WO2016187738A1 - 一种不同变量的利于终极边界估计的Lorenz型超混沌系统构建方法及电路 - Google Patents
一种不同变量的利于终极边界估计的Lorenz型超混沌系统构建方法及电路 Download PDFInfo
- Publication number
- WO2016187738A1 WO2016187738A1 PCT/CN2015/000571 CN2015000571W WO2016187738A1 WO 2016187738 A1 WO2016187738 A1 WO 2016187738A1 CN 2015000571 W CN2015000571 W CN 2015000571W WO 2016187738 A1 WO2016187738 A1 WO 2016187738A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pin
- operational amplifier
- resistor
- multiplier
- selector
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/001—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols using chaotic signals
Definitions
- the invention relates to a chaotic system and a circuit, in particular to a method and a circuit for constructing a Lorenz type hyperchaotic system with different variables for the ultimate boundary estimation.
- the boundary estimation of hyperchaotic systems is of great significance in the application of chaos control and synchronization.
- the method of constructing four-dimensional hyperchaos is based on the three-dimensional chaotic system, adding one-dimensional four-dimensional hyperchaotic systems.
- the hyperchaotic system is not easy to perform ultimate boundary estimation.
- the hyperchaotic system that can perform ultimate boundary estimation has the characteristic that the characteristic elements of the main diagonal of the Jacobian matrix are all negative, and the hyperchaotic system constructed by the present invention has ya The characteristic elements of the main diagonal of the comparable matrix are all negative, and the ultimate boundary estimation can be performed. This has important application prospects for the control and synchronization of hyperchaos.
- a method for constructing a Lorenz type hyperchaotic system which is advantageous for the ultimate boundary estimation of different variables, comprising the following steps:
- x, y, and z are state variables, and a, b, c, and d are system parameters;
- w 1 is a state variable and k, r are system parameters
- w is the state variable
- f(x) is the switching function
- k, r are the system parameters
- variable w is used as a one-dimensional system variable and added to the second equation of the Lorenz-type chaotic system i.
- a Lorenz-type hyperchaotic system vi which is beneficial to the ultimate boundary estimation is obtained as:
- x, y, z, w are state variables
- f(x) is a switching function
- the addition and integration operations are realized by the operational amplifier U1, the operational amplifier U2, and the resistors and capacitors, and the inverse operation is realized by the operational amplifier U3 and the resistor, and the multiplier U4 and the multiplier U5 are implemented in the system.
- the multiplication operation, the operational amplifier U6 and the selector U7 implement a switching function operation, the operational amplifiers U1, U2, U3 and U6 adopt LF347BN, the multipliers U4 and U5 adopt AD633JN, and the selector U7 adopts ADG409;
- the operational amplifier U1 is connected to an operational amplifier U3, an operational amplifier U6, and a multiplier U5.
- the operational amplifier U2 is connected to a multiplier U4, an operational amplifier U1, and an operational amplifier U3.
- the operational amplifier U3 is connected to an operational amplifier U1 and an operational amplifier U2.
- An operational amplifier U6, a selector U7, and a multiplier U4, the multiplier U4 is connected to an operational amplifier U1, the multiplier U5 is connected to an operational amplifier U2; the operational amplifier U6 is connected to a selector U7, and the selector U7 is connected to an operational amplifier U2;
- the first pin of the operational amplifier U1 is connected to the sixth pin of the operational amplifier U1 via the resistor R2, and the second pin of the operational amplifier U1 is connected to the first pin of the operational amplifier U1 via the resistor Ry.
- the third pin, the fifth pin, the tenth pin, and the twelfth pin of U1 are grounded, the fourth pin of the operational amplifier U1 is connected to VCC, the eleventh pin of the operational amplifier U1 is connected to VEE, and the operational amplifier U1 is The 6-pin is connected to the 7th pin of the operational amplifier U1 through the capacitor Cy.
- the 7th pin of the operational amplifier U1 is connected to the 13th pin of the operational amplifier U1 through the resistor Rx2, and the 7th pin of the operational amplifier U1 is connected.
- the first pin of the multiplier U5 is connected, the seventh pin of the operational amplifier U1 is connected to the sixth pin of the operational amplifier U3 through the resistor R7, and the seventh pin of the operational amplifier U1 is connected to the output y, and the operational amplifier U1 is The 8th pin is connected to the 9th pin of the operational amplifier U1 through the capacitor Cx.
- the 8th pin of the operational amplifier U1 is connected to the 2nd pin of the operational amplifier U1 through the resistor Ry1, and the 8th pin of the operational amplifier U1.
- the first pin of the operational amplifier U2 is connected to the sixth pin of the operational amplifier U2 via the resistor R4, and the second pin of the operational amplifier U2 is connected to the first pin of the operational amplifier U2 via the resistor Rw.
- the 3rd pin, the 5th pin, the 10th pin, and the 12th pin of U2 are grounded, the 4th pin is connected to VCC, the 11th pin is connected to VEE, and the 6th pin of the operational amplifier U2 is connected to the capacitor Cw.
- the seventh pin of the amplifier U2 is connected, the seventh pin of the operational amplifier U2 is connected to the second pin of the operational amplifier U1 through the resistor Ry4, and the seventh pin of the operational amplifier U2 is connected to the operational amplifier U3 through the resistor R11 and the third pin.
- the first pin of the operational amplifier U3 is connected to the 13th pin of the operational amplifier U1 via the resistor Rx1, and the first pin of the operational amplifier U3 is connected to the fourth pin of the selector U7, and the operational amplifier U3 is connected.
- the 1 pin is connected to the first pin of the multiplier U4, and the second pin of the operational amplifier U3 is connected to the first pin of the operational amplifier U3 via the resistor R6, and the third and fifth leads of the operational amplifier U3.
- the 10th pin and the 12th pin are grounded, the 4th pin is connected to VCC, the 11th pin is connected to VEE, and the 6th pin of the operational amplifier U3 is connected to the 7th pin of the operational amplifier U3 through the resistor R8.
- the seventh pin of the operational amplifier U3 is connected to the second pin of the operational amplifier U1 via the resistor Ry2, the seventh pin of the operational amplifier U3 is connected to the fifth pin of the selector U7, and the eighth pin of the operational amplifier U3 is connected.
- the pin is connected to the 9th pin of the operational amplifier U3 through the resistor R10.
- the 8th pin of the operational amplifier U3 is connected to the 13th pin of the operational amplifier U2 through the resistor Rz2, and the 13th pin of the operational amplifier U3 is passed through the resistor R12.
- pin 14 of op amp U3 the 14th pin of op amp U3 passes through resistor Rw2 and op amp U2
- the second pin is connected;
- the second pin, the fourth pin, and the sixth pin of the multiplier U4 are grounded, the fifth pin is connected to VEE, and the seventh pin is connected to the second pin of the operational amplifier U1 through the resistor Ry3, and the eighth pin Foot connected to VCC;
- the second pin, the fourth pin, and the sixth pin of the multiplier U5 are grounded, the fifth pin is connected to VEE, and the seventh pin is connected to the 13th pin and the eighth pin of the operational amplifier U2 through the resistor Rz1. Connected to VCC;
- the first pin of the operational amplifier U6 is connected to the first pin of the selector U7 via the resistor R13, and the first pin of the operational amplifier U6 is connected to the ground through the resistor R13 and the resistor R14, and the third of the operational amplifier U6.
- Pin, 5th pin, 10th pin, 12th pin are grounded, the 4th pin is connected to VCC, the 11th pin is connected to VEE, and the operational amplifier U6 is The 6-pin, 7-th pin, 8th pin, 9th pin, 12th pin, 13th pin, and 14th pin are left floating.
- the pin is connected to the second pin of the operational amplifier U2 through the resistor Rw1, and the sixth, seventh, ninth, tenth, eleventh, and twelfth pins of the selector U7.
- the 13th pin is left floating.
- a Lorenz-type hyperchaotic system circuit for different final variables which is advantageous for ultimate boundary estimation. It is characterized in that the operational amplifier U1, the operational amplifier U2, the resistors and capacitors are used for addition and integration operations, and the operational amplifier U3 and the resistor are used for inversion. Operation, multiplier U4 and multiplier U5 implement multiplication in the system, operational amplifier U6 and selector U7 implement switching function operations, operational amplifier U1 is connected to operational amplifiers U3 and U6, and operational amplifier U1 is connected to multipliers U4 and U5 and selector U7, the operational amplifiers U1, U2, U3 and U6 adopt LF347BN, the multipliers U4 and U5 adopt AD633JN, and the selector U7 adopts ADG409;
- the operational amplifier U1 is connected to an operational amplifier U3, an operational amplifier U6, and a multiplier U5.
- the operational amplifier U2 is connected to a multiplier U4, an operational amplifier U1, and an operational amplifier U3.
- the operational amplifier U3 is connected to an operational amplifier U1 and an operational amplifier U2.
- An operational amplifier U6, a selector U7, and a multiplier U4, the multiplier U4 is connected to an operational amplifier U1, the multiplier U5 is connected to an operational amplifier U2; the operational amplifier U6 is connected to a selector U7, and the selector U7 is connected to an operational amplifier U2;
- the first pin of the operational amplifier U1 is connected to the sixth pin of the operational amplifier U1 via the resistor R2, and the second pin of the operational amplifier U1 is connected to the first pin of the operational amplifier U1 via the resistor Ry.
