WO2016035256A1 - シャント抵抗器 - Google Patents

シャント抵抗器 Download PDF

Info

Publication number
WO2016035256A1
WO2016035256A1 PCT/JP2015/003977 JP2015003977W WO2016035256A1 WO 2016035256 A1 WO2016035256 A1 WO 2016035256A1 JP 2015003977 W JP2015003977 W JP 2015003977W WO 2016035256 A1 WO2016035256 A1 WO 2016035256A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
bonding
wire
shunt resistor
bridging
Prior art date
Application number
PCT/JP2015/003977
Other languages
English (en)
French (fr)
Inventor
一平 川本
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201580038545.4A priority Critical patent/CN106537156A/zh
Priority to US15/316,595 priority patent/US9995771B2/en
Publication of WO2016035256A1 publication Critical patent/WO2016035256A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/146Measuring arrangements for current not covered by other subgroups of G01R15/14, e.g. using current dividers, shunts, or measuring a voltage drop
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/20Modifications of basic electric elements for use in electric measuring instruments; Structural combinations of such elements with such instruments
    • G01R1/203Resistors used for electric measuring, e.g. decade resistors standards, resistors for comparators, series resistors, shunts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/364Battery terminal connectors with integrated measuring arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/01Mounting; Supporting
    • H01C1/014Mounting; Supporting the resistor being suspended between and being supported by two supporting sections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C13/00Resistors not provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/40221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/40245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch

Definitions

  • the present disclosure relates to a shunt resistor to which a bonding wire for detecting a current value flowing between electrodes is connected.
  • the measurement of the current value using the shunt resistor is performed based on the resistance value of the resistor constituting the shunt resistor and the potential difference between both ends of the shunt resistor.
  • the current detection resistor described in Patent Document 1 includes a current-carrying part through which a current flows and a detection part protruding from the current-carrying part.
  • the detection unit is formed integrally with the energization unit, and detects the current value based on the resistance value of the energization unit and the potential difference between the two detection units.
  • the semiconductor module described in Patent Document 2 includes a connection conductor that functions as a shunt resistor, and bonding wires are bonded to leg portions of the connection conductor that contact a switching element or a lead frame to be connected. ing. The current value is detected based on the resistance value of the connecting conductor and the potential difference between the two bonding wires.
  • shunt resistors used in electronic devices mounted on vehicles have a large current flowing through the resistors.
  • the amount of heat generated in the resistor is also increasing, and from the viewpoint of heat dissipation, it is necessary to directly connect the shunt resistor to a member having a large heat capacity and a relatively high thermal conductivity, such as a lead frame.
  • the energization part and the detection part are integrally formed, and the processing is not easy, and the shape of the detection part is determined as one, so the connection destination of the detection part is free. There is no degree. For this reason, a space for forming a land pattern to be connected to the lead frame is required, which may hinder the required miniaturization.
  • the leg portion is connected to a connection target via a connection member such as solder.
  • the resistance value between the connecting portions of the two bonding wires is easily affected by conditions such as the material, amount, and arrangement of the connecting member.
  • the variation in resistance value directly affects the measurement error of the current value. That is, the conventional configuration may not have sufficient measurement accuracy of the current flowing through the connection conductor.
  • This disclosure has been made in view of the above points, and an object thereof is to provide a shunt resistor with improved current value measurement accuracy.
  • the shunt resistor includes at least a resistor having a resistance value set in advance, and bridges between the two electrodes to detect a voltage drop due to the resistor. Thus, the current value of the current flowing between the electrodes is detected.
  • the shunt resistor is fixed to each electrode via a conductive adhesive and electrically connected to a pair of connection parts, and extends from one connection part to the other connection part. And a pair of bonding wires for detecting a voltage drop of the resistor, and the bonding wire is bonded to the bridging portion.
  • the shunt resistor is configured to be formed integrally with the energization unit as in Patent Document 1.
  • the degree of freedom of the shape of the connection destination can be ensured. That is, even if the connection destination is a lead frame or the like, the restrictions on the land pattern shape can be relaxed, and the size reduction of the device in which the shunt resistor is arranged is not limited.
  • this shunt resistor is connected to the electrode whose connection is the connection target.
  • the connection between the connection portion and the electrode is made through a conductive adhesive such as solder.
  • the bonding wire in this shunt resistor is bonded to a bridging portion that bridges two connecting portions.
  • the resistance value between the connection parts of two bonding wires is not influenced by conditions, such as material, quantity, arrangement
  • FIG. 1 is a perspective view showing a schematic configuration of the shunt resistor according to the first embodiment.
  • FIG. 2 is a top view showing the relationship between the connection form of the bonding wire of the shunt resistor according to the conventional configuration and the loop area of the sense current
  • FIG. 3 is a top view showing the relationship between the connection form of the bonding wire of the shunt resistor according to the first embodiment and the loop area of the sense current
  • FIG. 4 is a top view showing a schematic configuration of the shunt resistor
  • FIG. 5 is a top view showing a schematic configuration of the shunt resistor according to the second embodiment.
  • FIG. 1 is a perspective view showing a schematic configuration of the shunt resistor according to the first embodiment.
  • FIG. 2 is a top view showing the relationship between the connection form of the bonding wire of the shunt resistor according to the conventional configuration and the loop area of the sense current
  • FIG. 3 is a top view showing the relationship between the connection form of the bonding wire of the
  • FIG. 6 is a perspective view showing a schematic configuration of the shunt resistor
  • FIG. 7 is a perspective view showing a schematic configuration of a shunt resistor according to another embodiment
  • FIG. 8 is a perspective view showing a schematic configuration of a shunt resistor according to another embodiment.
  • the x direction, the y direction orthogonal to the x direction, and the z direction orthogonal to the xy plane defined by the x direction and the y direction are defined as directions. That is, the x direction, the y direction, and the z direction are linearly independent from each other.
  • the shunt resistor 100 has a surface along the xy plane, and electrically connects two electrodes 200 arranged in the x direction.
  • the shunt resistor 100 described here connects the first electrode 200a and the second electrode 200b.
  • the electrode 200 is, for example, a land formed on a certain substrate or a lead frame, and its configuration is not limited.
  • the shunt resistor 100 includes a pair of connecting portions 10 connected to the electrode 200 via a solder 300 as a conductive adhesive, and a bridging portion 20 that bridges the two connecting portions 10.
  • the bridging part 20 has a main part 21, an intermediate part 22, and a resistor 23.
  • the shunt resistor 100 includes a bonding wire 30 for detecting the current value of the current flowing through the resistor 23.
  • connection unit 10 has a first terminal 10a connected to the first electrode 200a and a second terminal 10b connected to the second electrode 200b.
  • the connecting portion 10 has a planar shape along the xy plane, and the surface of the connecting portion 10 that faces the electrode 200 is connected to the electrode 200 via the solder 300.
  • the main part 21 in the bridging part 20 is constituted by a first main part 21a and a second main part 21b, both of which are plate-like members along the xy plane.
  • the resistor 23 formed along the xy plane is arranged so as to be sandwiched between the first main portion 21a and the second main portion 21b.
  • the 1st main part 21a, the resistor 23, and the 2nd main part 21b are joined along with the x direction in this order, and become the integral conductor as a whole.
  • the conductor in which the first main portion 21a, the resistor 23, and the second main portion 21b are integrated is extended in the x direction to electrically connect the first terminal 10a and the second terminal 10b.
  • the main portion 21, together with the resistor 23, is formed at a position higher than the connection portion 10 in the z direction.
  • the mediation part 22 in the bridging part 20 connects the connection part 10 and the main part 21 as shown in FIG.
  • the main part 21 and the connection part 10 are integrally formed via the mediation part 22.
  • the 1st main part 21a and the 1st terminal 10a are connected via the 1st mediation part 22a
  • the 2nd main part 21b and the 2nd terminal 10b are connected via the 2nd mediation part 22b.
  • the bridging portion 20 has a substantially trapezoidal shape that forms an upper base and legs.
  • a plate-shaped member in which the main portion 21 and the resistor 23 are integrally formed is an upper base, and a substantially trapezoidal shape having the mediating portion 22 as a leg portion is formed.
  • the main portion 21 and the mediation portion 22 in the bridging portion 20 are conductive portions made of metal such as copper, for example, and have a resistivity lower than that of the resistor 23.
  • the resistor 23 is made of, for example, CnMnSn or CuMnNi as a main component.
  • the bonding wire 30 is made of a generally known material such as aluminum.
  • the bonding wire 30 is connected to a sense electrode 400 for detecting the potential of the bonding wire 30.
  • the bonding wire 30 has a first wire 30a and a second wire 30b.
  • the first wire 30 a has a first end bonded to the first main portion 21 a and a second end connected to the first sense electrode 400 a of the sense electrode 400.
  • the second wire 30 b has a first end bonded to the second main portion 21 b and a second end connected to the second sense electrode 400 b of the sense electrode 400. That is, one end of the bonding wire 30 in the present embodiment is bonded to the main portion 21 corresponding to the upper base in the bridging portion 20 having a substantially trapezoidal shape.
  • connection conductor disclosed in Patent Document 2 (Japanese Patent Laid-Open No. 2013-179744)
  • a bonding wire is bonded to a portion corresponding to the connection portion 10. Since the solder 300 is disposed immediately below the connection portion 10, the resistance value and TCR (resistance temperature coefficient) between the connection positions of the bonding wire 30 are the conditions such as the component and amount of the solder 300, the arrangement, and the shape when fixed. If it fluctuates according to, it will affect the potential difference observed between the first wire 30a and the second wire 30b.
  • the bonding wire 30 is bonded to the bridging portion 20, more specifically, the main portion 21.
  • the solder 300 is interposed between the connection portion 10 and the electrode 200, the solder 300 is not in contact with the main portion 21. Therefore, the presence of the solder 300 does not affect the potential difference observed between the first wire 30a and the second wire 30b. That is, variation in potential difference due to the solder 300 can be suppressed, and as a result, the current value of the current flowing through the resistor 23 can be detected more accurately.
  • the bonding wire 30 is bonded to the main portion 21 corresponding to the upper bottom in the bridging portion 20 having a substantially trapezoidal shape. Since the bridging portion 20 has a trapezoidal arch structure, the bending of the bridging portion 20 can be suppressed against the force that works the main portion 21 from the upper bottom side to the lower bottom side. That is, since the bonding wire 30 can be bonded stably, connection reliability can be improved.
  • the first wire 30a caused by the magnetic flux generated due to the current flowing between the two electrodes 200 (shown as the main current in FIGS. 2 and 3)
  • the influence on the potential difference observed with the second wire 30b can be reduced. This will be specifically described below.
  • FIG. 2 shows, as a top view, an aspect in the case where the bonding wire 30 is connected to the connecting portion 10 as in the prior art.
  • the magnetic flux caused by the main current passes through a region (region indicated by hatching in FIG. 2) surrounded by the current path of the sense current flowing through the bonding wire 30.
  • an induced electromotive force is generated in the current path of the sense current. Therefore, the induced electromotive force is generated in the potential difference observed between the first wire 30a and the second wire 30b. Will be superimposed.
  • the induced electromotive force increases as the area of the region surrounded by the current path of the sense current (hereinafter referred to as loop area) increases.
  • FIG. 3 shows a top view of the aspect of the shunt resistor 100 in the present embodiment.
  • the loop area S2 in this embodiment can be made smaller than the loop area S1 in the conventional configuration. For this reason, since the induced electromotive force generated in the current path of the sense current can be reduced as compared with the conventional configuration, the influence of the magnetic flux on the potential difference observed between the first wire 30a and the second wire 30b. Can be reduced.
  • the bonding position on the main part 21 is arranged in the vicinity of the boundary between the main part 21 and the resistor 23, and the first wire 30a and the second wire 30b are located between the bonding positions of each other. It is preferable that the distance be substantially the minimum in the extending direction of the bridging portion 20 (the x direction in FIG. 4).
  • the influence on the potential difference observed between the first wire 30a and the second wire 30b of the resistance value of the conductive portion excluding the resistor 23 and the TCR in the bridging portion 20 is substantially minimized. Can do.
  • the loop area of the sense current can be reduced, the induced electromotive force caused by the main current is suppressed, and noise superimposed on the potential difference observed between the first wire 30a and the second wire 30b is reduced. can do. That is, the current value of the main current flowing through the resistor 23 can be detected with higher accuracy.
  • the two bonding wires 30, that is, the first wire 30a and the second wire 30b in the shunt resistor 100 of the present embodiment are extended in the extending direction of the bridging portion 20 (the x direction in FIG. 5).
  • the same direction indicates that both the first wire 30a and the second wire 30b are drawn toward the left side of the drawing in FIG. That is, the first wire 30a and the second wire 30b are extended in the x direction and drawn side by side in the y direction.
  • the configuration excluding the routing of the bonding wire 30 is the same as that of the first embodiment.
  • the bonding wire 30 is pulled out in a direction (y direction) substantially orthogonal to the extending direction.
  • the distance between the first wire 30a and the second wire 30b can be reduced. Therefore, compared to the first embodiment, the loop area of the sense current can be further reduced, so that the induced electromotive force due to the main current can be suppressed. Noise superimposed on the potential difference observed between the first wire 30a and the second wire 30b can be reduced. That is, the current value of the main current flowing through the resistor 23 can be detected with higher accuracy.
  • the bonding positions on the bonding surfaces of the first wire 30a and the second wire 30b are It is good to comprise so that it may be located on the virtual line L along an extending direction (x direction).
  • the first wire 30a and the second wire 30b extend in the x direction and are drawn side by side in the z direction.
  • the y-coordinates on the main portion 21 of the first wire 30a and the second wire 30b coincide with each other, and the first wire 30a and the second wire 30b overlap each other when viewed in plan from the z direction.
  • the loop area of the sense current can be further reduced as compared with the aspect in which the y-coordinate positions are different from each other. Therefore, the induced electromotive force caused by the main current can be suppressed, and noise superimposed on the potential difference observed between the first wire 30a and the second wire 30b can be reduced.
  • the mediation unit 22 may have a rectangular shape orthogonal to the connection unit 10, or the mediation unit 22 may be curved to connect the connection unit 10 and the main unit 21.
  • the present disclosure is applied even in a mode in which the bridging portion 20 does not have an intermediary portion and the connecting portion 10, the main portion 21, and the resistor 23 form a flat plate as a whole. be able to.
  • the bonding wire 30 is bonded to the main portion 21 where the solder 300 does not contact.
  • the presence of the solder 300 does not affect the potential difference observed between the first wire 30a and the second wire 30b. That is, variation in potential difference due to the solder 300 can be suppressed, and as a result, the current value of the current flowing through the resistor 23 can be detected more accurately.
  • the resistance value used for calculation of the current value flowing through the resistor 23 is calculated from the resistivity of the resistor 23, the cross-sectional area of the bridging portion 20, and the distance between the bonding positions of the bonding wire 30. Is done.
  • first wire 30a and the second wire 30b are drawn out in substantially the same direction and substantially parallel to the extending direction of the bridging portion 20 .
  • substantially parallel and “substantially the same” mean that the direction in which the bonding wire 30 is drawn out does not have to be completely parallel and does not have to be completely the same. That is, if the first wire 30a and the second wire 30b are pulled out substantially parallel to the extending direction of the bridging portion 20 and the directions are substantially the same, the above-described effects can be obtained.
  • the position where the bonding wire 30 is struck is as close as possible to the boundary between the resistor 23 and the main portion 21. More specifically, as shown in FIG. Even if it is on the resistor 23 side or on the resistor 23 from the boundary, it does not depart from the gist of the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Details Of Resistors (AREA)

Abstract

 シャント抵抗器は、少なくとも一部に、予め抵抗値が設定された抵抗体(23)を有し、2つの電極(200a、200b)の間を架橋して、抵抗体による電圧降下を検出することにより電極の間に流れる電流の電流値を検出する。そして、このシャント抵抗器は、導電性接着材(300)を介して各々の電極に固定され、電気的に接続される一対の接続部(10a、10b)と、一方の接続部から、他方の接続部へ延設され、接続部の間を架橋する架橋部(20)と、抵抗体の電圧降下を検出するための一対のボンディングワイヤ(30)と、を備え、ボンディングワイヤは、架橋部にボンディングされる。

Description

シャント抵抗器 関連出願の相互参照
 本出願は、2014年9月3日に出願された日本出願番号2014-179482号に基づくもので、ここにその記載内容を援用する。
 本開示は、電極間に流れる電流値を検出するためのボンディングワイヤが接続されるシャント抵抗器に関するものである。
 シャント抵抗器を用いた電流値の測定は、シャント抵抗器を構成する抵抗体の抵抗値と、シャント抵抗器の両端の電位差とに基づいて行われる。
 特許文献1に記載の電流検出用抵抗器は、電流が流れる通電部と、通電部から突出した検出部とを備えている。検出部は通電部と一体的に形成されており、通電部の抵抗値と、2つの検出部の電位差とに基づいて電流値を検出する。
 また、特許文献2に記載の半導体モジュールは、シャント抵抗器として機能する接続導体を備えており、接続導体のうち、接続対象であるスイッチング素子やリードフレームと接触する脚部にボンディングワイヤがボンディングされている。接続導体の抵抗値と、2つのボンディングワイヤ間の電位差とに基づいて電流値を検出する。
特開2004-221160号公報 特開2013-179744号公報
 ところで、近年、例えば車両に搭載される電子機器などで用いられるシャント抵抗器は、抵抗体を流れる電流が大電流化している。これに伴って抵抗体における発熱量も増大しつつあり、放熱の観点から、シャント抵抗器をリードフレーム等の、熱容量が大きく熱伝導率の比較的高い部材に直接接続する必要が生じている。
 これに対し、特許文献1の技術では、通電部と検出部が一体的に形成されており、加工が容易ではない上、検出部の形状がひとつに決まっているため検出部の接続先に自由度がない。このため、リードフレームに接続先のランドパターンを形成するためのスペースが必要となり、要求される小型化を阻害してしまう虞がある。
 一方、特許文献2に記載の技術では、脚部は接続対象との間にはんだ等の接続部材を介して接続される。この接続部材の材質や量、配置などの条件によって、2本のボンディングワイヤの接続箇所間の抵抗値が影響を受けやすい。抵抗値のばらつきは電流値の測定誤差へ直接影響してしまう。つまり、従来のような構成では接続導体を流れる電流の測定精度が十分でない場合がある。
 本開示は、上記の点を鑑みてなされたものであり、電流値の測定精度を向上させたシャント抵抗器を提供することを目的とする。
 本開示の第一の態様において、シャント抵抗器は、少なくとも一部に、予め抵抗値が設定された抵抗体を有し、2つの電極の間を架橋して、抵抗体による電圧降下を検出することにより電極の間に流れる電流の電流値を検出する。シャント抵抗器は、導電性接着材を介して各々の電極に固定され、電気的に接続される一対の接続部と、一方の接続部から、他方の接続部へ延設され、接続部の間を架橋する架橋部と、抵抗体の電圧降下を検出するための一対のボンディングワイヤと、を備え、ボンディングワイヤは、架橋部にボンディングされる。
 これによれば、このシャント抵抗器は、抵抗体における電圧降下を検出するための配線がボンディングワイヤによって構成されているから、特許文献1のように、通電部と一体的に形成される構成に較べて、接続先の形状の自由度を確保することができる。すなわち、接続先がリードフレーム等であっても、ランドパターン形状の制約を緩和することができ、シャント抵抗器が配置される機器の体格の小型化を制限しない。
 また、このシャント抵抗器は、接続部が接続対象である電極に接続される。接続部と電極との接続は、はんだ等の導電性接着材を介して行われる。ところで、このシャント抵抗器におけるボンディングワイヤは、2つの接続部を架橋する架橋部にボンディングされている。このため、はんだ等の導電性接着材の材質や量、配置などの条件によって、2本のボンディングワイヤの接続箇所間の抵抗値が影響を受けない。したがって、導電性接着材に起因する抵抗値のばらつきを抑制することができ、抵抗体を流れる電流の測定精度を向上させることができる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態に係るシャント抵抗器の概略構成を示す斜視図であり、 図2は、従来構成に係るシャント抵抗器のボンディングワイヤの接続形態とセンス電流のループ面積の関係し示す上面図であり、 図3は、第1実施形態に係るシャント抵抗器のボンディングワイヤの接続形態とセンス電流のループ面積の関係し示す上面図であり、 図4は、シャント抵抗器の概略構成を示す上面図であり、 図5は、第2実施形態に係るシャント抵抗器の概略構成を示す上面図であり、 図6は、シャント抵抗器の概略構成を示す斜視図であり、 図7は、その他の実施形態に係るシャント抵抗器の概略構成を示す斜視図であり、 図8は、その他の実施形態に係るシャント抵抗器の概略構成を示す斜視図である。
 以下、本開示の実施の形態を図面に基づいて説明する。なお、以下の各図相互において、互いに同一もしくは均等である部分に、同一符号を付与する。また、方向として、x方向と、x方向に直交するy方向と、x方向とy方向により規定されるxy平面に直交するz方向と、を定義する。つまり、x方向、y方向、および、z方向は互いに一次独立である。
 (第1実施形態)
 最初に、図1を参照して、本実施形態に係るシャント抵抗器の概略構成について説明する。
 図1に示すように、このシャント抵抗器100は、xy平面に沿う面を有し、x方向に並ぶ2つの電極200を互いに電気的に接続する。ここで説明するシャント抵抗器100は、第1電極200aと第2電極200bとを接続している。なお、電極200は、例えばある基板上に形成されたランドであったり、リードフレームであったりであって、その構成は限定されない。
 シャント抵抗器100は、導電性接着材としてのはんだ300を介して電極200に接続される一対の接続部10と、2つの接続部10の間を架橋する架橋部20と、を備えている。架橋部20は、主部21と仲介部22と抵抗体23とを有している。そして、シャント抵抗器100は、抵抗体23に流れる電流の電流値を検出するためのボンディングワイヤ30を備えている。
 接続部10は、図1に示すように、第1電極200aに接続される第1端子10aと、第2電極200bに接続される第2端子10bとを有している。接続部10は、xy平面の沿う面状であり、接続部10における、電極200に対向する面は、はんだ300を介して電極200に接続されている。
 架橋部20における主部21は、第1主部21aと第2主部21bとにより構成され、いずれもxy平面に沿う板状の部材である。そして、同じくxy平面に沿って形成された抵抗体23が第1主部21aと第2主部21bとに挟まれるように配置されている。図1に示すように、第1主部21a、抵抗体23、第2主部21bがこの順でx方向に並んで接合され、全体として一体的な導体となっている。そして、第1主部21a、抵抗体23、第2主部21bが一体となった導体はx方向に延設されて第1端子10aと第2端子10bとを電気的に接続している。主部21は、抵抗体23とともに、z方向において接続部10よりも高い位置に形成されている。
 架橋部20における仲介部22は、図1に示すように、接続部10と主部21とを繋いでいる。主部21と接続部10は仲介部22を介して一体的に形成されている。具体的には、第1主部21aと第1端子10aは第1仲介部22aを介して接続され、第2主部21bと第2端子10bは第2仲介部22bを介して接続されている。このシャント抵抗器100をy方向から正面視した場合、架橋部20は、上底および脚部となるような略台形を成している。具体的には、主部21と抵抗体23とが一体的に構成された板状の部材を上底とし、仲介部22を脚部とする略台形を成している。
 なお、架橋部20における主部21および仲介部22は、例えば銅などの金属から成る導電部であり、抵抗体23よりも抵抗率が小さくされている。なお、抵抗体23は、例えばCnMnSnやCuMnNiを主成分として形成されている。
 ボンディングワイヤ30は、例えばアルミニウムなどの一般的に知られた材料から成る。ボンディングワイヤ30は、ボンディングワイヤ30の電位を検出するためのセンス電極400に接続されている。ボンディングワイヤ30は第1ワイヤ30aと第2ワイヤ30bとを有している。図1に示すように、第1ワイヤ30aは、第1端が第1主部21aにボンディングされ、第2端がセンス電極400のうち第1センス電極400aに接続されている。第2ワイヤ30bは、第1端が第2主部21bにボンディングされて、第2端がセンス電極400のうち第2センス電極400bに接続されている。すなわち、本実施形態におけるボンディングワイヤ30は、その一端が、略台形を成す架橋部20のうち、上底に相当する主部21にボンディングされている。
 次に、図2~図4を参照して、本実施形態に係るシャント抵抗器100の作用効果について説明する。
 上記した構成において、第1電極200aと第2電極200bとの間に電位差が生じると、接続部10、仲介部22、主部21を介して抵抗体23に電流が流れる。第1ワイヤ30aと第2ワイヤ30bとの間で観測される電位差は、ボンディングワイヤ30のボンディング位置に依存する。その原因の一つは、架橋部20または接続部10における、ボンディングワイヤ30の接続位置間の距離である。この距離が長くなれば接続位置間の抵抗値が大きくなり、第1ワイヤ30aと第2ワイヤ30bとの間で観測される電位差も大きくなる。
 他の原因は、はんだ300の成分や量、配置、固定時の形状などの条件である。特許文献2(特開2013-179744号公報)に示された接続導体では、ボンディングワイヤが接続部10に相当する部分にボンディングされている。はんだ300は接続部10の直下に配置されているので、ボンディングワイヤ30の接続位置間の抵抗値やTCR(抵抗温度係数)が、はんだ300の成分や量、配置、固定時の形状などの条件によって変動すると、第1ワイヤ30aと第2ワイヤ30bとの間で観測される電位差にも影響が現れてしまう。
 これに対して、本実施形態におけるシャント抵抗器100は、ボンディングワイヤ30が架橋部20、より具体的には主部21、にボンディングされている。上記のように、はんだ300は接続部10と電極200との間に介在しているので、主部21には接触していない。よって、はんだ300の存在は、第1ワイヤ30aと第2ワイヤ30bとの間で観測される電位差に影響を与えない。すなわち、はんだ300による電位差のばらつきを抑制することができ、ひいては、抵抗体23を流れる電流の電流値をより精度よく検出することができる。
 また、本実施形態では、ボンディングワイヤ30が略台形を成す架橋部20のうち、上底に相当する主部21にボンディングされている。架橋部20が台形アーチ構造をしているので、主部21を上底側から下底側に働く力に対して、架橋部20の撓みを抑制することができる。すなわち、ボンディングワイヤ30を安定してボンディングすることができるので、接続信頼性を向上することができる。
 さらに、本実施形態におけるシャント抵抗器100によれば、2つの電極200の間を流れる電流(図2、図3にて主電流と示す)に起因して発生する磁束による、第1ワイヤ30aと第2ワイヤ30bとの間で観測される電位差への影響を軽減することができる。以下、具体的に説明する。
 図2は、従来のように、ボンディングワイヤ30が接続部10に接続される場合の態様を上面図として示している。主電流に起因する磁束は、ボンディングワイヤ30を流れるセンス電流の電流経路によって囲まれた領域(図2に斜線で示す領域)を貫く。主電流の時間変化に応じて磁束が変化すると、センス電流の電流経路に誘導起電力が発生するため、第1ワイヤ30aと第2ワイヤ30bとの間で観測される電位差に誘導起電力がノイズとして重畳してしまう。このセンス電流の電流経路によって囲まれた領域の面積(以下、ループ面積という)が大きいほど誘導起電力が大きくなる。
