WO2016029616A1 - 基于五项最简混沌系统的无平衡点四维超混沌系统及模拟电路 - Google Patents

基于五项最简混沌系统的无平衡点四维超混沌系统及模拟电路 Download PDF

Info

Publication number
WO2016029616A1
WO2016029616A1 PCT/CN2015/000260 CN2015000260W WO2016029616A1 WO 2016029616 A1 WO2016029616 A1 WO 2016029616A1 CN 2015000260 W CN2015000260 W CN 2015000260W WO 2016029616 A1 WO2016029616 A1 WO 2016029616A1
Authority
WO
WIPO (PCT)
Prior art keywords
pin
resistor
operational amplifier
multiplier
pins
Prior art date
Application number
PCT/CN2015/000260
Other languages
English (en)
French (fr)
Inventor
王忠林
Original Assignee
王忠林
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王忠林 filed Critical 王忠林
Publication of WO2016029616A1 publication Critical patent/WO2016029616A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols

Definitions

  • the invention relates to a chaotic system and an analog circuit, in particular to an unbalanced point four-dimensional hyperchaotic system and an analog circuit based on a five-term minimal chaotic system.
  • the existing hyperchaotic system is generally based on a three-dimensional chaotic system with three equilibrium points, adding one dimension to form a four-dimensional hyperchaotic system with at least one equilibrium point, and a four-dimensional hyperchaotic system without balance points.
  • the present invention proposes a four-dimensional hyperchaotic system with no balance point based on the five simplest three-dimensional chaotic systems, and implements it with analog circuits, which provides a chaotic system for communication and other engineering fields. New methods and ideas.
  • the technical problem to be solved by the present invention is to provide a non-equilibrium hyperchaotic system and an analog circuit based on a five-term minimal chaotic system, and the present invention adopts the following technical means to achieve the object of the invention:
  • a four-dimensional hyperchaotic system based on a five-minimum system without balance point characterized in that it comprises the following steps:
  • the analog circuit system is constructed, and the multiplier U3 and U4 are used to realize the multiplication operation by using the operational amplifier U1, the operational amplifier U2, and the resistor and the capacitor to form an inverting adder and an inverting integrator.
  • the operational amplifier U1 is connected to an operational amplifier U2, which is connected to a multiplier U4, a DC power supply, and an operational amplifier U1.
  • the multiplier U3 is connected to an operational amplifier U1, and the multiplier U4 is connected to an operational amplifier U2.
  • the 8V DC power supply is connected to the operational amplifier U2;
  • the first pin of the operational amplifier U1 is connected to the second pin through the resistor R7, and is connected to the sixth pin through the resistor R9, and the third, fifth, ten, and 12th pins are grounded, and the fourth pin is connected to the VCC.
  • the eleventh pin is connected to VEE
  • the sixth pin is connected to the seventh pin through the capacitor C2
  • the seventh pin is connected to the output y
  • the third pin is connected through the resistor R1
  • the first sum of the multiplier U4 is connected.
  • the third pin, the eighth pin outputs x is connected to the ninth pin through the capacitor C1, is connected to the ninth pin through the resistor R4, and is connected to the sixth pin of the U2 through the resistor R14, and is connected to the multiplier
  • the first pin of U3, the 13th pin is connected to the 14th pin through the resistor R2, and the 14th pin is connected to the 9th pin through the resistor R5;
  • the first and second pins of the operational amplifier U2 are left floating, the third, fifth, tenth, and 12th pins are grounded, the fourth pin is connected to VCC, the eleventh pin is connected to VEE, and the sixth pin is connected to the capacitor C4 and the seventh.
  • the pin is connected, the 7th pin outputs w, the second pin of U1 is connected through the resistor R6, the 13th pin of U1 is connected through the resistor R3, the output pin z is connected to the 8th pin, and the multiplier U3 is connected.
  • the third pin, the ninth pin is connected to the eighth pin through the capacitor C3, and is grounded after the 8V DC power supply is connected through the resistor R12.
  • the 13th pin is connected to the 14th pin through the resistor R11, the 14th pin. Connected to the 9th pin through the resistor R13;
  • the first pin of the multiplier U3 is connected to the eighth pin of U1, the third pin is connected to the eighth pin of U2, the second, fourth, and sixth pins are grounded, and the fifth pin is connected to VEE, the seventh reference The pin is connected to the sixth pin of U1 through the resistor R8, and the eighth pin is connected to VCC;
  • the first and third pins of the multiplier U4 are connected to the seventh pin of U1, the second, fourth, and sixth pins are grounded, the fifth pin is connected to VEE, and the seventh pin is connected to U2 through the resistor R10. Pin, the 8th pin is connected to VCC.
