WO2016013642A1 - 多価カルボン酸およびそれを含有する多価カルボン酸組成物、エポキシ樹脂組成物、熱硬化性樹脂組成物、それらの硬化物並びに光半導体装置 - Google Patents

多価カルボン酸およびそれを含有する多価カルボン酸組成物、エポキシ樹脂組成物、熱硬化性樹脂組成物、それらの硬化物並びに光半導体装置 Download PDF

Info

Publication number
WO2016013642A1
WO2016013642A1 PCT/JP2015/071044 JP2015071044W WO2016013642A1 WO 2016013642 A1 WO2016013642 A1 WO 2016013642A1 JP 2015071044 W JP2015071044 W JP 2015071044W WO 2016013642 A1 WO2016013642 A1 WO 2016013642A1
Authority
WO
WIPO (PCT)
Prior art keywords
carboxylic acid
anhydride
acid
polyvalent carboxylic
resin composition
Prior art date
Application number
PCT/JP2015/071044
Other languages
English (en)
French (fr)
Inventor
直房 宮川
静 青木
正人 鎗田
田中 栄一
義浩 川田
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to JP2016535981A priority Critical patent/JP6669653B2/ja
Priority to KR1020177005178A priority patent/KR20170048357A/ko
Priority to CN201580051996.1A priority patent/CN106795125A/zh
Publication of WO2016013642A1 publication Critical patent/WO2016013642A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/26Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with only hetero atoms directly attached to ring carbon atoms
    • C07D251/30Only oxygen atoms
    • C07D251/34Cyanuric or isocyanuric esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4014Nitrogen containing compounds
    • C08G59/4028Isocyanates; Thioisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention is particularly suitable for use in a portion where high transparency and low colorability are required, such as for optical semiconductor sealing and for optical semiconductor reflectors, particularly when used for an optical semiconductor reflector or an optical semiconductor device having the same.
  • the glass transition temperature of the cured product can be sufficiently increased, and the polyvalent carboxylic acid having excellent moldability and the polyvalent carboxylic acid composition, the thermosetting resin composition, the epoxy resin composition containing the same are cured. It relates to a cured product and an optical semiconductor device.
  • Epoxy resin compositions are used in the fields of architecture, civil engineering, automobiles, aircraft and the like as resins having excellent heat resistance.
  • products such as mobile phones with cameras, ultra-thin liquid crystals, plasma TVs, and light-weight notebook computers have become a key word.
  • Very high characteristics have been demanded for packaging materials represented by resins.
  • the use in the fields related to optoelectronics has attracted attention.
  • advanced information technology in order to smoothly transmit and process vast amounts of information, technology that uses optical signals instead of conventional signal transmission using electrical wiring.
  • An epoxy resin curing agent generally used in the field of optoelectronics includes acid anhydride compounds.
  • acid anhydrides formed with saturated hydrocarbons are often used because the cured product has excellent light resistance.
  • alicyclic acid anhydrides such as methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, and tetrahydrophthalic anhydride are generally used. Phthalic anhydride is mainly used because of its ease of handling.
  • thermosetting resin composition When the thermosetting resin composition is used as a semiconductor encapsulant or as a semiconductor reflector, the illuminance of the optical semiconductor decreases when the thermosetting resin composition absorbs light emitted from the optical semiconductor. Therefore, it is desirable that the thermosetting resin composition has a high transmittance and is less colored by light or heat. Therefore, the curing agent blended in the thermosetting resin composition is also required to have high transmittance and little coloring due to light or heat.
  • the glass transition temperature of the cured product is a certain temperature or more, and from the viewpoint of moldability, the softening point and viscosity of the curing agent are within a certain range. It is important to be.
  • the acid anhydride used as a curing agent for thermosetting resins has a problem that it is not suitable for molding because of its volatility and low melting point.
  • Tetracarboxylic acid anhydride is not volatile, but has a high melting point (150 ° C. or higher), so it is difficult to handle as a liquid resin composition and has poor moldability. Considering the difficulty of use, it is not suitable for the intended use.
  • carboxylic acid as a curing agent for epoxy resin is also known, but it has a relatively high melting point (150 ° C. or higher) and has the same problem as above. Since it is extremely difficult to ensure, it is not suitable for the intended use.
  • the polycarboxylic acid compound also has a high melting point (150 ° C. or higher), high crystallinity, difficulty in resin kneading, and coloration, and cannot be used in the intended application. Therefore, as a conventionally known material, a compound that can achieve the above object has not been found.
  • the present invention particularly when used for curing in an open system such as an SMD type LED encapsulant, has low volatilization during curing and excellent curability, and the cured product provides a cured product with excellent transparency and hardness.
  • An object of the present invention is to provide a polyvalent carboxylic acid, a polyvalent carboxylic acid composition containing the same, an epoxy resin composition, and a cured product thereof. Furthermore, a polyvalent carboxylic acid that can sufficiently increase the glass transition temperature of the cured product, has excellent moldability and is less colored to the cured product, a thermosetting resin composition using the same, and such a thermosetting resin Provided is a semiconductor device using the composition as a sealing material or a reflective material.
  • thermosetting resin composition solves the above problems and have completed the present invention. That is, the present invention relates to the following [1] to [18].
  • R 1 represents an alkylene group having 1 to 6 carbon atoms
  • R 6 represents a hydrogen atom or an organic group containing a carboxyl group having 1 to 10 carbon atoms.
  • R 1 and R 6 present may be the same or different from each other, but in a plurality of R 6 , 50 mol% or more is an organic group containing a carboxyl group having 1 to 10 carbon atoms.
  • [2] A polyvalent carboxylic acid represented by the following formula (1-1) and described in [1].
  • R 1 represents the same meaning as described above, and R 2a represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a carboxyl group. R 1 and R 2a may be the same or different.
  • [3] The polyvalent carboxylic acid according to [1] represented by the following formula (1-2).
  • R 1 represents the same meaning as described above, and R 2b represents an alkylene group having a linear or branched structure having 1 to 10 carbon atoms. R 1 and R 2b present may be the same or different.
  • [4] A polyvalent carboxylic acid composition containing the polyvalent carboxylic acid according to any one of [1] to [3].
  • [5] The polyvalent carboxylic acid composition according to [4], further containing a carboxylic acid anhydride compound.
  • the polycarboxylic acid composition according to [5] wherein the carboxylic acid anhydride compound is one or more selected from compounds represented by the following formulas (2) to (7).
  • the epoxy resin composition according to [7] further containing an epoxy resin curing accelerator.
  • thermosetting resin Contains the polyvalent carboxylic acid according to any one of [1] to [3] and a thermosetting resin, and has an ICI cone plate viscosity of 0.01 Pa ⁇ s in the range of 100 to 200 ° C.
  • a thermosetting resin composition in the range of 10 Pa ⁇ s.
  • the thermosetting resin composition according to [12] which has a softening point in the range of 20 ° C to 150 ° C.
  • thermosetting resin composition containing an acid and one or more compounds selected from methylhexahydrophthalic anhydride, Trimellitic acid, trimellitic anhydride, cyclohexanetricarboxylic acid, cyclohexanetricarboxylic anhydride, pyromellitic acid, hydrogenated pyromellitic acid, pyromellitic anhydride, hydrogenated pyromellitic anhydride, hexahydrophthalic anhydride, and methyl
  • thermosetting resin composition according to [12] or [13], wherein one or more compounds selected from hex
  • thermosetting resin composition according to any one of [12] to [14], wherein the cured product has a glass transition temperature (Tg) of 30 ° C. or higher.