- the third pin, the fifth pin, the tenth pin, and the twelfth pin of U1 are grounded, the fourth pin of the operational amplifier U1 is connected to VCC, the eleventh pin of the operational amplifier U1 is connected to VEE, and the operational amplifier U1 is The 6-pin is connected to the 7th pin of the operational amplifier U1 through the capacitor Cy.
- the 7th pin of the operational amplifier U1 is connected to the 13th pin of the operational amplifier U1 through the resistor Rx2, and the 7th pin of the operational amplifier U1 is connected.
- the first pin of the multiplier U5 is connected, the seventh pin of the operational amplifier U1 is connected to the sixth pin of the operational amplifier U3 through the resistor R7, and the seventh pin of the operational amplifier U1 is connected to the output y, and the operational amplifier U1 is The 8th pin is connected to the 9th pin of the operational amplifier U1 through the capacitor Cx.
- the 8th pin of the operational amplifier U1 is connected to the 2nd pin of the operational amplifier U1 through the resistor Ry1, and the 8th pin of the operational amplifier U1.
- the first pin of the operational amplifier U2 is connected to the sixth pin of the operational amplifier U2 through the resistor R4, and the operation is performed.
- the second pin of the amplifier U2 is connected to the first pin of the operational amplifier U2 via the resistor Rw, and the third pin, the fifth pin, the tenth pin, and the twelfth pin of the operational amplifier U2 are grounded, and the fourth lead
- the pin is connected to VCC
- the 11th pin is connected to VEE
- the 6th pin of the operational amplifier U2 is connected to the 7th pin of the operational amplifier U2 through the capacitor Cw
- the 7th pin of the operational amplifier U2 is connected to the operational amplifier U1 through the resistor Ry4
- the second pin is connected, the seventh pin of the operational amplifier U2 is connected to the thirteenth pin of the operational amplifier U3 through the resistor R11, the seventh pin of the operational amplifier U2 is connected to the output w, and the eighth pin of the operational amplifier U2
- the capacitor Cz is connected to the ninth pin of the operational amplifier
- the 9th pin is connected, the 8th pin of the operational amplifier U2 is connected to the output z, the 13th pin of the operational amplifier U2 is connected to the 14th pin of the operational amplifier U2 through the resistor Rz, and the 14th lead of the operational amplifier U2 The pin is connected to the 9th pin of the operational amplifier U2 through the resistor R3;
- the first pin of the operational amplifier U3 is connected to the 13th pin of the operational amplifier U1 via the resistor Rx1, and the first pin of the operational amplifier U3 is connected to the fourth pin of the selector U7, and the operational amplifier U3 is connected.
- the 1 pin is connected to the first pin of the multiplier U4, and the second pin of the operational amplifier U3 is connected to the first pin of the operational amplifier U3 via the resistor R6, and the third and fifth leads of the operational amplifier U3.
- the 10th pin and the 12th pin are grounded, the 4th pin is connected to VCC, the 11th pin is connected to VEE, and the 6th pin of the operational amplifier U3 is connected to the 7th pin of the operational amplifier U3 through the resistor R8.
- the seventh pin of the operational amplifier U3 is connected to the second pin of the operational amplifier U1 via the resistor Ry2, the seventh pin of the operational amplifier U3 is connected to the fifth pin of the selector U7, and the eighth pin of the operational amplifier U3 is connected.
- the pin is connected to the 9th pin of the operational amplifier U3 through the resistor R10.
- the 8th pin of the operational amplifier U3 is connected to the 13th pin of the operational amplifier U2 through the resistor Rz2, and the 13th pin of the operational amplifier U3 is passed through the resistor R12.
- pin 14 of op amp U3 the 14th pin of op amp U3 passes through resistor Rw2 and op amp U2
- the second pin is connected;
- the second pin, the fourth pin, and the sixth pin of the multiplier U4 are grounded, the fifth pin is connected to VEE, and the seventh pin is connected to the second pin of the operational amplifier U1 through the resistor Ry3, and the eighth pin Foot connected to VCC;
- the second pin, the fourth pin, and the sixth pin of the multiplier U5 are grounded, the fifth pin is connected to VEE, and the seventh pin is connected to the 13th pin and the eighth pin of the operational amplifier U2 through the resistor Rz1. Connected to VCC;
- the first pin of the operational amplifier U6 is connected to the first pin of the selector U7 via the resistor R13, and the first pin of the operational amplifier U6 is connected to the ground through the resistor R13 and the resistor R14, and the third of the operational amplifier U6.
- Pin, 5th pin, 10th pin, 12th pin are grounded, the 4th pin is connected to VCC, the 11th pin is connected to VEE, and the operational amplifier U6 is 6th, 7th, and 8th.
- the 9th pin, the 12th pin, the 13th pin, and the 14th pin are left floating.
- the 8th pin of the selector U7 is connected to the 2nd pin of the operational amplifier U2 through the resistor Rw1.
- the 6th pin, the 7th pin, and the The 9-pin, 10th pin, 11th pin, 12th pin, and 13th pin are left floating.
- the present invention Based on the Lorenz-type chaotic system, the present invention designs a Lorenz-type hyperchaotic system with different variables for the ultimate boundary estimation and designs an analog circuit to realize the chaotic system. And control provides a new source of hyperchaotic system signals.
- FIG. 1 is a schematic diagram of a circuit connection structure according to a preferred embodiment of the present invention.
- FIG. 3 is a diagram showing the actual connection of the circuit of the operational amplifier U3.
- FIG. 5 is a circuit actual connection diagram of the selector U7 and the operational amplifier U6.
- a method for constructing a Lorenz type hyperchaotic system which is advantageous for the ultimate boundary estimation of different variables, comprising the following steps:
- x, y, and z are state variables, and a, b, c, and d are system parameters;
- w 1 is a state variable and k, r are system parameters
- w is the state variable
- f(x) is the switching function
- k, r are the system parameters
- variable w is used as a one-dimensional system variable and added to the second equation of the Lorenz-type chaotic system i.
- a Lorenz-type hyperchaotic system vi which is beneficial to the ultimate boundary estimation is obtained as:
- x, y, z, w are state variables
- f(x) is a switching function
- the addition and integration operations are realized by the operational amplifier U1, the operational amplifier U2, and the resistors and capacitors, and the inverse operation is realized by the operational amplifier U3 and the resistor, and the multiplier U4 and the multiplier U5 are implemented in the system.
- the multiplication operation, the operational amplifier U6 and the selector U7 implement a switching function operation, the operational amplifiers U1, U2, U3 and U6 adopt LF347BN, the multipliers U4 and U5 adopt AD633JN, and the selector U7 adopts ADG409;
- the operational amplifier U1 is connected to an operational amplifier U3, an operational amplifier U6, and a multiplier U5.
- the operational amplifier U2 is connected to a multiplier U4, an operational amplifier U1, and an operational amplifier U3.
- the operational amplifier U3 is connected to an operational amplifier U1 and an operational amplifier U2.
- An operational amplifier U6, a selector U7, and a multiplier U4, the multiplier U4 is connected to an operational amplifier U1, the multiplier U5 is connected to an operational amplifier U2; the operational amplifier U6 is connected to a selector U7, and the selector U7 is connected to an operational amplifier U2;
- the first pin of the operational amplifier U1 is connected to the sixth pin of the operational amplifier U1 via the resistor R2, and the second pin of the operational amplifier U1 is connected to the first pin of the operational amplifier U1 via the resistor Ry.
- the third pin, the fifth pin, the tenth pin, and the twelfth pin of U1 are grounded, the fourth pin of the operational amplifier U1 is connected to VCC, the eleventh pin of the operational amplifier U1 is connected to VEE, and the operational amplifier U1 is The 6-pin is connected to the 7th pin of the operational amplifier U1 through the capacitor Cy.
- the 7th pin of the operational amplifier U1 is connected to the 13th pin of the operational amplifier U1 through the resistor Rx2, and the 7th pin of the operational amplifier U1 is connected.
- the first pin of the multiplier U5 is connected, the seventh pin of the operational amplifier U1 is connected to the sixth pin of the operational amplifier U3 through the resistor R7, and the seventh pin of the operational amplifier U1 is connected to the output y, and the operational amplifier U1 is The 8th pin is connected to the 9th pin of the operational amplifier U1 through the capacitor Cx.
- the 8th pin of the operational amplifier U1 is connected to the 2nd pin of the operational amplifier U1 through the resistor Ry1, and the 8th pin of the operational amplifier U1.
- the first pin of the operational amplifier U2 is connected to the sixth pin of the operational amplifier U2 via the resistor R4, and the second pin of the operational amplifier U2 is connected to the first pin of the operational amplifier U2 via the resistor Rw.
- the 3rd pin, the 5th pin, the 10th pin, and the 12th pin of U2 are grounded, the 4th pin is connected to VCC, the 11th pin is connected to VEE, and the 6th pin of the operational amplifier U2 is connected to the capacitor Cw.
- the seventh pin of the amplifier U2 is connected, the seventh pin of the operational amplifier U2 is connected to the second pin of the operational amplifier U1 through the resistor Ry4, and the seventh pin of the operational amplifier U2 is connected to the operational amplifier U3 through the resistor R11 and the third pin.
- the first pin of the operational amplifier U3 is connected to the 13th pin of the operational amplifier U1 via the resistor Rx1, and the first pin of the operational amplifier U3 is connected to the fourth pin of the selector U7, and the operational amplifier U3 is connected.
