法、硬化物、層間絶縁膜、カバーコート層、表面保護膜及び電子部品
KR1020177008119A KR102585279B1 (ko) 2014-10-02 2015-10-01 포지티브형 감광성 수지 조성물, 패턴 경화막의 제조 방법, 경화물, 층간 절연막, 커버 코트층, 표면 보호막 및 전자 부품

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-204005 2014-10-02
JP2014204005 2014-10-02
JPPCT/JP2015/052382 2015-01-28
PCT/JP2015/052382 WO2016121035A1 (ja) 2015-01-28 2015-01-28 ポジ型感光性樹脂組成物、パターン硬化膜の製造方法、層間絶縁膜、カバーコート層、表面保護膜及び電子部品

Publications (1)

Publication Number Publication Date
WO2016051809A1 true WO2016051809A1 (ja) 2016-04-07

Family

ID=55629871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005021 WO2016051809A1 (ja) 2014-10-02 2015-10-01 ポジ型感光性樹脂組成物、パターン硬化膜の製造方法、硬化物、層間絶縁膜、カバーコート層、表面保護膜及び電子部品

Country Status (5)

Country Link
JP (2) JP6743701B2 (ja)
KR (1) KR102585279B1 (ja)
CN (1) CN106796399B (ja)
TW (1) TWI708994B (ja)
WO (1) WO2016051809A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017187708A (ja) * 2016-04-08 2017-10-12 日立化成デュポンマイクロシステムズ株式会社 パターン硬化膜の製造方法、電子部品の製造方法、及び当該パターン硬化膜の製造方法に用いるポジ型感光性樹脂組成物
TWI709820B (zh) * 2018-09-28 2020-11-11 南韓商三星Sdi股份有限公司 正感光性樹脂組成物、感光性樹脂層以及電子裝置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030104310A1 (en) * 2001-11-30 2003-06-05 Dentinger Paul M. Photosensitive dissolution inhibitors and resists based on onium salt carboxylates
JP2006179738A (ja) * 2004-12-24 2006-07-06 Oki Electric Ind Co Ltd 半導体装置およびその製造方法
JP2008015184A (ja) * 2006-07-05 2008-01-24 Sekisui Chem Co Ltd ポジ型感光性組成物、パターン膜の製造方法及び半導体素子
JP2010139931A (ja) * 2008-12-15 2010-06-24 Toyobo Co Ltd ポジ型感光性樹脂組成物およびパターン形成方法
US20110172324A1 (en) * 2010-01-14 2011-07-14 Kuen Yuan Hwang Novel water soluble polyimide resin, its preparation and use
JP2012215719A (ja) * 2011-03-31 2012-11-08 Taiyo Ink Mfg Ltd ポジ型感光性樹脂組成物、ドライフィルム、硬化物及びプリント配線板
JP2013101240A (ja) * 2011-11-09 2013-05-23 Jnc Corp ポジ型感光性組成物
JP2015022228A (ja) * 2013-07-22 2015-02-02 Jnc株式会社 ポジ型感光性組成物

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2931297A1 (de) 1979-08-01 1981-02-19 Siemens Ag Waermebestaendige positivresists und verfahren zur herstellung waermebestaendiger reliefstrukturen
US4927736A (en) 1987-07-21 1990-05-22 Hoechst Celanese Corporation Hydroxy polyimides and high temperature positive photoresists therefrom
JPH05181274A (ja) * 1991-12-26 1993-07-23 Nippon Steel Chem Co Ltd ポリイミド系感光性樹脂
TWI255393B (en) * 2000-03-21 2006-05-21 Hitachi Chemical Co Ltd Photosensitive resin composition, photosensitive element using the same, process for producing resist pattern and process for producing printed wiring board
JP3812654B2 (ja) * 2002-01-23 2006-08-23 Jsr株式会社 ポジ型感光性絶縁樹脂組成物およびその硬化物
CN100457749C (zh) * 2003-01-22 2009-02-04 Jsr株式会社 锍盐化合物、辐射敏感性酸产生剂和正型辐射敏感性树脂组合物
JP4775261B2 (ja) * 2004-05-07 2011-09-21 日立化成デュポンマイクロシステムズ株式会社 ポジ型感光性樹脂組成物、パターンの製造方法及び電子部品
US7803510B2 (en) * 2005-08-17 2010-09-28 Fujifilm Electronic Materials U.S.A., Inc. Positive photosensitive polybenzoxazole precursor compositions
JP4736864B2 (ja) * 2006-03-03 2011-07-27 日立化成デュポンマイクロシステムズ株式会社 ポジ型感光性ポリアミドイミド樹脂組成物、パターンの製造方法及び電子部品
JP5518743B2 (ja) * 2008-02-04 2014-06-11 フジフィルム・エレクトロニック・マテリアルズ・ユーエスエイ・インコーポレイテッド 新規なポジ型感光性樹脂組成物
JP5169446B2 (ja) 2008-04-28 2013-03-27 日立化成デュポンマイクロシステムズ株式会社 感光性樹脂組成物、該樹脂組成物を用いたポリベンゾオキサゾール膜、パターン硬化膜の製造方法及び電子部品
JP2013256603A (ja) * 2012-06-13 2013-12-26 Hitachi Chemical Dupont Microsystems Ltd 樹脂組成物、該樹脂組成物を用いたパターン硬化膜の製造方法及び電子部品