  • Tg glass transition temperature
  • the epoxy resin composition containing a polyvalent carboxylic acid having a specific structure having an isocyanuric ring or a polyvalent carboxylic acid composition containing the same has low volatilization at the time of curing and is excellent in curability. Since the cured product gives a cured product having excellent transparency and hardness, it is required to form a cured product having high transparency and a thin film, and is extremely useful as a sealing resin for materials, particularly optical semiconductors (LEDs, etc.).
  • thermosetting resin composition excellent also in the toughness of hardened
  • Example 2 is a GPC chart of the polyvalent carboxylic acid (A-1) obtained in Example 1.
  • 6 is a GPC chart of the polyvalent carboxylic acid (A-2) obtained in Example 9.
  • 4 is a GPC chart of the polyvalent carboxylic acid (A-3) obtained in Example 10.
  • 4 is a GPC chart of the polyvalent carboxylic acid composition (C-8) obtained in Example 23.
  • the polyvalent carboxylic acid (A) of the present invention is a polyvalent carboxylic acid having an isocyanuric ring represented by the following formula (1).
  • R 1 represents an alkylene group having 1 to 6 carbon atoms
  • R 6 represents an organic group containing a hydrogen atom or a carboxyl group having 1 to 10 carbon atoms.
  • R 1 examples include methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene group, isopropylene group, isobutylene group, isopentylene group, neopentylene group, isohexylene group, cyclohexylene group and the like.
  • a methylene group, an ethylene group, and a propylene group are preferable, and an ethylene group is particularly preferable.
  • R 6 is a hydrogen atom or an organic group containing a carboxyl group having 1 to 10 carbon atoms.
  • the organic group is a group consisting of only H, C, N, and O atoms, and R 6 may have 1 to 10 carbon atoms, such as an ester bond, an ether bond, a urethane bond, an amide bond, a carbonyl It may contain a group.
  • the organic group containing a carboxyl group having 1 to 10 carbon atoms contains one or more carboxyl groups.
  • a plurality of R 1 and R 6 may be the same or different.
  • 50 mol% or more is an organic group containing a carboxyl group having 1 to 10 carbon atoms.
  • the mechanical strength of the cured product is excellent.
  • 70 mol% or more is more preferable.
  • Examples of the organic group containing a carboxyl group having 1 to 10 carbon atoms in R 6 include organic groups represented by the following formulas (8) and (9).
  • R 2a represents a hydrogen atom or an alkyl group or carboxyl group having 1 to 6 carbon atoms
  • R 2b represents an alkylene group having a straight chain or branched structure having 1 to 10 carbon atoms.
  • the symbol * indicates that they are bonded to the oxygen atom in the formula (1).
  • alkyl group having 1 to 6 carbon atoms of R 2a include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, t-butyl group, pentyl group, isopentyl group, neopentyl group, A cyclopentyl group, a hexyl group, an isohexyl group, a cyclohexyl group and the like can be mentioned, and a methyl group is preferable from the viewpoint of heat-resistant transparency of the obtained cured product.
  • a methyl group and a carboxyl group are preferable, and the polyvalent carboxylic acid composition (C) containing the polyvalent carboxylic acid (A) is obtained with a viewpoint that the viscosity at room temperature (25 ° C.) does not increase excessively.
  • a methyl group is preferable, and from the viewpoint of gas barrier properties, high glass transition temperature (Tg), and hardness of the obtained cured product, a carboxyl group is particularly preferable.
  • R 2b examples include methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene group, heptylene group, octylene group, nonynylene group, decynylene group, isopropylene group, isobutylene group, isopentylene group, neopentylene group.
  • organic group containing a carboxyl group having 1 to 10 carbon atoms in R 6 are represented by the following formulas (8-1) to (8-3) and (9-1) to (9-3). Organic group.
  • the polyvalent carboxylic acid (A) represented by the formula (1) includes an isocyanuric acid trishydroxyalkyl compound represented by the following formula (10), a carboxylic acid anhydride compound represented by the following formula (14), and It can be obtained by addition reaction with a carboxylic acid anhydride compound represented by the formula (15).
  • R 1 represents the same meaning as described above.
  • R 2a represents the same meaning as described above.
  • R 3 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • m represents an integer and represents 1 to 9
  • a plurality of R 3 may be the same It can be different.
  • Specific examples of the alkyl group having 1 to 4 carbon atoms in R 3 include a methyl group, an ethyl group, a propyl group, and a butyl group.
  • m is an integer and represents 1 to 9, preferably 1 to 5, and particularly preferably 1 to 2, from the viewpoint of heat-resistant transparency of the resulting cured product.
  • the compounds represented by the formula (10) are preferable from the viewpoints of transparency of the cured product and gas barrier properties.
  • the compounds represented by the following formulas (2) to (4) are the heat-resistant transparency of the cured product, the viscosity of the polyvalent carboxylic acid (A), and the polyvalent carboxylic acid composition. It is mentioned as a preferable compound from a viewpoint of the viscosity of a thing (C). Among these, a compound represented by the following formula (4) is preferable.
  • the production of the polyvalent carboxylic acid (A) of the present invention can be carried out in a solvent or without a solvent.
  • the solvent is not particularly limited as long as it is a solvent that does not react with the trishydroxyalkyl compound of isocyanuric acid represented by the above formula (10) or the carboxylic acid anhydride compound represented by formula (14) or formula (15). it can.
  • Solvents that can be used include, for example, aprotic polar solvents such as dimethylformamide, dimethylacetamide, dimethyl sulfoxide, tetrahydrofuran and acetonitrile, ketones such as methyl ethyl ketone, cyclopentanone and methyl isobutyl ketone, and aromatic carbonization such as toluene and xylene. Hydrogen etc. are mentioned, Among these, aromatic hydrocarbons and ketones are preferable. These solvents may be used alone or in combination of two or more.
  • aprotic polar solvents such as dimethylformamide, dimethylacetamide, dimethyl sulfoxide, tetrahydrofuran and acetonitrile
  • ketones such as methyl ethyl ketone, cyclopentanone and methyl isobutyl ketone
  • aromatic carbonization such as toluene and xylene. Hydrogen etc. are mentioned, Among these, aromatic
  • the amount used in the case of using a solvent is represented by the above-mentioned isocyanuric acid trishydroxyalkyl compound represented by the formula (10) and the carboxylic acid anhydride compound represented by the formula (14) and / or the formula (15). 0.5 to 300 parts by mass is preferable with respect to 100 parts by mass in total of the carboxylic acid anhydride compounds.
  • the polyvalent carboxylic acid (A) of the present invention is often solid at room temperature (25 ° C.), it is preferable to synthesize it in a solvent from the viewpoint of workability.
  • the polyvalent carboxylic acid (A) of the present invention can be produced with or without a catalyst.
  • a catalyst is used, usable catalysts are hydrochloric acid, sulfuric acid, methanesulfonic acid, trifluoromethanesulfonic acid, paratoluenesulfonic acid, nitric acid, trifluoroacetic acid, trichloroacetic acid and other acidic compounds, sodium hydroxide, potassium hydroxide, water Metal hydroxides such as calcium oxide and magnesium hydroxide, amine compounds such as triethylamine, tripropylamine and tributylamine, pyridine, dimethylaminopyridine, 1,8-diazabicyclo [5.4.0] undec-7-ene, Heterocyclic compounds such as imidazole, triazole, tetrazole, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide
  • a catalyst When using a catalyst, it can also be used 1 type or in mixture of 2 or more types.
