WO2016017491A1 - 有機溶剤精製システム及び方法 - Google Patents

有機溶剤精製システム及び方法 Download PDF

Info

Publication number
WO2016017491A1
WO2016017491A1 PCT/JP2015/070784 JP2015070784W WO2016017491A1 WO 2016017491 A1 WO2016017491 A1 WO 2016017491A1 JP 2015070784 W JP2015070784 W JP 2015070784W WO 2016017491 A1 WO2016017491 A1 WO 2016017491A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic solvent
pervaporation
heater
membrane
water
Prior art date
Application number
PCT/JP2015/070784
Other languages
English (en)
French (fr)
Inventor
亮輔 寺師
Original Assignee
オルガノ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オルガノ株式会社 filed Critical オルガノ株式会社
Priority to EP15828137.8A priority Critical patent/EP3175910B1/en
Priority to CN202110209373.XA priority patent/CN112933987B/zh
Priority to CN201580015456.8A priority patent/CN106132516B/zh
Priority to US15/327,504 priority patent/US9765024B2/en
Priority to KR1020167021174A priority patent/KR101764558B1/ko
Publication of WO2016017491A1 publication Critical patent/WO2016017491A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/18Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member
    • C07D207/22Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D207/24Oxygen or sulfur atoms
    • C07D207/262-Pyrrolidones
    • C07D207/2632-Pyrrolidones with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms
    • C07D207/2672-Pyrrolidones with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to the ring nitrogen atom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/36Selective adsorption, e.g. chromatography characterised by the separation mechanism involving ionic interaction
    • B01D15/361Ion-exchange
    • B01D15/363Anion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0031Degasification of liquids by filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/10Vacuum distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/36Pervaporation; Membrane distillation; Liquid permeation
    • B01D61/362Pervaporation
    • B01D61/3621Pervaporation comprising multiple pervaporation steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/02Column or bed processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/448Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by pervaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/02Specific process operations before starting the membrane separation process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/06Specific process operations in the permeate stream
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • C02F2001/422Treatment of water, waste water, or sewage by ion-exchange using anionic exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals

Definitions

  • the present invention relates to a system and method for separating and purifying an organic solvent from a mixture of an organic solvent typified by N-methyl-2-pyrrolidone (hereinafter also referred to as NMP) and water.
  • NMP N-methyl-2-pyrrolidone
  • the present invention relates to an organic solvent purification system and method used.
  • organic solvents have high solubility in water. When such a water-soluble organic solvent is used and then recovered and reused, a mixed liquid of the organic solvent and water is often recovered. Therefore, the organic solvent to be reused is separated from the mixed liquid. Need to be purified.
  • the collected liquid mixture may contain impurities such as ionic substances and fine particles in addition to the organic solvent and water.
  • the liquid mixture contains dissolved gas, such as dissolved oxygen and dissolved carbon dioxide.
  • NMP which is one of organic solvents having high solubility in water
  • NMP is applied, for example, to a slurry in which particles such as an electrode active material are dispersed on an electrode current collector in a manufacturing process of a lithium ion secondary battery and then dried.
  • NMP is recovered when the slurry is dried, and the recovered NMP can be reused after purification.
  • the vaporized NMP is recovered by, for example, a water scrubber. Therefore, NMP is recovered as a mixed liquid in which NMP and water are mixed. At this time, the NMP concentration in the collected mixed solution is about 70 to 90% by mass. Since a water scrubber is used, oxygen and carbon dioxide derived from the atmosphere are dissolved in the mixed solution.
  • a distillation method is known as a method for separating and recovering an organic solvent from a mixed solution of an organic solvent and water, and in particular, a reduced-pressure distillation method in which the mixed solution is distilled under reduced pressure is often used.
  • the distillation method or the vacuum distillation method has a problem that a large amount of energy is required and a large-scale distillation facility is required when purifying an organic solvent to a desired purity. Therefore, a pervaporation (PV) method is known as a separation method that does not require large-scale equipment and has excellent energy saving performance.
  • PV pervaporation
  • a separation membrane having an affinity for water such as a separation membrane
  • a mixed solution containing the target component for example, a mixture of an organic solvent and water is supplied to the separation membrane. Separation is performed by the difference in permeation speed of each component in the separation membrane by reducing the pressure on the permeation side of the separation membrane or flowing an inert gas.
  • a separation membrane used in the pervaporation method is also called a pervaporation membrane.
  • As the separation membrane for allowing moisture to permeate for example, a zeolite membrane is used. If only water moves to the permeation side by the separation membrane, the organic solvent remains on the supply side of the separation membrane, and the organic solvent can be recovered. When the water and the organic solvent are separated by the pervaporation method, heating is necessary for efficient separation.
  • a method for removing ionic impurities contained in an organic solvent for example, a method using an ion exchange resin is known.
  • Patent Document 1 discloses an NMP separation system that separates NMP from a mixed liquid of NMP and water, using an osmosis vaporizer and having an ion exchange device at the subsequent stage of the osmosis vaporizer.
  • FIG. 1 shows an example of the configuration of an organic solvent refining system in the background art that includes a pervaporation apparatus and an ion exchange apparatus provided in the subsequent stage.
  • the system shown in FIG. 1 will be described on the assumption that the organic solvent is NMP, for example.
  • a normal temperature mixture of NMP and water is heated to a temperature of about 120 ° C. by the heater 12 and supplied to the pervaporation device 13. Steam is used as a heat source for the heater 12.
  • a pervaporation membrane 14 made of, for example, zeolite is provided in the pervaporation membrane 14 and is then cooled and condensed by the condenser 16 and discharged.
  • NMP does not permeate the pervaporation membrane 14, it is discharged from the concentration side of the pervaporation device 13 as a liquid.
  • the NMP discharged from the pervaporation device 13 is cooled by the cooler 15.
  • the room-temperature NMP thus obtained was then supplied to the ion exchange device 17 to remove ionic impurities, and the fine particle component was removed by a microfiltration membrane (MF membrane) 18 and purified.
  • MF membrane microfiltration membrane
  • FIG. 2 shows an example of the configuration of an organic solvent refining system in the background art that combines a pervaporation apparatus and an evaporator. This system removes the ion exchange device 17 and the microfiltration membrane 18 from the one shown in FIG. 1, and instead, an evaporator 20 heated by steam between the concentrating side of the pervaporation device 13 and the cooler 15. Is provided.
  • the organic solvent obtained from the concentration side of the pervaporation device 13 is distilled and purified in the evaporator 20, condensed in the cooler 15 and cooled. Thereafter, the purified organic solvent is stored in a tank or the like, or sent to a process using an organic solvent. Ionic impurities and fine particles contained in the organic solvent remain in the evaporator 20.
  • the pervaporation method as a method for separating organic solvents such as NMP and water is superior in energy saving performance compared to the distillation method, etc., but in the latter part of the pervaporation device for removing ionic impurities and fine particles.
  • energy must be input for distillation, and there is a problem that the merit of energy saving due to the use of the pervaporation device cannot be fully utilized.
  • the pervaporation method itself, there is room for further energy saving because the liquid supplied to the pervaporation apparatus must be heated.
  • An object of the present invention is to provide an organic solvent refining system using an osmotic vaporization method, which can reliably remove ionic impurities, fine particles, and the like and achieve energy saving performance.
  • the organic solvent refining system of the present invention is an organic solvent refining system for separating and purifying an organic solvent from a mixed solution containing water and an organic solvent having a boiling point of more than 100 ° C. at 1 atm.
  • the organic solvent purification method of the present invention is a method for separating and purifying an organic solvent from a mixed solution containing an organic solvent having a boiling point of more than 100 ° C. at 1 atm, and heating the mixed solution.
  • a heating step a step of separating the heated mixed liquid into an organic solvent and water using a pervaporation membrane, and a step of evaporating the organic solvent recovered from the concentration side of the pervaporation membrane under reduced pressure.
  • An organic solvent evaporated by evaporation under reduced pressure is used as a heat source in the heating step.
  • the heat of condensation of the organic solvent vaporized in the vacuum evaporator is recovered and used as the heat source of the pervaporation apparatus. For this reason, a part or all of the amount of heat input to the vacuum evaporator can be recycled in the system, and the amount of energy required for the entire system can be reduced.
  • the amount of heat required for pervaporation is mainly the latent heat of vaporization of the contained water. Since the latent heat of vaporization per unit mass is generally larger in water than in organic solvents, the heat recovery efficiency is high even when the water content in the liquid mixture supplied to the pervaporation apparatus is small.
  • ionic impurities and fine particles in the organic solvent remain in the vacuum evaporator. Therefore, according to the present invention, ionic impurities and fine particles can be reliably removed while achieving energy saving performance.
  • FIG. 3 shows a basic mode of an organic solvent purification system according to the present invention as an organic solvent purification system according to an embodiment of the present invention.
  • This organic solvent purification system separates and purifies an organic solvent from a mixed solution of an organic solvent and water.
  • NMP N-methyl-2
  • a pyrrolidone N-water mixture is used to separate and purify NMP from this mixture.
  • the organic solvent to which the present invention can be applied is not limited to NMP, and generally the boiling point at atmospheric pressure (0.1013 Mpa) is the boiling point of water.
  • the present invention is also applied to an organic solvent having a boiling point higher than (100 ° C.), preferably 120 ° C. or higher, which is a general operating temperature of a pervaporation membrane apparatus at atmospheric pressure. Can do. Examples of such organic solvents are shown in Table 1. In Table 1, the boiling point is a value at 0.1013 MPa.
  • an organic solvent that does not form an azeotrope with water is more preferable. For example, in the organic solvents shown in Table 1, those excluding PGME, PEGMEA and pyridine are organic solvents which do not form an azeotrope with water.
  • a stock solution tank 31 for storing a mixture of NMP and water is provided, and the mixture in the stock solution tank 31 is supplied to the pervaporation device 13 by a pump 32.
  • a heater 34 and a heater 12 are provided in this order between the pump 32 and the pervaporation apparatus 13 in order to heat the mixed liquid, and steam is supplied to the latter heater 12 so that the steam is supplied.
  • the liquid mixture supplied to the pervaporation device 13 is heated to about 120 ° C., for example.
  • the pervaporation device 13 is provided with a pervaporation membrane 14 made of, for example, zeolite, where the mixed solution is separated into NMP and water. Since water permeates through the pervaporation membrane 14, it flows out from the permeate-side outlet of the pervaporation device 13 in the form of water vapor. This water vapor is cooled and condensed by the condenser 16, stored in the permeate tank 35, and drained. On the other hand, since NMP does not permeate the pervaporation membrane 14, it is discharged from the outlet provided on the concentration side in the pervaporation device 13 and supplied to the vacuum evaporator 33.
  • a pervaporation membrane 14 made of, for example, zeolite, where the mixed solution is separated into NMP and water. Since water permeates through the pervaporation membrane 14, it flows out from the permeate-side outlet of the pervaporation device 13 in the form of water vapor. This water vapor is cooled and condensed by the condenser 16, stored in the permeate tank 35
  • the vacuum evaporator 33 is connected to a vacuum pump 36 for lowering the pressure in the can via a pipe 50 that is a vacuum line. For example, the pressure is reduced so that the boiling point of NMP becomes 130 ° C. The pressure in the evaporator 33 is controlled. The vacuum evaporator 33 is supplied with an amount of steam necessary for vaporizing NMP. The vacuum pump 36 connected to the vacuum evaporator 33 is also used to achieve a negative pressure on the permeate side of the pervaporation device 13. The vacuum evaporator 33 is provided to remove hardly volatile impurities such as ionic impurities and fine particles.
  • a pipe 40 for discharging NMP vaporized in the vacuum evaporator is attached to the outlet of the vacuum evaporator 33.
  • the pipe 40 is connected to a heater 34, and vaporized NMP, for example, 130 ° C. is supplied to the heater 34 as a heat source for the heater 34.
  • the NMP vapor supplied to the heater 34 condenses when the mixed liquid is heated. Accordingly, the heater 34 heats the mixed liquid and functions as a condenser of NMP vapor.
  • NMP steam and a mixture of NMP and water can be directly heat-exchanged without using an external heat source such as steam as a heating medium for heating by the heater 34, so the NMP steam temperature is excessively high. Energy efficient.
  • the cooler 15 and the microfiltration membrane 18 are connected in this order to the outlet of the NMP vapor side in the heater 34, and the NMP is cooled by the cooler 15 to be in a completely liquid state. Is finally removed. As a result, purified NMP is obtained from the outlet of the microfiltration membrane 18.
  • purified NMP is obtained from the outlet of the microfiltration membrane 18.
  • the concentration of NMP in the mixed solution in the stock solution tank 31 is 80% by mass, that is, when the moisture is 20% by mass, the moisture concentration in NMP obtained from the outlet of the microfiltration membrane 18 is reduced to 0. About 0.02 mass%.
  • the heat recovery efficiency in the heater 34 in this system will be examined.
  • the moisture is allowed to permeate the permeable vaporization film 14. Therefore, it is necessary to apply heat corresponding to the latent heat of evaporation of water in advance. Since the latent heat of vaporization of water is 2.30 MJ / kg and the latent heat of vaporization of NMP is 439 kJ / kg, even if all the condensed heat release of NMP is supplied, Less than. That is, the entire amount of heat supplied to the vacuum evaporator 33 can be recovered by the heater 34.
  • the ionic impurities and fine particles can be more reliably removed from the NMP by adding the reduced-pressure evaporator 33 while achieving the same energy saving performance as when the pervaporation device 13 is used alone.
