CN103278783B - 磁场传感器和霍尔器件 - Google Patents

磁场传感器和霍尔器件 Download PDF

Info

Publication number
CN103278783B
CN103278783B CN201310173040.1A CN201310173040A CN103278783B CN 103278783 B CN103278783 B CN 103278783B CN 201310173040 A CN201310173040 A CN 201310173040A CN 103278783 B CN103278783 B CN 103278783B
Authority
CN
China
Prior art keywords
resistance element
hall resistance
hall
electrode
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310173040.1A
Other languages
English (en)
Other versions
CN103278783A (zh
Inventor
吴少兵
朱涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Physics of CAS
Original Assignee
Institute of Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Physics of CAS filed Critical Institute of Physics of CAS
Priority to CN201310173040.1A priority Critical patent/CN103278783B/zh
Publication of CN103278783A publication Critical patent/CN103278783A/zh
Application granted granted Critical
Publication of CN103278783B publication Critical patent/CN103278783B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开了一种磁场传感器和霍尔器件。所述磁场传感器包括电桥电路,所述电桥电路包括四个桥臂;每一桥臂包括一霍尔电阻元件,至少一个桥臂还包括与对应桥臂上的霍尔电阻元件相串联的可调电阻元件;其中,每一霍尔电阻元件具有一对电阻输出端和一对电流输入端,所述电阻输出端用于接入到所述霍尔电阻元件所在的对应桥臂中,所述电流输入端用于接收工作电流以便在所述电阻输出端产生霍尔电阻。本发明通过四个霍尔电阻元件及可调电阻元件组成电桥电路,可实现零磁场时的电桥平衡。本发明可以在有磁场时实现电桥差分输出,从结构上大大降低了霍尔器件的零场偏移问题,其工艺简单,有利于大规模产业化推广。