 図3は、本実施形態におけるシャント抵抗器100の態様を上面図として示している。このシャント抵抗器100は、ボンディングワイヤ30が架橋部20の主部21に接続されているので、従来の構成におけるループ面積S1に較べて、本実施形態におけるループ面積S2を小さくすることができる。このため、センス電流の電流経路に発生する誘導起電力を従来構成に較べて小さくすることができるので、磁束による、第1ワイヤ30aと第2ワイヤ30bとの間で観測される電位差への影響を軽減することができる。
 なお、図4に示すように、主部21上のボンディング位置を、主部21と抵抗体23との境界近傍に配置し、第1ワイヤ30aおよび第2ワイヤ30bの、互いのボンディング位置間の距離が、架橋部20の延設方向(図4ではx方向)において略最小になるようにすると良い。
 これによれば、架橋部20のうち抵抗体23を除く導電部の抵抗値およびTCRの、第1ワイヤ30aと第2ワイヤ30bとの間で観測される電位差に与える影響を略最小にすることができる。また、センス電流のループ面積を小さくすることができるので、主電流に起因する誘導起電力を抑制し、第1ワイヤ30aと第2ワイヤ30bとの間で観測される電位差に重畳するノイズを軽減することができる。すなわち、抵抗体23を流れる主電流の電流値をより精度よく検出することができる。
 (第2実施形態)
 第1実施形態では、ボンディングワイヤ30について、ボンディング位置について詳しく説明した。一方、本実施形態では、ボンディングワイヤ30の引き回しに着目する。
 図5に示すように、本実施形態のシャント抵抗器100における2本のボンディングワイヤ30、すなわち、第1ワイヤ30aおよび第2ワイヤ30bは、架橋部20の延設方向(図5におけるx方向)に対して略平行であり、且つ、略同一の方向に向かって引き出されている。同一の方向とは、第1ワイヤ30aおよび第2ワイヤ30bがともに、図5における紙面左側に向かって引き出されていることを示している。つまり、第1ワイヤ30aと第2ワイヤ30bは、x方向に延設され、y方向に横並びで引き出されている。なお、ボンディングワイヤ30の引き回しを除く構成は第1実施形態と同一である。
 これによれば、図2に示す従来の構成や図3に示す第1実施形態のように、ボンディングワイヤ30を延設方向に対して略直交する方向(y方向)に引き出す態様に較べて、第1ワイヤ30aと第2ワイヤ30bの相互間距離を小さくすることができる。よって、第1実施形態に較べて、センス電流のループ面積をさらに小さくすることができるので、主電流に起因する誘導起電力を抑制することができる。第1ワイヤ30aと第2ワイヤ30bとの間で観測される電位差に重畳するノイズを軽減することができる。すなわち、抵抗体23を流れる主電流の電流値をより精度よく検出することができる。
 さらにいえば、ボンディングワイヤ30がボンディングされるボンディング面を正面視したとき、すなわち、図6に示すz方向から正面視したとき、第1ワイヤ30aおよび第2ワイヤ30bのボンディング面におけるボンディング位置が、延設方向(x方向)に沿う仮想線L上に位置するように構成すると良い。この構成では、第1ワイヤ30aと第2ワイヤ30bは、x方向に延設され、z方向に横並びで引き出されている。
 これによれば、第1ワイヤ30aと第2ワイヤ30bの主部21上におけるy座標が互いに一致しており、z方向から平面視すると、第1ワイヤ30aと第2ワイヤ30bは互いに重なり合う。このため、図5に示したように、y座標の位置が互いに異なっている態様に較べてセンス電流のループ面積をより小さくすることができる。よって、主電流に起因する誘導起電力を抑制することができ、第1ワイヤ30aと第2ワイヤ30bとの間で観測される電位差に重畳するノイズを軽減することができる。
 (その他の実施形態)
 以上、本開示の好ましい実施形態について説明したが、本開示は上記した実施形態になんら制限されることなく、本開示の主旨を逸脱しない範囲において、種々変形して実施することが可能である。
 上記した各実施形態では、架橋部20がy方向から正面視した場合に略台形となる態様について例示したが、これに限定されるものではない。例えば、仲介部22が接続部10に対して直交した矩形状となっていてもよいし、仲介部22が湾曲して接続部10と主部21とを繋いでいてもよい。さらには、図7に示すように、架橋部20が仲介部を有さず、接続部10、主部21、抵抗体23が全体として平板を成すような態様であっても本開示を適用することができる。ボンディングワイヤ30は、はんだ300が接触しない主部21にボンディングされている。
 このため、はんだ300の存在は、第1ワイヤ30aと第2ワイヤ30bとの間で観測される電位差に影響を与えない。すなわち、はんだ300による電位差のばらつきを抑制することができ、ひいては、抵抗体23を流れる電流の電流値をより精度よく検出することができる。
 また、上記した各実施形態では、架橋部20の一部が抵抗体23として第1主部21aと第2主部21bに挟まれて形成された例について説明したが、この例に限定されない。接続部10、主部21、仲介部22のいずれもが抵抗体23と同一の材料で一体的に構成された態様であっても本開示を適用することができる。ボンディングワイヤ30が主部21に相当する部分にボンディングされることにより、第1ワイヤ30aと第2ワイヤ30bとの間で観測される電位差ははんだ300から影響を受けず、はんだ300による電位差のばらつきを抑制することができる。このような態様では、抵抗体23に流れる電流値の計算に用いる抵抗値は、抵抗体23の抵抗率と、架橋部20の断面積と、ボンディングワイヤ30のボンディング位置間の距離と、により算出される。
 また、第2実施形態において、第1ワイヤ30aと第2ワイヤ30bを、架橋部20の延設方向に略平行かつ略同一の方向に引き出す例を示した。ここでの略平行および略同一とは、ボンディングワイヤ30の引き出す方向が、完全に平行である必要はなく、また、完全に同一の方向である必要はないことを意味している。すなわち、第1ワイヤ30aおよび第2ワイヤ30bは、架橋部20の延設方向に対してほぼ平行に引き出され、その方向がほぼ同一になっていれば、上記した作用効果を奏することができる。
 また、ボンディングワイヤ30を打つ位置は、出来る限り抵抗体23と主部21との境界の近くに打つことが好ましく、さらに言えば、図8に示すように、境界の直上であっても、あるいは境界よりも抵抗体23側または抵抗体23の上であっても本開示の趣旨を逸脱しない。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

 

Claims (7)

  1.  少なくとも一部に、予め抵抗率が設定された抵抗体(23)を有し、
     2つの電極(200a,200b)の間を架橋して、前記抵抗体による電圧降下を検出することにより前記電極の間に流れる電流の電流値を検出するシャント抵抗器であって、
     導電性接着材(300)を介して各々の前記電極に固定され、電気的に接続される一対の接続部(10a,10b)と、
     一方の前記接続部から、他方の前記接続部へ延設され、前記接続部の間を架橋する架橋部(20)と、
     前記抵抗体の電圧降下を検出するための一対のボンディングワイヤ(30)と、を備え、
     前記ボンディングワイヤは、前記架橋部にボンディングされるシャント抵抗器。
  2.  前記架橋部は、前記抵抗体よりも抵抗率の小さい導電部(21,22)を有し、前記架橋部の延設方向において、前記抵抗体が前記導電部に挟まれて形成され、
     2つの前記ボンディングワイヤは、前記抵抗体を挟む前記導電部にそれぞれボンディングされる請求項1に記載のシャント抵抗器。
  3.  前記ボンディングワイヤがボンディングされるボンディング面に直交し、前記架橋部の延設方向に沿う断面において、
     前記架橋部が前記接続部に対して凸形状である請求項1または請求項2に記載のシャント抵抗器。
  4.  前記ボンディングワイヤがボンディングされるボンディング面に直交し、前記架橋部の延設方向に沿う断面において、
     前記架橋部が上底および脚部となるような台形を成し、
     前記抵抗体は少なくとも前記上底に形成され、
     前記ボンディングワイヤは、前記上底にボンディングされる請求項3に記載のシャント抵抗器。
  5.  2つの前記ボンディングワイヤにおける互いのボンディング位置は、前記延設方向における距離が、前記抵抗体を挟んで最小となる請求項2~4のいずれか1項に記載のシャント抵抗器。
  6.  前記ボンディングワイヤは、前記架橋部の延設方向に対して平行かつ同一方向に引き出される請求項1~5のいずれか1項に記載のシャント抵抗器。
  7.  前記ボンディングワイヤがボンディングされるボンディング面を正面視したとき、
     2つの前記ボンディングワイヤの、前記ボンディング面における2つのボンディング位置は、前記延設方向に沿う仮想線上に位置する請求項6に記載のシャント抵抗器。

     
PCT/JP2015/003977 2014-09-03 2015-08-07 シャント抵抗器 WO2016035256A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580038545.4A CN106537156A (zh) 2014-09-03 2015-08-07 分流电阻器
US15/316,595 US9995771B2 (en) 2014-09-03 2015-08-07 Shunt resistor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014179482A JP6384211B2 (ja) 2014-09-03 2014-09-03 シャント抵抗器
JP2014-179482 2014-09-03

Publications (1)

Publication Number Publication Date
WO2016035256A1 true WO2016035256A1 (ja) 2016-03-10

Family

ID=55439347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003977 WO2016035256A1 (ja) 2014-09-03 2015-08-07 シャント抵抗器

Country Status (4)

Country Link
US (1) US9995771B2 (ja)
JP (1) JP6384211B2 (ja)
CN (1) CN106537156A (ja)
WO (1) WO2016035256A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017188527A (ja) * 2016-04-04 2017-10-12 ダイキン工業株式会社 電子回路装置
CN110268276A (zh) * 2017-02-14 2019-09-20 Koa株式会社 电流测量装置以及用于电流检测的电阻器