  • the heater 34 that heats the mixed solution with the condensation heat of the NMP vapor is provided in the preceding stage, and the heater 12 that heats the mixed solution to a desired temperature with the steam. Is more preferable from the viewpoint of thermal efficiency and the like than the case where these heaters 12 and 34 are arranged in the reverse order.
  • FIG. 4 shows an organic solvent purification system provided with an ion exchange device.
  • This organic solvent refining system is the same as the system shown in FIG. 3 except that an ion exchange device 41 is provided at the outlet of the pump 32, and the mixed solution processed by the ion exchange device 41 is heated by the heater 34 and the heater 12 to penetrate. This is supplied to the vaporizer 13.
  • the ion exchange device 41 is for removing ionic impurities contained in the mixed solution, for example, one filled with an anion exchange resin, or one filled with an anion exchange resin and a cation exchange resin in a mixed bed. It is.
  • FIG. 5 shows a configuration of an organic solvent purification system provided with a degassing device for removing a gas component in the mixed solution.
  • the organic solvent refining system shown in FIG. 5 is the same as the system shown in FIG. 4 except that a degassing device 42 for removing gas components in the mixed liquid supplied from the pump is provided between the pump 32 and the ion exchange device 41. It is provided.
  • a degassing device 42 for example, an oxygen removing device that removes oxygen by adding hydrogen to contact with a palladium catalyst can be used.
  • a gas component other than oxygen for example, Dissolved carbon dioxide cannot be removed. Since dissolved carbon dioxide becomes a load on the ion exchange resin in the ion exchange device 41, particularly an anion exchange resin, it is preferable that the deaeration device 42 can remove carbon dioxide in addition to oxygen.
  • the deaeration device 42 By using a degassing membrane, it is possible to quickly remove dissolved oxygen and dissolved carbon dioxide in the mixed solution without supplying hydrogen, an inert gas, or the like.
  • Examples of the membrane material and potting material for constituting the deaeration membrane include polyolefin, polytetrafluoroethylene (PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), polyurethane, and epoxy resin.
  • PTFE polytetrafluoroethylene
  • PFA perfluoroalkyl vinyl ether copolymer
  • epoxy resin epoxy resin
  • organic solvents such as NMP have the property of dissolving some organic materials, in the system shown in FIG. 5, it is preferable to form a degassing membrane with polyolefin, PTFE and PFA.
  • As the mechanical structure of the deaeration membrane there are a porous membrane assumed to be used in water and a non-porous membrane assumed to be used in a liquid having a smaller surface tension.
  • a non-porous film Since a mixed liquid containing a large amount of an organic solvent is treated, it is preferable to use a non-porous film.
  • An example of a degassing membrane that can be used in the system shown in FIG. 5 is a polyolefin membrane disclosed in Japanese Patent Application Laid-Open No. 2004-105797.
  • a mixed liquid from which dissolved oxygen and dissolved carbon dioxide have been removed by the degassing device 42 is supplied to the ion exchange device 41. Thereafter, the mixed liquid is heated to, for example, about 120 ° C. by the heaters 34 and 12 and then supplied to the pervaporation apparatus 13. Since the carbon dioxide concentration in the mixed liquid is reduced, the load on the ion exchange device 41 is lightened. As a result, the exchange cycle of the ion exchange resin in the ion exchange device 41 can be lengthened. Moreover, since dissolved oxygen is reduced, oxidation and deterioration of NMP can be suppressed.
  • the ion exchange apparatus 41 is provided in the system shown in FIG. 5, the deaeration apparatus 42 can also be provided in an organic solvent purification system that does not include the ion exchange apparatus.
  • FIG. 6 shows another example of an organic solvent purification system equipped with a deaeration device.
  • the organic solvent refining system shown in FIG. 6 uses a membrane deaerator 43 having a deaerator as a deaerator in the organic solvent refining system shown in FIG.
  • the membrane degassing device 43 is not provided immediately before the ion exchange device 41, but instead is arranged so as to degas the mixed solution in the stock solution tank 31.
  • a pipe 45 that connects the bottom and top of the stock solution tank 31 and circulates the mixed liquid by the pump 44 is provided, and the membrane deaerator 43 is provided in the pipe 45.
  • the degassed mixed solution in the stock solution tank 31 is supplied to the ion exchange device 41 by the pump 32.
  • the optimal liquid flow rate for membrane deaeration and the optimal liquid flow rate for operation of the pervaporation device do not always match.
  • the flow rate of the mixed solution in the membrane deaerator 43 and the flow rate of the mixed solution supplied to the pervaporation device 13 are independently set by controlling the two pumps 32 and 44 independently. It is possible to perform membrane degassing and pervaporation under optimum conditions.
  • the pump 44 having a small capacity, so that the start-up of the process at the start of NMP purification can be accelerated.
  • the ion exchange apparatus 41 is provided in the system shown in FIG. 6, the membrane deaeration apparatus 43 can also be provided in an organic solvent purification system that does not include the ion exchange apparatus.
  • FIG. 7 shows the configuration of an organic solvent refining system according to still another embodiment of the present invention.
  • 3 to 6 use a single-stage pervaporation device 13.
  • moisture remains in an organic solvent such as NMP obtained or is discharged as waste water through a condenser 16.
  • NMP may remain in the water to be treated. Therefore, in the organic solvent refining system shown in FIG. 7, two pervaporation devices 13 and 37 are connected in series to perform pervaporation processing in two stages.
  • the organic solvent refining system shown in FIG. 7 supplies the liquid discharged from the concentration side of the pervaporation device 13 to the second-stage pervaporation device 37 in the system shown in FIG. . If attention is paid to the flow of NMP, these pervaporation devices 13 and 27 are connected in series.
  • the second-stage pervaporation apparatus 37 also includes a pervaporation membrane 38 made of, for example, zeolite, and NMP is separated from the concentration side of the second-stage pervaporation apparatus 37 and separated in the same manner as the apparatus shown in FIG. NMP is supplied to the vacuum evaporator 33.
  • the NMP vapor from the vacuum evaporator 33 is sent to the heater 34 through the pipe 40 and used to heat the mixed solution, and then obtained as purified NMP through the cooler 15 and the microfiltration membrane 18.
  • the moisture that appears on the permeate side of the first stage pervaporation device 37 is cooled and condensed by the condenser 16, and is stored in a condensed water tank (not shown) in the same manner as shown in FIGS. Drained.
  • the water obtained from the permeation side of the second stage pervaporation device 37 is cooled and condensed by the condenser 39 and stored in the permeate tank 35.
  • a vacuum pump 36 is also connected to the permeate tank 35.
  • Water containing NMP stored in the permeate tank 35 is returned to the front stage of the first stage pervaporation apparatus 13 by the pipe 46.
  • the water stored in the permeate tank 35 is returned to the inlet of the membrane deaerator 43 or the stock solution tank 31, but the destination for returning the water stored in the permeate tank 35 is the membrane deaerator.
  • the water stored in the permeate tank 35 may be returned to the heater 34 or the inlet of the heater 12.
  • the pervaporation membranes 14 and 38 used in the pervaporation devices 13 and 37 will be described.
  • the dewatering performance of the pervaporation devices 13 and 37 depends on the moisture density difference between both sides of the pervaporation membranes 14 and 38, that is, the concentration side space and the permeation side space, and the degree of vacuum on the permeation side. Specifically, the higher the moisture density in the concentrated space or the higher the degree of vacuum on the permeate side, in other words, the lower the absolute pressure, the better the dehydration performance. For example, if the concentration of water in the mixed solution is 20% by mass, the first-stage pervaporation apparatus 13 can separate a large amount of water due to a large water density difference.
  • the second stage pervaporation apparatus 37 processes the mixed liquid that has already been dehydrated, a small amount of water is separated.
  • the amount of NMP permeation through the pervaporation membrane does not depend greatly on the moisture density difference. For this reason, the NMP concentration in the water vapor that appears on the permeation side of the first stage pervaporation device 13 is extremely low, and the NMP concentration in the water vapor that appears on the permeation side of the second stage pervaporation device 37 is higher.
  • the NMP recovery rate that appears on the permeation side of the second-stage pervaporation device 37 is returned to the front stage of the first-stage pervaporation device 13 to further increase the NMP recovery rate, NMP release to the environment is suppressed.
  • the amount of moisture that permeates the second stage pervaporation device 37 is smaller than that of the first stage, and the reduction in dehydration efficiency due to returning this moisture to the front stage of the first stage pervaporation device 13 is limited. Is.
  • Zeolite membranes are preferably used for the pervaporation membranes 14 and 38.
  • zeolite such as A-type, Y-type, T-type, MOR-type, and CHA-type depending on the framework structure and the ratio of silicon and aluminum contained therein. The higher the proportion of silicon compared to aluminum, the richer the hydrophobicity.
  • the A type is particularly excellent in dehydration efficiency, and can be used as the pervaporation membranes 14 and 38 of both pervaporation apparatuses 13 and 37 in this embodiment.
  • a T-type, Y-type, or CHA-type zeolite membrane other than the A-type is preferable to use, for example, a T-type, Y-type, or CHA-type zeolite membrane other than the A-type as the pervaporation membrane 14 of the first-stage pervaporation apparatus 13.
  • A-type zeolite is likely to cause leaks and performance degradation when the water concentration is high or when impurities such as acids are contained in the mixed solution.
  • zeolites other than the A type can maintain performance for a longer period in the above-described environment. As described above, the pervaporation membrane 14 of the first-stage pervaporation device 13 does not require higher dehydration performance than the permeation-vaporization membrane 38 of the second-stage pervaporation device 37.
  • the pervaporation membrane 14 of the first stage pervaporation device 13 at least one type selected from A-type zeolite and the other zeolites described above (for example, T-type, Y-type, MOR-type, CHA-type). Those containing zeolite can also be used.
  • the pervaporation membrane 38 of the second stage pervaporation device 37 is preferably made of A-type zeolite.
  • the inlet liquid of the second stage pervaporation device 37 Since the inlet liquid of the second stage pervaporation device 37 has already been dehydrated in a considerable amount and contains a small amount of water, the possibility that the water in the inlet liquid will adversely affect the membrane performance is low. Further, since the moisture in the inlet liquid is small, the driving force for dehydration is small, and membranes other than the A type require a larger membrane area than the A type. For this reason, apparatus scales and apparatus costs tend to increase with films other than A-type films.
  • the dewatering performance of the pervaporation apparatus has a positive correlation with the membrane area of the pervaporation membrane per unit flow rate of the supplied liquid mixture, that is, the value obtained by dividing the membrane area of the pervaporation membrane by the flow rate of the liquid mixture. . Therefore, in order to obtain the required dewatering performance with a single pervaporation device, it is necessary to increase the membrane area of the pervaporation membrane.
  • the amount of NMP permeation is also positively correlated with the membrane area of the pervaporation membrane. Therefore, when a single pervaporation device with a large membrane area is used to improve the dehydration performance, the permeation amount of NMP is also related to this. Increase accordingly.
  • the first stage pervaporation apparatus 13 only needs to dehydrate a part of the necessary dehydration amount, and it is not necessary to excessively increase the membrane area.
  • the permeated NMP is returned to the stock solution tank 31 side, so there is no problem even if the membrane area is increased in order to improve the dewatering performance.
  • the first stage pervaporation apparatus 13 considers the balance between the dehydration amount and the NMP permeation amount, but the second stage pervaporation apparatus 37 does not need to consider such a balance.
  • the two pervaporation devices 13 and 37 are provided in series, and by collecting the NMP that permeates the second permeation vaporization device 37, the necessary dehydration performance can be obtained and the amount of NMP released outside the system can be reduced. Can be suppressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