  • An analog circuit based on a five-minimum system of a balanced-free four-dimensional hyperchaotic system characterized in that it consists of an operational amplifier U1, an operational amplifier U2, a multiplier U3, a multiplier U4, and an 8V DC power supply.
  • the amplifier U1 is connected to an operational amplifier U2, which is connected to a multiplier U4, a DC power supply, and an operational amplifier U1.
  • the multiplier U3 is connected to an operational amplifier U1, and the multiplier U4 is connected to an operational amplifier U2.
  • the 8V DC power supply is connected to the operational amplifier U2, the operational amplifier U1 and the operational amplifier U2 are LF347N, and the multipliers U3 and U4 are AD633JN;
  • the first pin of the operational amplifier U1 is connected to the second pin through the resistor R7, and is connected to the sixth pin through the resistor R9, and the third, fifth, ten, and 12th pins are grounded, and the fourth pin is connected to the VCC.
  • the eleventh pin is connected to VEE
  • the sixth pin is connected to the seventh pin through the capacitor C2
  • the seventh pin is connected to the output y
  • the third pin is connected through the resistor R1
  • the first sum of the multiplier U4 is connected.
  • the third pin, the eighth pin outputs x is connected to the ninth pin through the capacitor C1, is connected to the ninth pin through the resistor R4, and is connected to the sixth pin of the U2 through the resistor R14, and is connected to the multiplier
  • the first pin of U3, the 13th pin is connected to the 14th pin through the resistor R2, and the 14th pin is connected to the 9th pin through the resistor R5;
  • the first and second pins of the operational amplifier U2 are left floating, the third, fifth, tenth, and 12th pins are grounded, the fourth pin is connected to VCC, the eleventh pin is connected to VEE, and the sixth pin is connected to the capacitor C4 and the seventh.
  • the pins are connected, the 7th pin outputs w, and the resistor is passed through R6 is connected to the second pin of U1, connected to the 13th pin of U1 through the resistor R3, the output pin z is connected to the 8th pin, and the 3rd pin of the multiplier U3 is connected, and the 9th pin passes through the capacitor C3 and
  • the 8th pin is connected, grounded through the resistor R12 and connected to the 8V DC power supply, the 13th pin is connected to the 14th pin through the resistor R11, and the 14th pin is connected to the 9th pin through the resistor R13;
  • the first pin of the multiplier U3 is connected to the eighth pin of U1, the third pin is connected to the eighth pin of U2, the second, fourth, and sixth pins are grounded, and the fifth pin is connected to VEE, the seventh reference The pin is connected to the sixth pin of U1 through the resistor R8, and the eighth pin is connected to VCC;
  • the first and third pins of the multiplier U4 are connected to the seventh pin of U1, the second, fourth, and sixth pins are grounded, the fifth pin is connected to VEE, and the seventh pin is connected to U2 through the resistor R10. Pin, the 8th pin is connected to VCC.
  • the beneficial result of the invention is that on the basis of the five simplest three-dimensional chaotic systems, a four-dimensional hyperchaotic system without balance points is proposed and implemented by analog circuits, which provides a chaotic system for engineering fields such as communication. New methods and ideas.
  • FIG. 1 is a schematic diagram of a circuit connection structure according to a preferred embodiment of the present invention.
  • a four-dimensional hyperchaotic system based on a five-minimum system without balance point characterized in that it comprises the following steps:
  • the analog circuit system is constructed, and the multiplier U3 and U4 are used to realize the multiplication operation by using the operational amplifier U1, the operational amplifier U2, and the resistor and the capacitor to form an inverting adder and an inverting integrator.
  • the 8V DC power supply implements a constant input, and the operational amplifier U1 and the operational amplifier U2 adopt LF347N, and the multiplier U3 And U4 adopts AD633JN;
  • the operational amplifier U1 is connected to an operational amplifier U2, which is connected to a multiplier U4, a DC power supply, and an operational amplifier U1.
  • the multiplier U3 is connected to an operational amplifier U1, and the multiplier U4 is connected to an operational amplifier U2.
  • the 8V DC power supply is connected to the operational amplifier U2;
  • the first pin of the operational amplifier U1 is connected to the second pin through the resistor R7, and is connected to the sixth pin through the resistor R9, and the third, fifth, ten, and 12th pins are grounded, and the fourth pin is connected to the VCC.
  • the eleventh pin is connected to VEE
