WO2016031910A1 - 熱膨張性耐火樹脂組成物 - Google Patents

熱膨張性耐火樹脂組成物 Download PDF

Info

Publication number
WO2016031910A1
WO2016031910A1 PCT/JP2015/074216 JP2015074216W WO2016031910A1 WO 2016031910 A1 WO2016031910 A1 WO 2016031910A1 JP 2015074216 W JP2015074216 W JP 2015074216W WO 2016031910 A1 WO2016031910 A1 WO 2016031910A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermally expandable
resin composition
weight
parts
resin
Prior art date
Application number
PCT/JP2015/074216
Other languages
English (en)
French (fr)
Inventor
倫男 島本
秀明 矢野
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=55399794&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2016031910(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN201580046137.3A priority Critical patent/CN106604972A/zh
Priority to US15/505,953 priority patent/US10538616B2/en
Priority to KR1020177004831A priority patent/KR102171427B1/ko
Priority to ES15835504T priority patent/ES2735404T3/es
Priority to AU2015309847A priority patent/AU2015309847A1/en
Priority to EP15835504.0A priority patent/EP3187549B1/en
Priority to JP2015548521A priority patent/JP6279610B2/ja
Publication of WO2016031910A1 publication Critical patent/WO2016031910A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/30Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen
    • C08G59/308Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen containing halogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/504Amines containing an atom other than nitrogen belonging to the amine group, carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • C08L23/28Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment by reaction with halogens or compounds containing halogen
    • C08L23/286Chlorinated polyethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/22Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers modified by chemical after-treatment
    • C08L27/24Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers modified by chemical after-treatment halogenated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/02Inorganic materials
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B5/00Doors, windows, or like closures for special purposes; Border constructions therefor
    • E06B5/10Doors, windows, or like closures for special purposes; Border constructions therefor for protection against air-raid or other war-like action; for other protective purposes
    • E06B5/16Fireproof doors or similar closures; Adaptations of fixed constructions therefor
    • E06B5/168Shape of edges of wing and/or its frame specially adapted therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/321Phosphates
    • C08K2003/322Ammonium phosphate
    • C08K2003/323Ammonium polyphosphate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/016Additives defined by their aspect ratio
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/019Specific properties of additives the composition being defined by the absence of a certain additive
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Definitions