N-メチル-2-ピロリドン(NMP)などの1気圧における沸点が100℃を超える有機溶剤と水とを含む混合液から有機溶剤を分離して精製する有機溶剤精製システムは、混合液を加熱する加熱器と、浸透気化膜を備えて加熱器の後段に設けられ、有機溶剤と水とを分離する浸透気化装置と、浸透気化装置の濃縮側から回収される有機溶剤が供給される減圧蒸発缶と、減圧蒸発缶で気化した有機溶剤を加熱器の熱源として加熱器に供給する配管と、を有する。加熱器は、減圧蒸発缶33で気化した有機溶剤の凝縮熱を利用して混合液を加熱する。

Description

有機溶剤精製システム及び方法
 本発明は、N-メチル-2-ピロリドン(以下、NMPとも記す)に代表される有機溶剤と水との混合液から有機溶剤を分離して精製するシステム及び方法に関し、特に、浸透気化法を用いた有機溶剤精製システム及び方法に関する。
 有機溶剤の中には水に対して高い溶解度を有するものがある。このような水溶性の有機溶剤を使用したのち回収して再利用する場合、有機溶剤と水との混合液が回収されることが多いため、この混合液から再利用対象となる有機溶剤を分離して精製する必要がある。回収される混合液は、有機溶剤と水のほかに、例えばイオン性物質や微粒子などの不純物を含んでいる可能性がある。また、有機溶剤の使用形態や回収形態に応じ、混合液は、溶存酸素や溶存二酸化炭素などの溶存気体も含んでいる。
 水に対して高い溶解度を有する有機溶剤の一つであるNMPは、例えば、リチウムイオン二次電池の製造工程において電極活物質などの粒子を分散させたスラリーを電極集電体上に塗布し乾燥させて電極を形成する際に、スラリーの分散媒として広く用いられている。スラリーを乾燥させる際にNMPが回収され、回収されたNMPは精製した後に再利用することができる。NMPの回収では、気化したNMPを例えば水スクラバーによって回収する。したがってNMPは、NMPと水とが混合した混合液として回収されることになる。このとき、回収された混合液におけるNMP濃度は、70~90質量%程度である。また水スクラバーを使用しているので、混合液には、大気に由来する酸素や二酸化炭素が溶存することとなる。
 従来から有機溶剤と水との混合液から有機溶剤を分離して回収する方法として、蒸留法が知られており、特に、混合液を減圧して蒸留する減圧蒸留法がよく用いられている。しかしながら、蒸留法あるいは減圧蒸留法は、多大なエネルギーを必要とする上、所望の純度まで有機溶剤を精製しようとするときには大がかりな蒸留設備が必要となるという課題を有する。そこで大がかりな設備が不要であって省エネルギー性能に優れた分離手法として、浸透気化(Pervaporation:PV)法が知られている。
 浸透気化法では、分離処理の対象となる成分、例えば水分に対して親和性を有する分離膜を使用し、この対象成分を含む混合液、例えば有機溶剤と水との混合液を分離膜の供給側に流し、分離膜の透過側では減圧にしたり不活性ガスを流すことで、分離膜における各成分の透過速度差により分離を行うものである。浸透気化法で用いる分離膜を浸透気化膜とも呼ぶ。水分を透過させるための分離膜としては、例えば、ゼオライト膜が使用される。分離膜によって水分のみが透過側に移動するとすれば、分離膜の供給側には有機溶剤が残存することとなり、有機溶剤を回収することができる。浸透気化法により水分と有機溶剤との分離を行う場合、効率よく分離を行うためには加熱が必要となる。また、有機溶剤に含まれるイオン性不純物を除去する方法としては、例えば、イオン交換樹脂を用いる方法が知られている。
 特許文献1には、NMPと水との混合液からNMPを分離するNMP分離システムとして、浸透気化装置を用いるとともに、浸透気化装置の後段にイオン交換装置を設けたものが開示されている。
 図1は、浸透気化装置とその後段に設けられたイオン交換装置とを備える、背景技術における有機溶剤精製システムの構成の一例を示している。ここでは有機溶剤が例えばNMPであるものとして図1に示すシステムを説明する。NMPと水との常温の混合液が、加熱器12によって120℃程度の温度に昇温されて浸透気化装置13に供給される。加熱器12の熱源としては蒸気が用いられる。浸透気化装置13内には、例えばゼオライトによって構成された浸透気化膜14が設けられている。混合液中の水分は浸透気化膜14を透過し、その後、凝縮器16によって冷却されて凝縮され、排出される。一方、NMPは浸透気化膜14を透過しないので、液体のまま浸透気化装置13の濃縮側から排出される。浸透気化装置13から排出されたNMPは、冷却器15によって冷却される。このようにして得られた常温のNMPは、次に、イオン交換装置17に供給されてイオン性不純物を除去され、さらに、精密ろ過膜(MF膜)18によって微粒子成分が除去され、精製されたNMPとして、例えば、タンクなどに貯留され、あるいはNMPを使用する工程に送られる。
 図1に示した有機溶剤精製システムでは、イオン交換装置17内のイオン交換樹脂が破過するとシステム内に存在する分離膜やろ過膜に由来するナトリウムやケイ素などの不純物が精製したNMPなどの有機溶剤に残存するおそれがある、という課題がある。また、浸透気化装置13の後段にイオン交換装置17が設けられている。このイオン交換装置17は非水溶媒であるNMPからのイオン除去を行わなければならないので、イオン交換効率が小さく、またイオン交換樹脂の交換に大きな手間を要するという課題もある。
 浸透気化装置によって有機溶剤を水から分離した後に、この有機溶剤をさらに精製する方法として、浸透気化装置の後段に蒸発缶を設け、この蒸発缶で有機溶剤を蒸留する方法が知られており、この方法は、アルコールの精製などに用いられている。図2は、浸透気化装置と蒸発缶とを組み合わせた、背景技術における有機溶剤精製システムの構成の一例を示している。このシステムは、図1に示したものからイオン交換装置17と精密ろ過膜18を取り除き、その代わり、浸透気化装置13の濃縮側と冷却器15との間に、蒸気により加熱される蒸発缶20を設けたものである。浸透気化装置13の濃縮側から得られる有機溶剤は、蒸発缶20において蒸留されて精製され、冷却器15で凝縮され冷却される。その後、精製された有機溶剤は、タンクなどに貯留され、あるいは有機溶剤を使用する工程に送られる。有機溶剤に含まれていたイオン不純物や微粒子などは蒸発缶20内に残存する。
特開2013-18747号公報
 NMPなどの有機溶剤と水とを分離する手法としての浸透気化法は、蒸留法などに比べて省エネルギー性能に優れているが、イオン性不純物や微粒子などの除去のために浸透気化装置の後段に蒸発缶を設けた場合には、蒸留のためにもエネルギーを投入しなければならず、浸透気化装置を用いたことによる省エネルギーのメリットが十分に生かされないという課題が生ずる。また、浸透気化法自体についても、浸透気化装置への供給液を加熱しなければならないので、さらなる省エネルギー化の余地が残されている。
 本発明の目的は、浸透気化法を用いた有機溶剤精製システムであって、イオン性不純物や微粒子などを確実に除去できるとともに省エネルギー性能を達成する有機溶剤精製システム及び方法を提供することにある。
 本発明の有機溶剤精製システムは、有機溶剤であって1気圧での沸点が100℃を超えるものと水とを含む混合液から有機溶剤を分離して精製する有機溶剤精製システムであって、混合液を加熱する加熱器と、浸透気化膜を備えて加熱器の後段に設けられ、有機溶剤と水とを分離する浸透気化装置と、浸透気化装置の濃縮側から回収される有機溶剤が供給される減圧蒸発缶と、減圧蒸発缶で気化した有機溶剤を加熱器の熱源として加熱器に供給する配管と、を備える。
 本発明の有機溶剤精製方法は、有機溶剤であって1気圧での沸点が100℃を超えるものと水とを含む混合液から有機溶剤を分離して精製する方法であって、混合液を加熱する加熱工程と、加熱された混合液を、浸透気化膜を用いて有機溶剤と水とに分離する工程と、浸透気化膜の濃縮側から回収される有機溶剤を減圧蒸発させる工程と、を有し、減圧蒸発によって気化した有機溶剤を加熱工程での熱源として用いる。
 本発明では減圧蒸発缶で気化した有機溶剤の凝縮熱を回収し、浸透気化装置の熱源とする。このため、減圧蒸発缶に投入した熱量の一部または全量がシステム内でリサイクルされることとなり、システム全体で必要となるエネルギー量を削減できる。浸透気化に必要な熱量は、主として含有水分の蒸発潜熱である。単位質量当たりの蒸発潜熱は、一般に、水の方が有機溶剤よりも大きいため、浸透気化装置に供給される混合液中の水分が少ない場合でも熱回収効率は高い。一方、減圧蒸発缶を追加したことにより、有機溶剤中のイオン性不純物や微粒子などは減圧蒸発缶内に残存する。したがって本発明によれば、省エネルギー性能を達成しつつイオン性不純物や微粒子などを確実に除去できるようになる。
背景技術の有機溶剤精製システムの構成の一例を示す図である。 背景技術の有機溶剤精製システムの構成の別の例を示す図である。 本発明の実施の一形態の有機溶剤精製システムの構成を示す図である。 イオン交換装置を備えた実施形態の有機溶剤精製システムの構成を示す図である。 イオン交換装置と脱気装置を備えた実施形態の有機溶剤精製システムの構成を示す図である。 イオン交換装置と膜脱気装置を備えた実施形態の有機溶剤精製システムの構成を示す図である。 本発明のさらに別の実施形態の有機溶剤精製システムの構成を示す図である。
 次に、本発明の好ましい実施の形態について、図面を参照して説明する。図3は、本発明の実施の一形態の有機溶剤精製システムとして、本発明に基づく有機溶剤精製システムの基本的な態様を示している。この有機溶剤精製システムは、有機溶剤と水との混合液から有機溶剤を分離して精製するものであり、例えば、リチウムイオン二次電池の製造工程などから回収されるNMP(N-メチル-2-ピロリドン)と水との混合液を処理し、この混合液からNMPを分離し精製するために用いられるものである。以下では有機溶剤としてNMPを用いる場合を説明するが、本発明が適用可能な有機溶剤はNMPに限定されるものではなく、一般的には大気圧(0.1013Mpa)での沸点が水の沸点(100℃)よりも高く、好ましくは大気圧下での沸点が浸透気化膜装置の一般的な運転温度である120℃であるかそれ以上である有機溶剤に対しても本発明を適用することができる。このような有機溶剤の例を表1に示す。表1において沸点は0.1013MPaでの値である。さらに、本発明が適用可能な有機溶剤としては、水との共沸混合物をつくらない有機溶剤がより好ましい。例えば、表1に示した有機溶剤においては、PGME、PEGMEA及びピリジンを除いたものが、水との共沸混合物をつくらない有機溶剤である。
Figure JPOXMLDOC01-appb-T000001
 