- the 1 pin is connected to the first pin of the multiplier U4, and the second pin of the operational amplifier U3 is connected to the first pin of the operational amplifier U3 via the resistor R6, and the third and fifth leads of the operational amplifier U3.
- the 10th pin and the 12th pin are grounded, the 4th pin is connected to VCC, the 11th pin is connected to VEE, and the 6th pin of the operational amplifier U3 is connected to the 7th pin of the operational amplifier U3 through the resistor R8.
- the seventh pin of the operational amplifier U3 is connected to the second pin of the operational amplifier U1 via the resistor Ry2, the seventh pin of the operational amplifier U3 is connected to the fifth pin of the selector U7, and the eighth pin of the operational amplifier U3 is connected.
- the pin is connected to the 9th pin of the operational amplifier U3 through the resistor R10.
- the 8th pin of the operational amplifier U3 is connected to the 13th pin of the operational amplifier U2 through the resistor Rz2, and the 13th pin of the operational amplifier U3 is passed through the resistor R12.
- pin 14 of op amp U3 the 14th pin of op amp U3 passes through resistor Rw2 and op amp U2
- the second pin is connected;
- the second pin, the fourth pin, and the sixth pin of the multiplier U4 are grounded, the fifth pin is connected to VEE, and the seventh pin is connected to the second pin of the operational amplifier U1 through the resistor Ry3, and the eighth pin Foot connected to VCC;
- the second pin, the fourth pin, and the sixth pin of the multiplier U5 are grounded, the fifth pin is connected to VEE, and the seventh pin is connected to the 13th pin and the eighth pin of the operational amplifier U2 through the resistor Rz1. Connected to VCC;
- the first pin of the operational amplifier U6 is connected to the first pin of the selector U7 via the resistor R13, and the first pin of the operational amplifier U6 is connected to the ground through the resistor R13 and the resistor R14, and the third of the operational amplifier U6.
- Pin, 5th pin, 10th pin, 12th pin are grounded, the 4th pin is connected to VCC, the 11th pin is connected to VEE, and the operational amplifier U6 is The 6-pin, 7-th pin, 8th pin, 9th pin, 12th pin, 13th pin, and 14th pin are left floating.
- the pin is connected to the second pin of the operational amplifier U2 through the resistor Rw1, and the sixth, seventh, ninth, tenth, eleventh, and twelfth pins of the selector U7.
- the 13th pin is left floating.
- a Lorenz-type hyperchaotic system circuit for different final variables which is advantageous for ultimate boundary estimation. It is characterized in that the operational amplifier U1, the operational amplifier U2, the resistors and capacitors are used for addition and integration operations, and the operational amplifier U3 and the resistor are used for inversion. Operation, multiplier U4 and multiplier U5 implement multiplication in the system, operational amplifier U6 and selector U7 implement switching function operations, operational amplifier U1 is connected to operational amplifiers U3 and U6, and operational amplifier U1 is connected to multipliers U4 and U5 and selector U7, the operational amplifiers U1, U2, U3 and U6 adopt LF347BN, the multipliers U4 and U5 adopt AD633JN, and the selector U7 adopts ADG409;
- the operational amplifier U1 is connected to an operational amplifier U3, an operational amplifier U6, and a multiplier U5.
- the operational amplifier U2 is connected to a multiplier U4, an operational amplifier U1, and an operational amplifier U3.
- the operational amplifier U3 is connected to an operational amplifier U1 and an operational amplifier U2.
- An operational amplifier U6, a selector U7, and a multiplier U4, the multiplier U4 is connected to an operational amplifier U1, the multiplier U5 is connected to an operational amplifier U2; the operational amplifier U6 is connected to a selector U7, and the selector U7 is connected to an operational amplifier U2;
- the first pin of the operational amplifier U1 is connected to the sixth pin of the operational amplifier U1 via the resistor R2, and the second pin of the operational amplifier U1 is connected to the first pin of the operational amplifier U1 via the resistor Ry.
- the third pin, the fifth pin, the tenth pin, and the twelfth pin of U1 are grounded, the fourth pin of the operational amplifier U1 is connected to VCC, the eleventh pin of the operational amplifier U1 is connected to VEE, and the operational amplifier U1 is The 6-pin is connected to the 7th pin of the operational amplifier U1 through the capacitor Cy.
- the 7th pin of the operational amplifier U1 is connected to the 13th pin of the operational amplifier U1 through the resistor Rx2, and the 7th pin of the operational amplifier U1 is connected.
- the first pin of the multiplier U5 is connected, the seventh pin of the operational amplifier U1 is connected to the sixth pin of the operational amplifier U3 through the resistor R7, and the seventh pin of the operational amplifier U1 is connected to the output y, and the operational amplifier U1 is The 8th pin is connected to the 9th pin of the operational amplifier U1 through the capacitor Cx.
- the 8th pin of the operational amplifier U1 is connected to the 2nd pin of the operational amplifier U1 through the resistor Ry1, and the 8th pin of the operational amplifier U1.
- the first pin of the operational amplifier U2 is connected to the sixth pin of the operational amplifier U2 through the resistor R4, and the operation is performed.
- the second pin of the amplifier U2 is connected to the first pin of the operational amplifier U2 via the resistor Rw, and the third pin, the fifth pin, the tenth pin, and the twelfth pin of the operational amplifier U2 are grounded, and the fourth lead
- the pin is connected to VCC
- the 11th pin is connected to VEE
- the 6th pin of the operational amplifier U2 is connected to the 7th pin of the operational amplifier U2 through the capacitor Cw
- the 7th pin of the operational amplifier U2 is connected to the operational amplifier U1 through the resistor Ry4
- the second pin is connected, the seventh pin of the operational amplifier U2 is connected to the thirteenth pin of the operational amplifier U3 through the resistor R11, the seventh pin of the operational amplifier U2 is connected to the output w, and the eighth pin of the operational amplifier U2
- the capacitor Cz is connected to the ninth pin of the operational amplifier
- the 9th pin is connected, the 8th pin of the operational amplifier U2 is connected to the output z, the 13th pin of the operational amplifier U2 is connected to the 14th pin of the operational amplifier U2 through the resistor Rz, and the 14th lead of the operational amplifier U2 The pin is connected to the 9th pin of the operational amplifier U2 through the resistor R3;
- the first pin of the operational amplifier U3 is connected to the 13th pin of the operational amplifier U1 via the resistor Rx1, and the first pin of the operational amplifier U3 is connected to the fourth pin of the selector U7, and the operational amplifier U3 is connected.
- the 1 pin is connected to the first pin of the multiplier U4, and the second pin of the operational amplifier U3 is connected to the first pin of the operational amplifier U3 via the resistor R6, and the third and fifth leads of the operational amplifier U3.
- the 10th pin and the 12th pin are grounded, the 4th pin is connected to VCC, the 11th pin is connected to VEE, and the 6th pin of the operational amplifier U3 is connected to the 7th pin of the operational amplifier U3 through the resistor R8.
- the seventh pin of the operational amplifier U3 is connected to the second pin of the operational amplifier U1 via the resistor Ry2, the seventh pin of the operational amplifier U3 is connected to the fifth pin of the selector U7, and the eighth pin of the operational amplifier U3 is connected.
- the pin is connected to the 9th pin of the operational amplifier U3 through the resistor R10.
- the 8th pin of the operational amplifier U3 is connected to the 13th pin of the operational amplifier U2 through the resistor Rz2, and the 13th pin of the operational amplifier U3 is passed through the resistor R12.
- pin 14 of op amp U3 the 14th pin of op amp U3 passes through resistor Rw2 and op amp U2
- the second pin is connected;
- the second pin, the fourth pin, and the sixth pin of the multiplier U4 are grounded, the fifth pin is connected to VEE, and the seventh pin is connected to the second pin of the operational amplifier U1 through the resistor Ry3, and the eighth pin Foot connected to VCC;
- the second pin, the fourth pin, and the sixth pin of the multiplier U5 are grounded, the fifth pin is connected to VEE, and the seventh pin is connected to the 13th pin and the eighth pin of the operational amplifier U2 through the resistor Rz1. Connected to VCC;
- the first pin of the operational amplifier U6 is connected to the first pin of the selector U7 via the resistor R13, and the first pin of the operational amplifier U6 is connected to the ground through the resistor R13 and the resistor R14, and the third of the operational amplifier U6.
- Pin, 5th pin, 10th pin, 12th pin are grounded, the 4th pin is connected to VCC, the 11th pin is connected to VEE, and the operational amplifier U6 is 6th, 7th, and 8th.
- the 9th pin, the 12th pin, the 13th pin, and the 14th pin are left floating.
- the 8th pin of the selector U7 is connected to the 2nd pin of the operational amplifier U2 through the resistor Rw1.
