WO2020013260A1 - 半導体装置および半導体装置を含む半導体システム - Google Patents

半導体装置および半導体装置を含む半導体システム Download PDF

Info

Publication number
WO2020013260A1
WO2020013260A1 PCT/JP2019/027442 JP2019027442W WO2020013260A1 WO 2020013260 A1 WO2020013260 A1 WO 2020013260A1 JP 2019027442 W JP2019027442 W JP 2019027442W WO 2020013260 A1 WO2020013260 A1 WO 2020013260A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor
semiconductor device
film
oxide
region
Prior art date
Application number
PCT/JP2019/027442
Other languages
English (en)
French (fr)
Inventor
雅裕 杉本
勲 ▲高▼橋
四戸 孝
Original Assignee
株式会社Flosfia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Flosfia filed Critical 株式会社Flosfia
Priority to EP19833736.2A priority Critical patent/EP3823038A4/en
Priority to CN201980046507.1A priority patent/CN112385048A/zh
Priority to JP2020530246A priority patent/JP7385200B2/ja
Priority to US17/258,852 priority patent/US20210328062A1/en
Publication of WO2020013260A1 publication Critical patent/WO2020013260A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02483Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02581Transition metal or rare earth elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1054Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a variation of the composition, e.g. channel with strained layer for increasing the mobility
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41733Source or drain electrodes for field effect devices for thin film transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/513Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • H01L29/1079Substrate region of field-effect devices of field-effect transistors with insulated gate
    • H01L29/1083Substrate region of field-effect devices of field-effect transistors with insulated gate with an inactive supplementary region, e.g. for preventing punch-through, improving capacity effect or leakage current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer

Definitions

  • the present invention relates to a semiconductor device useful as a power device or the like and a semiconductor system including the same.
  • gallium oxide As a next-generation switching element capable of realizing high withstand voltage, low loss, and high heat resistance, a semiconductor device using gallium oxide (Ga 2 O 3 ) having a large band gap has attracted attention. Application is expected. In addition, wide band gaps are expected to be applied to light receiving and emitting devices such as LEDs and sensors. According to Non-Patent Document 1, the gallium oxide can control the band gap by mixed crystal of indium and aluminum, or a combination thereof, and constitutes a very attractive material system as an InAlGaO-based semiconductor. .
  • Patent Document 1 a gallium oxide-based p-type semiconductor has been studied.
  • Patent Document 2 a ⁇ -Ga 2 O 3 -based crystal is formed by an FZ method using MgO (p-type dopant source). It is described that when formed, a substrate exhibiting p-type conductivity can be obtained.
  • Patent Document 2 describes that a p-type dopant is ion-implanted into an ⁇ - (Al x Ga 1-x ) 2 O 3 single crystal film formed by MBE to form a p-type semiconductor. .
  • Non-Patent Document 2 it is difficult to produce a p-type semiconductor by these methods (Non-Patent Document 2), and there is no report that a p-type semiconductor has been successfully produced by these methods. Therefore, a feasible p-type oxide semiconductor and a manufacturing method thereof have been long-awaited.
  • Rh 2 O 3 and ZnRh 2 O and 4 or the like are also being considered for use in p-type semiconductor, but, Rh 2 O 3 is In particular, the concentration of the raw material becomes thinner during the film formation, which has a problem of affecting the film formation. Even when an organic solvent is used, it is difficult to produce a Rh 2 O 3 single crystal. In addition, even if the Hall effect measurement is performed, there is a problem that the measurement is not p-type and the measurement itself is not performed, and the measured value is, for example, the measurement limit (0.2 cm 3 / C) There were only the following, which was a practical problem. Further, ZnRh 2 O 4 has a problem that it cannot be used for an LED or a power device because it has a low mobility and a narrow band gap, and these are not always satisfactory.
  • Patent Document 3 describes using delafossite, oxychalcogenide, or the like as a p-type semiconductor.
  • these semiconductors have a mobility of about 1 cm 2 / V ⁇ s or less, have poor electric characteristics, and have a pn junction with an n-type next generation oxide semiconductor such as ⁇ -Ga 2 O 3. There were some problems that did not work.
  • Patent Document 4 describes that Ir 2 O 3 is used as an iridium catalyst.
  • Patent Literature 5 discloses that Ir 2 O 3 is used for a dielectric.
  • Patent Literature 6 describes that Ir 2 O 3 is used for an electrode.
  • Patent Document 7 Although it was not known to use Ir 2 O 3 for a p-type semiconductor, it has recently been studied by the present applicants to use Ir 2 O 3 as a p-type semiconductor. (Patent Document 7). For this reason, research and development of p-type semiconductors have progressed, and there has been a long-awaited demand for a semiconductor device capable of realizing high breakdown voltage, low loss, and high heat resistance by effectively using an excellent semiconductor material such as gallium oxide (Ga 2 O 3 ). .
  • One of the objects of the present invention is to provide a semiconductor device useful as a power device or the like.
  • the present inventors have conducted intensive studies to achieve the above object, and as one of the effects of the present invention, by disposing a phosphorus-containing oxide film on at least a part of the oxide semiconductor film, According to this, it has been found that the gate leakage current can be suppressed. After obtaining the above findings, the present inventors have further studied and completed the present invention.
  • the semiconductor device has a first semiconductor region and a second semiconductor region, and an upper surface of the first semiconductor region, an upper surface of the second semiconductor region, and an upper surface of the inversion channel region are flush with each other.
  • the semiconductor device according to [11] or [12], wherein the first semiconductor region and the second semiconductor region are each n-type.
  • the semiconductor device of the present invention is useful as a power device or the like.
  • FIG. 2 is a cross-sectional view showing a first embodiment of the semiconductor device of the present invention, for example, an AA cross-sectional view of FIG. 1.
  • FIG. 2 is a cross-sectional view illustrating a second embodiment of the semiconductor device of the present invention, for example, a cross-sectional view along AA in FIG. 1.
  • FIG. 6 is a cross-sectional view illustrating a third embodiment of the semiconductor device of the present invention, for example, a cross-sectional view taken along the line BB of FIG. 4.
  • FIG. 9 is a cross-sectional view illustrating a fourth embodiment of the semiconductor device of the present invention, for example, a cross-sectional view taken along the line BB of FIG.
  • FIG. 14 is a partial cross-sectional view of a semiconductor device, illustrating a fifth aspect of the semiconductor device of the present invention. 13 shows a photograph of a MOSFET, which is a semiconductor device manufactured in the fifth embodiment, as viewed from above.
  • FIG. 14 is a diagram illustrating an IV measurement result of a semiconductor device manufactured as a fifth embodiment.
  • FIG. 14 is a diagram illustrating a SIMS measurement result of a semiconductor device manufactured as a fifth embodiment.
  • FIG. 18 is a diagram illustrating a partial cross-sectional view (600c) of a semiconductor device including a source electrode on one surface side and an insulating layer below the source electrode; It is a figure which shows a suitable example of a power supply system typically. It is a figure which shows a suitable example of a system apparatus typically. It is a figure which shows typically a suitable example of the power supply circuit diagram of a power supply device.
  • FIG. 1 shows a schematic configuration diagram of a film forming apparatus (mist CVD apparatus) used in an embodiment of the present invention.
  • a semiconductor device is a semiconductor device having at least an inversion channel region, in which the inversion channel region includes an oxide semiconductor film including a crystal having a corundum structure.
  • the inversion channel region is not particularly limited as long as an oxide semiconductor film containing a crystal containing at least gallium oxide is used.
  • the oxide semiconductor film may be a p-type semiconductor film or an n-type It may be a semiconductor film.
  • the gallium oxide include ⁇ -Ga 2 O 3 , ⁇ -Ga 2 O 3 , ⁇ -Ga 2 O 3 , and among them, ⁇ -Ga 2 O 3 is preferable.
  • the crystal may be a mixed crystal.
  • Examples of the mixed crystal of gallium oxide include mixed crystals of the gallium oxide and one or more metal oxides.
  • Preferable examples of the metal oxide include aluminum oxide and oxide Examples include indium, iridium oxide, rhodium oxide, and iron oxide.
  • a main component of the crystal is gallium oxide.
  • “main component” refers to, for example, when the oxide semiconductor film contains ⁇ -Ga 2 O 3 as a main component, the atomic ratio of gallium in a metal element of the oxide semiconductor film is 0.5 or more. That is fine if it is included.
  • the atomic ratio of gallium in the metal element of the oxide semiconductor film is preferably 0.7 or more, and more preferably 0.8 or more. Further, even when the crystal is a mixed crystal, it is preferable that a main component of the oxide semiconductor film be gallium oxide.
  • the oxide semiconductor film contains ⁇ - (AlGa) 2 O 3 as a main component, as long as the oxide semiconductor film contains gallium in a metal element in an atomic ratio of 0.5 or more. That's fine.
  • the atomic ratio of gallium in the metal element of the oxide semiconductor film is preferably 0.7 or more, and more preferably 0.8 or more.
  • a semiconductor device is a semiconductor device including an oxide semiconductor film including a crystal having a corundum structure, wherein the oxide semiconductor film includes an inversion channel region.
  • An oxide semiconductor film having a corundum structure usually contains a metal oxide as a main component, and examples of the metal oxide include gallium oxide, aluminum oxide, indium oxide, iridium oxide, rhodium oxide, and iron oxide. Is mentioned.
  • the crystal preferably contains at least gallium oxide.
  • the crystals may be mixed crystals.
  • the mixed crystal having a corundum structure containing at least gallium oxide may further include, for example, at least one selected from aluminum oxide, indium oxide, iridium oxide, rhodium oxide, and iron oxide.
  • the main component of the oxide semiconductor film is preferably gallium oxide, and the crystal preferably has a corundum structure. Note that the above is referred to for the “main component”.
  • the inversion channel region is usually a region included in the oxide semiconductor film; however, two or more inversion channel regions may be provided in the semiconductor device as long as the object of the present invention is not hindered. Since the inversion channel region is a part of the oxide semiconductor film, the inversion channel region includes at least a crystal containing gallium oxide and has the same main component as the oxide semiconductor film. When a voltage is applied to the semiconductor device including the oxide semiconductor film, an inversion channel region which is part of the oxide semiconductor film is inverted. For example, when the oxide semiconductor film is a p-type semiconductor film, the inversion channel region is inverted to n-type. Further, the oxide semiconductor film is usually in the form of a film, and may be a semiconductor layer.
  • the thickness of the oxide semiconductor film is not particularly limited, and may be 1 ⁇ m or less, or 1 ⁇ m or more. In the present invention, the thickness is preferably 1 ⁇ m or more, and more preferably 1 ⁇ m to 40 ⁇ m. More preferably, it is 1 ⁇ m to 25 ⁇ m, most preferably.
  • Surface area of the oxide semiconductor film is not particularly limited, and may be 1 mm 2 or more, may be 1 mm 2 or less. Note that the oxide semiconductor film is usually single crystal, but may be polycrystalline. Further, the oxide semiconductor film may be a single-layer film or a multilayer film.
  • the oxide semiconductor film preferably contains a dopant.
  • the dopant is not particularly limited, and may be a known dopant.
  • Examples of the dopant include an n-type dopant such as tin, germanium, silicon, titanium, zirconium, vanadium or niobium, and a p-type dopant such as Mg, Zn or Ca.
  • the dopant is preferably Sn, Ge or Si.
  • the content of the dopant in the composition of the oxide semiconductor film is preferably 0.00001 atomic% or more, more preferably 0.00001 atomic% to 20 atomic%, and more preferably 0.00001 atomic% to 10 atomic%. Most preferably, it is atomic%.
  • the oxide semiconductor film includes an inversion channel region.
  • the oxide semiconductor film is a p-type semiconductor film, it is preferable that, when a voltage is applied to a semiconductor device, the inversion channel region of the oxide semiconductor film be a n-type inversion channel region.
  • the semiconductor film is an oxide semiconductor film including a crystal containing at least gallium oxide.
  • the oxide semiconductor film is preferably a p-type semiconductor film, and more preferably contains the p-type dopant.
  • the p-type dopant is not particularly limited as long as the oxide semiconductor film can provide conductivity as a p-type semiconductor film, and may be a known one.
  • the p-type dopant examples include Mg, H, Li, Na, K, Rb, Cs, Fr, Be, Ca, Sr, Ba, Ra, Mn, Fe, Co, Ni, Pd, Cu, Ag, and Au. , Zn, Cd, Hg, Tl, Pb, N, P, and the like, and two or more of these elements.
  • the p-type dopant is preferably Mg, Zn, or Ca. .
  • FIG. 1 shows a part of a schematic top view of a semiconductor device as an example of the semiconductor device of the present invention; however, the number, shape, and arrangement of electrodes of the semiconductor device can be appropriately selected.
  • FIG. 2 is a cross-sectional view showing a first embodiment of the semiconductor device of the present invention, for example, a cross-sectional view taken along line AA of FIG.
  • the semiconductor device 100 includes the oxide semiconductor film 2 including a crystal containing at least gallium oxide.
  • the oxide semiconductor film 2 includes an inversion channel region 2a.
  • the crystal contains gallium oxide as a main component.
  • the crystals may be mixed crystals.
  • the semiconductor device 100 has an oxide film 2b at a position in contact with the inversion channel region 2a.
  • FIG. 3 is a sectional view showing a second embodiment of the semiconductor device of the present invention.
  • the semiconductor device 200 includes the oxide semiconductor film 2 including a crystal containing at least gallium oxide, and the oxide semiconductor film 2 includes an inversion channel region 2a.
  • the crystal has a corundum structure.
  • the semiconductor device 200 has a first semiconductor region 1a and a second semiconductor region 1b.
  • the inversion channel region 2a is located between the first semiconductor region 1a and the second semiconductor region 1b in plan view.
  • the first semiconductor region 1a and the second semiconductor region 1b are energized by inverting the inversion channel region of the oxide semiconductor film 2.
  • the first semiconductor region 1a and the second semiconductor region 1b are located in the oxide semiconductor film 2, and the upper surface of the first semiconductor region 1a and the second semiconductor region 1B is arranged in the oxide semiconductor film 2 such that the upper surface of the inversion channel region 2a is flush with the upper surface of the inversion channel region 2a.
  • the oxide semiconductor film 2 including the first semiconductor region 1a, the inversion channel region 2a, and the second semiconductor region 1b form a flat surface, The design including the arrangement of the electrodes is facilitated, and the thickness of the semiconductor device is reduced.
  • the oxide semiconductor film 2 includes the oxide film 2b provided in contact with the inversion channel region 2a2, the first semiconductor region 1a and the oxide including the inversion channel region 2a are used. This is included when the semiconductor film 2 and the second semiconductor region 1b have flat surfaces.
  • the first semiconductor region 1a and the second semiconductor region 1b may be embedded in the oxide semiconductor film 2 or may be arranged in the oxide semiconductor film 2 by ion implantation.
  • the oxide semiconductor film 2 in this embodiment is a p-type semiconductor film, and the first semiconductor region 1a and the second semiconductor region 1b are n-type.
  • the oxide semiconductor film 2 may include a p-type dopant.
  • semiconductor device 200 may have oxide film 2b disposed on inversion channel region 2a.
  • the oxide film 2b has a crystal structure belonging to a trigonal system to which a corundum structure belongs.
  • Oxide film 2b contains at least one of the elements of Group 15 of the periodic table, and preferably contains phosphorus.
  • the oxide film 2b may further include at least one element of Group 13 of the periodic table, and the conductor device 200 is electrically connected to the first semiconductor region 1a.
  • the semiconductor device 200 has a third electrode 5a separated from the inversion channel region 2a by an insulating film 4a between the first electrode 5b and the second electrode 5c.
  • a first electrode 5b, a second electrode 5c, and a third electrode 5a are arranged on the first surface side 200a of the semiconductor device 200.
  • the semiconductor device 200 has an insulating film 4a disposed on the oxide film 2b on the inversion channel region 2a, and the third electrode 5a is disposed on the insulating film 4a.
  • the first electrode 5b and the first semiconductor region 1a are electrically connected, but are partially located between the first electrode 5b and the first semiconductor region 1a. May be provided.