Description

磁场传感器和霍尔器件
技术领域
本发明涉及测量领域,特别是涉及一种磁场传感器和可用于该磁场传感器的霍尔器件。
背景技术
基于霍尔效应的半导体霍尔电阻具有线性度好,灵敏度高,稳定性好等特点,已广泛应用于传感器领域,用来对磁场、电流、位移、转速等进行检测。与半导体霍尔电阻相比,基于反常霍尔效应的铁磁合金,如CoPt合金[参见G.X.MiaoandG.Xiao,Appl.Phys.Lett.85(2004)73],以及磁性金属多层膜,如CoFe/Pt[参见中国专利申请200610144053.6]等,同样可以用来制备高灵敏度霍尔电阻,且具有制备工艺简单,成本低等优点。但是,由于反常霍尔效应的输出与铁磁材料的磁性相关,即反常霍尔电阻正比于磁化强度沿磁场方向的分量,同时由于霍尔电阻制备工艺上很难做到严格的几何对称,所以,单一霍尔电阻往往存在零场偏移(简称零偏),即在零磁场时霍尔电压不为零。
目前,对于霍尔器件存在的零偏问题,通常采用外部补偿校准。中国专利申请CN02819427.6和美国专利申请US571599均公开了具有对称的十字型结构的霍尔器件,通过“旋转电流法”对霍尔电压输出端进行补偿。但这两个申请仅提高了测量的准确度,并未从结构上消除零偏,而且后续处理电路复杂不便推广应用。此外,从检测手段上来说,该方法也并未实现真正的四端电桥的差分输出。美国专利申请US52775705A公开了一种半导体霍尔器件。其采用CMOS工艺在具有N-型势阱的半导体材料表面制备了四个直线排列的接触电极,接触电极间可视为霍尔电阻,通过连接四个接触电极来实现四端电桥。在将四个霍尔电阻理想化为等值电阻时,电桥平衡,以此可减小零偏。但其触点的选择会带来随机误差。尽管该申请通过在半导体势阱内部增加一额外电阻来达到桥臂的平衡,但外加电阻阻值不可调,对于零偏的抑制能力有限。同时该发明制备工艺复杂,且半导体霍尔电阻的形成方式无法应用于结构和制备工艺更为简单的基于铁磁薄膜的霍尔电阻。由此可见,针对霍尔器件存在的零偏问题,尚未有较好的解决方法。
发明内容
本发明的目的在于针对现有技术中存在的上述缺陷,提供一种磁场传感器,解决了铁磁材料应用于线性磁传感器时存在的零场偏移。本发明还提供了一种可用于该磁场传感器的霍尔器件。
按照本发明的一个方面,本发明提供了一种磁场传感器,包括电桥电路,所述电桥电路包括四个桥臂;每一桥臂包括一霍尔电阻元件,至少一个桥臂还包括与对应桥臂上的霍尔电阻元件相串联的可调电阻元件;其中,每一霍尔电阻元件具有一对电阻输出端和一对电流输入端,所述电阻输出端用于接入到所述霍尔电阻元件所在的对应桥臂中,所述电流输入端用于接收工作电流以便在所述电阻输出端产生霍尔电阻。
优选地,每个桥臂均可以包括与对应桥臂上的霍尔电阻元件相串联的可调电阻元件。
在一种实施方式中,还可以包括用于向各所述霍尔电阻元件提供所述工作电流的一个或多个直流电源,所述直流电源与各所述霍尔电阻元件的所述电流输入端连接成使得在感应到相同的磁场变化时,每一对相邻桥臂上的霍尔电阻元件的霍尔电阻具有相反方向的变化。
在一种实施方式中,所述直流电源为直流电流源,用于向各所述霍尔电阻元件提供大小基本相同的所述工作电流。
在一种实施方式中,还可以包括基片,各所述霍尔电阻元件由所述基片的表面上的具有霍尔效应的膜形成。
在一种实施方式中,所述霍尔电阻元件可以具有由交叉的横部和竖部形成的十字形结构,所述横部和竖部中的一个的两个端部形成为所述一对电阻输出端,所述横部和竖部中的另一个的两个端部形成为所述一对电流输入端。
在一种实施方式中,各所述霍尔电阻元件可以具有基本相同的尺寸和形状。
所述霍尔电阻元件的材料可以为铁磁性材料或铁磁/金属多层膜或铁磁/氧化物颗粒膜材料。
按照本发明的另一个方面,本发明提供了一种霍尔器件,包括:
分布在一基本为正方形区域的四个顶点处的四个霍尔电阻元件,包括:处于所述正方形区域右上角的第一霍尔电阻元件、处于所述正方形区域右下角的第二霍尔电阻元件、处于所述正方形区域左上角的第三霍尔电阻元件、和处于所述正方形区域左下角的第四霍尔电阻元件;其中,各所述霍尔电阻元件具有十字形形状,并且具有基本相同的尺寸和朝向;