- the 6th pin, the 7th pin, and the The 9-pin, 10th pin, 11th pin, 12th pin, and 13th pin are left floating.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Amplifiers (AREA)
- Networks Using Active Elements (AREA)
- Measuring Volume Flow (AREA)
Abstract
一种不同变量的便于终极边界估计的Lorenz型超混沌系统构建方法及电路,利用运算放大器U1、运算放大器U2和电阻、电容实现加法和积分运算,利用运算放大器U3和电阻实现反相运算,乘法器U4和乘法器U5实现系统中的乘法运算,所述运算放大器U1连接运算放大器U2、运算放大器U3和乘法器U5,所述运算放大器U2连接运算放大器U3和乘法器U4,所述运算放大器U1、U2和U3采用LF347BN,所述乘法器U4和U5采用AD633JN,通过在Lorenz型混沌系统的基础上,设计一种不同变量的便于终极边界估计的Lorenz型超混沌系统构建方法及电路构建方法并设计一个模拟电路进行实现这个混沌系统,为混沌的同步及控制提供了新的超混沌系统信号源。
Description
本发明涉及一种混沌系统及电路,特别涉及一种不同变量的利于终极边界估计的Lorenz型超混沌系统构建方法及电路。
超混沌系统的边界估计在混沌的控制、同步等工程应用方面具有重要的意义,当前,构造四维超混沌的方法主要是在三维混沌系统的基础上,增加一维构成四维超混沌系统,但所构成的超混沌系统不易于进行终极边界估计,可以进行终极边界估计的超混沌系统具有的特征是:雅可比矩阵主对角线的特征元素全部为负值,本发明构造的超混沌系统具有雅可比矩阵主对角线的特征元素全部为负值的特点,可以进行终极边界估计,这对于超混沌的控制、同步等具有重要的工作应用前景。
发明内容
本发明要解决的技术问题是提供一种不同变量的利于终极边界估计的Lorenz型超混沌系统构建方法及电路:
1.一种不同变量的利于终极边界估计的Lorenz型超混沌系统构建方法,其特征在于,包括以下步骤:
(1)Lorenz型混沌系统i为:
式中x,y,z为状态变量,a,b,c,d为系统参数;
(2)构建一维新的变量w1:
dw1/dt=-kx-rw1 k=5,r=0.1 ii
式中w1为状态变量,k,r为系统参数;
(3)构建一维新的变量w2:
dw2/dt=-ky-rw2 k=5,r=0.1 iii
式中w2为状态变量,k,r为系统参数;
(4)构造一个选择函数iv将ii和iii组成一维切换变量w:
dw/dt=kf(x)-rw k=5,r=0.1 v
式中w为状态变量,f(x)是切换函数,k,r为系统参数;
(5)把变量w作为一维系统变量,加在Lorenz型混沌系统i的第二方程上,获得一种利于终极边界估计的Lorenz型超混沌系统vi为:
式中x,y,z,w为状态变量,f(x)是切换函数,参数值a=12,b=23,c=1,d=2.1,k=5,r=0.1;
(6)基于系统vi构造的电路,利用运算放大器U1、运算放大器U2和电阻、电容实现加法和积分运算,利用运算放大器U3和电阻实现反相运算,乘法器U4和乘法器U5实现系统中的乘法运算,运算放大器U6和选择器U7实现切换函数运算,所述运算放大器U1、U2、U3和U6采用LF347BN,所述乘法器U4和U5采用AD633JN,所述选择器U7采用ADG409;
所述运算放大器U1连接运算放大器U3、运算放大器U6和乘法器U5,所述运算放大器U2连接乘法器U4、运算放大器U1和运算放大器U3,所述运算放大器U3连接运算放大器U1、运算放大器U2、运算放大器U6、选择器U7和乘法器U4,所述乘法器U4连接运算放大器U1,所述乘法器U5连接运算放大器U2;所述运算放大器U6连接选择器U7,所述选择器U7连接运算放大器U2;
所述运算放大器U1的第1引脚通过电阻R2与运算放大器U1的第6引脚相接,运算放大器U1的第2引脚通过电阻Ry与运算放大器U1的第1引脚相接,运算放大器U1的第3引脚、第5引脚、第10引脚、第12引脚接地,运算放大器U1的第4引脚接VCC,运算放大器U1的第11引脚接VEE,运算放大器U1的第6引脚通过电容Cy与运算放大器U1的第7引脚相接,运算放大器U1的第7引脚通过电阻Rx2与运算放大器U1的第13引脚相接,运算放大器U1的第7引脚与乘法器U5的第1引脚相接,运算放大器U1的第7引脚通过电阻R7与运算放大器U3的第6引脚相接,运算放大器U1的第7引脚接输出y,运算放大器U1的第8引脚通过电容Cx与运算放大器U1的第9引脚相接,运算放大器U1的第8引脚通过电阻Ry1与运算放大器U1的第2引脚相接,运算放大器U1的第8引脚通过电阻R5与运算放大器U3的第2引脚相接,运算放大器U1的第8引脚与乘法器U5的第3引脚相接,运算放大器U1的第8引脚与运算放大器U6的第2引脚相接,运算放大器U1的第8引脚接输出x,运算放大器U1的第13引脚通过电阻Rx与运算放大器U1的第14引
脚相接,运算放大器U1的第14引脚通过电阻R1与运算放大器U1的第9引脚相接;
所述运算放大器U2的第1引脚通过电阻R4与运算放大器U2的第6引脚相接,运算放大器U2的第2引脚通过电阻Rw与运算放大器U2的第1引脚相接,运算放大器U2的第3引脚、第5引脚、第10引脚、第12引脚接地,第4引脚接VCC,第11引脚接VEE,运算放大器U2的第6引脚通过电容Cw与运算放大器U2的第7引脚相接,运算放大器U2的第7引脚通过电阻Ry4与运算放大器U1的第2引脚相接,运算放大器U2的第7引脚通过电阻R11与运算放大器U3的第13引脚相接,运算放大器U2的第7引脚接输出w,运算放大器U2的第8引脚通过电容Cz与运算放大器U2的第9引脚相接,运算放大器U2的第8引脚与乘法器U4的第3引脚相接,运算放大器U2的第8引脚通过电阻R9与运算放大器U3的第9引脚相接,运算放大器U2的第8引脚接输出z,运算放大器U2的第13引脚通过电阻Rz与运算放大器U2的第14引脚相接,运算放大器U2的第14引脚通过电阻R3与运算放大器U2的第9引脚相接;
所述运算放大器U3的第1引脚通过电阻Rx1与运算放大器U1的第13引脚相接,运算放大器U3的第1引脚与选择器U7的第4引脚相接,运算放大器U3的第1引脚与乘法器U4的第1引脚相接,运算放大器U3的第2引脚通过电阻R6与运算放大器U3的第1引脚相接,运算放大器U3的第3引脚、第5引脚、第10引脚、第12引脚接地,第4引脚接VCC,第11引脚接VEE,运算放大器U3的第6引脚通过电阻R8与运算放大器U3的第7引脚相接,运算放大器U3的第7引脚通过电阻Ry2与运算放大器U1的第2引脚相接,运算放大器U3的第7引脚与选择器U7的第5引脚相接,运算放大器U3的第8引脚通过电阻R10与运算放大器U3的第9引脚相接,运算放大器U3的第8引脚通过电阻Rz2与运算放大器U2的第13引脚相接,运算放大器U3的第13引脚通过电阻R12与运算放大器U3的第14引脚相接,运算放大器U3的第14引脚通过电阻Rw2与运算放大器U2的第2引脚相接;
所述乘法器U4的第2引脚、第4引脚、第6引脚均接地,第5引脚接VEE,第7引脚通过电阻Ry3接运算放大器U1的第2引脚,第8引脚接VCC;
所述乘法器U5的第2引脚、第4引脚、第6引脚均接地,第5引脚接VEE,第7引脚通过电阻Rz1接运算放大器U2第13引脚,第8引脚接VCC;
所述运算放大器U6的第1引脚通过电阻R13与选择器U7的第1引脚相接,运算放大器U6的第1引脚通过电阻R13和电阻R14与地相接,运算放大器U6的第3引脚、第5引脚、第10引脚、第12引脚接地,第4引脚接VCC,第11引脚接VEE,运算放大器U6第
6引脚、第7引脚、第8引脚、第9引脚、第12引脚、第13引脚、第14引脚悬空。
所述选择器U7的第2引脚和第14引脚阶VCC,选择器U7的第3引脚接VEE,选择器U7的第15引脚和第16引脚接地,选择器U7的第8引脚通过电阻Rw1与运算放大器U2的第2引脚相接,选择器U7的第6引脚、第7引脚、第9引脚、第10引脚、第11引脚、第12引脚、第13引脚悬空。
2.一种不同变量的利于终极边界估计的Lorenz型超混沌系统电路,其特征在于,利用运算放大器U1、运算放大器U2和电阻、电容实现加法和积分运算,利用运算放大器U3和电阻实现反相运算,乘法器U4和乘法器U5实现系统中的乘法运算,运算放大器U6和选择器U7实现切换函数运算,运算放大器U1连接运算放大器U3和U6,运算放大器U1连接乘法器U4和U5及选择器U7,所述运算放大器U1、U2、U3和U6采用LF347BN,所述乘法器U4和U5采用AD633JN,所述选择器U7采用ADG409;
所述运算放大器U1连接运算放大器U3、运算放大器U6和乘法器U5,所述运算放大器U2连接乘法器U4、运算放大器U1和运算放大器U3,所述运算放大器U3连接运算放大器U1、运算放大器U2、运算放大器U6、选择器U7和乘法器U4,所述乘法器U4连接运算放大器U1,所述乘法器U5连接运算放大器U2;所述运算放大器U6连接选择器U7,所述选择器U7连接运算放大器U2;