  • the second electrode 5c is electrically connected to the second semiconductor region 1b
  • the insulating film 4b partially located between the second electrode 5c and the second semiconductor region 1b is also provided. May be provided.
  • the semiconductor device 200 may have another layer on the second surface side 200b of the semiconductor device 200, that is, on the lower surface side of the oxide semiconductor film 2, and as shown in FIG. It may be.
  • the first semiconductor region 1a has a portion overlapping the first electrode 5b and a portion overlapping the third electrode 5a in plan view.
  • the second semiconductor region 1b has a portion overlapping the second electrode 5c and a portion overlapping the third electrode 5a in plan view.
  • the inversion channel region 2a of the oxide semiconductor film 2 is inverted from p-type to n-type and becomes n-type.
  • the first electrode 5b may be a source electrode
  • the second electrode 5c may be a drain electrode
  • the third electrode 5a may be a gate electrode
  • the insulating film 4a is a gate insulating film
  • the insulating film 4b is a field insulating film.
  • FIG. 4 shows a part of a schematic top view of a semiconductor device as an example of the semiconductor device of the present invention; however, the number, shape, and arrangement of electrodes of the semiconductor device can be appropriately selected.
  • FIG. 5 is a sectional view showing a third embodiment of the semiconductor device of the present invention, for example, a sectional view taken along line BB of FIG.
  • the semiconductor device 300 has the oxide semiconductor film 2 including a crystal containing at least gallium oxide.
  • the crystal containing gallium oxide may be a mixed crystal.
  • the crystal has a corundum structure.
  • the first semiconductor region 1a and the second semiconductor region 1b are arranged on the oxide semiconductor film 2.
  • the inversion channel region 2a is located between the first semiconductor region 1a and the second semiconductor region 1b in plan view, and furthermore, the inversion channel region 2a and the second semiconductor region 1b third as semiconductor region 6 n between - -type semiconductor layer may be disposed.
  • the semiconductor device 300 may have another layer.
  • the semiconductor device 300 may have an insulating layer on the second surface side 300b of the oxide semiconductor device 300, and may have another layer on the first surface side 300a. You may.
  • FIG. 6 is a sectional view showing a fourth embodiment of the present invention, for example, a sectional view taken along line BB of FIG.
  • the semiconductor device 400 includes the oxide semiconductor film 2 including a crystal containing at least gallium oxide, and the oxide semiconductor film 2 includes an inversion channel region 2a.
  • the crystal has a corundum structure.
  • the semiconductor device 400 has a first semiconductor region 1a and a second semiconductor region 1b.
  • the inversion channel region 2a is located between the first semiconductor region 1a and the second semiconductor region 1b in plan view.
  • the upper surface of the first semiconductor region 1a and the upper surface of the second semiconductor region 1b are embedded in the oxide semiconductor film 2 and are flush with at least a part of the upper surface of the oxide semiconductor film 1a.
  • the semiconductor device may be arranged in the oxide semiconductor film 2.
  • the upper surface of the oxide semiconductor film 2 may be the upper surface including the oxide film 2b.
  • an n ⁇ -type semiconductor layer 6 may be disposed between the inversion channel region 2a and the second semiconductor region 1b of the oxide semiconductor film 2, and the semiconductor device according to the present embodiment is not only thinner but also thinner. It shows a structure that can be expected to have a high breakdown voltage.
  • the semiconductor device further has a substrate 9 and a metal oxide film 3 disposed on the substrate 9.
  • the metal oxide film 3 contains gallium oxide, and may contain gallium oxide as a main component.
  • the metal oxide film 3 is preferably a film having a higher resistance than the oxide semiconductor film 2.
  • FIG. 7 is a partial sectional view of a semiconductor device according to a fifth embodiment of the present invention.
  • the semiconductor device 500 includes the oxide semiconductor film 2 including a crystal containing at least gallium oxide, and the oxide semiconductor film 2 includes an inversion channel region 2a. Further, the semiconductor device 500 has a first semiconductor region 1a and a second semiconductor region 1b. In the present embodiment, the inversion channel region 2a is located between the first semiconductor region 1a and the second semiconductor region 1b in plan view. In addition, the first semiconductor region 1a and the second semiconductor region 1b are provided over the oxide semiconductor film 2.
  • the semiconductor device further has a substrate 9 and a metal oxide film 3 disposed on the substrate 9.
  • the metal oxide film 3 contains gallium oxide, and may contain gallium oxide as a main component.
  • the metal oxide film 3 is preferably a film having a higher resistance than the oxide semiconductor film 2.
  • the semiconductor device in FIG. 7 is a MOSFET, specifically, a lateral MOSFET, in which the oxide semiconductor film 2 is a p-type semiconductor film, is provided in the oxide semiconductor film 2, and has phosphorus on its surface. It has an inversion channel region 2a in which an oxide film 2b is formed.
  • the first semiconductor region 1a is an n + type semiconductor layer (n + type source layer).
  • the second semiconductor region 1b is an n + type semiconductor layer (n + type drain layer).
  • the first electrode 5b is a source electrode
  • the second electrode 5c is a drain electrode
  • the third electrode 5a is a gate electrode.
  • FIG. 11 shows, as an example of the semiconductor device of the present invention, a first surface 5a of a vertical semiconductor device on the first surface 5a and a first surface 5a on which a part of the insulating layer 4a under the first electrode 5b is removed.
  • FIG. 10 is a diagram illustrating a partial perspective view (600a ′) from 600a and a partial cross-sectional view (600c) of the semiconductor device 600.
  • the semiconductor device 600 of this embodiment has a vertical device structure in which electrodes are arranged on the first surface side 600a and the second surface side 600b of the semiconductor device 600.
  • the semiconductor device 600 includes an oxide semiconductor film 2 including a crystal containing at least gallium oxide.
  • the oxide semiconductor film 2 includes an oxide film 2b, and an inversion channel region 2a is formed at a position in contact with the oxide film 2b. Contains.
  • the semiconductor device 600 includes a first electrode 5b disposed on the first surface side of the oxide semiconductor film 2 and a second electrode 5c disposed on the second surface side of the oxide semiconductor film 2.
  • a third electrode 5a located at least partially between the first electrode 5b and the second electrode 5c in a sectional view, located on the first surface side of the oxide semiconductor film 2. ing.
  • the third electrode 5a is separated from the first electrode 5b via the insulating film 4a as shown by 600c in FIG. 11, and a plurality of the third electrodes 5c are separated from the second electrode 5c as shown in the drawing. It is located at a position separated by layers.
  • the semiconductor device according to this embodiment can be used as a vertical MOSFET.
  • the oxide semiconductor film 2 is a p-type semiconductor film and has an inversion channel region 2a in which a phosphorus-containing oxide film 2b is arranged on the surface
  • the first electrode 5b is a source electrode.
  • the second electrode 5c is a drain electrode
  • the third electrode 5a is a gate electrode.
  • the semiconductor device 600 includes a first semiconductor region 1 a buried in the oxide semiconductor film 2, a third semiconductor region 6 in which at least a part of the oxide semiconductor film 2 is buried, and a third semiconductor region 6.
  • the second semiconductor region 1b is in contact with the second surface
  • the second electrode 5c is in contact with the second semiconductor region 1b.
  • Reference numeral 50b denotes a contact surface of the first electrode, which partially contacts the oxide semiconductor film 2 and the first semiconductor region 1a embedded in the oxide semiconductor film 2.
  • the second electrode 5c is located on the second surface side 600b of the semiconductor device 600.
  • the first semiconductor region 1a is an n + type semiconductor layer (n + type source layer).
  • the second semiconductor region 1b is an n + type semiconductor layer (n + type drain layer).
  • the oxide semiconductor film 2 is a p-type semiconductor film, provided in the oxide semiconductor film 2, in contact with the inversion channel region 2 a, and with the third electrode 5 a (gate electrode). An oxide film 2b containing phosphorus is formed at a position near (). With this structure, the gate leak current can be more effectively suppressed.
  • the semiconductor device 600 having more excellent semiconductor characteristics can be obtained.
  • the first electrode (source electrode) is arranged on the first surface side 600a of the semiconductor device
  • the second electrode (drain electrode) is arranged on the second surface side 600b.
  • An oxide semiconductor film containing a crystal containing gallium oxide and / or an oxide semiconductor film containing a crystal having a corundum structure can be obtained by an epitaxial crystal growth method.
  • the method of epitaxial crystal growth is not particularly limited as long as the object of the present invention is not hindered, and may be a known means.
  • Examples of the epitaxial crystal growth method include a CVD method, a MOCVD (Metal Organic Chemical Vapor) method, a MOVPE (Metal Organic Vapor-phase epitaxy) method, a mist CVD method, a mist epitaxy method, and an MBE (Molecular Beam) method.
  • the film formation is performed by atomizing a metal-containing raw material solution (atomization step), suspending droplets to obtain atomized droplets, and using the obtained atomized droplets with a carrier gas. It is preferable to carry out the process by transporting the substrate to the vicinity of the substrate (transportation process), and then thermally reacting the atomized droplets (film formation process).
  • the raw material solution contains a metal as a film forming raw material, and is not particularly limited as long as it can be atomized, and may contain an inorganic material or an organic material.
  • the metal may be a simple metal or a metal compound, and is not particularly limited as long as the object of the present invention is not hindered.
  • the metal preferably contains at least one or more metals of the fourth to sixth periods of the periodic table, more preferably at least gallium, indium, aluminum, rhodium or iridium, and at least gallium. Most preferably.
  • an epitaxial film which can be more suitably used for a semiconductor device or the like can be formed.
  • a solution in which the metal is dissolved or dispersed in an organic solvent or water in the form of a complex or a salt can be suitably used.
  • the form of the complex include an acetylacetonate complex, a carbonyl complex, an ammine complex, and a hydride complex.
  • the salt form include organic metal salts (eg, metal acetate, metal oxalate, metal citrate, etc.), metal sulfide salts, metal nitrate salts, metal phosphate salts, metal halide salts (eg, metal chloride salts). Salts, metal bromide salts, metal iodide salts, etc.).
  • the solvent of the raw material solution is not particularly limited as long as the object of the present invention is not hindered, and may be an inorganic solvent such as water, an organic solvent such as alcohol, or an inorganic solvent and an organic solvent. May be used as a mixed solvent.
  • the solvent preferably contains water.
  • additives such as hydrohalic acid and oxidizing agents may be mixed in the raw material solution.
  • hydrohalic acid include hydrobromic acid, hydrochloric acid, and hydroiodic acid.
  • oxidizing agent include hydrogen peroxide (H 2 O 2 ), sodium peroxide (Na 2 O 2 ), barium peroxide (BaO 2 ), and benzoyl peroxide (C 6 H 5 CO) 2 O 2.
  • the mixing ratio of the additive is not particularly limited, but is preferably 0.001% by volume to 50% by volume, more preferably 0.01% by volume to 30% by volume, based on the raw material solution.
  • the raw material solution may contain a dopant.
  • the dopant is not particularly limited as long as the object of the present invention is not hindered.
  • Examples of the dopant include the n-type dopant and the p-type dopant described above.
  • the concentration of the dopant may be generally about 1 ⁇ 10 16 / cm 3 to 1 ⁇ 10 22 / cm 3 , and the concentration of the dopant may be reduced to, for example, about 1 ⁇ 10 17 / cm 3 or less. May be. Further, according to the present invention, the dopant may be contained at a high concentration of about 1 ⁇ 10 20 / cm 3 or more.
  • a raw material solution containing a metal is adjusted, the raw material solution is atomized, the atomized droplets are suspended, and atomized droplets are generated.
  • the mixing ratio of the metal is not particularly limited, but is preferably 0.0001 mol / L to 20 mol / L based on the whole raw material solution.
  • the atomization method is not particularly limited as long as the raw material solution can be atomized, and may be a known atomization method. In the present invention, an atomization method using ultrasonic vibration is preferable.
  • the mist used in the present invention is a mist that floats in the air.For example, instead of being sprayed like a spray, it is a mist that has an initial velocity of zero and can float in space and be transported as gas. preferable.
  • the droplet size of the mist is not particularly limited, and may be a droplet of about several mm, but is preferably 50 ⁇ m or less, more preferably 1 to 10 ⁇ m.
  • the atomized droplets are transported to the substrate by the carrier gas.
  • the type of the carrier gas is not particularly limited as long as the object of the present invention is not hindered.
  • the carrier gas include oxygen, ozone, an inert gas (eg, nitrogen or argon), or a reducing gas (eg, hydrogen gas or forming gas).
  • a preferred example is given.
  • the type of the carrier gas may be one type, but may be two or more types, and a diluent gas (for example, a ten-fold diluent gas or the like) having a changed carrier gas concentration is used as the second carrier gas. Further, it may be used.
  • the supply location of the carrier gas is not limited to one location, and may be two or more locations.
  • the flow rate of the carrier gas is not particularly limited, but is preferably a flow rate at which the transfer is controlled by the supply, more specifically, preferably 1 LPM or less, and more preferably 0.1 to 1 LPM.
  • the atomized droplets are reacted to form a film on the substrate.
  • the reaction is not particularly limited as long as a film is formed from the atomized droplets, but in the present invention, a thermal reaction is preferable.
  • the thermal reaction may be performed as long as the atomized droplets react with heat, and the reaction conditions are not particularly limited as long as the object of the present invention is not hindered.
  • the thermal reaction is usually performed at a temperature equal to or higher than the evaporation temperature of the solvent of the raw material solution, but is preferably not higher than a high temperature, more preferably 650 ° C. or lower.
  • the thermal reaction may be performed in any of a vacuum, a non-oxygen atmosphere, a reducing gas atmosphere, and an oxygen atmosphere as long as the object of the present invention is not hindered.
  • it may be carried out under any conditions of pressure reduction and pressure reduction, in the present invention, it is carried out under atmospheric pressure in that the calculation of the evaporation temperature becomes easier, and the facilities and the like can be simplified.
  • the film thickness can be set by adjusting the film formation time.
  • the base is not particularly limited as long as it can support the semiconductor film.