与第一霍尔电阻元件和第三霍尔电阻元件的上端部连接的第一电极;与第一霍尔电阻元件和第三霍尔电阻元件的下端部连接的第二电极;
与第二霍尔电阻元件和第四霍尔电阻元件的上端部连接的第三电极;与第二霍尔电阻元件和第四霍尔电阻元件的下端部连接的第四电极;
与第一霍尔电阻元件和第二霍尔电阻元件的右端部连接的第五电极;与第三霍尔电阻元件和第四霍尔电阻元件的左端部连接的第六电极;
分别与第一和第二霍尔电阻元件的左端部、第三和第四霍尔电阻元件的右端部连接的第七、第八、第九和第十电极。
在一种实施方式中,还可以包括基片,所述霍尔电阻元件以及所述第一至第十电极以及它们之间的连接线为形成在所述基片上的膜的形式。
在一种实施方式中,在第七电极与第九电极之间连接有第一、第二可调电阻元件,在第八电极与第十电极之间连接有第三、第四可调电阻元件,在第一、第二可调电阻元件之间引出激励输入端,在第三、第四可调电阻元件之间引出接地端,所述第三电极和第四电极作为信号输出端,以形成电桥电路。
本发明实施例至少存在以下技术效果:
1、本发明通过四个霍尔电阻元件及可调电阻元件组成四端电桥结构,可实现零磁场时的电桥平衡,以消除零偏;并可以在有磁场时实现电桥差分输出。
2、本发明工艺简单,有利于大规模产业化推广。
3、本发明尤其适合于霍尔电阻元件的材料为基于反常霍尔效应的铁磁性材料的情况。该类材料具有较好的线性特性和超高的磁场灵敏度,所制备的磁场传感器具有磁场分辨力高,测量范围宽等优点。
附图说明
图1为根据本发明实施例的磁场传感器的电路结构原理图。
图2为根据本发明实施例的霍尔器件的俯视图。
图3为根据本发明实施例的霍尔器件的制备工艺流程示意图。
图4为根据本发明另一个实施例的磁场传感器的电路结构原理图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合附图对具体实施例进行详细描述。
如图1所示,该磁场传感器可以包括一个电桥电路。该电桥电路可以包括激励输入端101,接地端102,第一信号输出端103、第二信号输出端104以及四个首尾顺次连接的第一桥臂105、第二桥臂106、第四桥臂108、第三桥臂107。其中,激励输入端101设置在第一桥臂105和第三桥臂107之间,接地端102设置在第二桥臂106和第四桥臂108之间。可以通过激励输入端101和接地端102为该电桥电路施加激励电压VD。第一信号输出端103设置在第一桥臂105和第二桥臂106之间,第二信号输出端104设置在第三桥臂107和第四桥臂108之间。这样,在第一信号输出端103和第二信号输出端104之间可以检测到该电桥电路的输出电压。如图1所示,每个桥臂均包括一个霍尔电阻元件109。
霍尔电阻元件109可以具有由交叉的横部和竖部形成的十字形结构。当横部的两个端部形成为一对电阻输出端时,竖部的两个端部可以形成为一对电流输入端,反之亦可。电阻输出端用于接入到霍尔电阻元件所在的对应桥臂中,电流输入端用于接收工作电流以便在电阻输出端产生霍尔电阻。在其它实施例中,霍尔电阻元件109也可以采用不同于十字形的形式,如长方形等。
在图1示出的实施例中,还可以包括用于向各霍尔电阻元件109提供工作电流的两个直流电流源111,112。电流源111为第二桥臂106和第四桥臂108的霍尔电阻元件提供工作电流,其正极端与第二桥臂106和第四桥臂108的霍尔电阻元件的电流输入端在电桥所形成的环的外部连接。电流源112为第一桥臂105和第三桥臂107的霍尔电阻元件提供工作电流,其正极端与第一桥臂105和第三桥臂107的霍尔电阻元件的电流输入端在电桥所形成的环的内部连接。通过这样设置,可以在电桥电路中的四个霍尔电阻元件109在感应到相同的磁场变化时,使得第一桥臂105与第四桥臂108的霍尔电阻同时变大或变小;而第二桥臂106与第三桥臂107的霍尔电阻也同时变大或变小,但变化方向与第一桥臂105与第四桥臂108的霍尔电阻的变化方向相反。也就是说,这四个霍尔电阻元件中的工作电流走向能够使得在感应到相同的磁场变化时,每一对相邻桥臂上的霍尔电阻元件的霍尔电阻具有相反的变化趋势。这有利于保证电桥的差分输出,提供高的检测灵敏度,同时也有助于减小零偏。