  • Synthetic resins are widely used as building materials because of their good moldability and the ability to produce large quantities of uniform products.
  • synthetic resins easily melt or burn and generate gas and smoke, making them safer in the event of a fire. Therefore, there is a demand for a material with low smoke generation and excellent fire resistance.
  • the material is not only difficult to burn, but even if it burns, it retains its shape and prevents the flame from turning outside the door or window (back side) Is required.
  • Patent Document 1 describes a chlorinated polyvinyl chloride resin composition capable of stably extruding for a long time a deformed molded article having a complicated sectional shape such as a sash.
  • the chlorinated polyvinyl chloride resin composition comprises 100 parts by weight of chlorinated polyvinyl chloride resin, 3 to 300 parts by weight of thermally expandable graphite, 3 to 300 parts by weight of an inorganic filler, and 20 to 200 plasticizers. It consists of parts by weight and does not contain phosphorus compounds (excluding phosphate ester plasticizers).
  • An object of the present invention is to provide a heat-expandable refractory resin composition having both high expansibility and high residual hardness.
  • a further object of the present invention is to provide a thermally expandable refractory resin composition having both high expandability and high residual hardness and shape retention.
  • the present invention provides the following thermally expandable refractory resin composition.
  • Item 1. A thermal expansibility characterized by containing 100 parts by weight of a resin component, 3 to 300 parts by weight of thermally expandable graphite, and 2 to 200 parts by weight of an inorganic filler, and having an average aspect ratio of 20 or more.
  • Refractory resin composition Item 2.
  • Item 2. The heat-expandable refractory resin composition according to Item 1, wherein the average particle diameter of the heat-expandable graphite is in the range of 100 to 1000 ⁇ m and the average thickness is 50 ⁇ m or less.
  • Item 3. Item 3.
  • Item 4. The thermally expandable refractory resin composition according to any one of Items 1 to 3, which does not contain a phosphorus compound (excluding a phosphate ester plasticizer).
  • Item 5. A fireproof member comprising the thermally expandable fireproof resin composition according to any one of Items 1 to 4.
  • a joinery comprising the fireproof member according to Item 5.
  • the heat-expandable refractory resin composition of the present invention is excellent in fire resistance because the obtained molded product has high expansibility and high residual hardness. Furthermore, the resin composition of the present invention can be excellent in shape retention. Further, in a specific embodiment, the thermally expandable refractory resin composition of the present invention can be stably extruded for a long time, and in particular, a deformed molded body having a complicated cross-sectional shape such as a sash can be stably formed for a long time. Can be extruded.
  • the schematic diagram explaining the thermally expansible graphite in this invention It is a schematic front view which shows the fireproof window which provided the molded object in the sash frame with the resin composition of this invention.
  • the graph which shows the expansion rate and residue hardness of each sample.
  • the thermally expandable refractory resin composition of the present invention contains 100 parts by weight of a resin component, 3 to 300 parts by weight of thermally expandable graphite, and 2 to 200 parts by weight of an inorganic filler, and has an average aspect ratio of thermally expandable graphite. It is characterized by being 20 or more.
  • the resin component used in the present invention may be a synthetic resin such as a thermoplastic resin or a thermosetting resin, an elastomer, rubber, or a combination thereof.
  • thermoplastic resin examples include polypropylene resins, polyethylene resins, poly (1-) butene resins, polyolefin resins such as polypentene resins, polystyrene resins, acrylonitrile-butadiene-styrene (ABS) resins, polycarbonate resins, and polyphenylenes.
  • examples include ether resins, acrylic resins, polyamide resins, polyvinyl chloride resins, and polyisobutylene resins.
  • thermosetting resin examples include urethane resin, isocyanurate resin, epoxy resin, phenol resin, urea resin, unsaturated polyester resin, alkyd resin, melamine resin, diallyl phthalate resin, and silicone resin.
  • thermoplastic elastomers such as olefin elastomers, styrene elastomers, ester elastomers, amide elastomers, and vinyl chloride elastomers.
  • Examples of rubber include natural rubber, butyl rubber, fluorine rubber, urethane rubber, silicone rubber, polychloroprene rubber, polybutadiene rubber, polyisoprene rubber, polyisobutylene rubber, styrene-butadiene rubber, butadiene-acrylonitrile rubber, nitrile rubber, ethylene And rubber resins such as ethylene / ⁇ -olefin copolymer rubber such as propylene / diene copolymer.
  • These synthetic resins and / or rubbers can be used alone or in combination of two or more.
  • a blend of two or more resins may be used as the base resin.
  • the resin component may be subjected to crosslinking or modification within a range that does not impair fire resistance.
  • the resin may be crosslinked or modified in advance, and may be crosslinked or modified at the time of blending or after blending other components such as a phosphorus compound or inorganic filler described later. You may give it.
  • the crosslinking method is not particularly limited, and examples thereof include a crosslinking method usually performed for the above resin component, for example, a crosslinking method using various crosslinking agents and peroxides, and a crosslinking method by electron beam irradiation.
  • the resin component includes at least one selected from the group consisting of polyvinyl chloride, chlorinated vinyl chloride, and a thermoplastic elastomer. In another embodiment, the resin component includes at least one selected from the group consisting of EPDM, polybutene, and polybutadiene.
  • the chlorinated vinyl chloride resin is a chlorinated product of a vinyl chloride resin.
  • the chlorine content decreases, the heat resistance decreases, and when the chlorine content increases, the melt extrusion molding becomes difficult. .
  • the vinyl chloride resin is not particularly limited and may be any conventionally known vinyl chloride resin.
  • a vinyl chloride homopolymer a vinyl chloride monomer and an unsaturated bond copolymerizable with the vinyl chloride monomer Copolymers with monomers; examples include graft copolymers obtained by graft copolymerization of vinyl chloride with (co) polymers other than vinyl chloride. These may be used alone or in combination of two or more. Also good.
  • the monomer having an unsaturated bond copolymerizable with the vinyl chloride monomer is not particularly limited as long as it is copolymerizable with the vinyl chloride monomer.
  • ⁇ -olefins such as ethylene, propylene, butylene; vinyl acetate, Vinyl esters such as vinyl propionate; vinyl ethers such as butyl vinyl ether and cetyl vinyl ether; (meth) acrylic esters such as methyl (meth) acrylate, ethyl (meth) acrylate and butyl acrylate; styrene, ⁇ -methylstyrene, etc.
  • Aromatic vinyls; N-substituted maleimides such as N-phenylmaleimide and N-cyclohexylmaleimide, and the like. These may be used alone or in combination of two or more.
  • the (co) polymer for graft copolymerization of vinyl chloride is not particularly limited as long as it is a graft (co) polymerization of vinyl chloride.
  • a chlorinated polyethylene, a chlorinated polypropylene, etc. are mentioned, These may be used independently and 2 or more types may be used together.
  • the average degree of polymerization of the vinyl chloride resin is not particularly limited. However, if it becomes smaller, the mechanical properties of the molded article will decrease, and if it becomes larger, the melt viscosity becomes higher and melt extrusion molding becomes difficult. 1500 is preferred.
  • EPDM used in the present invention include terpolymers of ethylene, propylene and a diene monomer for crosslinking.
  • the diene monomer for crosslinking used in EPDM is not particularly limited.
  • 5-ethylidene-2-norbornene, 5-propylidene-5-norbornene, dicyclopentadiene, 5-vinyl-2-norbornene, 5-methylene-2 -Cyclic dienes such as norbornene, 5-isopropylidene-2-norbornene, norbornadiene, 1,4-hexadiene, 4-methyl-1,4-hexadiene, 5-methyl-1,4-hexadiene, 5-methyl-1 , 5-heptadiene, 6-methyl-1,5-heptadiene, 6-methyl-1,7-octadiene, and the like.
  • the content of the crosslinking diene monomer is preferably in the range of 2.0 wt% to 20 wt%, and more preferably in the range of 5.0 wt% to 15 wt%.
  • the content is 2.0% by weight or more, the intermolecular cross-linking proceeds, so the flexibility is excellent.
  • the content is 20% by weight or less, the weather resistance is excellent.
  • polystyrene resin a commercially available product can be appropriately selected and used.
  • examples of such polybutadiene include homopolymer types such as Claprene LBR-305 (manufactured by Kuraray Co., Ltd.) and copolymers of 1,2-bonded butadiene and 1,4-bonded butadiene such as Poly bd (made by Idemitsu Kosan Co., Ltd.).
  • a copolymer type of ethylene, 1,4-bonded butadiene, and 1,2-bonded butadiene such as Claprene L-SBR-820 (manufactured by Kuraray Co., Ltd.).
  • the polybutene preferably has a weight average molecular weight of 300 to 2,000 as measured by a method in accordance with ASTM D2503. When the weight average molecular weight is 300 to 2,000, the extrusion moldability is good.
  • Examples of the polybutene used in the present invention include “100R” (weight average molecular weight: 940), “300R” (weight average molecular weight: 1450) manufactured by Idemitsu Petrochemical Co., Ltd., “HV-100” (weight) manufactured by Nippon Petrochemical Co., Ltd. Average molecular weight: 970), “H-100” (weight average molecular weight: 940) manufactured by AMOCO.
  • the resin component used in the present invention is preferably one in which at least one of polybutene and polybutadiene is added to EPDM from the viewpoint of improving moldability.
  • the addition amount of at least one of the polybutene and polybutadiene with respect to 100 parts by weight of the resin component is preferably in the range of 1 to 30 parts by weight, and more preferably in the range of 3 to 25 parts.
  • Thermally expandable graphite is a conventionally known substance, and powders such as natural scaly graphite, pyrolytic graphite, and quiche graphite are mixed with inorganic acids such as concentrated sulfuric acid, nitric acid, and selenic acid, and concentrated nitric acid, perchloric acid, and perchlorine.
  • This is a crystalline compound in which a graphite intercalation compound is produced by treatment with a strong oxidizing agent such as acid salt, permanganate, dichromate, hydrogen peroxide, etc., and maintains a layered structure of carbon.
  • the thermally expandable graphite obtained by acid treatment may be neutralized with ammonia, an aliphatic lower amine, an alkali metal compound, an alkaline earth metal compound, or the like.
  • Examples of the aliphatic lower amine include monomethylamine, dimethylamine, trimethylamine, ethylamine, propylamine, and butylamine.
  • Examples of the alkali metal compound and alkaline earth metal compound include hydroxides such as potassium, sodium, calcium, barium, and magnesium, oxides, carbonates, sulfates, and organic acid salts.
  • Specific examples of the thermally expandable graphite include “CA-60S” manufactured by Nippon Kasei Co., Ltd., for example.
  • the heat-expandable graphite used in the present invention has an average aspect ratio of 20 or more and preferably 25 or more. However, if it is too high, cracks may occur. When the average aspect ratio of the thermally expandable graphite is 20 or more, it contributes to the high expansibility of the resin composition and the high residual hardness after combustion.
  • the average aspect ratio is the ratio of the average diameter in the horizontal direction to the thickness in the vertical direction. Since the thermally expandable graphite used in the present invention has a generally flat plate shape, it can be seen that the vertical direction matches the thickness direction and the horizontal direction matches the radial direction, so the maximum horizontal dimension is the vertical thickness. The divided value is used as the aspect ratio.