  • the amount used in the case of using a catalyst is represented by the above-mentioned trishydroxyalkyl compound isocyanurate represented by the formula (10), the carboxylic acid anhydride compound represented by the formula (14) and / or the formula (15). 0.05 to 10 parts by mass is preferable with respect to 100 parts by mass in total of the carboxylic acid anhydride compounds.
  • a method for adding the catalyst it is added directly or used in a state dissolved in a soluble solvent or the like.
  • zinc carboxylate such as zinc octylate is used from the viewpoint of improving transparency and heat-resistant transparency. It can be preferably used as a catalyst, and it is preferable to carry out the reaction without a catalyst from the viewpoint of reducing the coloring of the resulting polyvalent carboxylic acid (A) or polyvalent carboxylic acid composition (C).
  • calcium stearate in order to obtain a cured product excellent in transparency and sulfidation resistance, calcium stearate, zinc carboxylate (zinc 2-ethylhexanoate, zinc stearate, zinc behenate, zinc myristylate) and zinc phosphate ester ( Zinc compounds such as zinc octyl phosphate and zinc stearyl phosphate are preferably used.
  • the reaction temperature during the production of the polyvalent carboxylic acid (A) of the present invention is usually 20 to 160 ° C., preferably 50 to 150 ° C., particularly preferably 60 to 145 ° C., although it depends on the amount of catalyst and the solvent used. .
  • the total reaction time is usually 1 to 20 hours, preferably 3 to 18 hours.
  • the reaction may be performed in two or more stages. For example, the reaction may be performed at 20 to 100 ° C. for 1 to 8 hours and then at 100 to 160 ° C. for 1 to 12 hours.
  • many of the carboxylic acid anhydride compounds represented by the formulas (14) and (15) have high volatility. When such compounds are used, the reaction is carried out in advance at 20 to 100 ° C.
  • the catalyst can be removed by quenching and / or washing with water if necessary, but it is left as it is, and the polyvalent carboxylic acid (A) and / or the polyvalent carboxylic acid is left as it is. It can also be used as a curing accelerator for an epoxy resin composition containing the composition (C).
  • the solvent which can be isolate
  • preferable solvents include ketones such as methyl ethyl ketone, methyl isobutyl ketone and cyclopentanone, esters such as ethyl acetate, butyl acetate, ethyl lactate and isopropyl butanoate, hydrocarbons such as hexane, cyclohexane, toluene and xylene. It can. When a solvent is used for the reaction or washing with water, it can be removed by vacuum concentration or the like.
  • Examples of the peak of the fast retention time include a compound whose retention time is 1 to 3 minutes earlier than the peak of the compound of formula (1), for example, 18 to 20 minutes.
  • the GPC area% of the peak f compound is preferably 1 to 30 area%, and more preferably 1 to 10 area% from the viewpoint of increasing mechanical strength.
  • there may be 2 to 3 peaks of the slow retention time hereinafter referred to as peak s
  • peak s peaks of the slow retention time
  • the area percentage of GPC of the compound of peak s is preferably 1 to 10 area%, more preferably 1 to 5 area%, from the viewpoint of improving adhesiveness.
  • a multimer of polyvalent carboxylic acid represented by the following formula (16) may be generated. These compounds are considered to correspond to the compound of peak f.
  • R 1 represents the same meaning as described above
  • R 4 represents the same meaning as R 2b or a structure represented by the following formula (17)
  • R 5 represents a hydrogen atom or the following formula (18).
  • the structure represented by is represented.
  • R 2a represents the same meaning as described above, and ** represents a bond to the carbonyl carbon adjacent to R 4 in formula (16).
  • R 1, R 4, R 5 are as defined above, that it is bound with the oxygen atom to which R 5 in the formula (16) are attached at the site of *** To express.
  • the polyvalent carboxylic acid represented by the formula (16) is contained in the polyvalent carboxylic acid (A), it is preferable because the mechanical strength of the cured product is improved. In order not to excessively increase the viscosity of A), it is preferably 50 parts by mass or less with respect to 100 parts by mass of the polyvalent carboxylic acid (A).
  • the polyvalent carboxylic acid (A) of the present invention when the polyvalent carboxylic acid (A) of the present invention is produced, a divalent carboxylic acid represented by the following formula (19) may be generated.
  • the said compound corresponds to the compound of the peak s.
  • the GPC area% of the compound represented by the following formula (19) of the polyvalent carboxylic acid (A) obtained by the above production method is preferably 1 to 30 area%, more preferably 1 to 20 area%.
  • R 1 and R 4 represent the same meaning as described above.
  • the divalent carboxylic acid represented by the formula (15) is contained in the polyvalent carboxylic acid (A), it is preferable because the adhesion of the cured product to the base material is improved. Since mechanical strength is inferior, it is preferably 20 parts by mass or less with respect to 100 parts by mass of the polyvalent carboxylic acid (A).
  • the polyvalent carboxylic acid (A) of the present invention when the polyvalent carboxylic acid (A) of the present invention is produced, a monovalent carboxylic acid represented by the following formula (19 ') may be generated.
  • the said compound corresponds to the compound of the peak s.
  • the GPC area% of the compound represented by the following formula (19 ′) of the polyvalent carboxylic acid (A) obtained by the above production method is preferably 1 to 10 area%, more preferably 1 to 5 area%.
  • R 1 and R 4 represent the same meaning as described above.
  • the monovalent carboxylic acid represented by the formula (19 ′) is contained in the polyvalent carboxylic acid (A), it is preferable because the adhesion of the cured product to the base material is improved. Since the mechanical strength tends to be inferior, it is preferably 20 parts by mass or less with respect to 100 parts by mass of the polyvalent carboxylic acid (A).
  • the alcohol and the carboxylic acid anhydride compound represented by the above formula (14) and / or the above formula (15) are represented.
  • the alcohol, the compound represented by the above formula (9), the water in the solvent or the air, the carboxylic acid anhydride compound represented by the above formula (14) and / or the above formula (15) are represented.
  • the area percentage of GPC of the reaction product of the compound is preferably 5 area% or less, more preferably 3 area% or less from the viewpoint of the mechanical strength of the cured product.
  • the acid value (measured by the method described in JIS K-2501) of the produced polyvalent carboxylic acid (A) of the present invention is preferably 150 to 415 mgKOH / g, more preferably 185 to 375 mgKOH / g, Particularly preferred is 200 to 320 mg KOH / g. If the acid value is 150 mgKOH / g or more, it is preferable because the mechanical properties of the cured product are improved, and if it is 415 mgKOH / g or less, the cured product does not become too hard and the elastic modulus becomes appropriate.
  • the functional group equivalent of the polyvalent carboxylic acid (A) of the present invention is preferably from 135 to 312 g / eq, more preferably from 150 to 300 g / eq, particularly preferably from 180 to 280 g / eq.
  • the polyvalent carboxylic acid composition (C) of the present invention contains the polyvalent carboxylic acid (A) of the present invention as an essential component.
  • the polyvalent carboxylic acid composition (C ′) requires the polyvalent carboxylic acid (A) of the present invention and the carboxylic anhydride compound (B). Ingredients.