  • the sixth pin is connected to the seventh pin through the capacitor C2
  • the seventh pin is connected to the output y
  • the third pin is connected through the resistor R1
  • the first sum of the multiplier U4 is connected.
  • the third pin, the eighth pin outputs x is connected to the ninth pin through the capacitor C1, is connected to the ninth pin through the resistor R4, and is connected to the sixth pin of the U2 through the resistor R14, and is connected to the multiplier
  • the first pin of U3, the 13th pin is connected to the 14th pin through the resistor R2, and the 14th pin is connected to the 9th pin through the resistor R5;
  • the first and second pins of the operational amplifier U2 are left floating, the third, fifth, tenth, and 12th pins are grounded, the fourth pin is connected to VCC, the eleventh pin is connected to VEE, and the sixth pin is connected to the capacitor C4 and the seventh.
  • the pin is connected, the 7th pin outputs w, the second pin of U1 is connected through the resistor R6, the 13th pin of U1 is connected through the resistor R3, the output pin z is connected to the 8th pin, and the multiplier U3 is connected.
  • the third pin, the ninth pin is connected to the eighth pin through the capacitor C3, and is grounded after the 8V DC power supply is connected through the resistor R12.
  • the 13th pin is connected to the 14th pin through the resistor R11, the 14th pin. Connected to the 9th pin through the resistor R13;
  • the first pin of the multiplier U3 is connected to the eighth pin of U1, the third pin is connected to the eighth pin of U2, the second, fourth, and sixth pins are grounded, and the fifth pin is connected to VEE, the seventh reference The pin is connected to the sixth pin of U1 through the resistor R8, and the eighth pin is connected to VCC;
  • the first and third pins of the multiplier U4 are connected to the seventh pin of U1, the second, fourth, and sixth pins are grounded, the fifth pin is connected to VEE, and the seventh pin is connected to U2 through the resistor R10. Pin, the 8th pin is connected to VCC.
  • An analog circuit based on a five-minimum system of a balanced-free four-dimensional hyperchaotic system characterized in that it consists of an operational amplifier U1, an operational amplifier U2, a multiplier U3, a multiplier U4, and an 8V DC power supply.
  • the amplifier U1 is connected to an operational amplifier U2, which is connected to a multiplier U4, a DC power supply, and an operational amplifier U1.
  • the multiplier U3 is connected to an operational amplifier U1, and the multiplier U4 is connected to an operational amplifier U2.
  • the 8V DC power supply is connected to the operational amplifier U2, the operational amplifier U1 and the operational amplifier U2 are LF347N, and the multipliers U3 and U4 are AD633JN;
  • the first pin of the operational amplifier U1 is connected to the second pin through the resistor R7, and is connected to the sixth pin through the resistor R9, and the third, fifth, ten, and 12th pins are grounded, and the fourth pin is connected to the VCC.
  • the eleventh pin is connected to VEE
  • the sixth pin is connected to the seventh pin through the capacitor C2
  • the seventh pin is connected to the output y
  • the third pin is connected through the resistor R1
  • the third pin, the eighth pin outputs x is connected to the ninth pin through the capacitor C1, and is connected to the ninth pin through the resistor R4.
  • the first and second pins of the operational amplifier U2 are left floating, the third, fifth, tenth, and 12th pins are grounded, the fourth pin is connected to VCC, the eleventh pin is connected to VEE, and the sixth pin is connected to the capacitor C4 and the seventh.
  • the pin is connected, the 7th pin outputs w, the second pin of U1 is connected through the resistor R6, the 13th pin of U1 is connected through the resistor R3, the output pin z is connected to the 8th pin, and the multiplier U3 is connected.
  • the third pin, the ninth pin is connected to the eighth pin through the capacitor C3, and is grounded after the 8V DC power supply is connected through the resistor R12.
  • the 13th pin is connected to the 14th pin through the resistor R11, the 14th pin. Connected to the 9th pin through the resistor R13;
  • the first pin of the multiplier U3 is connected to the eighth pin of U1, the third pin is connected to the eighth pin of U2, the second, fourth, and sixth pins are grounded, and the fifth pin is connected to VEE, the seventh reference The pin is connected to the sixth pin of U1 through the resistor R8, and the eighth pin is connected to VCC;
  • the first and third pins of the multiplier U4 are connected to the seventh pin of U1, the second, fourth, and sixth pins are grounded, the fifth pin is connected to VEE, and the seventh pin is connected to U2 through the resistor R10. Pin, the 8th pin is connected to VCC.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Amplifiers (AREA)