所述运算放大器U1的第1引脚通过电阻R2与运算放大器U1的第6引脚相接,运算放大器U1的第2引脚通过电阻Ry与运算放大器U1的第1引脚相接,运算放大器U1的第3引脚、第5引脚、第10引脚、第12引脚接地,运算放大器U1的第4引脚接VCC,运算放大器U1的第11引脚接VEE,运算放大器U1的第6引脚通过电容Cy与运算放大器U1的第7引脚相接,运算放大器U1的第7引脚通过电阻Rx2与运算放大器U1的第13引脚相接,运算放大器U1的第7引脚与乘法器U5的第1引脚相接,运算放大器U1的第7引脚通过电阻R7与运算放大器U3的第6引脚相接,运算放大器U1的第7引脚接输出y,运算放大器U1的第8引脚通过电容Cx与运算放大器U1的第9引脚相接,运算放大器U1的第8引脚通过电阻Ry1与运算放大器U1的第2引脚相接,运算放大器U1的第8引脚通过电阻R5与运算放大器U3的第2引脚相接,运算放大器U1的第8引脚与乘法器U5的第3引脚相接,运算放大器U1的第8引脚与运算放大器U6的第2引脚相接,运算放大器U1的第8引脚接输出x,运算放大器U1的第13引脚通过电阻Rx与运算放大器U1的第14引脚相接,运算放大器U1的第14引脚通过电阻R1与运算放大器U1的第9引脚相接;
所述运算放大器U2的第1引脚通过电阻R4与运算放大器U2的第6引脚相接,运算
放大器U2的第2引脚通过电阻Rw与运算放大器U2的第1引脚相接,运算放大器U2的第3引脚、第5引脚、第10引脚、第12引脚接地,第4引脚接VCC,第11引脚接VEE,运算放大器U2的第6引脚通过电容Cw与运算放大器U2的第7引脚相接,运算放大器U2的第7引脚通过电阻Ry4与运算放大器U1的第2引脚相接,运算放大器U2的第7引脚通过电阻R11与运算放大器U3的第13引脚相接,运算放大器U2的第7引脚接输出w,运算放大器U2的第8引脚通过电容Cz与运算放大器U2的第9引脚相接,运算放大器U2的第8引脚与乘法器U4的第3引脚相接,运算放大器U2的第8引脚通过电阻R9与运算放大器U3的第9引脚相接,运算放大器U2的第8引脚接输出z,运算放大器U2的第13引脚通过电阻Rz与运算放大器U2的第14引脚相接,运算放大器U2的第14引脚通过电阻R3与运算放大器U2的第9引脚相接;
所述运算放大器U3的第1引脚通过电阻Rx1与运算放大器U1的第13引脚相接,运算放大器U3的第1引脚与选择器U7的第4引脚相接,运算放大器U3的第1引脚与乘法器U4的第1引脚相接,运算放大器U3的第2引脚通过电阻R6与运算放大器U3的第1引脚相接,运算放大器U3的第3引脚、第5引脚、第10引脚、第12引脚接地,第4引脚接VCC,第11引脚接VEE,运算放大器U3的第6引脚通过电阻R8与运算放大器U3的第7引脚相接,运算放大器U3的第7引脚通过电阻Ry2与运算放大器U1的第2引脚相接,运算放大器U3的第7引脚与选择器U7的第5引脚相接,运算放大器U3的第8引脚通过电阻R10与运算放大器U3的第9引脚相接,运算放大器U3的第8引脚通过电阻Rz2与运算放大器U2的第13引脚相接,运算放大器U3的第13引脚通过电阻R12与运算放大器U3的第14引脚相接,运算放大器U3的第14引脚通过电阻Rw2与运算放大器U2的第2引脚相接;
所述乘法器U4的第2引脚、第4引脚、第6引脚均接地,第5引脚接VEE,第7引脚通过电阻Ry3接运算放大器U1的第2引脚,第8引脚接VCC;
所述乘法器U5的第2引脚、第4引脚、第6引脚均接地,第5引脚接VEE,第7引脚通过电阻Rz1接运算放大器U2第13引脚,第8引脚接VCC;
所述运算放大器U6的第1引脚通过电阻R13与选择器U7的第1引脚相接,运算放大器U6的第1引脚通过电阻R13和电阻R14与地相接,运算放大器U6的第3引脚、第5引脚、第10引脚、第12引脚接地,第4引脚接VCC,第11引脚接VEE,运算放大器U6第6引脚、第7引脚、第8引脚、第9引脚、第12引脚、第13引脚、第14引脚悬空。
所述选择器U7的第2引脚和第14引脚阶VCC,选择器U7的第3引脚接VEE,选择器U7
的第15引脚和第16引脚接地,选择器U7的第8引脚通过电阻Rw1与运算放大器U2的第2引脚相接,选择器U7的第6引脚、第7引脚、第9引脚、第10引脚、第11引脚、第12引脚、第13引脚悬空。
有益效果:本发明在Lorenz型混沌系统的基础上,设计了一种一种不同变量的利于终极边界估计的Lorenz型超混沌系统构建方法并设计一个模拟电路进行实现这个混沌系统,为混沌的同步及控制提供了新的超混沌系统信号源。
图1为本发明优选实施例的电路连接结构示意图。
图2为乘法器U4和运算放大器U1的电路实际连接图。
图3为运算放大器U3的电路实际连接图。
图4为乘法器U5和运算放大器U2的电路实际连接图。
图5为选择器U7和运算放大器U6的电路实际连接图。
下面结合附图和优选实施例对本发明作更进一步的详细描述,参见图1-图5。
1.一种不同变量的利于终极边界估计的Lorenz型超混沌系统构建方法,其特征在于,包括以下步骤:
(1)Lorenz型混沌系统i为:
式中x,y,z为状态变量,a,b,c,d为系统参数;
(2)构建一维新的变量w1:
dw1/dt=-kx-rw1 k=5,r=0.1 ii
式中w1为状态变量,k,r为系统参数;
(3)构建一维新的变量w2:
dw2/dt=-ky-rw2 k=5,r=0.1 iii
式中w2为状态变量,k,r为系统参数;
(4)构造一个选择函数iv将ii和iii组成一维切换变量w:
dw/dt=kf(x)-rw k=5,r=0.1 v
式中w为状态变量,f(x)是切换函数,k,r为系统参数;
(5)把变量w作为一维系统变量,加在Lorenz型混沌系统i的第二方程上,获得一种利于终极边界估计的Lorenz型超混沌系统vi为:
式中x,y,z,w为状态变量,f(x)是切换函数,参数值a=12,b=23,c=1,d=2.1,k=5,r=0.1;
(6)基于系统vi构造的电路,利用运算放大器U1、运算放大器U2和电阻、电容实现加法和积分运算,利用运算放大器U3和电阻实现反相运算,乘法器U4和乘法器U5实现系统中的乘法运算,运算放大器U6和选择器U7实现切换函数运算,所述运算放大器U1、U2、U3和U6采用LF347BN,所述乘法器U4和U5采用AD633JN,所述选择器U7采用ADG409;
所述运算放大器U1连接运算放大器U3、运算放大器U6和乘法器U5,所述运算放大器U2连接乘法器U4、运算放大器U1和运算放大器U3,所述运算放大器U3连接运算放大器U1、运算放大器U2、运算放大器U6、选择器U7和乘法器U4,所述乘法器U4连接运算放大器U1,所述乘法器U5连接运算放大器U2;所述运算放大器U6连接选择器U7,所述选择器U7连接运算放大器U2;
所述运算放大器U1的第1引脚通过电阻R2与运算放大器U1的第6引脚相接,运算放大器U1的第2引脚通过电阻Ry与运算放大器U1的第1引脚相接,运算放大器U1的第3引脚、第5引脚、第10引脚、第12引脚接地,运算放大器U1的第4引脚接VCC,运算放大器U1的第11引脚接VEE,运算放大器U1的第6引脚通过电容Cy与运算放大器U1的第7引脚相接,运算放大器U1的第7引脚通过电阻Rx2与运算放大器U1的第13引脚相接,运算放大器U1的第7引脚与乘法器U5的第1引脚相接,运算放大器U1的第7引脚通过电阻R7与运算放大器U3的第6引脚相接,运算放大器U1的第7引脚接输出y,运算放大器U1的第8引脚通过电容Cx与运算放大器U1的第9引脚相接,运算放大器U1的第8引脚通过电阻Ry1与运算放大器U1的第2引脚相接,运算放大器U1的第8引脚通过电阻R5与运算放大器U3的第2引脚相接,运算放大器U1的第8引脚与乘法器U5的第3引脚相接,运算放大器U1的第8引脚与运算放大器U6的第2引脚相接,运算放大器U1的第8引脚接输出x,运算放大器U1的第13引脚通过电阻Rx与运算放大器U1的第14引
脚相接,运算放大器U1的第14引脚通过电阻R1与运算放大器U1的第9引脚相接;
所述运算放大器U2的第1引脚通过电阻R4与运算放大器U2的第6引脚相接,运算放大器U2的第2引脚通过电阻Rw与运算放大器U2的第1引脚相接,运算放大器U2的第3引脚、第5引脚、第10引脚、第12引脚接地,第4引脚接VCC,第11引脚接VEE,运算放大器U2的第6引脚通过电容Cw与运算放大器U2的第7引脚相接,运算放大器U2的第7引脚通过电阻Ry4与运算放大器U1的第2引脚相接,运算放大器U2的第7引脚通过电阻R11与运算放大器U3的第13引脚相接,运算放大器U2的第7引脚接输出w,运算放大器U2的第8引脚通过电容Cz与运算放大器U2的第9引脚相接,运算放大器U2的第8引脚与乘法器U4的第3引脚相接,运算放大器U2的第8引脚通过电阻R9与运算放大器U3的第9引脚相接,运算放大器U2的第8引脚接输出z,运算放大器U2的第13引脚通过电阻Rz与运算放大器U2的第14引脚相接,运算放大器U2的第14引脚通过电阻R3与运算放大器U2的第9引脚相接;
所述运算放大器U3的第1引脚通过电阻Rx1与运算放大器U1的第13引脚相接,运算放大器U3的第1引脚与选择器U7的第4引脚相接,运算放大器U3的第1引脚与乘法器U4的第1引脚相接,运算放大器U3的第2引脚通过电阻R6与运算放大器U3的第1引脚相接,运算放大器U3的第3引脚、第5引脚、第10引脚、第12引脚接地,第4引脚接VCC,第11引脚接VEE,运算放大器U3的第6引脚通过电阻R8与运算放大器U3的第7引脚相接,运算放大器U3的第7引脚通过电阻Ry2与运算放大器U1的第2引脚相接,运算放大器U3的第7引脚与选择器U7的第5引脚相接,运算放大器U3的第8引脚通过电阻R10与运算放大器U3的第9引脚相接,运算放大器U3的第8引脚通过电阻Rz2与运算放大器U2的第13引脚相接,运算放大器U3的第13引脚通过电阻R12与运算放大器U3的第14引脚相接,运算放大器U3的第14引脚通过电阻Rw2与运算放大器U2的第2引脚相接;