  • the polyvalent carboxylic acid composition (C ′) can be obtained by mixing the polyvalent carboxylic acid (A) and the carboxylic acid anhydride compound (B).
  • the polyvalent carboxylic acid composition (C ′) of the present invention can be obtained by uniformly mixing the above components at ordinary temperature or under heating. For example, mix thoroughly until uniform using a cartridge case, extruder, kneader, triple roll, universal mixer, planetary mixer, homomixer, homodisper, bead mill, etc., and if necessary, filter with SUS mesh It is prepared by doing. When preparing, you may mix together the epoxy resin (D) mentioned later, a hardening accelerator (E), an adhesion assistant, antioxidant, a light stabilizer, etc.
  • E hardening accelerator
  • the polyvalent carboxylic acid composition (C) of the present invention can be used as a varnish or ink by mixing a solvent as necessary.
  • the solvent is used for the polyvalent carboxylic acid (A), carboxylic anhydride compound (B), epoxy resin (D), curing accelerator (E), adhesion aid, antioxidant, light stabilizer, etc. of the present invention. Any one having high solubility and not reacting with these can be used.
  • aprotic polar solvents such as dimethylformamide, dimethylacetamide, dimethyl sulfoxide, tetrahydrofuran and acetonitrile
  • ketones such as methyl ethyl ketone, cyclopentanone and methyl isobutyl ketone
  • aromatic hydrocarbons such as toluene and xylene.
  • aromatic hydrocarbons and ketones are preferable.
  • the carboxylic acid anhydride compound represented by the formula (14) and / or the formula (15) in the production of the polyvalent carboxylic acid (A) described above are the same, the formula (10) Is reacted in an excess of the carboxylic anhydride compound (B) with respect to the trishydroxyalkyl compound of isocyanuric acid represented by the formula, and when the production of the polyvalent carboxylic acid (A) is completed, the polyvalent carboxylic acid (A ) And a carboxylic acid anhydride (B).
  • the charging ratio of both in the reaction is 0.001 to 0.7 equivalent in terms of the functional group equivalent, and 1 equivalent of the acid anhydride group, in terms of the hydroxyl equivalent of the trishydroxyalkyl compound of isocyanurate. It is preferable to charge in the range of 0.01 to 0.5 equivalent.
  • the polyvalent carboxylic acid (A) in the polyvalent carboxylic acid composition (C ′) is obtained by mixing the carboxylic acid anhydride (B) with the polyvalent carboxylic acid composition (C ′) thus obtained. Can be adjusted.
  • the carboxylic acid anhydride compound (B) used in the present invention is not particularly limited as long as it has a carboxylic acid anhydride group in the molecule, but one or more carboxylic acid anhydride compounds selected from the following formulas (2) to (7) are used.
  • An acid anhydride compound is preferred from the viewpoint of transparency of the cured product.
  • the proportion of the polyvalent carboxylic acid (A) and the carboxylic anhydride compound (B) is carboxylic with respect to 100 parts by mass of the polyvalent carboxylic acid (A).
  • the acid anhydride compound (B) is preferably 1 to 1000 parts by mass, more preferably 10 to 800 parts by mass, and particularly preferably 50 to 500 parts by mass.
  • the polyvalent carboxylic acid (A) or polyvalent carboxylic acid composition (C) of the present invention functions as an epoxy resin curing agent, and may contain other epoxy resin curing agents.
  • an amine type curing agent, a phenol type curing agent, and a polyvalent carboxylic acid resin are exemplified, and a polyvalent carboxylic acid resin is preferable.
  • the polycarboxylic acid resin is a compound having at least two or more carboxyl groups and having an aliphatic hydrocarbon group or a siloxane skeleton as a main skeleton.
  • the polyvalent carboxylic acid resin is not only a polyvalent carboxylic acid compound having a single structure, but also a mixture of a plurality of compounds having different substituent positions or different substituents, that is, a polyvalent carboxylic acid.
  • a composition is also included, and in the present invention, they are collectively referred to as a polyvalent carboxylic acid resin.
  • a bi- to hexafunctional carboxylic acid is particularly preferable.
  • another alcohol compound may be reacted, and two or more compounds corresponding to the component (a) or (b) may be used. .
  • the polyhydric alcohol compound containing two or more hydroxyl groups in the molecule is not particularly limited as long as it is a compound having two or more alcoholic hydroxyl groups in the molecule, but ethylene glycol, propylene glycol, 1, 3-propanediol, 1,2-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, cyclohexanedimethanol, 2,4-diethylpentanediol, 2-ethyl-2 -Butyl-1.3-propanediol, neopentyl glycol, tricyclodecane dimethanol, norbornenediol, 2,2'-bis (4-hydroxycyclohexyl) propane, 2- (1,1-dimethyl-2-hydroxyethyl) ) Geo such as 5-ethyl-5-hydroxymethyl-1,3-dioxane Diols, g
  • Particularly preferred alcohols are alcohols having 5 or more carbon atoms, particularly 1,6-hexanediol, 1,4-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,2-cyclohexanedimethanol, 2, 4-diethylpentanediol, 2-ethyl-2-butyl-1,3-propanediol, neopentyl glycol, tricyclodecane dimethanol, norbornenediol, 2,2'-bis (4-hydroxycyclohexyl) propane, 2- And compounds such as (1,1-dimethyl-2-hydroxyethyl) -5-ethyl-5-hydroxymethyl-1,3-dioxane, among which 2-ethyl-2-butyl-1,3-propanediol, Neopentyl glycol, 2,4-diethylpentanediol, 1,4-cycl Rhohexanedimethanol, tricycl
  • 2,4-diethylpentanediol tricyclodecane dimethanol, 2,2'-bis (4-hydroxycyclohexyl) propane, 2- (1,1-dimethyl-2-hydroxy
  • Particularly preferred are compounds such as ethyl) -5-ethyl-5-hydroxymethyl-1,3-dioxane.
  • the alcohol having the branched chain structure or the cyclic structure preferably has 5 to 25 carbon atoms, and particularly preferably 5 to 20 carbon atoms.
  • the polyhydric alcohol which has a siloxane structure is not specifically limited,
  • the silicone oil represented by a following formula can be used.
  • a 1 represents an alkylene group having 1 to 10 carbon atoms that may be bonded via an ether bond
  • a 2 represents a methyl group or a phenyl group
  • s represents a repeating number and means an average value. 1 to 100.
  • the polyhydric alcohol compound containing two or more hydroxyl groups in the molecule may be used alone or in combination of two or more.
  • the above-described polyhydric alcohol having a siloxane structure and an alcohol having a branched chain structure or a cyclic structure having 5 to 25 carbon atoms It is preferable to use a mixture.
  • the amount used is in the total alcohol compound (polyhydric alcohol having a siloxane structure).
  • Alcohols having a branched chain structure or cyclic structure having 5 to 25 carbon atoms is preferably 1 to 20, from the viewpoint of heat-resistant transparency of the cured product and appropriate viscosity of the polyvalent carboxylic acid resin. 6 to 10 is particularly preferable.
  • (B); compounds containing one or more acid anhydride groups in the molecule include, in particular, methyltetrahydrophthalic anhydride, methyl nadic anhydride, nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, butane Tetracarboxylic anhydride, bicyclo [2.2.1] heptane-2,3-dicarboxylic anhydride, methylbicyclo [2.2.1] heptane-2,3-dicarboxylic anhydride, cyclohexane-1,3 , 4-tricarboxylic acid-3,4-anhydride, glutaric anhydride, 2,4-diethyl glutaric anhydride, succinic anhydride, etc.