图4示出了按照本发明的另一个实施例的磁场传感器的电路结构原理图。如图4所示,该实施例的磁场传感器与图1所示的磁场传感器的区别在于,采用一个直流电流源112同时为四个霍尔电阻元件109的电流输入端提供工作电流,从而省去了图1中的电流源111;且这四个霍尔电阻元件的电流输入端以串联的方式与该直流电流源112连接。在这里,这样的串联方式可确保流入每个霍尔电阻元件电流输入端的工作电流相等,并且有利于简化实际电路连接以及降低制备成本。从图4很容易看出,类似于图1,该电流源112和四个霍尔电阻元件的连接关系也能够使得:在感应到相同的磁场变化时,每一对相邻桥臂上的霍尔电阻元件的霍尔电阻具有相反的变化趋势。在一个未示出的实施例中,也可以像图1所示的实施例那样,采用两个直流电流源分别给两个霍尔电阻元件提供电流,而区别可以在于:对于每一个直流电流源,其所对应的两个霍尔电阻元件的电流输入端以串联而不是并联的方式与该直流电流源连接。同时也需使得四个霍尔电阻元件中的工作电流走向能够使得在感应到相同的磁场变化时,每一对相邻桥臂上的霍尔电阻元件的霍尔电阻具有相反的变化趋势。
四个霍尔电阻元件109可以采用相同的材料,也可以具有基本相同的尺寸和形状。但是可以理解,在实际的制备过程中很难使得四个霍尔电阻元件109完全相同。一般情况下,单个霍尔电阻元件会存在霍尔电阻的零场偏移,且制备工艺无法保证四个霍尔电阻元件的霍尔电阻的偏移量均相同。在图1示出的实施例中,可以在四个桥臂上分别设置一个可调电阻元件110与对应桥臂上的霍尔电阻元件109的电阻输出端串联。可以通过调节可调电阻元件110的阻值使得每个桥臂上的初始电阻为一个相同的电阻值R0
在工作时,可以通过调节可调电阻元件110使得每个桥臂上的初始电阻同为R0。在无外加磁场时,第一信号输出端103和第二信号输出端104的电位差V34为零,从而消除了零偏。当施加磁场H使桥臂电阻受到霍尔电阻元件109的霍尔电阻RH的影响而增大时,此时单个桥臂的电阻便可等效为初始电阻R0和霍尔电阻RH之和,即R=R0+RH。类似地,如果施加的磁场使桥臂电阻受到霍尔电阻元件109的霍尔电阻RH的影响而减小时,此时桥臂的电阻便可等效为初始电阻R0和霍尔电阻RH之差,即R=R0-RH。对电桥的激励输入端101和接地端102提供一电压源VD,四个霍尔电阻元件的霍尔电阻大小就决定了每个桥臂的分压关系,同时也决定了第一信号输出端103和第二信号输出端104电位大小。即
当磁场H=0时,输出端103和104两端电位相等,V34=0
当磁场H>0时,输出端103和104两端电位不等
V 34 = V D * ( R 0 + R H 2 R 0 - R 0 - R H 2 R 0 ) = V D * R H R 0
可见,在每个桥臂都设置可调电阻元件110的情况下,输出电压V34与霍尔电阻RH可以具有正比关系,这样,可更精确的调节桥臂阻值和差分输出电压。为了尽可能提高测量精度,优选四个可调电阻元件110的阻值范围及可调精度相同。提供霍尔电阻元件工作电流的两个直流电流源的输出电流大小及精度相同。用于提供电桥电压的电压源VD以及测试信号输出端的电压表的精度尽可能高。
很容易理解,对于电桥电路,在调节输出电压的零偏时,并不一定需要将四个桥臂调节为相同的电阻值,而是只要输出端103和104两侧的桥臂的电阻值具有相同的比值即可。因此,在一些情况下,可以仅在一个桥臂上设置可调电阻元件,也可以在两个或三个桥臂上设置可调电阻元件,只要使得第一桥臂105和第三桥臂107的阻值的比值等于第二桥臂106和第四桥臂108的阻值的比值即可。
霍尔电阻元件的材料可以选取基于磁场灵敏度较高、线性性较好的铁磁性材料,如磁性合金及磁性金属多层膜等。由于霍尔电阻值RH与垂直于基片表面的磁场分量成正比,因此,四端电桥的输出电压也与垂直于基片表面的磁场分量成正比。通过电桥的差分输出方式,可更加准确的反应磁场和电压的一一对应关系。由于铁磁性的磁性特征具有较大不同,基于不同饱和磁场和线性度的铁磁性材料,使得本发明不仅可应用于微弱磁信号的检测,而且可应用于强磁信号的检测。需要理解的是,尽管本发明特别适合于铁磁性材料的霍尔电阻元件,但是也适用于半导体材料的霍尔电阻元件。