  • the material of the base is not particularly limited as long as the object of the present invention is not hindered, and may be a known base, may be an organic compound, or may be an inorganic compound.
  • the shape of the substrate may be any shape, and is effective for any shape.For example, a plate shape such as a flat plate or a disk, a fiber shape, a rod shape, a column shape, a prism shape, Examples of the shape include a cylindrical shape, a spiral shape, a spherical shape, and a ring shape.
  • a substrate is preferable.
  • the thickness of the substrate is not particularly limited in the present invention.
  • the substrate is not particularly limited as long as it is plate-shaped and serves as a support for the semiconductor film.
  • the substrate may be an insulator substrate, a semiconductor substrate, a metal substrate or a conductive substrate, but the substrate is preferably an insulator substrate, and a metal It is also preferable that the substrate has a film.
  • the substrate include an undersubstrate containing a substrate material having a corundum structure as a main component, an undersubstrate containing a substrate material having a ⁇ -gallium structure as a main component, and a substrate material having a hexagonal structure as a main component.
  • An undersubstrate may be used.
  • the “main component” means that the substrate material having the specific crystal structure has an atomic ratio of preferably at least 50%, more preferably at least 70%, even more preferably at least 90% with respect to all components of the substrate material. % Or more, and may be 100%.
  • the substrate material is not particularly limited as long as the object of the present invention is not hindered, and may be a known material.
  • the substrate material having a corundum structure may be, for example, a substrate having at least a crystal having a corundum structure on its surface. Examples of crystals having a corundum structure include ⁇ -Al 2 O 3 and ⁇ -Ga 2 O And mixed crystals containing at least gallium and having a corundum structure.
  • an ⁇ -Al 2 O 3 (sapphire substrate) or ⁇ -Ga 2 O 3 substrate is preferably mentioned, and an a-plane sapphire substrate, an m-plane sapphire substrate, an r-plane sapphire substrate, and a c-plane sapphire Substrates and ⁇ -type gallium oxide substrates (a-plane, m-plane or r-plane) are more preferable examples.
  • the base substrate mainly composed of a substrate material having a ⁇ -gallium structure include a ⁇ -Ga 2 O 3 substrate or a substrate containing Ga 2 O 3 and Al 2 O 3 and containing more than 0 wt% of Al 2 O 3.
  • a mixed crystal substrate having a content of 60 wt% or less is exemplified.
  • examples of the base substrate mainly composed of a substrate material having a hexagonal structure include a SiC substrate, a ZnO substrate, and a GaN substrate.
  • an annealing process may be performed after the film forming step.
  • the annealing temperature is not particularly limited as long as the object of the present invention is not hindered, and is usually 300 ° C. to 650 ° C., preferably 350 ° C. to 550 ° C.
  • the annealing time is generally 1 minute to 48 hours, preferably 10 minutes to 24 hours, and more preferably 30 minutes to 12 hours.
  • the annealing treatment may be performed in any atmosphere as long as the object of the present invention is not hindered, but is preferably in a non-oxygen atmosphere, and more preferably in a nitrogen atmosphere.
  • the semiconductor film may be provided directly on the base, or the semiconductor film may be provided via another layer such as a buffer layer (buffer layer) or a stress relaxation layer.
  • a buffer layer buffer layer
  • a stress relaxation layer e.g., a stress relaxation layer.
  • the method for forming each layer is not particularly limited, and may be a known method. In the present invention, a mist CVD method or a mist epitaxy method is preferable.
  • the film forming apparatus 19 suitably used for the mist CVD method or the mist epitaxy method will be described with reference to the drawings.
  • the film forming apparatus 19 shown in FIG. 15 supplies a carrier gas source 22a for supplying a carrier gas, a flow control valve 23a for controlling a flow rate of the carrier gas sent from the carrier gas source 22a, and a carrier gas (dilution).
  • a hot plate (heater) 28 is provided in the film forming chamber 30. The substrate 20 is placed on the hot plate 28.
  • the raw material solution 24a is stored in the mist generating source 24.
  • the substrate 20 is set on a hot plate 28, and the hot plate 28 is operated to raise the temperature in the film forming chamber 30.
  • the flow rate control valve 23 (23a, 23b) is opened to supply the carrier gas from the carrier gas source 22 (22a, 22b) into the film forming chamber 30, and the atmosphere in the film forming chamber 30 is sufficiently replaced with the carrier gas. After that, the flow rate of the carrier gas and the flow rate of the carrier gas (dilution) are respectively adjusted.
  • the ultrasonic vibrator 26 is vibrated, and the vibration is propagated through the water 25a to the raw material solution 24a, so that the raw material solution 24a is atomized to generate atomized droplets 24b.
  • the atomized droplets 24b are introduced into the film forming chamber 30 by the carrier gas and are transported to the substrate 20, and the atomized droplets 24b undergo a thermal reaction in the film forming chamber 30 under the atmospheric pressure. A film is formed on 20.
  • the film obtained in the film forming step may be used as it is for a semiconductor device, or may be used for a semiconductor device after using a known method such as peeling off from the substrate or the like.
  • the oxide semiconductor film which is a p-type semiconductor film preferably used in the present invention, can be obtained, for example, by adding a p-type dopant and hydrobromic acid to a raw material solution containing a metal, and by a mist CVD method.
  • hydrobromic acid as an additive to the raw material solution.
  • each step, each method, and each condition of the mist CVD method may be the same as the above-described atomization / droplet forming step, transport step, film forming step, each method, each condition, and the like.
  • the p-type semiconductor film thus obtained has a good pn junction with the n-type semiconductor and can be suitably used for the inversion channel region.
  • the inversion channel region is usually provided between semiconductor regions exhibiting different types of conductivity.
  • the inversion channel region is usually provided in a p-type semiconductor layer between semiconductor regions made of an n-type semiconductor.
  • the type semiconductor layer it is usually provided in the n-type semiconductor layer between semiconductor regions made of a p-type semiconductor.
  • the method for forming each semiconductor region may be the same as the method for forming an oxide semiconductor film described above.
  • an oxide film containing at least one element of Group 15 of the periodic table is laminated on the inversion channel region.
  • the element include nitrogen (N) and phosphorus (P).
  • nitrogen (N) or phosphorus (P) is preferable, and phosphorus (P) is more preferable.
  • the oxide film contains at least one element of Group 15 of the periodic table and one or more metals of Group 13 of the periodic table.
  • the metal include aluminum (Al), gallium (Ga), and indium (In).
  • Al aluminum
  • Ga and / or Al are preferable, and Ga is more preferable.
  • the oxide film is preferably a thin film, more preferably has a thickness of 100 nm or less, and most preferably has a thickness of 50 nm or less. By laminating such an oxide film, gate leakage current can be more effectively suppressed, and semiconductor characteristics can be further improved.
  • a method of forming the oxide film for example, a known method can be used. More specifically, for example, a dry method or a wet method may be mentioned, but it is preferable to perform a surface treatment on the inversion channel region with phosphoric acid or the like.
  • a gate electrode is provided on the inversion channel region and the oxide film via a gate insulating film as required.
  • the gate insulating film is not particularly limited as long as the object of the present invention is not hindered, and may be a known insulating film.
  • the gate insulating film contains at least, for example, at least SiO 2 , Si 3 N 4 , Al 2 O 3 , GaO, AlGaO, InAlGaO, AlInZnGaO 4 , AlN, Hf 2 O 3 , SiN, SiON, MgO, GdO, and phosphorus.
  • An oxide film such as an oxide film is a preferred example.
  • the method for forming the gate insulating film may be a known method, and examples of such a known formation method include a dry method and a wet method.
  • a dry method include known methods such as sputtering, vacuum deposition, chemical vapor deposition (CVD), atomic laser deposition (ALD), and pulsed laser deposition (PLD).
  • the wet method include coating methods such as screen printing and die coating.
  • the gate electrode may be a known gate electrode, and the electrode material may be a conductive inorganic material or a conductive organic material.
  • the electrode material is preferably a metal.
  • the metal is not particularly limited, but preferably includes, for example, at least one metal selected from Groups 4 to 11 of the periodic table.
  • the metal belonging to Group 4 of the periodic table include titanium (Ti), zirconium (Zr), and hafnium (Hf). Among them, Ti is preferable.
  • the group 5 metal of the periodic table include vanadium (V), niobium (Nb), tantalum (Ta), and the like.
  • Examples of the metal of Group 6 of the periodic table include one or more metals selected from chromium (Cr), molybdenum (Mo), tungsten (W), and the like. In the present invention, Cr is preferable because the semiconductor characteristics such as switching characteristics are more excellent.
  • Examples of the metal of Group 7 of the periodic table include manganese (Mn), technetium (Tc), rhenium (Re), and the like.
  • Examples of the metal belonging to Group 8 of the periodic table include iron (Fe), ruthenium (Ru), and osmium (Os).
  • Examples of the metal belonging to Group 9 of the periodic table include cobalt (Co), rhodium (Rh), and iridium (Ir).
  • Examples of the metal belonging to Group 10 of the periodic table include nickel (Ni), palladium (Pd), and platinum (Pt). Among them, Pt is preferable.
  • Examples of the metal belonging to Group 11 of the periodic table include copper (Cu), silver (Ag), and gold (Au).
  • Examples of a method for forming the gate electrode include a known method, and more specifically, a dry method, a wet method, and the like. Examples of the dry method include known methods such as sputtering, vacuum deposition, and CVD. Examples of the wet method include screen printing and die coating.
  • each of the source electrode and the drain electrode may be a known electrode similarly to the gate electrode,
  • Each of the electrode forming methods may be a known method.
  • the semiconductor device is particularly useful for power devices.
  • Examples of the semiconductor device include a transistor and the like, and among them, a MOSFET is preferable.
  • the semiconductor device of the present invention is preferably used as a power module, an inverter, or a converter by using a known method in addition to the above items, and is further suitably used, for example, in a semiconductor system using a power supply device.
  • the power supply device can be manufactured from the semiconductor device or as the semiconductor device by connecting to a wiring pattern or the like using a known method.
  • FIG. 12 shows a power supply system 170 configured using a plurality of the power supply devices 171, 172 and a control circuit 173.
  • the power supply system 170 can be used in a system device 180 by combining an electronic circuit 181 and a power supply system 182 as shown in FIG.
  • FIG. 14 shows an example of a power supply circuit diagram of the power supply device.
  • FIG. 14 shows a power supply circuit of a power supply device including a power circuit and a control circuit.
  • the DC voltage is switched at a high frequency by an inverter 192 (constituted by MOSFETs A to D), converted into AC, and the transformer 193 performs insulation and transformation.
  • the DCL 195 smoothing coils L1 and L2
  • the capacitor smooth the DC voltage and output a DC voltage.
  • the output voltage is compared with the reference voltage by the voltage comparator 197, and the inverter 192 and the rectifying MOSFET 194 are controlled by the PWM control circuit 196 so that the desired output voltage is obtained.
  • Example 1 Fabrication of MOSFET shown in FIG. 1. Formation of p-type semiconductor layer 1-1. Film forming apparatus The film forming apparatus 19 shown in FIG. 15 was used.
  • Preparation for film formation 1-2 The raw material solution 24a obtained in the above was stored in the mist generation source 24.
  • the substrate 20 a sapphire substrate having a non-doped ⁇ -Ga 2 O 3 film formed on the surface is placed on the susceptor 21, and the heater 28 is operated to set the temperature in the film forming chamber 30 to 520 ° C. Temperature.
  • the flow rate control valves 23a and 23b are opened, and a carrier gas is supplied into the film formation chamber 30 from the carrier gas supply device 22a and the carrier gas (dilution) supply device 22b as the carrier gas sources. After sufficiently replacing the atmosphere with the carrier gas, the flow rate of the carrier gas was adjusted to 1 LPM, and the flow rate of the carrier gas (dilution) was adjusted to 1 LPM. Note that nitrogen was used as a carrier gas.
  • the ultrasonic vibrator 26 was vibrated at 2.4 MHz, and the vibration was propagated to the raw material solution 24a through the water 25a, thereby atomizing the raw material solution 24a to generate a mist.
  • the mist was introduced into the film forming chamber 30 by the carrier gas, and the mist reacted in the film forming chamber 30 at 520 ° C. under the atmospheric pressure to form a semiconductor film on the substrate 20.
  • the film thickness was 0.6 ⁇ m, and the film formation time was 15 minutes.
  • n + type semiconductor region A 0.1 M aqueous solution of gallium bromide contained 10% of hydrobromic acid and 8% of tin bromide in a volume ratio, respectively, and used as a raw material solution. Except that the film formation time was 5 minutes, As described in 1. above. An n + -type semiconductor film was formed on the p-type semiconductor layer obtained in the above. When the phases of the obtained film were identified using an XRD diffractometer, the obtained film was ⁇ -Ga 2 O 3 .
  • n + type semiconductor layer (between 1a and 1b) in a region corresponding to the gate portion is etched with phosphoric acid, and an oxide film containing at least phosphorus is formed on the semiconductor film.
  • a SiO 2 film was formed by sputtering.
  • the MOSFET was subjected to photolithography, etching treatment, electron beam evaporation treatment and the like, and a MOSFET was produced as shown in the partial cross-sectional view of FIG.
  • Ti was used for all the electrodes.
  • FIG. 8 shows a photograph of the obtained MOSFET viewed from above for reference.
  • FIG. 9 shows the IV measurement results.
  • the inversion channel layer was formed, and it was demonstrated for the first time in the world that a gallium oxide semiconductor MOSFET operated well as a transistor. Then, the gate voltage threshold voltage obtained from the obtained IV characteristic was 7.9 V. In addition, 3.
  • SIMS measurement was performed to confirm whether an oxide film containing at least phosphorus was formed between the p-type semiconductor layer and the gate insulating film (SiO 2 film).
  • FIG. 10 shows the SIMS measurement results. According to FIG. 10, an oxide film containing phosphorus is formed between the p-type semiconductor layer and the gate insulating film, and the diffusion of hydrogen from the gate insulating film into the p-type semiconductor layer is favorably prevented. I understand.
  • the semiconductor device of the present invention can be used in various fields such as semiconductors (for example, compound semiconductor electronic devices, etc.), electronic components / electric device components, optical / electrophotographic related devices, industrial members, etc., and is particularly useful for power devices. is there.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Thin Film Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Recrystallisation Techniques (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