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6645396B2 (ja) * 2016-10-07 2020-02-14 株式会社デンソー 半導体装置
JP6983527B2 (ja) * 2017-03-30 2021-12-17 Koa株式会社 電流検出用抵抗器
JP2019035610A (ja) * 2017-08-10 2019-03-07 Koa株式会社 電流測定装置
JP2019075521A (ja) * 2017-10-19 2019-05-16 株式会社デンソー シャント抵抗器及びその製造方法
JP7049811B2 (ja) 2017-11-15 2022-04-07 サンコール株式会社 シャント抵抗器
KR102312445B1 (ko) * 2018-03-28 2021-10-12 주식회사 엘지에너지솔루션 션트 저항 및 이를 포함하는 전류 검출 장치
JP7446798B2 (ja) 2019-12-05 2024-03-11 Koa株式会社 シャント抵抗モジュール
JP7089555B2 (ja) * 2020-07-03 2022-06-22 大同特殊鋼株式会社 電流検出用抵抗器、回路基板及び電流検出用抵抗器の製造方法
CN111829683B (zh) * 2020-07-24 2021-05-11 浙江瑞银电子有限公司 一种利用材料间电阻率温度系数差异的间接测温方法
JP2024047775A (ja) 2022-09-27 2024-04-08 矢崎総業株式会社 電流検出装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06186254A (ja) * 1992-12-16 1994-07-08 Mitsubishi Electric Corp 電流検出用チップ形抵抗体
JP2000131349A (ja) * 1998-10-26 2000-05-12 Matsushita Electric Works Ltd 分流器
JP2004221160A (ja) * 2003-01-10 2004-08-05 Mitsubishi Electric Corp 電流検出用抵抗器
JP2005181056A (ja) * 2003-12-18 2005-07-07 Microjenics Inc 電流検出用抵抗器
JP2008039571A (ja) * 2006-08-04 2008-02-21 Denso Corp 電流センサ
US20090174522A1 (en) * 2008-01-08 2009-07-09 Infineon Technologies Ag Arrangement comprising a shunt resistor and method for producing an arrangement comprising a shunt resistor
WO2013015219A1 (ja) * 2011-07-22 2013-01-31 コーア株式会社 シャント抵抗装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5068636A (en) * 1989-10-26 1991-11-26 Doble Engineering Company Current shunting
DE4243349A1 (de) 1992-12-21 1994-06-30 Heusler Isabellenhuette Herstellung von Widerständen aus Verbundmaterial
JP2987302B2 (ja) * 1994-12-28 1999-12-06 太陽誘電株式会社 電流検知抵抗器及びその調整方法
JP2000114454A (ja) * 1998-09-30 2000-04-21 Fujitsu Ten Ltd トランジスタの構造
DE10116531B4 (de) 2000-04-04 2008-06-19 Koa Corp., Ina Widerstand mit niedrigem Widerstandswert
US6798189B2 (en) 2001-06-14 2004-09-28 Koa Corporation Current detection resistor, mounting structure thereof and method of measuring effective inductance
JP2008082957A (ja) 2006-09-28 2008-04-10 Denso Corp シャント抵抗器
JP2008275418A (ja) * 2007-04-27 2008-11-13 Omron Corp 配線基板、電流検出装置
JP2009098079A (ja) 2007-10-18 2009-05-07 Fujitsu Ten Ltd シャント抵抗器、電流監視装置および電流監視方法
JP5298336B2 (ja) 2009-06-18 2013-09-25 コーア株式会社 シャント抵抗器およびその製造方法
US8253427B2 (en) * 2009-07-02 2012-08-28 Fluke Corporation Resistance bridge architecture and method
JP2012233706A (ja) 2011-04-28 2012-11-29 Koa Corp シャント抵抗器の実装構造
US8952686B2 (en) * 2011-10-25 2015-02-10 Honeywell International Inc. High current range magnetoresistive-based current sensor
WO2013121872A1 (ja) * 2012-02-14 2013-08-22 コーア株式会社 抵抗器の端子接続構造
JP5477669B2 (ja) 2012-02-28 2014-04-23 株式会社デンソー 半導体モジュール
JP5545334B2 (ja) * 2012-09-13 2014-07-09 ダイキン工業株式会社 電子回路装置
JP6131018B2 (ja) 2012-10-08 2017-05-17 株式会社デンソー シャント抵抗器およびその実装方法
CN103278783B (zh) * 2013-05-10 2015-11-25 中国科学院物理研究所 磁场传感器和霍尔器件

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06186254A (ja) * 1992-12-16 1994-07-08 Mitsubishi Electric Corp 電流検出用チップ形抵抗体
JP2000131349A (ja) * 1998-10-26 2000-05-12 Matsushita Electric Works Ltd 分流器
JP2004221160A (ja) * 2003-01-10 2004-08-05 Mitsubishi Electric Corp 電流検出用抵抗器
JP2005181056A (ja) * 2003-12-18 2005-07-07 Microjenics Inc 電流検出用抵抗器
JP2008039571A (ja) * 2006-08-04 2008-02-21 Denso Corp 電流センサ
US20090174522A1 (en) * 2008-01-08 2009-07-09 Infineon Technologies Ag Arrangement comprising a shunt resistor and method for producing an arrangement comprising a shunt resistor
WO2013015219A1 (ja) * 2011-07-22 2013-01-31 コーア株式会社 シャント抵抗装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017188527A (ja) * 2016-04-04 2017-10-12 ダイキン工業株式会社 電子回路装置
CN110268276A (zh) * 2017-02-14 2019-09-20 Koa株式会社 电流测量装置以及用于电流检测的电阻器

Also Published As

Publication number Publication date
US9995771B2 (en) 2018-06-12
JP2016053521A (ja) 2016-04-14
US20170192038A1 (en) 2017-07-06
JP6384211B2 (ja) 2018-09-05
CN106537156A (zh) 2017-03-22

Similar Documents

Publication Publication Date Title
WO2016035256A1 (ja) シャント抵抗器
WO2016035257A1 (ja) シャント抵抗器
JP2020102626A (ja) 抵抗の温度係数が低い抵抗器
JP6650045B2 (ja) 電流センサ
JP4029049B2 (ja) 電流検出用抵抗器
JP4403428B2 (ja) プリント配線板
WO2015194413A1 (ja) 電流検出用抵抗器
JP2012233706A (ja) シャント抵抗器の実装構造
US20210311096A1 (en) Shunt resistor and shunt resistor mount structure
JP6833101B2 (ja) 半導体装置
JP6517434B2 (ja) 電子装置及び接続体
JP5057245B2 (ja) 電流センサ
WO2022244595A1 (ja) 電流検出装置
JP5445193B2 (ja) 抵抗器、抵抗器の実装方法、抵抗器の測定方法
JP2022027164A (ja) 電流検出装置
JP7490351B2 (ja) シャント抵抗モジュール及び、シャント抵抗モジュールの実装構造
JP5230575B2 (ja) 電流検出装置
JP7097671B2 (ja) Ic化磁気センサおよびそれに使用するリードフレーム
JP6842236B2 (ja) 磁気センサモジュール
WO2024111254A1 (ja) シャント抵抗器
WO2021090905A1 (ja) シャント抵抗モジュール及び、シャント抵抗モジュールの実装構造
JP2022030815A (ja) 電流検出装置
WO2018229822A1 (ja) パワーモジュール
JP2021047083A (ja) 磁気センサ
JP2010112715A (ja) 電流検出用抵抗器と電流検出用抵抗器の実装構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15837665

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15316595

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15837665

Country of ref document: EP

Kind code of ref document: A1