所述乘法器U4的第2引脚、第4引脚、第6引脚均接地,第5引脚接VEE,第7引脚通过电阻Ry3接运算放大器U1的第2引脚,第8引脚接VCC;
所述乘法器U5的第2引脚、第4引脚、第6引脚均接地,第5引脚接VEE,第7引脚通过电阻Rz1接运算放大器U2第13引脚,第8引脚接VCC;
所述运算放大器U6的第1引脚通过电阻R13与选择器U7的第1引脚相接,运算放大器U6的第1引脚通过电阻R13和电阻R14与地相接,运算放大器U6的第3引脚、第5引脚、第10引脚、第12引脚接地,第4引脚接VCC,第11引脚接VEE,运算放大器U6第
6引脚、第7引脚、第8引脚、第9引脚、第12引脚、第13引脚、第14引脚悬空。
所述选择器U7的第2引脚和第14引脚阶VCC,选择器U7的第3引脚接VEE,选择器U7的第15引脚和第16引脚接地,选择器U7的第8引脚通过电阻Rw1与运算放大器U2的第2引脚相接,选择器U7的第6引脚、第7引脚、第9引脚、第10引脚、第11引脚、第12引脚、第13引脚悬空。
2.一种不同变量的利于终极边界估计的Lorenz型超混沌系统电路,其特征在于,利用运算放大器U1、运算放大器U2和电阻、电容实现加法和积分运算,利用运算放大器U3和电阻实现反相运算,乘法器U4和乘法器U5实现系统中的乘法运算,运算放大器U6和选择器U7实现切换函数运算,运算放大器U1连接运算放大器U3和U6,运算放大器U1连接乘法器U4和U5及选择器U7,所述运算放大器U1、U2、U3和U6采用LF347BN,所述乘法器U4和U5采用AD633JN,所述选择器U7采用ADG409;
所述运算放大器U1连接运算放大器U3、运算放大器U6和乘法器U5,所述运算放大器U2连接乘法器U4、运算放大器U1和运算放大器U3,所述运算放大器U3连接运算放大器U1、运算放大器U2、运算放大器U6、选择器U7和乘法器U4,所述乘法器U4连接运算放大器U1,所述乘法器U5连接运算放大器U2;所述运算放大器U6连接选择器U7,所述选择器U7连接运算放大器U2;
所述运算放大器U1的第1引脚通过电阻R2与运算放大器U1的第6引脚相接,运算放大器U1的第2引脚通过电阻Ry与运算放大器U1的第1引脚相接,运算放大器U1的第3引脚、第5引脚、第10引脚、第12引脚接地,运算放大器U1的第4引脚接VCC,运算放大器U1的第11引脚接VEE,运算放大器U1的第6引脚通过电容Cy与运算放大器U1的第7引脚相接,运算放大器U1的第7引脚通过电阻Rx2与运算放大器U1的第13引脚相接,运算放大器U1的第7引脚与乘法器U5的第1引脚相接,运算放大器U1的第7引脚通过电阻R7与运算放大器U3的第6引脚相接,运算放大器U1的第7引脚接输出y,运算放大器U1的第8引脚通过电容Cx与运算放大器U1的第9引脚相接,运算放大器U1的第8引脚通过电阻Ry1与运算放大器U1的第2引脚相接,运算放大器U1的第8引脚通过电阻R5与运算放大器U3的第2引脚相接,运算放大器U1的第8引脚与乘法器U5的第3引脚相接,运算放大器U1的第8引脚与运算放大器U6的第2引脚相接,运算放大器U1的第8引脚接输出x,运算放大器U1的第13引脚通过电阻Rx与运算放大器U1的第14引脚相接,运算放大器U1的第14引脚通过电阻R1与运算放大器U1的第9引脚相接;
所述运算放大器U2的第1引脚通过电阻R4与运算放大器U2的第6引脚相接,运算
放大器U2的第2引脚通过电阻Rw与运算放大器U2的第1引脚相接,运算放大器U2的第3引脚、第5引脚、第10引脚、第12引脚接地,第4引脚接VCC,第11引脚接VEE,运算放大器U2的第6引脚通过电容Cw与运算放大器U2的第7引脚相接,运算放大器U2的第7引脚通过电阻Ry4与运算放大器U1的第2引脚相接,运算放大器U2的第7引脚通过电阻R11与运算放大器U3的第13引脚相接,运算放大器U2的第7引脚接输出w,运算放大器U2的第8引脚通过电容Cz与运算放大器U2的第9引脚相接,运算放大器U2的第8引脚与乘法器U4的第3引脚相接,运算放大器U2的第8引脚通过电阻R9与运算放大器U3的第9引脚相接,运算放大器U2的第8引脚接输出z,运算放大器U2的第13引脚通过电阻Rz与运算放大器U2的第14引脚相接,运算放大器U2的第14引脚通过电阻R3与运算放大器U2的第9引脚相接;
所述运算放大器U3的第1引脚通过电阻Rx1与运算放大器U1的第13引脚相接,运算放大器U3的第1引脚与选择器U7的第4引脚相接,运算放大器U3的第1引脚与乘法器U4的第1引脚相接,运算放大器U3的第2引脚通过电阻R6与运算放大器U3的第1引脚相接,运算放大器U3的第3引脚、第5引脚、第10引脚、第12引脚接地,第4引脚接VCC,第11引脚接VEE,运算放大器U3的第6引脚通过电阻R8与运算放大器U3的第7引脚相接,运算放大器U3的第7引脚通过电阻Ry2与运算放大器U1的第2引脚相接,运算放大器U3的第7引脚与选择器U7的第5引脚相接,运算放大器U3的第8引脚通过电阻R10与运算放大器U3的第9引脚相接,运算放大器U3的第8引脚通过电阻Rz2与运算放大器U2的第13引脚相接,运算放大器U3的第13引脚通过电阻R12与运算放大器U3的第14引脚相接,运算放大器U3的第14引脚通过电阻Rw2与运算放大器U2的第2引脚相接;
所述乘法器U4的第2引脚、第4引脚、第6引脚均接地,第5引脚接VEE,第7引脚通过电阻Ry3接运算放大器U1的第2引脚,第8引脚接VCC;
所述乘法器U5的第2引脚、第4引脚、第6引脚均接地,第5引脚接VEE,第7引脚通过电阻Rz1接运算放大器U2第13引脚,第8引脚接VCC;
所述运算放大器U6的第1引脚通过电阻R13与选择器U7的第1引脚相接,运算放大器U6的第1引脚通过电阻R13和电阻R14与地相接,运算放大器U6的第3引脚、第5引脚、第10引脚、第12引脚接地,第4引脚接VCC,第11引脚接VEE,运算放大器U6第6引脚、第7引脚、第8引脚、第9引脚、第12引脚、第13引脚、第14引脚悬空。
所述选择器U7的第2引脚和第14引脚阶VCC,选择器U7的第3引脚接VEE,选择器U7
的第15引脚和第16引脚接地,选择器U7的第8引脚通过电阻Rw1与运算放大器U2的第2引脚相接,选择器U7的第6引脚、第7引脚、第9引脚、第10引脚、第11引脚、第12引脚、第13引脚悬空。
当然,上述说明并非对发明的限制,本发明也不仅限于上述举例,本技术领域的普通技术人员在本发明的实质范围内所做出的变化、改型、添加或替换,也属于本发明的保护范围。
Claims (2)
- 一种不同变量的利于终极边界估计的Lorenz型超混沌系统构建方法,其特征在于,包括以下步骤:(1)Lorenz型混沌系统i为:式中x,y,z为状态变量,a,b,c,d为系统参数;(2)构建一维新的变量w1:dw1/dt=-kx-rw1 k=5,r=0.1 ii式中w1为状态变量,k,r为系统参数;(3)构建一维新的变量w2:dw2/dt=-ky-rw2 k=5,r=0.1 iii式中w2为状态变量,k,r为系统参数;(4)构造一个选择函数iv将ii和iii组成一维切换变量w:dw/dt=kf(x)-rw k=5,r=0.1 v式中w为状态变量,f(x)是切换函数,k,r为系统参数;(5)把变量w作为一维系统变量,加在Lorenz型混沌系统i的第二方程上,获得一种利于终极边界估计的Lorenz型超混沌系统vi为:式中x,y,z,w为状态变量,f(x)是切换函数,参数值a=12,b=23,c=1,d=2.1,k=5,r=0.1;(6)基于系统vi构造的电路,利用运算放大器U1、运算放大器U2和电阻、电容实现加法和积分运算,利用运算放大器U3和电阻实现反相运算,乘法器U4和乘法器U5实现系统中的乘法运算,运算放大器U6和选择器U7实现切换函数运算,所述运算放大器U1、U2、U3和U6采用LF347BN,所述乘法器U4和U5采用AD633JN,所述选择器U7采用ADG409;所述运算放大器U1连接运算放大器U3、运算放大器U6和乘法器U5,所述运算放大器U2连接乘法器U4、运算放大器U1和运算放大器U3,所述运算放大器U3连接运算放大器U1、运算放大器U2、运算放大器U6、选择器U7和乘法器U4,所述乘法器U4连接运算放大器U1,所述乘法器U5连接运算放大器U2;所述运算放大器U6连接选择器U7,所述选择器U7连接运算放大器U2;所述运算放大器U1的第1引脚通过电阻R2与运算放大器U1的第6引脚相接,运算放大器U1的第2引脚通过电阻Ry与运算放大器U1的第1引脚相接,运算放大器U1的第3引脚、第5引脚、第10引脚、第12引脚接地,运算放大器U1的第4引脚接VCC,运算放大器U1的第11引脚接VEE,运算放大器U1的第6引脚通过电容Cy与运算放大器U1的第7引脚相接,运算放大器U1的第7引脚通过电阻Rx2与运算放大器U1的第13引脚相接,运算放大器U1的第7引脚与乘法器U5的第1引脚相接,运算放大器U1的第7引脚通过电阻R7与运算放大器U3的第6引脚相接,运算放大器U