Abstract

提供一种基于五项最简三维混沌系统的无平衡点四维超混沌系统及模拟电路,利用运算放大器(U1)、运算放大器(U2)及电阻和电容构成反相加法器和反相积分器,利用乘法器(U3)和(U4)实现乘法运算,利用8V直流电源实现常数输入,所述运算放大器(U1)和运算放大器(U2)采用LF347N,所述乘法器(U3)和(U4)采用AD633JN,所述运算放大器(U1)连接运算放大器(U2)、乘法器(U3),所述运算放大器(U2)连接乘法器(U4)、直流电源和运算放大器(U1),所述乘法器(U3)连接运算放大器(U1),所述乘法器(U4)连接运算放大器(U2),所述8V直流电源连接运算放大器(U2),在五项最简三维混沌系统的基础上,提出了一个无平衡点的四维超混沌系统,并用模拟电路进行了实现,为混沌系统应用于通信等工程领域提供了一种新的方法和思路。

Description

基于五项最简混沌系统的无平衡点四维超混沌系统及模拟电路 技术领域
本发明涉及一个混沌系统及模拟电路,特别涉及一个基于五项最简混沌系统的无平衡点四维超混沌系统及模拟电路。
背景技术
目前,已有的超混沌系统一般是在具有三个平衡点的三维混沌系统的基础上,增加一维,形成具有至少有一个平衡点的四维超混沌系统,无平衡点的四维超混沌系统还没有被提出,本发明在五项最简三维混沌系统的基础上,提出了一个无平衡点的四维超混沌系统,并用模拟电路进行了实现,为混沌系统应用于通信等工程领域提供了一种新的方法和思路。
发明内容
本发明要解决的技术问题是提供一种基于五项最简混沌系统的无平衡点超混沌系统及模拟电路,本发明采用如下技术手段实现发明目的:
1、基于五项最简系统的无平衡点四维超混沌系统,其特征是在于,包括以下步骤:
(1)五项最简三维混沌混沌系统i为:
Figure PCTCN2015000260-appb-000001
(2)在三维混沌系统i的基础上,增加一个微分方程dw/dt=-kx,并把w反馈到系统i的第一和第二个方程上,获得混沌系统ii
Figure PCTCN2015000260-appb-000002
(3)根据无平衡点超混沌系统ii构造模拟电路系统,利用运算放大器U1、运算放大器U2及电阻和电容构成反相加法器和反相积分器,利用乘法器U3和U4实现乘法运算,利用8V直流电源实现常数输入,所述运算放大器U1和运算放大器U2采用LF347N,所述乘法器U3和U4采用AD633JN;
所述运算放大器U1连接运算放大器U2、乘法器U3,所述运算放大器U2连接乘法器U4、直流电源和运算放大器U1,所述乘法器U3连接运算放大器U1,所述乘法器U4连接运算放大器U2,所述8V直流电源连接运算放大器U2;
所述运算放大器U1的第1引脚通过电阻R7与第2引脚相接,通过电阻R9与第6引脚相接,第3、5、10、12引脚接地,第4引脚接VCC,第11引脚接VEE,第6引脚通过电容C2与第7引脚相接,第7引脚接输出y,通过电阻R1与第13引脚相接,接乘法器U4的第1和第3引脚,第8引脚输出x,通过电容C1与第9引脚相接,通过电阻R4与第9引脚相接,通过电阻R14与U2的第6引脚相接,接乘法器U3的第1引脚,第13引脚通过电阻R2与第14引脚相接,第14引脚通过电阻R5与第9引脚相接;
所述运算放大器U2的第1、2引脚悬空,第3、5、10、12引脚接地,第4引脚接VCC,第11引脚接VEE,第6引脚通过电容C4与第7引脚相接,第7引脚输出w,通过电阻R6与U1的第2引脚相接,通过电阻R3与U1的第13引脚相接,第8引脚接输出z,接乘法器U3的第3引脚,第9引脚通过电容C3与第8引脚相接,通过电阻R12接8V直流电源后接地,第13引脚通过电阻R11与第14引脚相接,第14引脚通过电阻R13与第9引脚相接;
所述乘法器U3的第1引脚接U1的第8脚,第3引脚接U2的第8引脚,第2、4、6引脚均接地,第5引脚接VEE,第7引脚通过电阻R8接U1第6引脚,第8引脚接VCC;
所述乘法器U4的第1、3引脚接U1的第7引脚,第2、4、6引脚均接地,第5引脚接VEE,第7引脚通过电阻R10接U2第13引脚,第8引脚接VCC。
2、基于五项最简系统的无平衡点四维超混沌系统的模拟电路,其特征是在于,由运算放大器U1、运算放大器U2和乘法器U3、乘法器U4及8V直流电源组成,所述运算放大器U1连接运算放大器U2、乘法器U3,所述运算放大器U2连接乘法器U4、直流电源和运算放大器U1,所述乘法器U3连接运算放大器U1,所述乘法器U4连接运算放大器U2,所述8V直流电源连接运算放大器U2,所述运算放大器U1和运算放大器U2采用LF347N,所述乘法器U3和U4采用AD633JN;
所述运算放大器U1的第1引脚通过电阻R7与第2引脚相接,通过电阻R9与第6引脚相接,第3、5、10、12引脚接地,第4引脚接VCC,第11引脚接VEE,第6引脚通过电容C2与第7引脚相接,第7引脚接输出y,通过电阻R1与第13引脚相接,接乘法器U4的第1和第3引脚,第8引脚输出x,通过电容C1与第9引脚相接,通过电阻R4与第9引脚相接,通过电阻R14与U2的第6引脚相接,接乘法器U3的第1引脚,第13引脚通过电阻R2与第14引脚相接,第14引脚通过电阻R5与第9引脚相接;
所述运算放大器U2的第1、2引脚悬空,第3、5、10、12引脚接地,第4引脚接VCC,第11引脚接VEE,第6引脚通过电容C4与第7引脚相接,第7引脚输出w,通过电阻 R6与U1的第2引脚相接,通过电阻R3与U1的第13引脚相接,第8引脚接输出z,接乘法器U3的第3引脚,第9引脚通过电容C3与第8引脚相接,通过电阻R12接8V直流电源后接地,第13引脚通过电阻R11与第14引脚相接,第14引脚通过电阻R13与第9引脚相接;
