WO2016031633A1 - 半導体素子及び結晶積層構造体 - Google Patents

半導体素子及び結晶積層構造体 Download PDF

Info

Publication number
WO2016031633A1
WO2016031633A1 PCT/JP2015/073150 JP2015073150W WO2016031633A1 WO 2016031633 A1 WO2016031633 A1 WO 2016031633A1 JP 2015073150 W JP2015073150 W JP 2015073150W WO 2016031633 A1 WO2016031633 A1 WO 2016031633A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
resistance substrate
channel layer
impurity
buffer layer
Prior art date
Application number
PCT/JP2015/073150
Other languages
English (en)
French (fr)
Inventor
公平 佐々木
後藤 健
東脇 正高
マン ホイ ワン
纐纈 明伯
熊谷 義直
尚 村上
Original Assignee
株式会社タムラ製作所
国立研究開発法人情報通信研究機構
国立大学法人東京農工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社タムラ製作所, 国立研究開発法人情報通信研究機構, 国立大学法人東京農工大学 filed Critical 株式会社タムラ製作所
Priority to US15/507,158 priority Critical patent/US10861945B2/en
Priority to DE112015003943.0T priority patent/DE112015003943B4/de
Priority to CN201580046341.5A priority patent/CN107078063B/zh
Publication of WO2016031633A1 publication Critical patent/WO2016031633A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02414Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02483Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02581Transition metal or rare earth elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/105Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with vertical doping variation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/36Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate

Definitions

  • the present invention relates to a semiconductor element and a crystal laminated structure.
  • MESFET Metal Semiconductor Field Effect Transistor
  • a channel layer containing a donor impurity is formed on a high resistance Ga 2 O 3 -based substrate containing an acceptor impurity
  • Patent Document 1 Patent Document 1
  • acceptor impurities are diffused from the high-resistance Ga 2 O 3 substrate to the channel layer, and the channel layer may be increased in resistance by carrier compensation.
  • an object of the present invention is to provide a semiconductor element in which the increase in resistance of the channel layer is suppressed, and a crystal laminated structure that can be used for manufacturing the element.
  • One embodiment of the present invention provides the following semiconductor devices [1] to [6] to achieve the above object.
  • a high resistance substrate made of ⁇ -Ga 2 O 3 single crystal containing acceptor impurities, a buffer layer made of ⁇ -Ga 2 O 3 single crystal on the high resistance substrate, and on the buffer layer And a channel layer made of a ⁇ -Ga 2 O 3 single crystal containing a donor impurity.
  • the buffer layer and the channel layer include the acceptor impurity diffused from the high-resistance substrate, and the concentration of the acceptor impurity in the channel layer is lower than the concentration of the acceptor impurity in the buffer layer.
  • the lower layer on the high resistance substrate side of the buffer layer contains the acceptor impurity diffused from the high resistance substrate, and the upper layer on the channel layer side of the buffer layer and the channel layer are formed from the high resistance substrate.
  • Another aspect of the present invention provides the following crystal laminated structures [7] to [11].
  • a high resistance substrate made of ⁇ -Ga 2 O 3 single crystal containing acceptor impurities, a buffer layer made of ⁇ -Ga 2 O 3 single crystal on the high resistance substrate, and on the buffer layer And a donor impurity-containing layer made of a ⁇ -Ga 2 O 3 -based single crystal containing donor impurities.
  • the buffer layer and the donor impurity-containing layer include the acceptor impurity diffused from the high-resistance substrate, and the concentration of the acceptor impurity in the donor impurity-containing layer is higher than the concentration of the acceptor impurity in the buffer layer.
  • the lower layer on the high resistance substrate side of the buffer layer contains the acceptor impurity diffused from the high resistance substrate, and the upper layer on the donor impurity containing layer side of the buffer layer and the donor impurity containing layer are The crystal laminated structure according to [7], which does not include the acceptor impurity diffused from the high-resistance substrate.
  • the present invention it is possible to provide a semiconductor element in which the increase in resistance of the channel layer is suppressed, and a crystal laminated structure that can be used for manufacturing the element.
  • FIG. 1 is a vertical sectional view of a Ga 2 O 3 based semiconductor device according to the first embodiment. 2, Fe high resistance Ga 2 O 3 substrate containing as an acceptor impurity, when growing the Ga 2 O 3 epitaxial layer containing Si as a donor impurity, the depth from the surface of the Ga 2 O 3 epitaxial layer And measurement data representing the relationship between the Fe and Si concentrations.
  • FIG. 3A is a vertical sectional view of a Ga 2 O 3 based semiconductor device as a comparative example in which a channel layer is directly formed on a high resistance substrate.
  • FIG. 3B is a graph conceptually showing the relationship between the depth from the surface of the channel layer and the acceptor impurity concentration in the Ga 2 O 3 based semiconductor element of FIG. 3A.
  • FIG. 4A is a vertical cross-sectional view of a Ga 2 O 3 semiconductor device according to the present embodiment in which a channel layer is formed on a high-resistance substrate via a buffer layer.
  • 4B is a graph conceptually showing the relationship between the depth from the surface of the channel layer and the acceptor impurity concentration in the Ga 2 O 3 based semiconductor device of FIG. 4A.
  • FIG. 5 shows measurement data representing the relationship between depth and Fe concentration when a Ga 2 O 3 epitaxial layer is grown on a high-resistance Ga 2 O 3 substrate containing Fe as an acceptor impurity.
  • FIG. 5 shows measurement data representing the relationship between depth and Fe concentration when a Ga 2 O 3 epitaxial layer is grown on a high-resistance Ga 2 O 3 substrate containing Fe as an acceptor impurity.
  • FIG. 6A is measurement data showing the relationship between the depth from the surface of the Ga 2 O 3 crystal film and the Be concentration when Be is introduced into the vicinity of the surface of the Ga 2 O 3 crystal film and annealed.
  • FIG. 6B is measurement data showing the relationship between the depth from the surface of the Ga 2 O 3 crystal film and the Mg concentration when Mg is introduced near the surface of the Ga 2 O 3 crystal film and annealed.
  • FIG. 7 is measurement data showing the relationship between the depth from the surface of the Ga 2 O 3 crystal film and the Zn concentration when Zn is introduced in the vicinity of the surface of the Ga 2 O 3 crystal film and annealed.
  • FIG. 8 is a vertical sectional view of a Ga 2 O 3 based semiconductor device according to the second embodiment.
  • FIG. 9 is a vertical sectional view of a Ga 2 O 3 based semiconductor device according to the third embodiment.
  • FIG. 10 is a vertical sectional view of a Ga 2 O 3 based semiconductor device according to the fourth embodiment.
  • a MESFET is used as a semiconductor element.
  • FIG. 1 is a vertical sectional view of a Ga 2 O 3 based semiconductor device 10 according to the first embodiment.
  • the Ga 2 O 3 based semiconductor element 10 includes a buffer layer 12 formed on the high resistance substrate 11, a channel layer 13 formed on the buffer layer 12, a source electrode 15 and a drain formed on the channel layer 13.
  • the high-resistance substrate 11 is a substrate made of a ⁇ -Ga 2 O 3 single crystal to which acceptor impurities such as Fe, Be, Mg, and Zn are added, and the resistance is increased by adding the acceptor impurities.
  • the ⁇ -Ga 2 O 3 single crystal is a ⁇ -Ga 2 O 3 single crystal or a ⁇ -Ga 2 O 3 single crystal containing non-conductive impurities such as Al and In.
  • the high resistance substrate 11 is obtained, for example, by slicing and polishing a Fe-doped high resistance ⁇ -Ga 2 O 3 single crystal grown by an EFG (Edge-defined Film-fed. Growth) method to a desired thickness. It is done.
  • EFG Edge-defined Film-fed. Growth
  • the main surface of the high-resistance substrate 11 is, for example, a surface rotated by 50 ° or more and 90 ° or less from the (100) plane of the ⁇ -Ga 2 O 3 single crystal. That is, the angle ⁇ (0 ⁇ ⁇ 90 °) between the main surface and the (100) plane in the high-resistance substrate 11 is 50 ° or more.
  • (010) plane, (001) plane, ( ⁇ 201) plane, (101) plane, and (310) plane exist as planes rotated from 50 ° to 90 ° from (100) plane.
  • the main surface of the high-resistance substrate 11 is a surface rotated by 50 ° or more and 90 ° or less from the (100) plane
  • ⁇ -Ga 2 O 3 -based crystal is epitaxially grown on the high-resistance substrate 11
  • ⁇ Re-evaporation from the high-resistance substrate 11 of the Ga 2 O 3 crystal material can be effectively suppressed.
  • the ratio of the raw material re-evaporated when a ⁇ -Ga 2 O 3 based crystal is grown at a growth temperature of 500 ° C. is 0%
  • the main surface of the high resistance substrate 11 is the (100) plane.
  • the ratio of the reevaporated raw material can be suppressed to 40% or less. Therefore, it is possible to use more than 60% of the raw material supplied to the formation of ⁇ -Ga 2 O 3 system crystal, from the viewpoint of the growth rate and production cost of the ⁇ -Ga 2 O 3 system crystal.
  • the main surface of the high-resistance substrate 11 is, for example, a (010) plane or a plane rotated within an angle range within 37.5 ° from the (010) plane.
  • the interface between the high resistance substrate 11 and the epitaxial layer 12 can be made steep, and the thickness of the epitaxial layer 12 can be controlled with high accuracy. Further, unevenness in the amount of elements taken into the epitaxial layer 12 can be suppressed, and the epitaxial layer 12 can be homogenized.
  • the (010) plane is rotated 37.5 ° about the c-axis, it coincides with the (310) plane.
  • the surface orientation of the main surface of the high resistance substrate 11 is (001).
  • the buffer layer 12 is made of a ⁇ -Ga 2 O 3 single crystal containing acceptor impurities diffused from the high resistance substrate 11.
  • the buffer layer 12 is formed by epitaxially growing a ⁇ -Ga 2 O 3 single crystal using the high resistance substrate 11 as a base substrate. During this epitaxial growth, acceptor impurities are diffused from the high resistance substrate 11 into the buffer layer 12.
  • the channel layer 13 is made of a ⁇ -Ga 2 O 3 single crystal containing donor impurities.
  • This donor impurity is preferably an IV group element such as Si or Sn. Note that since the i-type layer and the n-type layer do not need to be heterojunction unlike the high electron mobility transistor, the composition ratio of the ⁇ -Ga 2 O 3 single crystal which is the mother crystal of the buffer layer 12 and the channel layer 13 May be the same.
  • the channel layer 13 can be formed continuously with the buffer layer 12 by epitaxial growth since a ⁇ -Ga 2 O 3 based single crystal is used as a mother crystal in the same manner as the buffer layer 12.
  • the thickness of the channel layer 13 is, for example, about 10 to 1000 nm.
  • Examples of a method for introducing a donor impurity into the channel layer 13 include a method in which a donor impurity is implanted by an ion implantation method after a ⁇ -Ga 2 O 3 single crystal film is grown, or a ⁇ -Ga containing a donor impurity. There is a method of epitaxially growing a 2 O 3 single crystal film.
  • a ⁇ -Ga 2 O 3 single crystal film having a thickness of 300 nm is homoepitaxially grown on the buffer layer 12 by using the HVPE method or the molecular beam epitaxy method. Multi-stage ion implantation is performed.
  • a 300 nm thick ⁇ -Ga 2 O 3 single crystal film containing Sn is homoepitaxially grown on the buffer layer 12 by using, for example, the HVPE method or the molecular beam epitaxy method.
  • the channel layer 13 contains acceptor impurities diffused from the high-resistance substrate 11, but the acceptor impurity concentration is lower than that of the buffer layer 12 because the distance from the high-resistance substrate 11 is larger than that of the buffer layer 12. Further, the channel layer 13 has a donor impurity concentration higher than an acceptor impurity concentration and has n-type conductivity.
  • the gate electrode 14, the source electrode 15, and the drain electrode 16 are, for example, metals such as Au, Al, Ti, Sn, Ge, In, Ni, Co, Pt, W, Mo, Cr, Cu, and Pb, and these metals. It consists of conductive compounds, such as an alloy containing 2 or more of these, or ITO. Moreover, you may have the two-layer structure which consists of two different metals, for example, Ti / Al, Ti / Au, Ti / Pt, Al / Au, Ni / Au, Au / Ni.
  • the contact region 17 is formed by adding a donor impurity such as Si or Sn into the channel layer 13 by ion implantation or the like and activating it by annealing.
  • the concentration of the donor impurity in the contact region 17 is higher than the concentration of the donor impurity in the channel layer 13, and the contact region 17 is in ohmic contact with the source electrode 15 and the drain electrode 16.
  • the Ga 2 O 3 based semiconductor element 10 includes a crystal stacked structure including the high resistance substrate 11, the buffer layer 12 on the high resistance substrate 11, and the donor impurity-containing layer on the buffer layer 12. Manufactured using. A contact region 17 is formed in this crystal laminated structure, and the gate electrode 14, the source electrode 15, and the drain electrode 16 are connected to obtain the Ga 2 O 3 based semiconductor element 10.
  • the donor impurity-containing layer of the crystal multilayer structure is a layer that functions as a channel layer after the Ga 2 O 3 based semiconductor element 10 is formed, and is equal to the channel layer 13.
  • the Ga 2 O 3 based semiconductor element 10 is normally on or normally off depending on the donor concentration and thickness of the channel layer 13 immediately below the gate electrode 14.
  • the source electrode 15 and the drain electrode 16 are electrically connected via the channel layer 13. Therefore, when a voltage is applied between the source electrode 15 and the drain electrode 16 without applying a voltage to the gate electrode 14, a current flows from the source electrode 15 to the drain electrode 16. On the other hand, when a voltage is applied to the gate electrode 14, a depletion layer is formed in a region of the channel layer 13 below the gate electrode 14, and even if a voltage is applied between the source electrode 15 and the drain electrode 16, the source electrode 15 to the drain electrode No current flows to 16.
  • the Ga 2 O 3 based semiconductor element 10 When the Ga 2 O 3 based semiconductor element 10 is normally-off type, no current flows even if a voltage is applied between the source electrode 15 and the drain electrode 16 in a state where no voltage is applied to the gate electrode 14. On the other hand, when a voltage is applied to the gate electrode 14, the depletion layer in the region under the gate electrode 14 of the channel layer 13 narrows, and when a voltage is applied between the source electrode 15 and the drain electrode 16, a current flows from the source electrode 15 to the drain electrode 16. Begins to flow.
  • FIG. 2 shows a case where an undoped Ga 2 O 3 epitaxial layer is grown on a high resistance Ga 2 O 3 substrate containing Fe as an acceptor impurity by about 300 nm and then Si is ion-implanted as a donor impurity into the epitaxial layer.
  • This is measurement data representing the relationship between the depth from the surface of the Ga 2 O 3 epitaxial layer and the concentration of Fe and Si.
  • Fe in the high resistance Ga 2 O 3 substrate is diffused in the Ga 2 O 3 epitaxial layer. Since the Fe concentration in the Ga 2 O 3 epitaxial layer is as high as 6 ⁇ 10 17 cm ⁇ 3 even in the vicinity of the surface farthest from the high resistance Ga 2 O 3 substrate, the Ga 2 O 3 epitaxial layer has a high resistance due to carrier compensation. It has become. For this reason, it is not preferable to use such a Ga 2 O 3 epitaxial layer as an n-type channel layer.
  • FIG. 3A is a vertical sectional view of a Ga 2 O 3 based semiconductor element 50 as a comparative example in which the channel layer 13 is directly formed on the high resistance substrate 11.
  • FIG. 3B is a graph conceptually showing the relationship between the depth from the surface of the channel layer 13 and the acceptor impurity concentration in the Ga 2 O 3 based semiconductor device 50.
  • FIG. 4A is a vertical sectional view of the Ga 2 O 3 based semiconductor device 10 according to the present embodiment in which the channel layer 13 is formed on the high resistance substrate 11 via the buffer layer 12.
  • FIG. 4B is a graph conceptually showing the relationship between the depth from the surface of the channel layer 13 and the acceptor impurity concentration in the Ga 2 O 3 based semiconductor element 10.
  • the channel layer 13 contains a high concentration of acceptor impurities.
  • the Ga 2 O 3 based semiconductor element 10 As shown in FIGS. 4A and 4B, since the distance between the channel layer 13 and the high resistance substrate 11 is large, the channel layer of acceptor impurities diffused from the high resistance substrate 11 is used. The concentration in 13 is greatly reduced. For this reason, the concentration of the acceptor impurity in the Ga 2 O 3 based semiconductor element 10 channel layer 13 is lower than that in the Ga 2 O 3 based semiconductor element 50.
  • FIG. 5 shows measurement data representing the relationship between depth and Fe concentration when a Ga 2 O 3 epitaxial layer is grown on a high-resistance Ga 2 O 3 substrate containing Fe as an acceptor impurity. This depth is based on the position of the interface between the high-resistance Ga 2 O 3 substrate and the Ga 2 O 3 epitaxial layer.
  • the Fe concentration of the high resistance Ga 2 O 3 substrate according to this measurement is 5 ⁇ 10 18 cm ⁇ 3 . Further, the growth temperature of the Ga 2 O 3 epitaxial layer according to this measurement is 1000 ° C.
  • FIG. 5 shows measurement data when the plane orientation of the main surface of the high-resistance Ga 2 O 3 substrate is (010) and measurement data when it is (001).
  • the Fe concentration in the Ga 2 O 3 epitaxial layer decreases as the distance in the depth direction from the interface increases.
  • the Ga 2 O 3 epitaxial layer grows at a speed of about 0.3 ⁇ m / h, and the distance in the depth direction from the interface is about In the region of 1 ⁇ m, the Fe concentration in the Ga 2 O 3 epitaxial layer becomes smaller than 1 ⁇ 10 16 cm ⁇ 3 . Therefore, in this case, the channel layer 13 having high conductivity can be obtained by forming the channel layer 13 on the buffer layer 12 having a thickness of 1 ⁇ m or more.
  • the Ga 2 O 3 epitaxial layer grows at a speed of about 6 ⁇ m / h, and the distance in the depth direction from the interface is about In the region of 0.18 ⁇ m, the Fe concentration in the Ga 2 O 3 epitaxial layer becomes smaller than 1 ⁇ 10 16 cm ⁇ 3 .
  • the channel layer 13 having high conductivity can be obtained by forming the channel layer 13 on the buffer layer 12 having a thickness of 0.18 ⁇ m or more.
  • a thinner buffer layer is preferable because the manufacturing time can be shortened and the raw material consumption can be reduced.
  • the plane orientation of the main surface of the high resistance Ga 2 O 3 substrate is (001). It is preferable that
  • the amount of Fe movement increases, so that the thickness of the Ga 2 O 3 epitaxial layer necessary for sufficiently reducing the Fe concentration increases.
  • the amount of Fe movement decreases, so that the thickness of the Ga 2 O 3 epitaxial layer necessary for sufficiently reducing the Fe concentration decreases.
  • the acceptor impurity used in the present embodiment is not limited to Fe.
  • FIG. 6A is measurement data showing the relationship between the depth from the surface of the Ga 2 O 3 crystal film and the Be concentration when Be is introduced into the vicinity of the surface of the Ga 2 O 3 crystal film and annealed. .
  • FIG. 6B is measurement data showing the relationship between the depth from the surface of the Ga 2 O 3 crystal film and the Mg concentration when Mg is introduced near the surface of the Ga 2 O 3 crystal film and annealed. .
  • FIG. 7 is measurement data showing the relationship between the depth from the surface of the Ga 2 O 3 crystal film and the Zn concentration when Zn is introduced in the vicinity of the surface of the Ga 2 O 3 crystal film and annealed. .
  • the second embodiment is different from the first embodiment in that the upper layer of the buffer layer and the channel layer do not contain acceptor impurities. Note that the description of the same points as in the first embodiment will be omitted or simplified.
  • FIG. 8 is a vertical sectional view of a Ga 2 O 3 based semiconductor device 20 according to the second embodiment.
  • the Ga 2 O 3 based semiconductor element 20 includes a buffer layer 22 formed on the high-resistance substrate 11, a channel layer 23 formed on the buffer layer 22, a source electrode 15 and a drain formed on the channel layer 23.
  • the buffer layer 22 is made of a ⁇ -Ga 2 O 3 single crystal, and includes a lower layer 22a on the high resistance substrate 11 side containing acceptor impurities diffused from the high resistance substrate 11, and a channel layer 23 side not containing acceptor impurities.
  • the upper layer 22b is included.
  • the buffer layer 22 is formed by epitaxially growing a ⁇ -Ga 2 O 3 based single crystal using the high resistance substrate 11 as a base substrate. During this epitaxial growth, acceptor impurities are diffused from the high resistance substrate 11 into the buffer layer 22.
  • the concentration of acceptor impurities in the buffer layer 12 and the channel layer 13 decreases as the distance in the depth direction from the high resistance substrate 11 increases.
  • the high resistance substrate when a Ga 2 O 3 epitaxial layer is grown at a growth temperature of 1000 ° C. on a high resistance Ga 2 O 3 substrate whose main surface has a plane orientation of (010), the high resistance substrate The region in the Ga 2 O 3 epitaxial layer whose distance in the depth direction (thickness direction) from 11 is 1 ⁇ m or more contains almost no acceptor impurity.
  • the buffer layer 22 when a Ga 2 O 3 epitaxial layer having a thickness from the surface of the high resistance substrate 11 larger than 1 ⁇ m is used as the buffer layer 22, there is a region where the distance in the thickness direction from the high resistance substrate 11 is less than 1 ⁇ m. A region where the distance from the high resistance substrate 11 in the thickness direction is 1 ⁇ m or more becomes the upper layer 22b.
  • the buffer layer 22 when a Ga 2 O 3 epitaxial layer having a thickness from the surface of the high resistance substrate 11 larger than 0.18 ⁇ m is used as the buffer layer 22, the distance in the thickness direction from the high resistance substrate 11 is less than 0.18 ⁇ m. Is the lower layer 22a, and the region whose distance in the thickness direction from the high-resistance substrate 11 is 0.18 ⁇ m or more is the upper layer 22b.
  • the channel layer 23 is made of a ⁇ -Ga 2 O 3 single crystal containing donor impurities.
  • This donor impurity is preferably an IV group element such as Si or Sn.
  • the channel layer 23 can be formed continuously with the buffer layer 22 by epitaxial growth because a ⁇ -Ga 2 O 3 single crystal is used as a mother crystal in the same manner as the buffer layer 22.
  • the thickness of the channel layer 23 is, for example, about 10 to 1000 nm.
  • the channel layer 23 is formed on the upper layer 22b not including acceptor impurities, the channel layer 23 does not include acceptor impurities and has higher conductivity than the channel layer 13 according to the first embodiment.
  • a MISFET Metal Insulator Semiconductor Field Effect Transistor
  • FIG. 9 is a vertical sectional view of a Ga 2 O 3 based semiconductor element 30 according to the third embodiment.
  • the Ga 2 O 3 semiconductor element 30 includes a buffer layer 12 formed on the high-resistance substrate 11, a channel layer 13 formed on the buffer layer 12, a source electrode 15 and a drain formed on the channel layer 13.
  • the gate electrode 14 formed on the channel layer 13 between the electrode 16, the source electrode 15 and the drain electrode 16 via the gate insulating film 31, and below the source electrode 15 and the drain electrode 16 in the channel layer 13
  • the formed contact region 17 is included.
  • the gate insulating film 31 is made of an insulating material such as Al 2 O 3 .
  • the Ga 2 O 3 based semiconductor element 30 is normally on or normally off depending on the donor concentration and thickness of the channel layer 13 directly below the gate electrode 14.
  • the source electrode 15 and the drain electrode 16 are electrically connected through the channel layer 13. Therefore, when a voltage is applied between the source electrode 15 and the drain electrode 16 without applying a voltage to the gate electrode 14, a current flows from the source electrode 15 to the drain electrode 16. On the other hand, when a voltage is applied to the gate electrode 14, a depletion layer is formed in a region of the channel layer 13 below the gate electrode 14, and even if a voltage is applied between the source electrode 15 and the drain electrode 16, the source electrode 15 to the drain electrode No current flows to 16.
  • the Ga 2 O 3 based semiconductor element 30 When the Ga 2 O 3 based semiconductor element 30 is normally off type, no current flows even if a voltage is applied between the source electrode 15 and the drain electrode 16 in a state where no voltage is applied to the gate electrode 14. On the other hand, when a voltage is applied to the gate electrode 14, the depletion layer in the region below the gate electrode 14 of the channel layer 13 is narrowed, and when a voltage is applied between the source electrode 15 and the drain electrode 16, Begins to flow.
  • the channel layer 13 is formed on the high resistance substrate 11 via the buffer layer 12 in the same manner as the Ga 2 O 3 based semiconductor element 10 according to the first embodiment. For this reason, the concentration of the acceptor impurity contained in the channel layer 13 is low. For this reason, the increase in resistance of the channel layer 13 due to carrier compensation can be suppressed.
  • a MISFET is used as a semiconductor element. Note that the description of the same points as in the second and third embodiments will be omitted or simplified.
  • FIG. 10 is a vertical sectional view of a Ga 2 O 3 based semiconductor element 40 according to the fourth embodiment.
  • the Ga 2 O 3 based semiconductor element 40 includes a buffer layer 22 formed on the high-resistance substrate 11, a channel layer 23 formed on the buffer layer 22, a source electrode 15 and a drain formed on the channel layer 23.
  • the gate electrode 14 formed on the electrode 16, the channel layer 23 between the source electrode 15 and the drain electrode 16 via the gate insulating film 31, and below the source electrode 15 and the drain electrode 16 in the channel layer 23
  • the formed contact region 17 is included.
  • the Ga 2 O 3 based semiconductor device 40 has a channel layer 23 formed on the buffer layer 22 that does not contain an acceptor impurity in the upper layer 22b. Therefore, the channel layer 23 does not contain acceptor impurities. For this reason, the increase in resistance of the channel layer 23 due to carrier compensation can be suppressed.
  • the channel layer concentration of acceptor impurities diffused from the high resistance substrate is low or the acceptor impurities are hardly contained in the channel layer. Resistance can be suppressed.
  • the buffer layer exists between the high resistance substrate and the channel layer, and the channel layer is separated from the interface between the high resistance substrate and the buffer layer. , Leakage due to impurities and crystal defects at the interface can be suppressed.
  • a semiconductor element in which the increase in resistance of a channel layer is suppressed, and a crystal stacked structure that can be used for manufacturing the element.

Abstract

 チャネル層の高抵抗化が抑えられた半導体素子、及びその素子の製造に用いることができる結晶積層構造体を提供する。 一実施の形態として、アクセプタ不純物を含むβ-Ga23系単結晶からなる高抵抗基板11と、高抵抗基板11上の、β-Ga23系単結晶からなるバッファ層12と、バッファ層12上の、ドナー不純物を含むβ-Ga23系単結晶からなるチャネル層13と、を有する、Ga23系半導体素子10を提供する。

Description

半導体素子及び結晶積層構造体
 本発明は、半導体素子及び結晶積層構造体に関する。
 従来の半導体素子として、アクセプタ不純物を含む高抵抗のGa23系基板上にドナー不純物を含むチャネル層が形成されたMESFET(Metal Semiconductor Field Effect Transistor)が知られている(例えば、特許文献1参照)。
国際公開第2013/069729号
 しかしながら、特許文献1に開示されたMESFETにおいては、高抵抗Ga23基板からチャネル層へアクセプタ不純物が拡散し、キャリア補償によりチャネル層が高抵抗化するおそれがある。
 そこで、本発明の目的は、チャネル層の高抵抗化が抑えられた半導体素子、及びその素子の製造に用いることができる結晶積層構造体を提供することにある。
 本発明の一態様は、上記目的を達成するために、以下の[1]~[6]の半導体素子を提供する。
[1]アクセプタ不純物を含むβ-Ga23系単結晶からなる高抵抗基板と、前記高抵抗基板上の、β-Ga23系単結晶からなるバッファ層と、前記バッファ層上の、ドナー不純物を含むβ-Ga23系単結晶からなるチャネル層と、を有する、半導体素子。
[2]前記バッファ層及び前記チャネル層が、前記高抵抗基板から拡散した前記アクセプタ不純物を含み、前記チャネル層の前記アクセプタ不純物の濃度が前記バッファ層の前記アクセプタ不純物の濃度よりも低く、前記チャネル層の前記ドナー不純物の濃度が前記チャネル層の前記アクセプタ不純物の濃度よりも高い、前記[1]に記載の半導体素子。
[3]前記バッファ層の前記高抵抗基板側の下層が、前記高抵抗基板から拡散した前記アクセプタ不純物を含み、前記バッファ層の前記チャネル層側の上層及び前記チャネル層が、前記高抵抗基板から拡散した前記アクセプタ不純物を含まない、前記[1]に記載の半導体素子。
[4]前記高抵抗基板の主面の面方位が(001)である、前記[1]~[3]のいずれか1項に記載の半導体素子。
[5]前記アクセプタ不純物は、Fe、Be、Mg、及びZnのうちの少なくとも1つを含む、前記[1]~[3]のいずれか1項に記載の半導体素子。
[6]MESFET又はMOSFETである、前記[1]~[3]のいずれか1項に記載の半導体素子。
 また、本発明の他の態様は、上記目的を達成するために、以下の[7]~[11]の結晶積層構造体を提供する。
[7]アクセプタ不純物を含むβ-Ga23系単結晶からなる高抵抗基板と、前記高抵抗基板上の、β-Ga23系単結晶からなるバッファ層と、前記バッファ層上の、ドナー不純物を含むβ-Ga23系単結晶からなるドナー不純物含有層と、を有する、結晶積層構造体。
[8]前記バッファ層及び前記ドナー不純物含有層が、前記高抵抗基板から拡散した前記アクセプタ不純物を含み、前記ドナー不純物含有層の前記アクセプタ不純物の濃度が前記バッファ層の前記アクセプタ不純物の濃度よりも低く、前記ドナー不純物含有層の前記ドナー不純物の濃度が前記ドナー不純物含有層の前記アクセプタ不純物の濃度よりも高い、前記[7]に記載の結晶積層構造体。
[9]前記バッファ層の前記高抵抗基板側の下層が、前記高抵抗基板から拡散した前記アクセプタ不純物を含み、前記バッファ層の前記ドナー不純物含有層側の上層及び前記ドナー不純物含有層が、前記高抵抗基板から拡散した前記アクセプタ不純物を含まない、前記[7]に記載の結晶積層構造体。
[10]前記高抵抗基板の主面の面方位が(001)である、前記[7]~[9]のいずれか1項に記載の結晶積層構造体。
[11]前記アクセプタ不純物は、Fe、Be、Mg、及びZnのうちの少なくとも1つを含む、前記[7]~[9]のいずれか1項に記載の結晶積層構造体。
 本発明によれば、チャネル層の高抵抗化が抑えられた半導体素子、及びその素子の製造に用いることができる結晶積層構造体を提供することができる。
図1は、第1の実施の形態に係るGa23系半導体素子の垂直断面図である。 図2は、アクセプタ不純物としてFeを含む高抵抗Ga23基板上に、ドナー不純物としてSiを含むGa23エピタキシャル層を成長させた場合の、Ga23エピタキシャル層の表面からの深さとFe、Siの濃度の関係を表す測定データである。 図3Aは、高抵抗基板上にチャネル層が直接形成された比較例としてのGa23系半導体素子の垂直断面図である。 図3Bは、図3AのGa23系半導体素子におけるチャネル層の表面からの深さとアクセプタ不純物濃度との関係を概念的に表すグラフである。 図4Aは、高抵抗基板上にバッファ層を介してチャネル層が形成された本実施の形態に係るGa23系半導体素子の垂直断面図である。 図4Bは、図4AのGa23系半導体素子におけるチャネル層の表面からの深さとアクセプタ不純物濃度との関係を概念的に表すグラフである。 図5は、アクセプタ不純物としてFeを含む高抵抗Ga23基板上に、Ga23エピタキシャル層を成長させた場合の、深さとFeの濃度の関係を表す測定データである。 図6Aは、BeをGa23結晶膜の表面近傍に導入し、アニール処理を施した場合の、Ga23結晶膜の表面からの深さとBe濃度との関係を示す測定データである。 図6Bは、MgをGa23結晶膜の表面近傍に導入し、アニール処理を施した場合の、Ga23結晶膜の表面からの深さとMg濃度との関係を示す測定データである。 図7は、ZnをGa23結晶膜の表面近傍に導入し、アニール処理を施した場合の、Ga23結晶膜の表面からの深さとZn濃度との関係を示す測定データである。 図8は、第2の実施の形態に係るGa23系半導体素子の垂直断面図である。 図9は、第3の実施の形態に係るGa23系半導体素子の垂直断面図である。 図10は、第4の実施の形態に係るGa23系半導体素子の垂直断面図である。
〔第1の実施の形態〕
 第1の実施の形態は、半導体素子としてMESFETを用いる形態である。
(半導体素子の構成)
 図1は、第1の実施の形態に係るGa23系半導体素子10の垂直断面図である。Ga23系半導体素子10は、高抵抗基板11上に形成されたバッファ層12と、バッファ層12上に形成されたチャネル層13と、チャネル層13上に形成されたソース電極15及びドレイン電極16と、ソース電極15とドレイン電極16との間のチャネル層13上に形成されたゲート電極14と、チャネル層13中のソース電極15及びドレイン電極16の下に形成されたコンタクト領域17を含む。
 高抵抗基板11は、Fe、Be、Mg、Zn等のアクセプタ不純物が添加されたβ-Ga23系単結晶からなる基板であり、アクセプタ不純物の添加により高抵抗化されている。ここで、β-Ga23系単結晶は、β-Ga23単結晶、又は、Al、In等の非導電型不純物を含むβ-Ga23単結晶である。
 高抵抗基板11は、例えば、EFG(Edge-defined Film-fed. Growth)法で育成したFeドープ高抵抗β-Ga23単結晶を、所望の厚さにスライス、研磨加工することにより得られる。
 高抵抗基板11の主面は、例えば、β-Ga23系単結晶の(100)面から50°以上90°以下回転させた面である。すなわち、高抵抗基板11において主面と(100)面のなす角θ(0<θ≦90°)が50°以上である。(100)面から50°以上90°以下回転させた面として、例えば、(010)面、(001)面、(-201)面、(101)面、及び(310)面が存在する。
 高抵抗基板11の主面が、(100)面から50°以上90°以下回転させた面である場合、高抵抗基板11上にβ-Ga23系結晶をエピタキシャル成長させるときに、β-Ga23系結晶の原料の高抵抗基板11からの再蒸発を効果的に抑えることができる。具体的には、β-Ga23系結晶を成長温度500℃で成長させたときに再蒸発する原料の割合を0%としたとき、高抵抗基板11の主面が、(100)面から50°以上90°以下回転させた面である場合、再蒸発する原料の割合を40%以下に抑えることができる。そのため、供給する原料の60%以上をβ-Ga23系結晶の形成に用いることができ、β-Ga23系結晶の成長速度や製造コストの観点から好ましい。
 β-Ga23結晶においては、c軸を軸として(100)面を52.5°回転させると(310)面と一致し、90°回転させると(010)面と一致する。また、b軸を軸として(100)面を53.8°回転させると(101)面と一致し、76.3°回転させると(001)面と一致し、53.8°回転させると(-201)面と一致する。
 また、高抵抗基板11の主面は、例えば、(010)面、又は(010)面から37.5°以内の角度範囲で回転させた面である。この場合、高抵抗基板11とエピタキシャル層12との界面を急峻にし、また、エピタキシャル層12の厚さを高精度で制御することができる。また、エピタキシャル層12への元素の取り込まれ量のムラを抑制し、エピタキシャル層12を均質化することが可能である。なお、c軸を軸として(010)面を37.5°回転させると(310)面と一致する。
 これらの面方位の中でも、高抵抗基板11の主面の面方位が(001)である場合、高抵抗基板11上でのβ-Ga23系単結晶のエピタキシャル成長速度が特に大きく、高抵抗基板11上に形成されるバッファ層12及びチャネル層13への高抵抗基板11からのアクセプタ不純物の拡散を抑えることができる。このため、高抵抗基板11の主面の面方位が(001)であることが好ましい。
 バッファ層12は、高抵抗基板11から拡散したアクセプタ不純物を含むβ-Ga23系単結晶からなる。
 バッファ層12は、高抵抗基板11を下地基板としてβ-Ga23系単結晶をエピタキシャル成長させることにより形成される。このエピタキシャル成長の間に、高抵抗基板11からバッファ層12にアクセプタ不純物が拡散する。
 チャネル層13は、ドナー不純物を含むβ-Ga23系単結晶からなる。このドナー不純物は、Si、Sn等のIV族元素であることが好ましい。なお、高電子移動度トランジスタのようにi型層とn型層がヘテロ接合する必要はないため、バッファ層12とチャネル層13の母結晶であるβ-Ga23系単結晶の組成比は同じであってもよい。
 チャネル層13は、バッファ層12と同じくβ-Ga23系単結晶を母結晶とするため、エピタキシャル成長によりバッファ層12と連続的に形成することができる。チャネル層13の厚さは、例えば、10~1000nm程度である。
 チャネル層13にドナー不純物を導入する方法としては、例えば、β-Ga23単結晶膜を成長させた後でイオン注入法によりドナー不純物を注入する方法や、ドナー不純物を含んだβ-Ga23単結晶膜をエピタキシャル成長させる方法がある。
 前者の方法を用いる場合は、例えば、HVPE法や分子線エピタキシー法を用いて、バッファ層12上に厚さ300nmのβ-Ga23単結晶膜をホモエピタキシャル成長させた後に、その全面にSiの多段イオン注入を施す。
 後者の方法を用いる場合は、例えば、HVPE法や分子線エピタキシー法を用いて、バッファ層12上にSnを含む厚さ300nmのβ-Ga23単結晶膜をホモエピタキシャル成長させる。
 チャネル層13は、高抵抗基板11から拡散したアクセプタ不純物を含むが、バッファ層12よりも高抵抗基板11からの距離が大きいため、アクセプタ不純物の濃度がバッファ層12よりも低い。また、チャネル層13は、ドナー不純物濃度がアクセプタ不純物濃度よりも高く、n型導電性を有する。
 ゲート電極14、ソース電極15、及びドレイン電極16は、例えば、Au、Al、Ti、Sn、Ge、In、Ni、Co、Pt、W、Mo、Cr、Cu、Pb等の金属、これらの金属のうちの2つ以上を含む合金、又はITO等の導電性化合物からなる。また、異なる2つの金属からなる2層構造、例えばTi/Al、Ti/Au、Ti/Pt、Al/Au、Ni/Au、Au/Niを有してもよい。
 コンタクト領域17は、イオン注入法等によりSi、Sn等のドナー不純物をチャネル層13中に添加し、アニール処理により活性化することにより形成される。コンタクト領域17のドナー不純物の濃度は、チャネル層13のドナー不純物の濃度よりも高く、コンタクト領域17は、ソース電極15及びドレイン電極16とオーミック接触する。
 上述のように、Ga23系半導体素子10は、高抵抗基板11と、高抵抗基板11上のバッファ層12と、バッファ層12上のドナー不純物含有層と、を有する結晶積層構造体を用いて製造される。この結晶積層構造体中にコンタクト領域17を形成し、ゲート電極14、ソース電極15、及びドレイン電極16を接続することによりGa23系半導体素子10が得られる。ここで、結晶積層構造体のドナー不純物含有層は、Ga23系半導体素子10の形成後にチャネル層として機能する層であり、チャネル層13と等しい。
 Ga23系半導体素子10は、ゲート電極14の直下のチャネル層13のドナー濃度と厚さに依存して、ノーマリーオン型又はノーマリーオフ型になる。
 Ga23系半導体素子10がノーマリーオン型である場合、ソース電極15とドレイン電極16は、チャネル層13を介して電気的に接続されている。そのため、ゲート電極14に電圧を印加しない状態でソース電極15とドレイン電極16の間に電圧を印加すると、ソース電極15からドレイン電極16へ電流が流れる。一方、ゲート電極14に電圧を印加すると、チャネル層13のゲート電極14下の領域に空乏層が形成され、ソース電極15とドレイン電極16の間に電圧を印加してもソース電極15からドレイン電極16へ電流が流れなくなる。
 Ga23系半導体素子10がノーマリーオフ型である場合、ゲート電極14に電圧を印加しない状態では、ソース電極15とドレイン電極16の間に電圧を印加しても電流は流れない。一方、ゲート電極14に電圧を印加すると、チャネル層13のゲート電極14下の領域の空乏層が狭まり、ソース電極15とドレイン電極16の間に電圧を印加するとソース電極15からドレイン電極16へ電流が流れるようになる。
 図2は、アクセプタ不純物としてFeを含む高抵抗Ga23基板上に、アンドープのGa23エピタキシャル層をおよそ300nm成長させた後、そのエピタキシャル層へドナー不純物としてSiをイオン注入した場合の、Ga23エピタキシャル層の表面からの深さとFe、Siの濃度の関係を表す測定データである。
 図2に示されるように、高抵抗Ga23基板中のFeがGa23エピタキシャル層中に拡散している。Ga23エピタキシャル層中のFe濃度は、最も高抵抗Ga23基板から離れた表面近傍でも、6×1017cm-3と高いため、キャリア補償によりGa23エピタキシャル層が高抵抗化している。このため、このようなGa23エピタキシャル層をn型チャネル層として用いることは好ましくない。
 図3Aは、高抵抗基板11上にチャネル層13が直接形成された比較例としてのGa23系半導体素子50の垂直断面図である。図3Bは、Ga23系半導体素子50におけるチャネル層13の表面からの深さとアクセプタ不純物濃度との関係を概念的に表すグラフである。
 図4Aは、高抵抗基板11上にバッファ層12を介してチャネル層13が形成された本実施の形態に係るGa23系半導体素子10の垂直断面図である。図4Bは、Ga23系半導体素子10におけるチャネル層13の表面からの深さとアクセプタ不純物濃度との関係を概念的に表すグラフである。
 Ga23系半導体素子50においては、図3A、図3Bに示されるように、チャネル層13と高抵抗基板11の距離が小さいため、高抵抗基板11から拡散するFe等のアクセプタ不純物の、拡散距離の増加に伴う濃度低下が小さい。このため、チャネル層13には高濃度のアクセプタ不純物が含まれる。
 一方、Ga23系半導体素子10においては、図4A、図4Bに示されるように、チャネル層13と高抵抗基板11の距離が大きいため、高抵抗基板11から拡散するアクセプタ不純物のチャネル層13中の濃度が大きく低下している。このため、Ga23系半導体素子10チャネル層13のアクセプタ不純物の濃度は、Ga23系半導体素子50のものよりも低い。
(アクセプタ不純物の拡散評価)
 図5は、アクセプタ不純物としてFeを含む高抵抗Ga23基板上に、Ga23エピタキシャル層を成長させた場合の、深さとFeの濃度の関係を表す測定データである。この深さは、高抵抗Ga23基板とGa23エピタキシャル層との界面の位置を原点としている。
 この測定に係る高抵抗Ga23基板のFe濃度は5×1018cm-3である。また、この測定に係るGa23エピタキシャル層の成長温度は1000℃である。
 図5には、高抵抗Ga23基板の主面の面方位が(010)である場合の測定データと、(001)である場合の測定データが示されている。いずれの場合も、界面からの深さ方向の距離が大きくなるほど、Ga23エピタキシャル層中のFe濃度が小さくなる。
 高抵抗Ga23基板の主面の面方位が(010)である場合、Ga23エピタキシャル層はおよそ0.3μm/hの速度で成長し、界面からの深さ方向の距離がおよそ1μmの領域において、Ga23エピタキシャル層中のFe濃度が1×1016cm-3よりも小さくなる。このため、この場合には、厚さ1μm以上のバッファ層12上にチャネル層13を形成することにより、高い導電性を有するチャネル層13を得ることができる。
 一方、高抵抗Ga23基板の主面の面方位が(001)である場合、Ga23エピタキシャル層はおよそ6μm/hの速度で成長し、界面からの深さ方向の距離がおよそ0.18μmの領域において、Ga23エピタキシャル層中のFe濃度が1×1016cm-3よりも小さくなる。このため、この場合には、厚さ0.18μm以上のバッファ層12上にチャネル層13を形成することにより、高い導電性を有するチャネル層13を得ることができる。
 バッファ層の厚さは薄い方が製造時間の短縮や原料消費量の低減が図れるため、好ましい。上記のように、高い導電性を有するチャネル層13を得るために必要なGa23エピタキシャル層の厚さが小さくなるため、高抵抗Ga23基板の主面の面方位は(001)であることが好ましい。
 なお、Ga23エピタキシャル層の成長温度を高くすることにより、Feの移動量が増加するため、Fe濃度を十分に低下させるために必要なGa23エピタキシャル層の厚さが大きくなる。一方、Ga23エピタキシャル層の成長温度を低くすることにより、Feの移動量が低下するため、Fe濃度を十分に低下させるために必要なGa23エピタキシャル層の厚さが小さくなる。
 上記の図2、図5は、高抵抗基板11中のFeがバッファ層12及びチャネル層13へ拡散することを裏付けているが、アクセプタ不純物としてFe以外の元素を用いた場合にも拡散は生じるため、本実施の形態において用いられるアクセプタ不純物はFeに限定されない。
 図6Aは、BeをGa23結晶膜の表面近傍に導入し、アニール処理を施した場合の、Ga23結晶膜の表面からの深さとBe濃度との関係を示す測定データである。
 図6Bは、MgをGa23結晶膜の表面近傍に導入し、アニール処理を施した場合の、Ga23結晶膜の表面からの深さとMg濃度との関係を示す測定データである。
 図7は、ZnをGa23結晶膜の表面近傍に導入し、アニール処理を施した場合の、Ga23結晶膜の表面からの深さとZn濃度との関係を示す測定データである。
 図6A、図6B、図7によれば、Be、Mg、Znのいずれも、アニール処理によりGa23結晶膜中に拡散し、アニール処理の温度の上昇に伴い拡散量が大きくなる。これらの結果は、本実施の形態においてBe、Mg、又はZnを高抵抗基板11に添加するアクセプタ不純物として用いた場合であっても、高抵抗基板11からバッファ層12及びチャネル層13へのアクセプタ不純物の拡散が生じることを示している。
〔第2の実施の形態〕
 第2の実施の形態は、バッファ層の上層及びチャネル層がアクセプタ不純物を含まない点で第1の実施の形態と異なる。なお、第1の実施の形態と同様の点については、説明を省略又は簡略化する。
(半導体素子の構成)
 図8は、第2の実施の形態に係るGa23系半導体素子20の垂直断面図である。Ga23系半導体素子20は、高抵抗基板11上に形成されたバッファ層22と、バッファ層22上に形成されたチャネル層23と、チャネル層23上に形成されたソース電極15及びドレイン電極16と、ソース電極15とドレイン電極16との間のチャネル層23上に形成されたゲート電極14と、チャネル層23中のソース電極15及びドレイン電極16の下に形成されたコンタクト領域17を含む。
 バッファ層22は、β-Ga23系単結晶からなり、高抵抗基板11から拡散したアクセプタ不純物を含む、高抵抗基板11側の下層22aと、アクセプタ不純物を含まない、チャネル層23側の上層22bを含む。
 バッファ層22は、高抵抗基板11を下地基板としてβ-Ga23系単結晶をエピタキシャル成長させることにより形成される。このエピタキシャル成長の間に、高抵抗基板11からバッファ層22にアクセプタ不純物が拡散する。
 第1の実施の形態において述べたように、バッファ層12及びチャネル層13中のアクセプタ不純物の濃度は、高抵抗基板11からの深さ方向の距離が大きくなるほど低下する。
 例えば、図5に示される例では、主面の面方位が(010)である高抵抗Ga23基板上に成長温度1000℃でGa23エピタキシャル層を成長させた場合、高抵抗基板11からの深さ方向(厚さ方向)の距離が1μm以上であるGa23エピタキシャル層中の領域にはアクセプタ不純物がほとんど含まれない。
 この場合、高抵抗基板11の表面からの厚さが1μmよりも大きいGa23エピタキシャル層をバッファ層22として用いると、高抵抗基板11からの厚さ方向の距離が1μm未満である領域が下層22aとなり、高抵抗基板11からの厚さ方向の距離が1μm以上である領域が上層22bとなる。
 また、図5に示される例では、主面の面方位が(001)である高抵抗Ga23基板上に成長温度1000℃でGa23エピタキシャル層を成長させた場合、高抵抗基板11からの厚さ方向の距離が0.18μm以上であるGa23エピタキシャル層中の領域にはアクセプタ不純物がほとんど含まれない。
 この場合、高抵抗基板11の表面からの厚さが0.18μmよりも大きいGa23エピタキシャル層をバッファ層22として用いると、高抵抗基板11からの厚さ方向の距離が0.18μm未満である領域が下層22aとなり、高抵抗基板11からの厚さ方向の距離が0.18μm以上である領域が上層22bとなる。
 チャネル層23は、ドナー不純物を含むβ-Ga23系単結晶からなる。このドナー不純物は、Si、Sn等のIV族元素であることが好ましい。
 チャネル層23は、バッファ層22と同じくβ-Ga23系単結晶を母結晶とするため、エピタキシャル成長によりバッファ層22と連続的に形成することができる。チャネル層23の厚さは、例えば、10~1000nm程度である。
 チャネル層23は、アクセプタ不純物を含まない上層22b上に形成されるため、アクセプタ不純物を含まず、第1の実施の形態にかかるチャネル層13よりも高い導電性を有する。
〔第3の実施の形態〕
 第3の実施の形態は、半導体素子としてMISFET(Metal Insulator Semiconductor Field Effect Transistor)を用いる形態である。なお、第1の実施の形態と同様の点については、説明を省略又は簡略化する。
(半導体素子の構成)
 図9は、第3の実施の形態に係るGa23系半導体素子30の垂直断面図である。Ga23系半導体素子30は、高抵抗基板11上に形成されたバッファ層12と、バッファ層12上に形成されたチャネル層13と、チャネル層13上に形成されたソース電極15及びドレイン電極16と、ソース電極15とドレイン電極16との間のチャネル層13上にゲート絶縁膜31を介して形成されたゲート電極14と、チャネル層13中のソース電極15及びドレイン電極16の下に形成されたコンタクト領域17を含む。
 ゲート絶縁膜31は、Al23等の絶縁材料からなる。
 Ga23系半導体素子30は、ゲート電極14の直下のチャネル層13のドナー濃度と厚さに依存して、ノーマリーオン型又はノーマリーオフ型になる。
 Ga23系半導体素子30がノーマリーオン型である場合、ソース電極15とドレイン電極16は、チャネル層13を介して電気的に接続されている。そのため、ゲート電極14に電圧を印加しない状態でソース電極15とドレイン電極16の間に電圧を印加すると、ソース電極15からドレイン電極16へ電流が流れる。一方、ゲート電極14に電圧を印加すると、チャネル層13のゲート電極14下の領域に空乏層が形成され、ソース電極15とドレイン電極16の間に電圧を印加してもソース電極15からドレイン電極16へ電流が流れなくなる。
 Ga23系半導体素子30がノーマリーオフ型である場合、ゲート電極14に電圧を印加しない状態では、ソース電極15とドレイン電極16の間に電圧を印加しても電流は流れない。一方、ゲート電極14に電圧を印加すると、チャネル層13のゲート電極14下の領域の空乏層が狭まり、ソース電極15とドレイン電極16の間に電圧を印加するとソース電極15からドレイン電極16へ電流が流れるようになる。
 Ga23系半導体素子30は、第1の実施の形態に係るGa23系半導体素子10と同様に、チャネル層13が高抵抗基板11上にバッファ層12を介して形成されているため、チャネル層13に含まれるアクセプタ不純物の濃度が低い。このため、キャリア補償によるチャネル層13の高抵抗化を抑えることができる。
〔第4の実施の形態〕
 第4の実施の形態は、半導体素子としてMISFETを用いる形態である。なお、第2及び第3の実施の形態と同様の点については、説明を省略又は簡略化する。
(半導体素子の構成)
 図10は、第4の実施の形態に係るGa23系半導体素子40の垂直断面図である。Ga23系半導体素子40は、高抵抗基板11上に形成されたバッファ層22と、バッファ層22上に形成されたチャネル層23と、チャネル層23上に形成されたソース電極15及びドレイン電極16と、ソース電極15とドレイン電極16との間のチャネル層23上にゲート絶縁膜31を介して形成されたゲート電極14と、チャネル層23中のソース電極15及びドレイン電極16の下に形成されたコンタクト領域17を含む。
 Ga23系半導体素子40は、第2の実施の形態に係るGa23系半導体素子20と同様に、上層22bにアクセプタ不純物を含まないバッファ層22上にチャネル層23が形成されているため、チャネル層23がアクセプタ不純物を含まない。このため、キャリア補償によるチャネル層23の高抵抗化を抑えることができる。
(実施の形態の効果)
 上記第1~4の実施の形態によれば、高抵抗基板から拡散されるアクセプタ不純物のチャネル層の濃度が低い、又はアクセプタ不純物がチャネル層にほとんど含まれないため、キャリア補償によるチャネル層の高抵抗化を抑えることができる。
 また、一般に、基板とその上にエピタキシャル成長したエピタキシャル層との界面には、意図せぬ不純物や、基板の研磨ダメージに起因する結晶欠陥が混入しやすく、それらの不純物や結晶欠陥は半導体素子においてリークパスとなる。しかし、上記第1~4の実施の形態の半導体素子においては、高抵抗基板とチャネル層との間にバッファ層が存在し、チャネル層が高抵抗基板とバッファ層との界面から離れているため、この界面における不純物や結晶欠陥に起因するリークを抑えることができる。
 以上、本発明の実施の形態を説明したが、本発明は、上記実施の形態に限定されず、発明の主旨を逸脱しない範囲内において種々変形実施が可能である。
 また、発明の主旨を逸脱しない範囲内において上記実施の形態の構成要素を任意に組み合わせることができる。
 また、上記に記載した実施の形態は特許請求の範囲に係る発明を限定するものではない。また、実施の形態の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。
 チャネル層の高抵抗化が抑えられた半導体素子、及びその素子の製造に用いることができる結晶積層構造体を提供する。
 10、20、30、40…Ga23系半導体素子、 11…高抵抗基板、 12、22
…バッファ層、 13、23…チャネル層、 22a…下層、 22b…上層

Claims (11)

  1.  アクセプタ不純物を含むβ-Ga23系単結晶からなる高抵抗基板と、
     前記高抵抗基板上の、β-Ga23系単結晶からなるバッファ層と、
     前記バッファ層上の、ドナー不純物を含むβ-Ga23系単結晶からなるチャネル層と、
     を有する、半導体素子。
  2.  前記バッファ層及び前記チャネル層が、前記高抵抗基板から拡散した前記アクセプタ不純物を含み、
     前記チャネル層の前記アクセプタ不純物の濃度が前記バッファ層の前記アクセプタ不純物の濃度よりも低く、
     前記チャネル層の前記ドナー不純物の濃度が前記チャネル層の前記アクセプタ不純物の濃度よりも高い、
     請求項1に記載の半導体素子。
  3.  前記バッファ層の前記高抵抗基板側の下層が、前記高抵抗基板から拡散した前記アクセプタ不純物を含み、
     前記バッファ層の前記チャネル層側の上層及び前記チャネル層が、前記高抵抗基板から拡散した前記アクセプタ不純物を含まない、
     請求項1に記載の半導体素子。
  4.  前記高抵抗基板の主面の面方位が(001)である、
     請求項1~3のいずれか1項に記載の半導体素子。
  5.  前記アクセプタ不純物は、Fe、Be、Mg、及びZnのうちの少なくとも1つを含む、
     請求項1~3のいずれか1項に記載の半導体素子。
  6.  MESFET又はMOSFETである、
     請求項1~3のいずれか1項に記載の半導体素子。
  7.  アクセプタ不純物を含むβ-Ga23系単結晶からなる高抵抗基板と、
     前記高抵抗基板上の、β-Ga23系単結晶からなるバッファ層と、
     前記バッファ層上の、ドナー不純物を含むβ-Ga23系単結晶からなるドナー不純物含有層と、
     を有する、結晶積層構造体。
  8.  前記バッファ層及び前記ドナー不純物含有層が、前記高抵抗基板から拡散した前記アクセプタ不純物を含み、
     前記ドナー不純物含有層の前記アクセプタ不純物の濃度が前記バッファ層の前記アクセプタ不純物の濃度よりも低く、
     前記ドナー不純物含有層の前記ドナー不純物の濃度が前記ドナー不純物含有層の前記アクセプタ不純物の濃度よりも高い、
     請求項7に記載の結晶積層構造体。
  9.  前記バッファ層の前記高抵抗基板側の下層が、前記高抵抗基板から拡散した前記アクセプタ不純物を含み、
     前記バッファ層の前記ドナー不純物含有層側の上層及び前記ドナー不純物含有層が、前記高抵抗基板から拡散した前記アクセプタ不純物を含まない、
     請求項7に記載の結晶積層構造体。
  10.  前記高抵抗基板の主面の面方位が(001)である、
     請求項7~9のいずれか1項に記載の結晶積層構造体。
  11.  前記アクセプタ不純物は、Fe、Be、Mg、及びZnのうちの少なくとも1つを含む、
     請求項7~9のいずれか1項に記載の結晶積層構造体。
PCT/JP2015/073150 2014-08-29 2015-08-18 半導体素子及び結晶積層構造体 WO2016031633A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/507,158 US10861945B2 (en) 2014-08-29 2015-08-18 Semiconductor element and crystalline laminate structure
DE112015003943.0T DE112015003943B4 (de) 2014-08-29 2015-08-18 Halbleiterelement und kristalline Laminatstruktur
CN201580046341.5A CN107078063B (zh) 2014-08-29 2015-08-18 半导体元件和晶体层叠结构体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-175913 2014-08-29
JP2014175913A JP5907465B2 (ja) 2014-08-29 2014-08-29 半導体素子及び結晶積層構造体

Publications (1)

Publication Number Publication Date
WO2016031633A1 true WO2016031633A1 (ja) 2016-03-03

Family

ID=55399529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073150 WO2016031633A1 (ja) 2014-08-29 2015-08-18 半導体素子及び結晶積層構造体

Country Status (6)

Country Link
US (1) US10861945B2 (ja)
JP (1) JP5907465B2 (ja)
CN (1) CN107078063B (ja)
DE (1) DE112015003943B4 (ja)
TW (1) TWI660406B (ja)
WO (1) WO2016031633A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107481939A (zh) * 2017-07-20 2017-12-15 中国电子科技集团公司第十三研究所 帽层结构氧化镓场效应晶体管的制备方法
WO2018199241A1 (ja) * 2017-04-27 2018-11-01 国立研究開発法人情報通信研究機構 Ga2O3系半導体素子
WO2020013261A1 (ja) * 2018-07-12 2020-01-16 株式会社Flosfia 積層構造体、積層構造体を含む半導体装置および半導体システム
WO2020013262A1 (ja) * 2018-07-12 2020-01-16 株式会社Flosfia 半導体装置および半導体装置を含む半導体システム
WO2020013260A1 (ja) * 2018-07-12 2020-01-16 株式会社Flosfia 半導体装置および半導体装置を含む半導体システム
WO2020013259A1 (ja) * 2018-07-12 2020-01-16 株式会社Flosfia 半導体装置および半導体装置を含む半導体システム

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107369707B (zh) * 2017-06-07 2020-03-24 西安电子科技大学 基于4H-SiC衬底异质结自旋场效应晶体管及其制造方法
CN107658337B (zh) * 2017-06-07 2020-09-08 西安电子科技大学 高电子迁移率自旋场效应晶体管及其制备方法
CN107359122B (zh) * 2017-06-07 2020-09-08 西安电子科技大学 Mn掺杂异质结自旋场效应晶体管的制备方法
CN107359127B (zh) * 2017-06-07 2020-03-24 西安电子科技大学 蓝宝石衬底的Fe掺杂自旋场效应晶体管及其制造方法
US20200083332A1 (en) * 2018-09-05 2020-03-12 Industrial Technology Research Institute Semiconductor device and method for fabricating the same
CN110571275A (zh) * 2019-09-17 2019-12-13 中国科学技术大学 氧化镓mosfet的制备方法
US11462402B2 (en) * 2020-10-21 2022-10-04 Cornell University Suboxide molecular-beam epitaxy and related structures
JP7442428B2 (ja) * 2020-12-11 2024-03-04 株式会社デンソー 半導体装置の製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013035841A1 (ja) * 2011-09-08 2013-03-14 株式会社タムラ製作所 Ga2O3系HEMT
JP2013056803A (ja) * 2011-09-08 2013-03-28 Tamura Seisakusho Co Ltd β−Ga2O3系単結晶膜の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7393411B2 (en) * 2003-02-24 2008-07-01 Waseda University β-Ga2O3 single crystal growing method, thin-film single crystal growing method, Ga2O3 light-emitting device, and its manufacturing method
US7459718B2 (en) * 2005-03-23 2008-12-02 Nichia Corporation Field effect transistor
WO2013035842A1 (ja) 2011-09-08 2013-03-14 株式会社タムラ製作所 Ga2O3系半導体素子
WO2013035843A1 (ja) 2011-09-08 2013-03-14 株式会社タムラ製作所 Ga2O3系半導体素子
US9716004B2 (en) * 2011-09-08 2017-07-25 Tamura Corporation Crystal laminate structure and method for producing same
WO2013069729A1 (ja) 2011-11-09 2013-05-16 株式会社タムラ製作所 半導体素子及びその製造方法
JP5536920B1 (ja) * 2013-03-04 2014-07-02 株式会社タムラ製作所 Ga2O3系単結晶基板、及びその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013035841A1 (ja) * 2011-09-08 2013-03-14 株式会社タムラ製作所 Ga2O3系HEMT
JP2013056803A (ja) * 2011-09-08 2013-03-28 Tamura Seisakusho Co Ltd β−Ga2O3系単結晶膜の製造方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3629379A4 (en) * 2017-04-27 2020-12-23 National Institute of Information and Communications Technology SEMICONDUCTOR DEVICE BASED ON GA2O3
WO2018199241A1 (ja) * 2017-04-27 2018-11-01 国立研究開発法人情報通信研究機構 Ga2O3系半導体素子
JP2018186246A (ja) * 2017-04-27 2018-11-22 国立研究開発法人情報通信研究機構 Ga2O3系半導体素子
US11563092B2 (en) 2017-04-27 2023-01-24 National Institute Of Information And Communications Technology GA2O3-based semiconductor device
JP7008293B2 (ja) 2017-04-27 2022-01-25 国立研究開発法人情報通信研究機構 Ga2O3系半導体素子
CN107481939A (zh) * 2017-07-20 2017-12-15 中国电子科技集团公司第十三研究所 帽层结构氧化镓场效应晶体管的制备方法
CN107481939B (zh) * 2017-07-20 2021-06-15 中国电子科技集团公司第十三研究所 帽层结构氧化镓场效应晶体管的制备方法
WO2020013262A1 (ja) * 2018-07-12 2020-01-16 株式会社Flosfia 半導体装置および半導体装置を含む半導体システム
WO2020013259A1 (ja) * 2018-07-12 2020-01-16 株式会社Flosfia 半導体装置および半導体装置を含む半導体システム
JPWO2020013259A1 (ja) * 2018-07-12 2021-07-15 株式会社Flosfia 半導体装置および半導体装置を含む半導体システム
JPWO2020013260A1 (ja) * 2018-07-12 2021-08-02 株式会社Flosfia 半導体装置および半導体装置を含む半導体システム
JPWO2020013261A1 (ja) * 2018-07-12 2021-08-02 株式会社Flosfia 積層構造体、積層構造体を含む半導体装置および半導体システム
JPWO2020013262A1 (ja) * 2018-07-12 2021-08-02 株式会社Flosfia 半導体装置および半導体装置を含む半導体システム
WO2020013260A1 (ja) * 2018-07-12 2020-01-16 株式会社Flosfia 半導体装置および半導体装置を含む半導体システム
WO2020013261A1 (ja) * 2018-07-12 2020-01-16 株式会社Flosfia 積層構造体、積層構造体を含む半導体装置および半導体システム
JP7385200B2 (ja) 2018-07-12 2023-11-22 株式会社Flosfia 半導体装置および半導体装置を含む半導体システム
JP7404594B2 (ja) 2018-07-12 2023-12-26 株式会社Flosfia 半導体装置および半導体装置を含む半導体システム
JP7457366B2 (ja) 2018-07-12 2024-03-28 株式会社Flosfia 半導体装置および半導体装置を含む半導体システム
JP7462143B2 (ja) 2018-07-12 2024-04-05 株式会社Flosfia 積層構造体、積層構造体を含む半導体装置および半導体システム

Also Published As

Publication number Publication date
JP5907465B2 (ja) 2016-04-26
TWI660406B (zh) 2019-05-21
JP2016051794A (ja) 2016-04-11
CN107078063B (zh) 2021-03-23
CN107078063A (zh) 2017-08-18
TW201620014A (zh) 2016-06-01
DE112015003943B4 (de) 2021-02-04
DE112015003943T5 (de) 2017-05-11
US20170278933A1 (en) 2017-09-28
US10861945B2 (en) 2020-12-08

Similar Documents

Publication Publication Date Title
JP5907465B2 (ja) 半導体素子及び結晶積層構造体
JP5828568B1 (ja) 半導体素子及びその製造方法
US11563092B2 (en) GA2O3-based semiconductor device
US9245749B2 (en) Method of forming Ga2O3-based crystal film and crystal multilayer structure
JP6284140B2 (ja) Ga2O3系半導体素子
WO2006093174A1 (ja) 縦型窒化ガリウム半導体装置およびエピタキシャル基板
CN101989601A (zh) 半导体装置及其制造方法
TW201732068A (zh) 半導體元件用磊晶基板、半導體元件以及半導體元件用磊晶基板之製造方法
CN106158946A (zh) 具有周期性碳掺杂的氮化镓的高电子迁移率晶体管
US10134908B2 (en) Semiconductor device and manufacturing method thereof
JP4984557B2 (ja) 縦型窒化ガリウム半導体装置を作製する方法、エピタキシャル基板を作製する方法
JP6142357B2 (ja) Ga2O3系単結晶体のドナー濃度制御方法、及びオーミックコンタクト形成方法
JP2007123824A (ja) Iii族窒化物系化合物半導体を用いた電子装置
JP2011140429A (ja) エピタキシャルウエハ及び半導体素子
US20190115434A1 (en) Semiconductor device and semiconductor wafer
JP6406602B2 (ja) 半導体素子及びその製造方法、並びに結晶積層構造体
JP2012174697A (ja) 窒化物半導体装置およびその製造方法
JP7469201B2 (ja) 半導体装置とその製造方法
JP2011258782A (ja) 窒化物半導体基板
JP2011146441A (ja) 半導体装置とその製造方法
KR20180070076A (ko) 수직형 질화물 반도체 소자 및 그 제조 방법
JP2011199187A (ja) 窒化ガリウム系半導体ダイオード
JPH11345775A (ja) 電界効果型トランジスタ用エピタキシャルウェハおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15835938

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15507158

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015003943

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15835938

Country of ref document: EP

Kind code of ref document: A1