1的第7引脚接输出y,运算放大器U1的第8引脚通过电容Cx与运算放大器U1的第9引脚相接,运算放大器U1的第8引脚通过电阻Ry1与运算放大器U1的第2引脚相接,运算放大器U1的第8引脚通过电阻R5与运算放大器U3的第2引脚相接,运算放大器U1的第8引脚与乘法器U5的第3引脚相接,运算放大器U1的第8引脚与运算放大器U6的第2引脚相接,运算放大器U1的第8引脚接输出x,运算放大器U1的第13引脚通过电阻Rx与运算放大器U1的第14引脚相接,运算放大器U1的第14引脚通过电阻R1与运算放大器U1的第9引脚相接;所述运算放大器U2的第1引脚通过电阻R4与运算放大器U2的第6引脚相接,运算放大器U2的第2引脚通过电阻Rw与运算放大器U2的第1引脚相接,运算放大器U2的第3引脚、第5引脚、第10引脚、第12引脚接地,第4引脚接VCC,第11引脚接VEE,运算放大器U2的第6引脚通过电容Cw与运算放大器U2的第7引脚相接,运算放大器U2的第7引脚通过电阻Ry4与运算放大器U1的第2引脚相接,运算放大器U2的第7引脚通过电阻R11与运算放大器U3的第13引脚相接,运算放大器U2的第7引脚接输出w,运算放大器U2的第8引脚通过电容Cz与运算放大器U2的第9引脚相接,运算放大器U2的第8引脚与乘法器U4的第3引脚相接,运算放大器U2的第8引脚通过电阻R9与运算放大器U3的第9引脚相接,运算放大器U2的第8引脚接输出z,运算放大器U2的第13引脚通过电阻Rz与运算放大器U2的第14引脚相接,运算放大器U2的第14引脚通过电阻R3与运算放大器U2的第9引脚相接;所述运算放大器U3的第1引脚通过电阻Rx1与运算放大器U1的第13引脚相接,运算放大器U3的第1引脚与选择器U7的第4引脚相接,运算放大器U3的第1引脚与乘法器 U4的第1引脚相接,运算放大器U3的第2引脚通过电阻R6与运算放大器U3的第1引脚相接,运算放大器U3的第3引脚、第5引脚、第10引脚、第12引脚接地,第4引脚接VCC,第11引脚接VEE,运算放大器U3的第6引脚通过电阻R8与运算放大器U3的第7引脚相接,运算放大器U3的第7引脚通过电阻Ry2与运算放大器U1的第2引脚相接,运算放大器U3的第7引脚与选择器U7的第5引脚相接,运算放大器U3的第8引脚通过电阻R10与运算放大器U3的第9引脚相接,运算放大器U3的第8引脚通过电阻Rz2与运算放大器U2的第13引脚相接,运算放大器U3的第13引脚通过电阻R12与运算放大器U3的第14引脚相接,运算放大器U3的第14引脚通过电阻Rw2与运算放大器U2的第2引脚相接;所述乘法器U4的第2引脚、第4引脚、第6引脚均接地,第5引脚接VEE,第7引脚通过电阻Ry3接运算放大器U1的第2引脚,第8引脚接VCC;所述乘法器U5的第2引脚、第4引脚、第6引脚均接地,第5引脚接VEE,第7引脚通过电阻Rz1接运算放大器U2第13引脚,第8引脚接VCC;所述运算放大器U6的第1引脚通过电阻R13与选择器U7的第1引脚相接,运算放大器U6的第1引脚通过电阻R13和电阻R14与地相接,运算放大器U6的第3引脚、第5引脚、第10引脚、第12引脚接地,第4引脚接VCC,第11引脚接VEE,运算放大器U6第6引脚、第7引脚、第8引脚、第9引脚、第12引脚、第13引脚、第14引脚悬空。所述选择器U7的第2引脚和第14引脚阶VCC,选择器U7的第3引脚接VEE,选择器U7的第15引脚和第16引脚接地,选择器U7的第8引脚通过电阻Rw1与运算放大器U2的第2引脚相接,选择器U7的第6引脚、第7引脚、第9引脚、第10引脚、第11引脚、第12引脚、第13引脚悬空。
- 一种不同变量的利于终极边界估计的Lorenz型超混沌系统电路,其特征在于,利用运算放大器U1、运算放大器U2和电阻、电容实现加法和积分运算,利用运算放大器U3和电阻实现反相运算,乘法器U4和乘法器U5实现系统中的乘法运算,运算放大器U6和选择器U7实现切换函数运算,运算放大器U1连接运算放大器U3和U6,运算放大器U1连接乘法器U4和U5及选择器U7,所述运算放大器U1、U2、U3和U6采用LF347BN,所述乘法器U4和U5采用AD633JN,所述选择器U7采用ADG409;所述运算放大器U1连接运算放大器U3、运算放大器U6和乘法器U5,所述运算放大器U2连接乘法器U4、运算放大器U1和运算放大器U3,所述运算放大器U3连接运算放大器U1、运算放大器U2、运算放大器U6、选择器U7和乘法器U4,所述乘法器U4连接运算放大器U1,所述乘法器U5连接运算放大器U2;所述运算放大器U6连接选择器U7,所 述选择器U7连接运算放大器U2;所述运算放大器U1的第1引脚通过电阻R2与运算放大器U1的第6引脚相接,运算放大器U1的第2引脚通过电阻Ry与运算放大器U1的第1引脚相接,运算放大器U1的第3引脚、第5引脚、第10引脚、第12引脚接地,运算放大器U1的第4引脚接VCC,运算放大器U1的第11引脚接VEE,运算放大器U1的第6引脚通过电容Cy与运算放大器U1的第7引脚相接,运算放大器U1的第7引脚通过电阻Rx2与运算放大器U1的第13引脚相接,运算放大器U1的第7引脚与乘法器U5的第1引脚相接,运算放大器U1的第7引脚通过电阻R7与运算放大器U3的第6引脚相接,运算放大器U1的第7引脚接输出y,运算放大器U1的第8引脚通过电容Cx与运算放大器U1的第9引脚相接,运算放大器U1的第8引脚通过电阻Ry1与运算放大器U1的第2引脚相接,运算放大器U1的第8引脚通过电阻R5与运算放大器U3的第2引脚相接,运算放大器U1的第8引脚与乘法器U5的第3引脚相接,运算放大器U1的第8引脚与运算放大器U6的第2引脚相接,运算放大器U1的第8引脚接输出x,运算放大器U1的第13引脚通过电阻Rx与运算放大器U1的第14引脚相接,运算放大器U1的第14引脚通过电阻R1与运算放大器U1的第9引脚相接;所述运算放大器U2的第1引脚通过电阻R4与运算放大器U2的第6引脚相接,运算放大器U2的第2引脚通过电阻Rw与运算放大器U2的第1引脚相接,运算放大器U2的第3引脚、第5引脚、第10引脚、第12引脚接地,第4引脚接VCC,第11引脚接VEE,运算放大器U2的第6引脚通过电容Cw与运算放大器U2的第7引脚相接,运算放大器U2的第7引脚通过电阻Ry4与运算放大器U1的第2引脚相接,运算放大器U2的第7引脚通过电阻R11与运算放大器U3的第13引脚相接,运算放大器U2的第7引脚接输出w,运算放大器U2的第8引脚通过电容Cz与运算放大器U2的第9引脚相接,运算放大器U2的第8引脚与乘法器U4的第3引脚相接,运算放大器U2的第8引脚通过电阻R9与运算放大器U3的第9引脚相接,运算放大器U2的第8引脚接输出z,运算放大器U2的第13引脚通过电阻Rz与运算放大器U2的第14引脚相接,运算放大器U2的第14引脚通过电阻R3与运算放大器U2的第9引脚相接;所述运算放大器U3的第1引脚通过电阻Rx1与运算放大器U1的第13引脚相接,运算放大器U3的第1引脚与选择器U7的第4引脚相接,运算放大器U3的第1引脚与乘法器U4的第1引脚相接,运算放大器U3的第2引脚通过电阻R6与运算放大器U3的第1引脚相接,运算放大器U3的第3引脚、第5引脚、第10引脚、第12引脚接地,第4引脚接VCC,第11引脚接VEE,运算放大器U3的第6引脚通过电阻R8与运算放大器U3的第7引脚相接,运算放大器U3的第7引脚通过电阻Ry2与运算放大器U1的第2引脚相接,运 算放大器U3的第7引脚与选择器U7的第5引脚相接,运算放大器U3的第8引脚通过电阻R10与运算放大器U3的第9引脚相接,运算放大器U3的第8引脚通过电阻Rz2与运算放大器U2的第13引脚相接,运算放大器U3的第13引脚通过电阻R12与运算放大器U3的第14引脚相接,运算放大器U3的第14引脚通过电阻Rw2与运算放大器U2的第2引脚相接;所述乘法器U4的第2引脚、第4引脚、第6引脚均接地,第5引脚接VEE,第7引脚通过电阻Ry3接运算放大器U1的第2引脚,第8引脚接VCC;所述乘法器U5的第2引脚、第4引脚、第6引脚均接地,第5引脚接VEE,第7引脚通过电阻Rz1接运算放大器U2第13引脚,第8引脚接VCC;所述运算放大器U6的第1引脚通过电阻R13与选择器U7的第1引脚相接,运算放大器U6的第1引脚通过电阻R13和电阻R14与地相接,运算放大器U6的第3引脚、第5引脚、第10引脚、第12引脚接地,第4引脚接VCC,第11引脚接VEE,运算放大器U6第6引脚、第7引脚、第8引脚、第9引脚、第12引脚、第13引脚、第14引脚悬空。所述选择器U7的第2引脚和第14引脚阶VCC,选择器U7的第3引脚接VEE,选择器U7的第15引脚和第16引脚接地,选择器U7的第8引脚通过电阻Rw1与运算放大器U2的第2引脚相接,选择器U7的第6引脚、第7引脚、第9引脚、第10引脚、第11引脚、第12引脚、第13引脚悬空。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510279463.0A CN104883253B (zh) | 2015-05-27 | 2015-05-27 | 一种不同变量的利于终极边界估计的Lorenz型超混沌系统电路 |
CN201510279463.0 | 2015-05-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016187738A1 true WO2016187738A1 (zh) | 2016-12-01 |
Family
ID=53950593
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/000571 WO2016187738A1 (zh) | 2015-05-27 | 2015-08-07 | 一种不同变量的利于终极边界估计的Lorenz型超混沌系统构建方法及电路 |
Country Status (2)
Country | Link |
---|---|
CN (2) | CN104883253B (zh) |
WO (1) | WO2016187738A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105610572B (zh) * | 2015-05-27 | 2018-08-07 | 成都市中电伟业科技有限公司 | 一种变量不同的便于终极边界估计的Lorenz型超混沌系统电路 |
CN105119710A (zh) * | 2015-09-09 | 2015-12-02 | 王春梅 | 一种利于终极边界估计的Lorenz型超混沌系统自适应同步方法及电路 |
CN105141411A (zh) * | 2015-09-09 | 2015-12-09 | 王春梅 | 一种不同变量的Lorenz型超混沌系统自适应同步方法及电路 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102332976A (zh) * | 2011-09-15 | 2012-01-25 | 江西理工大学 | 异维可切换混沌系统设计方法及电路 |
CN104202146A (zh) * | 2014-09-09 | 2014-12-10 | 王忠林 | 基于Yang-Chen系统的自动切换超混沌系统构造方法及模拟电路 |
CN104378197A (zh) * | 2014-12-03 | 2015-02-25 | 王忠林 | 基于忆阻器的含x方的Lorenz型超混沌系统的构建方法及电路 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7020286B2 (en) * | 2001-02-15 | 2006-03-28 | Massachusetts Institute Of Technology | Modulation of dynamical systems for communication |
KR100353082B1 (ko) * | 2001-02-27 | 2002-09-18 | 한국과학기술원 | 에이치.브이.에스.엠 모델을 이용한 랜덤 하이퍼카오스신호 발생 회로 |
CN101373563B (zh) * | 2008-08-01 | 2010-06-02 | 张新国 | 一种洛伦兹混沌电路 |
CN104468082B (zh) * | 2014-12-03 | 2016-10-05 | 国家电网公司 | 基于忆阻器的含y方的Lorenz型超混沌系统的构建方法 |
CN104486061A (zh) * | 2014-12-03 | 2015-04-01 | 李敏 | 基于忆阻器的经典Lorenz超混沌系统的构建方法及电路 |
-
2015
- 2015-05-27 CN CN201510279463.0A patent/CN104883253B/zh not_active Expired - Fee Related
- 2015-05-27 CN CN201610118818.2A patent/CN105634725B/zh active Active
- 2015-08-07 WO PCT/CN2015/000571 patent/WO2016187738A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102332976A (zh) * | 2011-09-15 | 2012-01-25 | 江西理工大学 | 异维可切换混沌系统设计方法及电路 |
CN104202146A (zh) * | 2014-09-09 | 2014-12-10 | 王忠林 | 基于Yang-Chen系统的自动切换超混沌系统构造方法及模拟电路 |
CN104378197A (zh) * | 2014-12-03 | 2015-02-25 | 王忠林 | 基于忆阻器的含x方的Lorenz型超混沌系统的构建方法及电路 |
Also Published As
Publication number | Publication date |
---|---|
CN105634725A (zh) | 2016-06-01 |
CN104883253A (zh) | 2015-09-02 |
CN104883253B (zh) | 2016-05-11 |
CN105634725B (zh) | 2018-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016187739A1 (zh) | 一种反馈不同的便于终极边界估计的Lorenz型超混沌系统构建方法及电路 | |
WO2016029617A1 (zh) | 基于五项最简混沌系统的四维无平衡点超混沌系统及模拟电路 | |
WO2016029616A1 (zh) | 基于五项最简混沌系统的无平衡点四维超混沌系统及模拟电路 | |
Cieślak et al. | Finite-time blowup and global-in-time unbounded solutions to a parabolic–parabolic quasilinear Keller–Segel system in higher dimensions | |
WO2016187741A1 (zh) | 一种变量不同的便于终极边界估计的Lorenz型超混沌系统构建方法及电路 | |
Chandrasekharan et al. | Quantum critical behavior in three dimensional lattice Gross-Neveu models | |
WO2016187738A1 (zh) | 一种不同变量的利于终极边界估计的Lorenz型超混沌系统构建方法及电路 | |
CN103178952B (zh) | 分数阶混沌系统电路 | |
Triki et al. | Topological and non-topological soliton solutions of the Bretherton equation | |
CN104811296A (zh) | 一种利于终极边界估计的Lorenz型超混沌系统构建方法及电路 | |
WO2016029618A1 (zh) | 基于Rikitake系统的四维无平衡点超混沌系统及模拟电路 | |
WO2016029619A1 (zh) | 基于Rikitake系统的无平衡点四维超混沌系统及模拟电路 | |
WO2015123802A1 (zh) | 一种分数阶次不同的经典Lorenz型混沌切换系统方法及电路 | |
CN104883250A (zh) | 一种用于终极边界估计的Lorenz型超混沌系统构建方法及电路 | |
CN104486061A (zh) | 基于忆阻器的经典Lorenz超混沌系统的构建方法及电路 | |
WO2015123803A1 (zh) | 一种分数阶次不同的经典chen混沌切换系统方法及电路 | |
WO2016187742A1 (zh) | 一种不同反馈的便于终极边界估计的Lorenz型超混沌系统构建方法及电路 | |
WO2016187740A1 (zh) | 一种便于终极边界估计的Lorenz型四系统切换超混沌系统构建方法及电路 | |
CN104378197A (zh) | 基于忆阻器的含x方的Lorenz型超混沌系统的构建方法及电路 | |
CN104242834B (zh) | 基于高阶多项式拟合的接收机前置放大器非线性响应建模方法 | |
WO2015123797A1 (zh) | 一种分数阶次不同的经典Lü混沌切换系统方法及电路 | |
Li | Quasineutral limit of the electro-diffusion model arising in electrohydrodynamics | |
Mikhail et al. | Recursive methods in photogrammetric data reduction | |
CN104468079A (zh) | 基于忆阻器的经典Chen超混沌系统的构建方法及电路 | |
CN105515756A (zh) | 基于忆阻器的含y方的Chen型超混沌系统的构建方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15892823 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15892823 Country of ref document: EP Kind code of ref document: A1 |