尽管图1中示出了一种基本的电桥电路,但是本领域技术人员可以理解,本发明的构思可以适用于更复杂的电桥电路。
本发明的磁场传感器还可以包括基片,四个霍尔电阻元件由基片的表面上的具有霍尔效应的膜形成。可以通过采用磁控溅射、分子束外延等方法制备该薄膜。
对于按照图1所示的原理图设计的磁场传感器,可以由一个霍尔器件及其外围电路共同实现。图2为根据本发明的一个实施例的霍尔器件的俯视图。如图2所示,该霍尔器件包括分布在一基本为正方形区域的四个顶点处的四个霍尔电阻元件,分别对应处于正方形区域右上角的第一霍尔电阻元件201、处于正方形区域右下角的第二霍尔电阻元件202、处于正方形区域左上角的第三霍尔电阻元件203和处于正方形区域左下角的第四霍尔电阻元件204。该四个霍尔电阻元件均具有由交叉的横部和竖部形成的十字形结构,并且尺寸和朝向均相同。在图2所示的实施例中,霍尔电阻元件的横部用于输入工作电流,竖部用于输出霍尔电阻。
在第一霍尔电阻元件201和第三霍尔电阻元件203的上端部和下端部分别连接有第一电极211和第二电极212。在第二霍尔电阻元件202和第四霍尔电阻元件204的上端部和下端部分别连接有第三电极213和第四电极214。在第一霍尔电阻元件201和第二霍尔电阻元件202的右端部连接有第五电极215。在第三霍尔电阻元件203和第四霍尔电阻元件204的左端部连接的第六电极216。第一霍尔电阻元件201和第二霍尔电阻元件202的左端部、第三霍尔电阻元件203和第四霍尔电阻元件204的右端部还分别连接有第七电极217、第八电极218、第九电极219和第十电极220。
可以在第七电极217与第九电极219之间连接第一、第二可调电阻元件,在第八电极218与第十电极220之间连接第三、第四可调电阻元件。可以在第一、第二可调电阻元件之间引出电压端,在第三、第四可调电阻元件之间引出接地端。第五电极215和第六电极216作为信号输出端。这样就可以形成与磁场传感器相同的电桥电路。其中,第一电极211和第二电极212用于将一个直流电流源与第一霍尔电阻元件201和第三霍尔电阻元件203连接;第三电极213和第四电极214分用于将另外一个直流电流源与第二霍尔电阻元件202和第四霍尔电阻元件204连接。
图3详细的给出了图2所示的霍尔器件的一个示例性加工过程。
步骤301,选取表面绝缘性较好的基片,如表面热氧化的Si基片。采用磁控溅射在该Si基片上生长具有高灵敏度霍尔效应的磁性多层膜或磁性颗粒膜(如CoFe/Pt多层膜,FePt/SiO2颗粒膜或MgO/CoFeB/Ta薄膜)。
步骤302,在磁性多层膜或磁性颗粒膜表面涂光刻胶并曝光显影,定影后通过等离子刻蚀工艺刻蚀出具有十字结构的四个霍尔电阻元件。在这里,霍尔电阻元件的十字形线的横部和竖部宽可以为20μm,长可以为200μm。
步骤303,去胶后继续涂光刻胶并对准套刻,曝光显影,定影后进行磁控溅射制备电导率较高的Au(或Cu、Ag、Al等材料),剥离后得到连接霍尔电阻元件和外部电路的连接线条以及引出电极。连接线条的宽可以为40-80μm,引出电极的尺寸可以在50-150μm之间。这样,本发明的霍尔器件便制备完成,通过超声波焊接接入四个可调电阻及电流源、电压源,便可施加磁场进行测试。
由此可见,由于本发明的结构较为简单,工艺步骤也相对简单。可以根据实际的使用需要对霍尔电阻元件材料材质、霍尔电阻元件尺寸规格、电桥工作电源大小以及排列方式、单个电桥臂上的霍尔电阻元件单元数以及制备工艺等方面进行修改。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种磁场传感器,包括电桥电路,所述电桥电路包括四个桥臂;每一桥臂包括一霍尔电阻元件,至少一个桥臂还包括与对应桥臂上的霍尔电阻元件相串联的可调电阻元件;其中,每一霍尔电阻元件具有一对电阻输出端和一对电流输入端,所述电阻输出端用于接入到所述霍尔电阻元件所在的对应桥臂中,所述电流输入端用于接收工作电流以便在所述电阻输出端产生霍尔电阻;