所述乘法器U3的第1引脚接U1的第8脚,第3引脚接U2的第8引脚,第2、4、6引脚均接地,第5引脚接VEE,第7引脚通过电阻R8接U1第6引脚,第8引脚接VCC;
所述乘法器U4的第1、3引脚接U1的第7引脚,第2、4、6引脚均接地,第5引脚接VEE,第7引脚通过电阻R10接U2第13引脚,第8引脚接VCC。
有益效果
本发明的有益果是:在五项最简三维混沌系统的基础上,提出了一个无平衡点的四维超混沌系统,并用模拟电路进行了实现,为混沌系统应用于通信等工程领域提供了一种新的方法和思路。
附图说明
图1为本发明优选实施例的电路连接结构示意图。
图2和图3为本发明的电路实际连接图。
具体实施方式
下面结合附图和优选实施例对本发明作更进一步的详细描述,参见图1-图3。
1、基于五项最简系统的无平衡点四维超混沌系统,其特征是在于,包括以下步骤:
(1)五项最简三维混沌混沌系统i为:
Figure PCTCN2015000260-appb-000003
(2)在三维混沌系统i的基础上,增加一个微分方程dw/dt=-kx,并把w反馈到系统i的第一和第二个方程上,获得混沌系统ii
Figure PCTCN2015000260-appb-000004
(3)根据无平衡点超混沌系统ii构造模拟电路系统,利用运算放大器U1、运算放大器U2及电阻和电容构成反相加法器和反相积分器,利用乘法器U3和U4实现乘法运算,利用8V直流电源实现常数输入,所述运算放大器U1和运算放大器U2采用LF347N,所述乘法器U3 和U4采用AD633JN;
所述运算放大器U1连接运算放大器U2、乘法器U3,所述运算放大器U2连接乘法器U4、直流电源和运算放大器U1,所述乘法器U3连接运算放大器U1,所述乘法器U4连接运算放大器U2,所述8V直流电源连接运算放大器U2;
所述运算放大器U1的第1引脚通过电阻R7与第2引脚相接,通过电阻R9与第6引脚相接,第3、5、10、12引脚接地,第4引脚接VCC,第11引脚接VEE,第6引脚通过电容C2与第7引脚相接,第7引脚接输出y,通过电阻R1与第13引脚相接,接乘法器U4的第1和第3引脚,第8引脚输出x,通过电容C1与第9引脚相接,通过电阻R4与第9引脚相接,通过电阻R14与U2的第6引脚相接,接乘法器U3的第1引脚,第13引脚通过电阻R2与第14引脚相接,第14引脚通过电阻R5与第9引脚相接;
所述运算放大器U2的第1、2引脚悬空,第3、5、10、12引脚接地,第4引脚接VCC,第11引脚接VEE,第6引脚通过电容C4与第7引脚相接,第7引脚输出w,通过电阻R6与U1的第2引脚相接,通过电阻R3与U1的第13引脚相接,第8引脚接输出z,接乘法器U3的第3引脚,第9引脚通过电容C3与第8引脚相接,通过电阻R12接8V直流电源后接地,第13引脚通过电阻R11与第14引脚相接,第14引脚通过电阻R13与第9引脚相接;
所述乘法器U3的第1引脚接U1的第8脚,第3引脚接U2的第8引脚,第2、4、6引脚均接地,第5引脚接VEE,第7引脚通过电阻R8接U1第6引脚,第8引脚接VCC;
所述乘法器U4的第1、3引脚接U1的第7引脚,第2、4、6引脚均接地,第5引脚接VEE,第7引脚通过电阻R10接U2第13引脚,第8引脚接VCC。
2、基于五项最简系统的无平衡点四维超混沌系统的模拟电路,其特征是在于,由运算放大器U1、运算放大器U2和乘法器U3、乘法器U4及8V直流电源组成,所述运算放大器U1连接运算放大器U2、乘法器U3,所述运算放大器U2连接乘法器U4、直流电源和运算放大器U1,所述乘法器U3连接运算放大器U1,所述乘法器U4连接运算放大器U2,所述8V直流电源连接运算放大器U2,所述运算放大器U1和运算放大器U2采用LF347N,所述乘法器U3和U4采用AD633JN;
所述运算放大器U1的第1引脚通过电阻R7与第2引脚相接,通过电阻R9与第6引脚相接,第3、5、10、12引脚接地,第4引脚接VCC,第11引脚接VEE,第6引脚通过电容C2与第7引脚相接,第7引脚接输出y,通过电阻R1与第13引脚相接,接乘法器U4的第1和第3引脚,第8引脚输出x,通过电容C1与第9引脚相接,通过电阻R4与第9引脚相 接,通过电阻R14与U2的第6引脚相接,接乘法器U3的第1引脚,第13引脚通过电阻R2与第14引脚相接,第14引脚通过电阻R5与第9引脚相接;
所述运算放大器U2的第1、2引脚悬空,第3、5、10、12引脚接地,第4引脚接VCC,第11引脚接VEE,第6引脚通过电容C4与第7引脚相接,第7引脚输出w,通过电阻R6与U1的第2引脚相接,通过电阻R3与U1的第13引脚相接,第8引脚接输出z,接乘法器U3的第3引脚,第9引脚通过电容C3与第8引脚相接,通过电阻R12接8V直流电源后接地,第13引脚通过电阻R11与第14引脚相接,第14引脚通过电阻R13与第9引脚相接;
所述乘法器U3的第1引脚接U1的第8脚,第3引脚接U2的第8引脚,第2、4、6引脚均接地,第5引脚接VEE,第7引脚通过电阻R8接U1第6引脚,第8引脚接VCC;
所述乘法器U4的第1、3引脚接U1的第7引脚,第2、4、6引脚均接地,第5引脚接VEE,第7引脚通过电阻R10接U2第13引脚,第8引脚接VCC。
电路中电阻R2=R5=R7=R9=R11=R13=10kΩ,R3=R6=R12=100kΩ,R1=R4=4.54kΩ,R8=R10=1kΩ,R14=28.5kΩ,C1=C2=C3=C4=10nF。
当然,上述说明并非对本发明的限制,本发明也不仅限于上述举例,本技术领域的普通技术人员在本发明的实质范围内所做出的变化、改型、添加或替换,也属于本发明的保护范围。

Claims (2)

  1. 基于五项最简系统的无平衡点四维超混沌系统,其特征是在于,包括以下步骤:
    (1)五项最简三维混沌混沌系统i为:
    Figure PCTCN2015000260-appb-100001
       a=5,b=90
    (2)在三维混沌系统i的基础上,增加一个微分方程dw/dt=-kx,并把w反馈到系统i的第一和第二个方程上,获得混沌系统ii
    Figure PCTCN2015000260-appb-100002
       a=22,b=80,k=3.5
    (3)根据无平衡点超混沌系统ii构造模拟电路系统,利用运算放大器U1、运算放大器U2及电阻和电容构成反相加法器和反相积分器,利用乘法器U3和U4实现乘法运算,利用8V直流电源实现常数输入,所述运算放大器U1和运算放大器U2采用LF347N,所述乘法器U3和U4采用AD633JN;
    所述运算放大器U1连接运算放大器U2、乘法器U3,所述运算放大器U2连接乘法器U4、直流电源和运算放大器U1,所述乘法器U3连接运算放大器U1,所述乘法器U4连接运算放大器U2,所述8V直流电源连接运算放大器U2;
    所述运算放大器U1的第1引脚通过电阻R7与第2引脚相接,通过电阻R9与第6引脚相接,第3、5、10、12引脚接地,第4引脚接VCC,第11引脚接VEE,第6引脚通过电容C2与第7引脚相接,第7引脚接输出y,通过电阻R1与第13引脚相接,接乘法器U4的第1和第3引脚,第8引脚输出x,通过电容C1与第9引脚相接,通过电阻R4与第9引脚相接,通过电阻R14与U2的第6引脚相接,接乘法器U3的第1引脚,第13引脚通过电阻R2与第14引脚相接,第14引脚通过电阻R5与第9引脚相接;
    所述运算放大器U2的第1、2引脚悬空,第3、5、10、12引脚接地,第4引脚接VCC,第11引脚接VEE,第6引脚通过电容C4与第7引脚相接,第7引脚输出w,通过电阻R6与U1的第2引脚相接,通过电阻R3与U1的第13引脚相接,第8引脚接输出z,接乘法器U3的第3引脚,第9引脚通过电容C3与第8引脚相接,通过电阻R12接8V直流电源后接地,第13引脚通过电阻R11与第14引脚相接,第14引脚通过电阻R13与第9引脚相接;
    所述乘法器U3的第1引脚接U1的第8脚,第3引脚接U2的第8引脚,第2、4、6引脚均接地,第5引脚接VEE,第7引脚通过电阻R8接U1第6引脚,第8引脚接VCC;
    所述乘法器U4的第1、3引脚接U1的第7引脚,第2、4、6引脚均接地,第5引脚接VEE,第7引脚通过电阻R10接U2第13引脚,第8引脚接VCC。
  2. 基于五项最简系统的无平衡点四维超混沌系统的模拟电路,其特征是在于,由运算放大器U1、运算放大器U2和乘法器U3、乘法器U4及8V直流电源组成,所述运算放大器U1连接运算放大器U2、乘法器U3,所述运算放大器U2连接乘法器U4、直流电源和运算放大器U1,所述乘法器U3连接运算放大器U1,所述乘法器U4连接运算放大器U2,所述8V直流电源连接运算放大器U2,所述运算放大器U1和运算放大器U2采用LF347N,所述乘法器U3和U4采用AD633JN;
    所述运算放大器U1的第1引脚通过电阻R7与第2引脚相接,通过电阻R9与第6引脚相接,第3、5、10、12引脚接地,第4引脚接VCC,第11引脚接VEE,第6引脚通过电容C2与第7引脚相接,第7引脚接输出y,通过电阻R1与第13引脚相接,接乘法器U4的第1和第3引脚,第8引脚输出x,通过电容C1与第9引脚相接,通过电阻R4与第9引脚相接,通过电阻R14与U2的第6引脚相接,接乘法器U3的第1引脚,第13引脚通过电阻R2与第14引脚相接,第14引脚通过电阻R5与第9引脚相接;
    所述运算放大器U2的第1、2引脚悬空,第3、5、10、12引脚接地,第4引脚接VCC,第11引脚接VEE,第6引脚通过电容C4与第7引脚相接,第7引脚输出w,通过电阻R6与U1的第2引脚相接,通过电阻R3与U1的第13引脚相接,第8引脚接输出z,接乘法器U3的第3引脚,第9引脚通过电容C3与第8引脚相接,通过电阻R12接8V直流电源后接地,第13引脚通过电阻R11与第14引脚相接,第14引脚通过电阻R13与第9引脚相接;
    所述乘法器U3的第1引脚接U1的第8脚,第3引脚接U2的第8引脚,第2、4、6引脚均接地,第5引脚接VEE,第7引脚通过电阻R8接U1第6引脚,第8引脚接VCC;
    所述乘法器U4的第1、3引脚接U1的第7引脚,第2、4、6引脚均接地,第5引脚接VEE,第7引脚通过电阻R10接U2第13引脚,第8引脚接VCC。
PCT/CN2015/000260 2014-08-31 2015-04-14 基于五项最简混沌系统的无平衡点四维超混沌系统及模拟电路 WO2016029616A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410436304.2 2014-08-31
CN201410436304.2A CN104202140A (zh) 2014-08-31 2014-08-31 基于五项最简混沌系统的无平衡点四维超混沌系统及模拟电路

Publications (1)

Publication Number Publication Date
WO2016029616A1 true WO2016029616A1 (zh) 2016-03-03

Family

ID=52087370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/000260 WO2016029616A1 (zh) 2014-08-31 2015-04-14 基于五项最简混沌系统的无平衡点四维超混沌系统及模拟电路

Country Status (2)