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030104310A1 (en) * 2001-11-30 2003-06-05 Dentinger Paul M. Photosensitive dissolution inhibitors and resists based on onium salt carboxylates
JP2006179738A (ja) * 2004-12-24 2006-07-06 Oki Electric Ind Co Ltd 半導体装置およびその製造方法
JP2008015184A (ja) * 2006-07-05 2008-01-24 Sekisui Chem Co Ltd ポジ型感光性組成物、パターン膜の製造方法及び半導体素子
JP2010139931A (ja) * 2008-12-15 2010-06-24 Toyobo Co Ltd ポジ型感光性樹脂組成物およびパターン形成方法
US20110172324A1 (en) * 2010-01-14 2011-07-14 Kuen Yuan Hwang Novel water soluble polyimide resin, its preparation and use
JP2012215719A (ja) * 2011-03-31 2012-11-08 Taiyo Ink Mfg Ltd ポジ型感光性樹脂組成物、ドライフィルム、硬化物及びプリント配線板
JP2013101240A (ja) * 2011-11-09 2013-05-23 Jnc Corp ポジ型感光性組成物
JP2015022228A (ja) * 2013-07-22 2015-02-02 Jnc株式会社 ポジ型感光性組成物

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017187708A (ja) * 2016-04-08 2017-10-12 日立化成デュポンマイクロシステムズ株式会社 パターン硬化膜の製造方法、電子部品の製造方法、及び当該パターン硬化膜の製造方法に用いるポジ型感光性樹脂組成物
TWI709820B (zh) * 2018-09-28 2020-11-11 南韓商三星Sdi股份有限公司 正感光性樹脂組成物、感光性樹脂層以及電子裝置

Also Published As

Publication number Publication date
CN106796399B (zh) 2021-01-22
JP2020126271A (ja) 2020-08-20
JP6919746B2 (ja) 2021-08-18
JP6743701B2 (ja) 2020-08-19
JPWO2016051809A1 (ja) 2017-08-10
KR20170063625A (ko) 2017-06-08
KR102585279B1 (ko) 2023-10-05
CN106796399A (zh) 2017-05-31
TWI708994B (zh) 2020-11-01
TW201619699A (zh) 2016-06-01

Similar Documents

Publication Publication Date Title
JP4878662B2 (ja) 感光性樹脂組成物
JP4553140B2 (ja) ポジ型フォトレジスト組成物
TW201830138A (zh) 感光性樹脂組成物、樹脂膜、硬化膜、半導體裝置之製造方法及半導體裝置
JP6073626B2 (ja) 感光性樹脂組成物
JP6919746B2 (ja) ポジ型感光性樹脂組成物、パターン硬化膜の製造方法、硬化物、層間絶縁膜、カバーコート層、表面保護膜及び電子部品
JP2007304591A (ja) フォトレジスト組成物
JP2013256603A (ja) 樹脂組成物、該樹脂組成物を用いたパターン硬化膜の製造方法及び電子部品
EP3413132B1 (en) Positive-type photosensitive resin composition
JP2011170310A (ja) 感光性重合体組成物、パターンの製造方法及び電子部品
WO2016121035A1 (ja) ポジ型感光性樹脂組成物、パターン硬化膜の製造方法、層間絶縁膜、カバーコート層、表面保護膜及び電子部品
JP2020003699A (ja) 感光性樹脂組成物、パターン硬化物の製造方法、硬化物、層間絶縁膜、カバーコート層、表面保護膜及び電子部品
JP7363901B2 (ja) 樹脂組成物、硬化物の製造方法、硬化物、パターン硬化物、層間絶縁膜、カバーコート層、表面保護膜及び電子部品
JP6756957B2 (ja) ポジ型感光性樹脂組成物、パターン硬化膜の製造方法、層間絶縁膜、カバーコート層又は表面保護膜及び電子部品
WO2017134700A1 (ja) ポジ型感光性樹脂組成物
JP2011141323A (ja) 感光性重合体組成物、パターンの製造方法及び電子部品
KR102647706B1 (ko) 포지티브형 감광성 수지 조성물, 패턴 경화막의 제조 방법, 패턴 경화막 및 전자 부품
JP2009175357A (ja) ポジ型感光性樹脂前駆体組成物、パターン硬化膜の製造方法及び電子部品
WO2019064540A1 (ja) 感光性樹脂組成物、パターン硬化物の製造方法、硬化物、層間絶縁膜、カバーコート層、表面保護膜、及び電子部品
JP5655262B2 (ja) 半導体装置、その製造方法及び感光性樹脂組成物
WO2018150771A1 (ja) 感光性樹脂組成物、硬化膜およびその製造方法ならびに電子部品
KR101380969B1 (ko) 광활성 화합물 및 이를 포함하는 포지티브형 감광성 조성물
JP2018109699A (ja) ポジ型感光性樹脂組成物、硬化パターンの製造方法、硬化物、層間絶縁膜、カバーコート層又は表面保護膜、及び電子部品
JP2007101673A (ja) 感光性レジスト組成物及び基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15847049

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016551560

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177008119

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15847049

Country of ref document: EP

Kind code of ref document: A1