 NMPと水との混合液を貯える原液タンク31が設けられており、原液タンク31内の混合液は、ポンプ32によって浸透気化装置13に供給されるようになっている。ポンプ32と浸透気化装置13との間には、混合液を加熱するために加熱器34と加熱器12とがこの順で設けられており、後段の加熱器12は蒸気が供給されてその蒸気によって混合液を加熱する。浸透気化装置13に供給される混合液は、例えば120℃程度にまで昇温される。
 浸透気化装置13には、例えばゼオライトによって構成された浸透気化膜14が設けられており、ここで混合液がNMPと水とに分離される。水は浸透気化膜14を透過するので、浸透気化装置13の透過側出口から水蒸気の形態で流出する。この水蒸気は、凝縮器16によって冷却されて凝縮し、透過水タンク35に貯えられ、排水される。一方、NMPは浸透気化膜14を透過しないので、浸透気化装置13において濃縮側に設けられている出口から排出されて減圧蒸発缶33に供給される。減圧蒸発缶33には、真空ラインである配管50を介し缶内の圧力を下げるための真空ポンプ36に接続しており、例えばNMPの沸点が130℃となるような圧力とするように、減圧蒸発缶33内の圧力を制御している。また減圧蒸発缶33には、NMPを気化させるために必要な量の蒸気が供給されている。減圧蒸発缶33に接続する真空ポンプ36は、浸透気化装置13の透過側での負圧を達成するためにも用いられている。この減圧蒸発缶33は、イオン性不純物や微粒子などの難揮発性の不純物を除去するために設けられている。
 減圧蒸発缶33の出口には、減圧蒸発缶内で気化したNMPを排出する配管40が取り付けられている。この配管40は加熱器34に接続しており、気化した例えば130℃のNMPを加熱器34の熱源として加熱器34に供給する。加熱器34に供給されたNMP蒸気は、混合液を加熱する際に凝縮する。したがって、加熱器34は混合液の加熱を行うとともにNMP蒸気の凝縮器としても機能することになる。加熱器34での加熱に蒸気等の外部熱源を熱媒として利用することなく、NMP蒸気と、NMPと水の混合液を直接熱交換することが可能になるため、NMP蒸気温度を過度に高くする必要がなくなり、エネルギー効率が高い。加熱器34でのNMP蒸気側の出口には冷却器15及び精密ろ過膜18がこの順で接続しており、NMPは冷却器15によって冷却されて完全に液体状態となり、精密ろ過膜18によって微粒子類が最終的に除去される。その結果、精密ろ過膜18の出口からは、精製されたNMPが得られることになる。この構成では、例えば原液タンク31内の混合液におけるNMPの濃度が80質量%であるとき、すなわち水分が20質量%であるときに、精密ろ過膜18の出口から得られるNMPにおける水分濃度を0.02質量%程度とすることができる。
 ここでこのシステムにおける加熱器34での熱回収効率について検討する。浸透気化装置13を用いて有機溶剤と水とを分離する場合、水分が浸透気化膜14を透過させるようにするので、水の蒸発潜熱に相当する熱を予め与えることが必要である。水の蒸発潜熱は2.30MJ/kgであり、NMPの蒸発潜熱は439kJ/kgであるので、NMPの凝縮放熱量をすべて供給したとしても、浸透気化装置13での水の蒸発潜熱量には満たない。すなわち、減圧蒸発缶33に供給された熱量の全量を加熱器34で回収可能である。したがって本実施形態では、浸透気化装置13を単独で使用する場合と同じ省エネルギー性能を達成しつつ、減圧蒸発缶33を追加したことによってイオン性不純物や微粒子類をNMPからより確実に除去できることになる。なお、浸透気化装置13に供給される混合液を加熱することに関し、NMP蒸気の凝縮熱で混合液を加熱する加熱器34を前段に、蒸気によって混合液を所望の温度まで加熱する加熱器12を後段に配置した方が、これらの加熱器12,34を逆順に配置する場合に比べ、熱効率等の観点から好ましい。
 精製された有機溶剤に求められるイオン性不純物濃度が極めて低い場合や、有機溶剤と水との混合液中に含まれるイオン性不純物の量が多い場合には、減圧蒸発缶33だけではイオン性不純物の除去が不十分となることがある。そこで図3に示した有機溶剤精製システムでは、イオン交換樹脂を充填したイオン交換装置を追加することができる。イオン交換樹脂は水の存在下でより高いイオン除去性能を示すので、有機溶剤と水とイオン性不純物とを含む混合液から有機溶剤を分離して精製する場合には、有機溶剤と水との分離の前にイオン交換樹脂による処理を行う方が有利である。図4は、イオン交換装置を備えた有機溶剤精製システムを示している。この有機溶剤精製システムは、図3に示したシステムにおいて、ポンプ32の出口にイオン交換装置41を設け、イオン交換装置41で処理された混合液が加熱器34及び加熱器12によって加熱されて浸透気化装置13に供給されるようにしたものである。イオン交換装置41は、混合液中に含まれるイオン性不純物を除去するものであり、例えば、アニオン交換樹脂を充填したもの、あるいは、アニオン交換樹脂とカチオン交換樹脂とを混床にして充填したものである。
 浸透気化法によって有機溶剤と水とを分離する場合、浸透気化装置への供給液を加熱して供給液温度を高めた方が、脱水効率すなわち有機溶剤と水との分離効率が高くなる。しかしながらこの加熱によって、有機溶剤が酸化して劣化するおそれがある。本発明者らの検討によると、有機溶剤と水との混合液中における溶存酸素量が多い場合に、有機溶剤の酸化が促進されることが分かった。そこで、有機溶剤と水との混合液中の気体成分を除去してから浸透気化装置13に混合液を供給することが考えられる。図5は、混合液中の気体成分を除去する脱気装置を備えた有機溶剤精製システムの構成を示している。
 図5に示した有機溶剤精製システムは、図4に示したシステムにおいて、ポンプ32とイオン交換装置41との間に、ポンプから供給される混合液中の気体成分を除去する脱気装置42を設けたものである。脱気装置42としては、例えば、水素を添加してパラジウム触媒に接触させて酸素を除去する酸素除去装置を用いることも可能であるが、酸素除去装置の場合には酸素以外の気体成分、例えば溶存二酸化炭素を除去することができない。溶存二酸化炭素はイオン交換装置41内のイオン交換樹脂、特にアニオン交換樹脂に対する負荷となるので、脱気装置42においては酸素の他に二酸化炭素も除去できるものが好ましい。また、液中に窒素やアルゴンなどの不活性ガスを吹き込んで溶存酸素などを除去することも可能であるが、迅速に脱気処理を行うことができない。このような観点から、脱気装置42には、脱気膜を用いたものを用いることが好ましい。脱気膜を用いることにより、水素や不活性ガスなどを供給することなく、迅速に、混合液中の溶存酸素や溶存二酸化炭素を除去することができるようになる。
 脱気膜を構成するための膜素材やポッティング材としては、ポリオレフィン、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、ポリウレタン、エポキシ樹脂などが挙げられる。しかしながらNMPなどの有機溶剤は一部の有機材料を溶解させる性質があるので、図5に示したシステムにおいては、ポリオレフィン、PTFE及びPFAによって脱気膜を構成することが好ましい。脱気膜の機械的構造としては、水での運用を想定した多孔性の膜と、表面張力がより小さな液体での運用を想定した非多孔性の膜とがあるが、ここではNMPなどの有機溶剤を多量に含む混合液を処理するので、非多孔性の膜を用いることが好ましい。図5に示すシステムにおいて用いることができる脱気膜の一例が、特開2004-105797号公報に示されているポリオレフィン膜である。
 図5に示した有機溶剤精製システムでは、脱気装置42によって溶存酸素及び溶存二酸化炭素が除去された混合液がイオン交換装置41に供給される。その後この混合液は、加熱器34,12によって例えば120℃程度まで加熱された後に浸透気化装置13に供給される。混合液中の二酸化炭素濃度が低減されているのでイオン交換装置41の負荷が軽くなり、その結果、イオン交換装置41内のイオン交換樹脂の交換周期を長くすることができる。また、溶存酸素が低減されているので、NMPの酸化や劣化を抑制することができる。なお、図5に示したシステムではイオン交換装置41が設けられているが、イオン交換装置を備えない有機溶媒精製システムにおいても脱気装置42を設けることができる。