反転チャネル領域を少なくとも有する半導体装置であって、前記反転チャネル領域に、コランダム構造を有する結晶を含む酸化物半導体膜を有することを特徴とする、半導体装置。

Description

半導体装置および半導体装置を含む半導体システム
 本発明は、パワーデバイス等として有用な半導体装置およびそれを備える半導体システムに関する。
 高耐圧、低損失および高耐熱を実現できる次世代のスイッチング素子として、バンドギャップの大きな酸化ガリウム(Ga)を用いた半導体装置が注目されており、インバータなどの電力用半導体装置への適用が期待されている。しかも、広いバンドギャップからLEDやセンサー等の受発光装置としての応用も期待されている。当該酸化ガリウムは非特許文献1によると、インジウムやアルミニウムをそれぞれ、あるいは組み合わせて混晶することによりバンドギャップ制御することが可能であり、InAlGaO系半導体として極めて魅力的な材料系統を構成している。ここでInAlGaO系半導体とはInAlGa(0≦X≦2、0≦Y≦2、0≦Z≦2、X+Y+Z=1.5~2.5)を示し、酸化ガリウムを内包する同一材料系統として俯瞰することができる。
 そして、近年においては、酸化ガリウム系のp型半導体が検討されており、例えば、特許文献1には、β-Ga系結晶を、MgO(p型ドーパント源)を用いてFZ法により形成したりすると、p型導電性を示す基板が得られることが記載されている。また、特許文献2には、MBE法により形成したα-(AlGa1-x単結晶膜にp型ドーパントをイオン注入してp型半導体を形成することが記載されている。しかしながら、これらの方法では、p型半導体の作製は実現困難であり(非特許文献2)、実際に、これらの方法でp型半導体の作製に成功したとの報告はなされていない。そのため、実現可能なp型酸化物半導体及びその製造方法が待ち望まれていた。
 また、非特許文献3や非特許文献4に記載されているように、例えばRhやZnRh等をp型半導体に用いることも検討されているが、Rhは、成膜時に特に原料濃度が薄くなってしまい、成膜に影響する問題があり、有機溶媒を用いても、Rh単結晶が作製困難であった。また、ホール効果測定を実施してもp型とは判定されることがなく、測定自体もできていない問題もあり、また、測定値についても、例えばホール係数が測定限界(0.2cm/C)以下しかなく、実用上の問題となった。また、ZnRhは移動度が低く、バンドギャップも狭いため、LEDやパワーデバイスに用いることができない問題があり、これらは必ずしも満足のいくものではなかった。
 ワイドバンドギャップ半導体として、RhやZnRh等以外にも、p型の酸化物半導体が種々検討されている。特許文献3には、デラフォサイトやオキシカルコゲナイド等をp型半導体として用いることが記載されている。しかしながら、これらの半導体は、移動度が1cm/V・s程度かまたはそれ以下であり、電気特性が悪く、α-Ga等のn型の次世代酸化物半導体とのpn接合がうまくできない問題もあった。
 さらに、特許文献4には、イリジウム触媒としてIrを用いることが記載されている。また、特許文献5には、Irを誘電体に用いることが記載されている。また、特許文献6には、電極にIrを用いることが記載されている。しかしながら、Irをp型半導体に用いることは知られていなかったが、最近になって、本出願人らにより、p型半導体として、Irを用いることが検討されていることが記載されている(特許文献7)。そのため、p型半導体の研究開発が進み、酸化ガリウム(Ga)等の優れた半導体材料を効果的に用いて、高耐圧、低損失および高耐熱を実現できる半導体装置が待ち望まれていた。
特開2005-340308号公報 特開2013-58637号公報 特開2016-25256号公報 特開平9-25255号公報 特開平8-227793号公報 特開平11-21687号公報 国際公開2018/043503号公報
金子健太郎、「コランダム構造酸化ガリウム系混晶薄膜の成長と物性」、京都大学博士論文、平成25年3月 竹本達哉、EE Times Japan"パワー半導体 酸化ガリウム"熱伝導率、P型……課題を克服して実用化へ、[online]、2014年2月27日、アイティメディア株式会社、[平成28年6月21日検索]、インターネット〈URL:http://eetimes.jp/ee/articles/1402/27/news028_2.html〉 F.P.KOFFYBERG et al., "optical bandgaps and electron affinities of semiconducting Rh2O3(I) and Rh2O3(III)", J. Phys. Chem. Solids Vol.53, No.10, pp.1285-1288, 1992 細野秀雄、"酸化物半導体の機能開拓"、物性研究・電子版 Vol.3、No.1、031211(2013年11月・2014年2月合併号)
 本発明の目的の1つとして、パワーデバイス等として有用な半導体装置を提供することを目的とする。
 本発明者らは、上記目的を達成すべく鋭意検討した結果、本発明の効果の一つとして、リンを含む酸化膜を酸化物半導体膜上の少なくとも一部に配置することで、この膜によればゲートリーク電流を抑制できることを見出した。
 また、本発明者らは、上記知見を得た後、さらに検討を重ねて本発明を完成させるに至った。
 すなわち、本発明は、以下の発明に関する。
[1]  反転チャネル領域を少なくとも有する半導体装置であって、前記反転チャネル領域が、コランダム構造を有する結晶を含むことを特徴とする、半導体装置。
[2] 反転チャネル領域を少なくとも有する半導体装置であって、前記反転チャネル領域に、コランダム構造を有する結晶を含む酸化物半導体膜を有することを特徴とする半導体装置。
[3] 前記結晶が混晶である、前記[1]または[2]に記載の半導体装置。
[4] 前記結晶がp型半導体である前記[1]~[3]のいずれかに記載の半導体装置。
[5]前記結晶が、p型ドーパントを含む、前記[1]~[4]のいずれかに記載の半導体装置。
[6]さらに、前記反転チャネル領域に接触して配置される酸化膜を有する、前記[1]~[5]のいずれかに記載の半導体装置。
[7]前記酸化膜が、周期律表第15族の元素の少なくとも1種の元素を含む、前記[6]記載の半導体装置。
[8]前記元素がリンである前記[7]記載の半導体装置。
[9] 前記酸化膜が、さらに、周期律表第13族の少なくとも1種の元素を含む、前記[6]~[8]のいずれかに記載の半導体装置。
[10] 前記結晶が、酸化ガリウムを主成分として含む、前記[1]~[9]のいずれかに記載の半導体装置。
[11]  さらに、第1の半導体領域と第2の半導体領域とを有し、前記反転チャネル領域が、平面視で、第1の半導体領域と第2の半導体領域との間に位置する、前記[1]~[10]のいずれかに記載の半導体装置。
[12]  さらに、第1の半導体領域と第2の半導体領域とを有し、前記第1の半導体領域の上面と、第2の半導体領域の上面と、前記反転チャネル領域の上面とが面一に配置されている、前記[1]~[10]のいずれかに記載の半導体装置。
[13]  前記第1の半導体領域と第2の半導体領域とが、それぞれn型である、前記[11]または[12]に記載の半導体装置。
[14] さらに第3の半導体領域を有しており、前記第3の半導体領域が、平面視で、前記反転チャネル領域と第2の半導体領域との間に配置されている、前記[11]~[13]のいずれかに記載の半導体装置。
[15] 前記第3の半導体領域がn型である、前記[14]記載の半導体装置。
[16] 前記第1の半導体領域に電気的に接続される第1の電極と、第2の半導体領域と電気的に接続される第2の電極とを有する、前記[11]~[15]のいずれかに記載の半導体装置。
[17] MOSFETである前記[1]~[16]のいずれかに記載の半導体装置。
[18]  パワーデバイスである前記[1]~[17]のいずれかに記載の半導体装置。
[19] 半導体装置を備える半導体システムであって、前記半導体装置が、前記[1]~[18]のいずれかに記載の半導体装置である半導体システム。
 本発明の半導体装置は、パワーデバイス等として有用である。
本発明の半導体装置の一例として、模式的な上面図の一部を示す。 本発明の半導体装置の第1態様を示す断面図であって、例えば、図1のA-A断面図である。 本発明の半導体装置の第2態様を示す断面図であって、例えば、図1のA-A断面図である。 本発明の半導体装置の一例として、模式的な上面図の一部を示す。 本発明の半導体装置の第3態様を示す断面図であって、例えば、図4のB-B断面図である。 本発明の半導体装置の第4態様を示す断面図であって、例えば、図4のB-B断面図である。 本発明の半導体装置の第5態様を示す、半導体装置の部分断面図である。 第5態様において作製された半導体装置であるMOSFETを上面から見た写真を示す。 第5態様として作製された半導体装置におけるIV測定結果を示す図である。 第5態様として作製された半導体装置におけるSIMS測定結果を示す図である。 本発明の半導体装置の一例として、縦型半導体装置の第1面側のソース電極とソース電極下の絶縁層の一部を取り除いた第1面側からの部分透視図(600a’)と、第1面側のソース電極とソース電極下の絶縁層も含めた半導体装置の部分断面図(600c)を示す図である。 電源システムの好適な一例を模式的に示す図である。 システム装置の好適な一例を模式的に示す図である。 電源装置の電源回路図の好適な一例を模式的に示す図である。 本発明の実施例において用いられる成膜装置(ミストCVD装置)の概略構成図を示す。
 本発明の実施態様に係る半導体装置は、反転チャネル領域を少なくとも有する半導体装置であって、前記反転チャネル領域に、コランダム構造を有する結晶を含む酸化物半導体膜を有することを特長とする。
 前記反転チャネル領域は、少なくとも酸化ガリウムを含有する結晶を含む酸化物半導体膜が用いられていれば特に限定されず、前記酸化物半導体膜は、p型半導体膜であってもよいし、n型半導体膜であってもよい。前記酸化ガリウムとしては、例えば、α-Ga、β-Ga、ε-Gaなどが挙げられるが、中でもα-Gaが好ましい。また、前記結晶は、混晶であってもよい。前記の酸化ガリウムの混晶としては、前記酸化ガリウムと、1種または2種以上の金属酸化物との混晶が挙げられ、前記金属酸化物の好適な例としては、例えば、酸化アルミニウム、酸化インジウム、酸化イリジウム、酸化ロジウム、酸化鉄などが挙げられる。本発明の半導体装置の態様において、前記結晶の主成分が、酸化ガリウムであるのが好ましい。なお、「主成分」とは、例えば酸化物半導体膜がα-Gaを主成分として含む場合、前記酸化物半導体膜の金属元素中のガリウムの原子比が0.5以上の割合で含まれていればそれでよい。本発明においては、前記酸化物半導体膜の金属元素中のガリウムの原子比が0.7以上であることが好ましく、0.8以上であるのがより好ましい。また、前記結晶が混晶である場合においても、前記酸化物半導体膜の主成分が酸化ガリウムであるのが好ましい。例えば、酸化物半導体膜がα-(AlGa)を主成分として含む場合も、前記酸化物半導体膜の金属元素中のガリウムの原子比が0.5以上の割合で含まれていればそれでよい。本発明においては、前記酸化物半導体膜の金属元素中のガリウムの原子比が0.7以上であることが好ましく、0.8以上であるのがより好ましい。
 また、本発明の実施態様に係る半導体装置は、コランダム構造を有する結晶を含む酸化物半導体膜を有する半導体装置であって、前記酸化物半導体膜が反転チャネル領域を含むことを特長とする。コランダム構造を有する酸化物半導体膜は、通常、金属酸化物を主成分として含んでおり、該金属酸化物としては、例えば、酸化ガリウム、酸化アルミニウム、酸化インジウム、酸化イリジウム、酸化ロジウム、酸化鉄などが挙げられる。本発明においては、前記結晶が、少なくとも酸化ガリウムを含有することが好ましい。前記結晶は混晶であってもよい。少なくとも酸化ガリウムを含むコランダム構造を有する混晶としては、例えば、酸化アルミニウム、酸化インジウム、酸化イリジウム、酸化ロジウム、および酸化鉄から選択される少なくとも1つをさらに含んでいてもよい。上記のように、本発明の半導体装置の態様において、前記酸化物半導体膜の主成分が、酸化ガリウムであるのが好ましく、前記結晶がコランダム構造を有することが好ましい。なお、「主成分」については上記を参照する。
 また、前記反転チャネル領域は、通常、酸化物半導体膜に含まれる領域であるが、本発明の目的を阻害しない限り、半導体装置の中に2つ以上の反転チャネル領域を配置してもよい。前記反転チャネル領域は、前記酸化物半導体膜の一部であるので、少なくとも酸化ガリウムを含有する結晶を含んでおり、前記酸化物半導体膜と同じ主成分を有している。前記酸化物半導体膜を有する半導体装置に電圧が印加されると、前記酸化物半導体膜の一部である反転チャネル領域が反転する。例えば、前記酸化物半導体膜がp型半導体膜である場合、反転チャネル領域はn型に反転する。また、前記酸化物半導体膜は通常膜状であり、また、半導体層であってよい。前記酸化物半導体膜の厚さは、特に限定されず、1μm以下であってもよいし、1μm以上であってもよいが、本発明においては、1μm以上であるのが好ましく、1μm~40μmであるのがより好ましく、1μm~25μmであるのが最も好ましい。前記酸化物半導体膜の表面積は特に限定されないが、1mm以上であってもよいし、1mm以下であってもよい。なお、前記酸化物半導体膜は、通常、単結晶であるが、多結晶であってもよい。また、前記酸化物半導体膜は、単層膜であってもよいし、多層膜であってもよい。
 前記酸化物半導体膜は、ドーパントが含まれているのが好ましい。前記ドーパントは、特に限定されず、公知のものであってよい。前記ドーパントとしては、例えば、スズ、ゲルマニウム、ケイ素、チタン、ジルコニウム、バナジウムまたはニオブ等のn型ドーパント、またはMg、ZnまたはCa等のp型ドーパントなどが挙げられる。本発明においては、前記ドーパントが、Sn、GeまたはSiであるのが好ましい。ドーパントの含有量は、前記酸化物半導体膜の組成中、0.00001原子%以上であるのが好ましく、0.00001原子%~20原子%であるのがより好ましく、0.00001原子%~10原子%であるのが最も好ましい。
 本発明の実施態様においては、前記酸化物半導体膜が反転チャネル領域を含んでいる。前記酸化物半導体膜がp型半導体膜である場合、半導体装置に電圧が印加されると、前記酸化物半導体膜の反転チャネル領域がn型に反転するチャネル領域であるのが好ましく、前記p型半導体膜が、少なくとも酸化ガリウムを含有する結晶を含む酸化物半導体膜であるのがより好ましい。本発明の実施態様において、前記酸化物半導体膜はp型半導体膜であるのが好ましく、前記p型ドーパントを含むのがより好ましい。なお、前記p型ドーパントは、前記酸化物半導体膜をp型半導体膜として導電性を付与できるものであれば特に限定されず、公知のものであってよい。前記p型ドーパントとしては、例えば、Mg、H、Li、Na、K、Rb、Cs、Fr、Be、Ca、Sr、Ba、Ra、Mn、Fe、Co、Ni、Pd、Cu、Ag、Au、Zn、Cd、Hg、Tl、Pb、N、P等及びこれらの2種以上の元素などが挙げられるが、本発明においては、前記p型ドーパントが、Mg、ZnまたはCaであるのが好ましい。
 以下、本願に係る半導体装置の実施の態様を図面に基づいて詳細に説明する。なお、図面は、半導体装置を模式的に表したものであり、実物の寸法および寸法比と図面上の寸法および寸法比は必ずしも一致しなくてよい。複数の実施態様において重複する内容の説明は省略する場合がある。また、本願の技術的範囲は以下で説明する各実施の態様には限定されず、請求の範囲の記載内容とその均等物に及ぶ点に留意されたい。また、「上面」「下面」「上方」「下方」などの用語は、図に示された1つの要素、領域または膜(層)と別の要素、領域または膜(層)との関係を示す相対的な用語として用いられる場合があるが、図示された方向だけでなく、装置が図示とは異なる方向に配置された場合も内包することに留意されたい。 
 図1は、本発明の半導体装置の一例として、半導体装置の模式的な上面図の一部を示しているが、半導体装置の電極の数、形状、および配置については、適宜選択可能である。
 図2は、本発明の半導体装置の第1態様を示す断面図であって、例えば、図1のA-A断面図である。半導体装置100は、少なくとも酸化ガリウムを含有する結晶を含む酸化物半導体膜2を有している。酸化物半導体膜2は反転チャネル領域2aを含んでいる。前記結晶が、酸化ガリウムを主成分として含んでいる。前記結晶が混晶であってもよい。前記半導体装置100は、反転チャネル領域2aに接触する位置に、酸化膜2bを有している。