  • the aspect ratio is measured for a sufficiently large number, that is, 10 or more pieces of graphite, and the average value is defined as the average aspect ratio.
  • the average particle diameter of the thermally expandable graphite can also be obtained as an average value of the maximum dimension in the horizontal direction.
  • thermally expandable graphite and the thickness of exfoliated graphite can be measured using, for example, a field emission scanning electron microscope (FE-SEM).
  • the average particle diameter of the thermally expandable graphite is in the range of 1 to 100 ⁇ m and the average thickness is 50 ⁇ m or less.
  • FIG. 1B is the thermally expandable graphite in the present invention.
  • FIG. 1 (B) compared with the prior art thermally expandable graphite of FIG. 1 (A), many can exist in the same space, and when the aspect ratio is high, the expansion efficiency of the composition is large.
  • thermal expansive graphite having an aspect ratio that is too small as shown in FIG. 1C is arranged, it is confirmed that the composition has low thermal expansivity even if many can exist in the same space (data not shown). Therefore, it is a surprising finding that it contributes to improvement of fire resistance in FIG. 1 (B).
  • the amount of thermally expandable graphite is reduced, the fire resistance and foaming properties are reduced, and when it is increased, extrusion molding becomes difficult, the surface properties of the obtained molded article are deteriorated, and the mechanical properties are lowered.
  • the amount is 3 to 300 parts by weight with respect to 100 parts by weight.
  • the amount of thermally expandable graphite added is preferably in the range of 10 to 200 parts by weight with respect to 100 parts by weight of the resin component.
  • the inorganic filler is not particularly limited as long as it is an inorganic filler that is generally used when producing a vinyl chloride resin molded article.
  • the amount of the inorganic filler When the amount of the inorganic filler is reduced, the fire resistance is lowered, and when it is increased, the extrusion molding is difficult, the surface property of the obtained molded article is deteriorated, and the mechanical properties are lowered. On the other hand, it is 3 to 200 parts by weight.
  • the addition amount of the inorganic filler is preferably in the range of 10 to 150 parts by weight with respect to 100 parts by weight of the resin component.
  • the heat-expandable refractory resin composition of the present invention contains a resin component, heat-expandable graphite, and an inorganic filler, but if it contains a phosphorus compound (excluding a phosphate ester plasticizer), it is extrudable. Therefore, a phosphorus compound (excluding phosphate ester plasticizer) is preferably not contained. In addition, you may contain the phosphate ester plasticizer which is a plasticizer mentioned later.
  • the phosphorus compounds that hinder extrusion moldability are as follows.
  • Red phosphorus Various phosphate esters such as triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate, xylenyl diphenyl phosphate, Metal phosphates such as sodium phosphate, potassium phosphate, magnesium phosphate, Ammonium polyphosphates, Examples include compounds represented by the following chemical formula (1).
  • R 1 and R 3 represent hydrogen, a linear or branched alkyl group having 1 to 16 carbon atoms, or an aryl group having 6 to 16 carbon atoms
  • R 2 is a hydroxyl group, a linear or branched alkyl group having 1 to 16 carbon atoms, a linear or branched alkoxyl group having 1 to 16 carbon atoms, an aryl group having 6 to 16 carbon atoms, or carbon Represents an aryloxy group of formula 6-16.
  • Examples of the compound represented by the chemical formula (1) include methylphosphonic acid, dimethyl methylphosphonate, diethyl methylphosphonate, ethylphosphonic acid, propylphosphonic acid, butylphosphonic acid, 2-methylpropylphosphonic acid, and t-butylphosphonic acid.
  • 2,3-dimethyl-butylphosphonic acid 2,3-dimethyl-butylphosphonic acid, octylphosphonic acid, phenylphosphonic acid, dioctylphenylphosphonate, dimethylphosphinic acid, methylethylphosphinic acid, methylpropylphosphinic acid, diethylphosphinic acid, dioctylphosphinic acid, phenylphosphinic acid, diethyl Examples thereof include phenylphosphinic acid, diphenylphosphinic acid, bis (4-methoxyphenyl) phosphinic acid and the like.
  • ammonium polyphosphates are not particularly limited, and examples include ammonium polyphosphate and melamine-modified ammonium polyphosphate.
  • a phosphorus compound that inhibits these extrudability is not used.
  • the resin composition of the present invention may further contain a plasticizer.
  • the resin composition of the present invention includes a plasticizer.
  • the plasticizer is not particularly limited as long as it is a plasticizer generally used in producing a vinyl chloride resin molded article, and examples thereof include di-2-ethylhexyl phthalate (DOP), dibutyl phthalate (DBP), and diheptyl.
  • DOP di-2-ethylhexyl phthalate
  • DBP dibutyl phthalate
  • diheptyl diheptyl
  • Phthalate plasticizers such as phthalate (DHP) and diisodecyl phthalate (DIDP); fatty acid ester plasticizers such as di-2-ethylhexyl adipate (DOA), diisobutyl adipate (DIBA) and dibutyl adipate (DBA); Epoxidized soybean oil Epoxidized ester plasticizers such as adipic acid esters, polyester plasticizers such as adipic acid polyester; Trimellitic acid ester plasticizers such as tri-2-ethylhexyl trimellitate (TOTM) and triisononyl trimellitate (TINTM) ; Trimethylphosphine Preparative (TMP), include such phosphate ester plasticizers such as triethyl phosphate (TEP), they may be used singly, or two or more may be used in combination.
  • DOA di-2-ethylhexyl adipate
  • DIBA diisobutyl a
  • the amount of the plasticizer added is 20 to 200 parts by weight with respect to 100 parts by weight of the resin component because the extrudability is lowered when the amount is reduced and the obtained molded body becomes too soft when the amount is increased.
  • thermal stabilizer other than a phosphorus compound which is generally used in thermoforming a vinyl chloride resin composition, if necessary, as long as its physical properties are not impaired.
  • a lubricant, a processing aid, a pyrolytic foaming agent, an antioxidant, an antistatic agent, a pigment, and the like may be added.
  • heat stabilizer examples include lead heat stabilizers such as tribasic lead sulfate, tribasic lead sulfite, dibasic lead phosphite, lead stearate, dibasic lead stearate; organotin mercapto, organic Organotin heat stabilizers such as tin malate, organotin laurate, dibutyltin malate; metal soap heat stabilizers such as zinc stearate and calcium stearate; these may be used alone or in combination of two or more You may use together.
  • lead heat stabilizers such as tribasic lead sulfate, tribasic lead sulfite, dibasic lead phosphite, lead stearate, dibasic lead stearate
  • organotin mercapto organic Organotin heat stabilizers such as tin malate, organotin laurate, dibutyltin malate
  • metal soap heat stabilizers such as zinc stearate and calcium ste
  • lubricant examples include waxes such as polyethylene, paraffin, and montanic acid; various ester waxes; organic acids such as stearic acid and ricinoleic acid; organic alcohols such as stearyl alcohol; and amide compounds such as dimethylbisamide. These may be used alone or in combination of two or more.
  • processing aids include chlorinated polyethylene, methyl methacrylate-ethyl acrylate copolymer, and high molecular weight polymethyl methacrylate.
  • pyrolytic foaming agent examples include azodicarbonamide (ADCA), dinitrosopentamethylenetetramine (DPT), p, p-oxybisbenzenesulfonylhydrazide (OBSH), azobisisobutyronitrile (AIBN), and the like. Can be mentioned.
  • ADCA azodicarbonamide
  • DPT dinitrosopentamethylenetetramine
  • OBSH p-oxybisbenzenesulfonylhydrazide
  • AIBN azobisisobutyronitrile
  • the heat-expandable refractory resin composition of the present invention can be obtained by melt extrusion at 130 to 170 ° C. with an extruder such as a single screw extruder or a twin screw extruder according to a conventional method.
  • the heat-expandable fire-resistant resin composition of the present invention is used to impart fire resistance to structures such as windows, shojis, doors (that is, doors), doors, brans, and railings; ships; and elevators.
  • the heat-expandable refractory resin composition of the present invention has excellent moldability, it is possible to easily obtain a modified molded body that is long and has a complicated cross-sectional shape.
  • the present invention includes a fire-resistant member including the molded body, and a fitting including the fire-resistant member, which includes the resin composition of the present invention.
  • FIG. 2 is a schematic diagram showing a sash frame of a window 1 as a fitting, to which a molded body 4 formed from the resin composition of the present invention is applied.
  • the sash frame has two inner frames 2 and one outer frame 3 surrounding the inner frame 2, and the inner frame 2 and the outer frame 3 along each side of the frame main body 2.
  • a molded body 4 is attached to the inside of the outer frame 3.
  • fire resistance can be imparted to the window 1.
  • the thermally expandable refractory resin composition of the present invention has an expansion ratio of greater than 10 after heating at 600 ° C. for 30 minutes and a residual hardness of greater than 0.25 kgf / cm 2 .
  • the thermally expandable refractory resin composition has excellent shape retention.
  • Example 1 Comparative Example 1 Aspect ratio As thermal expandable graphite, “ADT501” manufactured by ADT was used in Example 1, “EXP50T” manufactured by Nippon Graphite Industries Co., Ltd. was used in Example 2, and “GREP-EG” manufactured by Tosohichi Co., Ltd. (expansion start temperature: 220 ° C.). In Comparative Example 1, the aspect ratio of each thermally expandable graphite and each thermally expandable graphite were blended in the composition shown in Table 1.
  • the shape retainability of the residue is measured by holding both ends of the test piece whose expansion ratio has been measured by hand and visually measuring the ease with which the residue can be collapsed. Was evaluated as PASS, and when the specimen collapsed and could not be lifted, it was evaluated as FAIL.
  • Examples 3 to 22 A formulation containing ingredients of the formulation shown in Table 2 was fed to a single screw extruder as described above with respect to Examples 1-2 and Comparative Example 1 and had an E-shaped cross section at 150 ° C. The long profile molded body was extruded at a speed of 1 m / hr for 2 hours.
  • the aspect ratio of “ADT351” manufactured by ADT is 21.3.
  • CPVC polyvinyl chloride resin (degree of polymerization 1000, referred to as “PVC”) in Examples 7 to 10, and ethylene-vinyl acetate copolymer resin (Mitsui DuPont Polychemicals EVAFLEX EV360, referred to as “EVA”), Examples 16-20, ethylene-propylene-diene rubber (Mitsui Chemicals, Mitsui EPT3092M, referred to as “EPDM”), Examples 21, 22 are bisphenol F type Obtained by kneading and heat-curing an epoxy monomer (“E807” manufactured by Yuka Shell Co., Ltd.) and a diamine-based curing agent (“EKFL052” manufactured by Yuka Shell Co., Ltd.) with a blending amount of 3: 2. Epoxy resin was used.
  • the ammonium polyphosphate was “AP422” manufactured by Clariant, and the softener was “Diana Process Oil PW-90” manufactured by Idemitsu Kosan Co., Ltd.
  • (Formability) In any of Examples 3 to 22, a long-shaped molded article having a beautiful surface can be extruded for 2 hours, and there is no adhesion of the compound to the screw and mold after extrusion for 2 hours. there were.
  • (Expansion magnification) A test piece (length 100 mm, width 100 mm, thickness 2.0 mm) prepared from the obtained molded body was supplied to an electric furnace and heated at 600 ° C.
  • the thickness of the test piece after heating was measured ( The thickness of the test piece after heating) / (thickness of the test piece before heating) was calculated as the expansion ratio. (Residue hardness)
  • the heated test piece whose expansion ratio was measured was supplied to a compression tester (“Finger Filling Tester” manufactured by Kato Tech Co., Ltd.), compressed at a speed of 0.1 cm / sec with a 0.25 cm 2 indenter, and fractured. Point stress was measured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Special Wing (AREA)
  • Building Environments (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Fireproofing Substances (AREA)

Abstract

 熱膨張性耐火樹脂組成物は、樹脂成分100重量部、熱膨張性黒鉛3~300重量部、及び無機充填材2~200重量部を含有し、熱膨張性黒鉛の平均アスペクト比が20以上であることを特徴とする。

Description

熱膨張性耐火樹脂組成物
(関連分野の相互参照)
 本願は、2014年8月27日に出願した特願2014-173016号明細書の優先権の利益を主張するものであり、当該明細書はその全体が参照により本明細書中に援用される。
(技術分野)
 本発明は、熱膨張性耐火樹脂組成物に関する。
 合成樹脂は成形性がよく、均一な製品を大量に製造しうるので建築材料として広く使用されているが、合成樹脂は容易に溶融又は燃焼し、ガスや煙を発生するので、火災時の安全性のために発煙性が低く耐火性の優れた材料が要求されている。特に、ドアや窓のサッシにおいては、単に材料が燃え難いだけでなく、たとえ、燃えたとしても、その形状を保持し、火炎がドアや窓の外(裏側)に回ることを防止しうる材料が要求されている。
 このような要求に対応する材料として、特許文献1には、サッシのような断面形状が複雑な異型成形体を長時間安定的に押出成形できる塩素化ポリ塩化ビニル系樹脂組成物が記載されており、この塩素化ポリ塩化ビニル系樹脂組成物は、塩素化ポリ塩化ビニル系樹脂100重量部、熱膨張性黒鉛3~300重量部、無機充填剤3~300重量部、及び可塑剤20~200重量部からなり、リン化合物(燐酸エステル可塑剤を除く)を含有しない。
特許第53522017号
 一般に、熱膨張性樹脂組成物では、膨張性が高いと樹脂組成物の燃焼後の残渣硬さが著しく低下するため、これらを両立させることは困難と考えられていたが、上記の文献ではかかる課題については取り組まれていなかった。
 本発明の目的は、高膨張性と高い残渣硬さとを兼ね備えた熱膨張性耐火樹脂組成物を提供することにある。
 本発明のさらなる目的は、高膨張性および高い残渣硬さと、形状保持性とを兼ね備えた熱膨張性耐火樹脂組成物を提供することにある。
 上記課題を解決するため本発明者らが鋭意検討した結果、意外にも、熱膨張性黒鉛の平均アスペクト比が高い場合に樹脂組成物中の黒鉛片の数量が多くなり、密になるため、結果として高い膨張性と燃焼後の高い残渣硬さとが得られることを見出し、本発明を完成するに到った。
 本発明は、以下の熱膨張性耐火樹脂組成物を提供するものである。
 項1.樹脂成分100重量部、熱膨張性黒鉛3~300重量部、及び無機充填材2~200重量部を含有し、熱膨張性黒鉛の平均アスペクト比が20以上であることを特徴とする熱膨張性耐火樹脂組成物。
 項2.熱膨張性黒鉛の平均粒径が100~1000μmの範囲にあり、かつ平均厚さが50μm以下である、項1に記載の熱膨張性耐火樹脂組成物。
 項3.樹脂成分が樹脂成分がポリ塩化ビニル、塩素化塩化ビニル及び熱可塑性エラストマーからなる群より選ばれる少なくとも一つを含む、項1又は項2に記載の熱膨張性耐火樹脂組成物。
 項4.リン化合物(燐酸エステル可塑剤を除く。)を含有しないことを特徴とする項1~3のいずれか一項に記載の熱膨張性耐火樹脂組成物。
 項5.項1~4のいずれか一項に記載の熱膨張性耐火樹脂組成物を備えた耐火部材。
 項6.項5に記載の耐火部材を備えた建具。
 本発明の熱膨張性耐火樹脂組成物は、得られた成形体は高い膨張性と高い残渣硬さとを有するため、耐火性に優れている。本発明の樹脂組成物はさらには、形状保持性にも優れ得る。また、本発明の熱膨張性耐火樹脂組成物は特定の実施形態では、長時間安定的に押出成形することができ、特に、サッシのような断面形状が複雑な異型成形体を長時間安定的に押出成形することができる。
本発明における熱膨張性黒鉛を説明する模式図。 本発明の樹脂組成物を成形体をサッシ枠に設けた耐火窓を示す略正面図である。 各試料の膨張倍率と残渣硬さを示すグラフ。
 本明細書において、単数形(a, an, the)は、本明細書で別途明示がある場合または文脈上明らかに矛盾する場合を除き、単数と複数を含むものとする。
 本発明の熱膨張性耐火樹脂組成物は、樹脂成分100重量部、熱膨張性黒鉛3~300重量部、及び無機充填材2~200重量部を含有し、熱膨張性黒鉛の平均アスペクト比が20以上であることを特徴とする。
 本発明に使用する樹脂成分としては、熱可塑性樹脂、熱硬化性樹脂等の合成樹脂、エラストマー、ゴム、又はこれらの組み合わせであってもよい。
 熱可塑性樹脂としては、例えば、ポリプロピレン樹脂、ポリエチレン樹脂、ポリ(1-)ブテン樹脂、ポリペンテン樹脂等のポリオレフィン樹脂類、ポリスチレン樹脂類、アクリロニトリル-ブタジエン-スチレン(ABS)系樹脂、ポリカーボネート系樹脂、ポリフェニレンエーテル樹脂類、アクリル樹脂類、ポリアミド樹脂類、ポリ塩化ビニル樹脂類、ポリイソブチレン樹脂等が挙げられる。
 熱硬化性樹脂としては、例えば、ウレタン樹脂、イソシアヌレート樹脂、エポキシ樹脂、フェノール樹脂、尿素樹脂、不飽和ポリエステル樹脂、アルキド樹脂、メラミン樹脂、ジアリルフタレート樹脂、シリコーン樹脂等が挙げられる。
 エラストマーとしては、オレフィン系エラストマー、スチレン系エラストマー、エステル系エラストマー、アミド系エラストマー、及び塩化ビニル系エラストマー等の熱可塑性エラストマーが挙げられる。
 ゴムとしては、例えば、天然ゴム、ブチルゴム、フッ素ゴム、ウレタンゴム、シリコーンゴム、ポリクロロプレンゴム、ポリブタジエンゴム、ポリイソプレンゴム、ポリイソブチレンゴム、スチレン・ブタジエンゴム、ブタジエン・アクリロニトリルゴム、ニトリルゴム、エチレン・プロピレン・ジエン共重合体等のエチレン・α-オレフィン共重合体ゴム等のゴム樹脂等が挙げられる。
 これらの合成樹脂及び/又はゴムは、一種もしくは二種以上を使用することができる。樹脂分の溶融粘度、柔軟性、粘着性等の調整のため、2種以上の樹脂分をブレンドしたものをベース樹脂として用いてもよい。
 上記樹脂成分には、耐火性能を阻害しない範囲で、架橋や変性が施されてもよい。上記樹脂分の架橋や変性を行う場合は、予め樹脂分に架橋や変性を施してもよく、後述のリン化合物や無機充填剤等の他の成分の配合時又は配合した後で架橋や変性を施してもよい。
 架橋方法については、特に限定されず、上記樹脂分について通常行われる架橋方法、例えば、各種架橋剤、過酸化物等を使用する架橋方法、電子線照射による架橋方法などが挙げられる。
 一つの実施形態では、樹脂成分がポリ塩化ビニル、塩素化塩化ビニル及び熱可塑性エラストマーからなる群より選ばれる少なくとも一つを含む。別の実施形態では、樹脂成分はEPDM、ポリブテン及びポリブタジエンからなる群より選ばれる少なくとも一つを含む。
 上記塩素化塩化ビニル樹脂は、塩化ビニル樹脂の塩素化物であり、塩素含有量は少なくなると耐熱性が低下し、多くなると溶融押出成形しにくくなるので60~72重量%の範囲であることが好ましい。
 上記塩化ビニル樹脂は特に限定されず、従来公知の任意の塩化ビニル樹脂であればよく、例えば、塩化ビニル単独重合体;塩化ビニルモノマーと、該塩化ビニルモノマーと共重合可能な不飽和結合を有するモノマーとの共重合体;塩化ビニル以外の(共)重合体に塩化ビニルをグラフト共重合したグラフト共重合体等が挙げられ、これらは単独で使用されてもよく、二種以上が併用されてもよい。
 上記塩化ビニルモノマーと共重合可能な不飽和結合を有するモノマーとしては、塩化ビニルモノマーと共重合可能であれば特に限定されず、例えば、エチレン、プロピレン、ブチレン等のα-オレフィン類;酢酸ビニル、プロピオン酸ビニル等のビニルエステル類;ブチルビニルエーテル、セチルビニルエーテル等のビニルエーテル類;メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチルアクリレート等の(メタ)アクリル酸エステル類;スチレン、α-メチルスチレン等の芳香族ビニル類;N-フェニルマレイミド、N-シクロヘキシルマレイミド等のN-置換マレイミド類などが挙げられ、これらは単独で使用されてもよく、二種以上が併用されてもよい。
 上記塩化ビニルをグラフト共重合する(共)重合体としては、塩化ビニルをグラフト(共)重合するものであれば特に限定されず、例えば、エチレン-酢酸ビニル共重合体、エチレン-酢酸ビニル-一酸化炭素共重合体、エチレン-エチルアクリレート共重合体、エチレン-ブチルアクリレート-一酸化炭素共重合体、エチレン-メチルメタクリレート共重合体、エチレン-プロピレン共重合体、アクリロニトリル-ブタジエン共重合体、ポリウレタン、塩素化ポリエチレン、塩素化ポリプロピレンなどが挙げられ、これらは単独で使用されてもよく、二種以上が併用されてもよい。
 上記塩化ビニル樹脂の平均重合度は、特に限定されるものではないが、小さくなると成形体の機械的物性が低下し、大きくなると溶融粘度が高くなって溶融押出成形が困難になるので、600~1500が好ましい。
 本発明に使用するEPDMとしては、例えば、エチレン、プロピレン及び架橋用ジエンモノマーとの三元共重合体が挙げられる。
 EPDMに用いられる架橋用ジエンモノマーとしては特に限定されず、例えば、5-エチリデン-2-ノルボルネン、5-プロピリデン-5-ノルボルネン、ジシクロペンタジエン、5-ビニル-2-ノルボルネン、5-メチレン-2-ノルボルネン、5-イソプロピリデン-2-ノルボルネン、ノルボルナジエン等の環状ジエン類、1,4-ヘキサジエン、4-メチル-1,4-ヘキサジエン、5-メチル-1,4-ヘキサジエン、5-メチル-1,5-ヘプタジエン、6-メチル-1,5-ヘプタジエン、6-メチル-1,7-オクタジエン等の鎖状非共役ジエン類等が挙げられる。
 EPDMは、架橋用ジエンモノマーの含有量が2.0重量%~20重量%の範囲であることが好ましく、5.0重量%~15重量%の範囲であればより好ましい。
 2.0重量%以上であれば、分子間の架橋が進むことから柔軟性に優れる、また20重量%以下の場合には耐候性に優れる。
 またポリブタジエンとしては、市販品を適宜選択して使用することができる。かかるポリブタジエンとしては、例えば、クラプレンLBR-305(クラレ社製)などのホモポリマータイプ、Poly bd(出光興産社製)などの1,2-結合型ブタジエンと1,4-結合型ブタジエンとのコポリマータイプ、クラプレンL-SBR-820(クラレ社製)などのエチレンと1,4-結合型ブタジエンと1,2-結合型ブタジエンとのコポリマータイプ等のものが挙げられる。
 またポリブテンは、ASTM D 2503に準拠した方法で測定した重量平均分子量が300~2000であることが好ましい。重量平均分子量が300~2000であると、押出成形性が良好である。
 本発明に使用するポリブテンとしては、例えば、出光石油化学社製「100R」(重量平均分子量:940)、「300R」(重量平均分子量:1450)、日本石油化学社製「HV-100」(重量平均分子量:970)、AMOCO社製「H-100」(重量平均分子量:940)などが挙げられる。
 本発明に使用する樹脂成分は、EPDMに対してポリブテン及びポリブタジエンの少なくとも一方を添加したものが、成形性向上の面から好ましい。
 樹脂成分100重量部に対する前記ポリブテン及びポリブタジエンの少なくとも一方の添加量は、1~30重量部の範囲であることが好ましく、3~25の範囲であればより好ましい。
 熱膨張性黒鉛は、従来公知の物質であり、天然鱗状グラファイト、熱分解グラファイト、キッシュグラファイト等の粉末を、濃硫酸、硝酸、セレン酸等の無機酸と、濃硝酸、過塩素酸、過塩素酸塩、過マンガン酸塩、重クロム酸塩、過酸化水素等の強酸化剤とで処理してグラファイト層間化合物を生成させたもので、炭素の層状構造を維持したままの結晶化合物である。
 熱膨張性黒鉛は、酸処理して得られた熱膨張性黒鉛がアンモニア、脂肪族低級アミン、アルカリ金属化合物、アルカリ土類金属化合物等で中和されていてもよい。
 脂肪族低級アミンとしては、例えば、モノメチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、プロピルアミン、ブチルアミン等が挙げられる。上記アルカリ金属化合物及びアルカリ土類金属化合物としては、例えば、カリウム、ナトリウム、カルシウム、バリウム、マグネシウム等の水酸化物、酸化物、炭酸塩、硫酸塩、有機酸塩等が挙げられる。このように熱膨張性黒鉛の具体例としては、例えば、日本化成社製「CA-60S」等が挙げられる。
 本発明に使用する熱膨張性黒鉛は、熱膨張性黒鉛の平均アスペクト比が20以上であり、25以上が好ましいが、高すぎると割れが発生することがあるため、1000以下が好ましい。熱膨張性黒鉛の平均アスペクト比が20以上であることにより、樹脂組成物の高い膨張性と燃焼後の高い残渣硬さに寄与する。
 平均アスペクト比は、鉛直方向の厚さに対する水平方向の平均径の割合である。本発明に使用する熱膨張性黒鉛は概ね平板状をしているため、鉛直方向が厚み方向、水平方向が径方向に一致すると見ることができるため、水平方向の最大寸法を鉛直方向の厚みで除した値をアスペクト比とする。
 そして、十分大きな数、すなわち10個以上の黒鉛片につきアスペクト比を測定し、その平均値を平均アスペクト比とする。熱膨張性黒鉛の平均粒径も、水平方向の最大寸法の平均値として求めることができる。
 熱膨張性黒鉛の水平方向における最大寸法及び薄片化黒鉛の厚みは、例えば電界放出形走査電子顕微鏡(FE-SEM)を用いて測定することができる。
 一つの実施形態では、熱膨張性黒鉛の平均粒径が1~100μmの範囲にあり、かつ平均厚さが50μm以下である。
 熱膨張性黒鉛の平均アスペクト比が20以上であることにより熱膨張性耐火樹脂組成物の耐火性が向上する理由は必ずしも解明されてはいないが、図1の模式図によると、図1(A)が従来技術の熱膨張性黒鉛として、図1(B)が本発明における熱膨張性黒鉛である。図1(B)の場合、図1(A)の従来技術の熱膨張性黒鉛と比較して、同じ空間に数多く存在できる上、アスペクト比が高いと組成物の膨張効率が大きい。しかしながら、図1(C)のようにアスペクト比が小さすぎる熱膨張性黒鉛を配置した場合、同じ空間に多数存在できても、組成物が熱膨張性が小さいことが確認されている(データ非図示)ため、図1(B)で耐火性の向上に寄与することは驚くべき知見である。
 熱膨張性黒鉛の添加量は、少なくなると耐火性能及び発泡性が低下し、多くなると押出成形しにくくなり、得られた成形体の表面性が悪くなり、機械的物性が低下するので、樹脂成分100重量部に対して、3~300重量部である。
 熱膨張性黒鉛の添加量は、樹脂成分100重量部に対して、10~200重量部の範囲であれば好ましい。
 無機充填剤は、一般に塩化ビニル樹脂成形体を製造する際に使用されている無機充填剤であれば、特に限定されず、例えば、シリカ、珪藻土、アルミナ、酸化亜鉛、酸化チタン、酸化カルシウム、酸化マグネシウム、酸化鉄、酸化錫、酸化アンチモン、フェライト類、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム、塩基性炭酸マグネシウム、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛、炭酸バリウム、ドーンナイト、ハイドロタルサイト、硫酸カルシウム、硫酸バリウム、石膏繊維、ケイ酸カルシウム、タルク、クレー、マイ力、モンモリロナイト、ベントナイト、活性白土、セピオライト、イモゴライト、セリサイト、ガラス繊維、ガラスビーズ、シリカバルン、窒化アルミニウム、窒化ホウ素、窒化ケイ素、カーボンブラック、グラファイト、炭素繊維、炭素バルン、木炭粉末、各種金属粉、チタン酸カリウム、硫酸マグネシウム、チタン酸ジルコニア鉛、アルミニウムボレート、硫化モリブデン、炭化ケイ素、ステンレス繊維、ホウ酸亜鉛、各種磁性粉、スラグ繊維、フライアッシュ、脱水汚泥等が挙げられ、炭酸カルシウム及び加熱時に脱水し、吸熱効果のある水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム等の含水無機物が好ましい。又、酸化アンチモンは難燃性向上の効果があるので好ましい。これら無機充填剤は単独で用いられてもよいし、二種以上が併用されてもよい。
 無機充填剤の添加量は、少なくなると耐火性能が低下し、多くなると押出成形しにくくなり、得られた成形体の表面性が悪くなり、機械的物性が低下するので、樹脂成分100重量部に対して、3~200重量部である。
 無機充填剤の添加量は、樹脂成分100重量部に対して、10~150重量部の範囲であれば好ましい。
 上述の通り、本発明の熱膨張性耐火樹脂組成物は、樹脂成分、熱膨張性黒鉛、及び無機充填剤を含有するが、リン化合物(燐酸エステル可塑剤を除く。)を含有すると押出成形性が低下するので、好ましくはリン化合物(燐酸エステル可塑剤を除く。)を含有しない。尚、後述する可塑剤である燐酸エステル可塑剤は含有してもよい。
 押出成形性を阻害するリン化合物は次の通りである。
 赤リン、
 トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、キシレニルジフェニルホスフェート等の各種リン酸エステル、
 リン酸ナトリウム、リン酸カリウム、リン酸マグネシウム等のリン酸金属塩、
 ポリリン酸アンモニウム類、
 下記化学式(1)で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000001
 式中、R1及びR3は、水素、炭素数1~16の直鎖状若しくは分岐状のアルキル基、又は、炭素数6~16のアリール基を表し、
 R2は、水酸基、炭素数1~16の直鎖状若しくは分岐状のアルキル基、炭素数1~16の直鎖状若しくは分岐状のアルコキシル基、炭素数6~16のアリール基、又は、炭素数6~16のアリールオキシ基を表す。
 前記化学式(1)で表される化合物としては、例えば、メチルホスホン酸、メチルホスホン酸ジメチル、メチルホスホン酸ジエチル、エチルホスホン酸、プロピルホスホン酸、ブチルホスホン酸、2-メチルプロピルホスホン酸、t-ブチルホスホン酸、2,3-ジメチル-ブチルホスホン酸、オクチルホスホン酸、フェニルホスホン酸、ジオクチルフェニルホスホネート、ジメチルホスフィン酸、メチルエチルホスフィン酸、メチルプロピルホスフィン酸、ジエチルホスフィン酸、ジオクチルホスフィン酸、フェニルホスフィン酸、ジエチルフェニルホスフィン酸、ジフェニルホスフィン酸、ビス(4-メトキシフェニル)ホスフィン酸等が挙げられる。
 ポリリン酸アンモニウム類としては、特に限定されず、例えば、ポリリン酸アンモニウム、メラミン変性ポリリン酸アンモニウム等が挙げられる。
 本発明においては、これらの押出成形性を阻害するリン化合物を使用するものではない。
 本発明の樹脂組成物は、可塑剤をさらに含んでもよい。一実施形態において、樹脂成分が塩化ビニル樹脂の場合、本発明の樹脂組成物は可塑剤を含む。
 可塑剤は、一般に塩化ビニル樹脂成形体を製造する際に使用されている可塑剤であれば、特に限定されず、例えば、ジ-2-エチルヘキシルフタレート(DOP)、ジブチルフタレート(DBP)、ジヘプチルフタレート(DHP)、ジイソデシルフタレート(DIDP)等のフタル酸エステル可塑剤;ジ-2-エチルヘキシルアジペート(DOA)、ジイソブチルアジペート(DIBA)、ジブチルアジペート(DBA)等の脂肪酸エステル可塑剤;エポキシ化大豆油等のエポキシ化エステル可塑剤;アジピン酸エステル、アジピン酸ポリエステル等のポリエステル可塑剤;トリ-2-エチルヘキシルトリメリテート(TOTM)、トリイソノニルトリメリテート(TINTM)等のトリメリット酸エステル可塑剤;トリメチルホスフェート(TMP)、トリエチルホスフェート(TEP)等の燐酸エステル可塑剤などが挙げられ、これらは単独で用いられてもよいし、二種以上が併用されてもよい。
 可塑剤の添加量は、少なくなると押出成形性が低下し、多くなると得られた成形体が柔らかくなり過ぎるので、樹脂成分100重量部に対して、20~200重量部である。
 本発明の熱膨張性耐火樹脂組成物には、その物性を損なわない範囲で、必要に応じて、塩化ビニル樹脂組成物の熱成形の際に一般に使用されている、リン化合物以外の熱安定剤、滑剤、加工助剤、熱分解型発泡剤、酸化防止剤、帯電防止剤、顔料等が添加されてもよい。
 熱安定剤としては、例えば、三塩基性硫酸鉛、三塩基性亜硫酸鉛、二塩基性亜リン酸鉛、ステアリン酸鉛、二塩基性ステアリン酸鉛等の鉛熱安定剤;有機錫メルカプト、有機錫マレート、有機錫ラウレート、ジブチル錫マレート等の有機錫熱安定剤;ステアリン酸亜鉛、ステアリン酸カルシウム等の金属石鹸熱安定剤等が挙げられ、これらは単独で用いられもよいし、二種以上が併用されてもよい。
 滑剤としては、例えば、ポリエチレン、パラフィン、モンタン酸等のワックス類;各種エステルワックス類;ステアリン酸、リシノール酸等の有機酸類;ステアリルアルコール等の有機アルコール類;ジメチルビスアミド等のアミド化合物等が挙げられ、これらは単独で用いられもよいし、二種以上が併用されてもよい。
 加工助剤としては、例えば、塩素化ポリエチレン、メチルメタクリレート-エチルアクリレート共重合体、高分子量のポリメチルメタクリレート等が挙げられる。
 熱分解型発泡剤としては、例えば、アゾジカルボンアミド(ADCA)、ジニトロソペンタメチレンテトラミン(DPT)、p,p-オキシビスベンゼンスルホニルヒドラジド(OBSH)、アゾビスイソブチロニトリル(AIBN)等が挙げられる。
 本発明の熱膨張性耐火樹脂組成物は、常法に従って、一軸押出機、二軸押出機等の押出機で130~170℃で溶融押出することにより長尺の成形体を得ることができる。本発明の熱膨張性耐火樹脂組成物は、窓、障子、扉(すなわちドア)、戸、ふすま、及び欄間等の建具;船舶;並びにエレベータ等の構造体に耐火性を付与するために使用されるが、特に、本発明の熱膨張性耐火樹脂組成物は成形性が優れているので、長尺で断面形状が複雑な形状に適合させた異型成形体を容易に得ることができる。
 従って、本発明には、上記の本発明の樹脂組成物を備えた、成形体を初めとする耐火部材、ならびにかかる耐火部材を備えた建具も包含される。例えば、図2は、本発明の樹脂組成物から形成された成形体4を付与した、建具としての窓1のサッシ枠を示す略図である。この例では、サッシ枠は2つの内枠2と、内枠2を包囲する1つの外枠3とを有し、内枠2および外枠3の枠本体の各辺に沿って、内枠2および外枠3の内部に成形体4が取り付けられている。このようにして、成形体4を設けることにより、窓1に耐火性を付与することができる。
 一実施形態において、本発明の熱膨張性耐火樹脂組成物は、600℃で30分間加熱した後の膨張倍率が10を超え、かつ残渣硬さが0.25kgf/cm2を超える。熱膨張性黒鉛の平均アスペクト比が20以上であり、かかる膨張倍率及び残渣硬さを有することにより、熱膨張性耐火樹脂組成物は優れた形状保持性を有する。
 以下に図面を参照しつつ実施例により本発明を詳細に説明する。なお本発明はこれらの実施例により何ら限定されるものではない。
 実施例1~2、比較例1
 アスペクト比
 熱膨張性黒鉛として、ADT社製「ADT501」を実施例1、日本黒鉛工業社製「EXP50T」を実施例2、東ソ一社製「GREP-EG」(膨張開始温度220℃)を比較例1とし、各熱膨張性黒鉛のアスペクト比と、各熱膨張性黒鉛を表1に示した組成で配合した。
 膨張倍率と残渣硬さの測定
(成形性)
 実施例1,2及び比較例1のいずれとも、表面が美麗な長尺異型成形体を2時間押出成形でき、2時間押出成形した後のスクリュー及び金型への配合物の付着もなく、成形性は良好であった。
(膨張倍率)
 得られた成形体から作製した試験片(長さ100mm、幅100mm、厚さ2.0mm)を電気炉に供給し、600℃で30分間加熱した後、試験片の厚さを測定し、(加熱後の試験片の厚さ)/(加熱前の試験片の厚さ)を膨張倍率として算出した。
(残渣硬さ)
 膨張倍率を測定した加熱後の試験片を圧縮試験機(カトーテック社製、「フィンガーフイリングテスター」)に供給し、0.25cm2の圧子で0.1cm/秒の速度で圧縮し、破断点応力を測定した。
(残渣の形状保持性)
 上記残渣硬さは膨張後の残渣の硬さの指標になるが、測定が残渣の表面部分に限られるため、残渣全体の硬さの指標にならないことがあるので、残渣全体の硬さの指標として形状保持性を測定した。残渣の形状保持性は、膨張倍率を測定した試験片の両端部を手で持って持ち上げて、その際の残渣の崩れやすさを目視して測定した、試験片が崩れることなく持ち上げられた場合をPASSと評価し、試験片が崩壊して持ち上げられない場合をFAILと評価した。
 得られた成形体の膨張倍率、残渣硬さ、及び残渣の形状保持性の測定結果は、表1及び図3に示す通りである。実施例1,2では、比較的高い膨張倍率と高い残渣硬さが維持されていたが、比較例1では残渣硬さが低下しており、残渣の形状保持性にも劣っていた。
Figure JPOXMLDOC01-appb-T000002
 実施例3~22
 表2に示した配合の成分を含有する配合物を、実施例1~2および比較例1に関して上記に記載したのと同様に一軸押出機に供給し、150℃で断面形状がE字状の長尺異型成形体を1m/hrの速度で2時間押出成形した。
 熱膨張性黒鉛として、ADT社製「ADT351」のアスペクト比は21.3である。
 樹脂成分として、実施例3~6ではCPVC、実施例7~10ではポリ塩化ビニル樹脂(重合度1000、「PVC」と言う)、実施例11~15ではエチレン-酢酸ビニル共重合樹脂(三井・デュポンポリケミカル製エバフレックスEV360、「EVA」と言う)、実施例16~20ではエチレン-プロピレン-ジエンゴム(三井化学社製三井EPT3092M、「EPDM」と言う)、実施例21,22ではビスフェノールF型エポキシモノマー(油化シェル社製「E807」)、ジアミン系硬化剤(油化シェル社製「EKFL052」)を3:2の配合量で、他配合原料と供に混練、加熱硬化することにより得られるエポキシ樹脂を用いた。
 ポリリン酸アンモニウムはクラリアント社製「AP422」、軟化剤は出光興産株式会社製「ダイアナプロセスオイルPW-90」とした。
(成形性)
 実施例3~22のいずれとも、表面が美麗な長尺異型成形体を2時間押出成形でき、2時間押出成形した後のスクリュー及び金型への配合物の付着もなく、成形性は良好であった。
(膨張倍率)
 得られた成形体から作製した試験片(長さ100mm、幅100mm、厚さ2.0mm)を電気炉に供給し、600℃で30分間加熱した後、試験片の厚さを測定し、(加熱後の試験片の厚さ)/(加熱前の試験片の厚さ)を膨張倍率として算出した。
(残渣硬さ)
 膨張倍率を測定した加熱後の試験片を圧縮試験機(カトーテック社製、「フィンガーフイリングテスター」)に供給し、0.25cm2の圧子で0.1cm/秒の速度で圧縮し、破断点応力を測定した。
 実施例3~22の成形体のいずれも、実施例1,2と同様、比較的高い膨張倍率と高い残渣硬さが維持されていた(データ非図示)。
(残渣の形状保持性)
 上記残渣硬さは膨張後の残渣の硬さの指標になるが、測定が残渣の表面部分に限られるため、残渣全体の硬さの指標にならないことがあるので、残渣全体の硬さの指標として形状保持性を測定した。残渣の形状保持性は、膨張倍率を測定した試験片の両端部を手で持って持ち上げて、その際の残渣の崩れやすさを目視して測定した、試験片が崩れることなく持ち上げられた場合をPASSと評価し、試験片が崩壊して持ち上げられない場合をFAILと評価した。
Figure JPOXMLDOC01-appb-T000003

Claims (6)

  1.  樹脂成分100重量部、熱膨張性黒鉛3~300重量部、及び無機充填材2~200重量部を含有し、熱膨張性黒鉛の平均アスペクト比が20以上であることを特徴とする熱膨張性耐火樹脂組成物。
  2.  熱膨張性黒鉛の平均粒径が100~1000μmの範囲にあり、かつ平均厚さが50μm以下である、請求項1に記載の熱膨張性耐火樹脂組成物。
  3.  樹脂成分が樹脂成分がポリ塩化ビニル、塩素化塩化ビニル及び熱可塑性エラストマーからなる群より選ばれる少なくとも一つを含む、請求項1又は2に記載の熱膨張性耐火樹脂組成物。
  4.  リン化合物(燐酸エステル可塑剤を除く。)を含有しないことを特徴とする請求項1~3のいずれか一項に記載の熱膨張性耐火樹脂組成物。
  5.  請求項1~4のいずれか一項に記載の熱膨張性耐火樹脂組成物を備えた耐火部材。
  6.  請求項5に記載の耐火部材を備えた建具。
PCT/JP2015/074216 2014-08-27 2015-08-27 熱膨張性耐火樹脂組成物 WO2016031910A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201580046137.3A CN106604972A (zh) 2014-08-27 2015-08-27 热膨胀性耐火树脂组合物
US15/505,953 US10538616B2 (en) 2014-08-27 2015-08-27 Thermally expandable fire resistant resin composition
KR1020177004831A KR102171427B1 (ko) 2014-08-27 2015-08-27 열팽창성 내화 수지 조성물
ES15835504T ES2735404T3 (es) 2014-08-27 2015-08-27 Composición de resina resistente al fuego térmicamente expandible
AU2015309847A AU2015309847A1 (en) 2014-08-27 2015-08-27 Thermally expandable fire resistant resin composition
EP15835504.0A EP3187549B1 (en) 2014-08-27 2015-08-27 Thermally expandable fire resistant resin composition
JP2015548521A JP6279610B2 (ja) 2014-08-27 2015-08-27 熱膨張性耐火樹脂組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014173016 2014-08-27
JP2014-173016 2014-08-27

Publications (1)

Publication Number Publication Date
WO2016031910A1 true WO2016031910A1 (ja) 2016-03-03

Family

ID=55399794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074216 WO2016031910A1 (ja) 2014-08-27 2015-08-27 熱膨張性耐火樹脂組成物

Country Status (8)

Country Link
US (1) US10538616B2 (ja)
EP (1) EP3187549B1 (ja)
JP (5) JP6279610B2 (ja)
KR (1) KR102171427B1 (ja)
CN (1) CN106604972A (ja)
AU (1) AU2015309847A1 (ja)
ES (1) ES2735404T3 (ja)
WO (1) WO2016031910A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017133007A (ja) * 2016-01-26 2017-08-03 積水化学工業株式会社 耐火樹脂組成物
JP2017203131A (ja) * 2016-05-13 2017-11-16 日立化成株式会社 エポキシ樹脂組成物、エポキシ樹脂硬化物及び電子部品装置
WO2018003783A1 (ja) * 2016-06-28 2018-01-04 住友化学株式会社 ゴム組成物、ゴム成形体、及びゴム成形体の製造方法
WO2018016580A1 (ja) * 2016-07-20 2018-01-25 積水化学工業株式会社 耐火成形体及び耐火成形体を備えた成形品
JP2018070880A (ja) * 2016-10-24 2018-05-10 積水化学工業株式会社 熱膨張性耐火性シート
JP2018090757A (ja) * 2016-02-02 2018-06-14 積水化学工業株式会社 耐火性樹脂組成物
WO2018117075A1 (ja) * 2016-12-19 2018-06-28 積水化学工業株式会社 耐火樹脂組成物及び耐火樹脂成形体
JP2018115319A (ja) * 2017-01-13 2018-07-26 積水化学工業株式会社 熱膨張性耐火シート及び該熱膨張性耐火シートのバッテリーにおける使用
JP2019056120A (ja) * 2016-12-19 2019-04-11 積水化学工業株式会社 耐火樹脂組成物及び耐火樹脂成形体
JP2019070119A (ja) * 2017-10-10 2019-05-09 積水化学工業株式会社 耐火性樹脂組成物、耐火成形部材及び建具
JP2019215076A (ja) * 2017-07-28 2019-12-19 積水化学工業株式会社 配管材、配管構造体及び配管材の製造方法
JP2021024903A (ja) * 2019-07-31 2021-02-22 古河電気工業株式会社 耐火性樹脂成形体
JP2022505838A (ja) * 2018-10-24 2022-01-14 ヒルティ アクチエンゲゼルシャフト 建築部材間の通路開口部および接合部をシールするための複合材料および防火要素
JP2022512801A (ja) * 2018-10-24 2022-02-07 ヒルティ アクチエンゲゼルシャフト 建築部材の通路開口部および接合部をシールするための複合材料および防火要素
JP2022033116A (ja) * 2020-06-01 2022-02-28 積水化学工業株式会社 耐火性樹脂組成物、耐火シート及び建具
JP7074924B1 (ja) 2021-12-21 2022-05-24 デンカ株式会社 熱膨張性耐火材
JP7142139B1 (ja) 2021-12-23 2022-09-26 デンカ株式会社 熱膨張性耐火材

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6243925B2 (ja) * 2014-08-27 2017-12-06 積水化学工業株式会社 樹脂組成物
CN107090156A (zh) * 2017-06-20 2017-08-25 合肥慧林建材有限公司 一种道路管材及其制备方法
JP7372836B2 (ja) * 2017-10-30 2023-11-01 株式会社レゾナック 樹脂組成物、硬化物、成形体及びその製造方法、並びに、フィルムコンデンサ及びその製造方法
WO2019087258A1 (ja) 2017-10-30 2019-05-09 日立化成株式会社 樹脂組成物、硬化物、成形体及びその製造方法、並びに、フィルムコンデンサ及びその製造方法
KR102333683B1 (ko) * 2017-12-20 2021-12-02 (주)엘엑스하우시스 발포체 및 이를 포함하는 바닥재
CN108642898A (zh) * 2018-05-21 2018-10-12 昆山阿基里斯人造皮有限公司 一种新型交联pvc人造革及其制备方法
CN108948589A (zh) * 2018-07-31 2018-12-07 武汉金达海恒机电工程有限公司 一种用于钢轨探伤车的探轮外套及其制备工艺
CN109593295B (zh) * 2018-11-27 2020-10-30 厦门众臣元科技有限公司 一种pvc导电脚轮材料及其制备方法
CN109988383A (zh) * 2019-04-09 2019-07-09 深圳朗昇贸易有限公司 一种新型改性的聚苯乙烯管件及其制备方法
JP7378714B2 (ja) * 2019-05-28 2023-11-14 株式会社レグルス 熱膨張性の製品及び加熱処理済の膨張性黒鉛の作製方法
KR102024543B1 (ko) 2019-07-23 2019-09-24 주식회사 카리스 레진 가드레일
CN115666929A (zh) 2020-05-19 2023-01-31 巴斯夫欧洲公司 金属-聚合物层压结构件
DE102020124334A1 (de) * 2020-09-17 2022-03-17 Chemische Fabrik Budenheim Kg Zusammensetzung umfassend Ammoniumpolyphosphat
CA3198223A1 (en) * 2021-11-10 2023-05-10 3M Innovative Properties Company Intumescent material and articles made thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006348228A (ja) * 2005-06-17 2006-12-28 Shin Etsu Chem Co Ltd 熱膨張性塩化ビニル系樹脂組成物およびその成形体
JP2007326908A (ja) * 2006-06-06 2007-12-20 Shin Etsu Chem Co Ltd 塩化ビニル系樹脂組成物およびその成形体
JP2009197115A (ja) * 2008-02-21 2009-09-03 As R&D合同会社 制振材料
WO2013080563A1 (ja) * 2011-11-29 2013-06-06 徳山積水工業株式会社 押出成形用塩素化塩化ビニル樹脂組成物
JP2013136939A (ja) * 2011-11-29 2013-07-11 Sekisui Chem Co Ltd サッシ用熱膨張性多層枠材