所述四个桥臂包括的霍尔电阻元件分布在一为正方形区域的四个顶点处,包括处于所述正方形区域右上角的第一霍尔电阻元件、处于所述正方形区域右下角的第二霍尔电阻元件、处于所述正方形区域左上角的第三霍尔电阻元件、和处于所述正方形区域左下角的第四霍尔电阻元件;其中,各所述霍尔电阻元件具有十字形形状,并且具有相同的尺寸和朝向;
第一电极与第一霍尔电阻元件和第三霍尔电阻元件的上端部连接;第二电极与第一霍尔电阻元件和第三霍尔电阻元件的下端部连接;
第三电极与第二霍尔电阻元件和第四霍尔电阻元件的上端部连接;第四电极与第二霍尔电阻元件和第四霍尔电阻元件的下端部连接;
第五电极与第一霍尔电阻元件和第二霍尔电阻元件的右端部连接;第六电极与第三霍尔电阻元件和第四霍尔电阻元件的左端部连接;以及
第七、第八、第九和第十电极分别与第一和第二霍尔电阻元件的左端部、第三和第四霍尔电阻元件的右端部连接。
2.根据权利要求1所述的磁场传感器,其特征在于,每个桥臂均包括与对应桥臂上的霍尔电阻元件相串联的可调电阻元件。
3.根据权利要求1所述的磁场传感器,其特征在于,还包括用于向各所述霍尔电阻元件提供所述工作电流的一个或多个直流电源,所述直流电源与各所述霍尔电阻元件的所述电流输入端连接成使得在感应到相同的磁场变化时,每一对相邻桥臂上的霍尔电阻元件的霍尔电阻具有相反方向的变化。
4.根据权利要求3所述的磁场传感器,其特征在于,所述直流电源为直流电流源,用于向各所述霍尔电阻元件提供大小相同的所述工作电流。
5.根据权利要求1所述的磁场传感器,其特征在于,还包括基片,各所述霍尔电阻元件由所述基片的表面上的具有霍尔效应的膜形成。
6.根据权利要求1-5中任一项所述的磁场传感器,其特征在于,所述霍尔电阻元件具有由交叉的横部和竖部形成的十字形结构,所述横部和竖部中的一个的两个端部形成为所述一对电阻输出端,所述横部和竖部中的另一个的两个端部形成为所述一对电流输入端。
7.根据权利要求1-5中任一项所述的磁场传感器,其特征在于,各所述霍尔电阻元件具有相同的形状。
8.根据权利要求1-5中任一项所述的磁场传感器,其特征在于,所述霍尔电阻元件的材料为铁磁性材料或铁磁/金属多层膜或铁磁/氧化物颗粒膜材料。
9.一种霍尔器件,包括:
分布在一为正方形区域的四个顶点处的四个霍尔电阻元件,包括:处于所述正方形区域右上角的第一霍尔电阻元件、处于所述正方形区域右下角的第二霍尔电阻元件、处于所述正方形区域左上角的第三霍尔电阻元件、和处于所述正方形区域左下角的第四霍尔电阻元件;其中,各所述霍尔电阻元件具有十字形形状,并且具有相同的尺寸和朝向;
与第一霍尔电阻元件和第三霍尔电阻元件的上端部连接的第一电极;与第一霍尔电阻元件和第三霍尔电阻元件的下端部连接的第二电极;
与第二霍尔电阻元件和第四霍尔电阻元件的上端部连接的第三电极;与第二霍尔电阻元件和第四霍尔电阻元件的下端部连接的第四电极;
与第一霍尔电阻元件和第二霍尔电阻元件的右端部连接的第五电极;与第三霍尔电阻元件和第四霍尔电阻元件的左端部连接的第六电极;以及
分别与第一和第二霍尔电阻元件的左端部、第三和第四霍尔电阻元件的右端部连接的第七、第八、第九和第十电极。
10.根据权利要求9所述的霍尔器件,其特征在于,还包括基片,所述霍尔电阻元件以及所述第一至第十电极以及它们之间的连接线为形成在所述基片上膜的形式。
CN201310173040.1A 2013-05-10 2013-05-10 磁场传感器和霍尔器件 Active CN103278783B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310173040.1A CN103278783B (zh) 2013-05-10 2013-05-10 磁场传感器和霍尔器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310173040.1A CN103278783B (zh) 2013-05-10 2013-05-10 磁场传感器和霍尔器件

Publications (2)

Publication Number Publication Date
CN103278783A CN103278783A (zh) 2013-09-04
CN103278783B true CN103278783B (zh) 2015-11-25

Family

ID=49061358

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310173040.1A Active CN103278783B (zh) 2013-05-10 2013-05-10 磁场传感器和霍尔器件

Country Status (1)

Country Link
CN (1) CN103278783B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6384211B2 (ja) * 2014-09-03 2018-09-05 株式会社デンソー シャント抵抗器
US10852365B2 (en) * 2018-06-29 2020-12-01 Infineon Technologies Ag Stray field suppression in magnetic sensor Wheatstone bridges
CN110726959B (zh) * 2019-09-11 2021-11-02 杭州电子科技大学 一种基于反常霍尔效应的灵敏度可调节的磁场传感器件
CN111162018B (zh) * 2019-12-24 2023-06-06 陕西电器研究所 一种等离子体刻蚀调整薄膜传感器零位的方法
CN112310276A (zh) * 2020-10-29 2021-02-02 北京东方计量测试研究所 一种低场量子电阻芯片
CN115542204B (zh) * 2022-11-02 2023-12-15 深圳市晶扬电子有限公司 一种基于霍尔效应的磁场检测电路以及电流传感器
CN116864277B (zh) * 2023-07-26 2024-03-15 兆和能源(威海)有限公司 一种基于电磁平衡控制节电器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2048592U (zh) * 1989-04-25 1989-11-29 唐泓箐 袖珍磁场计
EP0357013A2 (en) * 1988-09-02 1990-03-07 Honeywell Inc. Magnetic field measuring circuit
CN1561550A (zh) * 2001-10-01 2005-01-05 旭化成微系统株式会社 霍尔器件和磁传感器
CN1890576A (zh) * 2003-12-04 2007-01-03 皇家飞利浦电子股份有限公司 对磁场敏感的传感器装置
CN101611326A (zh) * 2007-02-07 2009-12-23 美国思睿逻辑有限公司 磁场反馈△-σ调节器传感器电路
CN201935997U (zh) * 2010-08-11 2011-08-17 上海腾怡半导体有限公司 磁场传感器芯片

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179594A (ja) * 2004-12-21 2006-07-06 Denso Corp ホール素子

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0357013A2 (en) * 1988-09-02 1990-03-07 Honeywell Inc. Magnetic field measuring circuit
CN2048592U (zh) * 1989-04-25 1989-11-29 唐泓箐 袖珍磁场计
CN1561550A (zh) * 2001-10-01 2005-01-05 旭化成微系统株式会社 霍尔器件和磁传感器
CN1890576A (zh) * 2003-12-04 2007-01-03 皇家飞利浦电子股份有限公司 对磁场敏感的传感器装置
CN101611326A (zh) * 2007-02-07 2009-12-23 美国思睿逻辑有限公司 磁场反馈△-σ调节器传感器电路
CN201935997U (zh) * 2010-08-11 2011-08-17 上海腾怡半导体有限公司 磁场传感器芯片

Also Published As

Publication number Publication date
CN103278783A (zh) 2013-09-04

Similar Documents

Publication Publication Date Title
CN103278783B (zh) 磁场传感器和霍尔器件
JP6420665B2 (ja) 磁場を測定する磁気抵抗センサ
EP3062119B1 (en) Push-pull bridge-type magnetic sensor for high-intensity magnetic fields
EP2801834A1 (en) Current sensor
US9069033B2 (en) 3-axis magnetic field sensor, method for fabricating magnetic field sensing structure and magnetic field sensing circuit
EP3029479B1 (en) Singlechip push-pull bridge type magnetic field sensor
JP6189426B2 (ja) 磁気抵抗歯車センサ
US10024930B2 (en) Single chip referenced bridge magnetic sensor for high-intensity magnetic field
TWI482984B (zh) 穿隧磁阻參考單元以及使用此穿隧磁阻參考單元之磁場感測電路
CN104880682B (zh) 一种交叉指状y轴磁电阻传感器
EP3441779A1 (en) Anisotropic magnetoresistance (amr) sensor not requiring set/reset device
US9810748B2 (en) Tunneling magneto-resistor device for sensing a magnetic field
CN105136349B (zh) 一种磁性压力传感器
CN203587785U (zh) 单芯片推挽桥式磁场传感器
CN106597326A (zh) 磁场感测装置
US11009562B2 (en) Magnetic field sensing apparatus
CN203132562U (zh) 线性薄膜磁阻传感器、线性薄膜磁阻传感器电路及闭环电流传感器与开环电流传感器
CN205079891U (zh) 一种磁性压力传感器
CN110286340A (zh) 一种串联式三轴一体化磁传感器
CN212008887U (zh) 一种单一芯片全桥tmr磁场传感器
JP2016142652A (ja) 電力センサー
CN115825826B (zh) 一种三轴全桥电路变换式线性磁场传感器
CN117054936B (zh) 一种梯度传感器
CN117930095A (zh) 各向异性磁阻感测结构及其传感器
JP2016142651A (ja) 電力センサー

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant