JPWO2020013262A1 - 半導体装置および半導体装置を含む半導体システム - Google Patents

半導体装置および半導体装置を含む半導体システム Download PDF

Info

Publication number
JPWO2020013262A1
JPWO2020013262A1 JP2020530248A JP2020530248A JPWO2020013262A1 JP WO2020013262 A1 JPWO2020013262 A1 JP WO2020013262A1 JP 2020530248 A JP2020530248 A JP 2020530248A JP 2020530248 A JP2020530248 A JP 2020530248A JP WO2020013262 A1 JPWO2020013262 A1 JP WO2020013262A1
Authority
JP
Japan
Prior art keywords
film
semiconductor device
oxide
semiconductor
channel region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020530248A
Other languages
English (en)
Other versions
JP7404594B2 (ja
Inventor
雅裕 杉本
雅裕 杉本
勲 ▲高▼橋
勲 ▲高▼橋
四戸 孝
孝 四戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Flosfia Inc
Original Assignee
Flosfia Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Flosfia Inc filed Critical Flosfia Inc
Publication of JPWO2020013262A1 publication Critical patent/JPWO2020013262A1/ja
Application granted granted Critical
Publication of JP7404594B2 publication Critical patent/JP7404594B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02483Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02581Transition metal or rare earth elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78642Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Thin Film Transistor (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

コランダム構造を有するか、または酸化ガリウムもしくはその混晶を主成分として含む酸化物半導体膜を含むノーマリオフ型の半導体装置であって、3V以上の閾値電圧を有する半導体装置。

Description

本発明は、パワーデバイス等として有用な半導体装置およびその半導体装置を備える半導体システム等に関する。
高耐圧、低損失および高耐熱を実現できる次世代のスイッチング素子として、バンドギャップの大きな酸化ガリウム(Ga)を用いた半導体装置が注目されており、インバータなどの電力用半導体装置への適用が期待されている。しかも、広いバンドギャップからLEDやセンサー等の受発光装置としての応用も期待されている。当該酸化ガリウムは非特許文献1によると、インジウムやアルミニウムをそれぞれ、あるいは組み合わせて混晶することによりバンドギャップ制御することが可能であり、InAlGaO系半導体として極めて魅力的な材料系統を構成している。ここでInAlGaO系半導体とはInAlGa(0≦X≦2、0≦Y≦2、0≦Z≦2、X+Y+Z=1.5〜2.5)を示し、酸化ガリウムを内包する同一材料系統として俯瞰することができる。
そして、近年においては、酸化ガリウム系のp型半導体が検討されており、例えば、特許文献1には、β−Ga系結晶を、MgO(p型ドーパント源)を用いてFZ法により形成したりすると、p型導電性を示す基板が得られることが記載されている。また、特許文献2には、MBE法により形成したα−(AlGa1−x単結晶膜にp型ドーパントをイオン注入してp型半導体を形成することが記載されている。しかしながら、これらの方法では、p型半導体の作製は実現困難であり(非特許文献2)、実際に、これらの方法でp型半導体の作製に成功したとの報告はなされていない。そのため、実現可能なp型酸化物半導体及びその製造方法が待ち望まれていた。
また、非特許文献3や非特許文献4に記載されているように、例えばRhやZnRh等をp型半導体に用いることも検討されているが、Rhは、成膜時に特に原料濃度が薄くなってしまい、成膜に影響する問題があり、有機溶媒を用いても、Rh単結晶が作製困難であった。また、ホール効果測定を実施してもp型とは判定されることがなく、測定自体もできていない問題もあり、また、測定値についても、例えばホール係数が測定限界(0.2cm/C)以下しかなく、実用上の問題となった。また、ZnRhは移動度が低く、バンドギャップも狭いため、LEDやパワーデバイスに用いることができない問題があり、これらは必ずしも満足のいくものではなかった。
ワイドバンドギャップ半導体として、RhやZnRh等以外にも、p型の酸化物半導体が種々検討されている。特許文献3には、デラフォサイトやオキシカルコゲナイド等をp型半導体として用いることが記載されている。しかしながら、これらの半導体は、移動度が1cm/V・s程度かまたはそれ以下であり、電気特性が悪く、α−Ga等のn型の次世代酸化物半導体とのpn接合がうまくできない問題もあった。
さらに、特許文献4には、イリジウム触媒としてIrを用いることが記載されている。また、特許文献5には、Irを誘電体に用いることが記載されている。また、特許文献6には、電極にIrを用いることが記載されている。しかしながら、Irをp型半導体に用いることは知られていなかったが、最近になって、本出願人らにより、p型半導体として、Irを用いることが検討され、研究開発が進められている(特許文献7)。
そのため、p型半導体の研究開発が進み、酸化ガリウム(Ga)等の優れた半導体材料を効果的に用いて、高耐圧、低損失および高耐熱を実現できる半導体装置が待ち望まれていた。
特開2005−340308号公報 特開2013−58637号公報 特開2016−25256号公報 特開平9−25255号公報 特開平8−227793号公報 特開平11−21687号公報 国際公開2018/043503号公報
金子健太郎、「コランダム構造酸化ガリウム系混晶薄膜の成長と物性」、京都大学博士論文、平成25年3月 竹本達哉、EE Times Japan"パワー半導体 酸化ガリウム"熱伝導率、P型……課題を克服して実用化へ、[online]、2014年2月27日、アイティメディア株式会社、[平成28年6月21日検索]、インターネット〈URL:http://eetimes.jp/ee/articles/1402/27/news028_2.html〉 F.P.KOFFYBERG et al., "optical bandgaps and electron affinities of semiconducting Rh2O3(I) and Rh2O3(III)", J. Phys. Chem. Solids Vol.53, No.10, pp.1285-1288, 1992 細野秀雄、"酸化物半導体の機能開拓"、物性研究・電子版 Vol.3、No.1、031211(2013年11月・2014年2月合併号)
本発明の目的の1つとして、半導体特性に優れた半導体装置を提供することを目的とする。
本発明者らは、上記目的を達成すべく鋭意検討した結果、本発明の第1の態様として、酸化ガリウムを含む結晶を含有する酸化物半導体膜と、酸化物半導体膜上に少なくともリンを含む酸化膜を配置することで、3V以上の閾値電圧を有する半導体装置を得ることができることを見出した。また、本発明の第2の態様として、コランダム構造を有する酸化ガリウムを含む結晶を含有する酸化物半導体膜と、酸化物半導体膜上に少なくともリンを含む酸化膜を配置することで、3V以上の閾値電圧を有する半導体装置を得ることができることを見出した。また、本発明の第3の態様として、コランダム構造を有するか、または酸化ガリウムもしくはその混晶を主成分として含む酸化物半導体膜中を含むノーマリオフ型の半導体装置において、閾値電圧が3V以上であることを見出した。本発明者らは、さらに検討を重ね、酸化ガリウム半導体によるトランジスタの動作実証に世界で初めて成功し、上記知見を得た後、さらに検討を重ねて本発明を完成させるに至った。
すなわち、本発明は、以下の発明に関する。
[1] コランダム構造を有するか、または酸化ガリウムもしくはその混晶を主成分として含む酸化物半導体膜を含むノーマリオフ型の半導体装置であって、閾値電圧が3V以上であることを特徴とする半導体装置。
[2] 前記酸化物半導体膜が、α−Gaまたはその混晶を主成分として含む前記[1]記載の半導体装置。
[3] MOSFETであり、前記閾値電圧がゲート閾値電圧である前記[1]または[2]に記載の半導体装置。
[4] 前記酸化物半導体膜は反転チャネル領域を含み、前記反転チャネル領域上にゲート絶縁膜を介してゲート電極が設けられており、さらに、前記反転チャネル領域と前記ゲート絶縁膜との間に、周期律表第15族の少なくとも1種の元素を含む酸化膜からなる水素拡散防止膜が形成されている前記[3]記載の半導体装置。
[5] 前記元素がリンである前記[4]記載の半導体装置。
[6] 前記反転チャネル領域がp型半導体層である前記[4]または[5]に記載の半導体装置。
[7] 前記閾値電圧が、7V以上である前記[1]〜[6]のいずれかに記載の半導体装置。
[8] パワーデバイスである前記[1]〜[7]のいずれかに記載の半導体装置。
[9] 半導体装置を備える半導体システムであって、前記半導体装置が、前記[1]〜[8]のいずれかに記載の半導体装置である半導体システム。
[10] コランダム構造を有する酸化ガリウムを含む結晶を含有する酸化物半導体膜と、3V以上の閾値電圧とを有する半導体装置。
[11] 酸化ガリウムを含む結晶を含有する酸化物半導体膜と、3V以上の閾値電圧とを有する半導体装置。
[12] 前記結晶が混晶である、前記[10]または[11]に記載の半導体装置。
[13] 前記半導体装置がノーマリオフ型の半導体装置である、前記[10]または[11]に記載の半導体装置。
[14] 前記酸化物半導体膜は反転チャネル領域を含み、前記反転チャネル領域上にゲート絶縁膜を介してゲート電極が設けられており、さらに、前記反転チャネル領域と前記ゲート絶縁膜との間に、周期律表第15族の少なくとも1種の元素を含む酸化膜からなる水素拡散防止膜が形成されている、前記[10]または[11]に記載の半導体装置。
[15] 前記元素がリンである、前記[14]記載の半導体装置。
本発明の半導体装置は、高耐圧、低損失および高耐熱等の半導体特性に優れている
本発明の実施例において、酸化物半導体膜の成膜に好適に用いられる成膜装置(ミストCVD装置)の概略構成図である。 本発明半導体装置の一例として、MOSFETの一態様を模式的に示す断面図である。 実施例において作製されたMOSFETを上面から見た写真を示す。 実施例におけるIV測定結果を示す図である。 実施例におけるSIMS測定結果を示す図である。 電源システムの一例を模式的に示す図である。 システム装置の一例を模式的に示す図である。 電源装置の電源回路図の一例を模式的に示す図である。 本発明の半導体装置の一例として、縦型半導体装置の第1面側のソース電極とソース電極下の絶縁層の一部を取り除いた第1面側からの部分透視図(600a’)と、第1面側のソース電極とソース電極下の絶縁層も含めた半導体装置の部分断面図(600c)を示す図である。
本発明の半導体装置は、コランダム構造を有するか、または酸化ガリウムもしくはその混晶を主成分として含む酸化物半導体膜を含むノーマリオフ型の半導体装置であって、閾値電圧が3V以上であることを特長とする。本発明においては、前記半導体装置が、MOSFETであるのが好ましい。なお、この場合、前記閾値電圧は、ゲート閾値電圧とも言う。本発明においては、前記閾値電圧を、便宜上、前記半導体装置のIV特性から求めることができる。
前記酸化物半導体膜は、コランダム構造を有するか、または酸化ガリウムもしくはその混晶を主成分として含んでいれば特に限定されないが、本発明においては、α−Gaまたはその混晶を主成分として含むのが好ましい。
以下、本発明の好適な例として、酸化ガリウムまたはその混晶を主成分として含む酸化物半導体膜からなる反転チャネル領域を少なくとも有する半導体装置を例に挙げて、本発明をより詳細に説明するが、本発明はこれらの例に限定されることはない。
本発明においては、酸化物半導体膜(ここで、酸化物半導体膜を酸化物半導体層と呼んでもよい)上に酸化膜を配置して積層構造体として半導体装置に用いることにより、前記閾値電圧が3V以上、好ましくは7V以上の前記半導体装置を容易に得ることができる。
前記酸化膜は、水素拡散を防止する水素拡散防止膜であって、周期律表第15族の少なくとも1種の元素を含む酸化膜であるのが好ましい。本発明においては、前記酸化膜が、周期律表第15族の少なくとも1種の元素および周期律表第13族の1種または2種以上の金属を少なくとも含むのがより好ましい。前記元素としては、例えば、窒素、リン、アンチモン、ビスマスなどが挙げられるが、中でも窒素またはリンが好ましく、リンがより好ましい。前記金属としては、例えば、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)などが挙げられるが、中でも、Gaおよび/またはAlが好ましく、Gaがより好ましい。また、前記酸化膜は、薄膜であるのが好ましく、膜厚100nm以下であるのがより好ましく、膜厚50nm以下であるのが最も好ましい。前記酸化膜の形成手段としては、例えば公知の手段などが挙げられ、より具体的には例えば、ドライ法やウェット法などが挙げられるが、例えばリン酸による前記反転チャネル領域上への表面処理であるのが好ましく、酸化ガリウムまたはその混晶上へのリン酸による表面処理であるのがより好ましい。このようにして周期律表第15族の少なくとも1種の前記元素を含む酸化膜を形成することにより、良質な不動態膜を得ることができる。
前記反転チャネル領域上に周期律表第15族の少なくとも1種の元素を含む酸化膜を積層することにより、水素の酸化物半導体膜への拡散を防止することができ、さらに界面準位を下げることもできるので、半導体装置、とりわけワイドバンドギャップ半導体の半導体装置に対し、より優れた半導体特性を与えることができる。また、このような酸化膜を積層することにより、ゲートリークをより効果的に抑制することができ、半導体特性をより優れたものにすることができる。
前記反転チャネル領域は、酸化ガリウムまたはその混晶を主成分として含む酸化物半導体膜が用いられているのが好ましく、コランダム構造を有する酸化物半導体膜が用いられているのも好ましい。前記酸化物半導体膜は、p型半導体膜であってもよいし、n型半導体膜であってもよい。前記酸化ガリウムとしては、例えば、α−Ga、β−Ga、ε−Gaなどが挙げられるが、中でもα−Gaが好ましい。また、前記の酸化ガリウムの混晶としては、前記酸化ガリウムと、1種または2種以上の金属酸化物との混晶が挙げられ、前記金属酸化物の好適な例としては、例えば、酸化アルミニウム、酸化インジウム、酸化イリジウム、酸化ロジウム、酸化鉄などが挙げられる。
また、コランダム構造を有する酸化物半導体膜は、通常、金属酸化物を主成分として含んでおり、該金属酸化物としては、例えば、酸化アルミニウム、酸化インジウム、酸化イリジウム、酸化ロジウム、酸化鉄などが挙げられる。
なお、「主成分」とは、例えば酸化物半導体膜がα−Gaを主成分として含む場合、前記酸化物半導体膜の金属元素中のガリウムの原子比が0.5以上の割合でα−Gaが含まれていればそれでよい。本発明においては、前記酸化物半導体膜の金属元素中のガリウムの原子比が0.7以上であることが好ましく、0.8以上であるのがより好ましい。また、前記結晶が混晶である場合においても、前記酸化物半導体膜の主成分が酸化ガリウムであるのが好ましい。例えば、酸化物半導体膜がα−(AlGa)を主成分として含む場合も、前記酸化物半導体膜の金属元素中のガリウムの原子比が0.5以上の割合で含まれていればそれでよい。本発明においては、前記酸化物半導体膜の金属元素中のガリウムの原子比が0.7以上であることが好ましく、0.8以上であるのがより好ましい。
また、前記反転チャネル領域は、通常、単相領域であるが、本発明の目的を阻害しない限り、さらに異なる半導体相からなる第2の半導体領域やその他の相などを有していてもよい。また、前記半導体領域は通常膜状であり、半導体膜であってよい。前記半導体領域の半導体膜の厚さは、特に限定されず、1μm以下であってもよいし、1μm以上であってもよいが、本発明においては、1μm以上であるのが好ましく、1μm〜40μmであるのがより好ましく、1μm〜25μmであるのが最も好ましい。前記半導体膜の表面積は特に限定されないが、1mm以上であってもよいし、1mm以下であってもよい。なお、前記酸化物半導体膜は、通常、単結晶であるが、多結晶であってもよい。また、前記酸化物半導体膜は、単層膜であってもよいし、多層膜であってもよい。
前記酸化物半導体膜は、ドーパントが含まれているのが好ましい。前記ドーパントは、特に限定されず、公知のものであってよい。前記ドーパントとしては、例えば、スズ、ゲルマニウム、ケイ素、チタン、ジルコニウム、バナジウムまたはニオブ等のn型ドーパント、またはMg、ZnまたはCa等のp型ドーパントなどが挙げられる。本発明においては、前記ドーパントが、Sn、GeまたはSiであるのが好ましい。ドーパントの含有量は、前記酸化物半導体膜の組成中、0.00001原子%以上であるのが好ましく、0.00001原子%〜20原子%であるのがより好ましく、0.00001原子%〜10原子%であるのが最も好ましい。
本発明においては、前記反転チャネル領域が、p型半導体層の少なくとも一部であって、かつ電圧が印加されるとn型に反転するチャネル領域であるのが好ましく、前記p型半導体層が、酸化ガリウムまたはその混晶を主成分として含む酸化物半導体膜からなるのがより好ましい。前記酸化物半導体膜はp型半導体膜であるのが好ましく、前記p型ドーパントを含むのがより好ましい。なお、前記p型ドーパントは、前記酸化物半導体膜をp型半導体膜として導電性を付与できるものであれば特に限定されず、公知のものであってよい。前記p型ドーパントとしては、例えば、Mg、H、Li、Na、K、Rb、Cs、Fr、Be、Ca、Sr、Ba、Ra、Mn、Fe、Co、Ni、Pd、Cu、Ag、Au、Zn、Cd、Hg、Tl、Pb、N、P等及びこれらの2種以上の元素などが挙げられるが、本発明においては、前記p型ドーパントが、Mg、ZnまたはCaであるのが好ましい。
前記酸化物半導体膜は、エピタキシャル結晶成長手段を用いて成膜することにより得ることができる。前記エピタキシャル結晶成長手段は、本発明の目的を阻害しない限り、特に限定されず、公知の手段であってよい。前記エピタキシャル結晶成長手段としては、例えば、CVD法、MOCVD法、MOVPE法、ミストCVD法、ミスト・エピタキシー法、MBE法、HVPE法またはパルス成長法などが挙げられる。本発明においては、前記エピタキシャル結晶成長手段が、ミストCVD法またはミスト・エピタキシー法であるのが好ましい。
本発明においては、前記成膜を、金属を含む原料溶液を霧化し(霧化工程)、液滴を浮遊させ、得られた霧化液滴をキャリアガスでもって前記基体近傍まで搬送し(搬送工程)、ついで、前記霧化液滴を熱反応させること(成膜工程)により行うのが好ましい。
(原料溶液)
原料溶液は、成膜原料として金属を含んでおり、霧化可能であれば特に限定されず、無機材料を含んでいてもよいし、有機材料を含んでいてもよい。前記金属は、金属単体であっても、金属化合物であってもよく、本発明の目的を阻害しない限り特に限定されないが、ガリウム(Ga)、イリジウム(Ir)、インジウム(In)、ロジウム(Rh)、アルミニウム(Al)、金(Au)、銀(Ag)、白金(Pt)、銅(Cu)、鉄(Fe)、マンガン(Mn)、ニッケル(Ni)、パラジウム(Pd)、コバルト(Co)、ルテニウム(Ru)、クロム(Cr)、モリブデン(Mo)、タングステン(W)、タンタル(Ta)、亜鉛(Zn)、鉛(Pb)、レニウム(Re)、チタン(Ti)、スズ(Sn)、ガリウム(Ga)、マグネシウム(Mg)、カルシウム(Ca)およびジルコニウム(Zr)から選ばれる1種または2種以上の金属などが挙げられるが、本発明においては、前記金属が、少なくとも周期律表第4周期〜第6周期の1種または2種以上の金属を含むのが好ましく、少なくともガリウム、インジウム、アルミニウム、ロジウムまたはイリジウムを含むのがより好ましく、少なくともガリウムを含むのが最も好ましい。このような好ましい金属を用いることにより、半導体装置等により好適に用いることができるエピタキシャル膜を成膜することができる。
本発明においては、前記原料溶液として、前記金属を錯体または塩の形態で有機溶媒または水に溶解または分散させたものを好適に用いることができる。錯体の形態としては、例えば、アセチルアセトナート錯体、カルボニル錯体、アンミン錯体、ヒドリド錯体などが挙げられる。塩の形態としては、例えば、有機金属塩(例えば金属酢酸塩、金属シュウ酸塩、金属クエン酸塩等)、硫化金属塩、硝化金属塩、リン酸化金属塩、ハロゲン化金属塩(例えば塩化金属塩、臭化金属塩、ヨウ化金属塩等)などが挙げられる。
前記原料溶液の溶媒は、本発明の目的を阻害しない限り特に限定されず、水等の無機溶媒であってもよいし、アルコール等の有機溶媒であってもよいし、無機溶媒と有機溶媒との混合溶媒であってもよい。本発明においては、前記溶媒が水を含むのが好ましい。
また、前記原料溶液には、ハロゲン化水素酸や酸化剤等の添加剤を混合してもよい。前記ハロゲン化水素酸としては、例えば、臭化水素酸、塩酸、ヨウ化水素酸などが挙げられる。前記酸化剤としては、例えば、過酸化水素(H)、過酸化ナトリウム(Na)、過酸化バリウム(BaO)、過酸化ベンゾイル(CCO)等の過酸化物、次亜塩素酸(HClO)、過塩素酸、硝酸、オゾン水、過酢酸やニトロベンゼン等の有機過酸化物などが挙げられる。前記添加剤の配合割合は、特に限定されないが、好ましくは、原料溶液に対し、0.001体積%〜50体積%であり、より好ましくは、0.01体積%〜30体積%である。
前記原料溶液には、ドーパントが含まれていてもよい。前記ドーパントは、本発明の目的を阻害しない限り、特に限定されない。前記ドーパントとしては、例えば、上記したn型ドーパントまたはp型ドーパントなどが挙げられる。ドーパントの濃度は、通常、約1×1016/cm〜1×1022/cmであってもよいし、また、ドーパントの濃度を例えば約1×1017/cm以下の低濃度にしてもよい。また、さらに、本発明によれば、ドーパントを約1×1020/cm以上の高濃度で含有させてもよい。
(霧化工程)
前記霧化工程は、金属を含む原料溶液を調整し、前記原料溶液を霧化して霧化し、液滴を浮遊させ、霧化液滴を発生させる。前記金属の配合割合は、特に限定されないが、原料溶液全体に対して、0.0001mol/L〜20mol/Lが好ましい。霧化手段は、前記原料溶液を霧化できさえすれば特に限定されず、公知の霧化手段であってよいが、本発明においては、超音波振動を用いる霧化手段であるのが好ましい。本発明で用いられるミストは、空中に浮遊するものであり、例えば、スプレーのように吹き付けるのではなく、初速度がゼロで、空間に浮かびガスとして搬送することが可能なミストであるのがより好ましい。ミストの液滴サイズは、特に限定されず、数mm程度の液滴であってもよいが、好ましくは50μm以下であり、より好ましくは1〜10μmである。
(搬送工程)
前記搬送工程では、前記キャリアガスによって前記霧化液滴を前記基体へ搬送する。キャリアガスの種類としては、本発明の目的を阻害しない限り特に限定されず、例えば、酸素、オゾン、不活性ガス(例えば窒素やアルゴン等)、または還元ガス(水素ガスやフォーミングガス等)などが好適な例として挙げられる。また、キャリアガスの種類は1種類であってよいが、2種類以上であってもよく、キャリアガス濃度を変化させた希釈ガス(例えば10倍希釈ガス等)などを、第2のキャリアガスとしてさらに用いてもよい。また、キャリアガスの供給箇所も1箇所だけでなく、2箇所以上あってもよい。キャリアガスの流量は、特に限定されないが、前記搬送を供給律速となるような流量が好ましく、より具体的には1LPM以下が好ましく、0.1〜1LPMがより好ましい。
(成膜工程)
成膜工程では、前記霧化液滴を反応させて、前記基体上に成膜する。前記反応は、前記霧化液滴から膜が形成される反応であれば特に限定されないが、本発明においては、熱反応が好ましい。前記熱反応は、熱でもって前記霧化液滴が反応すればそれでよく、反応条件等も本発明の目的を阻害しない限り特に限定されない。本工程においては、前記熱反応を、通常、原料溶液の溶媒の蒸発温度以上の温度で行うが、高すぎない温度以下が好ましく、650℃以下がより好ましい。また、熱反応は、本発明の目的を阻害しない限り、真空下、非酸素雰囲気下、還元ガス雰囲気下および酸素雰囲気下のいずれの雰囲気下で行われてもよく、また、大気圧下、加圧下および減圧下のいずれの条件下で行われてもよいが、本発明においては、大気圧下で行われるのが蒸発温度の計算がより簡単になり、設備等も簡素化できる等の点で好ましい。また、膜厚は成膜時間を調整することにより、設定することができる。
(基体)
前記基体は、前記半導体膜を支持できるものであれば特に限定されない。前記基体の材料も、本発明の目的を阻害しない限り特に限定されず、公知の基体であってよく、有機化合物であってもよいし、無機化合物であってもよい。前記基体の形状としては、どのような形状のものであってもよく、あらゆる形状に対して有効であり、例えば、平板や円板等の板状、繊維状、棒状、円柱状、角柱状、筒状、螺旋状、球状、リング状などが挙げられるが、本発明においては、基板が好ましい。基板の厚さは、本発明においては特に限定されない。
前記基板は、板状であって、前記半導体膜の支持体となるものであれば特に限定されない。絶縁体基板であってもよいし、半導体基板であってもよいし、金属基板や導電性基板であってもよいが、前記基板が、絶縁体基板であるのが好ましく、また、表面に金属膜を有する基板であるのも好ましい。前記基板としては、例えば、コランダム構造を有する基板材料を主成分として含む下地基板、またはβ−ガリア構造を有する基板材料を主成分として含む下地基板、六方晶構造を有する基板材料を主成分として含む下地基板などが挙げられる。ここで、「主成分」とは、前記特定の結晶構造を有する基板材料が、原子比で、基板材料の全成分に対し、好ましくは50%以上、より好ましくは70%以上、更に好ましくは90%以上含まれることを意味し、100%であってもよい。
基板材料は、本発明の目的を阻害しない限り、特に限定されず、公知のものであってよい。前記のコランダム構造を有する基板材料としては、例えば、α−Al(サファイア基板)またはα−Gaが好適に挙げられ、a面サファイア基板、m面サファイア基板、r面サファイア基板、c面サファイア基板や、α型酸化ガリウム基板(a面、m面またはr面)などがより好適な例として挙げられる。β−ガリア構造を有する基板材料を主成分とする下地基板としては、例えばβ−Ga基板、又はGaとAlとを含みAlが0wt%より多くかつ60wt%以下である混晶体基板などが挙げられる。また、六方晶構造を有する基板材料を主成分とする下地基板としては、例えば、SiC基板、ZnO基板、GaN基板などが挙げられる。
本発明においては、前記成膜工程の後、アニール処理を行ってもよい。アニールの処理温度は、本発明の目的を阻害しない限り特に限定されず、通常、300℃〜650℃であり、好ましくは350℃〜550℃である。また、アニールの処理時間は、通常、1分間〜48時間であり、好ましくは10分間〜24時間であり、より好ましくは30分間〜12時間である。なお、アニール処理は、本発明の目的を阻害しない限り、どのような雰囲気下で行われてもよいが、好ましくは非酸素雰囲気下であり、より好ましくは窒素雰囲気下である。
また、本発明においては、前記基体上に、直接、前記半導体膜を設けてもよいし、バッファ層(緩衝層)や応力緩和層等の他の層を介して前記半導体膜を設けてもよい。各層の形成手段は、特に限定されず、公知の手段であってよいが、本発明においては、ミストCVD法またはミスト・エピタキシー法が好ましい。
以下、図面を用いて、前記ミストCVD法またはミスト・エピタキシー法に好適に用いられる成膜装置19を説明する。図1の成膜装置19は、キャリアガスを供給するキャリアガス源22aと、キャリアガス源22aから送り出されるキャリアガスの流量を調節するための流量調節弁23aと、キャリアガス(希釈)を供給するキャリアガス(希釈)源22bと、キャリアガス(希釈)源22bから送り出されるキャリアガス(希釈)の流量を調節するための流量調節弁23bと、原料溶液24aが収容されるミスト発生源24と、水25aが入れられる容器25と、容器25の底面に取り付けられた超音波振動子26と、成膜室30と、ミスト発生源24から成膜室30までをつなぐ石英製の供給管27と、成膜室30内に設置されたホットプレート(ヒーター)28とを備えている。ホットプレート28上には、基板20が設置されている。
そして、図1に示すとおり、原料溶液24aをミスト発生源24内に収容する。次に、基板20を用いて、ホットプレート28上に設置し、ホットプレート28を作動させて成膜室30内の温度を昇温させる。次に、流量調節弁23(23a、23b)を開いてキャリアガス源22(22a、22b)からキャリアガスを成膜室30内に供給し、成膜室30の雰囲気をキャリアガスで十分に置換した後、キャリアガスの流量と、キャリアガス(希釈)の流量とをそれぞれ調節する。次に、超音波振動子26を振動させ、その振動を、水25aを通じて原料溶液24aに伝播させることによって、原料溶液24aを微粒子化させてミストを含む霧化液滴24bを生成する。この霧化液滴24bが、キャリアガスによって成膜室30内に導入され、基板20まで搬送され、そして、大気圧下、成膜室30内で霧化液滴24bが熱反応して、基板20上に膜が形成する。
本発明においては、前記成膜工程にて得られた膜を、そのまま半導体装置に用いてもよいし、前記基体等から剥離する等の公知の手段を用いた後に半導体装置に用いてもよい。
また、本発明において好ましく用いられるp型半導体膜である前記酸化物半導体膜は、例えば、金属を含む原料溶液にp型ドーパントと臭化水素酸とを加え、ミストCVD法により得ることができる。ここで、添加剤として臭化水素酸を前記原料溶液に加えることが肝要である。なお、前記ミストCVD法の各工程ならびに各手段および各条件については、上記した霧化・液滴化工程、搬送工程および成膜工程ならびに各手段および各条件等と同様であってよい。このようにして得られたp型半導体膜は、n型半導体とのpn接合も良好であり、前記反転チャネル領域に好適に用いることができる。
前記反転チャネル領域は、通常、異なるタイプの導電性を示す半導体領域の間に設けられる。例えば、前記反転チャネル領域が、p型半導体層内に設けられる場合には、通常、n型半導体からなる半導体領域の間のp型半導体層内に設けられ、また、前記反転チャネル領域が、n型半導体層内に設けられる場合には、通常、p型半導体からなる半導体領域の間のn型半導体層内に設けられる。なお、各半導体領域の形成手段は、前記の酸化物半導体膜の形成手段と同様であってよい。
また、本発明においては、前記反転チャネル領域上に、周期律表第15族の少なくとも1種の元素を含む前記酸化膜が積層されているのが好ましい。前記元素としては、例えば、窒素(N)、リン(P)などが挙げられるが、本発明においては、窒素(N)またはリン(P)が好ましく、リン(P)がより好ましい。例えば、ゲート絶縁膜と前記反転チャネル領域との間に、リンを少なくとも含む酸化膜を前記反転チャネル領域上に積層することにより、水素の酸化物半導体膜への拡散を防止することができ、さらに界面準位を下げることもできるので、半導体装置、とりわけワイドバンドギャップ半導体の半導体装置に対し、より優れた半導体特性を与えることができ、閾値電圧が3V以上のノーマリオフ型の半導体装置を実現することができる。なお、本発明においては、前記酸化膜が、周期律表第15族の少なくとも1種の前記元素および周期律表第13族の1種または2種以上の金属を含むのがより好ましい。前記金属としては、例えば、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)などが挙げられるが、中でも、Gaおよび/またはAlが好ましく、Gaがより好ましい。また、前記酸化膜は、薄膜であるのが好ましく、膜厚100nm以下であるのがより好ましく、膜厚50nm以下であるのが最も好ましい。このような酸化膜を積層することにより、ゲートリークをより効果的に抑制することができ、半導体特性をより優れたものにすることができる。前記酸化膜の形成手段としては、例えば公知の手段などが挙げられ、より具体的には例えば、ドライ法やウェット法などが挙げられるが、リン酸等による前記反転チャネル領域上への表面処理であるのが好ましい。
また、本発明においては、前記反転チャネル領域および前記酸化膜上に、所望によりゲート絶縁膜を介して、ゲート電極が設けられているのが好ましい。前記ゲート絶縁膜は本発明の目的を阻害しない限り特に限定されず、公知の絶縁膜であってよい。前記ゲート絶縁膜としては、例えば、SiO、Si、Al、GaO、AlGaO、InAlGaO、AlInZnGaO、AlN、Hf、SiN、SiON、MgO、GdO、リンを少なくとも含む酸化膜等の酸化膜が好適な例として挙げられる。前記ゲート絶縁膜の形成手段は、公知の手段であってよく、このような公知の形成手段としては、例えば、ドライ法やウェット法などが挙げられる。ドライ法としては、例えば、スパッタ、真空蒸着、CVD、PLD等の公知の手段が挙げられる。ウェット法としては、例えば、スクリーン印刷やダイコート等の塗布手段が挙げられる。
前記ゲート電極は、公知のゲート電極であってよく、かかる電極材料も導電性無機材料であってもよいし、導電性有機材料であってもよい。本発明においては、前記電極材料が金属であるのが好ましい。前記金属としては、特に限定されないが、好適には例えば、周期律表第4族〜第11族から選ばれる少なくとも1種の金属などが挙げられる。周期律表第4族の金属としては、例えば、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)などが挙げられるが、中でもTiが好ましい。周期律表第5族の金属としては、例えば、バナジウム(V)、ニオブ(Nb)、タンタル(Ta)などが挙げられる。周期律表第6族の金属としては、例えば、クロム(Cr)、モリブデン(Mo)およびタングステン(W)等から選ばれる1種または2種以上の金属などが挙げられるが、本発明においては、よりスイッチング特性等の半導体特性がより良好なものとなるのでCrが好ましい。周期律表第7族の金属としては、例えば、マンガン(Mn)、テクネチウム(Tc)、レニウム(Re)などが挙げられる。周期律表第8族の金属としては、例えば、鉄(Fe)、ルテニウム(Ru)、オスミウム(Os)などが挙げられる。周期律表第9族の金属としては、例えば、コバルト(Co)、ロジウム(Rh)、イリジウム(Ir)などが挙げられる。周期律表第10族の金属としては、例えば、ニッケル(Ni)、パラジウム(Pd)、白金(Pt)などが挙げられるが、中でもPtが好ましい。周期律表第11族の金属としては、例えば、銅(Cu)、銀(Ag)、金(Au)などが挙げられる。前記ゲート電極の形成手段としては、例えば公知の手段などが挙げられ、より具体的には例えば、ドライ法やウェット法などが挙げられる。ドライ法としては、例えば、スパッタ、真空蒸着、CVD等の公知の手段が挙げられる。ウェット法としては、例えば、スクリーン印刷やダイコート等が挙げられる。
なお、本発明においては、ゲート電極だけでなく、通常、ソース電極およびドレイン電極を備えるが、前記ソース電極およびドレイン電極はいずれも、前記ゲート電極と同様に、それぞれ公知の電極であってよく、電極形成手段もそれぞれ公知の手段であってよい。
前記半導体装置は、とりわけ、パワーデバイスに有用である。前記半導体装置としては、例えば、トランジスタなどが挙げられるが、中でもMOSFETが好ましい。
(MOSFET)
本発明の半導体装置がMOSFETである場合の好適な例を図2に示す。図2の半導体装置500は、横型のMOSFETであり、第1の半導体領域1aとして、n+型半導体層(n+型ソース層)、第2の半導体領域1bとしてn+型半導体層(n+型ドレイン層)、酸化物半導体膜2としてp型半導体層、p型半導体層内に位置しており、かつ表面にリンを含む酸化膜が形成されている反転チャネル領域2a、金属酸化物層3、絶縁膜4a(ゲート絶縁膜)、絶縁膜4b(フィールド絶縁膜)、第3の電極5aとしてゲート電極、第1の電極5bとしてソース電極、第2の電極5cとしてドレイン電極および基板9を備えている。金属酸化物層3は、酸化ガリウムを含んでいる。金属酸化物層3が、主成分として酸化ガリウムを含んでいてもよい。また、金属酸化物層3は、酸化物半導体膜2よりも高抵抗の膜であるのが好ましく、ドーパントを含まない層であるのが好ましい。
図2のMOSFETのオン状態では、前記ソース電極5bと前記ドレイン電極5cとの間に電圧を印加し、前記ゲート電極5aに前記ソース電極135bに対して正の電圧を与えると、p型半導体層2内の反転チャネル領域2a部分にn型の反転チャネル領域が形成され、ターンオンする。オフ状態は、前記ゲート電極の電圧を0Vにすることにより、反転チャネル領域ができなくなり、ターンオフとなる。
図9は、本発明の半導体装置の一例として、縦型半導体装置の第1面側600aの第1の電極5bと第1の電極5b下の絶縁層4aの一部を取り除いた第1面側600aからの部分透視図(600a’)と、半導体装置600の部分断面図(600c)を示す図である。なお、見やすさを重視して、第1面側600aからの部分透視図600a’には、第2面側600bに位置する第2の半導体領域1bと第2の電極5cは含めていないが、部分断面図600cには第1の電極5bと絶縁層4aと、第2の半導体領域1bと第2の電極5cを含めて表示されている。本実施態様の半導体装置600は、半導体装置600の第1面側600aと第2面側600bに電極を配置した縦型のデバイス構造を示している。半導体装置600は、少なくとも酸化ガリウムを含有する結晶を含む酸化物半導体膜2を有し、前記酸化物半導体膜2は酸化膜2bを有し、酸化膜2bに接触する位置に反転チャネル領域2aを含んでいる。さらに、半導体装置600は、酸化物半導体膜2の第1面側に配置されている第1の電極5bと、酸化物半導体膜2の第2面側に配置されている第2の電極5cと、酸化物半導体膜2の第1面側に位置して、断面視で、第1の電極5bと第2の電極5cとの間に少なくとも部分的に位置する第3の電極5aとを有している。なお、第3の電極5aは、図9の600cで示すように、絶縁膜4aを介して第1の電極5bから離間されており、第2の電極5cからも、図示されたように複数の層を介して離間された位置にある。本実施態様における半導体装置は、縦型のMOSFETとして用いることができる。例えば、酸化物半導体膜2がp型半導体膜であって、かつ表面にリンを含む酸化膜2bが配置されている反転チャネル領域2aを有している場合、第1の電極5bはソース電極で、第2の電極5cはドレイン電極で、第3の電極5aはゲート電極である。さらに半導体装置600は、酸化物半導体膜2に埋設された第1の半導体領域1aと、酸化物半導体膜2の少なくとも一部が埋設された第3の半導体領域6、第3の半導体領域6の第2面に接触して第2の半導体領域1b、第2の半導体領域1bに接触して第2の電極5cが配置されている。なお、50bは、第1の電極のコンタクト面を示し、酸化物半導体膜2と、酸化物半導体膜2に埋設された第1の半導体領域1aとに部分的に接触している。第2の電極5cは、半導体装置600の第2面側600bに位置している。本実施態様において、第1の半導体領域1aはn+型半導体層(n+型ソース層)である。また、第2の半導体領域1bはn+型半導体層(n+型ドレイン層)である。本実施態様においても、酸化物半導体膜2がp型半導体膜であって、酸化物半導体膜2内に設けられており、反転チャネル領域2aに接触して、かつ第3の電極5a(ゲート電極)に近い位置にリンを含む酸化膜2bが形成されている。この構造により、ゲートリーク電流をより効果的に抑制することができる。ゲートリーク電流が抑制されれば、ゲートリーク電流によって反転チャネル領域ができにくい問題が解消でき、より優れた半導体特性を持つ半導体装置600を得ることができる。また、第1の電極(ソース電極)を半導体装置の第1面側600aに、第2の電極(ドレイン電極)を第2面側600bに配置して半導体装置を縦型にすることで、半導体装置の一方の側(第1面側600aまたは第2面側600b)に第1の電極(ソース電極)および第2の電極(ドレイン電極)を配置した横型の半導体装置に比べて、半導体装置の小型化を図ることができる。さらに、縦型の半導体装置は、ダイオードを含む縦型デバイスと組み合わせて用いる場合、同じ縦型のデバイスであることから容易に回路設計ができる。
本発明の半導体装置は、上記した事項に加え、さらに公知の方法を用いて、パワーモジュール、インバータまたはコンバータとして好適に用いられ、さらには、例えば電源装置を用いた半導体システム等に好適に用いられる。前記電源装置は、公知の方法を用いて、配線パターン等に接続するなどすることにより、前記半導体装置からまたは前記半導体装置として作製することができる。図6は、複数の前記電源装置171、172と制御回路173を用いて構成された電源システム170を示す。前記電源システム170は、図7に示すように、電子回路181と電源システム182とを組み合わせてシステム装置180に用いることができる。なお、電源装置の電源回路図の一例を図8に示す。図8は、パワー回路と制御回路からなる電源装置の電源回路を示しており、インバータ192(MOSFETA〜Dで構成)によりDC電圧を高周波でスイッチングしACへ変換後、トランス193で絶縁及び変圧を実施し、整流MOSFET(A〜B’)で整流後、DCL195(平滑用コイルL1,L2)とコンデンサにて平滑し、直流電圧を出力する。この時に電圧比較器197で出力電圧を基準電圧と比較し、所望の出力電圧となるようPWM制御回路196でインバータ192及び整流MOSFET194を制御する。
(実施例1)図2に示されるMOSFETの作製
1.p型半導体層の形成
1−1.成膜装置
図1の成膜装置19を用いた。
1−2.原料溶液の作製
0.1M臭化ガリウム水溶液に臭化水素酸を体積比で20%含有させ、さらにMgを1体積%の割合で加え、これを原料溶液とした。
1−3.成膜準備
上記1−2.で得られた原料溶液24aをミスト発生源24内に収容した。次に、基板20として、表面にノンドープのα−Ga膜が形成されているサファイア基板をサセプタ21上に設置し、ヒーター28を作動させて成膜室30内の温度を520℃にまで昇温させた。次に、流量調節弁23a、23bを開いて、キャリアガス源であるキャリアガス供給手段22a、22bからキャリアガスを成膜室30内に供給し、成膜室30の雰囲気をキャリアガスで十分に置換した後、キャリアガスの流量を1LPMに、キャリアガス(希釈)の流量を1LPMにそれぞれ調節した。なお、キャリアガスとして窒素を用いた。
1−4.半導体膜形成
次に、超音波振動子26を2.4MHzで振動させ、その振動を、水25aを通じて原料溶液24aに伝播させることによって、原料溶液24aを霧化させてミストを生成した。このミストが、キャリアガスによって成膜室30内に導入され、大気圧下、520℃にて、成膜室30内でミストが反応して、基板20上に半導体膜が形成された。なお、膜厚は0.6μmであり、成膜時間は15分間であった。
1−5.評価
XRD回折装置を用いて、上記1−4.にて得られた膜の相の同定を行ったところ、得られた膜はα−Gaであった。
2.n+型半導体領域の形成
0.1M臭化ガリウム水溶液に体積比で臭化水素酸10%および臭化スズ8%をそれぞれ含有させ、これを原料溶液としたこと、ならびに成膜温度を580℃および成膜時間を5分間としたこと以外、上記1.と同様にして、上記1.で得られたp型半導体層上にn+型半導体膜を成膜した。得られた膜につき、XRD回折装置を用いて、膜の相の同定を行ったところ、得られた膜はα−Gaであった。
3.絶縁膜および各電極の形成
ゲート部に対応する領域のn+型半導体層(1aと1bとの間)をリン酸でエッチングし、さらに、半導体膜上にリンを少なくとも含む酸化膜が形成されるようにリン酸で処理した後、スパッタにてSiOを成膜した。また、フォトリソグラフィー、エッチング処理、電子ビーム蒸着処理等に付し、図2に示すとおり、MOSFETを作製した。なお、電極にはいずれもTiを用いた。また、得られたMOSFETにつき、参考までに上面からみた写真を図3に示す。
(評価)
得られたMOSFETにつき、IV測定を実施した。IV測定結果を図4に示す。図4から明らかなとおり、反転チャネル領域が形成され、酸化ガリウム半導体のMOSFETがトランジスタとして良好に動作することが世界で初めて実証された。そして、得られたIV特性から求められたゲート閾値電圧は、7.9Vであった。
なお、上記3.において、リンを少なくとも含む酸化膜がp型半導体層とゲート絶縁膜(SiO膜)との間に形成されているのかどうかにつき、SIMS測定で実施して確認した。SIMS測定結果を図5に示す。図5から、p型半導体層とゲート絶縁膜との間にリンを含む酸化膜が形成されており、さらには、ゲート絶縁膜の水素のp型半導体層への拡散を良好に防いでいることがわかる。
本発明の半導体装置は、半導体(例えば化合物半導体電子デバイス等)、電子部品・電気機器部品、光学・電子写真関連装置、工業部材などあらゆる分野に用いることができるが、とりわけ、パワーデバイスに有用である。
1a 第1の半導体領域
1b 第2の半導体領域
2 酸化物半導体膜
2a 反転チャネル領域
2b 酸化膜
2c 酸化物半導体膜の第2面
3 金属酸化物層
4a 絶縁膜
4b 絶縁膜
5a 第3の電極
5b 第1の電極
5c 第2の電極
6 第3の半導体領域
9 基板
19 成膜装置
20 基板
21 サセプタ
22a キャリアガス源
22b キャリアガス(希釈)源
23a キャリアガス源の流量調節弁
23b キャリアガス(希釈)源の流量調節弁
24 ミスト発生源
24a 原料溶液
25 容器
25a 水
26 超音波振動子
27 供給管
28 ヒーター
29 排気口
50b 第1の電極のコンタクト面
100 半導体装置
170 電源システム
171 電源装置
172 電源装置
173 制御回路
180 システム装置
181 電子回路
182 電源システム
192 インバータ
193 トランス
194 MOSFET
195 DCL
196 PWM制御回路
197 電圧比較器
500 半導体装置
600 半導体装置

Claims (15)

  1. コランダム構造を有するか、または酸化ガリウムもしくはその混晶を主成分として含む酸化物半導体膜を含むノーマリオフ型の半導体装置であって、閾値電圧が3V以上であることを特徴とする半導体装置。
  2. 前記酸化物半導体膜が、α−Gaまたはその混晶を主成分として含む請求項1記載の半導体装置。
  3. MOSFETであり、前記閾値電圧がゲート閾値電圧である請求項1または2に記載の半導体装置。
  4. 前記酸化物半導体膜は反転チャネル領域を含み、前記反転チャネル領域上にゲート絶縁膜を介してゲート電極が設けられており、さらに、前記反転チャネル領域と前記ゲート絶縁膜との間に、周期律表第15族の少なくとも1種の元素を含む酸化膜からなる水素拡散防止膜が形成されている請求項3記載の半導体装置。
  5. 前記元素がリンである請求項4記載の半導体装置。
  6. 前記反転チャネル領域がp型半導体層である請求項4または5に記載の半導体装置。
  7. 前記閾値電圧が、7V以上である請求項1〜6のいずれかに記載の半導体装置。
  8. パワーデバイスである請求項1〜7のいずれかに記載の半導体装置。
  9. 半導体装置を備える半導体システムであって、前記半導体装置が、請求項1〜8のいずれかに記載の半導体装置である半導体システム。
  10. コランダム構造を有する酸化ガリウムを含む結晶を含有する酸化物半導体膜と、3V以上の閾値電圧とを有する半導体装置。
  11. 酸化ガリウムを含む結晶を含有する酸化物半導体膜と、3V以上の閾値電圧とを有する半導体装置。
  12. 前記結晶が混晶である、請求項10または11に記載の半導体装置。
  13. 前記半導体装置がノーマリオフ型の半導体装置である、請求項10または11に記載の半導体装置。
  14. 前記酸化物半導体膜は反転チャネル領域を含み、前記反転チャネル領域上にゲート絶縁膜を介してゲート電極が設けられており、さらに、前記反転チャネル領域と前記ゲート絶縁膜との間に、周期律表第15族の少なくとも1種の元素を含む酸化膜からなる水素拡散防止膜が形成されている請求項10または11に記載の半導体装置。
  15. 前記元素がリンである請求項14記載の半導体装置。


JP2020530248A 2018-07-12 2019-07-11 半導体装置および半導体装置を含む半導体システム Active JP7404594B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018132765 2018-07-12
JP2018132765 2018-07-12
PCT/JP2019/027444 WO2020013262A1 (ja) 2018-07-12 2019-07-11 半導体装置および半導体装置を含む半導体システム

Publications (2)

Publication Number Publication Date
JPWO2020013262A1 true JPWO2020013262A1 (ja) 2021-08-02
JP7404594B2 JP7404594B2 (ja) 2023-12-26

Family

ID=69142610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020530248A Active JP7404594B2 (ja) 2018-07-12 2019-07-11 半導体装置および半導体装置を含む半導体システム

Country Status (5)

Country Link
US (1) US20200388684A1 (ja)
JP (1) JP7404594B2 (ja)
CN (1) CN112424947A (ja)
TW (1) TW202013735A (ja)
WO (1) WO2020013262A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7453618B2 (ja) 2020-03-19 2024-03-21 株式会社Flosfia 通電機構およびその通電方法
CN113314596A (zh) * 2020-02-27 2021-08-27 诺维晶科股份有限公司 场效应晶体管及其设计方法
JP7247945B2 (ja) * 2020-04-24 2023-03-29 トヨタ自動車株式会社 酸化ガリウム系半導体及びその製造方法
CN113921589A (zh) * 2021-09-02 2022-01-11 西安电子科技大学 一种基于零栅偏压的氧化镓基太阳光盲区探测器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013035842A1 (ja) * 2011-09-08 2013-03-14 株式会社タムラ製作所 Ga2O3系半導体素子
JP2015228495A (ja) * 2014-05-08 2015-12-17 株式会社Flosfia 結晶性積層構造体、半導体装置
WO2016031633A1 (ja) * 2014-08-29 2016-03-03 株式会社タムラ製作所 半導体素子及び結晶積層構造体
JP2017224794A (ja) * 2016-06-17 2017-12-21 ラピスセミコンダクタ株式会社 半導体装置および半導体装置の製造方法
WO2018004008A1 (ja) * 2016-06-30 2018-01-04 株式会社Flosfia 酸化物半導体膜及びその製造方法
WO2018043503A1 (ja) * 2016-08-31 2018-03-08 株式会社Flosfia p型酸化物半導体及びその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7253061B2 (en) * 2004-12-06 2007-08-07 Tekcore Co., Ltd. Method of forming a gate insulator in group III-V nitride semiconductor devices
KR101932576B1 (ko) * 2010-09-13 2018-12-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작 방법
US20140217470A1 (en) * 2011-09-08 2014-08-07 Tamura Corporation Ga2O3 SEMICONDUCTOR ELEMENT
KR101976133B1 (ko) * 2012-11-20 2019-05-08 삼성디스플레이 주식회사 표시 장치
KR102494732B1 (ko) * 2015-10-16 2023-02-01 삼성디스플레이 주식회사 박막 트랜지스터 표시판 및 그 제조 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013035842A1 (ja) * 2011-09-08 2013-03-14 株式会社タムラ製作所 Ga2O3系半導体素子
JP2015228495A (ja) * 2014-05-08 2015-12-17 株式会社Flosfia 結晶性積層構造体、半導体装置
WO2016031633A1 (ja) * 2014-08-29 2016-03-03 株式会社タムラ製作所 半導体素子及び結晶積層構造体
JP2017224794A (ja) * 2016-06-17 2017-12-21 ラピスセミコンダクタ株式会社 半導体装置および半導体装置の製造方法
WO2018004008A1 (ja) * 2016-06-30 2018-01-04 株式会社Flosfia 酸化物半導体膜及びその製造方法
WO2018043503A1 (ja) * 2016-08-31 2018-03-08 株式会社Flosfia p型酸化物半導体及びその製造方法

Also Published As

Publication number Publication date
CN112424947A (zh) 2021-02-26
WO2020013262A1 (ja) 2020-01-16
JP7404594B2 (ja) 2023-12-26
US20200388684A1 (en) 2020-12-10
TW202013735A (zh) 2020-04-01

Similar Documents

Publication Publication Date Title
JP7404594B2 (ja) 半導体装置および半導体装置を含む半導体システム
JP7457366B2 (ja) 半導体装置および半導体装置を含む半導体システム
JP2018060992A (ja) 半導体装置
WO2020013244A1 (ja) 半導体装置
JP7462143B2 (ja) 積層構造体、積層構造体を含む半導体装置および半導体システム
JP7385200B2 (ja) 半導体装置および半導体装置を含む半導体システム
WO2021106810A1 (ja) 半導体装置および半導体システム
WO2021106811A1 (ja) 半導体装置および半導体システム
WO2021106809A1 (ja) 半導体装置および半導体装置を有する半導体システム
JP6999106B2 (ja) 半導体装置
JP6999105B2 (ja) 半導体装置の製造方法
JP6999103B2 (ja) 半導体装置
JPWO2019098298A1 (ja) 半導体装置
JP6999104B2 (ja) 半導体装置
WO2020013243A1 (ja) 半導体装置
JP6932904B2 (ja) 半導体装置
JP2021120973A (ja) 半導体装置および半導体システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230502

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231115

R150 Certificate of patent or registration of utility model

Ref document number: 7404594

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150