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6044871B2 (ja) 1976-10-22 1985-10-05 日本電気株式会社 周波数検出器
JPH09227747A (ja) * 1995-12-22 1997-09-02 Sekisui Chem Co Ltd 塩素化ポリ塩化ビニル系樹脂組成物
JPH09176404A (ja) 1995-12-22 1997-07-08 Sekisui Chem Co Ltd 耐火性樹脂組成物
EP0814121B1 (en) 1996-06-20 2001-09-26 Minnesota Mining And Manufacturing Company Low density, fire retardant one-part epoxy composition
JP3887896B2 (ja) * 1996-08-13 2007-02-28 東ソー株式会社 難燃剤錠剤、それによる難燃化方法、並びにそれを配合してなる難燃性樹脂組成物及びその成形品
JP3573693B2 (ja) * 1999-07-15 2004-10-06 日東化工株式会社 極難燃性ゴムチップ成形体およびこれを用いた弾性床材
JP3327884B2 (ja) 1999-11-17 2002-09-24 黒崎播磨株式会社 粒状黒鉛含有耐火物
JP2004043641A (ja) * 2002-07-11 2004-02-12 Sekisui Chem Co Ltd 耐火性樹脂組成物
JP2004143366A (ja) * 2002-10-28 2004-05-20 Bridgestone Corp インナーライナー用ゴム組成物及びそれを用いたタイヤ
JP4316305B2 (ja) 2003-06-13 2009-08-19 株式会社ジェイエスピー 黒鉛粉を含有するスチレン系樹脂発泡体の製造方法
JP4121473B2 (ja) * 2004-03-19 2008-07-23 アイカ工業株式会社 積層板難燃化用組成物、積層板難燃化用シート、および難燃性化粧板
JP4125697B2 (ja) * 2004-06-08 2008-07-30 テクノポリマー株式会社 難燃性樹脂組成物および成形品
JP2006052566A (ja) 2004-08-11 2006-02-23 Denki Kagaku Kogyo Kk 防火用目地材
JP2007297856A (ja) * 2006-05-01 2007-11-15 Sekisui Chem Co Ltd 鉄骨用耐火被覆シート
US20090111345A1 (en) * 2007-10-24 2009-04-30 Dattatreya Panse Thermally protective materials
WO2011029151A1 (en) 2009-09-11 2011-03-17 Cte Pty Ltd Protective coating composition
JP4875786B2 (ja) * 2010-03-25 2012-02-15 積水化学工業株式会社 合成樹脂積層体
JP4669573B1 (ja) * 2010-07-07 2011-04-13 電気化学工業株式会社 防火用熱膨張性目地材
JP2012218338A (ja) * 2011-04-12 2012-11-12 Sekisui Chem Co Ltd 耐燃焼性成形体の製造方法
JP6071305B2 (ja) 2012-07-30 2017-02-01 株式会社レグルス 延焼防止材、目地材及び建具
ES2736031T3 (es) * 2015-04-07 2019-12-23 Hoffmann La Roche Sistema de gestión de reactivos

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006348228A (ja) * 2005-06-17 2006-12-28 Shin Etsu Chem Co Ltd 熱膨張性塩化ビニル系樹脂組成物およびその成形体
JP2007326908A (ja) * 2006-06-06 2007-12-20 Shin Etsu Chem Co Ltd 塩化ビニル系樹脂組成物およびその成形体
JP2009197115A (ja) * 2008-02-21 2009-09-03 As R&D合同会社 制振材料
WO2013080563A1 (ja) * 2011-11-29 2013-06-06 徳山積水工業株式会社 押出成形用塩素化塩化ビニル樹脂組成物
JP2013136939A (ja) * 2011-11-29 2013-07-11 Sekisui Chem Co Ltd サッシ用熱膨張性多層枠材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3187549A1 *

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017133007A (ja) * 2016-01-26 2017-08-03 積水化学工業株式会社 耐火樹脂組成物
JP2018090757A (ja) * 2016-02-02 2018-06-14 積水化学工業株式会社 耐火性樹脂組成物
JP2018204016A (ja) * 2016-02-02 2018-12-27 積水化学工業株式会社 耐火性樹脂組成物
JP2017203131A (ja) * 2016-05-13 2017-11-16 日立化成株式会社 エポキシ樹脂組成物、エポキシ樹脂硬化物及び電子部品装置
WO2018003783A1 (ja) * 2016-06-28 2018-01-04 住友化学株式会社 ゴム組成物、ゴム成形体、及びゴム成形体の製造方法
US11028260B2 (en) 2016-06-28 2021-06-08 Sumitomo Chemical Company, Limited Rubber composition, rubber molded body, and method for production of rubber molded body
US20190225785A1 (en) * 2016-06-28 2019-07-25 Sumitomo Chemical Company, Limited Rubber composition, rubber molded body, and method for production of rubber molded body
CN109328213A (zh) * 2016-06-28 2019-02-12 住友化学株式会社 橡胶组合物、橡胶成型体和橡胶成型体的制造方法
JP2019039014A (ja) * 2016-07-20 2019-03-14 積水化学工業株式会社 耐火成形体及び耐火成形体を備えた成形品
WO2018016580A1 (ja) * 2016-07-20 2018-01-25 積水化学工業株式会社 耐火成形体及び耐火成形体を備えた成形品
JPWO2018016580A1 (ja) * 2016-07-20 2018-10-04 積水化学工業株式会社 耐火成形体及び耐火成形体を備えた成形品
JP2018070880A (ja) * 2016-10-24 2018-05-10 積水化学工業株式会社 熱膨張性耐火性シート
KR20190093120A (ko) * 2016-12-19 2019-08-08 세키스이가가쿠 고교가부시키가이샤 내화 수지 조성물 및 내화 수지 성형체
JP2019056120A (ja) * 2016-12-19 2019-04-11 積水化学工業株式会社 耐火樹脂組成物及び耐火樹脂成形体
JP2018123345A (ja) * 2016-12-19 2018-08-09 積水化学工業株式会社 耐火樹脂組成物及び耐火樹脂成形体
KR102245331B1 (ko) 2016-12-19 2021-04-28 세키스이가가쿠 고교가부시키가이샤 내화 수지 조성물 및 내화 수지 성형체
WO2018117075A1 (ja) * 2016-12-19 2018-06-28 積水化学工業株式会社 耐火樹脂組成物及び耐火樹脂成形体
JP2018115319A (ja) * 2017-01-13 2018-07-26 積水化学工業株式会社 熱膨張性耐火シート及び該熱膨張性耐火シートのバッテリーにおける使用
JP7168323B2 (ja) 2017-01-13 2022-11-09 積水化学工業株式会社 熱膨張性耐火シート及び該熱膨張性耐火シートのバッテリーにおける使用
JP2019215076A (ja) * 2017-07-28 2019-12-19 積水化学工業株式会社 配管材、配管構造体及び配管材の製造方法
JP2022008555A (ja) * 2017-07-28 2022-01-13 積水化学工業株式会社 配管構造体及び管継手の製造方法
JP7136982B2 (ja) 2017-07-28 2022-09-13 積水化学工業株式会社 配管構造体及び配管構造体用の管継手の製造方法
JP2019070119A (ja) * 2017-10-10 2019-05-09 積水化学工業株式会社 耐火性樹脂組成物、耐火成形部材及び建具
JP2022512801A (ja) * 2018-10-24 2022-02-07 ヒルティ アクチエンゲゼルシャフト 建築部材の通路開口部および接合部をシールするための複合材料および防火要素
JP2022505838A (ja) * 2018-10-24 2022-01-14 ヒルティ アクチエンゲゼルシャフト 建築部材間の通路開口部および接合部をシールするための複合材料および防火要素
JP2021024903A (ja) * 2019-07-31 2021-02-22 古河電気工業株式会社 耐火性樹脂成形体
JP7382756B2 (ja) 2019-07-31 2023-11-17 古河電気工業株式会社 耐火性硬質塩化ビニル樹脂成形体
JP2022033116A (ja) * 2020-06-01 2022-02-28 積水化学工業株式会社 耐火性樹脂組成物、耐火シート及び建具
JP7530344B2 (ja) 2020-06-01 2024-08-07 積水化学工業株式会社 耐火性樹脂組成物、耐火シート及び建具
JP7074924B1 (ja) 2021-12-21 2022-05-24 デンカ株式会社 熱膨張性耐火材
JP2023092139A (ja) * 2021-12-21 2023-07-03 デンカ株式会社 熱膨張性耐火材
JP7142139B1 (ja) 2021-12-23 2022-09-26 デンカ株式会社 熱膨張性耐火材
JP2023094196A (ja) * 2021-12-23 2023-07-05 デンカ株式会社 熱膨張性耐火材

Also Published As

Publication number Publication date
JP6286004B2 (ja) 2018-02-28
JP7048701B2 (ja) 2022-04-05
EP3187549A1 (en) 2017-07-05
EP3187549B1 (en) 2019-04-24
CN106604972A (zh) 2017-04-26
KR102171427B1 (ko) 2020-10-29
US20170253691A1 (en) 2017-09-07
JP2021042384A (ja) 2021-03-18
JP2018024891A (ja) 2018-02-15
ES2735404T3 (es) 2019-12-18
EP3187549A4 (en) 2018-04-11
KR20170045220A (ko) 2017-04-26
JP2019143163A (ja) 2019-08-29
AU2015309847A1 (en) 2017-03-16
JP6792026B2 (ja) 2020-11-25
US10538616B2 (en) 2020-01-21
JP6279610B2 (ja) 2018-02-14
JP2017057399A (ja) 2017-03-23
JP6539327B2 (ja) 2019-07-03
JPWO2016031910A1 (ja) 2017-04-27

Similar Documents

Publication Publication Date Title
JP6286004B2 (ja) 熱膨張性耐火樹脂組成物
JP7419459B2 (ja) 樹脂組成物
KR101875991B1 (ko) 압출 성형용 염소화 염화비닐 수지조성물
JP5961101B2 (ja) サッシ用熱膨張性多層枠材
WO2018212337A1 (ja) 熱膨張性樹脂組成物及び建材用多層耐火成形体
JP2018100410A (ja) 耐火性樹脂組成物

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015548521

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15835504

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177004831

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15505953

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015309847

Country of ref document: AU

Date of ref document: 20150827

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015835504

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015835504

Country of ref document: EP