Country Link
CN (1) CN104202140A (zh)
WO (1) WO2016029616A1 (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109543313A (zh) * 2018-11-27 2019-03-29 杭州电子科技大学 基于忆阻器反馈的超混沌系统的电路模型
CN109684747A (zh) * 2018-12-27 2019-04-26 杭州电子科技大学 一种对数型荷控忆容器等效电路模型
CN109766643A (zh) * 2019-01-16 2019-05-17 杭州电子科技大学 三值忆阻器的电路模型
CN110175384A (zh) * 2019-05-17 2019-08-27 山东科技大学 一种二次光滑流控忆阻器模拟电路
CN110611560A (zh) * 2019-09-18 2019-12-24 湘潭大学 一种三维非自治混沌模型及电路
CN110896347A (zh) * 2019-12-13 2020-03-20 哈尔滨工程大学 一种具有离散分岔图的多稳定性混沌系统
CN112152774A (zh) * 2019-06-28 2020-12-29 天津科技大学 一种能产生四涡卷混沌流的非哈密顿系统及其电路实现
CN112152983A (zh) * 2019-06-28 2020-12-29 天津科技大学 一种具有六簇混沌流的非哈密顿系统及其电路实现
CN112152773A (zh) * 2019-06-28 2020-12-29 天津科技大学 一种三维改进型的Sprott-A混沌系统及其电路实现
CN112422262A (zh) * 2019-08-23 2021-02-26 天津科技大学 一种具有双簇保守混沌流的广义Sprott-A系统及其电路实现
CN112422258A (zh) * 2019-08-23 2021-02-26 天津科技大学 一种具有单簇保守混沌流的改进型Sprott-A系统及其电路实现
CN112422259A (zh) * 2019-08-23 2021-02-26 天津科技大学 一种具有八簇保守混沌流的广义Sprott-A系统及其电路实现
CN112422766A (zh) * 2019-08-23 2021-02-26 天津科技大学 一种具有三维2×2×1簇保守混沌流的广义Sprott-A系统及其电路实现
CN113505559A (zh) * 2021-08-05 2021-10-15 合肥工业大学智能制造技术研究院 一种三值理想通用压控忆阻器电路模型
CN113872749A (zh) * 2021-09-29 2021-12-31 南开大学 一种具有4簇保守混沌流的系统及电路
CN114726501A (zh) * 2022-04-25 2022-07-08 兰州大学 一种基于四维保守混沌系统的模拟电路

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104202140A (zh) * 2014-08-31 2014-12-10 王春梅 基于五项最简混沌系统的无平衡点四维超混沌系统及模拟电路
CN105119709A (zh) * 2015-09-09 2015-12-02 高建红 基于五项最简混沌系统的无平衡点四维超混沌系统自适应同步方法及电路
CN105262579A (zh) * 2015-09-09 2016-01-20 王晓红 基于Rikitake系统的无平衡点四维超混沌系统自适应同步方法及电路
CN107453860B (zh) * 2016-05-22 2020-06-05 台州市牛诺电子商务有限公司 线性化Sprott B混沌系统为二次和二次项的电路
CN113162551A (zh) * 2021-05-06 2021-07-23 湘潭大学 一种能产生新型复杂簇发现象的多频慢激励Lorenz衍生系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103684747A (zh) * 2014-01-07 2014-03-26 滨州学院 一个双层蝶形吸引子混沌发生器及电路
CN103684746A (zh) * 2014-01-03 2014-03-26 滨州学院 一个无平衡点的四维超混沌系统及模拟电路实现
CN103731256A (zh) * 2014-01-03 2014-04-16 滨州学院 一个三维无平衡点的混沌系统及模拟电路实现
CN104202140A (zh) * 2014-08-31 2014-12-10 王春梅 基于五项最简混沌系统的无平衡点四维超混沌系统及模拟电路

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201726386U (zh) * 2010-07-21 2011-01-26 滨州学院 超混沌/混沌系统通用模拟电路
CN102946309B (zh) * 2012-11-19 2015-04-15 合肥工业大学 一种超混沌电路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103684746A (zh) * 2014-01-03 2014-03-26 滨州学院 一个无平衡点的四维超混沌系统及模拟电路实现
CN103731256A (zh) * 2014-01-03 2014-04-16 滨州学院 一个三维无平衡点的混沌系统及模拟电路实现
CN103684747A (zh) * 2014-01-07 2014-03-26 滨州学院 一个双层蝶形吸引子混沌发生器及电路
CN104202140A (zh) * 2014-08-31 2014-12-10 王春梅 基于五项最简混沌系统的无平衡点四维超混沌系统及模拟电路

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109543313A (zh) * 2018-11-27 2019-03-29 杭州电子科技大学 基于忆阻器反馈的超混沌系统的电路模型
CN109543313B (zh) * 2018-11-27 2023-01-31 杭州电子科技大学 基于忆阻器反馈的超混沌系统的电路模型
CN109684747A (zh) * 2018-12-27 2019-04-26 杭州电子科技大学 一种对数型荷控忆容器等效电路模型
CN109684747B (zh) * 2018-12-27 2023-07-11 杭州电子科技大学 一种对数型荷控忆容器等效电路模型
CN109766643A (zh) * 2019-01-16 2019-05-17 杭州电子科技大学 三值忆阻器的电路模型
CN109766643B (zh) * 2019-01-16 2022-12-09 杭州电子科技大学 三值忆阻器的电路模型
CN110175384A (zh) * 2019-05-17 2019-08-27 山东科技大学 一种二次光滑流控忆阻器模拟电路
CN110175384B (zh) * 2019-05-17 2023-04-18 山东科技大学 一种二次光滑流控忆阻器模拟电路
CN112152773A (zh) * 2019-06-28 2020-12-29 天津科技大学 一种三维改进型的Sprott-A混沌系统及其电路实现
CN112152983B (zh) * 2019-06-28 2022-05-20 天津科技大学 一种具有六簇混沌流的非哈密顿系统及其构建方法
CN112152774A (zh) * 2019-06-28 2020-12-29 天津科技大学 一种能产生四涡卷混沌流的非哈密顿系统及其电路实现
CN112152983A (zh) * 2019-06-28 2020-12-29 天津科技大学 一种具有六簇混沌流的非哈密顿系统及其电路实现
CN112152773B (zh) * 2019-06-28 2022-08-02 天津科技大学 一种三维改进型的Sprott-A混沌系统及其电路实现
CN112152774B (zh) * 2019-06-28 2022-08-02 天津科技大学 一种能产生四涡卷混沌流的非哈密顿系统的构建方法
CN112422766B (zh) * 2019-08-23 2022-07-29 天津科技大学 一种具有三维2×2×1簇保守混沌流的广义Sprott-A系统及其电路实现
CN112422259A (zh) * 2019-08-23 2021-02-26 天津科技大学 一种具有八簇保守混沌流的广义Sprott-A系统及其电路实现
CN112422258A (zh) * 2019-08-23 2021-02-26 天津科技大学 一种具有单簇保守混沌流的改进型Sprott-A系统及其电路实现
CN112422262B (zh) * 2019-08-23 2022-05-20 天津科技大学 一种具有双簇保守混沌流的广义Sprott-A系统及其构建方法
CN112422258B (zh) * 2019-08-23 2022-07-29 天津科技大学 一种具有单簇保守混沌流的改进型Sprott-A系统的构建方法
CN112422262A (zh) * 2019-08-23 2021-02-26 天津科技大学 一种具有双簇保守混沌流的广义Sprott-A系统及其电路实现
CN112422259B (zh) * 2019-08-23 2022-08-02 天津科技大学 一种具有八簇保守混沌流的广义Sprott-A系统的构建方法
CN112422766A (zh) * 2019-08-23 2021-02-26 天津科技大学 一种具有三维2×2×1簇保守混沌流的广义Sprott-A系统及其电路实现
CN110611560A (zh) * 2019-09-18 2019-12-24 湘潭大学 一种三维非自治混沌模型及电路
CN110611560B (zh) * 2019-09-18 2023-09-12 湘潭大学 一种三维非自治混沌模型及电路
CN110896347A (zh) * 2019-12-13 2020-03-20 哈尔滨工程大学 一种具有离散分岔图的多稳定性混沌系统
CN110896347B (zh) * 2019-12-13 2024-02-09 哈尔滨工程大学 一种具有离散分岔图的多稳定性混沌系统
CN113505559A (zh) * 2021-08-05 2021-10-15 合肥工业大学智能制造技术研究院 一种三值理想通用压控忆阻器电路模型
CN113505559B (zh) * 2021-08-05 2024-03-29 合肥工业大学智能制造技术研究院 一种三值理想通用压控忆阻器电路模型
CN113872749A (zh) * 2021-09-29 2021-12-31 南开大学 一种具有4簇保守混沌流的系统及电路
CN113872749B (zh) * 2021-09-29 2023-12-29 南开大学 一种具有4簇保守混沌流的系统
CN114726501A (zh) * 2022-04-25 2022-07-08 兰州大学 一种基于四维保守混沌系统的模拟电路
CN114726501B (zh) * 2022-04-25 2024-04-12 兰州大学 一种基于四维保守混沌系统的模拟电路

Also Published As

Publication number Publication date
CN104202140A (zh) 2014-12-10

Similar Documents

Publication Publication Date Title
WO2016029616A1 (zh) 基于五项最简混沌系统的无平衡点四维超混沌系统及模拟电路
WO2016029617A1 (zh) 基于五项最简混沌系统的四维无平衡点超混沌系统及模拟电路
WO2016029618A1 (zh) 基于Rikitake系统的四维无平衡点超混沌系统及模拟电路
WO2016029619A1 (zh) 基于Rikitake系统的无平衡点四维超混沌系统及模拟电路
Duan et al. Cauchy problem on the Vlasov-Fokker-Planck equation coupled with the compressible Euler equations through the friction force
Liu et al. Monotone iterative technique for Riemann–Liouville fractional integro-differential equations with advanced arguments
Hu et al. Persistence of regularity for the viscous Boussinesq equations with zero diffusivity
WO2015123803A1 (zh) 一种分数阶次不同的经典chen混沌切换系统方法及电路
WO2016187739A1 (zh) 一种反馈不同的便于终极边界估计的Lorenz型超混沌系统构建方法及电路
CN104092532B (zh) 基于三维混沌系统的无平衡点超混沌系统及模拟电路
WO2016187741A1 (zh) 一种变量不同的便于终极边界估计的Lorenz型超混沌系统构建方法及电路
Shen An integrating factor approach to the Hyers–Ulam stability of a class of exact differential equations of second order
Ye et al. Order two superconvergence of the CDG method for the Stokes equations on triangle/tetrahedron
WO2016187738A1 (zh) 一种不同变量的利于终极边界估计的Lorenz型超混沌系统构建方法及电路
Liu et al. Bifurcations of limit cycles created by a multiple nilpotent critical point of planar dynamical systems
WO2016187742A1 (zh) 一种不同反馈的便于终极边界估计的Lorenz型超混沌系统构建方法及电路
Jia et al. Remarks on the regularity criteria of weak solutions to the three-dimensional micropolar fluid equations
WO2016187740A1 (zh) 一种便于终极边界估计的Lorenz型四系统切换超混沌系统构建方法及电路
Shi et al. The lowest order characteristic mixed finite element scheme for convection-dominated diffusion problem
Gala A note on the Liouville type theorem for the smooth solutions of the stationary Hall-MHD system
Shivaram et al. Numerical integration of arbitrary functions over a convex and non-convex polygonal domain by quadrature method
Yi Exact solution of Navier-Stokes equations
Fan et al. Global strong solutions of the density-dependent incompressible MHD system with zero resistivity in a bounded domain
Zhou et al. Zero shear viscosity limit and boundary layer for the Navier–Stokes equations of compressible fluids between two horizontal parallel plates
Wu et al. An auto-switched chaos system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15835493

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15835493

Country of ref document: EP

Kind code of ref document: A1