 図3は、本発明の半導体装置の第2態様を示す断面図である。半導体装置200は、少なくとも酸化ガリウムを含有する結晶を含む酸化物半導体膜2を有しており、酸化物半導体膜2は反転チャネル領域2aを含んでいる。前記結晶はコランダム構造を有している。さらに、半導体装置200は、第1の半導体領域1aと第2の半導体領域1bとを有している。本実施態様では、図1で示すように、反転チャネル領域2aが、平面視で、第1の半導体領域1aと第2の半導体領域1bとの間に位置している。半導体装置200に電圧を印加すると、酸化物半導体膜2の反転チャネル領域が反転することで、第1の半導体領域1aと第2の半導体領域1bとが通電する。また、本実施態様において、第1の半導体領域1aと第2の半導体領域1bとは、酸化物半導体膜2内に位置しており、第1の半導体領域1aの上面と、第2の半導体領域1bの上面と、反転チャネル領域2aの上面とが面一になるように、酸化物半導体膜2内に配置されている。半導体装置200の第1面側200aにおいて、第1の半導体領域1aと、反転チャネル領域2aとを含む酸化物半導体膜2と、第2の半導体領域1bとが、平坦面を構成することで、電極の配置を含めた設計が容易となり、半導体装置の薄型化にもつながる。なお、以下に示すように、酸化物半導体膜2が、反転チャネル領域2a2に接触して設けられる酸化膜2bを有する場合には、第1の半導体領域1aと、反転チャネル領域2aを含む酸化物半導体膜2と、第2の半導体領域1bとが平坦面を有する場合に含まれる。第1の半導体領域1aと第2の半導体領域1bは、酸化物半導体膜2に埋め込まれていてもよいし、イオン注入により酸化物半導体膜2内に配置してもよい。また、本実施態様における酸化物半導体膜2はp型半導体膜であり、第1の半導体領域1aと第2の半導体領域1bはn型である。前記酸化物半導体膜2がp型ドーパントを含んでいてもよい。さらに、半導体装置200は、反転チャネル領域2a上に配置される酸化膜2bを有していてもよい。本発明の実施態様において、酸化膜2bが、コランダム構造が属する三方晶系に属する結晶構造を有しているのも好ましい。酸化膜2bは、周期律表第15族の元素の少なくとも1つを含んでおり、リンを含むのが好ましい。また、別の実施態様として、酸化膜2bは、さらに周期律表第13族の元素の少なくとも1つを含んでいてもよく、導体装置200は、第1の半導体領域1aと電気的に接続される第1の電極5bと、第2の半導体領域1bと電気的に接続される第2の電極5cとを有している。さらに、半導体装置200は、第1の電極5bと第2の電極5cの間で、反転チャネル領域2aから絶縁膜4aによって離間された第3の電極5aを有している。また、図面で示すように、第1の電極5bと、第2の電極5cと、第3の電極5aとが、半導体装置200の第1面側200aに配置されている。詳細には、半導体装置200は、反転チャネル領域2a上の酸化膜2bの上に配置された絶縁膜4aを有し、第3の電極5aは絶縁膜4a上に配置されている。また、半導体装置200において、第1の電極5bと第1の半導体領域1aとは電気的に接続されているが、第1の電極5bと第1の半導体領域1aとの間に部分的に位置する絶縁膜4bを有していてもよい。また、第2の電極5cと第2の半導体領域1bとは電気的に接続されているが、第2の電極5cと第2の半導体領域1bとの間にも部分的に位置する絶縁膜4bを有していてもよい。さらに、半導体装置200は、半導体装置200の第2面側200b、すなわち酸化物半導体膜2の下面側に、別の層を有していてもよく、図3で示すように、基板9を有していてもよい。また、図1で示すように、前記第1の半導体領域1aが、平面視で、第1の電極5bとオーバーラップする部分と、第3の電極5aとにオーバーラップする部分とを有している。また、第2の半導体領域1bが、平面視で、第2の電極5cとオーバーラップする部分と、第3の電極5aとにオーバーラップする部分とを有している。本実施態様において、第3の電極5aに、第1の電極5bに対して正の電圧が印加されると、酸化物半導体膜2の反転チャネル領域2aがp型からn型に反転してn型のチャネル層が形成されて、第1の半導体領域1aと第2の半導体領域1bとが導通し、電子がソース電極からドレイン電極に流れる。また、第3の電極5bの電圧をゼロにすることにより、反転チャネル領域に2aにチャネル層ができなくなり、ターンオフとなる。本実施態様において、例えば、第1の電極5bがソース電極、第2の電極5cがドレイン電極、第3の電極5aがゲート電極であってもよい。この場合、絶縁膜4aはゲート絶縁膜であり、絶縁膜4bはフィールド絶縁膜である。
 図4は、本発明の半導体装置の一例として、半導体装置の模式的な上面図の一部を示しているが、半導体装置の電極の数、形状、および配置については、適宜選択可能である。
 図5は、本発明の半導体装置の第3態様を示す断面図であって、例えば、図4のB-B断面図である。半導体装置300は、少なくとも酸化ガリウムを含有する結晶を含む酸化物半導体膜2を有している。酸化ガリウムを含む結晶は混晶であってもよい。前記結晶がコランダム構造を有している。本実施態様において、第1の半導体領域1aと第2の半導体領域1bとが、酸化物半導体膜2上に配置されている。本実施態様において、反転チャネル領域2aは、平面視で、第1の半導体領域1aと第2の半導体領域1bとの間に位置しており、さらに、反転チャネル領域2aと第2の半導体領域1bとの間に第3の半導体領域6としてn型半導体層が配置されていてもよい。反転チャネル領域2aと第2の半導体領域1bとの間に第3の半導体領域6を配置することで、酸化物半導体膜2および半導体装置300の高耐圧化を図ることができる。さらに、半導体装置300は、別の層を有していてもよい。例えば、半導体装置300は、図5で示すように、酸化物半導体装置300の第2面側300bに絶縁層を有していてもよく、第1面側300aにさらに別の層を有していてもよい。
 図6は、本発明の第4の態様を示す断面図であって、例えば、図4のB-B断面図である。半導体装置400は、少なくとも酸化ガリウムを含有する結晶を含む酸化物半導体膜2を有しており、酸化物半導体膜2は反転チャネル領域2aを含んでいる。前記結晶がコランダム構造を有している。さらに、半導体装置400は、第1の半導体領域1aと第2の半導体領域1bとを有している。本実施態様では、反転チャネル領域2aが、平面視で、第1の半導体領域1aと第2の半導体領域1bとの間に位置している。また、第1の半導体領域1aの上面と第2の半導体領域1bの上面は、酸化物半導体膜2内に埋設されており、酸化物半導体膜1aの上面の少なくとも一部と面一になるように、酸化物半導体膜2内に配置されていてもよい。この場合の酸化物半導体膜2の上面が酸化膜2bを含んだ上面であってもよい。さらに、酸化物半導体膜2の反転チャネル領域2aと第2の半導体領域1bとの間にn型半導体層6が配置されていてもよく、本実施態様の半導体装置は、薄型化だけでなく高耐圧化も期待できる構造を示している。半導体装置は、さらに基板9と、基板9上に配置された金属酸化物膜3とを有している。金属酸化物膜3は、酸化ガリウムを含み、主成分として酸化ガリウムを含んでいてもよい。金属酸化物膜3は、酸化物半導体膜2よりも高抵抗の膜であるのが好ましい。 
 図7は、本発明の第5の態様を示す半導体装置の部分断面図である。半導体装置500は、少なくとも酸化ガリウムを含有する結晶を含む酸化物半導体膜2を有しており、酸化物半導体膜2は反転チャネル領域2aを含んでいる。さらに、半導体装置500は、第1の半導体領域1aと第2の半導体領域1bとを有している。本実施態様では、反転チャネル領域2aが、平面視で、第1の半導体領域1aと第2の半導体領域1bとの間に位置している。また、第1の半導体領域1aと第2の半導体領域1bは、酸化物半導体膜2上に配置されている。半導体装置は、さらに基板9と、基板9上に配置された金属酸化物膜3とを有している。金属酸化物膜3は、酸化ガリウムを含み、主成分として酸化ガリウムを含んでいてもよい。金属酸化物膜3は、酸化物半導体膜2よりも高抵抗の膜であるのが好ましい。図7の半導体装置はMOSFETであり、詳細には横型のMOSFETであり、酸化物半導体膜2がp型半導体膜であって、酸化物半導体膜2内に設けられており、かつ表面にリンを含む酸化膜2bが形成されている反転チャネル領域2aを有している。本実施態様において、第1の半導体領域1aはn+型半導体層(n+型ソース層)である。また、第2の半導体領域1bはn+型半導体層(n+型ドレイン層)である。第1の電極5bはソース電極であり、第2の電極5cはドレイン電極で、第3の電極5aはゲート電極である。
 図11は、本発明の半導体装置の一例として、縦型半導体装置の第1面側600aの第1の電極5bと第1の電極5b下の絶縁層4aの一部を取り除いた第1面側600aからの部分透視図(600a’)と、半導体装置600の部分断面図(600c)を示す図である。なお、見やすさを重視して、第1面側600aからの部分透視図600a’には、第2面側600bに位置する第2の半導体領域1bと第2の電極5cは含めていないが、部分断面図600cには第1の電極5bと絶縁層4aと、第2の半導体領域1bと第2の電極5cを含めて表示されている。本実施態様の半導体装置600は、半導体装置600の第1面側600aと第2面側600bに電極を配置した縦型のデバイス構造を示している。半導体装置600は、少なくとも酸化ガリウムを含有する結晶を含む酸化物半導体膜2を有し、前記酸化物半導体膜2は酸化膜2bを有し、酸化膜2bに接触する位置に反転チャネル領域2aを含んでいる。さらに、半導体装置600は、酸化物半導体膜2の第1面側に配置されている第1の電極5bと、酸化物半導体膜2の第2面側に配置されている第2の電極5cと、酸化物半導体膜2の第1面側に位置して、断面視で、第1の電極5bと第2の電極5cとの間に少なくとも部分的に位置する第3の電極5aとを有している。なお、第3の電極5aは、図11の600cで示すように、絶縁膜4aを介して第1の電極5bから離間されており、第2の電極5cからも、図示されたように複数の層を介して離間された位置にある。本実施態様における半導体装置は、縦型のMOSFETとして用いることができる。例えば、酸化物半導体膜2がp型半導体膜であって、かつ表面にリンを含む酸化膜2bが配置されている反転チャネル領域2aを有している場合、第1の電極5bはソース電極で、第2の電極5cはドレイン電極で、第3の電極5aはゲート電極である。さらに半導体装置600は、酸化物半導体膜2に埋設された第1の半導体領域1aと、酸化物半導体膜2の少なくとも一部が埋設された第3の半導体領域6、第3の半導体領域6の第2面に接触して第2の半導体領域1b、第2の半導体領域1bに接触して第2の電極5cが配置されている。なお、50bは、第1の電極のコンタクト面を示し、酸化物半導体膜2と、酸化物半導体膜2に埋設された第1の半導体領域1aとに部分的に接触している。第2の電極5cは、半導体装置600の第2面側600bに位置している。本実施態様において、第1の半導体領域1aはn+型半導体層(n+型ソース層)である。また、第2の半導体領域1bはn+型半導体層(n+型ドレイン層)である。本実施態様においても、酸化物半導体膜2がp型半導体膜であって、酸化物半導体膜2内に設けられており、反転チャネル領域2aに接触して、かつ第3の電極5a(ゲート電極)に近い位置にリンを含む酸化膜2bが形成されている。この構造により、ゲートリーク電流をより効果的に抑制することができる。ゲートリーク電流が抑制されれば、ゲートリーク電流によって反転チャネル領域ができにくい問題が解消でき、より優れた半導体特性を持つ半導体装置600を得ることができる。また、第6実施態様のように、第1の電極(ソース電極)を半導体装置の第1面側600aに、第2の電極(ドレイン電極)を第2面側600bに配置して半導体装置を縦型にすることで、半導体装置の一方の側(第1面側600aまたは第2面側600b)に第1の電極(ソース電極)および第2の電極(ドレイン電極)を配置した横型の半導体装置に比べて、半導体装置の小型化を図ることができる。さらに、縦型の半導体装置は、ダイオードを含む縦型デバイスと組み合わせて用いる場合、同じ縦型のデバイスであることから容易に回路設計ができる。
 酸化ガリウムを含有する結晶を含む酸化物半導体膜および/またはコランダム構造を有する結晶を含む酸化物半導体膜は、エピタキシャル結晶成長の方法を用いて成膜することにより得ることができる。前記エピタキシャル結晶成長の方法は、本発明の目的を阻害しない限り、特に限定されず、公知の手段であってよい。前記エピタキシャル結晶成長の方法としては、例えば、CVD法、MOCVD(Metal Organic Chemical Vapor)法、MOVPE(Metalorganic Vapor-phase epitaxy)法、ミストCVD法、ミスト・エピタキシー法、MBE(Molecular Beam Epitaxy)
法、HVPE(Hydride Vapor Phase Epitaxy)法またはパルス成長法などが挙げられる。本発明の実施態様においては、前記エピタキシャル結晶成長により酸化物半導体膜を形成する場合、ミストCVD法またはミスト・エピタキシー法を用いるのが好ましい。
 本発明においては、前記成膜を、金属を含む原料溶液を霧化し(霧化工程)、液滴を浮遊させ霧化液滴を得て、得られた霧化液滴をキャリアガスでもって前記基体近傍まで搬送し(搬送工程)、ついで、前記霧化液滴を熱反応させること(成膜工程)により行うのが好ましい。
(原料溶液)
 原料溶液は、成膜原料として金属を含んでおり、霧化可能であれば特に限定されず、無機材料を含んでいてもよいし、有機材料を含んでいてもよい。前記金属は、金属単体であっても、金属化合物であってもよく、本発明の目的を阻害しない限り特に限定されないが、ガリウム(Ga)、イリジウム(Ir)、インジウム(In)、ロジウム(Rh)、アルミニウム(Al)、金(Au)、銀(Ag)、白金(Pt)、銅(Cu)、鉄(Fe)、マンガン(Mn)、ニッケル(Ni)、パラジウム(Pd)、コバルト(Co)、ルテニウム(Ru)、クロム(Cr)、モリブデン(Mo)、タングステン(W)、タンタル(Ta)、亜鉛(Zn)、鉛(Pb)、レニウム(Re)、チタン(Ti)、スズ(Sn)、ガリウム(Ga)、マグネシウム(Mg)、カルシウム(Ca)およびジルコニウム(Zr)から選ばれる1種または2種以上の金属などが挙げられるが、本発明においては、前記金属が、少なくとも周期律表第4周期~第6周期の1種または2種以上の金属を含むのが好ましく、少なくともガリウム、インジウム、アルミニウム、ロジウムまたはイリジウムを含むのがより好ましく、少なくともガリウムを含むのが最も好ましい。このような好ましい金属を用いることにより、半導体装置等により好適に用いることができるエピタキシャル膜を成膜することができる。
 本発明においては、前記原料溶液として、前記金属を錯体または塩の形態で有機溶媒または水に溶解または分散させたものを好適に用いることができる。錯体の形態としては、例えば、アセチルアセトナート錯体、カルボニル錯体、アンミン錯体、ヒドリド錯体などが挙げられる。塩の形態としては、例えば、有機金属塩(例えば金属酢酸塩、金属シュウ酸塩、金属クエン酸塩等)、硫化金属塩、硝化金属塩、リン酸化金属塩、ハロゲン化金属塩(例えば塩化金属塩、臭化金属塩、ヨウ化金属塩等)などが挙げられる。
 前記原料溶液の溶媒は、本発明の目的を阻害しない限り特に限定されず、水等の無機溶媒であってもよいし、アルコール等の有機溶媒であってもよいし、無機溶媒と有機溶媒との混合溶媒であってもよい。本発明においては、前記溶媒が水を含むのが好ましい。
 また、前記原料溶液には、ハロゲン化水素酸や酸化剤等の添加剤を混合してもよい。前記ハロゲン化水素酸としては、例えば、臭化水素酸、塩酸、ヨウ化水素酸などが挙げられる。前記酸化剤としては、例えば、過酸化水素(H)、過酸化ナトリウム(Na)、過酸化バリウム(BaO)、過酸化ベンゾイル(CCO)等の過酸化物、次亜塩素酸(HClO)、過塩素酸、硝酸、オゾン水、過酢酸やニトロベンゼン等の有機過酸化物などが挙げられる。前記添加剤の配合割合は、特に限定されないが、好ましくは、原料溶液に対し、0.001体積%~50体積%であり、より好ましくは、0.01体積%~30体積%である。
 前記原料溶液には、ドーパントが含まれていてもよい。前記ドーパントは、本発明の目的を阻害しない限り、特に限定されない。前記ドーパントとしては、例えば、上記したn型ドーパントまたはp型ドーパントなどが挙げられる。ドーパントの濃度は、通常、約1×1016/cm~1×1022/cmであってもよいし、また、ドーパントの濃度を例えば約1×1017/cm以下の低濃度にしてもよい。また、さらに、本発明によれば、ドーパントを約1×1020/cm以上の高濃度で含有させてもよい。
(霧化工程)
 前記霧化工程は、金属を含む原料溶液を調整し、前記原料溶液を霧化し、霧化した液滴を浮遊させ、霧化液滴を発生させる。前記金属の配合割合は、特に限定されないが、原料溶液全体に対して、0.0001mol/L~20mol/Lが好ましい。霧化方法は、前記原料溶液を霧化できさえすれば特に限定されず、公知の霧化方法であってよいが、本発明においては、超音波振動を用いる霧化方法であるのが好ましい。本発明で用いられるミストは、空中に浮遊するものであり、例えば、スプレーのように吹き付けるのではなく、初速度がゼロで、空間に浮かびガスとして搬送することが可能なミストであるのがより好ましい。ミストの液滴サイズは、特に限定されず、数mm程度の液滴であってもよいが、好ましくは50μm以下であり、より好ましくは1~10μmである。
(搬送工程)
 前記搬送工程では、前記キャリアガスによって前記霧化液滴を前記基体へ搬送する。キャリアガスの種類としては、本発明の目的を阻害しない限り特に限定されず、例えば、酸素、オゾン、不活性ガス(例えば窒素やアルゴン等)、または還元ガス(水素ガスやフォーミングガス等)などが好適な例として挙げられる。また、キャリアガスの種類は1種類であってよいが、2種類以上であってもよく、キャリアガス濃度を変化させた希釈ガス(例えば10倍希釈ガス等)などを、第2のキャリアガスとしてさらに用いてもよい。また、キャリアガスの供給箇所も1箇所だけでなく、2箇所以上あってもよい。キャリアガスの流量は、特に限定されないが、前記搬送を供給律速となるような流量が好ましく、より具体的には1LPM以下が好ましく、0.1~1LPMがより好ましい。
(成膜工程)
 成膜工程では、前記霧化液滴を反応させて、前記基体上に成膜する。前記反応は、前記霧化液滴から膜が形成される反応であれば特に限定されないが、本発明においては、熱反応が好ましい。前記熱反応は、熱でもって前記霧化液滴が反応すればそれでよく、反応条件等も本発明の目的を阻害しない限り特に限定されない。本工程においては、前記熱反応を、通常、原料溶液の溶媒の蒸発温度以上の温度で行うが、高すぎない温度以下が好ましく、650℃以下がより好ましい。また、熱反応は、本発明の目的を阻害しない限り、真空下、非酸素雰囲気下、還元ガス雰囲気下および酸素雰囲気下のいずれの雰囲気下で行われてもよく、また、大気圧下、加圧下および減圧下のいずれの条件下で行われてもよいが、本発明においては、大気圧下で行われるのが蒸発温度の計算がより簡単になり、設備等も簡素化できる等の点で好ましい。また、膜厚は成膜時間を調整することにより、設定することができる。
(基体)
 前記基体は、前記半導体膜を支持できるものであれば特に限定されない。前記基体の材料も、本発明の目的を阻害しない限り特に限定されず、公知の基体であってよく、有機化合物であってもよいし、無機化合物であってもよい。前記基体の形状としては、どのような形状のものであってもよく、あらゆる形状に対して有効であり、例えば、平板や円板等の板状、繊維状、棒状、円柱状、角柱状、筒状、螺旋状、球状、リング状などが挙げられるが、本発明においては、基板が好ましい。基板の厚さは、本発明においては特に限定されない。
 前記基板は、板状であって、前記半導体膜の支持体となるものであれば特に限定されない。絶縁体基板であってもよいし、半導体基板であってもよいし、金属基板や導電性基板であってもよいが、前記基板が、絶縁体基板であるのが好ましく、また、表面に金属膜を有する基板であるのも好ましい。前記基板としては、例えば、コランダム構造を有する基板材料を主成分として含む下地基板、またはβ-ガリア構造を有する基板材料を主成分として含む下地基板、六方晶構造を有する基板材料を主成分として含む下地基板などが挙げられる。ここで、「主成分」とは、前記特定の結晶構造を有する基板材料が、原子比で、基板材料の全成分に対し、好ましくは50%以上、より好ましくは70%以上、更に好ましくは90%以上含まれることを意味し、100%であってもよい。
 基板材料は、本発明の目的を阻害しない限り、特に限定されず、公知のものであってよい。前記のコランダム構造を有する基板材料としては、例えば、コランダム構造を有する結晶を少なくとも表面に有する基板であればよく、コランダム構造を有する結晶の例として、α-Al、α-Ga、および少なくともガリウムを含みコランダム構造を有する混晶が挙げられる。コランダム構造を有する基板としては、α-Al(サファイア基板)またはα-Ga基板が好適に挙げられ、a面サファイア基板、m面サファイア基板、r面サファイア基板、c面サファイア基板や、α型酸化ガリウム基板(a面、m面またはr面)などがより好適な例として挙げられる。β-ガリア構造を有する基板材料を主成分とする下地基板としては、例えばβ-Ga基板、又はGaとAlとを含みAlが0wt%より多くかつ60wt%以下である混晶体基板などが挙げられる。また、六方晶構造を有する基板材料を主成分とする下地基板としては、例えば、SiC基板、ZnO基板、GaN基板などが挙げられる。
 本発明においては、前記成膜工程の後、アニール処理を行ってもよい。アニールの処理温度は、本発明の目的を阻害しない限り特に限定されず、通常、300℃~650℃であり、好ましくは350℃~550℃である。また、アニールの処理時間は、通常、1分間~48時間であり、好ましくは10分間~24時間であり、より好ましくは30分間~12時間である。なお、アニール処理は、本発明の目的を阻害しない限り、どのような雰囲気下で行われてもよいが、好ましくは非酸素雰囲気下であり、より好ましくは窒素雰囲気下である。
 また、本発明においては、前記基体上に、直接、前記半導体膜を設けてもよいし、バッファ層(緩衝層)や応力緩和層等の他の層を介して前記半導体膜を設けてもよい。各層の形成方法は、特に限定されず、公知の方法であってよいが、本発明においては、ミストCVD法またはミスト・エピタキシー法が好ましい。
 以下、図面を用いて、前記ミストCVD法またはミスト・エピタキシー法に好適に用いられる成膜装置19を説明する。図15の成膜装置19は、キャリアガスを供給するキャリアガス源22aと、キャリアガス源22aから送り出されるキャリアガスの流量を調節するための流量調節弁23aと、キャリアガス(希釈)を供給するキャリアガス(希釈)源22bと、キャリアガス(希釈)源22bから送り出されるキャリアガス(希釈)の流量を調節するための流量調節弁23bと、原料溶液24aが収容されるミスト発生源24と、水25aが入れられる容器25と、容器25の底面に取り付けられた超音波振動子26と、成膜室30と、ミスト発生源24から成膜室30までをつなぐ石英製の供給管27と、成膜室30内に設置されたホットプレート(ヒーター)28とを備えている。ホットプレート28上には、基板20が設置されている。
 そして、図15に示すとおり、原料溶液24aをミスト発生源24内に収容する。次に、基板20を用いて、ホットプレート28上に設置し、ホットプレート28を作動させて成膜室30内の温度を昇温させる。次に、流量調節弁23(23a、23b)を開いてキャリアガス源22(22a、22b)からキャリアガスを成膜室30内に供給し、成膜室30の雰囲気をキャリアガスで十分に置換した後、キャリアガスの流量と、キャリアガス(希釈)の流量とをそれぞれ調節する。次に、超音波振動子26を振動させ、その振動を、水25aを通じて原料溶液24aに伝播させることによって、原料溶液24aを微粒子化させて霧化液滴24bを生成する。この霧化液滴24bが、キャリアガスによって成膜室30内に導入され、基板20まで搬送され、そして、大気圧下、成膜室30内で霧化液滴24bが熱反応して、基板20上に膜が形成する。
 本発明においては、前記成膜工程にて得られた膜を、そのまま半導体装置に用いてもよいし、前記基体等から剥離する等の公知の方法を用いた後に半導体装置に用いてもよい。
 また、本発明において好ましく用いられるp型半導体膜である前記酸化物半導体膜は、例えば、金属を含む原料溶液にp型ドーパントと臭化水素酸とを加え、ミストCVD法により得ることができる。ここで、添加剤として臭化水素酸を前記原料溶液に加えることが肝要である。なお、前記ミストCVD法の各工程ならびに各方法および各条件については、上記した霧化・液滴化工程、搬送工程および成膜工程ならびに各方法および各条件等と同様であってよい。このようにして得られたp型半導体膜は、n型半導体とのpn接合も良好であり、前記反転チャネル領域に好適に用いることができる。
 前記反転チャネル領域は、通常、異なるタイプの導電性を示す半導体領域の間に設けられる。例えば、前記反転チャネル領域が、p型半導体層内に設けられる場合には、通常、n型半導体からなる半導体領域の間のp型半導体層内に設けられ、また、前記反転チャネル領域が、n型半導体層内に設けられる場合には、通常、p型半導体からなる半導体領域の間のn型半導体層内に設けられる。なお、各半導体領域の形成方法は、前記の酸化物半導体膜の形成方法と同様であってよい。
 また、本発明においては、前記反転チャネル領域上に、周期律表第15族の少なくとも1種の元素を含む酸化膜が積層されているのが好ましい。前記元素としては、例えば、窒素(N)、リン(P)などが挙げられるが、本発明においては、窒素(N)またはリン(P)が好ましく、リン(P)がより好ましい。例えば、ゲート絶縁膜と前記反転チャネル領域との間に、リンを少なくとも含む酸化膜を前記反転チャネル領域上に積層することにより、水素の酸化物半導体膜への拡散を防止することができ、さらに界面準位を下げることもできるので、半導体装置、とりわけワイドバンドギャップ半導体の半導体装置に対し、より優れた半導体特性を与えることができる。なお、本発明においては、前記酸化膜が、周期律表第15族の少なくとも1種の前記元素および周期律表第13族の1種または2種以上の金属を少なくとも含むのがより好ましい。前記金属としては、例えば、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)などが挙げられるが、中でも、Gaおよび/またはAlが好ましく、Gaがより好ましい。また、前記酸化膜は、薄膜であるのが好ましく、膜厚100nm以下であるのがより好ましく、膜厚50nm以下であるのが最も好ましい。このような酸化膜を積層することにより、ゲートリーク電流をより効果的に抑制することができ、半導体特性をより優れたものにすることができる。前記酸化膜の形成方法としては、例えば公知の方法が挙げられる。より具体的には例えば、ドライ法やウェット法などが挙げられるが、リン酸等による前記反転チャネル領域上への表面処理であるのが好ましい。
 また、本発明においては、前記反転チャネル領域および前記酸化膜上に、所望によりゲート絶縁膜を介して、ゲート電極が設けられているのが好ましい。前記ゲート絶縁膜は本発明の目的を阻害しない限り特に限定されず、公知の絶縁膜であってよい。前記ゲート絶縁膜としては、例えば、SiO、Si、Al、GaO、AlGaO、InAlGaO、AlInZnGaO、AlN、Hf、SiN、SiON、MgO、GdO、リンを少なくとも含む酸化膜等の酸化膜が好適な例として挙げられる。前記ゲート絶縁膜の形成方法は、公知の方法であってよく、このような公知の形成方法としては、例えば、ドライ法やウェット法などが挙げられる。ドライ法としては、例えば、スパッタ、真空蒸着、CVD(Chemical Vapor Deposition)、ALD(Atomic Laser Deposition)、PLD(Pulsed Laser Deposition)等の公知の方法が挙げられる。ウェット法としては、例えば、スクリーン印刷やダイコート等の塗布方法が挙げられる。
 前記ゲート電極は、公知のゲート電極であってよく、かかる電極材料も導電性無機材料であってもよいし、導電性有機材料であってもよい。本発明においては、前記電極材料が金属であるのが好ましい。前記金属としては、特に限定されないが、好適には例えば、周期律表第4族~第11族から選ばれる少なくとも1種の金属などが挙げられる。周期律表第4族の金属としては、例えば、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)などが挙げられるが、中でもTiが好ましい。周期律表第5族の金属としては、例えば、バナジウム(V)、ニオブ(Nb)、タンタル(Ta)などが挙げられる。周期律表第6族の金属としては、例えば、クロム(Cr)、モリブデン(Mo)およびタングステン(W)等から選ばれる1種または2種以上の金属などが挙げられるが、本発明においては、よりスイッチング特性等の半導体特性がより良好なものとなるのでCrが好ましい。周期律表第7族の金属としては、例えば、マンガン(Mn)、テクネチウム(Tc)、レニウム(Re)などが挙げられる。周期律表第8族の金属としては、例えば、鉄(Fe)、ルテニウム(Ru)、オスミウム(Os)などが挙げられる。周期律表第9族の金属としては、例えば、コバルト(Co)、ロジウム(Rh)、イリジウム(Ir)などが挙げられる。周期律表第10族の金属としては、例えば、ニッケル(Ni)、パラジウム(Pd)、白金(Pt)などが挙げられるが、中でもPtが好ましい。周期律表第11族の金属としては、例えば、銅(Cu)、銀(Ag)、金(Au)などが挙げられる。前記ゲート電極の形成方法としては、例えば公知の方法などが挙げられ、より具体的には例えば、ドライ法やウェット法などが挙げられる。ドライ法としては、例えば、スパッタ、真空蒸着、CVD等の公知の方法が挙げられる。ウェット法としては、例えば、スクリーン印刷やダイコート等が挙げられる。
 なお、本発明においては、ゲート電極だけでなく、通常、ソース電極およびドレイン電極を備えるが、前記ソース電極およびドレイン電極はいずれも、前記ゲート電極と同様に、それぞれ公知の電極であってよく、電極形成方法もそれぞれ公知の方法であってよい。
 前記半導体装置は、とりわけ、パワーデバイスに有用である。前記半導体装置としては、例えば、トランジスタなどが挙げられるが、中でもMOSFETが好ましい。
 本発明の半導体装置は、上記した事項に加え、さらに公知の方法を用いて、パワーモジュール、インバータまたはコンバータとして好適に用いられ、さらには、例えば電源装置を用いた半導体システム等に好適に用いられる。前記電源装置は、公知の方法を用いて、配線パターン等に接続するなどすることにより、前記半導体装置からまたは前記半導体装置として作製することができる。図12は、複数の前記電源装置171、172と制御回路173を用いて構成された電源システム170を示す。前記電源システム170は、図13に示すように、電子回路181と電源システム182とを組み合わせてシステム装置180に用いることができる。なお、電源装置の電源回路図の一例を図14に示す。図14は、パワー回路と制御回路からなる電源装置の電源回路を示しており、インバータ192(MOSFETA~Dで構成)によりDC電圧を高周波でスイッチングしACへ変換後、トランス193で絶縁及び変圧を実施し、整流MOSFET(A~B’)で整流後、DCL195(平滑用コイルL1,L2)とコンデンサにて平滑し、直流電圧を出力する。この時に電圧比較器197で出力電圧を基準電圧と比較し、所望の出力電圧となるようPWM制御回路196でインバータ192及び整流MOSFET194を制御する。
(実施例1)図7に示されるMOSFETの作製
1.p型半導体層の形成
1-1.成膜装置
 図15の成膜装置19を用いた。
1-2.原料溶液の作製
 0.1M臭化ガリウム水溶液に臭化水素酸を体積比で20%含有させ、さらにMgを1体積%の割合で加え、これを原料溶液とした。
1-3.成膜準備
 上記1-2.で得られた原料溶液24aをミスト発生源24内に収容した。次に、基板20として、表面にノンドープのα-Ga膜が形成されているサファイア基板をサセプタ21上に設置し、ヒーター28を作動させて成膜室30内の温度を520℃にまで昇温させた。次に、流量調節弁23a、23bを開いて、キャリアガス源であるキャリアガス供給装置22a、キャリアガス(希釈)供給装置22bからキャリアガスを成膜室30内に供給し、成膜室30の雰囲気をキャリアガスで十分に置換した後、キャリアガスの流量を1LPMに、キャリアガス(希釈)の流量を1LPMにそれぞれ調節した。なお、キャリアガスとして窒素を用いた。
1-4.半導体膜形成
 次に、超音波振動子26を2.4MHzで振動させ、その振動を、水25aを通じて原料溶液24aに伝播させることによって、原料溶液24aを霧化させてミストを生成した。このミストが、キャリアガスによって成膜室30内に導入され、大気圧下、520℃にて、成膜室30内でミストが反応して、基板20上に半導体膜が形成された。なお、膜厚は0.6μmであり、成膜時間は15分間であった。
1-5.評価
 XRD回折装置を用いて、上記1-4.にて得られた膜の相の同定を行ったところ、得られた膜はα-Gaであった。
2.n+型半導体領域の形成
 0.1M臭化ガリウム水溶液に体積比で臭化水素酸10%および臭化スズ8%をそれぞれ含有させ、これを原料溶液としたこと、ならびに成膜温度を580℃および成膜時間を5分間としたこと以外、上記1.と同様にして、上記1.で得られたp型半導体層上にn+型半導体膜を成膜した。得られた膜につき、XRD回折装置を用いて、膜の相の同定を行ったところ、得られた膜はα-Gaであった。
3.絶縁膜および各電極の形成
 ゲート部に対応する領域のn+型半導体層(1aと1bとの間)をリン酸でエッチングし、さらに、半導体膜上にリンを少なくとも含む酸化膜が形成されるようにリン酸で処理した後、スパッタにてSiOを成膜した。また、フォトリソグラフィー、エッチング処理、電子ビーム蒸着処理等に付し、図7の部分断面図に示すとおり、MOSFETを作製した。なお、電極にはいずれもTiを用いた。また、得られたMOSFETにつき、参考までに上面からみた写真を図8に示す。
(評価)
 得られたMOSFETにつき、IV測定を実施した。IV測定結果を図9に示す。図9から明らかなとおり、反転チャネル層が形成され、酸化ガリウム半導体のMOSFETがトランジスタとして良好に動作することが世界で初めて実証された。そして、得られたIV特性から求められたゲート電圧閾値電圧は、7.9Vであった。
 なお、上記3.において、リンを少なくとも含む酸化膜がp型半導体層とゲート絶縁膜(SiO膜)との間に形成されているのかどうかにつき、SIMS測定で実施して確認した。SIMS測定結果を図10に示す。図10から、p型半導体層とゲート絶縁膜との間にリンを含む酸化膜が形成されており、さらには、ゲート絶縁膜の水素のp型半導体層への拡散を良好に防いでいることがわかる。
 本発明の半導体装置は、半導体(例えば化合物半導体電子デバイス等)、電子部品・電気機器部品、光学・電子写真関連装置、工業部材などあらゆる分野に用いることができるが、とりわけ、パワーデバイスに有用である。
  1a 第1の半導体領域
  1b 第2の半導体領域
  2  酸化物半導体膜
  2a 反転チャネル領域
  2b 酸化膜 
  2c 酸化物半導体膜の第2面 
  3  金属酸化物膜
  4a 絶縁膜
  5a 第3の電極
  5b 第1の電極
  5c 第2の電極
  6  第3の半導体領域
  9  基板
 19  成膜装置
 20  基板
 21  サセプタ
 22a キャリアガス供給装置
 22b キャリアガス(希釈)供給装置
 23a 流量調節弁
 23b 流量調節弁
 24  ミスト発生源
 24a 原料溶液
 25  容器
 25a 水
 26  超音波振動子
 27  供給管
 28  ヒーター
 29  排気口
50b 第1の電極のコンタクト面
 100 半導体装置
 170 電源システム
 171 電源装置
 172 電源装置
 173 制御回路
 180 システム装置
 181 電子回路
 182 電源システム
 192 インバータ
 193 トランス
194 MOSFET
195 DCL
196 PWM制御回路
197 電圧比較器
 200 半導体装置
 300 半導体装置
 400 半導体装置
 500 半導体装置
 600 半導体装置

 

Claims (19)

  1.  反転チャネル領域を少なくとも有する半導体装置であって、前記反転チャネル領域が、コランダム構造を有する結晶を含むことを特徴とする、半導体装置。
  2.  反転チャネル領域を少なくとも有する半導体装置であって、前記反転チャネル領域に、コランダム構造を有する結晶を含む酸化物半導体膜を有することを特徴とする半導体装置。
  3.  前記結晶が混晶である、請求項1または2に記載の半導体装置。
  4.  前記結晶がp型半導体である請求項1~3のいずれかに記載の半導体装置。
  5.  前記結晶が、p型ドーパントを含む請求項1~4のいずれかに記載の半導体装置。
  6.  さらに、前記反転チャネル領域に接触して配置される酸化膜を有する、請求項1~5のいずれかに記載の半導体装置。
  7.  前記酸化膜が、周期律表第15族の元素の少なくとも1種の元素を含む、請求項6記載の半導体装置。
  8.  前記元素がリンである請求項7記載の半導体装置。
  9.  前記酸化膜が、さらに、周期律表第13族の少なくとも1種の元素を含む、請求項6~8のいずれかに記載の半導体装置。
  10.  前記結晶が、酸化ガリウムを主成分として含む、請求項1~9のいずれかに記載の半導体装置。
  11.  さらに、第1の半導体領域と第2の半導体領域とを有し、前記反転チャネル領域が、平面視で、第1の半導体領域と第2の半導体領域との間に位置する、請求項1~10のいずれかに記載の半導体装置。
  12.  さらに、第1の半導体領域と第2の半導体領域とを有し、前記第1の半導体領域の上面と、第2の半導体領域の上面と、前記反転チャネル領域の上面とが面一に配置されている、請求項1~10のいずれかに記載の半導体装置。
  13.  前記第1の半導体領域と第2の半導体領域とが、それぞれn型である、請求項11または12に記載の半導体装置。
  14.  さらに第3の半導体領域を有しており、前記第3の半導体領域が、平面視で、前記反転チャネル領域と第2の半導体領域との間に配置されている、請求項11~13のいずれかに記載の半導体装置。
  15.  前記第3の半導体領域がn型である、請求項14記載の半導体装置。
  16.  前記第1の半導体領域に電気的に接続される第1の電極と、第2の半導体領域と電気的に接続される第2の電極とを有する、請求項11~15のいずれかに記載の半導体装置。
  17.  MOSFETである請求項1~16のいずれかに記載の半導体装置。
  18.  パワーデバイスである請求項1~17のいずれかに記載の半導体装置。
  19.  半導体装置を備える半導体システムであって、前記半導体装置が、請求項1~18のいずれかに記載の半導体装置である半導体システム。
     
PCT/JP2019/027442 2018-07-12 2019-07-11 半導体装置および半導体装置を含む半導体システム WO2020013260A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19833736.2A EP3823038A4 (en) 2018-07-12 2019-07-11 SEMICONDUCTOR DEVICE AND SEMICONDUCTOR SYSTEM COMPRISING SEMICONDUCTOR DEVICE
CN201980046507.1A CN112385048A (zh) 2018-07-12 2019-07-11 半导体装置及包含半导体装置的半导体系统
JP2020530246A JP7385200B2 (ja) 2018-07-12 2019-07-11 半導体装置および半導体装置を含む半導体システム
US17/258,852 US20210328062A1 (en) 2018-07-12 2019-07-11 Semiconductor device and semiconductor system including semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018132758 2018-07-12
JP2018-132758 2018-07-12

Publications (1)

Publication Number Publication Date
WO2020013260A1 true WO2020013260A1 (ja) 2020-01-16

Family

ID=69142640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027442 WO2020013260A1 (ja) 2018-07-12 2019-07-11 半導体装置および半導体装置を含む半導体システム

Country Status (6)

Country Link
US (1) US20210328062A1 (ja)
EP (1) EP3823038A4 (ja)
JP (1) JP7385200B2 (ja)
CN (1) CN112385048A (ja)
TW (1) TW202006945A (ja)
WO (1) WO2020013260A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202013716A (zh) * 2018-07-12 2020-04-01 日商Flosfia股份有限公司 半導體裝置和半導體系統

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08227793A (ja) 1994-12-22 1996-09-03 Nippondenso Co Ltd El素子およびその製造方法
JPH0925255A (ja) 1995-04-20 1997-01-28 Rhone Poulenc Fiber & Resin Intermediates ブタジエンのヒドロキシカルボニル化方法
JPH1121687A (ja) 1997-07-07 1999-01-26 Japan Storage Battery Co Ltd 固体高分子型水電解セル
JP2005340308A (ja) 2004-05-24 2005-12-08 Koha Co Ltd 半導体素子の製造方法
WO2013035842A1 (ja) * 2011-09-08 2013-03-14 株式会社タムラ製作所 Ga2O3系半導体素子
JP2013058637A (ja) 2011-09-08 2013-03-28 Tamura Seisakusho Co Ltd Ga2O3系半導体素子
JP2015228495A (ja) * 2014-05-08 2015-12-17 株式会社Flosfia 結晶性積層構造体、半導体装置
JP2016025256A (ja) 2014-07-22 2016-02-08 株式会社Flosfia 半導体装置
WO2016031633A1 (ja) * 2014-08-29 2016-03-03 株式会社タムラ製作所 半導体素子及び結晶積層構造体
JP2017224794A (ja) * 2016-06-17 2017-12-21 ラピスセミコンダクタ株式会社 半導体装置および半導体装置の製造方法
WO2018004008A1 (ja) * 2016-06-30 2018-01-04 株式会社Flosfia 酸化物半導体膜及びその製造方法
WO2018043503A1 (ja) 2016-08-31 2018-03-08 株式会社Flosfia p型酸化物半導体及びその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101932576B1 (ko) * 2010-09-13 2018-12-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작 방법
US20140217470A1 (en) * 2011-09-08 2014-08-07 Tamura Corporation Ga2O3 SEMICONDUCTOR ELEMENT
US8969867B2 (en) * 2012-01-18 2015-03-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9040981B2 (en) * 2012-01-20 2015-05-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR101947808B1 (ko) * 2012-02-29 2019-04-25 엘지디스플레이 주식회사 박막트랜지스터 어레이 기판 및 그 제조방법
TWI686952B (zh) * 2015-12-18 2020-03-01 日商Flosfia股份有限公司 半導體裝置
TW202013716A (zh) * 2018-07-12 2020-04-01 日商Flosfia股份有限公司 半導體裝置和半導體系統

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08227793A (ja) 1994-12-22 1996-09-03 Nippondenso Co Ltd El素子およびその製造方法
JPH0925255A (ja) 1995-04-20 1997-01-28 Rhone Poulenc Fiber & Resin Intermediates ブタジエンのヒドロキシカルボニル化方法
JPH1121687A (ja) 1997-07-07 1999-01-26 Japan Storage Battery Co Ltd 固体高分子型水電解セル
JP2005340308A (ja) 2004-05-24 2005-12-08 Koha Co Ltd 半導体素子の製造方法
WO2013035842A1 (ja) * 2011-09-08 2013-03-14 株式会社タムラ製作所 Ga2O3系半導体素子
JP2013058637A (ja) 2011-09-08 2013-03-28 Tamura Seisakusho Co Ltd Ga2O3系半導体素子
JP2015228495A (ja) * 2014-05-08 2015-12-17 株式会社Flosfia 結晶性積層構造体、半導体装置
JP2016025256A (ja) 2014-07-22 2016-02-08 株式会社Flosfia 半導体装置
WO2016031633A1 (ja) * 2014-08-29 2016-03-03 株式会社タムラ製作所 半導体素子及び結晶積層構造体
JP2017224794A (ja) * 2016-06-17 2017-12-21 ラピスセミコンダクタ株式会社 半導体装置および半導体装置の製造方法
WO2018004008A1 (ja) * 2016-06-30 2018-01-04 株式会社Flosfia 酸化物半導体膜及びその製造方法
WO2018043503A1 (ja) 2016-08-31 2018-03-08 株式会社Flosfia p型酸化物半導体及びその製造方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
F. P. KOFFYBERG ET AL.: "OPTICAL BANDGAPS AND ELECTRON AFFINITIES OF SEMICONDUCTING Rh 0 (I) and Rh 0 (III", J. PHYS. CHEM. SOLIDS, vol. 53, no. 10, 1992, pages 1285 - 1288, XP024612381, DOI: 10.1016/0022-3697(92)90247-B
HIDEO HOSONO: "Functional development of oxide semiconductor", PHYSICS RESEARCH, vol. 3, no. 1, September 2013 (2013-09-01), pages 031211
KANEKOKENTARO: "Dissertation", March 2013, KYOTO UNIV., article "Fabrication and physical properties of corundum structured alloys based on gallium oxide"
See also references of EP3823038A4
TATSUYATAKEMOTOEE TIMES, POWER DEVICE GALLIUM OXIDE, 21 June 2016 (2016-06-21)

Also Published As

Publication number Publication date
EP3823038A1 (en) 2021-05-19
TW202006945A (zh) 2020-02-01
JPWO2020013260A1 (ja) 2021-08-02
CN112385048A (zh) 2021-02-19
JP7385200B2 (ja) 2023-11-22
EP3823038A4 (en) 2022-03-30
US20210328062A1 (en) 2021-10-21

Similar Documents

Publication Publication Date Title
JP6951714B2 (ja) p型酸化物半導体及びその製造方法
WO2020013259A1 (ja) 半導体装置および半導体装置を含む半導体システム
JP6994183B2 (ja) 酸化物半導体膜及びその製造方法
WO2020013262A1 (ja) 半導体装置および半導体装置を含む半導体システム
WO2020013261A1 (ja) 積層構造体、積層構造体を含む半導体装置および半導体システム
WO2020013260A1 (ja) 半導体装置および半導体装置を含む半導体システム
TWI791674B (zh) 半導體裝置及半導體系統
WO2021106809A1 (ja) 半導体装置および半導体装置を有する半導体システム
WO2021106811A1 (ja) 半導体装置および半導体システム
WO2021106810A1 (ja) 半導体装置および半導体システム
WO2020235690A1 (ja) 半導体装置
JP6932904B2 (ja) 半導体装置
WO2020013243A1 (ja) 半導体装置
JP2021120973A (ja) 半導体装置および半導体システム
JP2021120972A (ja) 半導体装置および半導体システム
JP2021120974A (ja) 半導体装置および半導体システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19833736

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020530246

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE