WO2016040880A1 - Combination therapies of alk inhibitors - Google Patents
Combination therapies of alk inhibitors Download PDFInfo
- Publication number
- WO2016040880A1 WO2016040880A1 PCT/US2015/049810 US2015049810W WO2016040880A1 WO 2016040880 A1 WO2016040880 A1 WO 2016040880A1 US 2015049810 W US2015049810 W US 2015049810W WO 2016040880 A1 WO2016040880 A1 WO 2016040880A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cancer
- inhibitor
- antibody
- combination
- ldk378
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
- A61K39/39533—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
- A61K39/39558—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against tumor tissues, cells, antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
- A61K31/506—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim not condensed and containing further heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/55—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0053—Mouth and digestive tract, i.e. intraoral and peroral administration
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/02—Antineoplastic agents specific for leukemia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
- C07K16/2818—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against CD28 or CD152
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
- C07K16/2827—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against B7 molecules, e.g. CD80, CD86
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/30—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
- C07K16/3023—Lung
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/54—Medicinal preparations containing antigens or antibodies characterised by the route of administration
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/54—Medicinal preparations containing antigens or antibodies characterised by the route of administration
- A61K2039/541—Mucosal route
- A61K2039/542—Mucosal route oral/gastrointestinal
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/545—Medicinal preparations containing antigens or antibodies characterised by the dose, timing or administration schedule
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2300/00—Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/20—Immunoglobulins specific features characterized by taxonomic origin
- C07K2317/21—Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/73—Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/76—Antagonist effect on antigen, e.g. neutralization or inhibition of binding
Definitions
- T cells The ability of T cells to mediate an immune response against an antigen requires two distinct signaling interactions (Viglietta, V. et al. (2007) Neurotherapeutics 4:666-675; Korman, A. J. et al. (2007) Adv. Immunol. 90:297-339).
- APC antigen-presenting cells
- TCR T cell receptor
- the immune system is tightly controlled by a network of costimulatory and co-inhibitory ligands and receptors. These molecules provide the second signal for T cell activation and provide a balanced network of positive and negative signals to maximize immune responses against infection, while limiting immunity to self (Wang, L. et al. (Epub Mar. 7, 2011) J. Exp. Med. 208(3):577-92; Lepenies, B. et al. (2008) Endocrine, Metabolic & Immune Disorders— Drug Targets 8:279-288).
- costimulatory signals include the binding between the B7.1 (CD80) and B7.2 (CD86) ligands of the APC and the CD28 and CTLA-4 receptors of the CD4 + T-lymphocyte (Sharpe, A. H. et al. (2002) Nature Rev. Immunol. 2:116-126; Lindley, P. S. et al. (2009) Immunol. Rev. 229:307-321). Binding of B7.1 or B7.2 to CD28 stimulates T cell activation, whereas binding of B7.1 or B7.2 to CTLA-4 inhibits such activation (Dong, C. et al. (2003) Immunolog. Res. 28(l):39-48; Greenwald, R. J. et al. (2005) Am. Rev. Immunol. 23:515- 548). CD28 is constitutively expressed on the surface of T cells (Gross, J., et al. (1992) J.
- B7 Superfamily a group of related B7 molecules, also known as the "B7 Superfamily" (Coyle, A. J. et al. (2001) Nature Immunol. 2(3):203-209; Sharpe, A. H. et al. (2002) Nature Rev. Immunol. 2:116-126; Collins, M. et al. (2005) Genome Biol. 6:223.1- 223.7; Korman, A. J. et al. (2007) Adv. Immunol. 90:297-339).
- B7 Superfamily Several members of the B7 Superfamily are known, including B7.1 (CD80), B7.2 (CD86), the inducible co-stimulator ligand (ICOS-L), the programmed death-1 ligand (PD-L1; B7-H1), the programmed death-2 ligand (PD-L2; B7-DC), B7-H3, B7-H4 and B7-H6 (Collins, M. et al. (2005) Genome Biol. 6:223.1- 223.7).
- B7.1 CD80
- B7.2 the inducible co-stimulator ligand
- PD-L1 programmed death-1 ligand
- PD-L2 programmed death-2 ligand
- B7-DC B7-H3, B7-H4 and B7-H6
- the Programmed Death 1 (PD-1) protein is an inhibitory member of the extended CD28/CTLA4 family of T cell regulators (Okazaki et al. (2002) Curr Opin Immunol 14: 391779- 82; Bennett et al. (2003) J. Immunol. 170:711-8).
- Other members of the CD28 family include CD28, CTLA-4, ICOS and BTLA.
- PD-1 is suggested to exist as a monomer, lacking the unpaired cysteine residue characteristic of other CD28 family members. PD-1 is expressed on activated B cells, T cells, and monocytes.
- the PD-1 gene encodes a 55 kDa type I transmembrane protein (Agata et al. (1996) Int Immunol. 8:765-72). Although structurally similar to CTLA-4, PD-1 lacks the MYPPY motif (SEQ ID NO: 1) that is important for B7-1 and B7-2 binding.
- SEQ ID NO: 1 Two ligands for PD-1 have been identified, PD-L1 (B7-H1) and PD-L2 (B7-DC), that have been shown to downregulate T cell activation upon binding to PD-1 (Freeman et al. (2000) J. Exp. Med. 192:1027-34; Carter et al. (2002) Eur. J. Immunol. 32:634-43).
- Both PD-L1 and PD-L2 are B7 homologs that bind to PD- 1, but do not bind to other CD28 family members.
- PD-L1 is abundant in a variety of human cancers (Dong et al. (2002) Nat. Med. 8:787-9).
- PD-1 is known as an immunoinhibitory protein that negatively regulates TCR signals
- PD-1 and PD-L1 can act as an immune checkpoint, which can lead to, e.g., a decrease in tumor infiltrating lymphocytes, a decrease in T- cell receptor mediated proliferation, and/or immune evasion by cancerous cells (Dong et al. (2003) J. Mol. Med. 81:281-7; Blank et al. (2005) Cancer Immunol. Immunother. 54:307-314; Konishi et al. (2004) Clin. Cancer Res.
- Immune suppression can be reversed by inhibiting the local interaction of PD-1 with PD-L1 or PD-L2; the effect is additive when the interaction of PD-1 with PD-L2 is blocked as well (Iwai et al. (2002) Proc. Nat'l. Acad. Sci. USA 99:12293-7; Brown et al. (2003) J. Immunol. 170:1257-66).
- an immunomodulator e.g., one or more of: an activator of a costimulatory molecule or an inhibitor of an immune checkpoint molecule
- an inhibitor of an immune checkpoint molecule e.g., one or more inhibitors of PD-1, PD-L1, LAG-3, TIM-3, CEACAM ⁇ e.g., CEACAM-1, -3 and/or -5) or CTLA4
- LDK378 an immunomodulator ⁇ e.g., one or more of: an activator of a costimulatory molecule or an inhibitor of an immune checkpoint molecule
- an inhibitor of an immune checkpoint molecule e.g., one or more inhibitors of PD-1, PD-L1, LAG-3, TIM-3, CEACAM ⁇ e.g., CEACAM-1, -3 and/or -5) or CTLA4
- LDK378 an inhibitor of an immune checkpoint molecule ⁇ e.g., one or more inhibitors of PD-1, PD-L1,
- compositions and methods for treating can provide a beneficial effect, e.g., in the treatment of a cancer, such as an enhanced anti-cancer effect, reduced toxicity and/or reduced side effects.
- the immunomodulator, the second therapeutic agent, or both can be administered at a lower dosage than would be required to achieve the same therapeutic effect compared to a monotherapy dose.
- hyperproliferative disorders including cancer using the aforesaid combination therapies are disclosed.
- the disclosure features a method of treating ⁇ e.g., inhibiting, reducing, ameliorating, or preventing) a hyperproliferative condition or disorder ⁇ e.g., a cancer) in a subject.
- the method includes administering to the subject an immunomodulator ⁇ e.g., one or more of: an activator of a costimulatory molecule or an inhibitor of an immune checkpoint molecule) and a second therapeutic agent LDK378, thereby treating the hyperproliferative condition or disorder ⁇ e.g., the cancer).
- the immunomodulator is an inhibitor of an immune checkpoint molecule ⁇ e.g., an inhibitor of PD-1, PD-L1, LAG-3, TIM-3, CEACAM (e.g., CEACAM-1, -3 and/or -5) or CTLA4, or any combination thereof).
- an immune checkpoint molecule e.g., an inhibitor of PD-1, PD-L1, LAG-3, TIM-3, CEACAM (e.g., CEACAM-1, -3 and/or -5) or CTLA4, or any combination thereof).
- the combination of the immunomodulator and the second agent can be administered together in a single composition or administered separately in two or more different compositions, e.g., compositions or dosage forms as described herein.
- the administration of the immunomodulator and the second agent can be in any order.
- the immunomodulator can be administered concurrently with, prior to, or subsequent to, the second agent.
- the disclosure features a method of reducing an activity (e.g., growth, survival, or viability, or all), of a hyperproliferative (e.g., a cancer) cell.
- the method includes contacting the cell with an immunomodulator (e.g., one or more of: an activator of a
- the immunomodulator is an inhibitor of an immune checkpoint molecule (e.g., an inhibitor of PD-1, PD-L1, LAG-3, TIM-3, CEACAM (e.g., CEACAM-1, -3 and/or -5) or CTLA4, or any combination thereof).
- an inhibitor of an immune checkpoint molecule e.g., an inhibitor of PD-1, PD-L1, LAG-3, TIM-3, CEACAM (e.g., CEACAM-1, -3 and/or -5) or CTLA4, or any combination thereof.
- the methods described herein can be used in vitro or in vivo, e.g., in an animal subject or as part of a therapeutic protocol.
- the contacting of the cell with the immunomodulator and the second agent can be in any order.
- the cell is contacted with the immunomodulator concurrently, prior to, or subsequent to, the second agent.
- the disclosure features a composition (e.g., one or more compositions or dosage forms), comprising an immunomodulator (e.g., one or more of: an activator of a costimulatory molecule or an inhibitor of an immune checkpoint molecule) and a second therapeutic agent LDK378.
- the immunomodulator is an inhibitor of an immune checkpoint molecule (e.g., an inhibitor of PD-1, PD-L1, LAG-3, TIM-3, CEACAM (e.g., CEACAM-1, -3 and/or -5) or CTLA4, or any combination thereof).
- the composition comprises a pharmaceutically acceptable carrier.
- the immunomodulator and the second agent can be present in a single composition or as two or more different compositions.
- the immunomodulator and the second agent can be administered via the same administration route or via different administration routes.
- the present disclosure provides a pharmaceutical combination comprising (i) LDK378, or a pharmaceutically acceptable salt thereof, and (ii) Nivolumab, or a pharmaceutically acceptable salt thereof.
- Formulations, e.g., dosage formulations, and kits, e.g., therapeutic kits, that include the immunomodulator ⁇ e.g., one or more of: an activator of a costimulatory molecule or an inhibitor of an immune checkpoint molecule) and the second therapeutic agent LDK378, and instructions for use, are also disclosed.
- a pharmaceutical combination comprising (i) LDK378, or a pharmaceutically acceptable salt thereof, and (ii) nivolumab, or a pharmaceutically acceptable salt thereof.
- LDK378 and the Nivolumab are administered independently at the same time or separately within time intervals.
- LDK378 in combination with Nivolumab for the manufacture of a medicament for an ALK mediated disease.
- LDK378 in combination with Nivolumab for the manufacture of a medicament according to item 13, wherein the cancer is non-small cell lung cancer.
- a pharmaceutical composition comprising LDK378 or a pharmaceutically acceptable salt thereof and Nivolumab or a pharmaceutically acceptable salt thereof for simultaneous or separate administration for the treatment of cancer.
- composition according to items 22 or 23, wherein the composition comprises effective amounts of LDK378 and nivolumab.
- composition according to any one of items 15 to 18, wherein the composition further comprises a pharmaceutical acceptable carrier.
- LDK378 for use as a medicine, wherein LDK378, or a pharmaceutically acceptable salt thereof, is to be administered in combination with Nivolumab, or a pharmaceutically acceptable salt thereof.
- LDK378 for use as a medicine according to item 19, for the treatment of cancer.
- LDK378 for use as a medicine according to item 20, wherein the cancer is a non-small cell lung cancer.
- a method for treating cancer in a subject in need thereof comprising administering to said subject a therapeutically effective amount of i) LDK378, or a pharmaceutically acceptable salt thereof, and (ii) nivolumab, or a pharmaceutically acceptable salt thereof.
- LDK378 for use as a medicine according to any one of items 19 to 21, wherein LDK378 and Nivolumab are administered to a patient that has been pretreated with an ALK inhibitor.
- ROS1 fusion 31.
- the immunomodulator is an activator of a costimulatory molecule.
- the agonist of the costimulatory molecule is chosen from an agonist (e.g., an agonistic antibody or antigen-binding fragment thereof, or a soluble fusion) of OX40, CD2, CD27, CDS, ICAM-1, LFA-1 (CDl la/CD18), ICOS (CD278), 4-1BB (CD137), GITR, CD30, CD40, BAFFR, HVEM, CD7, LIGHT, NKG2C, SLAMF7, NKp80, CD160, B7- H3 or CD83 ligand.
- an agonist e.g., an agonistic antibody or antigen-binding fragment thereof, or a soluble fusion
- OX40 e.g., an agonistic antibody or antigen-binding fragment thereof, or a soluble fusion
- CD2 e.g., an agonistic antibody or antigen-binding fragment thereof, or a
- the immunomodulator is an inhibitor of an immune checkpoint molecule.
- the immunomodulator is an inhibitor of PD-1, PD-Ll, PD-L2, CTLA4, TIM3, LAG3, CEACAM (e.g., CEACAM-1, -3 and/or -5), VISTA, BTLA, TIGIT, LAIR1, CD160, 2B4 and/or TGFR beta.
- the inhibitor of an immune checkpoint molecule inhibits PD-1, PD-Ll, LAG- 3, TIM-3, CEACAM (e.g., CEACAM-1, -3 and/or -5) or CTLA4, or any combination thereof.
- inhibitor includes a reduction in a certain parameter, e.g., an activity, of a given molecule, e.g., an immune checkpoint inhibitor.
- a certain parameter e.g., an activity, of a given molecule
- an immune checkpoint inhibitor e.g., an enzyme that catalyzes the production of a certain parameter.
- inhibition of an activity e.g., a PD-1 or PD-Ll activity, of at least 5%, 10%, 20%, 30%, 40% or more is included by this term. Thus, inhibition need not be 100%.
- Inhibition of an inhibitory molecule can be performed at the DNA, RNA or protein level.
- an inhibitory nucleic acid e.g., a dsRNA, siRNA or shRNA
- a dsRNA, siRNA or shRNA can be used to inhibit expression of an inhibitory molecule.
- the inhibitor of an inhibitory signal is, a polypeptide e.g., a soluble ligand (e.g., PD-l-Ig or CTLA-4 Ig), or an antibody or antigen-binding fragment thereof, that binds to the inhibitory molecule; e.g., an antibody or fragment thereof (also referred to herein as "an antibody molecule") that binds to PD-1, PD-Ll, PD-L2, CTLA4, TIM3, LAG3, CEACAM (e.g., CEACAM-1, -3 and/or -5), VISTA, BTLA, TIGIT, LAIR1, CD 160, 2B4 and/or TGFR beta, or a combination thereof.
- a polypeptide e.g., a soluble ligand (e.g., PD-l-Ig or CTLA-4 Ig), or an antibody or antigen-binding fragment thereof, that binds to the inhibitory molecule; e.g., an antibody or fragment
- the antibody molecule is a full antibody or fragment thereof (e.g., a Fab, F(ab') 2 , Fv, or a single chain Fv fragment (scFv)).
- the antibody molecule has a heavy chain constant region (Fc) chosen from, e.g., the heavy chain constant regions of IgGl, IgG2, IgG3, IgG4, IgM, IgAl, IgA2, IgD, and IgE; particularly, chosen from, e.g., the heavy chain constant regions of IgGl, IgG2, IgG3, and IgG4, more particularly, the heavy chain constant region of IgGl or IgG4 (e.g., human IgGl or IgG4).
- Fc heavy chain constant region
- the heavy chain constant region is human IgGl or human IgG4.
- the constant region is altered, e.g., mutated, to modify the properties of the antibody molecule (e.g., to increase or decrease one or more of: Fc receptor binding, antibody glycosylation, the number of cysteine residues, effector cell function, or complement function).
- the antibody molecule is in the form of a bispecific or multispecific antibody molecule.
- the bispecific antibody molecule has a first binding specificity to PD-1 or PD-Ll and a second binding specifity, e.g., a second binding specificity to TIM-3, LAG-3, or PD-L2.
- the bispecific antibody molecule binds to PD-1 or PD-Ll and TIM-3.
- the bispecific antibody molecule binds to PD-1 or PD-Ll and LAG-3.
- the bispecific antibody molecule binds to PD-1 or PD-Ll and CEACAM (e.g., CEACAM-1, -3 and/or -5).
- the bispecific antibody molecule binds to PD-1 or PD-Ll and CEACAM-1. In still another embodiment, the bispecific antibody molecule binds to PD-1 or PD-Ll and CEACAM-3. In yet another embodiment, the bispecific antibody molecule binds to PD-1 or PD-Ll and CEACAM-5. In another embodiment, the bispecific antibody molecule binds to PD-1 or PD-Ll . In yet another embodiment, the bispecific antibody molecule binds to PD-1 and PD-L2. In another embodiment, the bispecific antibody molecule binds to TIM-3 and LAG-3.
- the bispecific antibody molecule binds to CEACAM (e.g., CEACAM-1, -3 and/or - 5) and LAG-3. In another embodiment, the bispecific antibody molecule binds to CEACAM (e.g., CEACAM-1, -3 and/or -5) and TIM-3.
- any combination of the aforesaid molecules can be made in a multispecific antibody molecule, e.g., a trispecific antibody that includes a first binding specificity to PD-1 or PD-1, and a second and third binding specifities to two or more of: TIM-3, CEACAM (e.g., CEACAM-1, -3 and/or -5), LAG-3, or PD-L2.
- the immunomodulator is an inhibitor of PD-1, e.g., human PD-1.
- the immunomodulator is an inhibitor of PD-Ll, e.g., human PD-Ll .
- the inhibitor of PD-1 or PD-Ll is an antibody molecule to PD-1 or PD-Ll .
- the PD-1 or PD-Ll inhibitor can be administered alone, or in combination with other immunomodulators, e.g., in combination with an inhibitor of LAG-3, TIM-3, CEACAM (e.g., CEACAM-1, -3 and/or -5) or CTLA4.
- the inhibitor of PD-1 or PD-Ll e.g., the anti-PD-1 or PD-Ll antibody molecule, is administered in combination with a LAG-3 inhibitor, e.g., an anti- LAG-3 antibody molecule.
- the inhibitor of PD-1 or PD-Ll e.g., the anti-PD-1 or PD-Ll antibody molecule
- a TIM-3 inhibitor e.g., an anti-TIM-3 antibody molecule
- the inhibitor of PD-1 or PD- Ll is administered in combination with a LAG-3 inhibitor, e.g., an anti-LAG-3 antibody molecule, and a TIM-3 inhibitor, e.g., an anti-TIM-3 antibody molecule.
- the inhibitor of PD-1 or PD-Ll e.g., the anti-PD-1 or PD-Ll antibody molecule
- a CEACAM inhibitor e.g., CEACAM-1, -3 and/or -5 inhibitor
- an anti- CEACAM antibody molecule e.g., an anti- CEACAM antibody molecule.
- the inhibitor of PD-1 or PD-Ll e.g., the anti-PD-1 or PD-Ll antibody molecule
- is administered in combination with a CEACAM-1 inhibitor e.g., an anti- CEACAM-1 antibody molecule.
- the inhibitor of PD-1 or PD-Ll is administered in combination with a CEACAM-5 inhibitor, e.g., an anti- CEACAM-5 antibody molecule.
- a CEACAM-5 inhibitor e.g., an anti- CEACAM-5 antibody molecule.
- Other combinations of immunomodulators with a PD-1 inhibitor e.g., one or more of PD-L2, CTLA4, TIM3, CEACAM (e.g., CEACAM-1, -3 and/or - 5) LAG3, VISTA, BTLA, TIGIT, LAIRI, CD160, 2B4 and/or TGFR
- Any of the antibody molecules known in the art or disclosed herein can be used in the aforesaid combinations of inhibitors of checkpoint molecule.
- the PD-1 inhibitor is an anti-PD-1 antibody chosen from Nivolumab, Pembrolizumab or Pidilizumab.
- the PD-1 inhibitor is Nivolumab.
- the anti-PD-1 antibody is Nivolumab. Alternative names for
- Nivolumab include MDX- 1106, MDX-1106-04, ONO-4538, or BMS-936558.
- the anti-PD- 1 antibody is Nivolumab (CAS Registry Number: 946414-94-4).
- Nivolumab is a fully human IgG4 monoclonal antibody which specifically blocks
- Nivolumab (clone 5C4) and other human monoclonal antibodies that specifically bind to
- Nivolumab is the preferred PD-1 inhibitor.
- the anti-PD-1 antibody is Pembrolizumab.
- Pembrolizumab (Trade name KEYTRUDA formerly Lambrolizumab, also known as Merck 3745, MK-3475 or SCH- 900475) is a humanized IgG4 monoclonal antibody that binds to PDl.
- Pembrolizumab is disclosed, e.g., in Hamid, O. et al. (2013) New England Journal of Medicine 369 (2): 134-44, WO2009/114335, and US 8,354,509.
- the anti-PD-1 antibody is Pidilizumab.
- Pidilizumab CT-011; Cure Tech
- CT-011 Cure Tech
- IgGlk monoclonal antibody that binds to PDl.
- Pidilizumab and other humanized anti-PD-1 monoclonal antibodies are disclosed in WO2009/101611.
- Other anti- PD1 antibodies are disclosed in US 8,609,089, US 2010028330, and/or US 20120114649.
- Other anti-PD 1 antibodies include AMP 514 (Amplimmune).
- the PD-1 inhibitor is an immunoadhesin (e.g., an immunoadhesin comprising an extracellular or PD-1 binding portion of PD-L1 or PD-L2 fused to a constant region (e.g., an Fc region of an immunoglobulin sequence).
- the PD-1 inhibitor is AMP-224.
- the PD-L1 inhibitor is anti-PD-Ll antibody.
- the anti-PD-Ll inhibitor is chosen from YW243.55.S70, MPDL3280A, MEDI-4736, MSB- 0010718C, or MDX-1105.
- the PD-L1 inhibitor is MDX-1105.
- MDX-1105 also known as BMS-936559, is an anti-PD-Ll antibody described in WO2007/005874.
- the PD-L1 inhibitor is YW243.55.S70.
- the YW243.55.S70 antibody is an anti-PD-Ll described in WO 2010/077634 (heavy and light chain variable region sequences shown in SEQ ID Nos. 20 and 21, respectively).
- the PD-L1 inhibitor is MDPL3280A (Genentech / Roche).
- MDPL3280A is a human Fc optimized IgGl monoclonal antibody that binds to PD-L1.
- MDPL3280A and other human monoclonal antibodies to PD-L1 are disclosed in U.S. Patent No.: 7,943,743 and U.S Publication No.: 20120039906.
- the PD-L2 inhibitor is AMP-224.
- AMP-224 is a PD-L2 Fc fusion soluble receptor that blocks the interaction between PD1 and B7-H1 (B7-DCIg; Amplimmune; e.g., disclosed in WO2010/027827 and WO2011/066342).
- the LAG-3 inhibitor is an anti-LAG-3 antibody molecule. In one embodiment, the LAG-3 inhibitor is BMS-986016, disclosed in more detail herein below.
- One or more of the aforesaid inhibitors of immune checkpoint molecules can be used in combination with LDK378, as more specifically exemplified below.
- the inhibitor of PD-1 is Nivolumab (also referred to herein as MDX- 1106, ONO-4538, BMS0936558, CAS Registry No: 946414-94-4) disclosed in e.g., US
- the inhibitor of PD-1 is Pembrolizumab (also referred to herein as Lambrolizumab, MK-3475, MK03475 or KEYTRUDA), disclosed in, e.g., US 8,354,509 and WO 2009/114335, and having a sequence disclosed herein (or a sequence substantially identical or similar thereto, e.g., a sequence at least 85%, 90%, 95% identical or higher to the sequence specified).
- Pembrolizumab also referred to herein as Lambrolizumab, MK-3475, MK03475 or KEYTRUDA
- the inhibitor of PD-L1 is MSB0010718C (also referred to as A09-246-2) disclosed in, e.g., WO 2013/0179174, and having a sequence disclosed herein (or a sequence substantially identical or similar thereto, e.g., a sequence at least 85%, 90%, 95% identical or higher to the sequence specified).
- the PD-1 inhibitor e.g., the anti-PD-1 antibody (e.g., the anti-PD-1 antibody (e.g., the anti-PD-1 antibody).
- Nivolumab is used in a method or composition described herein.
- the PD-1 inhibitor e.g., the anti-PD-1 antibody (e.g., Nivolumab or Pembrolizumab); or the PD-L1 inhibitor, e.g., the anti-PD-Ll antibody (e.g., MSB0010718C) (alone or in combination with other immunomodulators) is used in combination with an ALK inhibitor LDK378.
- one or more of the aforesaid combinations is used to treat a disorder, e.g., a disorder described herein (e.g., a disorder disclosed in Table 1).
- one or more of the aforesaid combinations is used to treat a cancer, e.g., a cancer described herein (e.g., a cancer disclosed in Table 1). Each of these combinations is discussed in more detail below.
- the PD-1 inhibitor e.g., the anti-PD-1 antibody (e.g., Nivolumab or Pembrolizumab); or the PD-L1 inhibitor, e.g., the anti-PD-Ll antibody (e.g., MSB0010718C), (alone or in combination with other immunomodulators) is used in combination with an Alk inhibitor LDK378 to treat a cancer, e.g., a cancer described herein (e.g., a cancer disclosed in Table 1 such as non-small cell lung cancer).
- the Alk inhibitor LDK378 is disclosed in Table 1, or in a publication recited in Table 1.
- the Alk inhibitor LDK378 has the structure (compound or generic structure) provided in Table 1, or as disclosed in the publication recited in Table 1.
- one of Nivolumab, Pembrolizumab or MSB0010718C is used in combination with LDK378 to treat a cancer described in Table 1, e.g., a solid tumor, e.g., a lung cancer (e.g., non-small cell lung cancer (NSCLC)), a lymphoma (e.g., an anaplastic large-cell lymphoma or non-Hodgkin's lymphoma), an inflammatory
- NSCLC non-small cell lung cancer
- the NSCLC is a stage IIIB or IV NSCLC, or a relapsed locally advanced or metastic NSCLC.
- the cancer e.g., the lung cancer, lymphoma, inflammatory myofibroblastic tumor, or
- neuroblastoma has, or is identified as having, an ALK rearrangement or translocation, e.g., an ALK fusion.
- the ALK fusion is an EML4-ALK fusion, e.g., an EML4-ALK fusion described herein.
- the cancer has progressed on, or is resistant or tolerant to, another ALK inhibitor or an ROS1 inhibitor. In some embodiments, the cancer has progressed on, or is resistant or tolerant to, crizotinib.
- LDK378 has the following structure:
- Particularly preferred combination of the present disclosure is a pharmaceutical combination comprising (i) LDK378, or a pharmaceutically acceptable salt thereof, and (ii) Nivolumab, or a pharmaceutically acceptable salt thereof.
- LDK378 (ceritinib) is an Anaplastic Lymphoma Kinase (ALK) inhibitor. Its chemical formula is 5-chloro-N 2 -(2-isopropoxy-5-methyl-4-(piperidin-4-yl)phenyl)-N 4 -[2-(propane-2-sulfonyl)- phenyl]-pyrimidine-2,4-diamine.
- a process for preparing LDK378 was disclosed in WO2008/073687.
- the compound has been approved by the US FDA as Zykadia® for the treatment of patients with Anaplastic Lymphoma Kinase (ALK)-positive metastatic non-small cell lung cancer (NSCLC), who have progressed on or are intolerant to crizotinib.
- ALK Anaplastic Lymphoma Kinase
- NSCLC metastatic non-small cell lung cancer
- the currently approved daily dose for use of LDK378 (alone) in NSCLC is 750 mg orally on an empty stomach (i.e., is not to be administered within 2 hours of a meal).
- LDK378 demonstrated a high rate of rapid and durable responses in 246 ALK- positive NSCLC patients treated in the 750 mg dose group (RD). In these patients the overall response rate (ORR) was 58.5%. Among the 144 ALK-positive NSCLC patients with a confirmed complete response (CR) or partial response (PR), 86.1% of those patients achieved a response within 12 weeks, with a median time to response of 6.1 weeks. The estimated median duration of response (DOR) based on investigator assessment was long at 9.69 months. The median progression-free survival (PFS) was 8.21 months with 53.3% of the patients censored.
- ORR overall response rate
- ceritinib showed this level of high anti-cancer activity regardless of prior ALK inhibitor status (i.e., whether or not the patient received previous treatment with an ALK inhibitor).
- a high ORR of 54.6% and 66.3% was observed in patients treated with a prior ALK inhibitor and in ALK inhibitor-naive patients, respectively.
- NSCLC metastatic ALK-positive NSCLC remains an incurable disease. Harnessing the immune system to treat patients with NSCLC represents a novel and new treatment approach, and nivolumab can be safely combined with LDK378. Combination therapy involving targeted agent LDK378 and immunotherapy (Nivolumab) can improve progression-free survival and ultimately overall survival in NSCLC patients.
- Ceritinib does not have a mechanism of action that would be expected to antagonize the immune response. Furthermore, immune-related adverse events have not been frequently reported in ceritinib trials. Potential overlapping toxicities between ceritinib and Nivolumab include diarrhea, nausea, AST and ALT elevations, pneumonitis, and hyperglycemia. The mechanisms of these toxicities are not expected to be similar, given the mechanisms of action of the two compounds and thus the safety profile can be managed.
- LDK378 in combination with Nivolumab can also be used for the manufacture of a medicament for an ALK mediated disease.
- the pharmaceutical composition can comprise effective amounts of LDK378 or a pharmaceutically acceptable salt thereof, and Nivolumab or a pharmaceutically acceptable salt thereof, for simultaneous or separate administration for the treatment of cancer.
- LDK378 can be used as a medicine, wherein LDK378, or a pharmaceutically acceptable salt thereof, is to be administered in combination with Nivolumab, or a pharmaceutically acceptable salt thereof.
- Pharmaceutically acceptable salts can be formed, for example, as acid addition salts, preferably with organic or inorganic acids.
- Suitable inorganic acids are, for example, halogen acids, such as hydrochloric acid.
- Suitable organic acids are, e.g., carboxylic acids or sulfonic acids, such as fumaric acid or methanesulfonic acid.
- pharmaceutically unacceptable salts for example picrates or perchlorates.
- only pharmaceutically acceptable salts or free compounds are employed (where applicable in the form of pharmaceutical preparations), and these are therefore preferred.
- any reference to the free compounds hereinbefore and hereinafter is to be understood as referring also to the corresponding salts, as appropriate and expedient.
- the salts of compounds of formula (I) are preferably pharmaceutically acceptable salts; suitable counter-ions forming pharmaceutically acceptable salts are known in the field.
- the present disclosure relates to a pharmaceutical combination, especially a pharmaceutical combination product, comprising the mentioned combination partners.
- the compounds in the pharmaceutical combination can be administered separately or together.
- LDK378 and the Nivolumab are administered independently at the same time or separately within time intervals, wherein time intervals allow that the combination partners are jointly active.
- pharmaceutical combination refers to a product obtained from mixing or combining in a non-fixed combination the active ingredients, e.g. (i) LDK378, or a pharmaceutically acceptable salt thereof, and (ii) Nivolumab or a pharmaceutically acceptable salt thereof separately or together.
- combination refers to formulations of the separate partners with or without instructions for combined use or to combination products.
- the combined compounds can be manufactured and/or formulated by the same or different manufacturers.
- the combination partners may thus be entirely separate pharmaceutical dosage forms or pharmaceutical compositions that are also sold independently of each other and where just instructions for their combined use are provided: (i) prior to release to physicians (e.g. in the case of a "kit of part” comprising the compound of the disclosure and the other therapeutic agent); (ii) by the physician themselves (or under the guidance of a physician) shortly before administration; (iii) the patient themselves by a physician or medical staff.
- non-fixed combination means that the active ingredients, e.g. LDK378 and Nivolumab, are both administered separately or together, independently at the same time or separately within time intervals, wherein such administration provides therapeutically effective levels of the active ingredient in the subject in need.
- cocktail therapy e.g. the administration of three or more active ingredients.
- This term defines especially a "kit of parts” in the sense that the combination partners, e.g. (i) LDK378 and (ii) Nivolumab (and if present further one or more co-agents) as defined herein can be dosed independently of each other.
- the term "jointly therapeutically effective” means that the compounds show synergistic interaction when administered separately or together, independently at the same time or separately within time intervals, to treat a subject in need, such as a warm-blooded animal in particular a human. It was shown that the combination of the present disclosure possesses beneficial therapeutic properties, e.g. synergistic interaction, strong in-vivo and in-vitro antitumor response, which can be used as a medicine. Its characteristics render it particularly useful for the treatment of cancer. Suitable cancers that can be treated with the combination of the present disclosure include but are not limited to anaplastic large cell lymphoma (ALCL), neuroblastoma, lung cancer, non- small cell lung cancer (NSCLC). In a preferred embodiment, the cancer is NSCLC.
- ACL anaplastic large cell lymphoma
- NSCLC non- small cell lung cancer
- the combination according to the present disclosure can besides or in addition be administered especially for cancer therapy in combination with chemotherapy, radiotherapy, immunotherapy, surgical intervention, or in combination of these.
- Long-term therapy is equally possible as is adjuvant therapy in the context of other treatment strategies, as described above.
- Other possible treatments are therapy to maintain the patient's status after tumor regression, or even chemo- preventive therapy, for example in patients at risk.
- the terms "treat”, “treating” or “treatment” of any disease or disorder refers to ameliorating the disease or disorder (e.g. slowing or arresting or reducing the development of the disease or at least one of the clinical symptoms thereof), to preventing or delaying the onset or development or progression of the disease or disorder.
- those terms refers to alleviating or ameliorating at least one physical parameter including those which may not be discernible by the patient and also to modulating the disease or disorder, either physically (e.g. stabilization of a discernible symptom), physiologically (e.g. stabilization of a physical parameter), or both.
- treatment comprises, for example, the therapeutic administration of the combination partners to a warm-blooded animal, in particular a human being, in need of such treatment with the aim to cure the disease or to have an effect on disease regression or on the delay of progression of a disease.
- the combination of LDK378 and Nivolumab can be used to manufacture a medicament for an ALK mediated disease as described above.
- the combination can be used in a method for the treatment of an ALK, as described above, said method comprising administering an effective amount of a combination of (i) LDK378, or a pharmaceutically acceptable salt thereof, and (ii) Nivolumab or a pharmaceutically acceptable salt thereof separately or together, to a subject in need thereof, according to the present disclosure.
- jointly (therapeutically) active may mean that the compounds may be given separately or sequentially (in a chronically staggered manner, especially a sequence specific manner) in such time intervals that they preferably, in the warm-blooded animal, especially human, to be treated, and still show a (preferably synergistic) interaction (joint therapeutic effect).
- a joint therapeutic effect can, inter alia, be determined by following the blood levels, showing that both compounds are present in the blood of the human to be treated at least during certain time intervals, but this is not to exclude the case where the compounds are jointly active although they are not present in blood simultaneously.
- the present disclosure also describes the method for the treatment of an ALK mediated disease, wherein the combination of (i) LDK378, or a pharmaceutically acceptable salt thereof, and (ii) Nivolumab or a pharmaceutically acceptable salt thereof separately or together.
- the present disclosure relates to a pharmaceutical composition comprising effective amounts of (i) LDK378, or a pharmaceutically acceptable salt thereof, and (ii) Nivolumab, or a pharmaceutically acceptable salt thereof.
- the pharmaceutical composition can be prepared with a pharmaceutically acceptable carrier, which can be for example any suitable pharmaceutical excipient.
- the carrier includes any and all binders, fillers, solvents, dispersion media, coatings, surfactants, antioxidants, preservatives (e.g., antibacterial agents, antifungal agents), isotonic agents, absorption delaying agents, salts, drug stabilizers, disintegration agents, lubricants, sweetening agents, flavoring agents, dyes, and the like and combinations thereof, as would be known to those skilled in the art (see, for example, Remington's Pharmaceutical Sciences, 18th Ed. Mack Printing Company, 1990, pp. 1289- 1329; Remington: The Science and Practice of Pharmacy, 21st Ed. Pharmaceutical Press 2011 ; and subsequent versions thereof).
- the combination partners can be administered independently at the same time or separately within time intervals in separate unit dosage forms.
- the two therapeutic partners may be prepared in a manner known per se and are suitable for enteral, such as oral or rectal, topical and parenteral administration to subject in need thereof, including warm-blooded animal, in particular a human being.
- Suitable pharmaceutical compositions contain, e.g. from about 0.1% to about 99.9% of active ingredient.
- the pharmaceutical composition can be processed to prepare a final dosage form - a tablet or a capsule. This can be achieved by compressing the final blend of the combination, optionally together with one or more excipients. The compression can be achieved for example with a rotary tablet press. Tablet of different shapes can be prepared (round, ovaloid, or other suitable shape). The tablet can be coated or uncoated by known techniques to delay disintegration and absorption in the gastrointestinal tract and thereby provide a sustained action over a longer period. If not indicated otherwise, these are prepared in a manner known per se, e.g. by means of mixing, granulating, sugar-coating processes.
- Formulation for oral use can be presented as hard gelatin capsules wherein the active ingredient is mixed with an inert solid diluent, for example, calcium carbonate, calcium phosphate or cellulose-based excipient, or as soft gelatin capsules wherein the active ingredient is mixed with water or an oil medium, for example, olive oil, liquid paraffin or peanut oil.
- an inert solid diluent for example, calcium carbonate, calcium phosphate or cellulose-based excipient
- water or an oil medium for example, olive oil, liquid paraffin or peanut oil.
- pharmaceutically acceptable refers to those compounds, materials, compositions, and/or dosage forms which are suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.
- LDK378 for use as a medicine, wherein LDK378, or a pharmaceutically acceptable salt thereof, is to be administered in combination with Nivolumab, or a pharmaceutically acceptable salt thereof, for the treatment of an ALK mediated disease, e.g. cancer.
- ALK mediated disease refers to a disease in which activity of the kinase leads to abnormal activity of the regulatory pathways including overexpression, mutation or relative lack of activity of other regulatory pathways in the cell that result in excessive cell proliferation, e.g. cancer.
- ALK mediated disease can be non- small cell lung cancer (NSCLC) that is driven by the echinoderm microtubule-associated protein-like 4 (EML4) - anaplastic lymphoma kinase (ALK) translocation.
- NSCLC non- small cell lung cancer
- EML4 echinoderm microtubule-associated protein-like 4
- ALK anaplastic lymphoma kinase
- ALK is translocated, mutated, or amplified in several tumor types, and thus ALK mediated disease include, in addition to NSCLC, neuroblastoma, and anaplastic large cell lymphoma (ALCL). Alterations in ALK play a key role in the pathogenesis of these tumors.
- Other fusion partners of ALK besides EML4 that can be relevant in an ALK mediated disease are KIF5B, TFG, KLC1 and PTPN3, but are expected to be less common than EML4.
- the hyperproliferative disorder or condition includes but is not limited to, a solid tumor, a soft tissue tumor (e.g., a hematological cancer, leukemia, lymphoma, or myeloma), and a metastatic lesion of any of the aforesaid cancers.
- the cancer is a solid tumor.
- solid tumors include malignancies, e.g., sarcomas, adenocarcinomas, and carcinomas, of the various organ systems, such as those affecting the lung, breast, ovarian, lymphoid, gastrointestinal (e.g., colon), anal, genitals and genitourinary tract (e.g., renal, urothelial, bladder cells, prostate), pharynx, CNS (e.g., brain, neural or glial cells), head and neck, skin (e.g., melanoma), and pancreas, as well as adenocarcinomas which include
- malignancies such as colon cancers, rectal cancer, renal-cell carcinoma, liver cancer, non-small cell lung cancer, cancer of the small intestine and cancer of the esophagus.
- the cancer may be at an early, intermediate, late stage or metastatic cancer.
- the cancer is chosen from a cancer disclosed in Table 1.
- the cancer can be chosen from a solid tumor, e.g., a lung cancer (e.g., a non-small cell lung cancer (NSCLC) (e.g., a NSCLC with squamous and/or non-squamous histology)), a colorectal cancer, a melanoma (e.g., an advanced melanoma), a head and neck cancer (e.g., head and neck squamous cell carcinoma (HNSCC), a digestive/gastrointestinal cancer, a gastric cancer, a neurologic cancer, a glioblastoma (e.g., glioblastoma multiforme), an ovarian cancer, a renal cancer, a liver cancer, a pancreatic cancer, a prostate cancer, a liver cancer; a breast cancer, an anal cancer, a gastro-esophageal cancer, a thyroid cancer, a cervical cancer,
- the cancer is a non-small cell lung cancer (NSCLC), e.g., an ALK+ NSCLC.
- NSCLC non-small cell lung cancer
- ALK+ NSCLC refers to an NSCLC that has an activated (e.g., constitutively activated) anaplastic lymphoma kinase activity or has a rearrangement or translocation of an Anaplastic Lymphoma Kinase (ALK) gene.
- ALK Anaplastic Lymphoma Kinase
- patients with ALK+ NSCLC are generally younger, have light (e.g., ⁇ 10 pack years) or no smoking history, present with lower Eastern Cooperative Oncology Group performance status, or may have more aggressive disease and, therefore, experience earlier disease progression (Shaw et al. J Clin Oncol. 2009; 27(26):4247-4253; Sasaki et al. Eur J Cancer. 2010; 46(10): 1773-1780; Shaw et al. N Engl J Med. 2013;368(25):2385-2394; Socinski et al. J Clin Oncol. 2012; 30(17):2055-2062 ; Yang et al. J Thorac Oncol. 2012;7(l):90-97).
- the cancer e.g., an NSCLC
- the rearrangement or translocation of the ALK gene leads to a fusion (e.g., fusion upstream of the ALK promoter region).
- the fusion results in constitutive activation of the kinase activity.
- the fusion is an EML4-ALK fusion.
- EML4-ALK fusion proteins include, but are not limited to, E13;A20 (VI), E20;A20 (V2), E6a/b;A20 (V3a/b), E14;A20 (V4), E2a/b;A20 (V5a/b), E13b;A20 (V6), E14;A20(V7), E15;A20("V4"), or E18;A20 (V5) (Choi et al. Cancer Res. 2008; 68(13):4971-6; Horn et al. J Clin Oncol. 2009; 27(26):4232- 5; Koivunen et al. Clin Cancer Res. 2008; 14(13):4275-83; Soda et al. Nature. 2007;
- the ALK gene is fused to a non-EML4 partner.
- the fusion is a KIF5B-ALK fusion.
- the fusion is a TFG- ALK fusion. Exemplary KIF5B-ALK and TFG-ALK fusions are described, e.g., in Takeuchi et al. Clin Cancer Res. 2009; 15(9):3143-9, Rikova et al. Cell. 2007; 131(6): 1190-203.
- ALK gene rearrangements or translocations, or cancer cells that has an ALK gene rearrangement or translocation can be detected, e.g., using fluorescence in situ hybridization (FISH), e.g., with an ALK break apart probe.
- FISH fluorescence in situ hybridization
- Methods and compositions disclosed herein are useful for treating metastatic lesions associated with the aforementioned cancers.
- subject in need refers to a warm-blooded animal, in particular a human being that would benefit biologically, medically or in quality of life from the treatment.
- Subject or patient that can get the combination administered encompasses mammals and non-mammals. Examples of mammals include, but are not limited to, humans, chimpanzees, apes, monkeys, cattle, horses, sheep, goats, swine; rabbits, dogs, cats, rats, mice, guinea pigs, and the like. Examples of non-mammals include, but are not limited to, birds, fish and the like.
- the subject or patient is human. It may be a human who has been diagnosed as in need of treatment for a disease or disorder disclosed herein.
- the subject is a mammal, e.g., a primate, preferably a higher primate, e.g., a human (e.g., a patient having, or at risk of having, a disorder described herein).
- the subject is in need of enhancing an immune response.
- the subject has, or is at risk of, having a disorder described herein, e.g., a cancer as described herein.
- the subject is, or is at risk of being,
- the subject is undergoing or has undergone a
- chemo therapeutic treatment and/or radiation therapy Alternatively, or in combination, the subject is, or is at risk of being, immunocompromised as a result of an infection.
- the subject e.g., a subject having a lung cancer (e.g., a non-small cell lung cancer), a lymphoma (e.g., an anaplastic large-cell lymphoma or non-Hodgkin' s lymphoma), an inflammatory myofibroblastic tumor, or a neuroblastoma) is being treated, or has been treated, with another ALK inhibitor and/or a ROSl inhibitor, e.g., crizotinib.
- ceritinib can be administered at a daily oral dose of 750 mg or lower, e.g., 600 mg or lower, e.g., 450 mg or lower.
- the subject or cancer e.g., a lung cancer (e.g., a non-small cell lung cancer), a lymphoma (e.g., an anaplastic large-cell lymphoma or non-Hodgkin' s
- a lung cancer e.g., a non-small cell lung cancer
- a lymphoma e.g., an anaplastic large-cell lymphoma or non-Hodgkin' s
- lymphoma an inflammatory myofibroblastic tumor, or a neuroblastoma
- another ALK inhibitor and/or a ROSl inhibitor e.g., crizotinib.
- the subject or cancer e.g., a lung cancer (e.g., a non-small cell lung cancer), a lymphoma (e.g., an anaplastic large-cell lymphoma or non-Hodgkin' s lymphoma), an inflammatory myofibroblastic tumor, or a neuroblastoma) is at risk of a lung cancer (e.g., a non-small cell lung cancer), a lymphoma (e.g., an anaplastic large-cell lymphoma or non-Hodgkin' s lymphoma), an inflammatory myofibroblastic tumor, or a neuroblastoma) is at risk of
- ALK inhibitor e.g., crizotinib.
- ROSl inhibitor e.g. crizotinib.
- the subject or cancer is resistant or tolerant, or is at risk of developing resistance or tolerance, to a tyrosine kinase inhibitor (TKI), e.g., an EGFR tyrosine kinase inhibitor.
- TKI tyrosine kinase inhibitor
- the subject or cancer has no detectable EGFR mutation, KRAS mutation, or both.
- the term "effective amount" means the amount of the subject compound that will engender a biological or medical response in a cell, tissue, organ, system, animal or human that is being sought by the researcher, veterinarian, medical doctor or other clinician.
- the effective dosage of each combination partner agents employed in the combination of the disclosure may vary depending on the particular compound or pharmaceutical composition employed, the mode of administration, the condition being treated, the severity the condition being treated.
- a physician, clinician or veterinarian of ordinary skill can readily determine and prescribe the effective amount of the drug required to prevent, counter or arrest the progress of the condition.
- Optimal precision in achieving concentration of drug within the range that yields efficacy requires a regimen based on the kinetics of the combination's drugs availability to target sites. This involves a consideration of the distribution, equilibrium and elimination of a drug.
- the present disclosure also describes the pharmaceutical combination according to the present disclosure in the form of a "kit of parts" for the combined administration.
- the independent formulations or the parts of the formulation, product, or composition can then, e.g. be administered simultaneously or chronologically staggered, that is at different time points and with equal or different time intervals for any part of the kit of parts.
- the compounds useful according to the disclosure may be manufactured and/or formulated by the same or different manufacturers.
- the combination partners may be brought together into a combination therapy: (i) prior to release of the combination product to physicians ⁇ e.g. in the case of a kit comprising LDK378 and the Nivolumab); (ii) by the physician themselves (or under the guidance of a physician) shortly before administration; (iii) in the patient themselves, e.g. during sequential administration of the compound of the disclosure and the other therapeutic agent.
- the effect of the combination is synergistic.
- the therapeutically effective dosage of the combination of the disclosure, or pharmaceutical composition is dependent on the species of the subject, the body weight, age and individual condition, the disorder or disease or the severity thereof being treated, and can be determined by standard clinical techniques.
- in vitro or in vivo assays can optionally be employed to help identify optimal dosage ranges.
- the precise dose to be employed can also depend on the route of administration, and the seriousness of the condition being treated and can be decided according to the judgment of the practitioner and each subject's circumstances in view of, e.g., published clinical studies. In general, satisfactory results are indicated to be obtained systemically at daily dosages of from 150 mg to 750 mg of LDK378 orally. In most cases, the daily dose for LDK378 can be between 300 mg and 750 mg.
- LDK378 is generally administered at an oral dose of about 100 to 1000 mg, e.g., about 150 mg to 900 mg, about 200 mg to 800 mg, about 300 mg to 700 mg, or about 400 mg to 600 mg, e.g., about 150 mg, 300 mg, 450 mg, 600 mg or 750 mg. In certain embodiment, LDK378 is administered at an oral dose of about 750 mg or lower, e.g., about 600 mg or lower, e.g., about 450 mg or lower. In certain embodiments, LDK378 is administered with food. In other embodiments, the dose is under fasting condition. The dosing schedule can vary from e.g., every other day to daily, twice or three times a day. In one embodiment, LDK378 is administered daily. In one embodiment, LDK378 is administered at an oral dose from about 150 mg to 750 mg daily, either with food or in a fasting condition. In one embodiment, LDK378 is
- LDK378 is administered at an oral dose of about 750 mg daily, in a fasting condition.
- LDK378 is administered at an oral dose of about 750 mg daily, via capsule or tablet.
- LDK378 is administered at an oral dose of about 600 mg daily, via capsule or tablet.
- LDK378 is administered at an oral dose of about 450 mg daily, via capsule or tablet.
- LDK378 When administered in combination with Nivolumab, LDK378 can be administered at 450 mg with 3 mg/kg nivolumab, 600 mg LDK378 with 3 mg/kg Nivolumab, or 300 mg LDK378 with 3 mg/kg nivolumab.
- the most preferred dose of both compounds for combination therapy is 600 mg of LDK378 with 3 mg/kg Nivolumab.
- Particularly 600 mg LDK378 with 3 mg/kg Nivolumab is the most preferred dosing regimen for treating ALK-positive (e.g. EML4-ALK) NSCLC.
- Nivolumab can be administered as the fixed dose infusion every two weeks. Ceritinib is to be taken together with a low fat meal.
- ceritinib is administered within 30 minutes after consuming a low fat meal.
- a patient should refrain from eating for at least an hour after intake of ceritinib and the low fat meal.
- administration of ceritinib with daily meal intake can reduce the incidence and/or severity of gastrointestinal events. It is estimated that the steady state exposure of ceritinib at 450 mg and 600 mg with daily low-fat meal intake is within 20% relative to that of ceritinib at the recommended phase II dose of 750 mg administered fasted, as predicted by model-based clinical trial simulation, using a population pharmacokinetic model established for ALK-positive cancer patients in one clinical study in conjunction with absorption parameters estimated from another clinical study.
- low-fat meal denotes herein a meal that contains approximately 1.5 to 15 grams of fat and approximately 100 to 500 total calories.
- the anti-PD-1 antibody molecule is administered by injection (e.g., subcutaneously or intravenously) at a dose of about 1 to 30 mg/kg, e.g., about 5 to 25 mg/kg, about 10 to 20 mg/kg, about 1 to 5 mg/kg, or about 3 mg/kg.
- the dosing schedule can vary from e.g., once a week to once every 2, 3, or 4 weeks.
- the anti-PD-1 antibody molecule is administered at a dose from about 10 to 20 mg/kg every other week.
- the anti-PD-1 antibody molecule e.g., Nivolumab
- the anti-PD-1 antibody molecule, e.g., Nivolumab is administered intravenously at a dose of about 2 mg/kg at 3-week intervals.
- the combination therapies described herein can be administered to the subject systemically (e.g., orally, parenterally, subcutaneously, intravenously, rectally, intramuscularly, intraperitoneally, intranasally, transdermally, or by inhalation or intracavitary installation), topically, or by application to mucous membranes, such as the nose, throat and bronchial tubes.
- the methods and compositions described herein can be used in combination with further agents or therapeutic modalities.
- the combination therapies can be administered simultaneously or sequentially in any order. Any combination and sequence of the anti-PD-1 or PD-L1 antibody molecules and other therapeutic agents, procedures or modalities (e.g., as described herein) can be used.
- the combination therapies can be administered during periods of active disorder, or during a period of remission or less active disease.
- the combination therapies can be administered before the other treatment, concurrently with the treatment, post-treatment, or during remission of the disorder.
- the methods and compositions described herein are administered in combination with one or more of other antibody molecules, chemotherapy, other anti-cancer therapy (e.g., targeted anti-cancer therapies, gene therapy, viral therapy, RNA therapy bone marrow transplantation, nanotherapy, or oncolytic drugs), cytotoxic agents, immune-based therapies (e.g., cytokines or cell-based immune therapies), surgical procedures (e.g., lumpectomy or mastectomy) or radiation procedures, or a combination of any of the foregoing.
- the additional therapy may be in the form of adjuvant or neoadjuvant therapy.
- the additional therapy is an enzymatic inhibitor (e.g. , a small molecule enzymatic inhibitor) or a metastatic inhibitor.
- exemplary cytotoxic agents that can be administered in combination with include antimicrotubule agents, topoisomerase inhibitors, anti-metabolites, mitotic inhibitors, alkylating agents, anthracyclines, vinca alkaloids, intercalating agents, agents capable of interfering with a signal transduction pathway, agents that promote apoptosis, proteosome inhibitors, and radiation (e.g., local or whole body irradiation (e.g., gamma irradiation).
- the additional therapy is surgery or radiation, or a combination thereof.
- the additional therapy is a therapy targeting an mTOR pathway, an HSP90 inhibitor, or a tubulin inhibitor.
- the methods and compositions described herein can be administered in combination with one or more of: a vaccine, e.g., a therapeutic cancer vaccine; or other forms of cellular immunotherapy.
- the combination therapy is used in combination with one, two or all of oxaliplatin, leucovorin or 5-FU (e.g., a FOLFOX co -treatment).
- combination further includes a VEGF inhibitor (e.g., a VEGF inhibitor as disclosed herein).
- the cancer treated with the combination is chosen from a melanoma, a colorectal cancer, a non- small cell lung cancer, an ovarian cancer, a breast cancer, a prostate cancer, a pancreatic cancer, a hematological malignancy or a renal cell carcinoma.
- the cancer may be at an early, intermediate or late stage.
- the combination therapy is administered with a tyrosine kinase inhibitor (e.g., axitinib) to treat renal cell carcinoma and other solid tumors.
- a tyrosine kinase inhibitor e.g., axitinib
- the combination therapy is administered with a 4- IBB receptor targeting agent (e.g., an antibody that stimulates signaling through 4-1BB (CD-137), e.g., PF- 2566).
- a 4- IBB receptor targeting agent e.g., an antibody that stimulates signaling through 4-1BB (CD-137), e.g., PF- 2566.
- the combination therapy is administered in combination with a tyrosine kinase inhibitor (e.g., axitinib) and a 4- IBB receptor targeting agent.
- Figure 1 shows a graphical representation of PD-L1 mRNA expression in H3122 cells in vitro with or without LDK378.
- H3122 cells are non-small cell lung cancer (NSCLC) cells with an ALK translocation.
- NSCLC non-small cell lung cancer
- Table 1 is a summary of the therapeutic agent LDK378 that can be administered in combination with the immunomodulators (e.g., one or more of: an activator of a costimulatory molecule and/or an inhibitor of an immune checkpoint molecule) described herein.
- Table 1 provides from left to right the following for the LDK378: the Name and/or Designation of the second therapeutic agent, the Compound structure, a Patent publication disclosing the
- compositions which comprise an immunomodulator ⁇ e.g., one or more of: an activator of a co stimulatory molecule and/or an inhibitor of an immune checkpoint molecule) in combination with a second therapeutic agent LDK378.
- an inhibitor of an immune checkpoint molecule e.g., one or more of inhibitors to PD-1, PD-L1, LAG-3, TIM-3 or CTLA4
- a beneficial effect e.g., in the treatment of a cancer, such as an enhanced anti-cancer effect, reduced toxicity and/or reduced side effects.
- the immunomodulator, the second therapeutic agent, or both can be administered at a lower dosage than would be required to achieve the same therapeutic effect compared to a monotherapy dose.
- PD-1 Programmed Death 1 or "PD-1” include isoforms, mammalian, e.g., human PD-1, species homologs of human PD-1, and analogs comprising at least one common epitope with PD-1.
- the amino acid sequence of PD-1, e.g., human PD-1, is known in the art, e.g.,
- PD-Ligand 1 or "PD-L1” include isoforms, mammalian, e.g., human PD-1, species homologs of human PD-L1, and analogs comprising at least one common epitope with PD-L1.
- the amino acid sequence of PD-L1, e.g., human PD-L1, is known in the art
- Lymphocyte Activation Gene-3 or "LAG-3” include all isoforms
- LAG-3 mammalian, e.g., human LAG-3, species homologs of human LAG-3, and analogs comprising at least one common epitope with LAG-3.
- the amino acid and nucleotide sequences of LAG-3, e.g., human LAG-3, is known in the art, e.g., Triebel et al. (1990) J. Exp. Med. 171:1393- 1405.
- TIM-3 refers to a transmembrane receptor protein that is expressed on Thl (T helper 1) cells. TIM-3 has a role in regulating immunity and tolerance in vivo (see Hastings et al., Eur J Immunol. 2009 Sep;39(9):2492-501).
- CEACAM Carcinoembryonic Antigen-related Cell Adhesion Molecule
- CEACAM includes all family members (e.g., CEACAM- 1, CEACAM-3, or CEACAM-5), isoforms, mammalian, e.g., human CEACAM, species homologs of human CEACAM, and analogs comprising at least one common epitope with CEACAM.
- CEACAM e.g., human CEACAM
- the articles “a” and “an” refer to one or to more than one (e.g., to at least one) of the grammatical object of the article.
- “About” and “approximately” shall generally mean an acceptable degree of error for the quantity measured given the nature or precision of the measurements. Exemplary degrees of error are within 20 percent (%), typically, within 10%, and more typically, within 5% of a given value or range of values.
- compositions and methods of the present disclosure encompass polypeptides and nucleic acids having the sequences specified, or sequences substantially identical or similar thereto, e.g., sequences at least 85%, 90%, 95% identical or higher to the sequence specified.
- substantially identical is used herein to refer to a first amino acid that contains a sufficient or minimum number of amino acid residues that are i) identical to, or ii) conservative substitutions of aligned amino acid residues in a second amino acid sequence such that the first and second amino acid sequences can have a common structural domain and/or common functional activity.
- amino acid sequences that contain a common structural domain having at least about 85%, 90%. 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identity to a reference sequence, e.g., a sequence provided herein.
- nucleotide sequence in the context of nucleotide sequence, the term "substantially identical" is used herein to refer to a first nucleic acid sequence that contains a sufficient or minimum number of nucleotides that are identical to aligned nucleotides in a second nucleic acid sequence such that the first and second nucleotide sequences encode a polypeptide having common functional activity, or encode a common structural polypeptide domain or a common functional polypeptide activity.
- the term "functional variant” refers polypeptides that have a substantially identical amino acid sequence to the naturally- occurring sequence, or are encoded by a substantially identical nucleotide sequence, and are capable of having one or more activities of the naturally-occurring sequence.
- the sequences are aligned for optimal comparison purposes (e.g. , gaps can be introduced in one or both of a first and a second amino acid or nucleic acid sequence for optimal alignment and non-homologous sequences can be disregarded for comparison purposes).
- the length of a reference sequence aligned for comparison purposes is at least 30%, preferably at least 40%, more preferably at least 50%, 60%, and even more preferably at least 70%, 80%, 90%, 100% of the length of the reference sequence.
- the amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared.
- amino acid or nucleic acid “identity” is equivalent to amino acid or nucleic acid “homology”
- the percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, which need to be introduced for optimal alignment of the two sequences.
- the comparison of sequences and determination of percent identity between two sequences can be accomplished using a mathematical algorithm.
- the percent identity between two amino acid sequences is determined using the Needleman and Wunsch ((1970) J. Mol. Biol. 48:444-453 ) algorithm which has been incorporated into the GAP program in the GCG software package (available at http://www.gcg.com), using either a
- Blossum 62 matrix or a PAM250 matrix and a gap weight of 16, 14, 12, 10, 8, 6, or 4 and a length weight of 1, 2, 3, 4, 5, or 6.
- the percent identity between two nucleotide sequences is determined using the GAP program in the GCG software package (available at http://www.gcg.com), using a NWSgapdna.CMP matrix and a gap weight of 40, 50, 60, 70, or 80 and a length weight of 1, 2, 3, 4, 5, or 6.
- a particularly preferred set of parameters are a Blossum 62 scoring matrix with a gap penalty of 12, a gap extend penalty of 4, and a frameshift gap penalty of 5.
- the percent identity between two amino acid or nucleotide sequences can be determined using the algorithm of E. Meyers and W. Miller ((1989) CABIOS, 4: 11-17) which has been incorporated into the ALIGN program (version 2.0), using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4.
- nucleic acid and protein sequences described herein can be used as a "query sequence" to perform a search against public databases to, for example, identify other family members or related sequences. Such searches can be performed using the NBLAST and
- Gapped BLAST can be utilized as described in Altschul et al, (1997) Nucleic Acids Res. 25:3389-3402.
- the default parameters of the respective programs e.g., XBLAST and Gapped BLAST programs.
- NBLAST NBLAST
- hybridizes under low stringency, medium stringency, high stringency, or very high stringency conditions describes conditions for hybridization and washing.
- Guidance for performing hybridization reactions can be found in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6, which is incorporated by reference. Aqueous and nonaqueous methods are described in that reference and either can be used.
- Specific hybridization conditions referred to herein are as follows: 1) low stringency hybridization conditions in 6X sodium chloride/sodium citrate (SSC) at about 45°C, followed by two washes in 0.2X SSC, 0.1% SDS at least at 50°C (the temperature of the washes can be increased to 55°C for low stringency conditions); 2) medium stringency hybridization conditions in 6X SSC at about 45°C, followed by one or more washes in 0.2X SSC, 0.1% SDS at 60°C; 3) high stringency hybridization conditions in 6X SSC at about 45°C, followed by one or more washes in 0.2X SSC, 0.1% SDS at 65°C; and preferably 4) very high stringency hybridization conditions are 0.5M sodium phosphate, 7% SDS at 65°C, followed by one or more washes at 0.2X SSC, 1% SDS at 65°C. Very high stringency conditions (4) are the preferred conditions and the ones that should be used unless otherwise specified.
- molecules of the present disclosure may have additional conservative or non-essential amino acid substitutions, which do not have a substantial effect on their functions.
- amino acid is intended to embrace all molecules, whether natural or synthetic, which include both an amino functionality and an acid functionality and capable of being included in a polymer of naturally- occurring amino acids.
- exemplary amino acids include naturally- occurring amino acids; analogs, derivatives and congeners thereof; amino acid analogs having variant side chains; and all stereoisomers of any of any of the foregoing.
- amino acid includes both the D- or L- optical isomers and peptidomimetics.
- a “conservative amino acid substitution” is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain.
- Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine).
- polymers of amino acids of any length may be linear or branched, it may comprise modified amino acids, and it may be interrupted by non- amino acids.
- the terms also encompass an amino acid polymer that has been modified; for example, disulfide bond formation, glycosylation, lipidation, acetylation, phosphorylation, or any other manipulation, such as conjugation with a labeling component.
- the polypeptide can be isolated from natural sources, can be a produced by recombinant techniques from a eukaryotic or prokaryotic host, or can be a product of synthetic procedures.
- nucleic acid refers to any organic acid sequence.
- nucleotide sequence refers to any organic acid sequence.
- polynucleotide sequence and “polynucleotide” are used interchangeably. They refer to a polymeric form of nucleotides of any length, either deoxyribonucleotides or ribonucleotides, or analogs thereof.
- the polynucleotide may be either single- stranded or double-stranded, and if single- stranded may be the coding strand or non-coding (antisense) strand.
- a polynucleotide may comprise modified nucleotides, such as methylated nucleotides and nucleotide analogs.
- the sequence of nucleotides may be interrupted by non-nucleotide components.
- a polynucleotide may be further modified after polymerization, such as by conjugation with a labeling component.
- the nucleic acid may be a recombinant polynucleotide, or a polynucleotide of genomic, cDNA, semisynthetic, or synthetic origin which either does not occur in nature or is linked to another polynucleotide in a nonnatural arrangement.
- isolated refers to material that is removed from its original or native environment (e.g. , the natural environment if it is naturally occurring).
- a naturally- occurring polynucleotide or polypeptide present in a living animal is not isolated, but the same polynucleotide or polypeptide, separated by human intervention from some or all of the co-existing materials in the natural system, is isolated.
- Such polynucleotides could be part of a vector and/or such polynucleotides or polypeptides could be part of a composition, and still be isolated in that such vector or composition is not part of the environment in which it is found in nature.
- the antibody molecule binds to a mammalian, e.g., human, checkpoint molecule, e.g., PD-1, PD-L1, LAG-3, or TIM-3.
- checkpoint molecule e.g., PD-1, PD-L1, LAG-3, or TIM-3.
- the antibody molecule binds specifically to an epitope, e.g., linear or conformational epitope, (e.g., an epitope as described herein) on PD-1, PD-L1, LAG-3, or TIM-3.
- antibody molecule refers to a protein comprising at least one immunoglobulin variable domain sequence.
- the term antibody molecule includes, for example, full-length, mature antibodies and antigen-binding fragments of an antibody.
- an antibody molecule can include a heavy (H) chain variable domain sequence (abbreviated herein as VH), and a light (L) chain variable domain sequence (abbreviated herein as VL).
- an antibody molecule in another example, includes two heavy (H) chain variable domain sequences and two light (L) chain variable domain sequence, thereby forming two antigen binding sites, such as Fab, Fab', F(ab') 2 , Fc, Fd, Fd', Fv, single chain antibodies (scFv for example), single variable domain antibodies, diabodies (Dab) (bivalent and bispecific), and chimeric (e.g., humanized) antibodies, which may be produced by the modification of whole antibodies or those synthesized de novo using recombinant DNA technologies. These functional antibody fragments retain the ability to selectively bind with their respective antigen or receptor.
- Antibodies and antibody fragments can be from any class of antibodies including, but not limited to, IgG, IgA, IgM, IgD, and IgE, and from any subclass (e.g., IgGl, IgG2, IgG3, and IgG4) of antibodies.
- the antibodies of the present disclosure can be monoclonal or polyclonal.
- the antibody can also be a human, humanized, CDR-grafted, or in vitro generated antibody.
- the antibody can have a heavy chain constant region chosen from, e.g., IgGl, IgG2, IgG3, or IgG4.
- the antibody can also have a light chain chosen from, e.g., kappa or lambda.
- antigen-binding fragments include: (i) a Fab fragment, a monovalent fragment consisting of the VL, VH, CL and CHI domains; (ii) a F(ab')2 fragment, a bivalent fragment comprising two Fab fragments linked by a disulfide bridge at the hinge region; (iii) a Fd fragment consisting of the VH and CHI domains; (iv) a Fv fragment consisting of the VL and VH domains of a single arm of an antibody, (v) a diabody (dAb) fragment, which consists of a VH domain; (vi) a camelid or camelized variable domain; (vii) a single chain Fv (scFv), see e.g., Bird et al.
- a Fab fragment a monovalent fragment consisting of the VL, VH, CL and CHI domains
- a F(ab')2 fragment a bivalent fragment comprising two Fab fragments linked by a
- antibody includes intact molecules as well as functional fragments thereof. Constant regions of the antibodies can be altered, e.g., mutated, to modify the properties of the antibody (e.g., to increase or decrease one or more of: Fc receptor binding, antibody
- glycosylation the number of cysteine residues, effector cell function, or complement function.
- Antibody molecules can also be single domain antibodies.
- Single domain antibodies can include antibodies whose complementary determining regions are part of a single domain polypeptide. Examples include, but are not limited to, heavy chain antibodies, antibodies naturally devoid of light chains, single domain antibodies derived from conventional 4-chain antibodies, engineered antibodies and single domain scaffolds other than those derived from antibodies.
- Single domain antibodies may be any of the art, or any future single domain antibodies.
- Single domain antibodies may be derived from any species including, but not limited to mouse, human, camel, llama, fish, shark, goat, rabbit, and bovine.
- a single domain antibody is a naturally occurring single domain antibody known as heavy chain antibody devoid of light chains. Such single domain antibodies are disclosed in WO 9404678, for example.
- variable domain derived from a heavy chain antibody naturally devoid of light chain is known herein as a VHH or nanobody to distinguish it from the conventional VH of four chain immunoglobulins.
- VHH molecule can be derived from antibodies raised in Camelidae species, for example in camel, llama, dromedary, alpaca and guanaco. Other species besides Camelidae may produce heavy chain antibodies naturally devoid of light chain; such VHHs are within the scope of the disclosure.
- VH and VL regions can be subdivided into regions of hypervariability, termed “complementarity determining regions” (CDR), interspersed with regions that are more conserved, termed “framework regions” (FR or FW).
- CDR complementarity determining regions
- FR framework regions
- CDR complementarity determining region
- HCDR1, HCDR2, HCDR3 three CDRs in each heavy chain variable region
- LCDRl, LCDR2, LCDR3 three CDRs in each light chain variable region
- the CDR amino acid residues in the heavy chain variable domain (VH) are numbered 31-35 (HCDR1), 50-65 (HCDR2), and 95-102 (HCDR3); and the CDR amino acid residues in the light chain variable domain (VL) are numbered 24-34 (LCDRl), 50-56 (LCDR2), and 89-97 (LCDR3).
- the CDR amino acids in the VH are numbered 26-32 (HCDR1), 52-56 (HCDR2), and 95-102 (HCDR3); and the amino acid residues in VL are numbered 26-32 (LCDRl), 50-52 (LCDR2), and 91-96 (LCDR3).
- the CDRs consist of amino acid residues 26-35 (HCDR1), 50-65 (HCDR2), and 95-102 (HCDR3) in human VH and amino acid residues 24-34 (LCDRl), 50-56 (LCDR2), and 89-97 (LCDR3) in human VL.
- an "immunoglobulin variable domain sequence” refers to an amino acid sequence which can form the structure of an immunoglobulin variable domain.
- the sequence may include all or part of the amino acid sequence of a naturally- occurring variable domain.
- the sequence may or may not include one, two, or more N- or C-terminal amino acids, or may include other alterations that are compatible with formation of the protein structure.
- the term "antigen-binding site” refers to the part of an antibody molecule that comprises determinants that form an interface that binds to the PD-1 polypeptide, or an epitope thereof.
- the antigen-binding site typically includes one or more loops (of at least four amino acids or amino acid mimics) that form an interface that binds to the PD-1 polypeptide.
- the antigen-binding site of an antibody molecule includes at least one or two CDRs and/or hypervariable loops, or more typically at least three, four, five or six CDRs and/or hypervariable loops.
- monoclonal antibody or “monoclonal antibody composition” as used herein refer to a preparation of antibody molecules of single molecular composition.
- a monoclonal antibody composition displays a single binding specificity and affinity for a particular epitope.
- a monoclonal antibody can be made by hybridoma technology or by methods that do not use hybridoma technology (e.g., recombinant methods).
- An "effectively human” protein is a protein that does not evoke a neutralizing antibody response, e.g., the human anti-murine antibody (HAMA) response.
- HAMA can be problematic in a number of circumstances, e.g., if the antibody molecule is administered repeatedly, e.g., in treatment of a chronic or recurrent disease condition.
- a HAMA response can make repeated antibody administration potentially ineffective because of an increased antibody clearance from the serum (see, e.g., Saleh et al ⁇ Cancer Immunol. Immunother., 32:180-190 (1990)) and also because of potential allergic reactions (see, e.g., LoBuglio et al., Hybridoma, 5:5117-5123 (1986)).
- the antibody molecule can be a polyclonal or a monoclonal antibody.
- the antibody can be recombinantly produced, e.g., produced by phage display or by combinatorial methods.
- Phage display and combinatorial methods for generating antibodies are known in the art (as described in, e.g., Ladner et al. U.S. Patent No. 5,223,409; Kang et al. International
- the antibody is a fully human antibody (e.g., an antibody made in a mouse which has been genetically engineered to produce an antibody from a human
- a non-human antibody e.g., a rodent (mouse or rat), goat, primate (e.g., monkey), camel antibody.
- the non-human antibody is a rodent (mouse or rat antibody).
- Human monoclonal antibodies can be generated using transgenic mice carrying the human immunoglobulin genes rather than the mouse system. Splenocytes from these transgenic mice immunized with the antigen of interest are used to produce hybridomas that secrete human mAbs with specific affinities for epitopes from a human protein (see, e.g., Wood et al.
- An antibody can be one in which the variable region, or a portion thereof, e.g., the CDRs, are generated in a non-human organism, e.g., a rat or mouse. Chimeric, CDR-grafted, and humanized antibodies are within the disclosure. Antibodies generated in a non-human organism, e.g., a rat or mouse, and then modified, e.g., in the variable framework or constant region, to decrease antigenicity in a human are within the disclosure.
- Chimeric antibodies can be produced by recombinant DNA techniques known in the art (see Robinson et al, International Patent Publication PCT/US86/02269; Akira, et al, European Patent Application 184,187; Taniguchi, M., European Patent Application 171,496; Morrison et al, European Patent Application 173,494; Neuberger et al., International Application WO 86/01533; Cabilly et al. U.S. Patent No. 4,816,567; Cabilly et al., European Patent Application 125,023; Better et al. (1988 Science 240:1041-1043); Liu et al.
- a humanized or CDR-grafted antibody will have at least one or two but generally all three recipient CDRs (of heavy and or light immuoglobulin chains) replaced with a donor CDR.
- the antibody may be replaced with at least a portion of a non-human CDR or only some of the CDRs may be replaced with non-human CDRs. It is only necessary to replace the number of CDRs required for binding of the humanized antibody to PD-1.
- the donor will be a rodent antibody, e.g., a rat or mouse antibody
- the recipient will be a human framework or a human consensus framework.
- the immunoglobulin providing the CDRs is called the "donor” and the immunoglobulin providing the framework is called the “acceptor.”
- the donor immunoglobulin is a non-human ⁇ e.g., rodent).
- the acceptor framework is a naturally-occurring ⁇ e.g., a human) framework or a consensus framework, or a sequence about 85% or higher, preferably 90%, 95%, 99% or higher identical thereto.
- Consensus sequence refers to the sequence formed from the most frequently occurring amino acids (or nucleotides) in a family of related sequences (See e.g., Winnaker, From Genes to Clones (Verlagsgesellschaft, Weinheim, Germany 1987). In a family of proteins, each position in the consensus sequence is occupied by the amino acid occurring most frequently at that position in the family. If two amino acids occur equally frequently, either can be included in the consensus sequence.
- a “consensus framework” refers to the framework region in the consensus immunoglobulin sequence.
- An antibody can be humanized by methods known in the art ⁇ see e.g., Morrison, S. L., 1985, Science 229:1202-1207, by Oi et al, 1986, BioTechniques 4:214, and by Queen et al. US 5,585,089, US 5,693,761 and US 5,693,762, the contents of all of which are hereby incorporated by reference).
- Humanized or CDR-grafted antibodies can be produced by CDR-grafting or CDR substitution, wherein one, two, or all CDRs of an immunoglobulin chain can be replaced.
- CDR-grafting or CDR substitution wherein one, two, or all CDRs of an immunoglobulin chain can be replaced.
- U.S. Patent 5,225,539 Jones et al. 1986 Nature 321:552-525; Verhoeyan et al. 1988 Science 239:1534; Beidler et al. 1988 J. Immunol. 141:4053-4060; Winter US 5,225,539, the contents of all of which are hereby expressly incorporated by reference. Winter describes a CDR-grafting method which may be used to prepare the humanized antibodies of the present disclosure (UK Patent Application GB 2188638A, filed on March 26, 1987; Winter US
- humanized antibodies in which specific amino acids have been substituted, deleted or added. Criteria for selecting amino acids from the donor are described in US 5,585,089, e.g. , columns 12-16 of US 5,585,089, e.g., columns 12-16 of US 5,585,089, the contents of which are hereby incorporated by reference. Other techniques for humanizing antibodies are described in Padlan et al. EP 519596 Al, published on December 23, 1992.
- the antibody molecule can be a single chain antibody.
- a single-chain antibody (scFV) may be engineered (see, for example, Colcher, D. et al. (1999) Ann N Y Acad Sci 880:263-80; and Reiter, Y. (1996) Clin Cancer Res 2:245-52).
- the single chain antibody can be dimerized or multimerized to generate multivalent antibodies having specificities for different epitopes of the same target protein.
- the antibody molecule has a heavy chain constant region chosen from, e.g., the heavy chain constant regions of IgGl, IgG2, IgG3, IgG4, IgM, IgAl, IgA2, IgD, and IgE; particularly, chosen from, e.g., the ⁇ e.g., human) heavy chain constant regions of IgGl, IgG2, IgG3, and IgG4.
- the antibody molecule has a light chain constant region chosen from, e.g., the ⁇ e.g., human) light chain constant regions of kappa or lambda.
- the constant region can be altered, e.g., mutated, to modify the properties of the antibody ⁇ e.g., to increase or decrease one or more of: Fc receptor binding, antibody glycosylation, the number of cysteine residues, effector cell function, and/or complement function).
- the antibody has: effector function; and can fix complement.
- the antibody does not; recruit effector cells; or fix complement.
- the antibody has reduced or no ability to bind an Fc receptor. For example, it is a isotype or subtype, fragment or other mutant, which does not support binding to an Fc receptor, e.g. , it has a mutagenized or deleted Fc receptor binding region.
- Antibodies with altered function e.g. altered affinity for an effector ligand, such as FcR on a cell, or the CI component of complement can be produced by replacing at least one amino acid residue in the constant portion of the antibody with a different residue ⁇ see e.g., EP 388,151 Al, U.S. Pat. No. 5,624,821 and U.S. Pat. No. 5,648,260, the contents of all of which are hereby incorporated by reference). Similar type of alterations could be described which if applied to the murine, or other species immunoglobulin would reduce or eliminate these functions.
- an antibody molecule can be derivatized or linked to another functional molecule (e.g., another peptide or protein).
- a "derivatized" antibody molecule is one that has been modified. Methods of derivatization include but are not limited to the addition of a fluorescent moiety, a radionucleotide, a toxin, an enzyme or an affinity ligand such as biotin. Accordingly, the antibody molecules of the disclosure are intended to include derivatized and otherwise modified forms of the antibodies described herein, including immunoadhesion molecules.
- an antibody molecule can be functionally linked (by chemical coupling, genetic fusion, noncovalent association or otherwise) to one or more other molecular entities, such as another antibody (e.g., a bispecific antibody or a diabody), a detectable agent, a cytotoxic agent, a pharmaceutical agent, and/or a protein or peptide that can mediate association of the antibody or antibody portion with another molecule (such as a streptavidin core region or a polyhistidine tag).
- another antibody e.g., a bispecific antibody or a diabody
- detectable agent e.g., a detectable agent, a cytotoxic agent, a pharmaceutical agent, and/or a protein or peptide that can mediate association of the antibody or antibody portion with another molecule (such as a streptavidin core region or a polyhistidine tag).
- One type of derivatized antibody molecule is produced by crosslinking two or more antibodies (of the same type or of different types, e.g., to create bispecific antibodies).
- Suitable crosslinkers include those that are heterobifunctional, having two distinctly reactive groups separated by an appropriate spacer (e.g., m-maleimidobenzoyl-N-hydroxysuccinimide ester) or homobifunctional (e.g. , disuccinimidyl suberate).
- an appropriate spacer e.g., m-maleimidobenzoyl-N-hydroxysuccinimide ester
- homobifunctional e.g. , disuccinimidyl suberate
- Radioactive isotopes can be used in diagnostic or therapeutic applications. Radioactive isotopes that can be coupled to the anti- PSMA antibodies include, but are not limited to ⁇ -, ⁇ -, or ⁇ -emitters, or ⁇ -and ⁇ -emitters. Such radioactive isotopes include, but are not limited to iodine ( 131 I or 125 I), yttrium ( 90 Y), lutetium (
- Radioisotopes useful as therapeutic agents include yttrium ( 90 Y), lutetium ( 177 Lu), actinium ( 225 Ac), praseodymium, astatine ( 211 At), rhenium ( 186 Re),
- Radioisotopes useful as labels include iodine ( I or I), indium ( In), technetium ( mTc), phosphorus ( P), carbon ( 14 C), and tritium ( 3 H), or one or more of the therapeutic isotopes listed above.