  • methylhexahydrophthalic anhydride, cyclohexane-1,3,4- Tricarboxylic acid-3,4-anhydride, 2,4-diethyl glutaric anhydride, 1,2,3,4-butanetetracarboxylic dianhydride, Hexane tetracarboxylic acid dianhydride, cyclopentane tetracarboxylic dianhydride is preferred.
  • cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride is preferable for increasing hardness
  • methylhexahydrophthalic anhydride is preferable for increasing illuminance retention.
  • 2,4-diethylglutaric acid and glutaric acid are preferable.
  • the conditions for the addition reaction can be performed under the same conditions as in the production of the polyvalent carboxylic acid (A) of the present invention described above.
  • the polyvalent carboxylic acid (A) or the polyvalent carboxylic acid composition (C) of the present invention is used in combination with another epoxy resin curing agent, the polyvalent carboxylic acid (A) of the present invention or the total epoxy resin curing agent is used.
  • the proportion of the polycarboxylic acid composition (C) is preferably 30 to 99 parts by mass, particularly preferably 60 to 97 parts by mass. If it is less than 30 parts by mass, the heat-resistant transparency of the cured product may be inferior.
  • the epoxy resin composition in the present invention contains a polyvalent carboxylic acid (A) or a polyvalent carboxylic acid composition (C) and an epoxy resin (D).
  • Examples of the epoxy resin (D) include an epoxy resin that is a glycidyl etherified product of a phenol compound, an epoxy resin that is a glycidyl etherified product of various novolak resins, an alicyclic epoxy resin, an aliphatic epoxy resin, a heterocyclic epoxy resin, Glycidyl ester epoxy resins, glycidyl amine epoxy resins, epoxy resins obtained by glycidylation of halogenated phenols, copolymers of polymerizable unsaturated compounds having an epoxy group with other polymerizable unsaturated compounds, epoxy Examples thereof include condensates of silicon compounds having a group with other silicon compounds, silicone-modified epoxy resins, and the like.
  • Examples of the epoxy resin that is a glycidyl etherified product of the phenol compound include 2- [4- (2,3-epoxypropoxy) phenyl] -2- [4- [1,1-bis [4- (2,3 -Hydroxy) phenyl] ethyl] phenyl] propane, bisphenol A, bisphenol F, bisphenol S, 4,4'-biphenol, tetramethyl bisphenol A, dimethyl bisphenol A, tetramethyl bisphenol F, dimethyl bisphenol F, tetramethyl bisphenol S, Dimethylbisphenol S, tetramethyl-4,4′-biphenol, dimethyl-4,4′-biphenol, 1- (4-hydroxyphenyl) -2- [4- (1,1-bis- (4-hydroxyphenyl) Ethyl) phenyl] propane, 2,2'-me Ren-bis (4-methyl-6-tert-butylphenol), 4,4′-butylidene-bis (3-methyl-6-ter
  • novolac resins such as a novolak resin, a phenol novolac resin containing a xylylene skeleton, a phenol novolak resin containing a dicyclopentadiene skeleton, a phenol novolak resin containing a biphenyl skeleton, and a phenol novolac resin containing a fluorene skeleton.
  • Examples of the alicyclic epoxy resin include alicyclic rings having an aliphatic ring skeleton such as 3,4-epoxycyclohexylmethyl- (3,4-epoxy) cyclohexylcarboxylate and bis (3,4-epoxycyclohexylmethyl) adipate.
  • An epoxy resin is mentioned.
  • Examples of the aliphatic epoxy resin include glycidyl ethers of polyhydric alcohols such as 1,4-butanediol, 1,6-hexanediol, polyethylene glycol, and pentaerythritol.
  • heterocyclic epoxy resin examples include heterocyclic epoxy resins having a heterocyclic ring such as an isocyanuric ring and a hydantoin ring.
  • examples of the glycidyl ester-based epoxy resin include epoxy resins made of carboxylic acid esters such as hexahydrophthalic acid diglycidyl ester.
  • examples of the glycidylamine epoxy resin include epoxy resins obtained by glycidylating amines such as aniline and toluidine.
  • epoxy resins obtained by glycidylating halogenated phenols include brominated bisphenol A, brominated bisphenol F, brominated bisphenol S, brominated phenol novolac, brominated cresol novolac, chlorinated bisphenol S, chlorinated bisphenol A, and the like.
  • An epoxy resin obtained by glycidylating any of the halogenated phenols include brominated bisphenol A, brominated bisphenol F, brominated bisphenol S, brominated phenol novolac, brominated cresol novolac, chlorinated bisphenol S, chlorinated bisphenol A, and the like.
  • copolymer of a polymerizable unsaturated compound having an epoxy group and another polymerizable unsaturated compound other than the above As a product available from the market, Marproof (trade name) G-0115S, G-0130S, G-0250S, G-1010S, G-0150M, G-2050M (manufactured by NOF Corporation) and the like.
  • polymerizable unsaturated compounds having an epoxy group include glycidyl acrylate, methacrylic acid, and the like. Examples thereof include glycidyl acid and 4-vinyl-1-cyclohexene-1,2-epoxide.
  • Examples of other polymerizable unsaturated compounds include methyl (meth) acrylate, ether (meth) acrylate, benzyl (meth) acrylate, cyclohexyl (meth) acrylate, styrene, vinylcyclohexane and the like. These epoxy resins may be used alone or in combination of two or more.
  • Examples of the condensate of the silicon compound having an epoxy group and another silicon compound include a hydrolysis condensate of an alkoxysilane compound having an epoxy group and an alkoxysilane having a methyl group or a phenyl group, or an epoxy group. It is a condensate of an alkoxysilane compound and a polydimethylsiloxane having a silanol group, a polydimethyldiphenylsiloxane having a silanol group, a polyphenylsiloxane having a silanol group, or a condensate obtained by using them in combination.
  • alkoxysilane compound having an epoxy group examples include 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane, and 3-glycidoxypropyltrimethoxysilane. , 3-glycidoxypropylmethyldimethoxysilane and the like.
  • alkoxysilane compound having a methyl group or a phenyl group examples include methyltrimethoxysilane, methyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, dimethyldimethoxysilane, diphenyldimethoxysilane, and methylphenyldimethoxysilane. .
  • Examples of the polydimethylsiloxane having a silanol group and the polydimethyldiphenylsiloxane having a silanol group include X-21-5841, KF-9701 (manufactured by Shin-Etsu Chemical Co., Ltd.) BY16-873, which are commercially available products.
  • PRX413 Toray Dow Corning Co., Ltd.
  • the silicone-modified epoxy resin is a compound having a silicone chain (Si—O chain) as a main skeleton and having two or more epoxy groups in one molecule.
  • the silicone chain may be linear, branched, cyclic, cage type, or ladder type.
  • a cyclic silicone-modified epoxy resin represented by the following formula (21) is a particularly preferable example from the viewpoint of transparency and mechanical strength of the obtained cured product, but is not limited thereto.
  • R 7 represents a hydrocarbon group having 1 to 6 carbon atoms
  • X represents an organic group containing an epoxy group or a hydrocarbon group having 1 to 6 carbon atoms
  • n represents an integer of 1 to 3, respectively.
  • a plurality of R 7 and X present in the formula may be the same or different. However, in the plurality of X, two or more are epoxy group-containing organic groups.