 図6は脱気装置を備える有機溶剤精製システムの別の例を示している。図6に示した有機溶剤精製システムは、図5に示した有機溶剤精製システムにおいて、脱気装置として脱気膜を有する膜脱気装置43を用いるとともに、ポンプ44を追加したものである。図6のシステムでは、膜脱気装置43は、イオン交換装置41の直前に設けられているのではなく、その代わり、原液タンク31内の混合液を脱気するように配置されている。原液タンク31の底部と上部とを接続してポンプ44によって混合液が循環する配管45が設けられており、膜脱気装置43は、この配管45に設けられている。原液タンク31内の脱気された混合液は、ポンプ32によってイオン交換装置41に供給される。
 一般に、膜脱気に最適な液の流量と浸透気化装置の運転での最適な液の流量とが一致するとは限らない。図6に示した構成では、2つのポンプ32,44を独立に制御することによって、膜脱気装置43における混合液の流量と浸透気化装置13に供給される混合液の流量とを独立に設定でき、膜脱気と浸透気化の各々を最適の条件で実施できるようになる。また、NMPの精製を行わない期間においても容量の小さなポンプ44によって膜脱気だけは連続して実施することにより、NMPの精製開始時のプロセスの立ち上がりを速くすることができる。なお、図6に示したシステムではイオン交換装置41が設けられているが、イオン交換装置を備えない有機溶媒精製システムにおいても膜脱気装置43を設けることができる。
 図7は、本発明のさらに別の実施形態の有機溶剤精製システムの構成を示している。図3乃至図6に示したものでは、単段の浸透気化装置13を使用しているが、この場合、得られるNMPなどの有機溶剤に水分が残留したり、凝縮器16を経て排水として放出されるべき水にNMPが残留したりする可能性がある。そこで図7に示した有機溶剤精製システムでは、2台の浸透気化装置13,37を直列に接続して、2段階での浸透気化処理を行うようにしている。
 具体的には図7に示す有機溶剤精製システムは、図6に示したシステムにおいて、浸透気化装置13の濃縮側から排出される液を2段目の浸透気化装置37に供給するようにしている。NMPの流れに注目すれば、これらの浸透気化装置13,27が直列に接続していることになる。2段目の浸透気化装置37も例えばゼオライトからなる浸透気化膜38を備えており、2段目の浸透気化装置37の濃縮側からNMPが分離され、図6に示す装置と同様に、分離されたNMPが減圧蒸発缶33に供給されるようになっている。減圧蒸発缶33からのNMP蒸気は配管40を介して加熱器34に送られて混合液の加熱に用いられ、その後、冷却器15及び精密ろ過膜18を経て、精製NMPとして得られる。1段目の浸透気化装置37の透過側に現れる水分は、凝縮器16によって冷却されて凝縮し、図3乃至図6に示したものと同様に、凝縮水タンク(不図示)に貯えられ、排水される。
 2段目の浸透気化装置37の透過側から得られる水分は凝縮器39によって冷却されて凝縮し、透過水タンク35に貯えられるようになっている。浸透気化装置37の透過側での負圧を達成するために、透過液タンク35には真空ポンプ36も接続している。配管46によって、透過液タンク35に貯えられたNMPを含む水を、1段目の浸透気化装置13の前段に戻している。図示したものでは、透過液タンク35に貯えられた水を膜脱気装置43の入口あるいは原液タンク31に戻しているが、透過液タンク35に貯えられた水を戻す先は、膜脱気装置43の入口あるいは原液タンク31に限られるものではなく、例えば、透過液タンク35に貯えられた水を加熱器34あるいは加熱器12の入口に戻すようにしてもよい。
 浸透気化装置13,37において用いられる浸透気化膜14,38について説明する。浸透気化装置13,37の脱水性能は、その浸透気化膜14,38を挟んだ両側、すなわち濃縮側空間と透過側空間の水分密度差と、透過側の真空度に依存する。具体的には濃縮側空間の水分密度が大きいほど、あるいは透過側の真空度が高いほど、言い換えれば絶対圧力が低いほど、脱水性能が向上する。例えば混合液中の水の濃度が20質量%であるとすると、1段目の浸透気化装置13は、大きな水分密度差によって、大量の水を分離することができる。これに対して2段目の浸透気化装置37は、既に脱水された混合液を処理するため、分離される水は少量である。一方、浸透気化膜におけるNMPの透過量は水分密度差に大きく依存しない。このため、1段目の浸透気化装置13の透過側に現れる水蒸気でのNMP濃度は極めて低く、2段目の浸透気化装置37の透過側に現れる水蒸気のNMP濃度はこれより高くなる。本実施形態では、2段目の浸透気化装置37の透過側に現れる、NMPをより含んでいる水分を1段目の浸透気化装置13の前段に戻すことにより、NMPの回収率をさらに高め、環境へのNMPの放出を抑制している。なお、2段目の浸透気化装置37を透過する水分の量は1段目と比べて少量であり、この水分を1段目の浸透気化装置13の前段に戻すことによる脱水効率の低下は限定的である。
 浸透気化膜14,38には、ゼオライト膜が好ましく利用される。ゼオライトには、その骨格構造と、含まれているシリコンとアルミニウムとの比率とに応じて、A型、Y型、T型、MOR型、CHA型などの種類がある。アルミニウムに比べてシリコンの割合が高いほど、疎水性に富むようになる。これらのゼオライトのうち、A型は特に脱水効率に優れ、本実施形態においても両方の浸透気化装置13,37の浸透気化膜14,38として用いることができる。また、1段目の浸透気化装置13の浸透気化膜14として、A型以外、例えばT型、Y型、CHA型のゼオライト膜を用いることが好ましい場合もある。A型ゼオライトは、水分濃度が高い場合や、酸などの不純物が混合液中に含まれる場合に、リークや性能の低下が生じやすい。これに対し、A型以外のゼオライトは上述の環境でより長期間性能を保持することができる。上述したように、1段目の浸透気化装置13の浸透気化膜14は2段目の浸透気化装置37の浸透気化膜38と比べ高い脱水性能を必要としない。また、1段目の浸透気化装置13の透過側からの水蒸気は系外に放出されるため、ここでの浸透気化膜14のリークを防止する必要性は特に高い。このため、1段目の浸透気化装置13の浸透気化膜14として、A型ゼオライトと、上述した他のゼオライト(例えばT型、Y型、MOR型、CHA型)から選択された少なくとも1種類のゼオライトとを含むものを用いることもできる。いずれの場合にも2段目の浸透気化装置37の浸透気化膜38は、A型ゼオライトからなることが望ましい。2段目の浸透気化装置37の入口液は既に相当量脱水されており、含有水分が少ないため、この入口液中の水分が膜性能に悪影響を及ぼす可能性は低い。また、入口液中の水分が少ないため、脱水の駆動力が小さく、A型以外の膜ではA型よりも大きな膜面積を必要とする。このため、A型以外の膜では装置規模、装置コストが大きくなりやすい。
 また、浸透気化装置の脱水性能は、供給される混合液の単位流量あたりの浸透気化膜の膜面積、すなわち浸透気化膜の膜面積を混合液の流量で割った値と正の相関関係にある。したがって、単一の浸透気化装置で必要な脱水性能を得る場合、浸透気化膜の膜面積を増加させる必要がある。一方、NMPの透過量も浸透気化膜の膜面積と正の相関関係にあるため、脱水性能を高めるために膜面積の大きな単一の浸透気化装置を用いた場合、NMPの透過量もこれに応じて増加する。これに対し本実施形態では、1段目の浸透気化装置13は必要な脱水量の一部を脱水すればよく、膜面積を過度に大きくする必要がない。2段目の浸透気化装置37では、透過するNMPは原液タンク31側に戻されるため、脱水性能を高めるために膜面積を大きくしても問題とならない。換言すれば、1段目の浸透気化装置13では脱水量とNMP透過量のバランスが考慮されるが、2段目の浸透気化装置37ではこのようなバランスを考慮する必要がない。このように2台の浸透気化装置13,37を直列で設け、2段目の浸透気化装置37を透過するNMPを回収することで、必要な脱水性能を得るとともに、NMPの系外放出量を抑制することができる。
 12,34  加熱器
 13,37  浸透気化装置
 14,38  浸透気化膜
 15  冷却器
 16,39  凝縮器
 18  精密ろ過膜
 31  原液タンク
 33  減圧蒸発缶
 35  透過水タンク
 36  真空ポンプ
 41  イオン交換装置
 42  脱気装置
 43  膜脱気装置

Claims (9)

  1.  有機溶剤であって1気圧での沸点が100℃を超えるものと水とを含む混合液から前記有機溶剤を分離して精製する有機溶剤精製システムであって、
     前記混合液を加熱する加熱器と、
     前記加熱器の後段に設けられ、浸透気化膜を備えて前記有機溶剤と前記水とを分離する浸透気化装置と、
     前記浸透気化装置の濃縮側から回収される前記有機溶剤が供給される減圧蒸発缶と、
     前記減圧蒸発缶で気化した前記有機溶剤を前記加熱器の熱源として前記加熱器に供給する配管と、
     を備える有機溶剤精製システム。
  2.  前記加熱器の前段に、前記混合液に対してイオン交換処理を行うイオン交換装置をさらに備える、請求項1に記載の有機溶剤精製システム。
  3.  前記加熱器の前段に、前記混合液に含まれる気体成分を除去する脱気装置を備える、請求項1または2に記載の有機溶剤精製システム。
  4.  前記混合液が供給されて該混合液に含まれる気体成分を除去する脱気装置と、
     前記脱気装置で処理された混合液に対してイオン交換処理を行うイオン交換装置と、
     をさらに備え、イオン交換処理が行われた混合液が前記器加熱器に供給される請求項1に記載の有機溶剤システム。
  5.  前記脱気装置は脱気膜を備える請求項3または4に記載の有機溶剤精製システム。
  6.  前記混合液を貯留するタンクと、前記脱気装置と前記タンクの間で前記混合液を循環させる配管と、をさらに備える請求項3乃至5のいずれか1項に記載の有機溶剤精製システム。
  7.  前記浸透気化装置は、第1の浸透気化装置と第1の浸透気化装置の濃縮側から排出される液が供給される第2の浸透気化装置とを直列に接続して構成され、
     前記第2の浸透気化装置の濃縮側から回収される前記有機溶剤が前記減圧蒸発缶に供給され、
     前記第2の浸透気化装置の透過側から排出される液を前記第1の浸透気化装置の前段に循環させる配管をさらに有する、請求項1乃至6のいずれか1項に記載の有機溶剤精製システム。
  8.  前記有機溶剤はN-メチル-2-ピロリドンである請求項1乃至7のいずれか1項に記載の有機溶剤精製システム。
  9.  有機溶剤であって1気圧での沸点が100℃を超えるものと水とを含む混合液から前記有機溶剤を分離して精製する方法であって、
     前記混合液を加熱する加熱工程と、
     前記加熱された混合液を、浸透気化膜を用いて前記有機溶剤と前記水とに分離する工程と、
     前記浸透気化膜の濃縮側から回収される前記有機溶剤を減圧蒸発させる段階と、
     を有し、
     前記減圧蒸発によって気化した前記有機溶剤を前記加熱工程での熱源として用いる方法。
PCT/JP2015/070784 2014-07-29 2015-07-22 有機溶剤精製システム及び方法 WO2016017491A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP15828137.8A EP3175910B1 (en) 2014-07-29 2015-07-22 System and method for organic solvent purification
CN202110209373.XA CN112933987B (zh) 2014-07-29 2015-07-22 有机溶剂纯化系统和方法
CN201580015456.8A CN106132516B (zh) 2014-07-29 2015-07-22 有机溶剂纯化系统和方法
US15/327,504 US9765024B2 (en) 2014-07-29 2015-07-22 System and method for organic solvent purification
KR1020167021174A KR101764558B1 (ko) 2014-07-29 2015-07-22 유기용제 정제 시스템 및 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014153572A JP6440156B2 (ja) 2014-07-29 2014-07-29 有機溶剤精製システム及び方法
JP2014-153572 2014-07-29

Publications (1)

Publication Number Publication Date
WO2016017491A1 true WO2016017491A1 (ja) 2016-02-04

Family

ID=55217392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070784 WO2016017491A1 (ja) 2014-07-29 2015-07-22 有機溶剤精製システム及び方法

Country Status (6)

Country Link
US (1) US9765024B2 (ja)
EP (1) EP3175910B1 (ja)
JP (1) JP6440156B2 (ja)
KR (1) KR101764558B1 (ja)
CN (2) CN106132516B (ja)
WO (1) WO2016017491A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019163420A1 (ja) * 2018-02-21 2019-08-29 オルガノ株式会社 液体有機物と水の分離システム及び分離方法
WO2019193951A1 (ja) * 2018-04-04 2019-10-10 オルガノ株式会社 有機溶剤精製システム及び方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106984193A (zh) * 2017-04-12 2017-07-28 肇庆市稳固化工有限公司 一种天那水脱水方法和系统
CN207632732U (zh) * 2017-05-10 2018-07-20 奥加诺株式会社 Nmp水溶液的纯化系统
CN107626186B (zh) * 2017-11-01 2019-11-01 南京工业大学 一种膜分离法回收锂电池生产中n-甲基吡咯烷酮废气的方法和装置
KR102320162B1 (ko) * 2017-11-06 2021-10-29 주식회사 엘지화학 용매의 정제 방법
JP2021519680A (ja) 2018-03-30 2021-08-12 フジフイルム エレクトロニック マテリアルズ ユー.エス.エー., インコーポレイテッド 化学液体製造装置
CN109232352B (zh) * 2018-09-19 2024-03-19 江阴市大洋固废处置利用有限公司 一种n-甲基吡咯烷酮减压提纯系统及提纯方法
JP7146568B2 (ja) * 2018-10-24 2022-10-04 オルガノ株式会社 有機溶媒の精製方法及び精製装置
JP6819713B2 (ja) 2019-03-27 2021-01-27 栗田工業株式会社 有機溶媒の処理方法及び処理材
CN111013239A (zh) * 2019-03-29 2020-04-17 赣州中能实业有限公司 一种n-甲基吡咯烷酮纯化用分子筛处理器
JP2020193178A (ja) * 2019-05-30 2020-12-03 オルガノ株式会社 N−メチル−2−ピロリドンの精製方法及び精製システム
JP2020193177A (ja) * 2019-05-30 2020-12-03 オルガノ株式会社 N−メチル−2−ピロリドンの精製方法及び精製システム
WO2021054368A1 (ja) * 2019-09-18 2021-03-25 日東電工株式会社 精製システム、精製方法、膜分離装置、及び溶剤の製造方法
JP7328859B2 (ja) * 2019-09-30 2023-08-17 オルガノ株式会社 有機溶剤の精製方法及び精製システム
CN110655260B (zh) * 2019-10-20 2021-11-12 广东新泰隆环保集团有限公司 一种有机废水的零排放处理方法及装置
KR20210082711A (ko) * 2019-12-26 2021-07-06 주식회사 에너엔비텍 특정한 유기화합물 함유 폐수로부터 그 유기화합물의 농축 및 폐수처리를 위한 투과증발막 분리공정
CN112375026A (zh) * 2020-11-24 2021-02-19 浙江汇甬新材料有限公司 一种nmp渗透汽化脱水的方法
WO2023193744A1 (zh) * 2022-04-08 2023-10-12 浙江汇甬新材料有限公司 膜分离提纯设备和方法
KR102580889B1 (ko) * 2022-11-20 2023-09-20 이민래 유기용제 회수장치

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63258601A (ja) * 1987-04-15 1988-10-26 Ube Ind Ltd 有機物水溶液の濃縮方法
JPH0295419A (ja) * 1988-09-30 1990-04-06 Niigata Eng Co Ltd 液液分離装置
JPH06199830A (ja) * 1992-10-31 1994-07-19 Hoechst Ag 水性混合物からのトリオキサンの分離方法
JPH06262042A (ja) * 1993-03-11 1994-09-20 Mitsubishi Kasei Eng Co 液体精製装置
JPH06277456A (ja) * 1993-02-06 1994-10-04 Basf Ag 膜を用いた液体混合物の透過蒸発と蒸溜による共沸分離方法
JPH08109167A (ja) * 1994-10-11 1996-04-30 Mitsubishi Chem Corp N−メチル−2−ピロリドンの精製方法
JP2013018747A (ja) * 2011-07-12 2013-01-31 Japan Organo Co Ltd 電極製造工程におけるnmp精製システム

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61100536A (ja) * 1984-10-22 1986-05-19 Hitachi Zosen Corp アルコ−ル濃縮法
JPS62180790A (ja) * 1986-02-05 1987-08-08 Hitachi Ltd 超純水の製造方法
JPS62216695A (ja) * 1986-03-19 1987-09-24 Nitto Electric Ind Co Ltd 純水の製造方法及び装置
JPS634826A (ja) * 1986-06-25 1988-01-09 Mitsui Eng & Shipbuild Co Ltd 共沸蒸留装置
JP2780323B2 (ja) * 1989-04-14 1998-07-30 東レ株式会社 揮発性有機液体水溶液の濃縮液製造方法
JP2676900B2 (ja) * 1989-04-14 1997-11-17 東レ株式会社 エタノール濃縮液の製造方法
JP2571743B2 (ja) * 1992-11-02 1997-01-16 日本合成アルコール株式会社 無水エタノールの製造方法
US5556539A (en) 1993-02-26 1996-09-17 Mitsubishi Chemical Corporation Apparatus for separating a liquid mixture by pervaporation
JPH0780252A (ja) 1993-07-21 1995-03-28 Mitsubishi Chem Corp 浸透気化膜分離装置およびその運転停止方法
JPH07194942A (ja) 1993-11-29 1995-08-01 Mitsubishi Kasei Eng Co 浸透気化法による混合液体の分離方法および浸透気化膜分離装置
JPH09253638A (ja) * 1996-03-26 1997-09-30 Nomura Micro Sci Co Ltd 超純水製造装置
JPH11276801A (ja) 1998-03-27 1999-10-12 Mitsubishi Chemical Engineering Corp 混合液体精製方法及び混合液体精製装置
JP2004105797A (ja) 2002-09-13 2004-04-08 Mitsubishi Rayon Co Ltd 薬液の脱気方法
JP4360194B2 (ja) * 2003-12-16 2009-11-11 三菱化学株式会社 水溶性有機物の濃縮方法及び濃縮装置
US7497895B2 (en) * 2005-11-18 2009-03-03 Exxonmobil Research And Engineering Company Membrane separation process
CN100593520C (zh) * 2006-05-26 2010-03-10 中国科学院化学研究所 用于含酚废水处理的聚酰亚胺共聚物渗透汽化分离膜及其制备方法
CN101417209B (zh) * 2007-10-22 2011-08-31 天津海之凰科技有限公司 一种节能减压膜蒸馏装置及方法
JP5325418B2 (ja) * 2007-12-28 2013-10-23 三菱重工業株式会社 脱水システム及び脱水方法
CN101928016B (zh) * 2009-06-18 2012-07-04 中国石油化工股份有限公司 采用负压双效逆流蒸发结晶方式生产硫酸铵的工艺
US20120281208A1 (en) * 2009-07-21 2012-11-08 National University Corp. Okayama University Chamber for optical observation, method for optically observing sample, and method for manufacturing lower transparent plate
JP2011050860A (ja) * 2009-09-02 2011-03-17 Hitachi Zosen Corp 含水有機物の無水化方法
JP2011092871A (ja) * 2009-10-30 2011-05-12 Toyobo Co Ltd 有機溶剤回収システム
JP5141846B2 (ja) * 2010-02-24 2013-02-13 宇部興産株式会社 紫外線酸化装置及びそれを用いた超純水製造装置、並びに紫外線酸化方法及び超純水製造方法
CN202387237U (zh) * 2011-01-19 2012-08-22 王建波 一种提纯再生废有机溶剂的装置
JP5693368B2 (ja) 2011-05-13 2015-04-01 日立造船株式会社 二酸化炭素回収方法における二酸化炭素吸収液の再生方法
JP5762860B2 (ja) * 2011-07-15 2015-08-12 オルガノ株式会社 アルコールの精製方法及び装置
KR101317571B1 (ko) 2011-11-30 2013-10-11 오씨아이 주식회사 중공사막을 이용한 글리콜류의 탈수방법
CN103071307B (zh) * 2013-01-23 2015-04-22 江苏九天高科技股份有限公司 一种精馏-蒸汽渗透耦合的有机溶剂脱水方法及装置
CN103551036B (zh) * 2013-11-21 2016-03-02 洪梅 一种陶瓷分子筛膜高效渗透蒸发装置及工艺
KR101487107B1 (ko) 2013-12-24 2015-01-28 오씨아이 주식회사 글리콜 에테르 탈수용 유-무기 복합막을 이용한 투과증발 시스템

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63258601A (ja) * 1987-04-15 1988-10-26 Ube Ind Ltd 有機物水溶液の濃縮方法
JPH0295419A (ja) * 1988-09-30 1990-04-06 Niigata Eng Co Ltd 液液分離装置
JPH06199830A (ja) * 1992-10-31 1994-07-19 Hoechst Ag 水性混合物からのトリオキサンの分離方法
JPH06277456A (ja) * 1993-02-06 1994-10-04 Basf Ag 膜を用いた液体混合物の透過蒸発と蒸溜による共沸分離方法
JPH06262042A (ja) * 1993-03-11 1994-09-20 Mitsubishi Kasei Eng Co 液体精製装置
JPH08109167A (ja) * 1994-10-11 1996-04-30 Mitsubishi Chem Corp N−メチル−2−ピロリドンの精製方法
JP2013018747A (ja) * 2011-07-12 2013-01-31 Japan Organo Co Ltd 電極製造工程におけるnmp精製システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019163420A1 (ja) * 2018-02-21 2019-08-29 オルガノ株式会社 液体有機物と水の分離システム及び分離方法
WO2019193951A1 (ja) * 2018-04-04 2019-10-10 オルガノ株式会社 有機溶剤精製システム及び方法
JPWO2019193951A1 (ja) * 2018-04-04 2021-03-11 オルガノ株式会社 有機溶剤精製システム及び方法

Also Published As

Publication number Publication date
US9765024B2 (en) 2017-09-19
EP3175910A1 (en) 2017-06-07
CN112933987B (zh) 2022-07-26
CN106132516A (zh) 2016-11-16
EP3175910B1 (en) 2020-05-20
CN112933987A (zh) 2021-06-11
KR101764558B1 (ko) 2017-08-14
EP3175910A4 (en) 2018-01-10
JP6440156B2 (ja) 2018-12-19
KR20160104716A (ko) 2016-09-05
JP2016030233A (ja) 2016-03-07
US20170158635A1 (en) 2017-06-08
CN106132516B (zh) 2021-09-24

Similar Documents

Publication Publication Date Title
JP6440156B2 (ja) 有機溶剤精製システム及び方法
JP6636111B2 (ja) 有機溶剤精製システム及び方法
JP6415159B2 (ja) 有機溶剤精製システム及び方法
JP6783384B2 (ja) Nmp水溶液の精製システム及び精製方法
JP5911228B2 (ja) 電極製造工程におけるnmp精製システム
US20150232348A1 (en) Water desalination and brine volume reduction process
JP2012500114A (ja) 液体混合物の分離方法
JP2016030233A5 (ja)
JP6088268B2 (ja) Nmp精製システム
JP2014144936A (ja) Nmp精製システムおよびnmp精製方法
JP4996068B2 (ja) 廃水の濃縮処理方法及びその装置
JP2013018748A (ja) 電極製造工程におけるnmp精製システム
JP2020146639A (ja) 有機溶剤の脱水装置及び脱水方法
JP7106474B2 (ja) N-メチル-2-ピロリドンの精製方法、精製装置、回収精製方法、及び回収精製システム
JP6970280B2 (ja) 有機溶剤精製システム及び方法
JP2023086951A (ja) N-メチル-2-ピロリドンの精製方法及び精製システム
CN211660014U (zh) 精制装置及回收精制系统
JP6209352B2 (ja) 精製アルコール中の酸化物を低減する方法及びアルコール精製装置
JPH06304453A (ja) 低温冷媒を使用した浸透気化膜分離装置
JP2014144939A (ja) Nmp精製システム
JP2020193177A (ja) N−メチル−2−ピロリドンの精製方法及び精製システム
JPH0295419A (ja) 液液分離装置
JP2020146637A (ja) 有機溶剤と水とを含む混合液の精製システム及び精製方法
JP2022018631A (ja) 有機溶剤の精製方法及び精製システム
JP2020146638A (ja) 消耗材交換方法及び回収装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15828137

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167021174

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15327504

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015828137

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015828137

Country of ref document: EP