- the disclosure provides radiolabeled antibody molecules and methods of labeling the same.
- a method of labeling an antibody molecule is disclosed. The method includes contacting an antibody molecule, with a chelating agent, to thereby produce a conjugated antibody.
- the conjugated antibody is radiolabeled with a radioisotope, e.g. , u l Indium, 90 Yttrium and 177 Lutetium, to thereby produce a labeled antibody molecule.
- the antibody molecule can be conjugated to a therapeutic agent.
- therapeutically active radioisotopes have already been mentioned.
- examples of other therapeutic agents include taxol, cytochalasin B, gramicidin D, ethidium bromide, emetine, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicine, doxorubicin,
- daunorubicin dihydroxy anthracin dione, mitoxantrone, mithramycin, actinomycin D, 1- dehydrotestosterone, glucocorticoids, procaine, tetracaine, lidocaine, propranolol, puromycin, maytansinoids, e.g., maytansinol (see U.S. Pat. No. 5,208,020), CC-1065 (see U.S. Pat. Nos. 5,475,092, 5,585,499, 5,846, 545) and analogs or homologs thereof.
- Therapeutic agents include, but are not limited to, antimetabolites (e.g.
- alkylating agents e.g., mechlorethamine, thioepa chlorambucil, CC-1065, melphalan, carmustine (BSNU) and lomustine (CCNU),
- cyclothosphamide busulfan, dibromomannitol, streptozotocin, mitomycin C, and cis- dichlorodiamine platinum (II) (DDP) cisplatin), anthracyclinies (e.g., daunorubicin (formerly daunomycin) and doxorubicin), antibiotics (e.g., dactinomycin (formerly actinomycin), bleomycin, mithramycin, and anthramycin (AMC)), and anti-mitotic agents (e.g. , vincristine, vinblastine, taxol and maytansinoids).
- anthracyclinies e.g., daunorubicin (formerly daunomycin) and doxorubicin
- antibiotics e.g., dactinomycin (formerly actinomycin), bleomycin, mithramycin, and anthramycin (AMC)
- anti-mitotic agents e
- compositions e.g., pharmaceutically acceptable compositions, which include an antibody molecule described herein, formulated together with a pharmaceutically acceptable carrier.
- pharmaceutically acceptable carrier includes any and all solvents, dispersion media, isotonic and absorption delaying agents, and the like that are physiologically compatible.
- the carrier can be suitable for intravenous, intramuscular, subcutaneous, parenteral, rectal, spinal or epidermal administration (e.g. by injection or infusion).
- compositions of this disclosure may be in a variety of forms. These include, for example, liquid, semi-solid and solid dosage forms, such as liquid solutions (e.g., injectable and infusible solutions), dispersions or suspensions, liposomes and suppositories.
- liquid solutions e.g., injectable and infusible solutions
- dispersions or suspensions e.g., dispersions or suspensions
- liposomes e.g., liposomes and suppositories.
- the preferred form depends on the intended mode of administration and therapeutic application. Typical preferred compositions are in the form of injectable or infusible solutions.
- the preferred mode of administration is parenteral (e.g., intravenous, subcutaneous, intraperitoneal, intramuscular).
- the antibody is administered by intravenous infusion or injection.
- the antibody is administered by intramuscular or subcutaneous injection.
- parenteral administration and “administered parenterally” as used herein means modes of administration other than enteral and topical administration, usually by injection, and includes, without limitation, intravenous, intramuscular, intraarterial, intrathecal, intracapsular, intraorbital, intracardiac, intradermal, intraperitoneal, transtracheal, subcutaneous, subcuticular, intraarticular, subcapsular, subarachnoid, intraspinal, epidural and intrasternal injection and infusion.
- compositions typically should be sterile and stable under the conditions of manufacture and storage.
- the composition can be formulated as a solution, microemulsion, dispersion, liposome, or other ordered structure suitable to high antibody concentration.
- Sterile injectable solutions can be prepared by incorporating the active compound (i.e., antibody or antibody portion) in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization.
- dispersions are prepared by incorporating the active compound into a sterile vehicle that contains a basic dispersion medium and the required other ingredients from those enumerated above.
- the preferred methods of preparation are vacuum drying and freeze-drying that yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.
- the proper fluidity of a solution can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants.
- Prolonged absorption of injectable compositions can be brought about by including in the composition an agent that delays absorption, for example, monostearate salts and gelatin.
- the antibody molecules can be administered by a variety of methods known in the art, although for many therapeutic applications, the preferred route/mode of administration is intravenous injection or infusion.
- the antibody molecules can be administered by intravenous infusion at a rate of less than lOmg/min; preferably less than or equal to 5 mg/min to reach a dose of about 1 to 100 mg/m 2 , preferably about 5 to 50 mg/m 2 , about 7 to 25 mg/m 2 and more preferably, about 10 mg/m .
- the route and/or mode of administration will vary depending upon the desired results.
- the active compound may be prepared with a carrier that will protect the compound against rapid release, such as a controlled release formulation, including implants, transdermal patches, and microencapsulated delivery systems.
- a controlled release formulation including implants, transdermal patches, and microencapsulated delivery systems.
- Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Many methods for the preparation of such formulations are patented or generally known to those skilled in the art. See, e.g., Sustained and Controlled Release Drug Delivery Systems, J. R. Robinson, ed., Marcel Dekker, Inc., New York, 1978.
- an antibody molecule can be orally administered, for example, with an inert diluent or an assimilable edible carrier.
- the compound (and other ingredients, if desired) may also be enclosed in a hard or soft shell gelatin capsule, compressed into tablets, or incorporated directly into the subject's diet.
- the compounds may be incorporated with excipients and used in the form of ingestible tablets, buccal tablets, troches, capsules, elixirs, suspensions, syrups, wafers, and the like.
- To administer a compound of the disclosure by other than parenteral administration it may be necessary to coat the compound with, or co-administer the compound with, a material to prevent its inactivation.
- Therapeutic compositions can also be administered with medical devices known in the art.
- Dosage regimens are adjusted to provide the optimum desired response ⁇ e.g., a therapeutic response). For example, a single bolus may be administered, several divided doses may be administered over time or the dose may be proportionally reduced or increased as indicated by the exigencies of the therapeutic situation. It is especially advantageous to formulate parenteral compositions in dosage unit form for ease of administration and uniformity of dosage.
- Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the subjects to be treated; each unit contains a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required
- a “therapeutically effective amount” refers to an amount effective, at dosages and for periods of time necessary, to achieve the desired therapeutic result.
- a therapeutically effective amount of the modified antibody or antibody fragment may vary according to factors such as the disease state, age, sex, and weight of the individual, and the ability of the antibody or antibody portion to elicit a desired response in the individual.
- a therapeutically effective amount is also one in which any toxic or detrimental effects of the modified antibody or antibody fragment is outweighed by the therapeutically beneficial effects.
- a “therapeutically effective dosage” preferably inhibits a measurable parameter, e.g., tumor growth rate by at least about 20%, more preferably by at least about 40%, even more preferably by at least about 60%, and still more preferably by at least about 80% relative to untreated subjects.
- a compound to inhibit a measurable parameter e.g., cancer
- a measurable parameter e.g., cancer
- this property of a composition can be evaluated by examining the ability of the compound to inhibit, such inhibition in vitro by assays known to the skilled practitioner.
- prophylactically effective amount refers to an amount effective, at dosages and for periods of time necessary, to achieve the desired prophylactic result. Typically, since a prophylactic dose is used in subjects prior to or at an earlier stage of disease, the prophylactically effective amount will be less than the therapeutically effective amount.
- the anti-PD-1 antibody molecule is administered by injection (e.g., subcutaneously or intravenously) at a dose of about 1 to 30 mg/kg, e.g., about 5 to 25 mg/kg, about 10 to 20 mg/kg, about 1 to 5 mg/kg, or about 3 mg/kg.
- the dosing schedule can vary from e.g., once a week to once every 2, 3, or 4 weeks.
- the anti-PD-1 antibody molecule is administered at a dose from about 10 to 20 mg/kg every other week.
- an exemplary, non-limiting range for a therapeutically or prophylactically effective amount of an antibody molecule is 0.1-30 mg/kg, more preferably 1-25 mg/kg. Dosages and therapeutic regimens of the anti-PD-1 antibody molecule can be determined by a skilled artisan.
- the anti-PD-1 antibody molecule is administered by injection (e.g., subcutaneously or intravenously) at a dose of about 1 to 30 mg/kg, e.g., about 5 to 25 mg/kg, about 10 to 20 mg/kg, about 1 to 5 mg/kg, 1 to 10 mg/kg, 5 to 15 mg/kg, 10 to 20 mg/kg, 15 to 25 mg/kg, or about 3 mg/kg.
- the dosing schedule can vary from e.g., once a week to once every 2, 3, or 4 weeks.
- the anti-PD-1 antibody molecule is administered at a dose from about 10 to 20 mg/kg every other week.
- the antibody molecule can be administered by intravenous infusion at a rate of less than 10 mg/min, preferably less than or equal to 5 mg/min
- dosage values may vary with the type and severity of the condition to be alleviated. It is to be further understood that for any particular subject, specific dosage regimens should be adjusted over time according to the individual need and the professional judgment of the person administering or supervising the administration of the compositions, and that dosage ranges set forth herein are exemplary only and are not intended to limit the scope or practice of the claimed composition.
- the antibody molecules can be used by themselves or conjugated to a second agent, e.g., a cytotoxic drug, radioisotope, or a protein, e.g., a protein toxin or a viral protein.
- a second agent e.g., a cytotoxic drug, radioisotope, or a protein, e.g., a protein toxin or a viral protein.
- This method includes: administering the antibody molecule, alone or conjugated to a cytotoxic drug, to a subject requiring such treatment.
- the antibody molecules can be used to deliver a variety of therapeutic agents, e.g., a cytotoxic moiety, e.g., a therapeutic drug, a radioisotope, molecules of plant, fungal, or bacterial origin, or biological proteins (e.g., protein toxins) or particles (e.g., a recombinant viral particles, e.g.; via a viral coat protein), or mixtures thereof.
- a cytotoxic moiety e.g., a therapeutic drug, a radioisotope
- molecules of plant, fungal, or bacterial origin or biological proteins (e.g., protein toxins) or particles (e.g., a recombinant viral particles, e.g.; via a viral coat protein), or mixtures thereof.
- kits comprising a combination therapy described herein.
- the kit can include one or more other elements including: instructions for use; other reagents, e.g., a label, a therapeutic agent, or an agent useful for chelating, or otherwise coupling, an antibody to a label or therapeutic agent, or a radioprotective composition; devices or other materials for preparing the antibody for administration; pharmaceutically acceptable carriers; and devices or other materials for administration to a subject.
- the combination therapies disclosed herein have in vitro and in vivo therapeutic and prophylactic utilities.
- these molecules can be administered to cells in culture, in vitro or ex vivo, or to a subject, e.g., a human subject, to treat, prevent, and/or diagnose a variety of disorders, such as cancers.
- the disclosure provides a method of modifying an immune response in a subject comprising administering to the subject the antibody molecule described herein, such that the immune response in the subject is modified.
- the immune response is enhanced, stimulated or up-regulated.
- the antibody molecules enhance an immune response in a subject by blockade of a checkpoint inhibitor (e.g., PD-1, PD-L1, LAG-3 or TIM-3).
- a checkpoint inhibitor e.g., PD-1, PD-L1, LAG-3 or TIM-3.
- subject is intended to include human and non-human animals.
- the subject is a human subject, e.g., a human patient having a disorder or condition characterized by abnormal immune functioning.
- non-human animals includes mammals and non-mammals, such as non-human primates.
- the subject is a human.
- the subject is a human patient in need of enhancement of an immune response.
- the subject is immunocompromised, e.g., the subject is undergoing, or has undergone a chemotherapeutic or radiation therapy. Alternatively, or in combination, the subject is, or is at risk of being, immunocompromised as a result of an infection.
- the methods and compositions described herein are suitable for treating human patients having a disorder that can be treated by augmenting the T-cell mediated immune response.
- the methods and compositions described herein can enhance a number of immune activities.
- the subject has increased number or activity of tumour- infiltrating T lymphocytes (TILs).
- TILs tumour- infiltrating T lymphocytes
- IFN- ⁇ interferon-gamma
- the subject has decreased PD-L1 expression or activity.
- Blockade of checkpoint inhibitors can enhance an immune response to cancerous cells in a subject.
- the ligand for PD-1, PD-Ll is not expressed in normal human cells, but is abundant in a variety of human cancers (Dong et al. (2002) Nat Med 8:787-9).
- the interaction between PD-1 and PD-Ll can result in a decrease in tumor infiltrating lymphocytes, a decrease in T-cell receptor mediated proliferation, and/or immune evasion by the cancerous cells (Dong et al. (2003) J Mol Med 81:281-7; Blank et al. (2005) Cancer Immunol. Immunother. 54:307-314; Konishi et al. (2004) Clin. Cancer Res. 10:5094-100).
- the disclosure relates to treatment of a subject in vivo using an anti-PD-1 or anti-PD-Ll antibody molecule such that growth of cancerous tumors is inhibited or reduced.
- An anti-PD-1 or anti-PD-Ll antibody may be used alone to inhibit the growth of cancerous tumors.
- an anti-PD-1 or anti-PD-Ll antibody may be used in combination with one or more of: an agent disclosed in Table 1, a standard of care treatment (e.g., for cancers), another antibody or antigen-binding fragment thereof, another immunomodulator (e.g., an activator of a costimulatory molecule or an inhibitor of an inhibitory molecule); a vaccine, e.g., a therapeutic cancer vaccine; or other forms of cellular immunotherapy, as described below.
- an agent disclosed in Table 1 e.g., a standard of care treatment (e.g., for cancers), another antibody or antigen-binding fragment thereof, another immunomodulator (e.g., an activator of a costimulatory molecule or an inhibitor of an inhibitory molecule); a vaccine, e.g., a therapeutic cancer vaccine; or other forms of cellular immunotherapy, as described below.
- a standard of care treatment e.g., for cancers
- another immunomodulator e.g., an activator of
- the disclosure provides a method of inhibiting growth of tumor cells in a subject, comprising administering to the subject a therapeutically effective amount of a combination therapy disclosed herein.
- the methods are suitable for the treatment of cancer in vivo.
- antibodies to PD-1 are administered in combination with one or more agents, the combination can be administered in either order or simultaneously.
- a method of treating a subject e.g., reducing or ameliorating, a hyperproliferative condition or disorder (e.g., a cancer), e.g., solid tumor, a soft tissue tumor, or a metastatic lesion, in a subject is provided.
- the method includes administering to the subject one or more anti-PD-1 or PD-Ll antibody molecules described herein, alone or in combination with other agents or therapeutic modalities.
- cancer is meant to include all types of cancerous growths or oncogenic processes, metastatic tissues or malignantly transformed cells, tissues, or organs, irrespective of histopathologic type or stage of invasiveness.
- cancerous disorders include, but are not limited to, solid tumors, soft tissue tumors, and metastatic lesions.
- solid tumors include malignancies, e.g., sarcomas, adenocarcinomas, and carcinomas, of the various organ systems, such as those affecting liver, lung, breast, lymphoid, gastrointestinal (e.g. , colon), genitourinary tract (e.g. , renal, urothelial cells), prostate and pharynx.
- Adenocarcinomas include malignancies such as most colon cancers, rectal cancer, renal-cell carcinoma, liver cancer, non-small cell carcinoma of the lung, cancer of the small intestine and cancer of the esophagus.
- the cancer is a melanoma, e.g., an advanced stage melanoma. Metastatic lesions of the aforementioned cancers can also be treated or prevented using the methods and compositions of the disclosure.
- Exemplary cancers whose growth can be inhibited using the antibodies molecules disclosed herein include cancers typically responsive to immunotherapy.
- preferred cancers for treatment include melanoma (e.g., metastatic malignant melanoma), renal cancer (e.g., clear cell carcinoma), prostate cancer (e.g., hormone refractory prostate adenocarcinoma), breast cancer, colon cancer and lung cancer (e.g., non-small cell lung cancer).
- melanoma e.g., metastatic malignant melanoma
- renal cancer e.g., clear cell carcinoma
- prostate cancer e.g., hormone refractory prostate adenocarcinoma
- breast cancer e.g., colon cancer
- lung cancer e.g., non-small cell lung cancer.
- refractory or recurrent malignancies can be treated using the antibody molecules described herein.
- cancers examples include bone cancer, pancreatic cancer, skin cancer, cancer of the head or neck, cutaneous or intraocular malignant melanoma, uterine cancer, ovarian cancer, rectal cancer, anal cancer, gastro-esophageal, stomach cancer, testicular cancer, uterine cancer, carcinoma of the fallopian tubes, carcinoma of the endometrium, carcinoma of the cervix, carcinoma of the vagina, carcinoma of the vulva, Hodgkin's Disease, non-Hodgkin's lymphoma, cancer of the esophagus, cancer of the small intestine, cancer of the endocrine system, cancer of the thyroid gland, cancer of the parathyroid gland, cancer of the adrenal gland, sarcoma of soft tissue, cancer of the urethra, cancer of the penis, chronic or acute leukemias including acute myeloid leukemia, chronic myeloid leukemia, acute lymphoblastic leukemia, chronic lymphocytic leukemia, solid tumor
- metastatic cancers e.g., metastatic cancers that express PD-L1 (Iwai et al. (2005) Int. Immunol. 17: 133-144) can be effected using the antibody molecules described herein.
- the cancer expresses an elevated level of PD-L1, IFNy and /or CD8.
- Hematological cancer conditions are the types of cancer such as leukemia and malignant lymphoproliferative conditions that affect blood, bone marrow and the lymphatic system.
- Leukemia can be classified as acute leukemia and chronic leukemia.
- Acute leukemia can be further classified as acute myelogenous leukemia (AML) and acute lymphoid leukemia (ALL).
- Chronic leukemia includes chronic myelogenous leukemia (CML) and chronic lymphoid leukemia (CLL).
- CML chronic myelogenous leukemia
- CLL chronic lymphoid leukemia
- Other related conditions include myelodysplasia syndromes (MDS, formerly known as "preleukemia") which are a diverse collection of hematological conditions united by ineffective production (or dysplasia) of myeloid blood cells and risk of transformation to AML.
- MDS myelodysplasia syndromes
- the cancer is a hematological malignancy or cancer including but is not limited to a leukemia or a lymphoma.
- the combination therapy can be used to treat cancers and malignancies including, but not limited to, e.g., acute leukemias including but not limited to, e.g., B-cell acute lymphoid leukemia ("BALL"), T-cell acute lymphoid leukemia ("TALL"), acute lymphoid leukemia (ALL); one or more chronic leukemias including but not limited to, e.g., chronic myelogenous leukemia (CML), chronic lymphocytic leukemia (CLL); additional hematologic cancers or hematologic conditions including, but not limited to, e.g., B cell prolymphocyte leukemia, blastic plasmacytoid dendritic cell neoplasm, Burkitt's lymphoma, diffuse large B cell lymphoma, Follicular lymphoma, Hair
- myelodysplasia and myelodysplasia syndrome myelodysplasia and myelodysplasia syndrome, non-Hodgkin's lymphoma, plasmablastic lymphoma, plasmacytoid dendritic cell neoplasm, Waldenstrom macroglobulinemia, and
- the lymphoma e.g., an anaplastic large-cell lymphoma or non-Hodgkin's lymphoma
- the lymphoma has, or is identified as having, an ALK translocation, e.g., an EML4-ALK fusion.
- the cancer is chosen from a lung cancer ⁇ e.g., a non-small cell lung cancer (NSCLC) ⁇ e.g., a NSCLC with squamous and/or non-squamous histology)), a melanoma ⁇ e.g., an advanced melanoma), a renal cancer ⁇ e.g., a renal cell carcinoma, e.g., clear cell renal cell carcinoma), a liver cancer, a myeloma (e.g., a multiple myeloma), a prostate cancer, a breast cancer (e.g., a breast cancer that does not express one, two or all of estrogen receptor, progesterone receptor, or Her2/neu, e.g., a triple negative breast cancer), a colorectal cancer, a pancreatic cancer, a head and neck cancer (e.g., head and neck squamous cell carcinoma
- NSCLC non-small cell lung cancer
- a melanoma
- HNSCC gastro-esophageal cancer
- thyroid cancer cervical cancer
- lymphoproliferative disease e.g., a post-transplant lymphoproliferative disease
- a post-transplant lymphoproliferative disease e.g., a tumor necrosis, a tumor necrosis, or a tumor necrosis.
- hematological cancer T-cell lymphoma, a non-Hogdkin's lymphoma, or a leukemia (e.g., a myeloid leukemia).
- T-cell lymphoma T-cell lymphoma
- non-Hogdkin's lymphoma T-cell lymphoma
- a leukemia e.g., a myeloid leukemia
- the cancer is chosen form a carcinoma (e.g., advanced or metastatic carcinoma), melanoma or a lung carcinoma, e.g., a non-small cell lung carcinoma.
- a carcinoma e.g., advanced or metastatic carcinoma
- melanoma e.g., a non-small cell lung carcinoma.
- the cancer is a lung cancer, e.g., a non-small cell lung cancer.
- the lung cancer e.g., the non-small cell lung cancer
- the cancer is a hepatocarcinoma, e.g., an advanced hepatocarcinoma
- hepatocarcinoma with or without a viral infection, e.g., a chronic viral hepatitis.
- the cancer is a prostate cancer, e.g., an advanced prostate cancer.
- the cancer is a myeloma, e.g., multiple myeloma.
- the cancer is a renal cancer, e.g., a renal cell carcinoma (RCC) (e.g., a metastatic RCC or clear cell renal cell carcinoma).
- RCC renal cell carcinoma
- the cancer is a melanoma, e.g., an advanced melanoma. In one embodiment, the cancer is an advanced or unresectable melanoma that does not respond to other therapies. In other embodiments, the cancer is a melanoma with a BRAF mutation (e.g., a BRAF V600 mutation). In yet other embodiments, the anti-PD-1 or PD-L1 antibody molecule is administered after treatment with an anti-CTLA4 antibody (e.g., ipilimumab) with or without a BRAF inhibitor (e.g., vemurafenib or dabrafenib).
- an anti-CTLA4 antibody e.g., ipilimumab
- a BRAF inhibitor e.g., vemurafenib or dabrafenib.
- the cancer is an inflammatory myofibroblastic tumor (IMT).
- IMT inflammatory myofibroblastic tumor
- the inflammatory myofibroblastic tumor has, or is identified as having, an ALK rearrangement or translocation, e.g., an ALK fusion, e.g., an EML4-ALK fusion.
- the cancer is a neuroblastoma.
- the neuroblastoma has, or is identified as having, an ALK rearrangement or translocation, e.g., an ALK fusion, e.g., an EML4-ALK fusion.
- An ALK rearrangement or translocation e.g., an ALK fusion, e.g., an EML4-ALK fusion.
- compositions described herein can be administered in combination with one or more of: an immunomodulator (e.g., an activator of a costimulatory molecule or an inhibitor of an inhibitory molecule); a vaccine, e.g., a therapeutic cancer vaccine; or other forms of cellular immunotherapy.
- an immunomodulator e.g., an activator of a costimulatory molecule or an inhibitor of an inhibitory molecule
- a vaccine e.g., a therapeutic cancer vaccine
- the immunomodulator and the second therapeutic agent can be administered concurrently with, prior to, or subsequent to, one or more other additional therapies or therapeutic agents.
- the agents in the combination can be administered in any order. In general, each agent will be administered at a dose and/or on a time schedule determined for that agent.
- the additional therapeutic agent utilized in this combination may be administered together in a single composition or administered separately in different compositions. In general, it is expected that additional therapeutic agents utilized in combination be utilized at levels that do not exceed the levels at which they are utilized individually. In some embodiments, the levels utilized in combination will be lower than those utilized individually.
- the combination therapies disclosed herein include an inhibitor of an inhibitory molecule of an immune checkpoint molecule.
- immune checkpoints refers to a group of molecules on the cell surface of CD4 and CD8 T cells. These molecules can effectively serve as “brakes” to down-modulate or inhibit an anti-tumor immune response.
- Immune checkpoint molecules include, but are not limited to, Programmed Death 1 (PD-1), Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4), B7H1, B7H4, OX-40, CD137, CD40, and LAG3, which directly inhibit immune cells, immunotherapeutic agents which can act as immune checkpoint inhibitors useful in the methods of the present disclosure, include, but are not limited to, inhibitors of PD-L1, PD-L2, CTLA4, TIM3, LAG3, VISTA, BTLA, TIGIT, LAIR1, CD160, 2B4 and/or TGFR beta. Inhibition of an inhibitory molecule can be performed by inhibition at the DNA, RNA or protein level.
- an inhibitory nucleic acid e.g., a dsRNA, siRNA or shRNA
- the inhibitor of an inhibitory signal is, a polypeptide e.g., a soluble ligand, or an antibody or antigen-binding fragment thereof, that binds to the inhibitory molecule.
- the anti-PD-1 molecules described herein are administered in combination with one or more other inhibitors of PD-1, PD-L1 and/or PD-L2 known in the art.
- the antagonist may be an antibody, an antigen binding fragment thereof, an
- immunoadhesin a fusion protein, or oligopeptide.
- the other anti-PD-1 antibody is chosen from MDX-1106, Merck 3475 or CT- 011.
- the PD-1 inhibitor is an immunoadhesin (e.g., an immunoadhesin comprising an extracellular or PD-1 binding portion of PD-L1 or PD-L2 fused to a constant region (e.g. , an Fc region of an immunoglobulin sequence).
- an immunoadhesin e.g., an immunoadhesin comprising an extracellular or PD-1 binding portion of PD-L1 or PD-L2 fused to a constant region (e.g. , an Fc region of an immunoglobulin sequence).
- the PD-1 inhibitor is AMP-224.
- the PD-L1 inhibitor is anti-PD-Ll antibody.
- the anti-PD-Ll binding antagonist is chosen from YW243.55.S70,
- MDX-1105 also known as BMS- 936559, is an anti-PD-Ll antibody described in WO2007/005874.
- Antibody YW243.55.S70 (heavy and light chain variable region sequences shown in SEQ ID Nos. 20 and 21, respectively) is an anti-PD-Ll described in WO 2010/077634.
- the anti-PD-1 antibody is Nivolumab. Alternative names for
- Nivolumab include MDX-1106, MDX-1106-04, ONO-4538, or BMS-936558.
- the anti-PD-1 antibody is Nivolumab (CAS Registry Number: 946414-94-4).
- Nivolumab also referred to as BMS-936558 or MDX1106; Bristol-Myers Squibb
- Nivolumab (clone 5C4) and other human monoclonal antibodies that specifically bind to PD-1 are disclosed in US 8,008,449, EP2161336 and WO2006/121168.
- Nivolumab are as follows:
- the anti-PD-1 antibody is Pembrolizumab.
- Pembrolizumab also referred to as Lambrolizumab, MK-3475, MK03475, SCH-900475 or KEYTRUDA®; Merck
- Pembrolizumab and other humanized anti-PD-1 antibodies are disclosed in Hamid, O. et al. (2013) New England Journal of Medicine 369 (2): 134-44, US 8,354,509 and WO2009/114335.
- the heavy and light chain amino acid sequences of Pembrolizumab are as follows:
- RVVSVLTVLH QDWLNGKEYK CKVSNKGLPS SIEKTISKAK GQPREPQVYT 350
- Pidilizumab (CT-011; Cure Tech) is a humanized IgGlk monoclonal antibody that binds to PD1.
- Pidilizumab and other humanized anti-PD-1 monoclonal antibodies are disclosed in WO2009/101611.
- anti-PDl antibodies include AMP 514 (Amplimmune), among others, e.g., anti-PDl antibodies
- the anti-PD-Ll antibody is MSB0010718C.
- MSB0010718C also referred to as A09-246-2; Merck Serono
- A09-246-2 Merck Serono
- the heavy and light chain amino acid sequences of MSB0010718C include at least the following:
- MDPL3280A (Genentech / Roche) is a human Fc optimized IgGl monoclonal antibody that binds to PD-L1.
- MDPL3280A and other human monoclonal antibodies to PD-L1 are disclosed in U.S. Patent No.: 7,943,743 and U.S Publication No.: 20120039906.
- Other anti-PD- Ll binding agents include YW243.55.S70 (heavy and light chain variable regions are shown in SEQ ID NOs 20 and 21 in WO2010/077634) and MDX-1105 (also referred to as BMS-936559, and, e.g., anti-PD-Ll binding agents disclosed in WO2007/005874).
- AMP-224 (B7-DCIg; Amplimmune; e.g., disclosed in WO2010/027827 and
- WO2011/066342 is a PD-L2 Fc fusion soluble receptor that blocks the interaction between PDl and B7-H1.
- the anti-LAG-3 antibody is BMS-986016.
- BMS-986016 also referred to as BMS986016; Bristol-Myers Squibb
- BMS-986016 and other humanized anti-LAG-3 antibodies are disclosed in US 2011/0150892, WO2010/019570, and WO2014/008218.
- the combination therapies disclosed herein include a modulator of a costimulatory molecule or an inhibitory molecule, e.g., a co-inhibitory ligand or receptor.
- the costimulatory modulator, e.g., agonist, of a costimulatory molecule is chosen from an agonist (e.g., an agonistic antibody or antigen-binding fragment thereof, or soluble fusion) of OX40, CD2, CD27, CDS, ICAM-1, LFA-1 (CDl la/CD18), ICOS (CD278), 4-1BB (CD137), GITR, CD30, CD40, BAFFR, HVEM, CD7, LIGHT, NKG2C, SLAMF7, NKp80, CD160, B7-H3 or CD83 ligand.
- the combination therapies disclosed herein include a costimulatory molecule, e.g., an agonist associated with a positive signal that includes a costimulatory domain of CD28, CD27, ICOS and GITR.
- Exemplary GITR agonists include, e.g., GITR fusion proteins and anti-GITR antibodies (e.g., bivalent anti-GITR antibodies), such as, a GITR fusion protein described in U.S. Patent No.: 6,111,090, European Patent No.: 090505B1, U.S Patent No.: 8,586,023, PCT Publication Nos.: WO 2010/003118 and 2011/090754, or an anti-GITR antibody described, e.g., in U.S. Patent No.: 7,025,962, European Patent No.: 1947183B1, U.S. Patent No.: 7,812,135, U.S.
- Patent No.: 8,388,967 U.S. Patent No.: 8,591,886, European Patent No.: EP 1866339
- PCT Publication No.: WO 2011/028683 European Patent No.: EP 1866339
- PCT Publication No.: WO 2011/028683 European Patent No.: EP 1866339
- PCT Publication No.: WO 2011/028683 European Patent No.: EP 1866339
- PCT Publication No.: WO 2011/028683 PCT Publication No.:WO 2013/039954
- PCT Publication No.: WO2005/007190 PCT Publication No.: WO 2007/133822
- the inhibitor is a soluble ligand (e.g., a CTLA-4-Ig), or an antibody or antibody fragment that binds to PD-L1, PD-L2 or CTLA4.
- the anti-PD-1 antibody molecule can be administered in combination with an anti-CTLA-4 antibody, e.g., ipilimumab, for example, to treat a cancer (e.g., a cancer chosen from: a melanoma, e.g., a metastatic melanoma; a lung cancer, e.g., a non-small cell lung carcinoma; or a prostate cancer).
- a cancer e.g., a cancer chosen from: a melanoma, e.g., a metastatic melanoma; a lung cancer, e.g., a non-small cell lung carcinoma; or a prostate cancer.
- Exemplary anti-CTLA4 antibodies include Tremelimumab (IgG2 monoclonal antibody available from Pfizer, formerly known as ticilimumab, CP-675,206); and Ipilimumab (CTLA-4 antibody, also known as MDX-010, CAS No. 477202-00-9).
- Tremelimumab IgG2 monoclonal antibody available from Pfizer, formerly known as ticilimumab, CP-675,206
- Ipilimumab CLA-4 antibody, also known as MDX-010, CAS No. 477202-00-9
- the anti-PD-1 antibody molecule is administered after treatment, e.g., after treatment of a melanoma, with an anti-CTLA4 antibody (e.g., ipilimumab) with or without a BRAF inhibitor (e.g., vemurafenib or dabrafenib).
- an anti-CTLA4 antibody e.g., ipilimumab
- BRAF inhibitor e.g., vemurafenib or dabrafenib
- exemplary doses that can be use include a dose of anti-PD-1 antibody molecule of about 1 to 10 mg/kg, e.g., 3 mg/kg, and a dose of an anti- CTLA-4 antibody, e.g., ipilimumab, of about 3 mg/kg.
- the anti-PD-1 or PD-L1 antibody molecule is administered in combination with an anti-LAG-3 antibody or an antigen-binding fragment thereof. In another embodiment, the anti-PD-1 or PD-L1 antibody molecule is administered in combination with an anti-TIM-3 antibody or antigen-binding fragment thereof. In yet other embodiments, the anti- PD-1 or PD-L1 antibody molecule is administered in combination with an anti-LAG-3 antibody and an anti-TIM-3 antibody, or antigen-binding fragments thereof.
- the combination of antibodies recited herein can be administered separately, e.g., as separate antibodies, or linked, e.g., as a bispecific or trispecific antibody molecule.
- a bispecific antibody that includes an anti-PD-1 or PD-L1 antibody molecule and an anti-TIM-3 or anti-LAG-3 antibody, or antigen-binding fragment thereof, is administered.
- the combination of antibodies recited herein is used to treat a cancer, e.g., a cancer as described herein (e.g., a solid tumor).
- a cancer e.g., a cancer as described herein (e.g., a solid tumor).
- the efficacy of the aforesaid combinations can be tested in animal models known in the art. For example, the animal models to test the synergistic effect of anti- PD-1 and anti-LAG-3 are described, e.g., in Woo et al. (2012) Cancer Res. 72(4):917-27).
- the anti-PD-1 or PD-L1 antibody molecule is administered in combination with an inhibitor of CEACAM (e.g., CEACAM-1, -3 and/or -5).
- an inhibitor of CEACAM e.g., CEACAM-1, -3 and/or -5.
- the inhibitor of CEACAM is an anti-CEACAM antibody molecule.
- CEACAM carcinoembryonic antigen cell adhesion molecules
- CEACAM-1 and CEACAM-5 are believed to mediate, at least in part, inhibition of an anti-tumor immune response (see e.g., Markel et al. J Immunol. 2002 Mar 15;168(6):2803-10; Markel et al. J Immunol. 2006 Nov 1;177(9):6062-71; Markel et al. Immunology . 2009 Feb;126(2):186-200; Markel et al. Cancer Immunol Immunother.
- CEACAM-1 has been described as a heterophilic ligand for TIM-3 and as playing a role in TIM-3-mediated T cell tolerance and exhaustion (see e.g., WO 2014/022332; Huang, et al. (2014) Nature doi:10.1038/naturel3848).
- co-blockade of CEACAM-1 and TIM-3 has been shown to enhance an anti-tumor immune response in xenograft colorectal cancer models (see e.g., WO 2014/022332; Huang, et al. (2014), supra).
- co- blockade of CEACAM-1 and PD-1 reduce T cell tolerance as described, e.g., in WO
- CEACAM inhibitors can be used with the other immunomodulators described herein (e.g., anti-PD-1 and/or anti-TIM-3 inhibitors) to enhance an immune response against a cancer, e.g., a melanoma, a lung cancer (e.g., NSCLC), a bladder cancer, a colon cancer an ovarian cancer, and other cancers as described herein.
- a cancer e.g., a melanoma
- a lung cancer e.g., NSCLC
- the anti-PD-1 antibody molecule is administered in combination with a CEACAM inhibitor (e.g., CEACAM-1, CEACAM-3, and/or CEACAM-5 inhibitor).
- the inhibitor of CEACAM is an anti-CEACAM antibody molecule.
- the anti-PD-1 antibody molecule is administered in combination with a CEACAM-1 inhibitor, e.g., an anti- CEACAM-1 antibody molecule.
- the anti-PD-1 antibody molecule is administered in combination with a CEACAM - 3 inhibitor, e.g., an anti- CEACAM-3 antibody molecule.
- the anti-PD-1 antibody molecule is administered in combination with a CEACAM-5 inhibitor, e.g., an anti- CEACAM-5 antibody molecule.
- anti-CEACAM- 1 antibodies are described in WO 2010/125571, WO 2013/082366 and WO 2014/022332, e.g., a monoclonal antibody 34B1, 26H7, and 5F4; or a recombinant form thereof, as described in, e.g., US 2004/0047858, US 7,132,255 and WO 99/052552.
- the anti-CEACAM antibody binds to CEACAM-5 as described in, e.g., Zheng et al. PLoS One. 2010 Sep 2;5(9). pii: el2529
- the combination therapies include a modified T-cell, e.g. , in combination with an adoptive T-cell immunotherapy using chimeric antigen receptor (CAR) T cells (e.g. , as described by John LB, et al. (2013) Clin. Cancer Res. 19(20): 5636-46).
- CAR chimeric antigen receptor
- the combination therapies disclosed herein can also include a cytokine, e.g., interleukin-21 or interleukin-2.
- a cytokine e.g., interleukin-21 or interleukin-2.
- the combination described herein is used to treat a cancer, e.g., a cancer as described herein (e.g., a solid tumor or melanoma).
- immunomodulators that can be used in the combination therapies include, but are not limited to, e.g., afutuzumab (available from Roche®); pegfilgrastim (Neulasta®);
- lenalidomide CC-5013, Revlimid®
- Thalomid® thalidomide
- actimid CC4047
- cytokines e.g., IL-21 or IRX-2 (mixture of human cytokines including interleukin 1, interleukin 2, and interferon ⁇ , CAS 951209-71-5, available from IRX Therapeutics).
- the combination therapies can be administered to a subject in conjunction with (e.g., before, simultaneously or following) one or more of: bone marrow transplantation, T cell ablative therapy using chemotherapy agents such as, fludarabine, external- beam radiation therapy (XRT), cyclophosphamide, and/or antibodies such as OKT3 or CAMPATH.
- the anti-PD-1 or PD-L1 antibody molecules are administered following B-cell ablative therapy such as agents that react with CD20, e.g., Rituxan.
- subjects may undergo standard treatment with high dose chemotherapy followed by peripheral blood stem cell transplantation.
- subjects receive the anti-PD-1 or PD-L1 antibody molecules.
- the anti-PD-1 or PD-L1 antibody molecules are administered before or following surgery.
- Another example of a further combination therapy includes decarbazine for the treatment of melanoma.
- decarbazine for the treatment of melanoma.
- the combined use of PD-1 blockade and chemotherapy is believed to be facilitated by cell death, that is a consequence of the cytotoxic action of most chemotherapeutic compounds, which can result in increased levels of tumor antigen in the antigen presentation pathway.
- Other combination therapies that may result in synergy with PD-1 blockade through cell death are radiation, surgery, and hormone deprivation. Each of these protocols creates a source of tumor antigen in the host.
- Angiogenesis inhibitors may also be combined with PD-1 blockade. Inhibition of angiogenesis leads to tumor cell death which may feed tumor antigen into host antigen presentation pathways.
- Combination therapies can also be used in combination with bispecific antibodies.
- Bispecific antibodies can be used to target two separate antigens.
- anti-Fc receptor/anti tumor antigen e.g., Her-2/neu
- bispecific antibodies have been used to target macrophages to sites of tumor. This targeting may more effectively activate tumor specific responses.
- the T cell arm of these responses would by augmented by the use of PD-1 blockade.
- antigen may be delivered directly to DCs by the use of bispecific antibodies which bind to tumor antigen and a dendritic cell specific cell surface marker.
- Tumors evade host immune surveillance by a large variety of mechanisms. Many of these mechanisms may be overcome by the inactivation of proteins which are expressed by the tumors and which are immunosuppressive. These include among others TGF-beta (Kehrl, J. et al. (1986) J. Exp. Med. 163: 1037-1050), IL-10 (Howard, M. & O'Garra, A. (1992) Immunology Today 13: 198-200), and Fas ligand (Hahne, M. et al. (1996) Science 21 A: 1363-1365).
- Antibodies or antigen-binding fragments thereof to each of these entities may be used in combination with anti-PD-1 to counteract the effects of the immunosuppressive agent and favor tumor immune responses by the host.
- Other antibodies which may be used to activate host immune responsiveness can be used in combination with the combination therapies described herein. These include molecules on the surface of dendritic cells which activate DC function and antigen presentation.
- Anti-CD40 antibodies are able to substitute effectively for T cell helper activity (Ridge, J. et al. (1998) Nature 393: 474-478) and can be used in conjunction with PD-1 antibodies (Ito, N. et al. (2000) Immunobiology 201 (5) 527-40).