  • R 7 examples include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, and a phenyl group. From the viewpoint of heat resistance and transparency of the cured product, a methyl group and a phenyl group are preferable. From the viewpoint of ease of production, a methyl group is particularly preferable.
  • the organic group in X represents a compound composed of C, H, N, and O atoms.
  • Specific examples of the epoxy group-containing organic group include 2,3-epoxycyclohexylethyl group and 3-glycidoxypropyl group.
  • 2,3-epoxycyclohexylethyl group is preferable.
  • the number of carbon atoms in the organic group is preferably 1-20, and more preferably 3-15.
  • a group to which a 2,3-epoxycyclohexylethyl group or 3-glycidoxypropyl group is added via an alkylene group having 1 to 5 carbon atoms is preferable.
  • Specific examples of the hydrocarbon group having 1 to 6 carbon atoms in X include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, and a phenyl group.
  • a methyl group and a phenyl group are preferred, and a methyl group is particularly preferred from the viewpoint of ease of production.
  • n is preferably 2 in view of ease of production of the compound.
  • the cyclic silicone-modified epoxy resin represented by the formula (21) can be obtained by a hydrosilylation reaction between a cyclic hydrogensiloxane compound and an olefin compound having an epoxy group in the molecule.
  • Specific examples of the cyclic hydrogensiloxane compound include trimethyltricyclosiloxane, triphenyltricyclosiloxane, tetramethyltetracyclosiloxane, tetraphenyltetracyclosiloxane, pentamethylpentacyclosiloxane, pentaphenylpentacyclosiloxane, and the like. Tetramethyltetrasiloxane is preferred because of ease of production.
  • Examples of the olefin compound having an epoxy group in the molecule include 4-vinyl-1,2-epoxycyclohexane and 3-glycidoxy-1,2-propene. From the viewpoint of heat-resistant transparency of the cured product, 4-vinyl- 1,2-epoxycyclohexane is preferred.
  • a known metal complex such as rhodium, palladium, or platinum can be used as the catalyst.
  • specific examples include tristriphenylphosphine rhodium chloride and hexachloroplatinic acid hexahydrate, and hexachloroplatinic acid hexahydrate is preferred from the viewpoint of transparency of the cured product.
  • the catalyst used for the hydrosilylation reaction is preferably dissolved in a solvent and used as a solution from the viewpoint of workability. Any solvent can be used as long as it can dissolve the catalyst. From the viewpoints of solubility and workability, tetrahydrofuran and toluene are preferable. When used as a solution, the catalyst is adjusted to 0.05 to 50% by weight and added to the reaction solution.
  • cyclic silicone-modified epoxy resin represented by the formula (21) include compounds represented by the following formulas (21-1) to (21-6).
  • epoxy resins (D) may be used alone or in combination of two or more.
  • epoxy resins (D) from the viewpoint of transparency, heat-resistant transparency and light-resistant transparency, alicyclic epoxy resins, condensates of silicon compounds having an epoxy group with other silicon compounds, silicone-modified epoxies The combined use of resins is preferred. Among these, a cyclic silicone-modified epoxy resin having an epoxycyclohexane structure in the skeleton is preferable.
  • the epoxy resin (D) contains 1 equivalent of a carboxylic acid group in the polyvalent carboxylic acid (A) and / or a carboxylic acid anhydride 1 of the carboxylic acid anhydride compound (B) in the polyvalent carboxylic acid composition (C ′). It is preferable to use the epoxy group in an amount ranging from 0.5 to 3.0 equivalents relative to equivalents. If it is 0.5 equivalent or more, the heat resistant transparency of the cured product is improved, and if it is 3.0 or less, the mechanical property of the cured product is improved.
  • the epoxy resin composition of the present invention preferably further contains an epoxy resin curing accelerator (E).
  • Any epoxy resin curing accelerator (E) capable of accelerating the curing reaction between the polyvalent carboxylic acid (A) or polyvalent carboxylic acid composition (C) of the present invention and the epoxy resin (D) is used.
  • curing accelerators (E) that can be used but can be used include ammonium salt curing accelerators, phosphonium salt curing accelerators, metal soap curing accelerators, imidazole curing accelerators, amines Examples thereof include a curing accelerator, a phosphine curing accelerator, a phosphite curing accelerator, and a Lewis acid curing accelerator.
  • the epoxy resin curing accelerator (E) is preferably used in an amount of 0.001 to 15 parts by weight of the curing accelerator with respect to 100 parts by weight of the epoxy resin composition.
  • the metal soap curing accelerator is excellent, and among the metal soap curing accelerators, a zinc carboxylate compound is particularly preferable from the viewpoint of transparency of the cured product.
  • the metal soap type curing accelerator include tin octylate, cobalt octylate, zinc octylate, manganese octylate, calcium octylate, sodium octylate, potassium octylate, calcium stearate, zinc stearate, magnesium stearate, stearin Aluminum oxide, barium stearate, lithium stearate, sodium stearate, potassium stearate, 12-hydroxycalcium phosphate, zinc 12-hydroxystearate, magnesium 12-hydroxystearate, aluminum 12-hydroxystearate, 12-hydroxystearic acid Barium, lithium 12-hydroxystearate, sodium 12-hydroxystearate, calcium montanate, zinc montanate, mon Magnesium phosphate, aluminum montanate, lithium
  • Carbons such as zinc stearate, zinc montanate, zinc behenate, zinc laurate, zinc undecylenate, zinc ricinoleate, zinc myristate, and zinc palmitate are used to obtain cured products with excellent transparency and sulfidation resistance.
  • Zinc salts composed of a monocarboxylic acid compound having 10 to 30 carbon atoms and having a hydroxyl group such as zinc carbonate of several tens to thirty and zinc 12-hydroxystearate can be preferably used.
  • a zinc salt composed of a monocarboxylic acid compound having 10 to 20 carbon atoms such as zinc stearate and zinc undecylenate, and a hydroxyl group such as zinc 12-hydroxystearate.
  • a zinc salt composed of a monocarboxylic acid compound having 15 to 20 carbon atoms can be preferably used, more preferably zinc stearate, zinc undecylenate and zinc 12-hydroxystearate, particularly preferably zinc stearate, 12- Zinc hydroxystearate can be used.
  • ammonium salt curing accelerator examples include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, trimethylethylammonium hydroxide, trimethylpropylammonium hydroxide, trimethylbutylammonium hydroxide.
  • Trimethylcetylammonium hydroxide Trimethylcetylammonium hydroxide, trioctylmethylammonium hydroxide, tetramethylammonium chloride, tetramethylammonium bromide, tetramethylammonium iodide, tetramethylammonium acetate, trioctylmethylammonium acetate and the like.
  • the phosphonium salt curing accelerator include ethyltriphenylphosphonium bromide, tetraphenylphosphonium tetraphenylborate, methyltributylphosphonium dimethylphosphate, methyltributylphosphonium diethylphosphate, and the like.
  • ammonium salt-based curing accelerators phosphonium salt-based curing accelerators, metal soap-based curing accelerators, imidazole-based curing accelerators, amine-based curing accelerators, and heterocyclic compound-based curing accelerators.
  • a phosphine-based curing accelerator, a phosphite-based curing accelerator, a Lewis acid-based curing accelerator, or the like can be used.
  • the aforementioned epoxy resin curing accelerator (E) can be used as a solid compound or a liquid compound at room temperature (25 ° C.).