- T cell costimulatory molecules such as CTLA-4 ⁇ e.g., U.S. Pat. No. 5,811,097), OX-40 (Weinberg, A. et al. (2000) Immunol 164: 2160-2169), 4- 1BB (Melero, I. et al. (1997) Nature Medicine 3: 682-685 (1997), and ICOS (Hutloff, A. et al. (1999) Nature 397: 262-266) may also provide for increased levels of T cell activation.
- PD-1 blockade can be combined with other forms of immunotherapy such as cytokine treatment ⁇ e.g., interferons, GM-CSF, G-CSF, IL-2, IL-21), or bispecific antibody therapy, which provides for enhanced presentation of tumor antigens ⁇ see e.g., Holliger (1993) Proc. Natl. Acad. Sci. USA 90:6444-6448; Poljak (1994) Structure 2:1121- 1123).
- cytokine treatment e.g., interferons, GM-CSF, G-CSF, IL-2, IL-21
- bispecific antibody therapy which provides for enhanced presentation of tumor antigens ⁇ see e.g., Holliger (1993) Proc. Natl. Acad. Sci. USA 90:6444-6448; Poljak (1994) Structure 2:1121- 1123).
- tumor vaccines such as cancerous cells, purified tumor antigens (including recombinant proteins, peptides, and carbohydrate molecules), cells, and cells transfected with genes encoding immune stimulating cytokines (He et al. (2004) J. Immunol. 173:4919-28).
- tumor vaccines include peptides of melanoma antigens, such as peptides of gplOO, MAGE antigens, Trp-2, MARTI and/or tyrosinase, or tumor cells transfected to express the cytokine GM-CSF.
- PD-1 blockade can be combined with a vaccination protocol.
- Many experimental strategies for vaccination against tumors have been devised ⁇ see Rosenberg, S., 2000,
- a vaccine is prepared using autologous or allogeneic tumor cells. These cellular vaccines have been shown to be most effective when the tumor cells are transduced to express GM-CSF. GM-CSF has been shown to be a potent activator of antigen presentation for tumor vaccination (Dranoff et al.
- PD-1 blockade can be used in conjunction with a collection of recombinant proteins and/or peptides expressed in a tumor in order to generate an immune response to these proteins.
- proteins are normally viewed by the immune system as self antigens and are therefore tolerant to them.
- the tumor antigen may also include the protein telomerase, which is required for the synthesis of telomeres of chromosomes and which is expressed in more than 85% of human cancers and in only a limited number of somatic tissues (Kim, N et al. (1994) Science 266: 2011-2013). (These somatic tissues may be protected from immune attack by various means).
- Tumor antigen may also be "neo-antigens" expressed in cancer cells because of somatic mutations that alter protein sequence or create fusion proteins between two unrelated sequences (ie. bcr-abl in the Philadelphia chromosome), or idiotype from B cell tumors.
- tumor vaccines may include the proteins from viruses implicated in human cancers such a Human Papilloma Viruses (HPV), Hepatitis Viruses (HBV and HCV) and Kaposi's Herpes Sarcoma Virus (KHSV).
- HPV Human Papilloma Viruses
- HBV Hepatitis Viruses
- KHSV Kaposi's Herpes Sarcoma Virus
- Another form of tumor specific antigen which may be used in conjunction with PD-1 blockade is purified heat shock proteins (HSP) isolated from the tumor tissue itself. These heat shock proteins contain fragments of proteins from the tumor cells and these HSPs are highly efficient at delivery to antigen presenting cells for eliciting tumor immunity (Suot, R & Srivastava, P (1995) Science 269:1585-1588; Tamura, Y. et al. (1997) Science 278:117-120).
- HSP heat shock proteins
- DCs Dendritic cells
- DCs are potent antigen presenting cells that can be used to prime antigen- specific responses.
- DCs can be produced ex vivo and loaded with various protein and peptide antigens as well as tumor cell extracts (Nestle, F. et al. (1998) Nature Medicine 4: 328-332).
- DCs may also be transduced by genetic means to express these tumor antigens as well.
- DCs have also been fused directly to tumor cells for the purposes of immunization (Kugler, A. et al. (2000)
- DC immunization may be effectively combined with PD-1 blockade to activate more potent anti-tumor responses.
- combination therapy disclosed herein can be further co-formulated with, and/or coadministered with, one or more additional therapeutic agents, e.g., one or more anti-cancer agents, cytotoxic or cytostatic agents, hormone treatment, vaccines, and/or other agents, e.g., one or more anti-cancer agents, cytotoxic or cytostatic agents, hormone treatment, vaccines, and/or other agents, e.g., one or more anti-cancer agents, cytotoxic or cytostatic agents, hormone treatment, vaccines, and/or other agents.
- additional therapeutic agents e.g., one or more anti-cancer agents, cytotoxic or cytostatic agents, hormone treatment, vaccines, and/or other agents.
- the antibody molecules are administered in other embodiments.
- the antibody molecules are administered in other embodiments.
- the antibody molecules are administered in other embodiments.
- combination therapies may advantageously utilize lower dosages of the administered therapeutic agents, thus avoiding possible toxicities or complications associated with the various monotherapies.
- the combination therapies disclosed herein can also be combined with a standard cancer treatment.
- PD-1 blockade may be effectively combined with chemotherapeutic regimes.
- it may be possible to reduce the dose of chemotherapeutic reagent administered Mokyr, M. et al. (1998) Cancer Research 58: 5301-
- the methods and compositions described herein are administered in combination with one or more of other antibody molecules, chemotherapy, other anti-cancer therapy ⁇ e.g., targeted anti-cancer therapies, or oncolytic drugs), cytotoxic agents, immune-based therapies ⁇ e.g., cytokines), surgical and/or radiation procedures.
- other anti-cancer therapy e.g., targeted anti-cancer therapies, or oncolytic drugs
- cytotoxic agents e.g., cytokines
- surgical and/or radiation procedures e.g., radiation procedures.
- Exemplary cytotoxic agents that can be administered in combination with include antimicrotubule agents, topoisomerase inhibitors, anti-metabolites, mitotic inhibitors, alkylating agents, anthracyclines, vinca alkaloids, intercalating agents, agents capable of interfering with a signal transduction pathway, agents that promote apoptosis, proteosome inhibitors, and radiation ⁇ e.g., local or whole body irradiation).
- Exemplary combinations of with the standard of care for cancer include at least the following.
- the combination therapy is used in combination with a standard of cancer care chemotherapeutic agent including, but not limited to, anastrozole (Arimidex®), bicalutamide (Casodex®), bleomycin sulfate (Blenoxane®), busulfan (Myleran®), busulfan injection (Busulfex®), capecitabine (Xeloda®), N4-pentoxycarbonyl-5-deoxy-5-fluorocytidine, carboplatin (Paraplatin®), carmustine (BiCNU®), chlorambucil (Leukeran®), cisplatin
- a standard of cancer care chemotherapeutic agent including, but not limited to, anastrozole (Arimidex®), bicalutamide (Casodex®), bleomycin sulfate (Blenoxane®), busulfan (Myleran®), busulfan injection (Busulfex®), capecitabine (
- Idarubicin Idamycin®
- ifosfamide IFEX®
- irinotecan Camptosar®
- ESPAR® leucovorin calcium, melphalan (Alkeran®), 6-mercaptopurine (Purinethol®), methotrexate (Folex®), mitoxantrone (Novantrone®), mylotarg, paclitaxel (Taxol®), nab- paclitaxel (Abraxane®), phoenix (Yttrium90/MX-DTPA), pentostatin, polifeprosan 20 with carmustine implant (Gliadel®), tamoxifen citrate (Nolvadex®), teniposide (Vumon®), 6- thioguanine, thiotepa, tirapazamine (Tirazone®), topotecan hydrochloride for injection
- alkylating agents include, without limitation, nitrogen mustards, ethylenimine derivatives, alkyl sulfonates, nitrosoureas and triazenes): uracil mustard (Aminouracil Mustard®, Chlorethaminacil®, Demethyldopan®, Desmethyldopan®, Haemanthamine®, Nordopan®, Uracil nitrogen mustard®, Uracillost®, Uracilmostaza®, Uramustin®, Uramustine®), chlormethine (Mustargen®), cyclophosphamide (Cytoxan®, Neosar®, Clafen®, Endoxan®, Procytox®, RevimmuneTM), ifosfamide (Mitoxana®), melphalan (Alkeran®), Chlorambucil (Leukeran®), pipobroman (Amedel®, Vercyte®), triethylenemelamine (Hemel®, Hexalen®
- Dactinomycin also known as actinomycin-D, Cosmegen®
- Melphalan also known as L-PAM, L-sarcolysin, and phenylalanine mustard, Alkeran®
- Altretamine also known as
- HMM hexamethylmelamine
- Hexalen® Carmustine
- BiCNU® Bendamustine
- Busulfan Busulfan
- Carboplatin Paraplatin®
- Lomustine also known as CCNU, CeeNU®
- Cisplatin also known as CDDP, Platinol® and Platinol®-AQ
- Chlorambucil (Leukeran®); Cyclophosphamide (Cytoxan® and Neosar®); dacarbazine (also known as DTIC, DIC and imidazole carboxamide, DTIC-Dome®); Altretamine (also known as hexamethylmelamine (HMM), Hexalen®); Ifosfamide (Ifex®); Prednumustine; Procarbazine (Matulane®); Mechlorethamine (also known as nitrogen mustard, mustine and
- mechloroethamine hydrochloride Mustargen®
- Streptozocin Zanosar®
- Thiotepa also known as thiophosphoamide, TESPA and TSPA, Thioplex®
- Cyclophosphamide Endoxan®, Cytoxan®, Neosar®, Procytox®, Revimmune®
- Bendamustine HC1 Tereanda®
- anthracyclines include, e.g. , doxorubicin (Adriamycin® and Rubex®);
- bleomycin lenoxane®
- daunorubicin daunorubicin hydrochloride, daunomycin
- rubidomycin hydrochloride Cerubidine®
- daunorubicin liposomal daunorubicin citrate liposome, DaunoXome®
- mitoxantrone DHAD, Novantrone®
- epirubicin EllenceTM
- idarubicin (Idamycin®, Idamycin PFS®); mitomycin C (Mutamycin®); geldanamycin;
- Exemplary vinca alkaloids that can be used in combination with a combination therapy disclosed herein include, but are not limited to, vinorelbine tartrate (Navelbine®), Vincristine (Oncovin®), and Vindesine (Eldisine®)); vinblastine (also known as vinblastine sulfate, vincaleukoblastine and VLB, Alkaban-AQ® and Velban®); and vinorelbine
- proteosome inhibitors that can be used in combination with combination therapy disclosed herein (e.g., an anti-PD-1 or PD-Ll antibody molecule, alone or in
- LDK3708 examples include, but are not limited to, bortezomib (Velcade®); carfilzomib (PX- 171 -007 , (5 4-Methyl-N-((5 1 - (((5 4-methyl - 1 - ((R)-2-methyloxiran-2-yl)- 1 -oxopentan-2- yl)amino)-l-oxo-3-phenylpropan-2-yl)-2-(( l S')-2-(2-morpholinoacetamido)-4-phenylbutanamido)- pentanamide); marizomib (NPI-0052); ixazomib citrate (MLN-9708); delanzomib (CEP-18770); 0-Methyl-N-[(2-methyl-5-thiazolyl)carbonyl]-
- the combination therapy disclosed herein e.g., an anti-PD-1 or PD-Ll antibody molecule, alone or in combination with another immunomodulator (e.g., an anti- LAG-3, or anti-TIM-3 antibody molecule) and LDK378, in combination with a tyrosine kinase inhibitor (e.g., a receptor tyrosine kinase (RTK) inhibitor).
- a tyrosine kinase inhibitor e.g., a receptor tyrosine kinase (RTK) inhibitor
- Exemplary tyrosine kinase inhibitor include, but are not limited to, an epidermal growth factor (EGF) pathway inhibitor (e.g., an epidermal growth factor receptor (EGFR) inhibitor), a vascular endothelial growth factor (VEGF) pathway inhibitor (e.g., a vascular endothelial growth factor receptor (VEGFR) inhibitor (e.g., a VEGFR- 1 inhibitor, a VEGFR-2 inhibitor, a VEGFR-3 inhibitor)), a platelet derived growth factor (PDGF) pathway inhibitor (e.g., a platelet derived growth factor receptor (PDGFR) inhibitor (e.g., a PDGFR- ⁇ inhibitor)), a RAF-1 inhibitor, a KIT inhibitor and a RET inhibitor.
- EGF epidermal growth factor
- VEGF vascular endothelial growth factor
- VEGFR- 1 inhibitor vascular endothelial growth factor receptor
- VEGFR-2 inhibitor e.g., a VEGFR
- the anti-cancer agent used in combination with the hedgehog inhibitor is selected from the group consisting of: axitinib (AGO 13736), bosutinib (SKI-606), cediranib (RECENTINTM, AZD2171), dasatinib (SPRYCEL®, BMS-354825), erlotinib (TARCEVA®), gefitinib (IRESSA®), imatinib (Gleevec®, CGP57148B, STI-571), lapatinib (TYKERB®,
- TYVERB® lestaurtinib (CEP-701), neratinib (HKI-272), nilotinib (TASIGNA®), semaxanib (semaxinib, SU5416), sunitinib (SUTENT®, SU11248), toceranib (PALLADIA®), vandetanib (ZACTIMA®, ZD6474), vatalanib (PTK787, PTK/ZK), trastuzumab (HERCEPTIN®), bevacizumab (AVASTIN®), rituximab (RITUXAN®), cetuximab (ERBITUX®), panitumumab (VECTIBIX®), ranibizumab (Lucentis®), nilotinib (TASIGNA®), sorafenib (NEXAVAR®), alemtuzumab (CAMPATH®), gemtuzumab ozogamicin (MYLOTARG
- VARGATEF® AP24534, JNJ-26483327, MGCD265, DCC-2036, BMS-690154, CEP-11981, tivozanib (AV-951), OSI-930, MM-121, XL-184, XL-647, XL228, AEE788, AG-490, AST-6, BMS-599626, CUDC-101, PD153035, pelitinib (EKB-569), vandetanib (zactima), WZ3146, WZ4002, WZ8040, ABT-869 (linifanib), AEE788, AP24534 (ponatinib), AV-951 (tivozanib), axitinib, BAY 73-4506 (regorafenib), brivanib alaninate (BMS-582664), brivanib (BMS- 540215), cediranib (AZD2171), CHIR-258 (dovitin
- hedgehog inhibitors include, but are not limited to,vismodegib (2-chloro-N-[4-chloro-3-(2- pyridinyl)phenyl]-4-(methylsulfonyl)- benzamide, GDC-0449, described in PCT Publication No.
- Selected tyrosine kinase inhibitors are chosen from gefitinib; erlotinib hydrochloride (Tarceva®); linifanib (N-[4-(3-amino-lH- indazol-4-yl)phenyl]-N'-(2-fluoro-5-methylphenyl)urea, also known as ABT 869, available from Genentech); sunitinib malate (Sutent®); bosutinib (4-[(2,4-dichloro-5-methoxyphenyl)amino]-6- methoxy-7-[3-(4-methylpiperazin-l-yl)propoxy]quinoline-3-carbonitrile, also known as SKI- 606, described in US Patent No. 6,780,996); dasatinib (Sprycel®); pazopanib (Votrient®);
- sorafenib Nexavar®
- zactima ZD6474
- imatinib or imatinib mesylate Gilvec® and Gleevec®
- the combination therapy disclosed herein e.g., an anti-PD-1 or PD-L1 antibody molecule, alone or in combination with another immunomodulator (e.g., an anti- LAG-3, or anti-TIM-3 antibody molecule) and a compound of Table 1 LDK378), in combination with a Vascular Endothelial Growth Factor (VEGF) receptor inhibitors, including but not limited to, Bevacizumab (Avastin®), axitinib (Inlyta®); Brivanib alaninate (BMS-582664, (5)-(( ⁇ )-1- (4-(4-Fluoro-2-methyl-lH-indol-5-yloxy)-5-methylpyrrolo[2,l-/] [l,2,4]triazin-6-yloxy)propan- 2-yl)2-aminopropanoate); Sorafenib (Nexavar®); Pazopanib (Votrient®); Sunitini
- Vatalanib dihydrochloride (PTK787, CAS 212141-51-0); Brivanib (BMS-540215, CAS 649735- 46-6); Vandetanib (Caprelsa® or AZD6474); Motesanib diphosphate (AMG706, CAS 857876- 30-3, N-(2,3-dihydro-3,3-dimethyl-lH-indol-6-yl)-2-[(4-pyridinylmethyl)amino]-3- pyridinecarboxamide, described in PCT Publication No.
- anti-VEGF antibodies include, but are not limited to, a monoclonal antibody that binds to the same epitope as the monoclonal anti-VEGF antibody A4.6.1 produced by hybridoma ATCC HB 10709; a recombinant humanized anti-VEGF monoclonal antibody generated according to Presta et al. (1997) Cancer Res. 57:4593-4599.
- the anti-VEGF antibody is Bevacizumab (BV), also known as rhuMAb VEGF or AVASTIN®.
- antibodies include those that bind to a functional epitope on human VEGF comprising of residues F17, Ml 8, D19, Y21, Y25, Q89, 191 , Kl 01, El 03, and C104 or, alternatively, comprising residues F17, Y21, Q22, Y25, D63, 183 and Q89.
- the combination therapy disclosed herein e.g., an anti-PD-1 or PD-Ll antibody molecule, alone or in combination with another immunomodulator (e.g., an anti- LAG-3, or anti-TIM-3 antibody molecule) and a compound of Table 1LDK378), in combination with a PI3K inhibitor.
- the PI3K inhibitor is an inhibitor of delta and gamma isoforms of PI3K.
- PI3K inhibitors that can be used in combination are described in, e.g., WO 2010/036380, WO 2010/006086, WO 09/114870, WO 05/113556, GSK 2126458, GDC-0980, GDC-0941, Sanofi XL147, XL756, XL147, PF-46915032, BKM 120, CAL-101, CAL 263, SF1126, PX-886, and a dual PI3K inhibitor (e.g., Novartis BEZ235).
- PI3K inhibitors include, but are not limited to, 4-[2-(lH-Indazol-4-yl)-6-[[4- (methylsulfonyl)piperazin-l-yl]methyl]thieno[3,2-d]pyrimidin-4-yl]morpholine (also known as GDC 0941, described in PCT Publication Nos.
- the combination therapy disclosed herein e.g., an anti-PD-1 or PD-Ll antibody molecule, alone or in combination with another immunomodulator (e.g., an anti- LAG-3, or anti-TIM-3 antibody molecule) and a compound of Table 1 LDK378), in combination with a mTOR inhibitor, e.g., one or more mTOR inhibitors chosen from one or more of rapamycin, temsirolimus (TORISEL®), AZD8055, BEZ235, BGT226, XL765, PF-4691502, GDC0980, SF1126, OSI-027, GSK1059615, KU-0063794, WYE-354, Palomid 529 (P529), PF- 04691502, or PKI-587.
- a mTOR inhibitor e.g., one or more mTOR inhibitors chosen from one or more of rapamycin, temsirolimus (TORISEL®), AZD8055,
- ridaforolimus (formally known as deferolimus, ( ⁇ R,2R, S)- -[(2R)-2 [(lR,95,125,15R,16E,18R,19R,21R, 235,24E,26E,28Z,305,325,35R)-l,18-dihydroxy-19,30- dimethoxy-15,17,21,23, 29,35-hexamethyl-2,3,10,14,20-pentaoxo-l l,36-dioxa-4- azatricyclo[30.3.1.0 4 ' 9 ] hexatriaconta-16,24,26,28-tetraen-12-yl]propyl]-2-methoxycyclohexyl dimethylphosphinate, also known as AP23573 and MK8669, and described in PCT Publication No.
- the combination therapy disclosed herein e.g., an anti-PD-1 or PD-L1 antibody molecule, alone or in combination with another immunomodulator (e.g., an anti- LAG-3, or anti-TIM-3 antibody molecule) and a compound of Table 1 LDK378), in combination with a BRAF inhibitor, e.g. , GSK2118436, RG7204, PLX4032, GDC-0879, PLX4720, and sorafenib tosylate (Bay 43-9006).
- a BRAF inhibitor e.g. , GSK2118436, RG7204, PLX4032, GDC-0879, PLX4720, and sorafenib tosylate (Bay 43-9006).
- a BRAF inhibitor includes, but is not limited to, regorafenib (BAY73-4506, CAS 755037-03-7); tuvizanib (AV951, CAS 475108-18- 0); vemurafenib (Zelboraf®, PLX-4032, CAS 918504-65-1); encorafenib (also known as LGX818); l-Methyl-5-[[2-[5-(trifluoromethyl)-lH-imidazol-2-yl]-4-pyridinyl]oxy]-N-[4- (trifluoromethyl)phenyl-lH-benzimidazol-2-amine (RAF265, CAS 927880-90-8); 5-[l-(2- Hydroxyethyl)-3-(pyridin-4-yl)-lH-pyrazol-4-yl]-2,3-dihydroinden-l-one oxime (GDC-08
- the combination therapy disclosed herein e.g., an anti-PD-1 or PD-L1 antibody molecule, alone or in combination with another immunomodulator (e.g., an anti- LAG-3, or anti-TIM-3 antibody molecule) and a compound of Table 1 LDK378), in combination with a MEK inhibitor.
- the combination of the anti-PD-1 antibody and the MEK inhibitor is used to treat a cancer (e.g. , a cancer described herein).
- the cancer treated with the combination is chosen from a melanoma, a colorectal cancer, a non- small cell lung cancer, an ovarian cancer, a breast cancer, a prostate cancer, a pancreatic cancer, a hematological malignancy or a renal cell carcinoma.
- the cancer includes a BRAF mutation (e.g., a BRAF V600E mutation), a BRAF wildtype, a KRAS wildtype or an activating KRAS mutation.
- the cancer may be at an early, intermediate or late stage.
- MEK inhibitor can be used in combination including, but not limited to, selumetinib (5-[(4- bromo-2-chlorophenyl)amino]-4-fluoro-N-(2-hydroxyethoxy)-l -methyl- lH-benzimidazole-6- carboxamide, also known as AZD6244 or ARRY 142886, described in PCT Publication No. WO2003077914); trametinib dimethyl sulfoxide (GSK-1120212, CAS 1204531-25-80);
- RDEA436 N- [3,4-Difluoro-2- [(2-fluoro-4-iodophenyl)amino] -6-methoxyphenyl] - 1 - [(2R)-2,3- dihydroxypropyl]- cyclopropanesulfonamide (also known as RDEA119 or BAY869766, described in PCT Publication No.
- MEK inhibitors include, but are not limited to, benimetinib (6-(4-bromo-2- fluorophenylamino)-7-fluoro-3-methyl-3H-benzoimidazole-5-carboxylic acid (2- hydroxyethyoxy)-amide, also known as MEK162, CAS 1073666-70-2, described in PCT
- the combination therapy disclosed herein e.g., an anti-PD-1 or PD-Ll antibody molecule, alone or in combination with another immunomodulator (e.g., an anti- LAG-3, or anti-TIM-3 antibody molecule) and a compound of Table 1 LDK378), in combination with a JAK2 inhibitor, e.g., CEP-701, INCB18424, CP-690550 (tasocitinib).
- a JAK2 inhibitor e.g., CEP-701, INCB18424, CP-690550 (tasocitinib).
- JAK inhibitors include, but are not limited to, ruxolitinib (Jakafi®); tofacitinib (CP690550); axitinib (AG013736, CAS 319460-85-0); 5-Chloro-N2-[(lS)-l-(5-fluoro-2-pyrimidinyl)ethyl]-N4-(5- methyl-lH-pyrazol-3-y)-12,4-pyrimidinediamine (AZD1480, CAS 935666-88-9); (9E)-15-[2-(l- Pyrrolidinyl)ethoxy]- 7, 12,26-trioxa- 19,21, 24-triazatetracyclo[l 8.3.1.12,5.114,18]-hexacosa- l(24),2,4,9,14,16,18(25),20,22-nonaene (SB-1578, CAS 937273-04-6); momelotinib (CYT 3
- the combination therapies disclosed herein include paclitaxel or a paclitaxel agent, e.g., TAXOL®, protein-bound paclitaxel (e.g., ABRAXANE®).
- paclitaxel agents include, but are not limited to, nanoparticle albumin-bound paclitaxel
- ABRAXANE docosahexaenoic acid bound-paclitaxel
- DHA-paclitaxel docosahexaenoic acid bound-paclitaxel
- Taxoprexin marketed by Protarga
- polyglutamate bound-paclitaxel PG- paclitaxel, paclitaxel poliglumex, CT-2103, XYOTAX, marketed by Cell Therapeutic
- TAP tumor- activated prodrug
- ANG105 Angiopep-2 bound to three molecules of paclitaxel, marketed by ImmunoGen
- paclitaxel-EC-1 paclitaxel bound to the erbB2-recognizing peptide EC-1; see Li et ah, Biopolymers (2007) 87:225-230
- glucose-conjugated paclitaxel e.g., 2'- paclitaxel methyl 2-glucopyranosyl succinate, see Liu et ah, Bioorganic
- the anti-PD-1 or PD-L1 antibody molecule alone or in combination with another immunomodulator (e.g., an anti-LAG-3 or anti-TIM-3 antibody molecule), is administered in combination with an antibody against a Killer-cell
- another immunomodulator e.g., an anti-LAG-3 or anti-TIM-3 antibody molecule
- Immunoglobulin-like Receptors also referred to herein as an "anti-KIR antibody”
- a cancer e.g., a cancer as described herein (e.g., a solid tumor, e.g., an advanced solid tumor).
- the anti-PD-1 or PD-L1 antibody molecule alone or in combination with another immunomodulator (e.g., an anti-LAG-3 or anti-TIM-3 antibody molecule), is administered in combination with a cellular immunotherapy (e.g., Provenge (e.g., Sipuleucel)), and optionally in combination with cyclophosphamide.
- a cellular immunotherapy e.g., Provenge (e.g., Sipuleucel)
- cyclophosphamide e.g., the combination of anti-PD-1 antibody molecule, Provenge and/or cyclophosphamide is used to treat a cancer, e.g., a cancer as described herein (e.g., a prostate cancer, e.g., an advanced prostate cancer).
- the anti-PD-1 or PD-L1 antibody molecule is administered in combination with a vaccine, e.g., a dendritic cell renal carcinoma (DC-RCC) vaccine.
- a vaccine e.g., a dendritic cell renal carcinoma (DC-RCC) vaccine.
- DC-RCC dendritic cell renal carcinoma
- the combination of anti-PD-1 antibody molecule and the DC-RCC vaccine is used to treat a cancer, e.g., a cancer as described herein (e.g., a renal carcinoma, e.g., metastatic renal cell carcinoma (RCC) or clear cell renal cell carcinoma
- the anti-PD-1 or PD-L1 antibody molecule is administered in combination with chemotherapy, and/or immunotherapy.
- the anti-PD-1 or PD-L1 antibody molecule can be used to treat a myeloma, alone or in combination with one or more of: chemotherapy or other anti-cancer agents (e.g., thalidomide analogs, e.g., lenalidomide), an anti-TIM3 antibody, tumor antigen-pulsed dendritic cells, fusions (e.g., electrofusions) of tumor cells and dendritic cells, or vaccination with immunoglobulin idiotype produced by malignant plasma cells.
- chemotherapy or other anti-cancer agents e.g., thalidomide analogs, e.g., lenalidomide
- an anti-TIM3 antibody e.g., tumor antigen-pulsed dendritic cells
- fusions e.g., electrofusions
- the anti-PD-1 or PD-L1 antibody molecule is used in combination with an anti-TIM-3 antibody to treat a myeloma, e.g., a multiple myeloma.
- the anti-PD-1 or PD-Ll antibody molecule alone or in combination with another immunomodulator (e.g., an anti-LAG-3 or anti-TIM-3 antibody molecule), is used in combination with chemotherapy to treat a lung cancer, e.g., non-small cell lung cancer.
- the anti-PD-1 or PD-Ll antibody molecule is used with platinum doublet therapy to treat lung cancer.
- the anti-PD-1 or PD-Ll antibody molecule alone or in combination with another immunomodulator (e.g., an anti-LAG-3 or anti-TIM-3 antibody molecule), is used to treat a renal cancer, e.g., renal cell carcinoma (RCC) (e.g., clear cell renal cell carcinoma (CCRCC) or metastatic RCC.
- RCC renal cell carcinoma
- CCRCC clear cell renal cell carcinoma
- metastatic RCC metastatic RCC
- the anti-PD-1 or PD-Ll antibody molecule can be administered in combination with one or more of: an immune-based strategy (e.g., interleukin-2 or interferon- a), a targeted agent (e.g., a VEGF inhibitor such as a monoclonal antibody to VEGF); a VEGF tyrosine kinase inhibitor such as sunitinib, sorafenib, axitinib and pazopanib; an RNAi inhibitor), or an inhibitor of a downstream mediator of VEGF signaling, e.g. , an inhibitor of the mammalian target of rapamycin (mTOR), e.g. , everolimus and temsirolimus.
- an immune-based strategy e.g., interleukin-2 or interferon- a
- a targeted agent e.g., a VEGF inhibitor such as a monoclonal antibody to VEGF
- a chemotherapeutic agent e.g., paclitaxel or a paclitaxel agent
- a chemotherapeutic agent e.g., paclitaxel or a paclitaxel agent
- a paclitaxel formulation such as TAXOL, an albumin- stabilized nanoparticle paclitaxel formulation (e.g., ABRAXANE) or a liposomal paclitaxel formulation
- gemcitabine e.g., gemcitabine alone or in combination with AXP107-11
- other chemotherapeutic agents such as oxaliplatin, 5-fluorouracil, capecitabine, rubitecan, epirubicin hydrochloride, NC-6004, cisplatin, docetaxel (e.g., TAXOTERE), mitomycin C, ifosfamide; interferon; tyrosine kinase inhibitor (e.g., EGFR inhibitor (e.g.,
- HER2/neu receptor inhibitor e.g., trastuzumab
- dual kinase inhibitor e.g. , bosutinib, saracatinib, lapatinib, vandetanib
- multikinase inhibitor e.g., sorafenib, sunitinib, XL184, pazopanib
- VEGF inhibitor e.g., bevacizumab, AV-951, brivanib
- radioimmunotherapy e.g., XR303
- cancer vaccine e.g., GVAX, survivin peptide
- COX-2 inhibitor e.g., celecoxib
- IGF- 1 receptor inhibitor e.g., AMG 479, MK-0646
- mTOR inhibitor e.g., everolimus,
- IL-6 inhibitor e.g., CNTO 328
- cyclin-dependent kinase inhibitor e.g., P276-00, UCN-01
- Altered Energy Metabolism-Directed (AEMD) compound e.g., CPI-613
- HDAC inhibitor e.g., vorinostat
- TR-2 TRAIL receptor 2
- MEK inhibitor e.g.
- Raf/MEK dual kinase inhibitor e.g., R05126766
- Notch signaling inhibitor e.g., MK0752
- monoclonal antibody-antibody fusion protein e.g., L19IL2
- curcumin HSP90 inhibitor (e.g., tanespimycin, STA-9090)
- rIL-2 denileukin diftitox
- topoisomerase 1 inhibitor e.g., irinotecan, PEP02
- statin e.g. , simvastatin
- Factor Vila inhibitor e.g.
- AKT inhibitor e.g., RX-0201
- hypoxia-activated prodrug e.g., TH-302
- metformin hydrochloride, gamma- secretase inhibitor e.g., RO4929097
- ribonucleotide reductase inhibitor e.g., 3-AP
- immunotoxin e.g., HuC242-DM4
- PARP inhibitor e.g., KU-0059436, veliparib
- CTLA-4 inhbitor e.g., CP-675,206, ipilimumab
- AdV- tk therapy proteasome inhibitor (e.g., bortezomib (Velcade), NPI-0052); thiazolidinedione (e.g., pioglitazone); NPC-1C; Aurora kinase inhibitor (e.g., R763/AS703569), CTGF inhibitor (e.g.,
- a chemotherapeutic agent e.g., etoposide, carboplatin, cisplatin, irinotecan, topotecan, gemcitabine, liposomal SN-38, bendamustine, temozolomide, belotecan, NK012, FR901228, flavopiridol
- tyrosine kinase inhibitor e.g., EGFR inhibitor (e.g., erlotinib, gefitinib, cetuximab, panitumumab); multikinase inhibitor (e.g., sorafenib, sunitinib); VEGF inhibitor (e.g., bevacizumab, vandetanib); cancer vaccine (e.g., GVAX); Bcl-2 inhibitor (e.g.
- proteasome inhibitor e.g., bortezomib (Velcade), NPI- 0052), paclitaxel or a paclitaxel agent; docetaxel; IGF-1 receptor inhibitor (e.g., AMG 479); HGF/SF inhibitor (e.g., AMG 102, MK-0646); chloroquine; Aurora kinase inhibitor (e.g., MLN8237); radioimmunotherapy (e.g., TF2); HSP90 inhibitor (e.g., tanespimycin, STA-9090); mTOR inhibitor (e.g., everolimus); Ep-CAM-/CD3-bispecific antibody (e.g., MT110); CK-2 inhibitor (e.g., CX-4945); HDAC inhibitor (e.g., belinostat); SMO antagonist (e.g. , BMS
- peptide cancer vaccine e.g., intensity-modulated radiation therapy (IMRT), hypofractionated radiotherapy, hypoxia-guided radiotherapy), surgery, and combinations thereof.
- radiation therapy e.g., intensity-modulated radiation therapy (IMRT), hypofractionated radiotherapy, hypoxia-guided radiotherapy, surgery, and combinations thereof.
- a chemotherapeutic agent e.g., vinorelbine, cisplatin, docetaxel, pemetrexed disodium, etoposide, gemcitabine, carboplatin, liposomal SN- 38, TLK286, temozolomide, topotecan, pemetrexed disodium, azacitidine, irinotecan, tegafur- gimeracil-oteracil potassium, sapacitabine); tyrosine kinase inhibitor (e.g., EGFR inhibitor (e.g.
- erlotinib e.g., gefitinib, cetuximab, panitumumab, necitumumab, PF-00299804, nimotuzumab, RO5083945)
- MET inhibitor e.g., PF-02341066, ARQ 197
- PDK kinase inhibitor e.g., XL147, GDC-0941
- Raf/MEK dual kinase inhibitor e.g., R05126766)
- PI3K/mTOR dual kinase inhibitor e.g., XL765
- SRC inhibitor e.g., dasatinib
- dual inhibitor e.g., BIBW 2992
- oblimersen sodium proteasome inhibitor (e.g., bortezomib, carfilzomib, NPI-0052, MLN9708), paclitaxel or a paclitaxel agent, docetaxel, IGF-1 receptor inhibitor (e.g., cixutumumab, MK-0646, OSI 906, CP-751,871, BIIB022), hydroxychloroquine, HSP90 inhibitor (e.g., tanespimycin, STA- 9090, AUY922, XL888), mTOR inhibitor (e.g., everolimus, temsirolimus, ridaforolimus), Ep- CAM-/CD3-bispecific antibody (e.g., MT110), CK-2 inhibitor (e.g. , CX-4945), HDAC inhibitor (e.g., MS 275, LBH589, vorinostat, valproic acid, FR90122,
- pralatrexate retinoid
- retinoid e.g., bexarotene, tretinoin
- antibody-drug conjugate e.g., SGN-15
- bisphosphonate e.g., zoledronic acid
- cancer vaccine e.g.
- LMWH low molecular weight heparin
- tinzaparin enoxaparin
- GSK1572932A melatonin
- talactoferrin dimesna
- topoisomerase inhibitor e.g., amrubicin, etoposide, karenitecin
- nelfinavir e.g., cilengitide
- ErbB3 inhibitor e.g., MM-121, U3-1287
- survivin inhibitor e.g. , YM155, LY2181308
- eribulin mesylate COX-2 inhibitor
- celecoxib celecoxib
- pegfilgrastim Polo-like kinase 1 inhibitor (e.g., BI 6727), TRAIL receptor 2 (TR-2) agonist (e.g., CS-1008), CNGRC peptide-TNF alpha conjugate, dichloroacetate (DCA), HGF inhibitor (e.g., SCH 900105), SAR240550, PPAR- gamma agonist (e.g., CS-7017), gamma-secretase inhibitor (e.g.
- epigenetic therapy e.g., 5-azacitidine
- nitroglycerin MEK inhibitor (e.g., AZD6244), cyclin-dependent kinase inhibitor (e.g., UCN-01), cholesterol-Fusl, antitubulin agent (e.g., E7389), farnesyl-OH- transferase inhibitor (e.g., lonafarnib), immunotoxin (e.g., BB-10901, SSI (dsFv) PE38), fondaparinux, vascular-disrupting agent (e.g., AVE8062), PD-L1 inhibitor (e.g., MDX-1105, MDX-1106), beta-glucan, NGR-hTNF, EMD 521873, MEK inhibitor (e.g., GSK1120212), epothilone analog (e.g., ixabepilone), kinesin- spindle inhibitor (e.g.
- epigenetic therapy
- a chemotherapeutic agent e.g., paclitaxel or a paclitaxel agent; docetaxel; carboplatin; gemcitabine; doxorubicin; topotecan; cisplatin; irinotecan, TLK286, ifosfamide, olaparib, oxaliplatin, melphalan, pemetrexed disodium, SJG-136, cyclophosphamide, etoposide, decitabine); ghrelin antagonist (e.g., AEZS-130), immunotherapy (e.g.
- a chemotherapeutic agent e.g., paclitaxel or a paclitaxel agent; docetaxel; carboplatin; gemcitabine; doxorubicin; topotecan; cisplatin; irinotecan, TLK286, ifosfamide, olaparib, oxaliplatin, melphalan
- tyrosine kinase inhibitor e.g. , EGFR inhibitor (e.g., erlotinib), dual inhibitor (e.g., E7080), multikinase inhibitor (e.g., AZD0530, JI-101, sorafenib, sunitinib, pazopanib), ON 01910.Na), VEGF inhibitor (e.g., bevacizumab, BIBF 1120, cediranib, AZD2171), PDGFR inhibitor (e.g., IMC-3G3), paclitaxel, topoisomerase inhibitor (e.g., karenitecin, Irinotecan), HDAC inhibitor (e.g., valproate, vorinostat), folate receptor inhibitor (e.g., farletuzumab), angiopoietin inhibitor (e.g., AMG 386),
- EGFR inhibitor e.g., erlotinib
- proteasome inhibitor e.g., carfilzomib
- IGF-1 receptor inhibitor e.g., OSI 906, AMG 479
- PARP inhibitor e.g., veliparib, AG014699, iniparib, MK-4827
- Aurora kinase inhibitor e.g., MLN8237, ENMD-2076
- angiogenesis inhibitor e.g., lenalidomide
- DHFR inhibitor e.g., pralatrexate
- radioimmunotherapeutic agnet e.g., Hu3S193
- statin e.g., lovastatin
- topoisomerase 1 inhibitor e.g., NKTR-102
- cancer vaccine e.g., p53 synthetic long peptides vaccine, autologous OC-DC vaccine
- mTOR inhibitor e.g., temsirolimus, everolimus
- BCR/ABL inhibitor e.g.
- immunotoxin e.g., denileukin diftitox
- SB-485232 vascular-disrupting agent
- integrin inhibitor e.g., EMD 525797
- kinesin- spindle inhibitor e.g., 4SC-205
- revlimid HER2 inhibitor
- ErrB3 inhibitor e.g., MM-121
- radiation therapy and combinations thereof.
- Suitable therapeutics for use in combination to treat a myeloma alone or in combination with one or more of: chemotherapy or other anti-cancer agents (e.g., thalidomide analogs, e.g., lenalidomide), HSCT (Cook, R. (2008) J Manag Care Pharm. 14(7 Suppl): 19-25), an anti-TIM3 antibody (Hallett, WHD et al. (2011) J of American Society for Blood and Marrow Transplantation 17(8): 1133-145), tumor antigen-pulsed dendritic cells, fusions ⁇ e.g.,
- a renal cancer e.g., renal cell carcinoma (RCC) or metastatic RCC.
- the anti-PD-1 antibody molecule can be administered in combination with one or more of: an immune-based strategy ⁇ e.g., interleukin-2 or interferon- a), a targeted agent ⁇ e.g., a VEGF inhibitor such as a monoclonal antibody to VEGF, e.g., bevacizumab (Rini, B.I. et al. (2010) J. Clin. Oncol.
- VEGF tyrosine kinase inhibitor such as sunitinib, sorafenib, axitinib and pazopanib (reviewed in Pal. S.K. et al. (2014) Clin. Advances in Hematology & Oncology 12(2):90-99)
- an RNAi inhibitor or an inhibitor of a downstream mediator of VEGF signaling, e.g., an inhibitor of the mammalian target of rapamycin (mTOR), e.g., everolimus and temsirolimus (Hudes, G. et al. (2007) N. Engl. J. Med. 356(22) :2271-2281, Motzer, R.J. et al. (2008) Lancet 372: 449-456).
- mTOR mammalian target of rapamycin
- An example of suitable therapeutics for use in combination for treatment of chronic myelogenous leukemia (AML) includes, but is not limited to, a chemotherapeutic ⁇ e.g. , cytarabine, hydroxyurea, clofarabine, melphalan, thiotepa, fludarabine, busulfan, etoposide, cordycepin, pentostatin, capecitabine, azacitidine, cyclophosphamide, cladribine, topotecan), tyrosine kinase inhibitor ⁇ e.g., BCR/ABL inhibitor ⁇ e.g., imatinib, nilotinib), ON 01910.Na, dual inhibitor ⁇ e.g., dasatinib, bosutinib), multikinase inhibitor ⁇ e.g., DCC-2036, ponatinib, sorafenib, sunitinib, RGB
- mTOR inhibitor ⁇ e.g., everolimus
- SMO antagonist ⁇ e.g., BMS 833923
- ribonucleotide reductase inhibitor ⁇ e.g., 3-AP
- JAK-2 inhibitor ⁇ e.g., INCB018424
- Hydroxychloroquine retinoid ⁇ e.g., fenretinide
- cyclin-dependent kinase inhibitor ⁇ e.g., UCN-01
- HDAC inhibitor ⁇ e.g., belinostat, vorinostat, JNJ-26481585)
- PARP inhibitor ⁇ e.g., veliparib
- MDM2 antagonist ⁇ e.g., RO5045337)
- Aurora B kinase inhibitor ⁇ e.g., TAK-901
- radioimmunotherapy ⁇ e.g., actinium- 225-labeled anti-CD33 antibody
- CLL chronic lymphocytic leukemia
- a chemotherapeutic agent e.g., fludarabine, cyclophosphamide, doxorubicin, vincristine, chlorambucil, bendamustine, chlorambucil, busulfan, gemcitabine, melphalan, pentostatin, mitoxantrone, 5-azacytidine, pemetrexed disodium
- tyrosine kinase inhibitor e.g. , EGFR inhibitor (e.g.
- BTK inhibitor e.g., PCI-32765
- multikinase inhibitor e.g. , MGCD265, RGB-286638
- CD-20 targeting agent e.g., rituximab, ofatumumab, RO5072759, LFB-R603
- CD52 targeting agent e.g., alemtuzumab
- prednisolone darbepoetin alfa, lenalidomide
- Bcl-2 inhibitor e.g., ABT- 263
- immunotherapy e.g., allogeneic CD4+ memory Thl-like T cells/microparticle-bound anti- CD3/anti-CD28, autologous cytokine induced killer cells (CIK)
- HDAC inhibitor e.g., vorinostat, valproic acid, LBH589, JNJ-26481585, AR-42
- XIAP inhibitor e.g., AEG35156
- milatuzumab milatuzumab
- mTOR inhibitor e.g., everolimus
- AT-101 immunotoxin
- immunotoxin e.g., CAT-8015, anti-Tac(Fv)-PE38 (LMB-2)
- CD37 targeting agent e.g., TRU- 016
- radioimmunotherapy e.g., 131-tositumomab
- hydroxychloroquine, perifosine SRC inhibitor (e.g., dasatinib), thalidomide, PI3K delta inhibitor (e.g., CAL-101), retinoid (e.g., fenretinide), MDM2 antagonist (e.g., RO5045337)
- plerixafor Aurora kinase inhibitor
- MLN8237 TAK-901
- proteasome inhibitor e.g.
- CD-19 targeting agent e.g., MEDI-551, MOR208
- MEK inhibitor e.g., ABT-348
- JAK-2 inhibitor e.g., INCB018424
- hypoxia-activated prodrug e.g., TH-302
- paclitaxel or a paclitaxel agent HSP90 inhibitor
- AKT inhibitor e.g., MK2206
- HMG-CoA inhibitor e.g., simvastatin
- GNKG186 radiation therapy, bone marrow transplantation, stem cell transplantation, and a combination thereof.
- chemotherapeutic agent e.g., prednisolone, dexamethasone, vincristine, asparaginase, daunorubicin, cyclophosphamide, cytarabine, etoposide, thioguanine, mercaptopurine, clofarabine, liposomal annamycin, busulfan, etoposide, capecitabine, decitabine, azacitidine, topotecan, temozolomide), tyrosine kinase inhibitor (e.g., BCR/ABL inhibitor (e.g.
- imatinib, nilotinib ON 01910.
- Na multikinase inhibitor (e.g., sorafenib)), CD-20 targeting agent (e.g., rituximab), CD52 targeting agent (e.g., alemtuzumab), HSP90 inhibitor (e.g., STA-9090), mTOR inhibitor (e.g., everolimus, rapamycin), JAK-2 inhibitor (e.g., INCB018424), HER2/neu receptor inhibitor (e.g., trastuzumab), proteasome inhibitor (e.g., bortezomib), methotrexate, asparaginase, CD-22 targeting agent (e.g.
- epratuzumab epratuzumab, inotuzumab
- immunotherapy e.g., autologous cytokine induced killer cells (CIK), AHN-12), blinatumomab, cyclin-dependent kinase inhibitor (e.g., UCN-01), CD45 targeting agent (e.g., BC8), MDM2 antagonist (e.g., RO5045337),
- immunotoxin e.g. , CAT-8015, DT2219ARL
- HDAC inhibitor e.g., JNJ-26481585
- JVRS- 100 paclitaxel or a paclitaxel agent
- STAT3 inhibitor e.g., OPB-31121
- PARP inhibitor e.g., veliparib
- EZN-2285 radiation therapy, steroid, bone marrow transplantation, stem cell transplantation, or a combination thereof.
- a chemotherapeutic agent e.g., cytarabine, daunorubicin, idarubicin, clofarabine, decitabine, vosaroxin, azacitidine, clofarabine, ribavirin, CPX-351, treosulfan, elacytarabine, azacitidine
- tyrosine kinase inhibitor e.g., BCR/ABL inhibitor (e.g. , imatinib, nilotinib), ON 01910.
- multikinase inhibitor e.g., midostaurin, SU 11248, quizartinib, sorafinib
- immunotoxin e.g., gemtuzumab ozogamicin
- DT388IL3 fusion protein HDAC inhibitor (e.g., vorinostat, LBH589), plerixafor, mTOR inhibitor (e.g.
- everolimus SRC inhibitor (e.g., dasatinib), HSP90 inhbitor (e.g., STA-9090), retinoid (e.g., bexarotene, Aurora kinase inhibitor (e.g., BI 811283), JAK-2 inhibitor (e.g., INCB018424), Polo-like kinase inhibitor (e.g., BI 6727), cenersen, CD45 targeting agent (e.g., BC8), cyclin-dependent kinase inhibitor (e.g., UCN-01), MDM2 antagonist (e.g., RO5045337), mTOR inhibitor (e.g., everolimus), LY573636-sodium, ZRx-101, MLN4924, lenalidomide, immunotherapy (e.g., AHN-12), histamine dihydrochloride, radiation therapy, bone marrow transplantation, stem cell transplantation, and a combination thereof.
- Suitable therapeutics for use in combination for treatment of multiple myeloma includes, but is not limited to, a chemotherapeutic agent (e.g., melphalan, amifostine, cyclophosphamide, doxorubicin, clofarabine, bendamustine, fludarabine, adriamycin, SyB L-0501), thalidomide, lenalidomide, dexamethasone, prednisone, pomalidomide, proteasome inhibitor (e.g., bortezomib, carfilzomib, MLN9708), cancer vaccine (e.g., GVAX), CD-40 targeting agent (e.g., SGN-40, CHIR-12.12), perifosine, zoledronic acid, Immunotherapy (e.g., MAGE- A3, NY-ESO-1 , HuMax-CD38), HDAC inhibitor (e.g., vorinostat, LBH5
- VEGF inhibitor e.g., bevacizumab
- plerixafor MEK inhibitor
- IPH2101, atorvastatin, immunotoxin e.g., BB- 10901
- NPI-0052 radioimmunotherapeutic (e.g., yttrium Y 90 ibritumomab tiuxetan), STAT3 inhibitor (e.g., OPB-31121), MLN4924, Aurora kinase inhibitor (e.g., ENMD-2076), IMGN901, ACE-041, CK-2 inhibitor (e.g., CX-4945), radiation therapy, bone marrow transplantation, stem cell transplantation, and a combination thereof.
- a chemotherapeutic agent e.g., docetaxel, carboplatin, fludarabine
- abiraterone hormonal therapy (e.g., flutamide, bicalutamide, nilutamide, cyproterone acetate, ketoconazole, aminoglutethimide, abarelix, degarelix, leuprolide, goserelin, triptorelin, buserelin), tyrosine kinase inhibitor (e.g., dual kinase inhibitor (e.g., lapatanib), multikinase inhibitor (e.g., sorafenib, sunitinib)), VEGF inhibitor (e.g., bevacizumab), TAK-700, cancer vaccine (e.g., BPX-101, PEP223), lenalidomide, TOK-001, IGF-1
- a chemotherapeutic agent e.g., docetaxel, carb
- the combination therapies can be administered in combination with one or more of the existing modalities for treating cancers, including, but not limited to: surgery; radiation therapy (e.g., external-beam therapy which involves three dimensional, conformal radiation therapy where the field of radiation is designed, local radiation (e.g., radition directed to a preselected target or organ), or focused radiation).
- Focused radiation can be selected from the group consisting of stereotactic radiosurgery, fractionated stereotactic radiosurgery, and intensity- modulated radiation therapy.
- the focused radiation can have a radiation source selected from the group consisting of a particle beam (proton), cobalt-60 (photon), and a linear accelerator (x-ray), e.g., as decribed in WO 2012/177624.
- Radiation therapy can be administered through one of several methods, or a combination of methods, including without limitation external-beam therapy, internal radiation therapy, implant radiation, stereotactic radiosurgery, systemic radiation therapy, radiotherapy and permanent or temporary interstitial brachytherapy.
- brachytherapy refers to radiation therapy delivered by a spatially confined radioactive material inserted into the body at or near a tumor or other proliferative tissue disease site.
- the term is intended without limitation to include exposure to radioactive isotopes (e.g. At-211, 1-131, 1-125, Y-90, Re-186, Re-188, Sm-153, Bi- 212, P-32, and radioactive isotopes of Lu).
- Suitable radiation sources for use as a cell conditioner of the present disclosure include both solids and liquids.
- the radiation source can be a radionuclide, such as 1-125, 1-131, Yb-169, Ir-192 as a solid source, 1-125 as a solid source, or other radionuclides that emit photons, beta particles, gamma radiation, or other therapeutic rays.
- the radioactive material can also be a fluid made from any solution of radionuclide(s), e.g., a solution of 1-125 or 1-131, or a radioactive fluid can be produced using a slurry of a suitable fluid containing small particles of solid radionuclides, such as Au-198, Y-90.
- the radionuclide(s) can be embodied in a gel or radioactive micro spheres.
- the disclosure also features nucleic acids comprising nucleotide sequences that encode heavy and light chain variable regions and CDRs or hypervariable loops of the antibody molecules, as described herein.
- the nucleic acid can comprise a nucleotide sequence as set forth herein, or a sequence substantially identical thereto (e.g. , a sequence at least about 85%, 90%, 95%, 99% or more identical thereto, or which differs by no more than 3, 6, 15, 30, or 45 nucleotides from the sequences shown in the tables herein.
- vectors comprising nucleotide sequences encoding an antibody molecule described herein.
- the vectors comprise nucleotides encoding an antibody molecule described herein.
- the vectors comprise the nucleotide sequences described herein.
- the vectors include, but are not limited to, a virus, plasmid, cosmid, lambda phage or a yeast artificial chromosome (YAC).
- vectors utilize DNA elements which are derived from animal viruses such as, for example, bovine papilloma virus, polyoma virus, adenovirus, vaccinia virus, baculovirus, retroviruses (Rous Sarcoma Virus, MMTV or MOMLV) or SV40 virus.
- DNA elements which are derived from animal viruses such as, for example, bovine papilloma virus, polyoma virus, adenovirus, vaccinia virus, baculovirus, retroviruses (Rous Sarcoma Virus, MMTV or MOMLV) or SV40 virus.
- RNA elements derived from RNA viruses such as Semliki Forest virus, Eastern Equine Encephalitis virus and
- cells which have stably integrated the DNA into their chromosomes may be selected by introducing one or more markers which allow for the selection of transfected host cells.
- the marker may provide, for example, prototropy to an auxotrophic host, biocide resistance (e.g., antibiotics), or resistance to heavy metals such as copper, or the like.
- the selectable marker gene can be either directly linked to the DNA sequences to be expressed, or introduced into the same cell by cotransformation. Additional elements may also be needed for optimal synthesis of mRNA. These elements may include splice signals, as well as
- transcriptional promoters e.g., promoters, and termination signals.
- the expression vectors may be transfected or introduced into an appropriate host cell.
- Various techniques may be employed to achieve this, such as, for example, protoplast fusion, calcium phosphate precipitation, electroporation, retroviral transduction, viral transfection, gene gun, lipid based transfection or other conventional techniques.
- protoplast fusion the cells are grown in media and screened for the appropriate activity.
- Methods and conditions for culturing the resulting transfected cells and for recovering the antibody molecule produced are known to those skilled in the art, and may be varied or optimized depending upon the specific expression vector and mammalian host cell employed, based upon the present description.
- the disclosure also provides host cells comprising a nucleic acid encoding an antibody molecule as described herein.
- the host cells are genetically engineered to comprise nucleic acids encoding the antibody molecule.
- the host cells are genetically engineered by using an expression cassette.
- expression cassette refers to nucleotide sequences, which are capable of affecting expression of a gene in hosts compatible with such sequences.
- Such cassettes may include a promoter, an open reading frame with or without introns, and a termination signal. Additional factors necessary or helpful in effecting expression may also be used, such as, for example, an inducible promoter.
- the disclosure also provides host cells comprising the vectors described herein.
- the cell can be, but is not limited to, a eukaryotic cell, a bacterial cell, an insect cell, or a human cell.
- Suitable eukaryotic cells include, but are not limited to, Vero cells, HeLa cells, COS cells, CHO cells, HEK293 cells, BHK cells and MDCKII cells.
- Suitable insect cells include, but are not limited to, Sf9 cells.
- Example 1 Effects of Targeted Agents on PD-L1 Modulation
- LDK378 evaluates the effects of selected therapeutic agent LDK378 on PD-L1 (CD274) modulation.
- LDK378 was examined by real time PCR and flow cytometry on PD-L1 levels. Significant inhibition of PD-L1 by LDK378 on tumor cells was observed.
- LDK378 downregulate PD-L1 mRNA
- TaqMan RT PCR assays were developed to detect changes of expression levels of PD-L1 (CD274) in cell lines and xenograft tumors.
- mRNA was isolated from frozen cell pellets or tumor fragments using the Qiagen RNeasy Mini kit. Isolated RNA was frozen at -80°C. RNA quality was checked and RNA was quantified using a 2100 Agilent Bioanalyzer following the protocol for the Agilent RNA 6000 Nano Kit.
- cDNA was prepared using a High Capacity RNA- to cDNA Kit (Applied Biosystems).
- Real-time PCR reactions were carried out in 20 ⁇ 1 total volume, including ⁇ of Universal PCR master mix (Applied Biosystems), ⁇ of human PD-L1 (CD274) probe/primer set (Applied Biosystems), and 8 ⁇ of cDNA. Each sample was run in triplicate. The amount of cDNA produced from 25-50 ng of RNA in the reverse transcription reaction was used in each PCR reaction. Due to difference in mRNA levels between PD-L1 and GAPDH, the two realtime PCR reactions were done in separate tubes using same amount of cDNA.
- the real-time PCR reaction was run on the CIOOO Thermal Cycle (BioRad) with the cycle program as follows: a 10 minute incubation at 95°C followed by 40 cycles of 95°C for 15 seconds and 60°C for 1 minute. After the reaction was complete, the PD-L1 average Ct was normalized relative to each Ct value from the GAPDH reference reaction. Each normalized logarithmic value was then converted into a linear value.
- results presented herein demonstrate a role of LDK 378 in the regulation of immunecheckpoint molecules on cancer.
- the observed inhibition of PD-L1 expression by LDK378 suggests that this targeted agent may have immune-modulatory activity, in addition to its effects on cancer signaling.
- the results presented herein suggest that administration of targeted agent LDK378 with inhibitors of immunecheckpoint inhibitors such as PD1, PD-L1, LAG3 and/or TIM3 will achieve a more potent reversal of the immunecheckpoint- mediated immune suppression.
- Example 2 Clinical trial to evaluate efficacy and safety of the ceritinib and nivolumab combination
- Efficacy and safety of the ceritinib and nivolumab combination can be assessed in an open-label, multi-center dose escalation and expansion study investigating in addition to the safety and efficacy, also tolerability and PK/PD of combination of ceritinib and nivolumab for the treatment of patients with metastatic, ALK-positive NSCLC can be evaluated.
- the study can begin with a screening period of up to and including 28 days prior to the first dose of study drugs to assess eligibility.
- the treatment period can begin on the first day of the first cycle.
- the cycles are 28 days long.
- ceritinib and nivolumab may for example continue until the patient experiences unacceptable toxicity that precludes further treatment and/or disease progression.
- patients may in addition receive palliative radiotherapy.
- the study can consist of dose-escalation and dose-expansion phase.
- the dose-escalation phase of the study can evaluate the maximum tolerated dose (MTD)/ recommended dose for expansion (RDE) of the combination of oral daily ceritinib with a low-fat meal and intravenous nivolumab every 2 weeks (Q2W) based on dose limiting toxicities (DLTs) using a Bayesian Logistic Regression Model (BLRM).
- MTD maximum tolerated dose
- RDE recommended dose for expansion
- DLTs dose limiting toxicities
- BLRM Bayesian Logistic Regression Model
- the MTD is the highest drug dosage of both agents not expected to cause DLT in more than 35% of the treated patients in the first 6 weeks of treatment.
- the final recommended MTD/RDE for combination ceritinib and nivolumab is based on the recommendation from the BLRM, and on an overall assessment of safety taking into consideration tolerability and pharmacokinetic data from subsequent cycles at the tested doses. If the MTD for combination ceritinib and nivolumab is not established after the evaluation of all planned dose levels including the target doses of ceritinib (600 mg with low-fat meal) and nivolumab (3 mg/kg), the RDE is determined after the evaluation of all available safety, PK, and efficacy data.
- the expansion phase evaluates the safety and preliminary efficacy of the ceritinib and nivolumab combination at the RDE and consists of 2 arms (approximately 30 patients in each arm):
- Example 3 Effects of the LDK378 and Nivolumab combination in the clinic
- Patient assessed was a 64 year old Caucasian male with diagnosed stage IV NSCLC. Sites of disease included lung, adrenal and abdominal lymph nodes. The patient received one prior chemotherapy regimen of cisplatin and pemetrexed and achieved a partial response. Additional medical conditions include adrenal insufficiency, mitral valve prolapse, hypercholesterolemia, and urolithiasis.
- the patient started study treatment with LDK378 450mg QD (oral), administered with a low fat meal, in combination with Nivolumab 3mg/kg every 2 weeks (intravenous). 29 days after the first dose of the study medications (combination of LDK378 + Nivolumab) the patient presented with fever, abdominal pain, nausea, and vomiting. Abdominal ultrasound was negative but computerized tomogram (CT) of the abdomen demonstrated acute pancreatitis. In addition, there were elevations in lipase, amylase, ALT, AST, bilirubin, ALP, and GGT. The patient was hospitalized and treatment with study medication LDK378 was temporarily interrupted.
- CT computerized tomogram
- Phosphatase Grade 3 GGT 1 day after the evaluation at the clinic LDK378 was restarted at a reduced dose of 300mg daily. Nivolumab treatment was restarted about a week later.
- LDK378 was discontinued and restarted again at 300 mg dose.
- CT scan at the first tumor assessment demonstrated a 62.9% decrease in overall target lesions in the right adrenal gland and abdominal lymph nodes from the baseline CT scan. There is also a non-target lesion in the Left lower lobe of the lung which was assessed as present.
- lymph nodes (abdominal)
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Microbiology (AREA)
- Mycology (AREA)
- Oncology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biomedical Technology (AREA)
- Cell Biology (AREA)
- Nutrition Science (AREA)
- Physiology (AREA)
- Hematology (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Peptides Or Proteins (AREA)
Priority Applications (11)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| BR112017004826A BR112017004826A2 (pt) | 2014-09-13 | 2015-09-11 | terapias de combinação de inibidores de alk |
| US15/509,649 US20170281624A1 (en) | 2014-09-13 | 2015-09-11 | Combination therapies of alk inhibitors |
| JP2017533719A JP6681905B2 (ja) | 2014-09-13 | 2015-09-11 | Alk阻害剤の併用療法 |
| EP15767682.6A EP3191126B1 (en) | 2014-09-13 | 2015-09-11 | Combination therapies of alk inhibitors |
| MX2017003227A MX2017003227A (es) | 2014-09-13 | 2015-09-11 | Terapias de combinacion de inhibidores de alk. |
| CN201580061994.0A CN107206071A (zh) | 2014-09-13 | 2015-09-11 | Alk抑制剂的联合疗法 |
| CA2960824A CA2960824A1 (en) | 2014-09-13 | 2015-09-11 | Combination therapies of alk inhibitors |
| RU2017112379A RU2718914C2 (ru) | 2014-09-13 | 2015-09-11 | Сочетанные способы лечения с использованием ингибиторов alk |
| KR1020177009646A KR20170060042A (ko) | 2014-09-13 | 2015-09-11 | Alk 억제제의 조합 요법 |
| AU2015314756A AU2015314756A1 (en) | 2014-09-13 | 2015-09-11 | Combination therapies of alk inhibitors |
| AU2018250507A AU2018250507B2 (en) | 2014-09-13 | 2018-10-19 | Combination therapies of alk inhibitors |
Applications Claiming Priority (8)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201462050116P | 2014-09-13 | 2014-09-13 | |
| US62/050,116 | 2014-09-13 | ||
| US201462059788P | 2014-10-03 | 2014-10-03 | |
| US62/059,788 | 2014-10-03 | ||
| US201562119060P | 2015-02-20 | 2015-02-20 | |
| US62/119,060 | 2015-02-20 | ||
| US201562199030P | 2015-07-30 | 2015-07-30 | |
| US62/199,030 | 2015-07-30 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2016040880A1 true WO2016040880A1 (en) | 2016-03-17 |
Family
ID=54186328
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2015/049810 Ceased WO2016040880A1 (en) | 2014-09-13 | 2015-09-11 | Combination therapies of alk inhibitors |
| PCT/US2015/049813 Ceased WO2016040882A1 (en) | 2014-09-13 | 2015-09-11 | Combination therapies of egfr inhibitors |
| PCT/US2015/049826 Ceased WO2016040892A1 (en) | 2014-09-13 | 2015-09-11 | Combination therapies |
Family Applications After (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2015/049813 Ceased WO2016040882A1 (en) | 2014-09-13 | 2015-09-11 | Combination therapies of egfr inhibitors |
| PCT/US2015/049826 Ceased WO2016040892A1 (en) | 2014-09-13 | 2015-09-11 | Combination therapies |
Country Status (12)
| Country | Link |
|---|---|
| US (4) | US11344620B2 (enExample) |
| EP (5) | EP3191097B1 (enExample) |
| JP (1) | JP6681905B2 (enExample) |
| KR (1) | KR20170060042A (enExample) |
| CN (1) | CN107206071A (enExample) |
| AU (2) | AU2015314756A1 (enExample) |
| BR (1) | BR112017004826A2 (enExample) |
| CA (1) | CA2960824A1 (enExample) |
| ES (1) | ES2771926T3 (enExample) |
| MX (1) | MX2017003227A (enExample) |
| RU (1) | RU2718914C2 (enExample) |
| WO (3) | WO2016040880A1 (enExample) |
Cited By (35)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2016054555A3 (en) * | 2014-10-03 | 2016-06-30 | Novartis Ag | Combination therapies |
| US9605070B2 (en) | 2014-01-31 | 2017-03-28 | Novartis Ag | Antibody molecules to TIM-3 and uses thereof |
| US9683048B2 (en) | 2014-01-24 | 2017-06-20 | Novartis Ag | Antibody molecules to PD-1 and uses thereof |
| WO2017205216A1 (en) | 2016-05-23 | 2017-11-30 | Eli Lilly And Company | Combination of pembrolizumab and abemaciclib for the treatment of cancer |
| WO2017202962A1 (en) * | 2016-05-24 | 2017-11-30 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and pharmaceutical compositions for the treatment of non small cell lung cancer (nsclc) that coexists with chronic obstructive pulmonary disease (copd) |
| US9908936B2 (en) | 2014-03-14 | 2018-03-06 | Novartis Ag | Antibody molecules to LAG-3 and uses thereof |
| US9920123B2 (en) | 2008-12-09 | 2018-03-20 | Genentech, Inc. | Anti-PD-L1 antibodies, compositions and articles of manufacture |
| WO2018055503A1 (en) | 2016-09-20 | 2018-03-29 | Novartis Ag | Combination comprising a pd-1 antagonist and an fgfr4 inhibitor |
| US9988452B2 (en) | 2014-10-14 | 2018-06-05 | Novartis Ag | Antibody molecules to PD-L1 and uses thereof |
| WO2018154529A1 (en) * | 2017-02-27 | 2018-08-30 | Novartis Ag | Dosing schedule for a combination of ceritinib and an anti-pd-1 antibody molecule |
| CN109475629A (zh) * | 2016-05-20 | 2019-03-15 | 伊莱利利公司 | 用notch和pd-1或pd-l1抑制剂的组合治疗 |
| KR20190031333A (ko) * | 2011-07-20 | 2019-03-25 | 브라이엄 영 유니버시티 | 소수성 세라게닌 화합물 및 이를 포함하는 기구 |
| EP3349731A4 (en) * | 2015-09-16 | 2019-05-01 | Board of Regents, The University of Texas System | COMBINATION OF TOPOISOMERASE I INHIBITORS WITH IMMUNOTHERAPY IN THE TREATMENT OF CANCER |
| US10287353B2 (en) | 2016-05-11 | 2019-05-14 | Huya Bioscience International, Llc | Combination therapies of HDAC inhibitors and PD-1 inhibitors |
| US10344090B2 (en) | 2013-12-12 | 2019-07-09 | Shanghai Hangrui Pharmaceutical Co., Ltd. | PD-1 antibody, antigen-binding fragment thereof, and medical application thereof |
| US10385131B2 (en) | 2016-05-11 | 2019-08-20 | Huya Bioscience International, Llc | Combination therapies of HDAC inhibitors and PD-L1 inhibitors |
| US10478494B2 (en) | 2015-04-03 | 2019-11-19 | Astex Therapeutics Ltd | FGFR/PD-1 combination therapy for the treatment of cancer |
| US10570204B2 (en) | 2013-09-26 | 2020-02-25 | The Medical College Of Wisconsin, Inc. | Methods for treating hematologic cancers |
| WO2020092743A3 (en) * | 2018-11-01 | 2020-07-23 | Memorial Sloan Kettering Cancer Center | Methods of treating diseases using kinase modulators |
| WO2021237022A1 (en) * | 2020-05-21 | 2021-11-25 | The Regents Of The University Of California | Compositions and methods for treating breast cancer |
| WO2022063220A1 (en) * | 2020-09-25 | 2022-03-31 | Ascentage Pharma (Suzhou) Co., Ltd. | A pharmaceutical composition and use thereof for treatment of cancer |
| US11298362B2 (en) | 2016-04-12 | 2022-04-12 | Eli Lilly And Company | Combination therapy with Notch and CDK4/6 inhibitors for the treatment of cancer |
| US11344620B2 (en) | 2014-09-13 | 2022-05-31 | Novartis Ag | Combination therapies |
| US11376259B2 (en) | 2016-10-12 | 2022-07-05 | Eli Lilly And Company | Targeted treatment of mature T-cell lymphoma |
| US11564929B2 (en) | 2016-04-12 | 2023-01-31 | Eli Lilly And Company | Combination therapy with Notch and PI3K/mTOR inhibitors for use in treating cancer |
| US12103976B2 (en) | 2018-07-12 | 2024-10-01 | Invox Pharma Limited | Fc binding fragments comprising a CD137 antigen-binding site |
| US12187798B2 (en) | 2016-06-20 | 2025-01-07 | Invox Pharma Limited | LAG-3 binding members |
| US12193994B2 (en) | 2017-11-06 | 2025-01-14 | Juno Therapeutics, Inc. | Combination of a cell therapy and a gamma secretase inhibitor |
| US12247074B2 (en) | 2018-07-12 | 2025-03-11 | Invox Pharma Limited | Antibody molecules |
| US12252537B2 (en) | 2018-07-12 | 2025-03-18 | Invox Pharma Limited | Antibody molecules that bind CD137 and OX40 |
| US12297283B2 (en) | 2018-07-12 | 2025-05-13 | Invox Pharma Limited | Fc binding fragments comprising an OX40 antigen-binding site |
| US12319739B2 (en) | 2018-07-12 | 2025-06-03 | Invox Pharma Limited | Mesothelin and CD137 binding molecules |
| US12325742B2 (en) | 2018-07-12 | 2025-06-10 | Invox Pharma Limited | Anti-mesothelin antibodies |
| US12344588B2 (en) | 2017-11-29 | 2025-07-01 | Taiho Pharmaceutical Co., Ltd. | Sulfonamide compounds and use thereof |
| US12344672B2 (en) | 2018-07-12 | 2025-07-01 | Invox Pharma Limited | Antibody molecules that bind PD-L1 and CD137 |
Families Citing this family (83)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP5631201B2 (ja) | 2007-03-28 | 2014-11-26 | プレジデント アンド フェローズ オブ ハーバード カレッジ | ステッチングされたポリペプチド |
| TWI643868B (zh) | 2011-10-18 | 2018-12-11 | 艾利倫治療公司 | 擬肽巨環化合物 |
| EP2819688A4 (en) | 2012-02-15 | 2015-10-28 | Aileron Therapeutics Inc | PEPTIDOMIMETIC MACROCYCLES CROSS-LINKED WITH TRIAZOLE AND THIOETHER |
| KR20150082307A (ko) | 2012-11-01 | 2015-07-15 | 에일러론 테라퓨틱스 인코포레이티드 | 이치환 아미노산 및 이의 제조 및 사용 방법 |
| SG10202104627UA (en) | 2013-12-13 | 2021-06-29 | Novartis Ag | Pharmaceutical dosage forms |
| WO2015109391A1 (en) | 2014-01-24 | 2015-07-30 | Children's Hospital Of Eastern Ontario Research Institute Inc. | Smc combination therapy for the treatment of cancer |
| CN118286440A (zh) | 2014-02-04 | 2024-07-05 | 辉瑞大药厂 | 用于治疗癌症的pd-1拮抗剂和vegfr抑制剂的组合 |
| CA2943834A1 (en) | 2014-03-31 | 2015-10-08 | Genentech, Inc. | Combination therapy comprising anti-angiogenesis agents and ox40 binding agonists |
| EP3191098A4 (en) | 2014-09-12 | 2018-04-25 | G1 Therapeutics, Inc. | Combinations and dosing regimes to treat rb-positive tumors |
| SG11201702223UA (en) | 2014-09-24 | 2017-04-27 | Aileron Therapeutics Inc | Peptidomimetic macrocycles and uses thereof |
| EP3197477A4 (en) | 2014-09-24 | 2018-07-04 | Aileron Therapeutics, Inc. | Peptidomimetic macrocycles and formulations thereof |
| AU2015355137A1 (en) * | 2014-12-02 | 2017-06-08 | Celgene Corporation | Combination therapies |
| BR112017018234A2 (pt) | 2015-02-26 | 2018-04-17 | Merck Patent Gmbh | inibidores de pd-1 / pd-l1 para o tratamento de câncer |
| KR20170129879A (ko) | 2015-03-20 | 2017-11-27 | 에일러론 테라퓨틱스 인코포레이티드 | 펩티드모방 거대고리 및 이의 용도 |
| NZ738068A (en) | 2015-05-06 | 2019-07-26 | Snipr Tech Ltd | Altering microbial populations & modifying microbiota |
| PH12017502013B1 (en) | 2015-05-07 | 2022-07-22 | Agenus Inc | Anti-ox40 antibodies and methods of use thereof |
| TWI715587B (zh) | 2015-05-28 | 2021-01-11 | 美商安可美德藥物股份有限公司 | Tigit結合劑和彼之用途 |
| HUE050750T2 (hu) | 2015-05-29 | 2021-01-28 | Agenus Inc | CTLA-4 elleni antitestek és eljárások alkalmazásukra |
| KR102712880B1 (ko) | 2015-06-16 | 2024-10-02 | 메르크 파텐트 게엠베하 | Pd-l1 길항제 조합 치료 |
| RU2753439C2 (ru) | 2015-07-23 | 2021-08-16 | Инхибркс, Инк. | Поливалетные и полиспецифичные gitr-связывающие слитые белки |
| AU2016329120B2 (en) | 2015-10-02 | 2023-04-13 | F. Hoffmann-La Roche Ag | Bispecific antibodies specific for a costimulatory TNF receptor |
| MX2018005771A (es) | 2015-11-11 | 2019-03-14 | Celator Pharmaceuticals Inc | Ensayos y metodos para seleccionar un regimen de tratamiento para un sujeto con leucemia. |
| SG11201804265XA (en) | 2015-12-02 | 2018-06-28 | Agenus Inc | Antibodies and methods of use thereof |
| US11413309B2 (en) | 2016-01-20 | 2022-08-16 | Fate Therapeutics, Inc. | Compositions and methods for immune cell modulation in adoptive immunotherapies |
| EP3405567A4 (en) | 2016-01-20 | 2019-10-30 | Fate Therapeutics, Inc. | COMPOUNDS AND METHODS FOR IMMUNOCELL MODULATION IN ADOPTIVE IMMUNOTHERAPIES |
| US11865116B2 (en) | 2016-03-24 | 2024-01-09 | Cothera Bioscience, Inc. | Treatment of cancer with TG02 |
| CN109476751B (zh) | 2016-05-27 | 2024-04-19 | 艾吉纳斯公司 | 抗tim-3抗体及其使用方法 |
| GB201609811D0 (en) | 2016-06-05 | 2016-07-20 | Snipr Technologies Ltd | Methods, cells, systems, arrays, RNA and kits |
| CN109562282A (zh) * | 2016-07-29 | 2019-04-02 | 伊莱利利公司 | 用于治疗癌症的使用merestinib和抗-pd-l1或抗-pd-1抑制剂的组合疗法 |
| EP3494139B1 (en) | 2016-08-05 | 2022-01-12 | F. Hoffmann-La Roche AG | Multivalent and multiepitopic anitibodies having agonistic activity and methods of use |
| BR112019004185A2 (pt) * | 2016-09-09 | 2019-09-03 | Lab Francais Du Fractionnement | combinação de um anticorpo anti-cd20, inibidor de pi3-quinase-delta inibidor e anticorpo anti-pd-1 ou anti-pd-l1 para tratamento de cânceres hematológicos |
| MX2019003755A (es) | 2016-10-06 | 2019-08-12 | Pfizer | Regimen de dosificacion de avelumab para el tratamiento de cancer. |
| WO2018071500A1 (en) | 2016-10-11 | 2018-04-19 | Agenus Inc. | Anti-lag-3 antibodies and methods of use thereof |
| AU2017359333B2 (en) * | 2016-11-08 | 2024-03-21 | Dana-Farber Cancer Institute, Inc. | Compositions and methods of modulating anti-tumor immunity |