  • the epoxy resin composition of the present invention is used for an application that needs to be liquid at room temperature (25 ° C.)
  • a solid compound as a curing accelerator at room temperature (25 ° C.)
  • a resin is previously used. It can also be used by dissolving in Further, it is also possible to use a solid compound dispersed in a resin at room temperature (25 ° C.).
  • the epoxy resin composition of the present invention it is possible to supplement the viscosity adjustment of the composition and the hardness of the cured product by using a coupling agent as necessary.
  • a coupling agent examples include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, and 2- (3,4-epoxycyclohexyl) ethyl.
  • Trimethoxysilane N- (2-aminoethyl) 3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl) 3-aminopropylmethyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-mercaptopropyltri Methoxysilane, vinyltrimethoxysilane, N- (2- (vinylbenzylamino) ethyl) 3-aminopropyltrimethoxysilane hydrochloride, 3-methacryloxypropyltrimethoxysilane, 3-chloropropylmethyldimethoxysilane, 3-chloro Silane coupling agents such as propyltrimethoxysilane; isopropyl (N-ethylaminoethylamino) titanate, isopropyl triisostearoyl titanate, titanium di (dioctyl pyrophosphate) oxyacetate
  • the epoxy resin composition of the present invention it is possible to supplement mechanical strength without impairing transparency by using a nano-order level inorganic filler as necessary.
  • a filler having an average particle size of 500 nm or less, particularly an average particle size of 200 nm or less.
  • examples of inorganic fillers include crystalline silica, fused silica, alumina, zircon, calcium silicate, calcium carbonate, silicon carbide, silicon nitride, boron nitride, zirconia, fosterite, steatite, spinel, titania, talc, and the like.
  • the present invention is not limited to these.
  • These fillers may be used alone or in combination of two or more. The content of these inorganic fillers is 0 to 95% by weight in the epoxy resin composition of the present invention.
  • the epoxy resin composition of the present invention may contain an amine compound as a light stabilizer, or a phosphorus compound and a phenol compound as an antioxidant.
  • the amine compound include tetrakis (1,2,2,6,6-pentamethyl-4-piperidyl) -1,2,3,4-butanetetracarboxylate, tetrakis (2,2,6,6- Totramethyl-4-piperidyl) -1,2,3,4-butanetetracarboxylate, 1,2,3,4-butanetetracarboxylic acid and 1,2,2,6,6-pentamethyl-4-piperidinol and 3 , 9-bis (2-hydroxy-1,1-dimethylethyl) -2,4,8,10-tetraoxaspiro [5.5] undecane, bis (2,2,6) decanedioate , 6-Tetramethyl-4-piperidyl) sebacate, bis (1-undecanoxy-2,2,6,6-t
  • the following commercially available products can be used as the amine compound that is the light stabilizer. It is not particularly limited as a commercially available amine compound, for example, as manufactured by Ciba Specialty Chemicals, as TINUVIN (trade name) 765, TINUVIN 770DF, TINUVIN 144, TINUVIN 123, TINUVIN 622LD, TINUVIN 152, CHIMASSORB (trade name) 944, manufactured by ADEKA, LA-52, LA-57, LA-62, LA-63P, LA-77Y, LA-81, LA-82, LA-87 and the like.
  • the phosphorus compound is not particularly limited, and for example, 1,1,3-tris (2-methyl-4-ditridecyl phosphite-5-tert-butylphenyl) butane, distearyl pentaerythritol diphosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite, bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite, phenylbisphenol A pentaerythritol diphosphite, Dicyclohexylpentaerythritol diphosphite, tris (diethylphenyl) phosphite, tris (di-isopropylphenyl) phosphite, tris (di-n-butylphenyl) phosphite, tris (2,4-
  • the commercially available phosphorus compounds are not particularly limited.
  • ADK STAB (trade name) PEP-4C, ADK STAB PEP-8, ADK STAB PEP-24G, ADK STAB PEP-36, ADK STAB HP-10, ADK STAB 2112, ADK STAB 260, ADK STAB 522A, ADK STAB 1178, ADK STAB 1500, ADK STAB C, ADK STAB 135A and the like.
  • the phenol compound is not particularly limited.
  • IRGANOX (trade name) 1010, IRGANOX 1035, IRGANOX 1076, IRGANOX 1135, IRGANOX 245, IRGANOX 259, IRGANOX 295, IRGANOX 1598, IRGANOX 1598, IRGANOX 1520, manufactured by Ciba Specialty Chemicals, , ADK STAB AO-20, ADK STAB AO-30, ADK STAB AO-40, ADK STAB AO-50, ADK STAB AO-60, ADK STAB AO-70, ADK STAB AO-80, ADK STAB AO-90, ADK STAB AO-330, manufactured by Sumitomo Chemical Sumilizer (trade name) GA-80, Sumilizer M P-S, Sumilizer BBM-S, Sumilizer GM, Sumilizer GS (F), and the like
  • THINUVIN 328, THINUVIN 234, THINUVIN 326, THINUVIN 120, THINUVIN 477, THINUVIN 479, CHIMASSORB 2020FDL, CHIMASSORB 119FL and the like can be cited as those manufactured by Ciba Specialty Chemicals.
  • the amount of the compound is not particularly limited, but is 0 with respect to the total weight of the epoxy resin composition of the present invention.
  • the range is 0.005 to 5.0% by weight.
  • the epoxy resin composition of the present invention can be blended with a binder resin as necessary.
  • the binder resin include butyral resins, acetal resins, acrylic resins, epoxy-nylon resins, NBR-phenol resins, epoxy-NBR resins, polyamide resins, polyimide resins, and silicone resins. However, it is not limited to these.
  • the blending amount of the binder resin is preferably within a range that does not impair the flame retardancy and heat resistance of the cured product, and is usually 0.05 to 50 parts by weight, preferably 0.05 to 20 parts per 100 parts by weight of the resin component. Part by weight is used as needed.
  • An inorganic filler can be added to the epoxy resin composition of the present invention as necessary.
  • inorganic fillers include crystalline silica, fused silica, alumina, zircon, calcium silicate, calcium carbonate, silicon carbide, silicon nitride, boron nitride, zirconia, fosterite, steatite, spinel, titania, talc, and the like.
  • the present invention is not limited to these. These may be used alone or in combination of two or more.
  • the content of these inorganic fillers is used in an amount of 0 to 95% by weight in the curable resin composition of the present invention.
  • a silane coupling agent a release agent such as stearic acid, palmitic acid, zinc stearate, and calcium stearate, various compounding agents such as pigments, and various thermosetting resins are added to the curable resin composition of the present invention. can do.
  • the epoxy resin composition of the present invention can be obtained by uniformly mixing the above components at room temperature or under heating. For example, mix thoroughly until uniform using an extruder, kneader, three rolls, universal mixer, planetary mixer, homomixer, homodisper, bead mill, etc., and if necessary, filter with SUS mesh etc. Prepared.
  • the epoxy resin composition of the present invention comprises the polyvalent carboxylic acid (A) or the polyvalent carboxylic acid composition (C) of the present invention and an epoxy resin (D) and optionally a curing accelerator (E), an antioxidant, light It is prepared by thoroughly mixing additives such as a stabilizer and can be used as a sealing material. As a mixing method, it is mixed at room temperature or warm using a shell, kneader, three rolls, universal mixer, planetary mixer, homomixer, homodisper, bead mill or the like.
  • the epoxy resin composition of the present invention is dissolved in a solvent such as toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, and the epoxy resin composition varnish is used as a glass fiber.