| CA3041340A1 (en) | 2016-11-09 | 2018-05-17 | Agenus Inc. | Anti-ox40 antibodies, anti-gitr antibodies, and methods of use thereof |
| US11230596B2 (en) | 2016-11-30 | 2022-01-25 | Mereo Biopharma 5, Inc. | Methods for treatment of cancer comprising TIGIT-binding agents |
| KR20240024296A (ko) | 2016-12-05 | 2024-02-23 | 쥐원 쎄라퓨틱스, 인크. | 화학요법 레지멘 동안의 면역 반응의 보존 |
| WO2018106595A1 (en) * | 2016-12-05 | 2018-06-14 | Fate Therapeutics, Inc. | Compositions and methods for immune cell modulation in adoptive immunotherapies |
| EA201991383A1 (ru) | 2016-12-07 | 2019-12-30 | Эйдженус Инк. | Антитела против ctla-4 и способы их применения |
| US11395821B2 (en) | 2017-01-30 | 2022-07-26 | G1 Therapeutics, Inc. | Treatment of EGFR-driven cancer with fewer side effects |
| US11339218B2 (en) | 2017-05-10 | 2022-05-24 | Zhejiang Shimai Pharmaceutical Co., Ltd. | Human monoclonal antibodies against LAG3 and uses thereof |
| WO2019018537A1 (en) * | 2017-07-18 | 2019-01-24 | Exosome Diagnostics, Inc. | NUCLEIC ACID SEQUENCING ASSOCIATED WITH EXOSOMAL ISOLATION IN PATIENTS WITH MULTIPLE GLIOBLASTOMA |
| CA3071217A1 (en) | 2017-08-31 | 2019-03-07 | Multimmune Gmbh | Hsp70 based combination therapy |
| CN109663130B (zh) * | 2017-10-13 | 2021-06-29 | 江苏恒瑞医药股份有限公司 | Pd-1抗体和mek抑制剂联合在制备治疗肿瘤的药物中的用途 |
| CN111372584A (zh) | 2017-11-03 | 2020-07-03 | 奥瑞基尼探索技术有限公司 | Tim-3和pd-1途径的双重抑制剂 |
| EA202090749A1 (ru) | 2017-11-06 | 2020-08-19 | Ориджен Дискавери Текнолоджис Лимитед | Способы совместной терапии для иммуномодуляции |
| US20200282052A1 (en) * | 2017-11-10 | 2020-09-10 | Elevar Therapeutics, Inc. | A combination therapy with apatinib for the treatment of cancer |
| CN109806393B (zh) * | 2017-11-17 | 2022-07-26 | 江苏恒瑞医药股份有限公司 | 抗pd-1抗体、培美曲塞和铂类药物联合治疗非小细胞肺癌的用途 |
| US11179412B2 (en) | 2017-12-04 | 2021-11-23 | University of Pittsburgh—of the Commonwealth System of Higher Education | Methods of treating conditions involving elevated inflammatory response |
| AU2019205821C1 (en) | 2018-01-08 | 2025-02-13 | Pharmacosmos Holding A/S | G1T38 superior dosage regimes |
| WO2019175799A2 (en) | 2018-03-14 | 2019-09-19 | Aurigene Discovery Technologies Limited | Method of modulating tigit and pd-1 signalling pathways using 1,2,4-oxadiazole compounds |
| US10760075B2 (en) | 2018-04-30 | 2020-09-01 | Snipr Biome Aps | Treating and preventing microbial infections |
| TW201943428A (zh) * | 2018-04-16 | 2019-11-16 | 大陸商上海岸闊醫藥科技有限公司 | 預防或治療腫瘤療法副作用的方法 |
| KR102849944B1 (ko) * | 2018-05-16 | 2025-08-22 | 프로벡투스 파마테크 인코포레이티드 | 난치성 소아 고형 종양에 대한 할로겐화-크산텐의 시험관 내 및 이종이식 항-종양 |
| WO2020023502A1 (en) | 2018-07-23 | 2020-01-30 | Aileron Therapeutics, Inc. | Peptidomimetic macrocycles and uses thereof |
| WO2020030016A1 (en) * | 2018-08-08 | 2020-02-13 | Ascentage Pharma (Suzhou) Co., Ltd. | Combination of immunotherapies with mdm2 inhibitors |
| US11851663B2 (en) | 2018-10-14 | 2023-12-26 | Snipr Biome Aps | Single-vector type I vectors |
| IL282294B2 (en) | 2018-10-19 | 2025-04-01 | Senhwa Biosciences Inc | Combinations for immune modulation in cancer treatment |
| JP2022515171A (ja) * | 2018-12-20 | 2022-02-17 | ラファエル ファーマシューティカルズ, インコーポレイテッド | 6,8-ビス-ベンジルチオ-オクタン酸および自食作用阻害剤を使用して癌を治療するための治療方法および組成物 |
| WO2020172233A1 (en) * | 2019-02-22 | 2020-08-27 | The Trustees Of Columbia University In The City Of New York | Treatment of prostate cancer by androgen ablation and il-8 blockade |
| WO2020187188A1 (zh) * | 2019-03-15 | 2020-09-24 | 南京明德新药研发有限公司 | 喹啉衍生物及免疫调节剂联合在制备抗肿瘤药物中的应用 |
| WO2020219963A1 (en) * | 2019-04-26 | 2020-10-29 | University Of Houston System | Methods and compositions for treating chronic inflammatory injury, metaplasia, dysplasia and cancers of epithelial tissues |
| AU2020281535A1 (en) * | 2019-05-24 | 2022-01-27 | Merck Patent Gmbh | Combination therapies using CDK inhibitors |
| KR20220027941A (ko) | 2019-06-28 | 2022-03-08 | 더 보드 오브 리젠츠 오브 더 유니버시티 오브 텍사스 시스템 | 리포솜 아나마이신의 재구성 방법 |
| JP7687969B2 (ja) | 2019-06-28 | 2025-06-03 | ボード オブ レジェンツ,ザ ユニバーシティ オブ テキサス システム | リポソーム化アナマイシン前駆体凍結乾燥物の調製 |
| CN110407938B (zh) * | 2019-08-12 | 2020-03-06 | 北京昭衍生物技术有限公司 | 抗tim-3单克隆抗体、表达载体及其应用 |
| CN110687282B (zh) * | 2019-08-26 | 2023-05-23 | 中国医学科学院肿瘤医院 | PD-1和/或p53自身抗体作为肿瘤疗效预测或预后评估的标志物 |
| CN120789282A (zh) * | 2019-09-19 | 2025-10-17 | 托特斯医药公司 | 治疗性缀合物 |
| GB201915618D0 (en) | 2019-10-28 | 2019-12-11 | Univ Oslo | ALK inhibitors for treatment of ALK-negative cancer and antibody-mediated diseases |
| KR20220092578A (ko) * | 2019-11-05 | 2022-07-01 | 브리스톨-마이어스 스큅 컴퍼니 | M-단백질 검정 및 이의 용도 |
| IL293144A (en) * | 2019-11-21 | 2022-07-01 | Univ Texas | Lung targeted anticancer therapies with liposomal annamycin |
| WO2021178611A1 (en) * | 2020-03-05 | 2021-09-10 | Merck Sharp & Dohme Corp. | Methods for treating cancer or infection using a combination of an anti-pd-1 antibody, an anti-ctla4 antibody, and an anti-tigit antibody |
| WO2021183640A1 (en) * | 2020-03-10 | 2021-09-16 | Emory University | Methods of treating cancer using checkpoint inhibitors in combination with purine cleaving enzymes |
| US20230235037A1 (en) * | 2020-04-22 | 2023-07-27 | Chemomab Ltd. | Method of treatment using anti-ccl24 antibody |
| WO2021244551A1 (zh) * | 2020-06-02 | 2021-12-09 | 正大天晴药业集团股份有限公司 | c-Met激酶抑制剂和抗PD-L1抗体的联用药物组合物 |
| US10988479B1 (en) | 2020-06-15 | 2021-04-27 | G1 Therapeutics, Inc. | Morphic forms of trilaciclib and methods of manufacture thereof |
| IL299245A (en) | 2020-06-22 | 2023-02-01 | Ngm Biopharmaceuticals Inc | LAIR-1 binding agents and methods of using them |
| CN116635064A (zh) | 2020-12-18 | 2023-08-22 | 世纪治疗股份有限公司 | 具有适应性受体特异性的嵌合抗原受体系统 |
| WO2022170060A1 (en) * | 2021-02-05 | 2022-08-11 | Verastem, Inc. | Combination therapy for treating abnormal cell growth |
| US11873296B2 (en) | 2022-06-07 | 2024-01-16 | Verastem, Inc. | Solid forms of a dual RAF/MEK inhibitor |
| GB202209518D0 (en) | 2022-06-29 | 2022-08-10 | Snipr Biome Aps | Treating & preventing E coli infections |
| CN116370476B (zh) * | 2023-04-21 | 2024-01-30 | 遵义医科大学 | 一种化疗药物组合物及其应用 |
| WO2025171187A1 (en) * | 2024-02-06 | 2025-08-14 | Genprex, Inc. | Treatment of alk positive cancers |
Citations (112)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2779780A (en) | 1955-03-01 | 1957-01-29 | Du Pont | 1, 4-diamino-2, 3-dicyano-1, 4-bis (substituted mercapto) butadienes and their preparation |
| EP0125023A1 (en) | 1983-04-08 | 1984-11-14 | Genentech, Inc. | Recombinant immunoglobulin preparations, methods for their preparation, DNA sequences, expression vectors and recombinant host cells therefor |
| EP0171496A2 (en) | 1984-08-15 | 1986-02-19 | Research Development Corporation of Japan | Process for the production of a chimera monoclonal antibody |
| EP0173494A2 (en) | 1984-08-27 | 1986-03-05 | The Board Of Trustees Of The Leland Stanford Junior University | Chimeric receptors by DNA splicing and expression |
| WO1986001533A1 (en) | 1984-09-03 | 1986-03-13 | Celltech Limited | Production of chimeric antibodies |
| EP0184187A2 (en) | 1984-12-04 | 1986-06-11 | Teijin Limited | Mouse-human chimaeric immunoglobulin heavy chain, and chimaeric DNA encoding it |
| GB2188638A (en) | 1986-03-27 | 1987-10-07 | Gregory Paul Winter | Chimeric antibodies |
| WO1990002809A1 (en) | 1988-09-02 | 1990-03-22 | Protein Engineering Corporation | Generation and selection of recombinant varied binding proteins |
| EP0090505B1 (en) | 1982-03-03 | 1990-08-08 | Genentech, Inc. | Human antithrombin iii, dna sequences therefor, expression vehicles and cloning vectors containing such sequences and cell cultures transformed thereby, a process for expressing human antithrombin iii, and pharmaceutical compositions comprising it |
| EP0388151A1 (en) | 1989-03-13 | 1990-09-19 | Celltech Limited | Modified antibodies |
| WO1991000906A1 (en) | 1989-07-12 | 1991-01-24 | Genetics Institute, Inc. | Chimeric and transgenic animals capable of producing human antibodies |
| WO1991010741A1 (en) | 1990-01-12 | 1991-07-25 | Cell Genesys, Inc. | Generation of xenogeneic antibodies |
| WO1991017271A1 (en) | 1990-05-01 | 1991-11-14 | Affymax Technologies N.V. | Recombinant library screening methods |
| WO1992001047A1 (en) | 1990-07-10 | 1992-01-23 | Cambridge Antibody Technology Limited | Methods for producing members of specific binding pairs |
| WO1992003917A1 (en) | 1990-08-29 | 1992-03-19 | Genpharm International | Homologous recombination in mammalian cells |
| WO1992003918A1 (en) | 1990-08-29 | 1992-03-19 | Genpharm International, Inc. | Transgenic non-human animals capable of producing heterologous antibodies |
| WO1992009690A2 (en) | 1990-12-03 | 1992-06-11 | Genentech, Inc. | Enrichment method for variant proteins with altered binding properties |
| WO1992015679A1 (en) | 1991-03-01 | 1992-09-17 | Protein Engineering Corporation | Improved epitode displaying phage |
| WO1992018619A1 (en) | 1991-04-10 | 1992-10-29 | The Scripps Research Institute | Heterodimeric receptor libraries using phagemids |
| WO1992020791A1 (en) | 1990-07-10 | 1992-11-26 | Cambridge Antibody Technology Limited | Methods for producing members of specific binding pairs |
| EP0519596A1 (en) | 1991-05-17 | 1992-12-23 | Merck & Co. Inc. | A method for reducing the immunogenicity of antibody variable domains |
| WO1993001288A1 (de) | 1991-07-08 | 1993-01-21 | Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts | Phagemid zum screenen von antikörpern |
| US5208020A (en) | 1989-10-25 | 1993-05-04 | Immunogen Inc. | Cytotoxic agents comprising maytansinoids and their therapeutic use |
| US5223409A (en) | 1988-09-02 | 1993-06-29 | Protein Engineering Corp. | Directed evolution of novel binding proteins |
| US5225539A (en) | 1986-03-27 | 1993-07-06 | Medical Research Council | Recombinant altered antibodies and methods of making altered antibodies |
| WO1994004678A1 (en) | 1992-08-21 | 1994-03-03 | Casterman Cecile | Immunoglobulins devoid of light chains |
| WO1994010202A1 (en) | 1992-10-28 | 1994-05-11 | Genentech, Inc. | Vascular endothelial cell growth factor antagonists |
| US5475092A (en) | 1992-03-25 | 1995-12-12 | Immunogen Inc. | Cell binding agent conjugates of analogues and derivatives of CC-1065 |
| WO1996030046A1 (en) | 1995-03-30 | 1996-10-03 | Genentech, Inc. | Vascular endothelial cell growth factor antagonists |
| US5585089A (en) | 1988-12-28 | 1996-12-17 | Protein Design Labs, Inc. | Humanized immunoglobulins |
| US5624821A (en) | 1987-03-18 | 1997-04-29 | Scotgen Biopharmaceuticals Incorporated | Antibodies with altered effector functions |
| US5811097A (en) | 1995-07-25 | 1998-09-22 | The Regents Of The University Of California | Blockade of T lymphocyte down-regulation associated with CTLA-4 signaling |
| WO1998045332A2 (en) | 1997-04-07 | 1998-10-15 | Genentech, Inc. | Humanized antibodies and methods for forming humanized antibodies |
| WO1999020758A1 (en) | 1997-10-21 | 1999-04-29 | Human Genome Sciences, Inc. | Human tumor necrosis factor receptor-like proteins tr11, tr11sv1, and tr11sv2 |
| WO1999040196A1 (en) | 1998-02-09 | 1999-08-12 | Genentech, Inc. | Novel tumor necrosis factor receptor homolog and nucleic acids encoding the same |
| WO1999052552A1 (en) | 1998-04-15 | 1999-10-21 | Brigham & Women's Hospital, Inc. | T cell inhibitory receptor compositions and uses thereof |
| US6054297A (en) | 1991-06-14 | 2000-04-25 | Genentech, Inc. | Humanized antibodies and methods for making them |
| WO2000035436A2 (en) | 1998-12-16 | 2000-06-22 | Warner-Lambert Company | Treatment of arthritis with mek inhibitors |
| US6111090A (en) | 1996-08-16 | 2000-08-29 | Schering Corporation | Mammalian cell surface antigens; related reagents |
| WO2001003720A2 (en) | 1999-07-12 | 2001-01-18 | Genentech, Inc. | Promotion or inhibition of angiogenesis and cardiovascularization by tumor necrosis factor ligand/receptor homologs |
| WO2002006213A2 (en) | 2000-07-19 | 2002-01-24 | Warner-Lambert Company | Oxygenated esters of 4-iodo phenylamino benzhydroxamic acids |
| WO2002066470A1 (en) | 2001-01-12 | 2002-08-29 | Amgen Inc. | Substituted alkylamine derivatives and methods of use |
| US6582959B2 (en) | 1991-03-29 | 2003-06-24 | Genentech, Inc. | Antibodies to vascular endothelial cell growth factor |
| WO2003064383A2 (en) | 2002-02-01 | 2003-08-07 | Ariad Gene Therapeutics, Inc. | Phosphorus-containing compounds & uses thereof |
| WO2003076424A1 (en) | 2002-03-08 | 2003-09-18 | Eisai Co. Ltd. | Macrocyclic compounds useful as pharmaceuticals |
| WO2003077914A1 (en) | 2002-03-13 | 2003-09-25 | Array Biopharma, Inc | N3 alkylated benzimidazole derivatives as mek inhibitors |
| US20030190317A1 (en) | 1997-04-07 | 2003-10-09 | Genentech, Inc. | Anti-VEGF antibodies |
| US20030206899A1 (en) | 1991-03-29 | 2003-11-06 | Genentech, Inc. | Vascular endothelial cell growth factor antagonists |
| US6703020B1 (en) | 1999-04-28 | 2004-03-09 | Board Of Regents, The University Of Texas System | Antibody conjugate methods for selectively inhibiting VEGF |
| US20040047858A1 (en) | 2002-09-11 | 2004-03-11 | Blumberg Richard S. | Therapeutic anti-BGP(C-CAM1) antibodies and uses thereof |
| US6780996B2 (en) | 2002-04-30 | 2004-08-24 | Wyeth Holdings Corporation | Process for the preparation of 7-substituted-3 quinolinecarbonitriles |
| WO2005007190A1 (en) | 2003-07-11 | 2005-01-27 | Schering Corporation | Agonists or antagonists of the clucocorticoid-induced tumour necrosis factor receptor (gitr) or its ligand for the treatment of immune disorders, infections and cancer |
| WO2005012359A2 (en) | 2003-08-01 | 2005-02-10 | Genentech, Inc. | Anti-vegf antibodies |
| US6884879B1 (en) | 1997-04-07 | 2005-04-26 | Genentech, Inc. | Anti-VEGF antibodies |
| WO2005044853A2 (en) | 2003-11-01 | 2005-05-19 | Genentech, Inc. | Anti-vegf antibodies |
| US20050112126A1 (en) | 1997-04-07 | 2005-05-26 | Genentech, Inc. | Anti-VEGF antibodies |
| WO2005055808A2 (en) | 2003-12-02 | 2005-06-23 | Genzyme Corporation | Compositions and methods to diagnose and treat lung cancer |
| US20050186208A1 (en) | 2003-05-30 | 2005-08-25 | Genentech, Inc. | Treatment with anti-VEGF antibodies |
| WO2005113556A1 (en) | 2004-05-13 | 2005-12-01 | Icos Corporation | Quinazolinones as inhibitors of human phosphatidylinositol 3-kinase delta |
| WO2005115451A2 (en) | 2004-04-30 | 2005-12-08 | Isis Innovation Limited | Methods for generating improved immune response |
| WO2005121142A1 (en) | 2004-06-11 | 2005-12-22 | Japan Tobacco Inc. | 5-amino-2,4,7-trioxo-3,4,7,8-tetrahydro-2h-pyrido’2,3-d! pyrimidine derivatives and related compounds for the treatment of cancer |
| US20060009360A1 (en) | 2004-06-25 | 2006-01-12 | Robert Pifer | New adjuvant composition |
| WO2006028958A2 (en) | 2004-09-02 | 2006-03-16 | Genentech, Inc. | Pyridyl inhibitors of hedgehog signalling |
| WO2006083289A2 (en) | 2004-06-04 | 2006-08-10 | Duke University | Methods and compositions for enhancement of immunity by in vivo depletion of immunosuppressive cell activity |
| WO2006121168A1 (en) | 2005-05-09 | 2006-11-16 | Ono Pharmaceutical Co., Ltd. | Human monoclonal antibodies to programmed death 1(pd-1) and methods for treating cancer using anti-pd-1 antibodies alone or in combination with other immunotherapeutics |
| WO2006122806A2 (en) | 2005-05-20 | 2006-11-23 | Novartis Ag | 1,3-dihydro-imidazo [4,5-c] quinolin-2-ones as lipid kinase inhibitors |
| WO2007004415A1 (ja) | 2005-07-01 | 2007-01-11 | Murata Manufacturing Co., Ltd. | 多層セラミック基板およびその製造方法ならびに多層セラミック基板作製用複合グリーンシート |
| WO2007005874A2 (en) | 2005-07-01 | 2007-01-11 | Medarex, Inc. | Human monoclonal antibodies to programmed death ligand 1 (pd-l1) |
| WO2007014011A2 (en) | 2005-07-21 | 2007-02-01 | Ardea Biosciences, Inc. | N-(arylamino)-sulfonamide inhibitors of mek |
| WO2007084786A1 (en) | 2006-01-20 | 2007-07-26 | Novartis Ag | Pyrimidine derivatives used as pi-3 kinase inhibitors |
| WO2007133822A1 (en) | 2006-01-19 | 2007-11-22 | Genzyme Corporation | Gitr antibodies for the treatment of cancer |
| EP1866339A2 (en) | 2005-03-25 | 2007-12-19 | TolerRx, Inc | Gitr binding molecules and uses therefor |
| WO2008024725A1 (en) | 2006-08-21 | 2008-02-28 | Genentech, Inc. | Aza-benzofuranyl compounds and methods of use |
| WO2008073687A2 (en) | 2006-12-08 | 2008-06-19 | Irm Llc | Compounds and compositions as protein kinase inhibitors |
| WO2009036082A2 (en) | 2007-09-12 | 2009-03-19 | Genentech, Inc. | Combinations of phosphoinositide 3-kinase inhibitor compounds and chemotherapeutic agents, and methods of use |
| WO2009055730A1 (en) | 2007-10-25 | 2009-04-30 | Genentech, Inc. | Process for making thienopyrimidine compounds |
| WO2009085983A1 (en) | 2007-12-19 | 2009-07-09 | Genentech, Inc. | 5-anilinoimidazopyridines and methods of use |
| WO2009101611A1 (en) | 2008-02-11 | 2009-08-20 | Curetech Ltd. | Monoclonal antibodies for tumor treatment |
| WO2009114870A2 (en) | 2008-03-14 | 2009-09-17 | Intellikine, Inc. | Kinase inhibitors and methods of use |
| WO2009114335A2 (en) | 2008-03-12 | 2009-09-17 | Merck & Co., Inc. | Pd-1 binding proteins |
| US7618632B2 (en) | 2003-05-23 | 2009-11-17 | Wyeth | Method of treating or ameliorating an immune cell associated pathology using GITR ligand antibodies |
| WO2010003118A1 (en) | 2008-07-02 | 2010-01-07 | Trubion Pharmaceuticals, Inc. | Tgf-b antagonist multi-target binding proteins |
| WO2010006086A2 (en) | 2008-07-08 | 2010-01-14 | Intellikine, Inc. | Kinase inhibitors and methods of use |
| US20100028330A1 (en) | 2002-12-23 | 2010-02-04 | Medimmune Limited | Methods of upmodulating adaptive immune response using anti-pd1 antibodies |
| WO2010019570A2 (en) | 2008-08-11 | 2010-02-18 | Medarex, Inc. | Human antibodies that bind lymphocyte activation gene-3 (lag-3), and uses thereof |
| WO2010027827A2 (en) | 2008-08-25 | 2010-03-11 | Amplimmune, Inc. | Targeted costimulatory polypeptides and methods of use to treat cancer |
| WO2010036380A1 (en) | 2008-09-26 | 2010-04-01 | Intellikine, Inc. | Heterocyclic kinase inhibitors |
| WO2010077634A1 (en) | 2008-12-09 | 2010-07-08 | Genentech, Inc. | Anti-pd-l1 antibodies and their use to enhance t-cell function |
| WO2010125571A1 (en) | 2009-04-30 | 2010-11-04 | Tel Hashomer Medical Research Infrastructure And Services Ltd. | Anti ceacam1 antibodies and methods of using same |
| WO2011028683A1 (en) | 2009-09-03 | 2011-03-10 | Schering Corporation | Anti-gitr antibodies |
| WO2011051726A2 (en) | 2009-10-30 | 2011-05-05 | Isis Innovation Ltd | Treatment of obesity |
| WO2011066342A2 (en) | 2009-11-24 | 2011-06-03 | Amplimmune, Inc. | Simultaneous inhibition of pd-l1/pd-l2 |
| WO2011090754A1 (en) | 2009-12-29 | 2011-07-28 | Emergent Product Development Seattle, Llc | Polypeptide heterodimers and uses thereof |
| US20120039906A1 (en) | 2009-02-09 | 2012-02-16 | INSER (Institut National de la Recherche Medicale) | PD-1 Antibodies and PD-L1 Antibodies and Uses Thereof |
| US20120114649A1 (en) | 2008-08-25 | 2012-05-10 | Amplimmune, Inc. Delaware | Compositions of pd-1 antagonists and methods of use |
| WO2012177624A2 (en) | 2011-06-21 | 2012-12-27 | The Johns Hopkins University | Focused radiation for augmenting immune-based therapies against neoplasms |
| US8354509B2 (en) | 2007-06-18 | 2013-01-15 | Msd Oss B.V. | Antibodies to human programmed death receptor PD-1 |
| WO2013019906A1 (en) | 2011-08-01 | 2013-02-07 | Genentech, Inc. | Methods of treating cancer using pd-1 axis binding antagonists and mek inhibitors |
| WO2013039954A1 (en) | 2011-09-14 | 2013-03-21 | Sanofi | Anti-gitr antibodies |
| WO2013054331A1 (en) | 2011-10-11 | 2013-04-18 | Tel Hashomer Medical Research Infrastructure And Services Ltd. | Antibodies to carcinoembryonic antigen-related cell adhesion molecule (ceacam) |
| WO2013079174A1 (en) | 2011-11-28 | 2013-06-06 | Merck Patent Gmbh | Anti-pd-l1 antibodies and uses thereof |
| WO2013082366A1 (en) | 2011-12-01 | 2013-06-06 | The Brigham And Women's Hospital, Inc. | Anti-ceacam1 recombinant antibodies for cancer therapy |
| EP1947183B1 (en) | 1996-08-16 | 2013-07-17 | Merck Sharp & Dohme Corp. | Mammalian cell surface antigens; related reagents |
| US8586023B2 (en) | 2008-09-12 | 2013-11-19 | Mie University | Cell capable of expressing exogenous GITR ligand |
| US8591886B2 (en) | 2007-07-12 | 2013-11-26 | Gitr, Inc. | Combination therapies employing GITR binding molecules |
| WO2013179174A1 (en) | 2012-05-29 | 2013-12-05 | Koninklijke Philips N.V. | Lighting arrangement |
| US8602269B2 (en) | 2009-09-14 | 2013-12-10 | Guala Dispensing S.P.A. | Trigger sprayer |
| WO2014008218A1 (en) | 2012-07-02 | 2014-01-09 | Bristol-Myers Squibb Company | Optimization of antibodies that bind lymphocyte activation gene-3 (lag-3), and uses thereof |
| WO2014022332A1 (en) | 2012-07-31 | 2014-02-06 | The Brigham And Women's Hospital, Inc. | Modulation of the immune response |
| WO2014055648A1 (en) * | 2012-10-02 | 2014-04-10 | Bristol-Myers Squibb Company | Combination of anti-kir antibodies and anti-pd-1 antibodies to treat cancer |
| WO2014059251A1 (en) | 2012-10-12 | 2014-04-17 | The Brigham And Women's Hospital, Inc. | Enhancement of the immune response |
| US20140128387A1 (en) * | 2012-11-06 | 2014-05-08 | SHANGHAI iNSTITUTE OF MATERIA MEDICA ACADEMY OF SCIENCES | Certain protein kinase inhibitors |
Family Cites Families (257)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR901228A (fr) | 1943-01-16 | 1945-07-20 | Deutsche Edelstahlwerke Ag | Système d'aimant à entrefer annulaire |
| WO1988008135A1 (en) | 1987-04-10 | 1988-10-20 | Xoma Corporation | Human monoclonal antibodies binding determinants of gram negative bacteria |
| US5859205A (en) | 1989-12-21 | 1999-01-12 | Celltech Limited | Humanised antibodies |
| DE69226871T3 (de) | 1991-06-27 | 2009-09-24 | Bristol-Myers Squibb Co. | CTL4A-Rezeptor, ihn enthaltenden Fusionsproteine und deren Verwendung |
| US5260074A (en) | 1992-06-22 | 1993-11-09 | Digestive Care Inc. | Compositions of digestive enzymes and salts of bile acids and process for preparation thereof |
| IL108501A (en) | 1994-01-31 | 1998-10-30 | Mor Research Applic Ltd | Antibodies and pharmaceutical compositions containing them |
| CA2143491C (en) | 1994-03-01 | 2011-02-22 | Yasumasa Ishida | A novel peptide related to human programmed cell death and dna encoding it |
| US6066322A (en) | 1995-03-03 | 2000-05-23 | Millennium Pharmaceuticals, Inc. | Methods for the treatment of immune disorders |
| US6051227A (en) | 1995-07-25 | 2000-04-18 | The Regents Of The University Of California, Office Of Technology Transfer | Blockade of T lymphocyte down-regulation associated with CTLA-4 signaling |
| AU718138B2 (en) | 1995-08-29 | 2000-04-06 | Kyowa Hakko Kirin Co., Ltd. | Chimeric animal and method for constructing the same |
| US6632976B1 (en) | 1995-08-29 | 2003-10-14 | Kirin Beer Kabushiki Kaisha | Chimeric mice that are produced by microcell mediated chromosome transfer and that retain a human antibody gene |
| US5968511A (en) | 1996-03-27 | 1999-10-19 | Genentech, Inc. | ErbB3 antibodies |
| US6689607B2 (en) | 1997-10-21 | 2004-02-10 | Human Genome Sciences, Inc. | Human tumor, necrosis factor receptor-like proteins TR11, TR11SV1 and TR11SV2 |
| DK1137436T3 (da) | 1998-12-03 | 2008-10-13 | Univ California | Stimulering af T-celler mod selvantigener under anvendelse af CTLA-4-blokeringsmidler |
| US7041474B2 (en) | 1998-12-30 | 2006-05-09 | Millennium Pharmaceuticals, Inc. | Nucleic acid encoding human tango 509 |
| IL129299A0 (en) | 1999-03-31 | 2000-02-17 | Mor Research Applic Ltd | Monoclonal antibodies antigens and diagnosis of malignant diseases |
| FR2794025A1 (fr) | 1999-05-25 | 2000-12-01 | Transgene Sa | Composition destinee a la mise en oeuvre d'un traitement antitumoral ou antiviral chez un mammifere |
| WO2000073498A1 (en) | 1999-06-02 | 2000-12-07 | Millennium Pharmaceuticals, Inc. | Compositions and methods for the treatment and diagnosis of immune disorders |
| DE60033293D1 (de) | 1999-08-23 | 2007-03-22 | Dana Farber Cancer Inst Inc | Neue b7-4 moleküle und deren verwendungen |
| EP2360254A1 (en) | 1999-08-23 | 2011-08-24 | Dana-Farber Cancer Institute, Inc. | Assays for screening anti-pd-1 antibodies and uses thereof |
| WO2001014424A2 (en) | 1999-08-24 | 2001-03-01 | Medarex, Inc. | Human ctla-4 antibodies and their uses |
| US6803192B1 (en) | 1999-11-30 | 2004-10-12 | Mayo Foundation For Medical Education And Research | B7-H1, a novel immunoregulatory molecule |
| AU784634B2 (en) | 1999-11-30 | 2006-05-18 | Mayo Foundation For Medical Education And Research | B7-H1, a novel immunoregulatory molecule |
| SI2857516T1 (sl) | 2000-04-11 | 2017-09-29 | Genentech, Inc. | Multivalentna protitelesa in njihove uporabe |
| US7030219B2 (en) | 2000-04-28 | 2006-04-18 | Johns Hopkins University | B7-DC, Dendritic cell co-stimulatory molecules |
| WO2001094413A2 (en) | 2000-06-06 | 2001-12-13 | Bristol-Myers Squibb Company | B7-related nucleic acids and polypeptides and their uses for immunomodulation |
| AU7309601A (en) | 2000-06-28 | 2002-01-08 | Genetics Inst | Pd-l2 molecules: novel pd-1 ligands and uses therefor |
| PE20020354A1 (es) | 2000-09-01 | 2002-06-12 | Novartis Ag | Compuestos de hidroxamato como inhibidores de histona-desacetilasa (hda) |
| EP1328624B1 (en) | 2000-09-20 | 2011-11-09 | Amgen Inc. | B7-like molecules and uses thereof |
| AU2002225990B2 (en) | 2000-10-20 | 2007-07-19 | Tsuneya Ohno | Fusion cells and cytokine compositions for treatment of disease |
| US7132109B1 (en) | 2000-10-20 | 2006-11-07 | University Of Connecticut Health Center | Using heat shock proteins to increase immune response |
| AU2002224037A1 (en) | 2000-11-15 | 2002-05-27 | Tasuku Honjo | Pd-1-lacking mouse and use thereof |
| JP2002194491A (ja) | 2000-12-27 | 2002-07-10 | Daido Steel Co Ltd | ばね用鋼材 |
| AR036993A1 (es) | 2001-04-02 | 2004-10-20 | Wyeth Corp | Uso de agentes que modulan la interaccion entre pd-1 y sus ligandos en la submodulacion de respuestas inmunologicas |
| CA2442066C (en) | 2001-04-02 | 2005-11-01 | Wyeth | Pd-1, a receptor for b7-4, and uses therefor |
| WO2002086083A2 (en) | 2001-04-20 | 2002-10-31 | Mayo Foundation For Medical Education And Research | Methods of enhancing cell responsiveness |
| US6727072B2 (en) | 2001-05-01 | 2004-04-27 | Dako Corporation | EGF-r detection kit |
| US6592849B2 (en) | 2001-06-21 | 2003-07-15 | Colgate Palmolive Company | Chewing gum to control malodorous breath |
| US7838220B2 (en) | 2001-06-29 | 2010-11-23 | The Board Of Trustees Of The Leland Stanford Junior University | T cell regulatory genes associated with immune disease |
| US8709412B2 (en) | 2001-06-29 | 2014-04-29 | The Board Of Trustees Of The Leland Stanford Junior University | Modulation of TIM receptor activity in combination with cytoreductive therapy |
| JP4572276B2 (ja) | 2001-06-29 | 2010-11-04 | ザ ボード オブ トラスティーズ オブ ザ リランド スタンフォード ジュニア ユニヴァーシティ | T細胞調節遺伝子およびその使用方法 |
| JP2003029846A (ja) | 2001-07-11 | 2003-01-31 | Sanyo Electric Co Ltd | 流量調整器および流量調整器を備えた飲料供給装置 |
| JP4249013B2 (ja) | 2001-07-31 | 2009-04-02 | 佑 本庶 | Pd−1に対し特異性を有する物質 |
| IL145926A0 (en) | 2001-10-15 | 2002-07-25 | Mor Research Applic Ltd | Peptide epitopes of mimotopes useful in immunomodulation |
| WO2003042402A2 (en) | 2001-11-13 | 2003-05-22 | Dana-Farber Cancer Institute, Inc. | Agents that modulate immune cell activation and methods of use thereof |
| EP4091631A1 (en) | 2002-01-30 | 2022-11-23 | The Brigham and Women's Hospital, Inc. | A tim-3 binding molecule for use in the treatment of a disease |
| IL149820A0 (en) | 2002-05-23 | 2002-11-10 | Curetech Ltd | Humanized immunomodulatory monoclonal antibodies for the treatment of neoplastic disease or immunodeficiency |
| US7595048B2 (en) | 2002-07-03 | 2009-09-29 | Ono Pharmaceutical Co., Ltd. | Method for treatment of cancer by inhibiting the immunosuppressive signal induced by PD-1 |
| GB0215676D0 (en) | 2002-07-05 | 2002-08-14 | Novartis Ag | Organic compounds |
| US7052694B2 (en) | 2002-07-16 | 2006-05-30 | Mayo Foundation For Medical Education And Research | Dendritic cell potentiation |
| US7449300B2 (en) | 2002-11-21 | 2008-11-11 | Mayo Foundation For Medical Education And Research | Detection of antibodies specific for B7-H1 in subjects with diseases or pathological conditions mediated by activated T cells |
| WO2004060319A2 (en) | 2002-12-30 | 2004-07-22 | 3M Innovative Properties Company | Immunostimulatory combinations |
| EP1591527B1 (en) | 2003-01-23 | 2015-08-26 | Ono Pharmaceutical Co., Ltd. | Substance specific to human pd-1 |
| ES2439580T5 (en) | 2003-02-28 | 2025-01-23 | Univ Johns Hopkins | T cell regulation |
| WO2005033144A2 (en) | 2003-10-03 | 2005-04-14 | Brigham And Women's Hospital | Tim-3 polypeptides |
| DK1684805T3 (da) * | 2003-11-04 | 2010-10-04 | Novartis Vaccines & Diagnostic | Anvendelse af antagonist anti-CD40-monoklonale antistoffer til behandling af multipel myeloma |
| WO2005097211A2 (en) | 2004-03-24 | 2005-10-20 | Telos Pharmaceuticals, Inc. | Compositions as adjuvants to improve immune responses to vaccines and methods of use |
| GB0512324D0 (en) | 2005-06-16 | 2005-07-27 | Novartis Ag | Organic compounds |
| CA2572098C (en) | 2004-06-30 | 2015-01-27 | Mayo Foundation For Medical Education And Research | B7-dc binding antibody |
| WO2006021955A2 (en) | 2004-08-23 | 2006-03-02 | Mor Research Applications Ltd. | Use of bat monoclonal antibody for immunotherapy |
| CA2943949C (en) | 2004-10-06 | 2020-03-31 | Mayo Foundation For Medical Education And Research | B7-h1 and methods of diagnosis, prognosis, and treatment of cancer |
| US7423128B2 (en) | 2004-11-03 | 2008-09-09 | Amgen Fremont Inc. | Anti-properdin antibodies, and methods for making and using same |
| WO2006124269A2 (en) | 2005-05-16 | 2006-11-23 | Amgen Fremont Inc. | Human monoclonal antibodies that bind to very late antigen-1 for the treatment of inflammation and other disorders |
| BRPI0611766A2 (pt) | 2005-06-08 | 2011-12-20 | Dana Farber Cancer Inst Inc | métodos e composições para o tratamento de infecções persistentes e cáncer por inibição da rota de morte celular programada |
| JP5372500B2 (ja) | 2005-06-17 | 2013-12-18 | トレラクス リクイデーティング トラスト | Ilt3結合分子およびその使用 |
| LT1912671T (lt) | 2005-07-18 | 2017-12-11 | Seattle Genetics, Inc. | Vaisto konjugatai, turintys gliukoronido linkerį |
| US7612181B2 (en) | 2005-08-19 | 2009-11-03 | Abbott Laboratories | Dual variable domain immunoglobulin and uses thereof |
| US20070041905A1 (en) | 2005-08-19 | 2007-02-22 | Hoffman Rebecca S | Method of treating depression using a TNF-alpha antibody |
| EP2500352A1 (en) | 2005-08-19 | 2012-09-19 | Abbott Laboratories | Dual variable domain immunoglobulin and uses thereof |
| PT1966202E (pt) | 2005-12-13 | 2012-01-03 | Incyte Corp | Pirrolo[2,3-b] pirimidinas e pirrolo[2,3-b]piridinas substituídas com heteroarilo como inibidores de janus quinase |
| US20090215084A1 (en) | 2006-01-05 | 2009-08-27 | Mayo Foundation For Medical Education And Research | B7-h1 and b7-h4 in cancer |
| WO2007113648A2 (en) | 2006-04-05 | 2007-10-11 | Pfizer Products Inc. | Ctla4 antibody combination therapy |
| AU2007257692B2 (en) | 2006-06-12 | 2013-11-14 | Aptevo Research And Development Llc | Single-chain multivalent binding proteins with effector function |
| PE20110218A1 (es) | 2006-08-02 | 2011-04-01 | Novartis Ag | DERIVADOS DE 2-OXO-ETIL-AMINO-PROPIONAMIDA-PIRROLIDIN-2-IL-SUSTITUIDOS COMO INHIBIDORES DEL ENLACE DE LA PROTEINA Smac AL INHIBIDOR DE LA PROTEINA DE APOPTOSIS |
| JP2010504356A (ja) | 2006-09-20 | 2010-02-12 | ザ ジョンズ ホプキンス ユニバーシティー | 抗b7−h1抗体を用いた癌及び感染性疾患の組合せ療法 |
| WO2008060617A2 (en) | 2006-11-15 | 2008-05-22 | The Brigham And Women's Hospital, Inc. | Therapeutic uses of tim-3 modulators |
| EP2497470B8 (en) | 2006-11-22 | 2015-12-02 | Incyte Holdings Corporation | Imidazotriazines and imidazopyrimidines as kinase inhibitors |
| EP2104513B1 (en) | 2006-11-27 | 2015-05-20 | diaDexus, Inc. | Ovr110 antibody compositions and methods of use |
| CN101616895A (zh) | 2006-12-08 | 2009-12-30 | Irm责任有限公司 | 作为蛋白激酶抑制剂的化合物和组合物 |
| US8907065B2 (en) | 2006-12-15 | 2014-12-09 | Ablynx N.V. | Polypeptides that modulate the interaction between cells of the immune system |
| NZ600281A (en) | 2006-12-27 | 2013-03-28 | Harvard College | Compositions and methods for the treatment of infections and tumors |
| EP1987839A1 (en) | 2007-04-30 | 2008-11-05 | I.N.S.E.R.M. Institut National de la Sante et de la Recherche Medicale | Cytotoxic anti-LAG-3 monoclonal antibody and its use in the treatment or prevention of organ transplant rejection and autoimmune disease |
| CA2693707A1 (en) | 2007-07-13 | 2009-03-05 | The Johns Hopkins University | B7-dc variants |
| WO2009014708A2 (en) | 2007-07-23 | 2009-01-29 | Cell Genesys, Inc. | Pd-1 antibodies in combination with a cytokine-secreting cell and methods of use thereof |
| US20090155275A1 (en) | 2007-07-31 | 2009-06-18 | Medimmune, Llc | Multispecific epitope binding proteins and uses thereof |
| US9243052B2 (en) | 2007-08-17 | 2016-01-26 | Daniel Olive | Method for treating and diagnosing hematologic malignancies |
| US20120039870A9 (en) | 2007-09-07 | 2012-02-16 | Ablynx N.V. | Binding molecules with multiple binding sites, compositions comprising the same and uses thereof |
| ES2988620T3 (es) | 2008-01-15 | 2024-11-21 | The Board Of Trustees Of The Leland Stanfordjunior Univ | Marcadores de las células madre de la leucemia mieloide aguda |
| EP2252319A2 (en) | 2008-01-29 | 2010-11-24 | The Brigham and Women's Hospital, Inc. | Methods for modulating a population of myeloid-derived suppressor cells and uses thereof |
| WO2009120905A2 (en) | 2008-03-26 | 2009-10-01 | Cellerant Therapeutics, Inc. | Immunoglobulin and/or toll-like receptor proteins associated with myelogenous haematological proliferative disorders and uses thereof |
| US20100260668A1 (en) | 2008-04-29 | 2010-10-14 | Abbott Laboratories | Dual Variable Domain Immunoglobulins and Uses Thereof |
| CA2722466A1 (en) | 2008-04-29 | 2009-11-05 | Tariq Ghayur | Dual variable domain immunoglobulins and uses thereof |
| EP2282995B1 (en) | 2008-05-23 | 2015-08-26 | Novartis AG | Derivatives of quinolines and quinoxalines as protein tyrosine kinase inhibitors |
| SG191639A1 (en) | 2008-06-03 | 2013-07-31 | Abbott Lab | Dual variable domain immunoglobulins and uses thereof |
| EP2297208A4 (en) | 2008-06-03 | 2012-07-11 | Abbott Lab | DUAL VARIABLE DOMAIN IMMUNOGLOBULINS AND ITS USES |
| JP5945096B2 (ja) | 2008-07-04 | 2016-07-05 | 小野薬品工業株式会社 | 抗ヒトpd−1抗体の癌に対する治療効果を最適化するための判定マーカーの使用 |
| KR20110031369A (ko) | 2008-07-08 | 2011-03-25 | 아보트 러보러터리즈 | 프로스타글란딘 e2 이원 가변 도메인 면역글로불린 및 이의 용도 |
| US8685980B2 (en) | 2008-08-22 | 2014-04-01 | Novartis Ag | Pyrrolopyrimidine compounds and their uses |
| PE20110298A1 (es) | 2008-09-02 | 2011-05-21 | Novartis Ag | Derivados de picolinamida como inhibidores de cinasa |
| UA104147C2 (uk) | 2008-09-10 | 2014-01-10 | Новартис Аг | Похідна піролідиндикарбонової кислоти та її застосування у лікуванні проліферативних захворювань |
| AU2009290543B2 (en) | 2008-09-12 | 2015-09-03 | Oxford University Innovation Limited | PD-1 specific antibodies and uses thereof |
| EP2342229A1 (en) | 2008-09-12 | 2011-07-13 | ISIS Innovation Limited | Pd-1 specific antibodies and uses thereof |
| MX2011003195A (es) | 2008-09-26 | 2011-08-12 | Dana Farber Cancer Inst Inc | Anticuerpos anti-pd-1, pd-l1 y pd-l2 humanos y usos de los mismos. |
| KR101050829B1 (ko) | 2008-10-02 | 2011-07-20 | 서울대학교산학협력단 | 항 pd-1 항체 또는 항 pd-l1 항체를 포함하는 항암제 |
| CA2779436A1 (en) | 2008-10-31 | 2010-05-06 | Biogen Idec Ma Inc. | Light targeting molecules and uses thereof |
| WO2010056735A1 (en) | 2008-11-11 | 2010-05-20 | The Trustees Of The University Of Pennsylvania | Compositions and methods for inhibiting an oncogenic protein to enhance immunogenicity |
| KR101721707B1 (ko) | 2008-11-28 | 2017-03-30 | 에모리 유니버시티 | 감염 및 종양 치료 방법 |
| CN102300879A (zh) | 2008-12-04 | 2011-12-28 | 雅培制药有限公司 | 双重可变结构域免疫球蛋白及其用途 |
| WO2010084999A1 (en) | 2009-01-26 | 2010-07-29 | Protegene, Inc. | Immunosuppressive agents and prophylactic and therapeutic agents for autoimmune diseases |
| UA103918C2 (en) | 2009-03-02 | 2013-12-10 | Айерем Элелси | N-(hetero)aryl, 2-(hetero)aryl-substituted acetamides for use as wnt signaling modulators |
| EP2810652A3 (en) | 2009-03-05 | 2015-03-11 | AbbVie Inc. | IL-17 binding proteins |
| WO2010102278A1 (en) | 2009-03-06 | 2010-09-10 | President And Fellows Of Harvard College | Methods and compositions for the generation and maintenance of regulatory t cells |
| US20120070450A1 (en) | 2009-03-24 | 2012-03-22 | Riken | Leukemia stem cell markers |
| ES2571235T3 (es) | 2009-04-10 | 2016-05-24 | Kyowa Hakko Kirin Co Ltd | Procedimiento para el tratamiento de un tumor sanguíneo que utiliza el anticuerpo anti-TIM-3 |
| WO2010127294A2 (en) | 2009-05-01 | 2010-11-04 | Abbott Laboratories | Dual variable domain immunoglobulins and uses thereof |
| KR20120044294A (ko) | 2009-05-01 | 2012-05-07 | 아보트 러보러터리즈 | 이원 가변 도메인 면역글로불린 및 이의 용도 |
| EP2436397B1 (en) | 2009-05-29 | 2017-05-10 | Chugai Seiyaku Kabushiki Kaisha | Pharmaceutical composition containing antagonist of egf family ligand as component |
| AU2010270979B2 (en) | 2009-06-22 | 2015-04-23 | Medimmune, Llc | Engineered Fc regions for site-specific conjugation |
| CN102822200A (zh) | 2009-07-20 | 2012-12-12 | 百时美施贵宝公司 | 对增殖性疾病进行协同性治疗的抗ctla-4抗体与各种治疗方案的组合 |
| TW201109438A (en) | 2009-07-29 | 2011-03-16 | Abbott Lab | Dual variable domain immunoglobulins and uses thereof |
| AR077975A1 (es) | 2009-08-28 | 2011-10-05 | Irm Llc | Derivados de pirazol pirimidina y composiciones como inhibidores de cinasa de proteina |
| RU2012112550A (ru) | 2009-09-01 | 2013-10-10 | Эбботт Лэборетриз | Иммуноглобулины с двумя вариабельными доменами и их применение |
| US9493578B2 (en) | 2009-09-02 | 2016-11-15 | Xencor, Inc. | Compositions and methods for simultaneous bivalent and monovalent co-engagement of antigens |
| PL2482849T3 (pl) | 2009-09-30 | 2018-11-30 | Memorial Sloan-Kettering Cancer Center | Skojarzona immunoterapia w leczeniu nowotworu |
| TW201119676A (en) | 2009-10-15 | 2011-06-16 | Abbott Lab | Dual variable domain immunoglobulins and uses thereof |
| UY32979A (es) | 2009-10-28 | 2011-02-28 | Abbott Lab | Inmunoglobulinas con dominio variable dual y usos de las mismas |
| PT2504364T (pt) | 2009-11-24 | 2017-11-14 | Medimmune Ltd | Agentes de ligação direcionados contra b7-h1 |
| JP6184695B2 (ja) | 2009-12-04 | 2017-08-23 | ジェネンテック, インコーポレイテッド | 多重特異性抗体、抗体アナログ、組成物、及び方法 |
| US8440693B2 (en) | 2009-12-22 | 2013-05-14 | Novartis Ag | Substituted isoquinolinones and quinazolinones |
| US8362210B2 (en) | 2010-01-19 | 2013-01-29 | Xencor, Inc. | Antibody variants with enhanced complement activity |
| US20130202623A1 (en) | 2010-02-16 | 2013-08-08 | Nicolas Chomont | Pd-1 modulation and uses thereof for modulating hiv replication |
| EP2545078A1 (en) | 2010-03-11 | 2013-01-16 | UCB Pharma, S.A. | Pd-1 antibody |
| TW201134488A (en) | 2010-03-11 | 2011-10-16 | Ucb Pharma Sa | PD-1 antibodies |
| WO2011131472A1 (en) | 2010-04-22 | 2011-10-27 | Institut Gustave Roussy | Compounds and uses thereof to induce an immunogenic cancer cell death in a subject |
| KR101860963B1 (ko) | 2010-04-23 | 2018-05-24 | 제넨테크, 인크. | 이종다량체 단백질의 생산 |
| US20110280877A1 (en) | 2010-05-11 | 2011-11-17 | Koji Tamada | Inhibition of B7-H1/CD80 interaction and uses thereof |
| US8841417B2 (en) | 2010-05-14 | 2014-09-23 | Abbvie Inc. | IL-1 binding proteins |
| KR101846590B1 (ko) | 2010-06-11 | 2018-04-09 | 교와 핫꼬 기린 가부시키가이샤 | 항 tim-3 항체 |
| WO2011159877A2 (en) * | 2010-06-18 | 2011-12-22 | The Brigham And Women's Hospital, Inc. | Bi-specific antibodies against tim-3 and pd-1 for immunotherapy in chronic immune conditions |
| UY33492A (es) | 2010-07-09 | 2012-01-31 | Abbott Lab | Inmunoglobulinas con dominio variable dual y usos de las mismas |
| WO2012018538A2 (en) | 2010-07-26 | 2012-02-09 | Schering Corporation | Bioassays for determining pd-1 modulation |
| EP2601218A4 (en) | 2010-08-03 | 2015-02-18 | Abbvie Inc | VARIABLE DOUBLE DOMAIN IMMUNOGLOBULINS AND USES THEREOF |
| MY162825A (en) | 2010-08-20 | 2017-07-31 | Novartis Ag | Antibodies for epidermal growth factor receptor 3 (her3) |
| BR112013004581A2 (pt) | 2010-08-26 | 2017-06-27 | Abbvie Inc | imunoglobulinas de domínio variável dual e seus usos |
| US9155802B2 (en) | 2010-11-01 | 2015-10-13 | Symphogen A/S | Pan-HER antibody composition |
| RU2013125479A (ru) | 2010-11-02 | 2014-12-10 | Эбботт Лэборетриз | Иммуноглобулины с двумя вариабельными доменами и их применение |
| AR083705A1 (es) | 2010-11-04 | 2013-03-13 | Abbott Lab | Inmunoglobulinas con dominio variable dual y usos de las mismas |
| EP2638066A4 (en) | 2010-11-09 | 2015-06-03 | Medimmune Llc | ANTIBODY EQUIPMENT FOR HOMOGENEOUS CONJUGATION |
| PH12013501201A1 (en) | 2010-12-09 | 2013-07-29 | Univ Pennsylvania | Use of chimeric antigen receptor-modified t cells to treat cancer |
| US20120201746A1 (en) | 2010-12-22 | 2012-08-09 | Abbott Laboratories | Half immunoglobulin binding proteins and uses thereof |
| US20120195900A1 (en) | 2010-12-22 | 2012-08-02 | Abbott Laboratories | Tri-variable domain binding proteins and uses thereof |
| US8814630B2 (en) | 2011-01-04 | 2014-08-26 | Carl T. Rittberger | PVC beehive |
| MX355255B (es) | 2011-02-04 | 2018-04-11 | Genentech Inc | Variantes de fc y métodos para su producción. |
| RU2563346C2 (ru) | 2011-03-31 | 2015-09-20 | Мерк Шарп И Доум Корп. | Стабильные составы антител против рецептора программируемой смерти pd-1 человека и относящиеся к ним способы лечения |
| CA2833636A1 (en) | 2011-04-20 | 2012-10-26 | Amplimmune, Inc. | Antibodies and other molecules that bind b7-h1 and pd-1 |
| ES2704038T3 (es) | 2011-05-24 | 2019-03-13 | Zyngenia Inc | Complejos multiespecíficos multivalentes y monovalentes y sus usos |
| US20140234320A1 (en) | 2011-06-20 | 2014-08-21 | La Jolla Institute For Allergy And Immunology | Modulators of 4-1bb and immune responses |
| WO2013006490A2 (en) | 2011-07-01 | 2013-01-10 | Cellerant Therapeutics, Inc. | Antibodies that specifically bind to tim3 |
| CN103957939A (zh) | 2011-09-19 | 2014-07-30 | 约翰霍普金斯大学 | 癌症免疫治疗 |
| WO2013059740A1 (en) * | 2011-10-21 | 2013-04-25 | Foundation Medicine, Inc. | Novel alk and ntrk1 fusion molecules and uses thereof |
| EP2773661A4 (en) | 2011-10-31 | 2015-06-17 | Merck Sharp & Dohme | PROCESS FOR PREPARING ANTIBODIES WITH IMPROVED PROPERTIES |
| GB201120527D0 (en) | 2011-11-29 | 2012-01-11 | Ucl Business Plc | Method |
| CN102492038B (zh) | 2011-12-09 | 2014-05-28 | 中国人民解放军军事医学科学院基础医学研究所 | 抗人Tim-3的中和性单克隆抗体L3D及其用途 |
| WO2013169693A1 (en) | 2012-05-09 | 2013-11-14 | Bristol-Myers Squibb Company | Methods of treating cancer using an il-21 polypeptide and an anti-pd-1 antibody |
| ES2905448T3 (es) * | 2012-05-10 | 2022-04-08 | Massachusetts Gen Hospital | Métodos para determinar una secuencia nucleotídica |
| CA2873402C (en) | 2012-05-15 | 2023-10-24 | Bristol-Myers Squibb Company | Cancer immunotherapy by disrupting pd-1/pd-l1 signaling |
| KR102410078B1 (ko) | 2012-05-31 | 2022-06-22 | 소렌토 쎄라퓨틱스, 인코포레이티드 | Pd-l1에 결합하는 항원 결합 단백질 |
| KR102129636B1 (ko) | 2012-05-31 | 2020-07-03 | 제넨테크, 인크. | Pd-l1 축 결합 길항제 및 vegf 길항제를 사용하여 암을 치료하는 방법 |
| JO3300B1 (ar) * | 2012-06-06 | 2018-09-16 | Novartis Ag | مركبات وتركيبات لتعديل نشاط egfr |
| KR101566539B1 (ko) | 2012-06-08 | 2015-11-05 | 국립암센터 | 신규한 Th2 세포 전환용 에피토프 및 이의 용도 |
| CN112587658A (zh) | 2012-07-18 | 2021-04-02 | 博笛生物科技有限公司 | 癌症的靶向免疫治疗 |
| CN104508149A (zh) | 2012-07-27 | 2015-04-08 | 诺华股份有限公司 | 对jak/stat抑制剂治疗响应的预测 |
| US20150190505A1 (en) | 2012-07-30 | 2015-07-09 | Alex Wah Hin Yeung | Live and in-vivo tumor specific cancer vaccine system developed by co-administration of either at least two or all three of the following components such as tumor cells, an oncolytic virus vector with transgenic expression of gm-csf and an immune checkpoint modulator |
| WO2014022758A1 (en) | 2012-08-03 | 2014-02-06 | Dana-Farber Cancer Institute, Inc. | Single agent anti-pd-l1 and pd-l2 dual binding antibodies and methods of use |
| US9682143B2 (en) * | 2012-08-14 | 2017-06-20 | Ibc Pharmaceuticals, Inc. | Combination therapy for inducing immune response to disease |
| US20150250837A1 (en) | 2012-09-20 | 2015-09-10 | Morningside Technology Ventures Ltd. | Oncolytic virus encoding pd-1 binding agents and uses of the same |
| KR101947702B1 (ko) | 2012-10-04 | 2019-02-14 | 다나-파버 캔서 인스티튜트 인크. | 인간 단클론 항-pd-l1 항체 및 사용 방법 |
| HK1214765A1 (zh) | 2012-11-08 | 2016-08-05 | Novartis Ag | 包含b-raf抑制剂和组蛋白脱乙酰基酶抑制剂的药物组合以及其在治疗增生性疾病中的用途 |
| RU2015125307A (ru) | 2012-11-28 | 2017-01-10 | Новартис Аг | Комбинированная терапия |
| AR093984A1 (es) | 2012-12-21 | 2015-07-01 | Merck Sharp & Dohme | Anticuerpos que se unen a ligando 1 de muerte programada (pd-l1) humano |
| WO2014165082A2 (en) | 2013-03-13 | 2014-10-09 | Medimmune, Llc | Antibodies and methods of detection |
| EP2981821B2 (en) | 2013-04-02 | 2021-11-03 | Merck Sharp & Dohme Corp. | Immunohistochemical assay for detecting expression of programmed death ligand 1 (pd-l1) in tumor tissue |
| HRP20210122T1 (hr) | 2013-05-02 | 2021-04-16 | Anaptysbio, Inc. | Protutijela usmjerena protiv programirane smrti-1 (pd-1) |
| DK2996473T3 (da) | 2013-05-18 | 2019-11-04 | Aduro Biotech Inc | Sammensætninger og fremgangsmåder til aktivering af "stimulator af interferon-gen"-afhængig signalering |
| CN103242448B (zh) | 2013-05-27 | 2015-01-14 | 郑州大学 | 一种全人源化抗pd-1单克隆抗体及其制备方法和应用 |
| KR20160013049A (ko) | 2013-06-03 | 2016-02-03 | 노파르티스 아게 | 항-pd-l1 항체 및 mek 억제제 및/또는 braf 억제제의 조합물 |
| US20140378401A1 (en) * | 2013-06-21 | 2014-12-25 | Gnt, Llc | Ophthalmic Lipophilic and Hydrophilic Drug Delivery Vehicle Formulations |
| MX384142B (es) | 2013-07-16 | 2025-03-14 | Genentech Inc | Antagonista de unión al eje pd-1 e inhibidores de tigit para usarse en el tratamiento de cáncer. |
| AR097306A1 (es) | 2013-08-20 | 2016-03-02 | Merck Sharp & Dohme | Modulación de la inmunidad tumoral |
| CN105451770B (zh) | 2013-08-20 | 2020-02-07 | 默沙东公司 | 使用PD-1拮抗剂和dinaciclib的组合治疗癌症 |
| US10077305B2 (en) | 2013-09-10 | 2018-09-18 | Medimmune Limited | Antibodies against PD-1 and uses thereof |
| DK3043816T3 (da) | 2013-09-11 | 2019-10-14 | Medimmune Ltd | Anti-b7-h1-antistoffer til behandling af tumorer |
| AR097584A1 (es) | 2013-09-12 | 2016-03-23 | Hoffmann La Roche | Terapia de combinación de anticuerpos contra el csf-1r humano y anticuerpos contra el pd-l1 humano |
| SG11201601844TA (en) | 2013-09-13 | 2016-04-28 | Beigene Ltd | Anti-pd1 antibodies and their use as therapeutics and diagnostics |
| PL3508502T3 (pl) | 2013-09-20 | 2023-07-17 | Bristol-Myers Squibb Company | Kombinacja przeciwciał anty-lag-3 i przeciwciał anty-pd-1 w leczeniu raka |
| US10570204B2 (en) | 2013-09-26 | 2020-02-25 | The Medical College Of Wisconsin, Inc. | Methods for treating hematologic cancers |
| EP4285928A3 (en) | 2013-09-27 | 2024-03-13 | F. Hoffmann-La Roche AG | Anti-pdl1 antibody formulations |
| US10202454B2 (en) | 2013-10-25 | 2019-02-12 | Dana-Farber Cancer Institute, Inc. | Anti-PD-L1 monoclonal antibodies and fragments thereof |
| US20150125386A1 (en) | 2013-11-05 | 2015-05-07 | Immunomedics, Inc. | Humanized anti-ceacam5 antibody and uses thereof |
| CA2928710A1 (en) | 2013-11-11 | 2015-05-14 | Armo Biosciences, Inc. | Methods of using interleukin-10 for treating diseases and disorders |
| MX375221B (es) | 2013-11-25 | 2025-03-06 | Famewave Ltd | Composiciones que comprenden anticuerpos anti-molécula de adhesión celular relacionada con antígeno carcinoembrionario 1 y anti-muerte celular programada para la terapia contra el cáncer. |
| WO2015081158A1 (en) | 2013-11-26 | 2015-06-04 | Bristol-Myers Squibb Company | Method of treating hiv by disrupting pd-1/pd-l1 signaling |
| US20160303231A1 (en) | 2013-12-11 | 2016-10-20 | Robert Iannone | Treating cancer with a combination of a pd-1 antagonist and a vegfr inhibitor |
| SG11201604738TA (en) | 2013-12-12 | 2016-07-28 | Shanghai Hengrui Pharm Co Ltd | Pd-1 antibody, antigen-binding fragment thereof, and medical application thereof |
| BR112016013963A2 (pt) | 2013-12-17 | 2017-10-10 | Genentech Inc | terapia de combinação compreendendo agonistas de ligação de ox40 e antagonistas de ligação do eixo de pd-1 |
| US9045545B1 (en) | 2014-07-15 | 2015-06-02 | Kymab Limited | Precision medicine by targeting PD-L1 variants for treatment of cancer |
| EP3082853A2 (en) | 2013-12-20 | 2016-10-26 | The Broad Institute, Inc. | Combination therapy with neoantigen vaccine |
| US10835595B2 (en) | 2014-01-06 | 2020-11-17 | The Trustees Of The University Of Pennsylvania | PD1 and PDL1 antibodies and vaccine combinations and use of same for immunotherapy |
| CA3193936A1 (en) | 2014-01-15 | 2015-07-23 | Kadmon Corporation, Llc | Immunomodulatory agents |
| TWI681969B (zh) | 2014-01-23 | 2020-01-11 | 美商再生元醫藥公司 | 針對pd-1的人類抗體 |
| TWI680138B (zh) | 2014-01-23 | 2019-12-21 | 美商再生元醫藥公司 | 抗pd-l1之人類抗體 |
| JOP20200094A1 (ar) | 2014-01-24 | 2017-06-16 | Dana Farber Cancer Inst Inc | جزيئات جسم مضاد لـ pd-1 واستخداماتها |
| WO2015109391A1 (en) | 2014-01-24 | 2015-07-30 | Children's Hospital Of Eastern Ontario Research Institute Inc. | Smc combination therapy for the treatment of cancer |
| JOP20200096A1 (ar) | 2014-01-31 | 2017-06-16 | Children’S Medical Center Corp | جزيئات جسم مضاد لـ tim-3 واستخداماتها |
| EP3102237B1 (en) | 2014-02-04 | 2020-12-02 | Incyte Corporation | Combination of a pd-1 antagonist and an ido1 inhibitor for treating cancer |
| WO2015120198A1 (en) | 2014-02-05 | 2015-08-13 | Cedars-Sinai Medical Center | Methods and compositions for treating cancer and infectious diseases |
| AU2015213988B2 (en) | 2014-02-10 | 2019-07-11 | Merck Patent Gmbh | Targeted TGFbeta inhibition |
| KR20160119867A (ko) | 2014-03-05 | 2016-10-14 | 브리스톨-마이어스 스큅 컴퍼니 | 항-pd-1 항체 및 또 다른 항암제의 조합물을 이용한 신장암의 치료 |
| LT3116909T (lt) | 2014-03-14 | 2020-02-10 | Novartis Ag | Antikūno molekulės prieš lag-3 ir jų panaudojimas |
| KR102870759B1 (ko) | 2014-05-15 | 2025-10-15 | 브리스톨-마이어스 스큅 컴퍼니 | 항-pd-1 항체 및 또 다른 항암제의 조합물을 사용한 폐암의 치료 |
| DK3149042T3 (da) | 2014-05-29 | 2019-11-04 | Spring Bioscience Corp | PD-L1-antistoffer og anvendelser deraf |
| WO2015195163A1 (en) | 2014-06-20 | 2015-12-23 | R-Pharm Overseas, Inc. | Pd-l1 antagonist fully human antibody |
| CN110156892B (zh) | 2014-07-03 | 2023-05-16 | 百济神州有限公司 | 抗pd-l1抗体及其作为治疗剂及诊断剂的用途 |
| JO3663B1 (ar) | 2014-08-19 | 2020-08-27 | Merck Sharp & Dohme | الأجسام المضادة لمضاد lag3 وأجزاء ربط الأنتيجين |
| WO2016028896A1 (en) | 2014-08-19 | 2016-02-25 | Novartis Ag | Anti-cd123 chimeric antigen receptor (car) for use in cancer treatment |
| BR112017004826A2 (pt) * | 2014-09-13 | 2017-12-12 | Novartis Ag | terapias de combinação de inibidores de alk |
| AU2015327868A1 (en) | 2014-10-03 | 2017-04-20 | Novartis Ag | Combination therapies |
| EP3206711B1 (en) | 2014-10-14 | 2023-05-31 | Novartis AG | Antibody molecules to pd-l1 and uses thereof |
| KR102636539B1 (ko) | 2014-10-29 | 2024-02-13 | 파이브 프라임 테라퓨틱스, 인크. | 암에 대한 조합 요법 |
| EP3220951A1 (en) | 2014-11-17 | 2017-09-27 | MedImmune Limited | Therapeutic combinations and methods for treating neoplasia |
| TWI595006B (zh) | 2014-12-09 | 2017-08-11 | 禮納特神經系統科學公司 | 抗pd-1抗體類和使用彼等之方法 |
| EP3233918A1 (en) | 2014-12-19 | 2017-10-25 | Novartis AG | Combination therapies |
| US10508149B2 (en) | 2015-04-01 | 2019-12-17 | Anaptysbio, Inc. | Antibodies directed against T cell immunoglobulin and mucin protein 3 (TIM-3) |
| US10478494B2 (en) | 2015-04-03 | 2019-11-19 | Astex Therapeutics Ltd | FGFR/PD-1 combination therapy for the treatment of cancer |
| KR102740444B1 (ko) | 2015-04-17 | 2024-12-10 | 브리스톨-마이어스 스큅 컴퍼니 | 항-pd-1 항체 및 또 다른 항체의 조합물을 포함하는 조성물 |
| JP7014706B2 (ja) | 2015-07-13 | 2022-02-01 | サイトメックス セラピューティクス インコーポレイテッド | 抗pd-1抗体、活性化可能抗pd-1抗体、およびその使用方法 |
| EP3317301B1 (en) | 2015-07-29 | 2021-04-07 | Novartis AG | Combination therapies comprising antibody molecules to lag-3 |
| CN114272371A (zh) | 2015-07-29 | 2022-04-05 | 诺华股份有限公司 | 包含抗pd-1抗体分子的联合疗法 |
| CN108136003A (zh) | 2015-07-29 | 2018-06-08 | 诺华股份有限公司 | 抗pd-1和抗m-csf抗体在癌症治疗中的联合应用 |
| WO2017019897A1 (en) | 2015-07-29 | 2017-02-02 | Novartis Ag | Combination therapies comprising antibody molecules to tim-3 |
| KR20180030911A (ko) | 2015-07-29 | 2018-03-26 | 노파르티스 아게 | Pd-1 길항제와 egfr 억제제의 조합물 |
| SG10202111808WA (en) | 2015-08-11 | 2021-11-29 | Novartis Ag | 5-bromo-2,6-di-(1h-pyrazol-1-yl)pyrimidin-4-amine for use in the treatment of cancer |
| AR105654A1 (es) | 2015-08-24 | 2017-10-25 | Lilly Co Eli | Anticuerpos pd-l1 (ligando 1 de muerte celular programada) |
| BR112018010211A2 (pt) | 2015-12-07 | 2019-02-05 | Merck Patent Gmbh | formulação farmacêutica aquosa compreendendo anticorpo anti-pd-l1 avelumab |
| ES2986067T3 (es) | 2015-12-17 | 2024-11-08 | Novartis Ag | Moléculas de anticuerpos frente a PD-1 y usos de las mismas |
| EP3448428A4 (en) | 2016-04-25 | 2019-11-27 | Medimmune, LLC | COMPOSITIONS WITH CO FORMULATION OF ANTI-PD-L1 AND ANTI-CTLA-4 ANTIBODIES |
| CA3051989A1 (en) | 2017-02-14 | 2018-08-23 | Novartis Ag | Dosing schedule of a wnt inhibitor and an anti-pd-1 antibody molecule in combination |
| MX2019015738A (es) | 2017-06-27 | 2020-02-20 | Novartis Ag | Regimen de dosificacion para anticuerpos anti-tim-3 y usos de los mismos. |
| KR20200031659A (ko) | 2017-07-20 | 2020-03-24 | 노파르티스 아게 | 항-lag-3 항체의 투여 요법 및 그의 용도 |
| WO2019018640A1 (en) | 2017-07-21 | 2019-01-24 | Novartis Ag | POSOLOGICAL REGIMES FOR ANTI-GITREN ANTIBODIES AND USES THEREOF |
| CA3081602A1 (en) | 2017-11-16 | 2019-05-23 | Novartis Ag | Combination therapies |
| BR112020018755A2 (pt) | 2018-03-20 | 2021-01-05 | Novartis Ag | Combinações farmacêuticas |
| US20210147547A1 (en) | 2018-04-13 | 2021-05-20 | Novartis Ag | Dosage Regimens For Anti-Pd-L1 Antibodies And Uses Thereof |
| JP2022553306A (ja) | 2019-10-21 | 2022-12-22 | ノバルティス アーゲー | Tim-3阻害剤およびその使用 |
| MX2022004766A (es) | 2019-10-21 | 2022-05-16 | Novartis Ag | Terapias combinadas con venetoclax e inhibidores de tim-3. |
| KR20220116522A (ko) | 2019-12-20 | 2022-08-23 | 노파르티스 아게 | 증식성 질환의 치료를 위한 항-tgf-베타 항체 및 체크포인트 억제제의 용도 |
| TW202140037A (zh) | 2020-01-17 | 2021-11-01 | 瑞士商諾華公司 | 組合療法 |
-
2015
- 2015-09-11 BR BR112017004826A patent/BR112017004826A2/pt not_active Application Discontinuation
- 2015-09-11 WO PCT/US2015/049810 patent/WO2016040880A1/en not_active Ceased
- 2015-09-11 RU RU2017112379A patent/RU2718914C2/ru active
- 2015-09-11 MX MX2017003227A patent/MX2017003227A/es unknown
- 2015-09-11 US US15/510,355 patent/US11344620B2/en active Active
- 2015-09-11 EP EP15767683.4A patent/EP3191097B1/en active Active
- 2015-09-11 CA CA2960824A patent/CA2960824A1/en not_active Abandoned
- 2015-09-11 WO PCT/US2015/049813 patent/WO2016040882A1/en not_active Ceased
- 2015-09-11 US US15/509,649 patent/US20170281624A1/en not_active Abandoned
- 2015-09-11 AU AU2015314756A patent/AU2015314756A1/en not_active Abandoned
- 2015-09-11 JP JP2017533719A patent/JP6681905B2/ja not_active Expired - Fee Related
- 2015-09-11 ES ES15767683T patent/ES2771926T3/es active Active
- 2015-09-11 EP EP19199437.5A patent/EP3659621A1/en not_active Withdrawn
- 2015-09-11 WO PCT/US2015/049826 patent/WO2016040892A1/en not_active Ceased
- 2015-09-11 EP EP21166347.1A patent/EP3925622A1/en not_active Withdrawn
- 2015-09-11 CN CN201580061994.0A patent/CN107206071A/zh active Pending
- 2015-09-11 US US15/510,414 patent/US9993551B2/en active Active
- 2015-09-11 EP EP15767682.6A patent/EP3191126B1/en active Active
- 2015-09-11 KR KR1020177009646A patent/KR20170060042A/ko not_active Withdrawn
- 2015-09-11 EP EP15788239.0A patent/EP3191127A1/en not_active Withdrawn
-
2018
- 2018-10-19 AU AU2018250507A patent/AU2018250507B2/en not_active Expired - Fee Related
-
2022
- 2022-12-05 US US18/061,824 patent/US20240075136A1/en active Pending
Patent Citations (131)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2779780A (en) | 1955-03-01 | 1957-01-29 | Du Pont | 1, 4-diamino-2, 3-dicyano-1, 4-bis (substituted mercapto) butadienes and their preparation |
| EP0090505B1 (en) | 1982-03-03 | 1990-08-08 | Genentech, Inc. | Human antithrombin iii, dna sequences therefor, expression vehicles and cloning vectors containing such sequences and cell cultures transformed thereby, a process for expressing human antithrombin iii, and pharmaceutical compositions comprising it |
| EP0125023A1 (en) | 1983-04-08 | 1984-11-14 | Genentech, Inc. | Recombinant immunoglobulin preparations, methods for their preparation, DNA sequences, expression vectors and recombinant host cells therefor |
| US4816567A (en) | 1983-04-08 | 1989-03-28 | Genentech, Inc. | Recombinant immunoglobin preparations |
| EP0171496A2 (en) | 1984-08-15 | 1986-02-19 | Research Development Corporation of Japan | Process for the production of a chimera monoclonal antibody |
| EP0173494A2 (en) | 1984-08-27 | 1986-03-05 | The Board Of Trustees Of The Leland Stanford Junior University | Chimeric receptors by DNA splicing and expression |
| WO1986001533A1 (en) | 1984-09-03 | 1986-03-13 | Celltech Limited | Production of chimeric antibodies |
| EP0184187A2 (en) | 1984-12-04 | 1986-06-11 | Teijin Limited | Mouse-human chimaeric immunoglobulin heavy chain, and chimaeric DNA encoding it |
| GB2188638A (en) | 1986-03-27 | 1987-10-07 | Gregory Paul Winter | Chimeric antibodies |
| US5225539A (en) | 1986-03-27 | 1993-07-06 | Medical Research Council | Recombinant altered antibodies and methods of making altered antibodies |
| US5648260A (en) | 1987-03-18 | 1997-07-15 | Scotgen Biopharmaceuticals Incorporated | DNA encoding antibodies with altered effector functions |
| US5624821A (en) | 1987-03-18 | 1997-04-29 | Scotgen Biopharmaceuticals Incorporated | Antibodies with altered effector functions |
| WO1990002809A1 (en) | 1988-09-02 | 1990-03-22 | Protein Engineering Corporation | Generation and selection of recombinant varied binding proteins |
| US5223409A (en) | 1988-09-02 | 1993-06-29 | Protein Engineering Corp. | Directed evolution of novel binding proteins |
| US5693762A (en) | 1988-12-28 | 1997-12-02 | Protein Design Labs, Inc. | Humanized immunoglobulins |
| US5693761A (en) | 1988-12-28 | 1997-12-02 | Protein Design Labs, Inc. | Polynucleotides encoding improved humanized immunoglobulins |
| US5585089A (en) | 1988-12-28 | 1996-12-17 | Protein Design Labs, Inc. | Humanized immunoglobulins |
| EP0388151A1 (en) | 1989-03-13 | 1990-09-19 | Celltech Limited | Modified antibodies |
| WO1991000906A1 (en) | 1989-07-12 | 1991-01-24 | Genetics Institute, Inc. | Chimeric and transgenic animals capable of producing human antibodies |
| US5208020A (en) | 1989-10-25 | 1993-05-04 | Immunogen Inc. | Cytotoxic agents comprising maytansinoids and their therapeutic use |
| WO1991010741A1 (en) | 1990-01-12 | 1991-07-25 | Cell Genesys, Inc. | Generation of xenogeneic antibodies |
| WO1991017271A1 (en) | 1990-05-01 | 1991-11-14 | Affymax Technologies N.V. | Recombinant library screening methods |
| WO1992001047A1 (en) | 1990-07-10 | 1992-01-23 | Cambridge Antibody Technology Limited | Methods for producing members of specific binding pairs |
| WO1992020791A1 (en) | 1990-07-10 | 1992-11-26 | Cambridge Antibody Technology Limited | Methods for producing members of specific binding pairs |
| WO1992003918A1 (en) | 1990-08-29 | 1992-03-19 | Genpharm International, Inc. | Transgenic non-human animals capable of producing heterologous antibodies |
| WO1992003917A1 (en) | 1990-08-29 | 1992-03-19 | Genpharm International | Homologous recombination in mammalian cells |
| WO1992009690A2 (en) | 1990-12-03 | 1992-06-11 | Genentech, Inc. | Enrichment method for variant proteins with altered binding properties |
| WO1992015679A1 (en) | 1991-03-01 | 1992-09-17 | Protein Engineering Corporation | Improved epitode displaying phage |
| US6582959B2 (en) | 1991-03-29 | 2003-06-24 | Genentech, Inc. | Antibodies to vascular endothelial cell growth factor |
| US20030203409A1 (en) | 1991-03-29 | 2003-10-30 | Genentech, Inc. | Antibodies to vascular endothelial cell growth factor |
| US20030206899A1 (en) | 1991-03-29 | 2003-11-06 | Genentech, Inc. | Vascular endothelial cell growth factor antagonists |
| WO1992018619A1 (en) | 1991-04-10 | 1992-10-29 | The Scripps Research Institute | Heterodimeric receptor libraries using phagemids |
| EP0519596A1 (en) | 1991-05-17 | 1992-12-23 | Merck & Co. Inc. | A method for reducing the immunogenicity of antibody variable domains |
| US6054297A (en) | 1991-06-14 | 2000-04-25 | Genentech, Inc. | Humanized antibodies and methods for making them |
| WO1993001288A1 (de) | 1991-07-08 | 1993-01-21 | Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts | Phagemid zum screenen von antikörpern |
| US5846545A (en) | 1992-03-25 | 1998-12-08 | Immunogen, Inc. | Targeted delivery of cyclopropylbenzindole-containing cytotoxic drugs |
| US5585499A (en) | 1992-03-25 | 1996-12-17 | Immunogen Inc. | Cyclopropylbenzindole-containing cytotoxic drugs |
| US5475092A (en) | 1992-03-25 | 1995-12-12 | Immunogen Inc. | Cell binding agent conjugates of analogues and derivatives of CC-1065 |
| WO1994004678A1 (en) | 1992-08-21 | 1994-03-03 | Casterman Cecile | Immunoglobulins devoid of light chains |
| WO1994010202A1 (en) | 1992-10-28 | 1994-05-11 | Genentech, Inc. | Vascular endothelial cell growth factor antagonists |
| EP0666868B1 (en) | 1992-10-28 | 2002-04-03 | Genentech, Inc. | Use of anti-VEGF antibodies for the treatment of cancer |
| WO1996030046A1 (en) | 1995-03-30 | 1996-10-03 | Genentech, Inc. | Vascular endothelial cell growth factor antagonists |
| US5811097A (en) | 1995-07-25 | 1998-09-22 | The Regents Of The University Of California | Blockade of T lymphocyte down-regulation associated with CTLA-4 signaling |
| US7025962B1 (en) | 1996-08-16 | 2006-04-11 | Schering Corporation | Mammalian cell surface antigens; related reagents |
| EP1947183B1 (en) | 1996-08-16 | 2013-07-17 | Merck Sharp & Dohme Corp. | Mammalian cell surface antigens; related reagents |
| US6111090A (en) | 1996-08-16 | 2000-08-29 | Schering Corporation | Mammalian cell surface antigens; related reagents |
| US20030190317A1 (en) | 1997-04-07 | 2003-10-09 | Genentech, Inc. | Anti-VEGF antibodies |
| US7060269B1 (en) | 1997-04-07 | 2006-06-13 | Genentech, Inc. | Anti-VEGF antibodies |
| WO1998045332A2 (en) | 1997-04-07 | 1998-10-15 | Genentech, Inc. | Humanized antibodies and methods for forming humanized antibodies |
| US20050112126A1 (en) | 1997-04-07 | 2005-05-26 | Genentech, Inc. | Anti-VEGF antibodies |
| US6884879B1 (en) | 1997-04-07 | 2005-04-26 | Genentech, Inc. | Anti-VEGF antibodies |
| WO1999020758A1 (en) | 1997-10-21 | 1999-04-29 | Human Genome Sciences, Inc. | Human tumor necrosis factor receptor-like proteins tr11, tr11sv1, and tr11sv2 |
| WO1999040196A1 (en) | 1998-02-09 | 1999-08-12 | Genentech, Inc. | Novel tumor necrosis factor receptor homolog and nucleic acids encoding the same |
| WO1999052552A1 (en) | 1998-04-15 | 1999-10-21 | Brigham & Women's Hospital, Inc. | T cell inhibitory receptor compositions and uses thereof |
| US7132255B2 (en) | 1998-04-15 | 2006-11-07 | The Brigham And Women's Hospital, Inc. | Identification of compounds that bind biliary glycoprotein and affect cytotoxic T lymphocyte activity |
| WO2000035436A2 (en) | 1998-12-16 | 2000-06-22 | Warner-Lambert Company | Treatment of arthritis with mek inhibitors |
| US6703020B1 (en) | 1999-04-28 | 2004-03-09 | Board Of Regents, The University Of Texas System | Antibody conjugate methods for selectively inhibiting VEGF |
| WO2001003720A2 (en) | 1999-07-12 | 2001-01-18 | Genentech, Inc. | Promotion or inhibition of angiogenesis and cardiovascularization by tumor necrosis factor ligand/receptor homologs |
| WO2002006213A2 (en) | 2000-07-19 | 2002-01-24 | Warner-Lambert Company | Oxygenated esters of 4-iodo phenylamino benzhydroxamic acids |
| WO2002066470A1 (en) | 2001-01-12 | 2002-08-29 | Amgen Inc. | Substituted alkylamine derivatives and methods of use |
| WO2003064383A2 (en) | 2002-02-01 | 2003-08-07 | Ariad Gene Therapeutics, Inc. | Phosphorus-containing compounds & uses thereof |
| WO2003076424A1 (en) | 2002-03-08 | 2003-09-18 | Eisai Co. Ltd. | Macrocyclic compounds useful as pharmaceuticals |
| WO2003077914A1 (en) | 2002-03-13 | 2003-09-25 | Array Biopharma, Inc | N3 alkylated benzimidazole derivatives as mek inhibitors |
| US6780996B2 (en) | 2002-04-30 | 2004-08-24 | Wyeth Holdings Corporation | Process for the preparation of 7-substituted-3 quinolinecarbonitriles |
| US20040047858A1 (en) | 2002-09-11 | 2004-03-11 | Blumberg Richard S. | Therapeutic anti-BGP(C-CAM1) antibodies and uses thereof |
| US20100028330A1 (en) | 2002-12-23 | 2010-02-04 | Medimmune Limited | Methods of upmodulating adaptive immune response using anti-pd1 antibodies |
| US7618632B2 (en) | 2003-05-23 | 2009-11-17 | Wyeth | Method of treating or ameliorating an immune cell associated pathology using GITR ligand antibodies |
| US20050186208A1 (en) | 2003-05-30 | 2005-08-25 | Genentech, Inc. | Treatment with anti-VEGF antibodies |
| WO2005007190A1 (en) | 2003-07-11 | 2005-01-27 | Schering Corporation | Agonists or antagonists of the clucocorticoid-induced tumour necrosis factor receptor (gitr) or its ligand for the treatment of immune disorders, infections and cancer |
| WO2005012359A2 (en) | 2003-08-01 | 2005-02-10 | Genentech, Inc. | Anti-vegf antibodies |
| WO2005044853A2 (en) | 2003-11-01 | 2005-05-19 | Genentech, Inc. | Anti-vegf antibodies |
| WO2005055808A2 (en) | 2003-12-02 | 2005-06-23 | Genzyme Corporation | Compositions and methods to diagnose and treat lung cancer |
| WO2005115451A2 (en) | 2004-04-30 | 2005-12-08 | Isis Innovation Limited | Methods for generating improved immune response |
| WO2005113556A1 (en) | 2004-05-13 | 2005-12-01 | Icos Corporation | Quinazolinones as inhibitors of human phosphatidylinositol 3-kinase delta |
| WO2006083289A2 (en) | 2004-06-04 | 2006-08-10 | Duke University | Methods and compositions for enhancement of immunity by in vivo depletion of immunosuppressive cell activity |
| WO2005121142A1 (en) | 2004-06-11 | 2005-12-22 | Japan Tobacco Inc. | 5-amino-2,4,7-trioxo-3,4,7,8-tetrahydro-2h-pyrido’2,3-d! pyrimidine derivatives and related compounds for the treatment of cancer |
| US20060009360A1 (en) | 2004-06-25 | 2006-01-12 | Robert Pifer | New adjuvant composition |
| WO2006028958A2 (en) | 2004-09-02 | 2006-03-16 | Genentech, Inc. | Pyridyl inhibitors of hedgehog signalling |
| US8388967B2 (en) | 2005-03-25 | 2013-03-05 | Gitr, Inc. | Methods for inducing or enhancing an immune response by administering agonistic GITR-binding antibodies |
| EP1866339A2 (en) | 2005-03-25 | 2007-12-19 | TolerRx, Inc | Gitr binding molecules and uses therefor |
| US7812135B2 (en) | 2005-03-25 | 2010-10-12 | Tolerrx, Inc. | GITR-binding antibodies |
| US8008449B2 (en) | 2005-05-09 | 2011-08-30 | Medarex, Inc. | Human monoclonal antibodies to programmed death 1 (PD-1) and methods for treating cancer using anti-PD-1 antibodies alone or in combination with other immunotherapeutics |
| WO2006121168A1 (en) | 2005-05-09 | 2006-11-16 | Ono Pharmaceutical Co., Ltd. | Human monoclonal antibodies to programmed death 1(pd-1) and methods for treating cancer using anti-pd-1 antibodies alone or in combination with other immunotherapeutics |
| EP2161336A1 (en) | 2005-05-09 | 2010-03-10 | ONO Pharmaceutical Co., Ltd. | Human monoclonal antibodies to programmed death 1(PD-1) and methods for treating cancer using anti-PD-1 antibodies alone or in combination with other immunotherapeutics |
| WO2006122806A2 (en) | 2005-05-20 | 2006-11-23 | Novartis Ag | 1,3-dihydro-imidazo [4,5-c] quinolin-2-ones as lipid kinase inhibitors |
| WO2007005874A2 (en) | 2005-07-01 | 2007-01-11 | Medarex, Inc. | Human monoclonal antibodies to programmed death ligand 1 (pd-l1) |
| WO2007004415A1 (ja) | 2005-07-01 | 2007-01-11 | Murata Manufacturing Co., Ltd. | 多層セラミック基板およびその製造方法ならびに多層セラミック基板作製用複合グリーンシート |
| US7943743B2 (en) | 2005-07-01 | 2011-05-17 | Medarex, Inc. | Human monoclonal antibodies to programmed death ligand 1 (PD-L1) |
| WO2007014011A2 (en) | 2005-07-21 | 2007-02-01 | Ardea Biosciences, Inc. | N-(arylamino)-sulfonamide inhibitors of mek |
| WO2007133822A1 (en) | 2006-01-19 | 2007-11-22 | Genzyme Corporation | Gitr antibodies for the treatment of cancer |
| WO2007084786A1 (en) | 2006-01-20 | 2007-07-26 | Novartis Ag | Pyrimidine derivatives used as pi-3 kinase inhibitors |
| WO2008024725A1 (en) | 2006-08-21 | 2008-02-28 | Genentech, Inc. | Aza-benzofuranyl compounds and methods of use |
| WO2008073687A2 (en) | 2006-12-08 | 2008-06-19 | Irm Llc | Compounds and compositions as protein kinase inhibitors |
| US8354509B2 (en) | 2007-06-18 | 2013-01-15 | Msd Oss B.V. | Antibodies to human programmed death receptor PD-1 |
| US8591886B2 (en) | 2007-07-12 | 2013-11-26 | Gitr, Inc. | Combination therapies employing GITR binding molecules |
| WO2009036082A2 (en) | 2007-09-12 | 2009-03-19 | Genentech, Inc. | Combinations of phosphoinositide 3-kinase inhibitor compounds and chemotherapeutic agents, and methods of use |
| WO2009055730A1 (en) | 2007-10-25 | 2009-04-30 | Genentech, Inc. | Process for making thienopyrimidine compounds |
| WO2009085983A1 (en) | 2007-12-19 | 2009-07-09 | Genentech, Inc. | 5-anilinoimidazopyridines and methods of use |
| WO2009101611A1 (en) | 2008-02-11 | 2009-08-20 | Curetech Ltd. | Monoclonal antibodies for tumor treatment |
| WO2009114335A2 (en) | 2008-03-12 | 2009-09-17 | Merck & Co., Inc. | Pd-1 binding proteins |
| WO2009114870A2 (en) | 2008-03-14 | 2009-09-17 | Intellikine, Inc. | Kinase inhibitors and methods of use |
| WO2010003118A1 (en) | 2008-07-02 | 2010-01-07 | Trubion Pharmaceuticals, Inc. | Tgf-b antagonist multi-target binding proteins |
| WO2010006086A2 (en) | 2008-07-08 | 2010-01-14 | Intellikine, Inc. | Kinase inhibitors and methods of use |
| US20110150892A1 (en) | 2008-08-11 | 2011-06-23 | Medarex, Inc. | Human antibodies that bind lymphocyte activation gene-3 (lag-3) and uses thereof |
| WO2010019570A2 (en) | 2008-08-11 | 2010-02-18 | Medarex, Inc. | Human antibodies that bind lymphocyte activation gene-3 (lag-3), and uses thereof |
| WO2010027827A2 (en) | 2008-08-25 | 2010-03-11 | Amplimmune, Inc. | Targeted costimulatory polypeptides and methods of use to treat cancer |
| US8609089B2 (en) | 2008-08-25 | 2013-12-17 | Amplimmune, Inc. | Compositions of PD-1 antagonists and methods of use |
| US20120114649A1 (en) | 2008-08-25 | 2012-05-10 | Amplimmune, Inc. Delaware | Compositions of pd-1 antagonists and methods of use |
| US8586023B2 (en) | 2008-09-12 | 2013-11-19 | Mie University | Cell capable of expressing exogenous GITR ligand |
| WO2010036380A1 (en) | 2008-09-26 | 2010-04-01 | Intellikine, Inc. | Heterocyclic kinase inhibitors |
| WO2010077634A1 (en) | 2008-12-09 | 2010-07-08 | Genentech, Inc. | Anti-pd-l1 antibodies and their use to enhance t-cell function |
| US20120039906A1 (en) | 2009-02-09 | 2012-02-16 | INSER (Institut National de la Recherche Medicale) | PD-1 Antibodies and PD-L1 Antibodies and Uses Thereof |
| WO2010125571A1 (en) | 2009-04-30 | 2010-11-04 | Tel Hashomer Medical Research Infrastructure And Services Ltd. | Anti ceacam1 antibodies and methods of using same |
| WO2011028683A1 (en) | 2009-09-03 | 2011-03-10 | Schering Corporation | Anti-gitr antibodies |
| US8602269B2 (en) | 2009-09-14 | 2013-12-10 | Guala Dispensing S.P.A. | Trigger sprayer |
| WO2011051726A2 (en) | 2009-10-30 | 2011-05-05 | Isis Innovation Ltd | Treatment of obesity |
| WO2011066342A2 (en) | 2009-11-24 | 2011-06-03 | Amplimmune, Inc. | Simultaneous inhibition of pd-l1/pd-l2 |
| WO2011090754A1 (en) | 2009-12-29 | 2011-07-28 | Emergent Product Development Seattle, Llc | Polypeptide heterodimers and uses thereof |
| WO2012177624A2 (en) | 2011-06-21 | 2012-12-27 | The Johns Hopkins University | Focused radiation for augmenting immune-based therapies against neoplasms |
| WO2013019906A1 (en) | 2011-08-01 | 2013-02-07 | Genentech, Inc. | Methods of treating cancer using pd-1 axis binding antagonists and mek inhibitors |
| WO2013039954A1 (en) | 2011-09-14 | 2013-03-21 | Sanofi | Anti-gitr antibodies |
| US20140271618A1 (en) | 2011-10-11 | 2014-09-18 | Ramot At Tel-Aviv University Ltd. | Antibodies to carcinoembryonic antigen-related cell adhesion molecule (ceacam) |
| WO2013054331A1 (en) | 2011-10-11 | 2013-04-18 | Tel Hashomer Medical Research Infrastructure And Services Ltd. | Antibodies to carcinoembryonic antigen-related cell adhesion molecule (ceacam) |
| WO2013079174A1 (en) | 2011-11-28 | 2013-06-06 | Merck Patent Gmbh | Anti-pd-l1 antibodies and uses thereof |
| WO2013082366A1 (en) | 2011-12-01 | 2013-06-06 | The Brigham And Women's Hospital, Inc. | Anti-ceacam1 recombinant antibodies for cancer therapy |
| WO2013179174A1 (en) | 2012-05-29 | 2013-12-05 | Koninklijke Philips N.V. | Lighting arrangement |
| WO2014008218A1 (en) | 2012-07-02 | 2014-01-09 | Bristol-Myers Squibb Company | Optimization of antibodies that bind lymphocyte activation gene-3 (lag-3), and uses thereof |
| WO2014022332A1 (en) | 2012-07-31 | 2014-02-06 | The Brigham And Women's Hospital, Inc. | Modulation of the immune response |
| WO2014055648A1 (en) * | 2012-10-02 | 2014-04-10 | Bristol-Myers Squibb Company | Combination of anti-kir antibodies and anti-pd-1 antibodies to treat cancer |
| WO2014059251A1 (en) | 2012-10-12 | 2014-04-17 | The Brigham And Women's Hospital, Inc. | Enhancement of the immune response |
| US20140128387A1 (en) * | 2012-11-06 | 2014-05-08 | SHANGHAI iNSTITUTE OF MATERIA MEDICA ACADEMY OF SCIENCES | Certain protein kinase inhibitors |
Non-Patent Citations (146)
| Title |
|---|
| "Current Protocols in Molecular Biology", 1989, JOHN WILEY & SONS, pages: 6.3.1 - 6.3.6 |
| "Remington: The Science and Practice of Pharmacy, 21st Ed.", 2011, PHARMACEUTICAL PRESS |
| "Remington's Pharmaceutical Sciences, 18th Ed.", 1990, MACK PRINTING COMPANY, pages: 1289 - 1329 |
| A. SHAW ET AL.: "Ceritinib in ALK-rearranged non-small-cell lung cancer.", THE NEW ENGLAND JOURNAL OF MEDICINE, vol. 370, no. 13, 27 March 2014 (2014-03-27), pages 1189 - 1197, XP002750756 * |
| AGATA ET AL., INT IMMUNOL., vol. 8, 1996, pages 765 - 72 |
| AL-LAZIKANI ET AL., JMB, vol. 273, 1997, pages 927 - 948 |
| ALTSCHUL ET AL., J. MOL. BIOL., vol. 215, 1990, pages 403 - 10 |
| ALTSCHUL ET AL., NUCLEIC ACIDS RES., vol. 25, 1997, pages 3389 - 3402 |
| BARBAS ET AL., PNAS, vol. 88, 1991, pages 7978 - 7982 |
| BEIDLER ET AL., J. IMMUNOL., vol. 141, 1988, pages 4053 - 4060 |
| BENNETT ET AL., J. IMMUNOL., vol. 170, 2003, pages 711 - 8 |
| BETTER ET AL., SCIENCE, vol. 240, 1988, pages 1041 - 1043 |
| BIRD ET AL., SCIENCE, vol. 242, 1988, pages 423 - 426 |
| BLANK ET AL., CANCER IMMUNOL. IMMUNOTHER., vol. 54, 2005, pages 307 - 314 |
| BLANK, C. ET AL., IMMUNOL. IMMUNOTHER, vol. 56, no. 5, 29 December 2006 (2006-12-29), pages 739 - 745 |
| BROWN ET AL., J. IMMUNOL., vol. 170, 2003, pages 1257 - 66 |
| BRUGGEMAN ET AL., EUR J IMMUNOL, vol. 21, 1991, pages 1323 - 1326 |
| BRUGGEMAN ET AL., YEAR LMMUNO|, vol. 7, 1993, pages 33 - 40 |
| CARTER ET AL., EUR. J. IMMUNOL., vol. 32, 2002, pages 634 - 43 |
| CHOI ET AL., CANCER RES., vol. 68, no. 13, 2008, pages 4971 - 6 |
| CHOTHIA, C. ET AL., J. MOL. BIOL., vol. 196, 1987, pages 901 - 917 |
| CLACKSON ET AL., NATURE, vol. 352, 1991, pages 624 - 628 |
| COLCHER, D. ET AL., ANN N YACAD SCI, vol. 880, 1999, pages 263 - 80 |
| COLLINS, M ET AL., GENOME BIOL., vol. 6, 2005, pages 223.1 - 223.7 |
| COLLINS, M. ET AL., GENOME BIOL., vol. 6, 2005, pages 223.1 - 223.7 |
| COYLE, A. J. ET AL., NATURE IMMUNOL., vol. 2, no. 3, 2001, pages 203 - 209 |
| DEVITA, V. ET AL.: "Cancer: Principles and Practice of Oncology. Fifth Edition", 1997 |
| DONG ET AL., J MOL MED, vol. 81, 2003, pages 281 - 7 |
| DONG ET AL., J. MOL. MED., vol. 81, 2003, pages 281 - 7 |
| DONG ET AL., NAT MED, vol. 8, 2002, pages 787 - 9 |
| DONG ET AL., NAT. MED., vol. 8, 2002, pages 787 - 9 |
| DONG, C. ET AL., IMMUNOLOG. RES., vol. 28, no. 1, 2003, pages 39 - 48 |
| DRANOFF ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 90, 1993, pages 3539 - 43 |
| DUEBEL, S. AND KONTERMANN, R.: "Antibody Engineering Lab Manual", SPRINGER-VERLAG, article "Protein Sequence and Structure Analysis of Antibody Variable Domains" |
| E. MEYERS; W. MILLER, CABIOS, vol. 4, 1989, pages 11 - 17 |
| FINGER LR ET AL., GENE, vol. 197, no. 1-2, 1997, pages 177 - 87 |
| FOON, K.: "ASCO Educational Book Spring", 2000, pages: 730 - 738 |
| FREEMAN ET AL., J. EXP. MED., vol. 192, 2000, pages 1027 - 34 |
| FUCHS ET AL., BIOLTECHNOLOGY, vol. 9, 1991, pages 1370 - 1372 |
| GARRAD ET AL., BIOLTECHNOLOGY, vol. 9, 1991, pages 1373 - 1377 |
| GRAM ET AL., PNAS, vol. 89, 1992, pages 3576 - 3580 |
| GREEN, L.L. ET AL., NATURE GENET, vol. 7, 1994, pages 13 - 21 |
| GREENWALD, R. J. ET AL., ANN. REV. IMMUNOL., vol. 23, 2005, pages 515 - 548 |
| GRIFFTHS ET AL., EMBO J, vol. 12, 1993, pages 725 - 734 |
| GROSS, J. ET AL., J. IMMUNOL., vol. 149, 1992, pages 380 - 388 |
| HAHNE, M. ET AL., SCIENCE, vol. 274, 1996, pages 1363 - 1365 |
| HALLETT, WHD ET AL., J OF AMERICAN SOCIETY FOR BLOOD AND MARROW TRANSPLANTATION, vol. 17, no. 8, 2011, pages 1133 - 145 |
| HAMID, O. ET AL., NEW ENGLAND JOURNAL OF MEDICINE, vol. 369, no. 2, 2013, pages 134 - 44 |
| HASTINGS ET AL., EUR J IMMUNOL., vol. 39, no. 9, September 2009 (2009-09-01), pages 2492 - 501 |
| HAWKINS ET AL., JMOL BIOL, vol. 226, 1992, pages 889 - 896 |
| HAY ET AL., HUM ANTIBOD HYBRIDOMAS, vol. 3, 1992, pages 81 - 85 |
| HE ET AL., J. IMMUNOL., vol. 173, 2004, pages 4919 - 28 |
| HINODA ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 85, no. 18, 1988, pages 6959 - 6963 |
| HOLLIGER, PROC. NATL. ACAD. SCI. USA, vol. 90, 1993, pages 6444 - 6448 |
| HOOGENBOOM ET AL., NUC ACID RES, vol. 19, 1991, pages 4133 - 4137 |
| HORN ET AL., J CLIN ONCOL., vol. 27, no. 26, 2009, pages 4232 - 5 |
| HOWARD, M.; O'GARRA, A., IMMUNOLOGY TODAY, vol. 13, 1992, pages 198 - 200 |
| HUANG ET AL., NATURE, 2014 |
| HUDES, G. ET AL., N. ENGL. J. MED., vol. 356, no. 22, 2007, pages 2271 - 2281 |
| HUSE ET AL., SCIENCE, vol. 246, 1989, pages 1275 - 1281 |
| HUSTON ET AL., PROC. NATL. ACAD. SCI. USA, vol. 85, 1988, pages 5879 - 5883 |
| HUTLOFF, A. ET AL., NATURE, vol. 397, 1999, pages 262 - 266 |
| ISHIDA, Y. ET AL., EMBO J., vol. 11, 1992, pages 3887 - 3895 |
| ITO, N. ET AL., IMMUNOBIOLOGY, vol. 201, no. 5, 2000, pages 527 - 40 |
| IWAI ET AL., INT. IMMUNOL., vol. 17, 2005, pages 133 - 144 |
| IWAI ET AL., PROC. NAT'L. ACAD. SCI. USA, vol. 99, 2002, pages 12293 - 7 |
| J. R. ROBINSON,: "Sustained and Controlled Release Drug Delivery Systems", 1978, MARCEL DEKKER, INC. |
| JOHN LB ET AL., CLIN. CANCER RES., vol. 19, no. 20, 2013, pages 5636 - 46 |
| JONES ET AL., NATURE, vol. 321, 1986, pages 552 - 525 |
| KABAT ET AL.: "Sequences of Proteins of Immunological Interest 5th Ed.", 1991, NATIONAL INSTITUTES OF HEALTH |
| KABAT, E. A. ET AL.: "Sequences of Proteins of Immunological Interest, Fifth Edition,", 1991, NIH PUBLICATION NO. 91-3242 |
| KEHRL, J. ET AL., J. EXP. MED., vol. 163, 1986, pages 1037 - 1050 |
| KHAYAT, D.: "ASCO Educational Book Spring", 2000, pages: 414 - 428 |
| KIM, N ET AL., SCIENCE, vol. 266, 1994, pages 2011 - 2013 |
| KOIVUNEN ET AL., CLIN CANCER RES., vol. 14, no. 13, 2008, pages 4275 - 83 |
| KONISHI ET AL., CLIN. CANCER RES., vol. 10, 2004, pages 5094 - 100 |
| KORMAN, A. J. ET AL., ADV. IMMUNOL., vol. 90, 2007, pages 297 - 339 |
| KUGLER, A ET AL., NATURE MEDICINE, vol. 6, 2000, pages 332 - 336 |
| L. FRIBOULET AL.: "The ALK inhibitor ceritinib overcomes crizotinib resistance in non-small cell lung cancer.", CANCER DISCOVERY, vol. 4, no. 6, June 2014 (2014-06-01), USA, pages 662 - 673, XP002750758 * |
| LEPENIES, B. ET AL., ENDOCRINE, METABOLIC & IMMUNE DISORDERS-DRUG TARGETS, vol. 8, 2008, pages 279 - 288 |
| LI ET AL., BIOPOLYMERS, vol. 87, 2007, pages 225 - 230 |
| LINDLEY, P. S. ET AL., IMMUNOL. REV., vol. 229, 2009, pages 307 - 321 |
| LINSLEY, P. ET AL., IMMUNITY, vol. 4, 1996, pages 535 - 543 |
| LIU ET AL., BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 17, 2007, pages 617 - 620 |
| LIU ET AL., J. IMMUNOL., vol. 139, 1987, pages 3521 - 3526 |
| LIU ET AL., PNAS, vol. 84, 1987, pages 3439 - 3443 |
| LOBUGLIO ET AL., HYBRIDOMA, vol. 5, 1986, pages 5117 - 5123 |
| LOGOTHETIS, C.: "ASCO Educational Book Spring", 2000, pages: 300 - 302 |
| LONBERG, N ET AL., NATURE, vol. 368, 1994, pages 856 - 859 |
| M. AWAD ET AL.: "ALK inhibitors in non-small cell lung cancer: Crizotinib and beyond.", CLINICAL ADVANCES IN HEMATOLOGY AND ONCOLOGY, vol. 12, no. 7, July 2014 (2014-07-01), pages 429 - 439, XP002750757 * |
| MARKEL ET AL., CANCER IMMUNOL IMMUNOTHER., vol. 59, no. 2, February 2010 (2010-02-01), pages 215 - 30 |
| MARKEL ET AL., IMMUNOLOGY, vol. 126, no. 2, February 2009 (2009-02-01), pages 186 - 200 |
| MARKEL ET AL., J IMMUNOL., vol. 168, no. 6, 15 March 2002 (2002-03-15), pages 2803 - 10 |
| MARKEL ET AL., J IMMUNOL., vol. 177, no. 9, 1 November 2006 (2006-11-01), pages 6062 - 71 |
| MELERO, I. ET AL., NATURE MEDICINE, vol. 3, 1997, pages 682 - 685 |
| MOKYR, M ET AL., CANCER RESEARCH, vol. 58, 1998, pages 5301 - 5304 |
| MORRISON, S. L., SCIENCE, vol. 229, 1985, pages 1202 - 1207 |
| MORRISON, S.L. ET AL., PROC. NATL. ACAD. SCI. USA, vol. 81, 1994, pages 6851 - 6855 |
| MOTZER, R.J. ET AL., LANCET, vol. 372, 2008, pages 449 - 456 |
| NEEDLEMAN; WUNSCH, J. MOL. BIOL., vol. 48, 1970, pages 444 - 453 |
| NESTLE, F. ET AL., NATURE MEDICINE, vol. 4, 1998, pages 328 - 332 |
| NISHIMURA ET AL., CANC. RES., vol. 47, 1987, pages 999 - 1005 |
| OI ET AL., BIOTECHNIQUES, vol. 4, 1986, pages 214 |
| OKAZAKI ET AL., CURR OPIN IMMUNOL, vol. 14, 2002, pages 391779 - 82 |
| ORTENBERG ET AL., MOL CANCER THER., vol. 11, no. 6, June 2012 (2012-06-01), pages 1300 - 10 |
| PAL. S.K. ET AL., CLIN. ADVANCES IN HEMATOLOGY & ONCOLOGY, vol. 12, no. 2, 2014, pages 90 - 99 |
| POLJAK, STRUCTURE, vol. 2, 1994, pages 1121 - 1123 |
| POPKOV ET AL., JOURNAL OF IMMUNOLOGICAL METHODS, vol. 288, 2004, pages 149 - 164 |
| PRESTA ET AL., CANCER RES., vol. 57, 1997, pages 4593 - 4599 |
| REITER, Y., CLIN CANCER RES, vol. 2, 1996, pages 245 - 52 |
| RESTIFO, N.; SZNOL, M.: "Cancer Vaccines", article "Ch. 61,", pages: 3023 - 3043 |
| RIDGE, J. ET AL., NATURE, vol. 393, 1998, pages 474 - 478 |
| RIKOVA ET AL., CELL, vol. 131, no. 6, 2007, pages 1190 - 203 |
| RINI, B.I. ET AL., J. CLIN. ONCOL., vol. 28, no. 13, 2010, pages 2137 - 2143 |
| ROSENBERG, S.: "ASCO Educational Book Spring", 2000, article "Development of Cancer Vaccines", pages: 60 - 62 |
| SALEH ET AL., CANCER IMMUNOL. IMMUNOTHER., vol. 32, 1990, pages 180 - 190 |
| SASAKI ET AL., EUR J CANCER., vol. 46, no. 10, 2010, pages 1773 - 1780 |
| SHARPE, A. H. ET AL., NATURE REV. IMMUNOL., vol. 2, 2002, pages 116 - 126 |
| SHAW ET AL., J CLIN ONCOL., vol. 27, no. 26, 2009, pages 4247 - 4253 |
| SHAW ET AL., J. NATL CANCER INST., vol. 80, 1988, pages 1553 - 1559 |
| SHAW ET AL., N ENGL J MED., vol. 368, no. 25, 2013, pages 2385 - 2394 |
| SHINOHARA T ET AL., GENOMICS, vol. 23, no. 3, 1994, pages 704 - 6 |
| SOCINSKI ET AL., J CLIN ONCOL., vol. 30, no. 17, 2012, pages 2055 - 2062 |
| SODA ET AL., NATURE, vol. 448, no. 7153, 2007, pages 561 - 6 |
| STERN ET AL., J IMMUNOL., vol. 174, no. 11, 1 June 2005 (2005-06-01), pages 6692 - 701 |
| SUN ET AL., PNAS, vol. 84, 1987, pages 214 - 218 |
| SUOT, R; SRIVASTAVA, P, SCIENCE, vol. 269, 1995, pages 1585 - 1588 |
| T. MARSILJE ET AL.: "Synthesis, structure-activity relationships, and in vivo efficacy of the novel potent and selective anaplastic lymphoma kinase (ALK) inhibitor 5-chloro-N2-(2-isopropoxy-5-methyl-4-(piperidin-4-yl)-N4-(2-(isopropylsulfonyl)phenyl)pyrimidine-2,4-diamine (LDK378) etc.", JOURNAL OF MEDICINAL CHEMISTRY, vol. 56, no. 14, 25 July 2013 (2013-07-25), USA, pages 5675 - 5690, XP055145299 * |
| TAKEUCHI ET AL., CLIN CANCER RES., vol. 14, no. 20, 2008, pages 6618 - 24 |
| TAKEUCHI ET AL., CLIN CANCER RES., vol. 15, no. 9, 2009, pages 3143 - 9 |
| TAMURA, Y ET AL., SCIENCE, vol. 278, 1997, pages 117 - 120 |
| THOMPSON J. ET AL., BIOCHEM. BIOPHYS. RES. COMMUN., vol. 158, no. 3, 1989, pages 996 - 1004 |
| TRIEBEL ET AL., J. EXP. MED., vol. 171, 1990, pages 1393 - 1405 |
| TUAILLON ET AL., PNAS, vol. 90, 1993, pages 3720 - 3724 |
| VERHOEYAN ET AL., SCIENCE, vol. 239, 1988, pages 1534 |
| VIGLIETTA, V. ET AL., NEUROTHERAPEUTICS, vol. 4, 2007, pages 666 - 675 |
| WANG, L. ET AL., J. EXP. MED., vol. 208, no. 3, 7 March 2011 (2011-03-07), pages 577 - 92 |
| WEINBERG, A ET AL., IMMUNOD, vol. 164, 2000, pages 2160 - 2169 |
| WINNAKER: "From Genes to Clones", 1987, VERLAGSGESELLSCHAFT |
| WONG ET AL., CANCER, vol. 115, no. 8, 15 April 2009 (2009-04-15), pages 1723 - 33 |
| WOO ET AL., CANCER RES., vol. 72, no. 4, 2012, pages 917 - 27 |
| WOOD ET AL., NATURE, vol. 314, 1985, pages 446 - 449 |
| YANG ET AL., J THORAC ONCOL., vol. 7, no. 1, 2012, pages 90 - 97 |
| YI, Q., CANCER J., vol. 15, no. 6, 2009, pages 502 - 10 |
| ZHENG ET AL., PLOS ONE, vol. 5, no. 9, 2 September 2010 (2010-09-02), pages E12529 |
| ZIMMERMANN W. ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 84, no. 9, 1987, pages 2960 - 2964 |
Cited By (59)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9920123B2 (en) | 2008-12-09 | 2018-03-20 | Genentech, Inc. | Anti-PD-L1 antibodies, compositions and articles of manufacture |
| KR102220710B1 (ko) | 2011-07-20 | 2021-03-02 | 브라이엄 영 유니버시티 | 소수성 세라게닌 화합물 및 이를 포함하는 기구 |
| KR20190031333A (ko) * | 2011-07-20 | 2019-03-25 | 브라이엄 영 유니버시티 | 소수성 세라게닌 화합물 및 이를 포함하는 기구 |
| US10570204B2 (en) | 2013-09-26 | 2020-02-25 | The Medical College Of Wisconsin, Inc. | Methods for treating hematologic cancers |
| US11708412B2 (en) | 2013-09-26 | 2023-07-25 | Novartis Ag | Methods for treating hematologic cancers |
| US11365255B2 (en) | 2013-12-12 | 2022-06-21 | Suzhou Suncadia Biopharmaceuticals Co., Ltd. | PD-1 antibody, antigen-binding fragment thereof, and medical application thereof |
| US10344090B2 (en) | 2013-12-12 | 2019-07-09 | Shanghai Hangrui Pharmaceutical Co., Ltd. | PD-1 antibody, antigen-binding fragment thereof, and medical application thereof |
| US9683048B2 (en) | 2014-01-24 | 2017-06-20 | Novartis Ag | Antibody molecules to PD-1 and uses thereof |
| US9815898B2 (en) | 2014-01-24 | 2017-11-14 | Novartis Ag | Antibody molecules to PD-1 and uses thereof |
| US10752687B2 (en) | 2014-01-24 | 2020-08-25 | Novartis Ag | Antibody molecules to PD-1 and uses thereof |
| US11827704B2 (en) | 2014-01-24 | 2023-11-28 | Novartis Ag | Antibody molecules to PD-1 and uses thereof |
| US9884913B2 (en) | 2014-01-31 | 2018-02-06 | Novartis Ag | Antibody molecules to TIM-3 and uses thereof |
| US11155620B2 (en) | 2014-01-31 | 2021-10-26 | Novartis Ag | Method of detecting TIM-3 using antibody molecules to TIM-3 |
| US10981990B2 (en) | 2014-01-31 | 2021-04-20 | Novartis Ag | Antibody molecules to TIM-3 and uses thereof |
| US10472419B2 (en) | 2014-01-31 | 2019-11-12 | Novartis Ag | Antibody molecules to TIM-3 and uses thereof |
| US9605070B2 (en) | 2014-01-31 | 2017-03-28 | Novartis Ag | Antibody molecules to TIM-3 and uses thereof |
| US9908936B2 (en) | 2014-03-14 | 2018-03-06 | Novartis Ag | Antibody molecules to LAG-3 and uses thereof |
| US10711060B2 (en) | 2014-03-14 | 2020-07-14 | Novartis Ag | Antibody molecules to LAG-3 and uses thereof |
| US12252535B2 (en) | 2014-03-14 | 2025-03-18 | Novartis Ag | Antibody molecules to LAG-3 and uses thereof |
| US11344620B2 (en) | 2014-09-13 | 2022-05-31 | Novartis Ag | Combination therapies |
| WO2016054555A3 (en) * | 2014-10-03 | 2016-06-30 | Novartis Ag | Combination therapies |
| US9988452B2 (en) | 2014-10-14 | 2018-06-05 | Novartis Ag | Antibody molecules to PD-L1 and uses thereof |
| US10851165B2 (en) | 2014-10-14 | 2020-12-01 | Novartis Ag | Antibody molecules to PD-L1 and methods of treating cancer |
| US10478494B2 (en) | 2015-04-03 | 2019-11-19 | Astex Therapeutics Ltd | FGFR/PD-1 combination therapy for the treatment of cancer |
| EP3349731A4 (en) * | 2015-09-16 | 2019-05-01 | Board of Regents, The University of Texas System | COMBINATION OF TOPOISOMERASE I INHIBITORS WITH IMMUNOTHERAPY IN THE TREATMENT OF CANCER |
| US10894044B2 (en) | 2015-09-16 | 2021-01-19 | Board Of Regents, The University Of Texas System | Combination of topoisomerase-I inhibitors with immunotherapy in the treatment of cancer |
| US11298362B2 (en) | 2016-04-12 | 2022-04-12 | Eli Lilly And Company | Combination therapy with Notch and CDK4/6 inhibitors for the treatment of cancer |
| US11564929B2 (en) | 2016-04-12 | 2023-01-31 | Eli Lilly And Company | Combination therapy with Notch and PI3K/mTOR inhibitors for use in treating cancer |
| US11535670B2 (en) | 2016-05-11 | 2022-12-27 | Huyabio International, Llc | Combination therapies of HDAC inhibitors and PD-L1 inhibitors |
| US12122833B2 (en) | 2016-05-11 | 2024-10-22 | Huyabio International, Llc | Combination therapies of HDAC inhibitors and PD-1 inhibitors |
| US10385131B2 (en) | 2016-05-11 | 2019-08-20 | Huya Bioscience International, Llc | Combination therapies of HDAC inhibitors and PD-L1 inhibitors |
| US10385130B2 (en) | 2016-05-11 | 2019-08-20 | Huya Bioscience International, Llc | Combination therapies of HDAC inhibitors and PD-1 inhibitors |
| US10287353B2 (en) | 2016-05-11 | 2019-05-14 | Huya Bioscience International, Llc | Combination therapies of HDAC inhibitors and PD-1 inhibitors |
| JP2019516733A (ja) * | 2016-05-20 | 2019-06-20 | イーライ リリー アンド カンパニー | Notch阻害剤とPD−1またはPD−L1阻害剤との併用療法 |
| US11826317B2 (en) | 2016-05-20 | 2023-11-28 | Eli Lilly And Company | Combination therapy with notch and PD-1 or PD-L1 inhibitors |
| CN109475629A (zh) * | 2016-05-20 | 2019-03-15 | 伊莱利利公司 | 用notch和pd-1或pd-l1抑制剂的组合治疗 |
| JP7194022B2 (ja) | 2016-05-20 | 2022-12-21 | イーライ リリー アンド カンパニー | Notch阻害剤とPD-1またはPD-L1阻害剤との併用療法 |
| WO2017205216A1 (en) | 2016-05-23 | 2017-11-30 | Eli Lilly And Company | Combination of pembrolizumab and abemaciclib for the treatment of cancer |
| WO2017202962A1 (en) * | 2016-05-24 | 2017-11-30 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and pharmaceutical compositions for the treatment of non small cell lung cancer (nsclc) that coexists with chronic obstructive pulmonary disease (copd) |
| US12187798B2 (en) | 2016-06-20 | 2025-01-07 | Invox Pharma Limited | LAG-3 binding members |
| WO2018055503A1 (en) | 2016-09-20 | 2018-03-29 | Novartis Ag | Combination comprising a pd-1 antagonist and an fgfr4 inhibitor |
| US11376259B2 (en) | 2016-10-12 | 2022-07-05 | Eli Lilly And Company | Targeted treatment of mature T-cell lymphoma |
| CN110461417A (zh) * | 2017-02-27 | 2019-11-15 | 诺华股份有限公司 | 色瑞替尼和抗pd-1抗体分子组合的给药方案 |
| WO2018154529A1 (en) * | 2017-02-27 | 2018-08-30 | Novartis Ag | Dosing schedule for a combination of ceritinib and an anti-pd-1 antibody molecule |
| JP2020508353A (ja) * | 2017-02-27 | 2020-03-19 | ノバルティス アーゲー | セリチニブ及び抗pd−1抗体分子の組合せのための投与スケジュール |
| US12193994B2 (en) | 2017-11-06 | 2025-01-14 | Juno Therapeutics, Inc. | Combination of a cell therapy and a gamma secretase inhibitor |
| US12344588B2 (en) | 2017-11-29 | 2025-07-01 | Taiho Pharmaceutical Co., Ltd. | Sulfonamide compounds and use thereof |
| US12103976B2 (en) | 2018-07-12 | 2024-10-01 | Invox Pharma Limited | Fc binding fragments comprising a CD137 antigen-binding site |
| US12325742B2 (en) | 2018-07-12 | 2025-06-10 | Invox Pharma Limited | Anti-mesothelin antibodies |
| US12344672B2 (en) | 2018-07-12 | 2025-07-01 | Invox Pharma Limited | Antibody molecules that bind PD-L1 and CD137 |
| US12247074B2 (en) | 2018-07-12 | 2025-03-11 | Invox Pharma Limited | Antibody molecules |
| US12252537B2 (en) | 2018-07-12 | 2025-03-18 | Invox Pharma Limited | Antibody molecules that bind CD137 and OX40 |
| US12297283B2 (en) | 2018-07-12 | 2025-05-13 | Invox Pharma Limited | Fc binding fragments comprising an OX40 antigen-binding site |
| US12319739B2 (en) | 2018-07-12 | 2025-06-03 | Invox Pharma Limited | Mesothelin and CD137 binding molecules |
| WO2020092743A3 (en) * | 2018-11-01 | 2020-07-23 | Memorial Sloan Kettering Cancer Center | Methods of treating diseases using kinase modulators |
| WO2021237022A1 (en) * | 2020-05-21 | 2021-11-25 | The Regents Of The University Of California | Compositions and methods for treating breast cancer |
| WO2022063220A1 (en) * | 2020-09-25 | 2022-03-31 | Ascentage Pharma (Suzhou) Co., Ltd. | A pharmaceutical composition and use thereof for treatment of cancer |
| CN116261455B (zh) * | 2020-09-25 | 2024-11-01 | 苏州亚盛药业有限公司 | 一种药物组合物及其在治疗癌症中的用途 |
| CN116261455A (zh) * | 2020-09-25 | 2023-06-13 | 苏州亚盛药业有限公司 | 一种药物组合物及其在治疗癌症中的用途 |
Also Published As
| Publication number | Publication date |
|---|---|
| CA2960824A1 (en) | 2016-03-17 |
| EP3191126B1 (en) | 2020-05-13 |
| RU2017112379A (ru) | 2018-10-15 |
| WO2016040882A1 (en) | 2016-03-17 |
| US9993551B2 (en) | 2018-06-12 |
| AU2015314756A1 (en) | 2017-03-16 |
| US20170304443A1 (en) | 2017-10-26 |
| EP3191097B1 (en) | 2019-10-23 |
| WO2016040892A1 (en) | 2016-03-17 |
| BR112017004826A2 (pt) | 2017-12-12 |
| KR20170060042A (ko) | 2017-05-31 |
| EP3925622A1 (en) | 2021-12-22 |
| EP3659621A1 (en) | 2020-06-03 |
| US20240075136A1 (en) | 2024-03-07 |
| EP3191097A1 (en) | 2017-07-19 |
| ES2771926T3 (es) | 2020-07-07 |
| JP6681905B2 (ja) | 2020-04-15 |
| EP3191127A1 (en) | 2017-07-19 |
| AU2018250507B2 (en) | 2020-02-06 |
| MX2017003227A (es) | 2017-12-04 |
| US11344620B2 (en) | 2022-05-31 |
| RU2718914C2 (ru) | 2020-04-15 |
| US20170296659A1 (en) | 2017-10-19 |
| EP3191126A1 (en) | 2017-07-19 |
| RU2017112379A3 (enExample) | 2019-04-17 |
| US20170281624A1 (en) | 2017-10-05 |
| AU2018250507A1 (en) | 2018-11-15 |
| CN107206071A (zh) | 2017-09-26 |
| JP2017532372A (ja) | 2017-11-02 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20240075136A1 (en) | Combination therapies | |
| US20210000951A1 (en) | Combination therapies | |
| CA2936962C (en) | Antibody molecules to lag-3 and uses thereof | |
| US20200030442A1 (en) | Combination therapies | |
| HK40019395A (en) | Combination therapies | |
| HK1242582A1 (en) | Combination therapies | |
| HK1242582B (en) | Combination therapies | |
| HK40031258A (en) | Antibody molecules to lag-3 and uses thereof | |
| HK1229355A1 (en) | Antibody molecules to lag-3 and uses thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15767682 Country of ref document: EP Kind code of ref document: A1 |
|
| REEP | Request for entry into the european phase |
Ref document number: 2015767682 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2015767682 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 15509649 Country of ref document: US |
|
| ENP | Entry into the national phase |
Ref document number: 2960824 Country of ref document: CA |
|
| WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2017/003227 Country of ref document: MX |
|
| ENP | Entry into the national phase |
Ref document number: 2017533719 Country of ref document: JP Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| ENP | Entry into the national phase |
Ref document number: 2015314756 Country of ref document: AU Date of ref document: 20150911 Kind code of ref document: A |
|
| REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112017004826 Country of ref document: BR |
|
| ENP | Entry into the national phase |
Ref document number: 20177009646 Country of ref document: KR Kind code of ref document: A |
|
| ENP | Entry into the national phase |
Ref document number: 2017112379 Country of ref document: RU Kind code of ref document: A |
|
| ENP | Entry into the national phase |
Ref document number: 112017004826 Country of ref document: BR Kind code of ref document: A2 Effective date: 20170310 |