  • a solvent such as toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, dimethylformamide, dimethylacetamide, N-methylpyrrolidone
  • the epoxy resin composition varnish is used as a glass fiber.
  • a prepreg obtained by impregnating a base material such as carbon fiber, polyester fiber, polyamide fiber, alumina fiber, paper, etc. and drying by heating is subjected to hot press molding to obtain a cured product of the epoxy resin composition of the present invention. can do.
  • the solvent is used in an amount of 10 to 70% by weight, preferably 15 to 70% by weight in the mixture of the epoxy resin composition of the present invention and the solvent.
  • cured material which contains a carbon fiber by a RTM system with a liquid composition can also be obtained.
  • the epoxy resin composition of the present invention can be used as a modifier for a film-type composition. Specifically, it can be used to improve the flexibility of the B-stage.
  • the epoxy resin composition of the present invention is applied as a varnish on a release film, the solvent is removed under heating, and a B-stage adhesive is formed. Get as.
  • This sheet-like adhesive can be used as an interlayer insulating layer in a multilayer substrate or the like.
  • thermosetting resin such as an epoxy resin
  • adhesives for example, adhesives, paints, coating agents, molding materials (including sheets, films, FRP, etc.), insulating materials (printed boards
  • a sealing material as a sealing material, a cyanate resin composition for a substrate, an acrylic ester resin as a resist curing agent, and the like as an additive to other resins Applications are listed.
  • adhesives examples include civil engineering, architectural, automotive, general office, and medical adhesives, as well as electronic material adhesives.
  • adhesives for electronic materials include interlayer adhesives for multilayer substrates such as build-up substrates, die bonding agents, semiconductor adhesives such as underfills, BGA reinforcing underfills, anisotropic conductive films ( ACF) and an adhesive for mounting such as anisotropic conductive paste (ACP).
  • Sealing agents include capacitors, transistors, diodes, light emitting diodes, potting, dipping, transfer mold sealing for IC, LSI, potting sealing for IC, LSI COB, COF, TAB, flip chip, etc. Underfill, and sealing (including reinforcing underfill) when mounting IC packages such as QFP, BGA, and CSP.
  • the cured product obtained in the present invention can be used for various applications including optical component materials.
  • the optical material refers to general materials used for applications that allow light such as visible light, infrared light, ultraviolet light, X-rays, and lasers to pass through the material. More specifically, in addition to LED sealing materials such as lamp type and SMD type, the following may be mentioned. It is a peripheral material for liquid crystal display devices such as a substrate material, a light guide plate, a prism sheet, a deflection plate, a retardation plate, a viewing angle correction film, an adhesive, and a film for a liquid crystal such as a polarizer protective film in the liquid crystal display field.
  • color PDP plasma display
  • antireflection films antireflection films
  • optical correction films housing materials
  • front glass protective films front glass replacement materials
  • adhesives and LED displays that are expected as next-generation flat panel displays
  • LED molding materials LED sealing materials, front glass protective films, front glass substitute materials, adhesives, and substrate materials for plasma addressed liquid crystal (PALC) displays, light guide plates, prism sheets, deflection plates , Phase difference plate, viewing angle correction film, adhesive, polarizer protective film, front glass protective film in organic EL (electroluminescence) display, front glass substitute material, adhesive, and various in field emission display (FED) Film substrate
  • PLC plasma addressed liquid crystal
  • VD video disc
  • CD / CD-ROM CD-R / RW
  • DVD-R / DVD-RAM MO / MD
  • PD phase change disc
  • disc substrate materials for optical cards Pickup lenses, protective films, sealing materials, adhesives and the like.
  • optical equipment In the field of optical equipment, they are steel camera lens materials, finder prisms, target prisms, finder covers, and light receiving sensor parts. It is also a photographic lens and viewfinder for video cameras. Projection lenses for projection televisions, protective films, sealing materials, adhesives, and the like. These include lens materials, sealing materials, adhesives, and films for optical sensing devices.
  • optical components In the field of optical components, they are fiber materials, lenses, waveguides, element sealing materials, adhesives and the like around optical switches in optical communication systems. Optical fiber materials, ferrules, sealing materials, adhesives, etc. around the optical connector. For optical passive components and optical circuit components, there are lenses, waveguides, LED sealing materials, CCD sealing materials, adhesives, and the like.
  • OEIC optoelectronic integrated circuit
  • optical fiber it is an optical fiber for lighting, light guides for decorative displays, sensors for industrial use, displays / signs, etc., and for communication infrastructure and home digital equipment connection.
  • semiconductor integrated circuit peripheral material it is a resist material for microlithography for LSI and VLSI material.
  • next generation optical / electronic functional organic materials include peripheral materials for organic EL elements, organic photorefractive elements, optical amplification elements that are light-to-light conversion devices, optical computing elements, substrate materials around organic solar cells, fiber materials, elements Sealing material, adhesive and the like.
  • optical material examples include general uses in which the curable resin composition A is used.
  • adhesives, paints, coating agents, molding materials (including sheets, films, FRP, etc.), In addition to insulating materials (including printed circuit boards and wire coatings), sealants, additives to other resins and the like can be mentioned.
  • the adhesive include civil engineering, architectural, automotive, general office, and medical adhesives, and electronic material adhesives.
  • adhesives for electronic materials include interlayer adhesives for multilayer substrates such as build-up substrates, die bonding agents, semiconductor adhesives such as underfills, BGA reinforcing underfills, anisotropic conductive films ( ACF) and an adhesive for mounting such as anisotropic conductive paste (ACP).
  • Optical semiconductor elements such as high-intensity white LEDs are generally GaAs, GaP, GaAlAs, GaAsP, AlGa, InP, GaN, InN, AlN, InGaN laminated on a substrate of sapphire, spinel, SiC, Si, ZnO or the like.
  • Such a semiconductor chip is bonded to a lead frame, a heat sink, or a package using an adhesive (die bond material).
  • a wire such as a gold wire is connected to pass an electric current.
  • the optical semiconductor element is sealed with a sealing material such as epoxy resin in order to protect the semiconductor chip from heat and moisture and to play a role of a lens function.
  • the epoxy resin composition of this invention can be used for this sealing material.
  • an injection method in which the sealing material is injected into the mold frame in which the optical semiconductor element is fixed is inserted and then heat-cured and then molded, and the sealing material is injected on the mold in advance.
  • a compression molding method is used in which an optical semiconductor element fixed on a substrate is immersed therein and heat-cured and then released from a mold.
  • the injection method include a dispenser.
  • methods such as hot air circulation, infrared rays and high frequency can be used.
  • the heating conditions are preferably 80 to 230 ° C. for about 1 minute to 24 hours.
  • post-curing is performed at 120 to 180 ° C. for 30 minutes to 10 hours. it can.
  • thermosetting resin composition containing the polyvalent carboxylic acid (A) of the present invention and a thermosetting resin
  • the thermosetting resin composition of the present invention has an ICI cone plate viscosity in the range of 0.01 Pa ⁇ s to 10 Pa ⁇ s in the range of 100 to 200 ° C.
  • thermosetting resin composition suitable for kneading can be obtained. Since the thermosetting resin composition of the present invention has an ICI cone plate viscosity in the range of 100 to 200 ° C. and is 0.01 to 10 Pa ⁇ s and is solid at room temperature, Kneading, which was impossible without pretreatment such as conversion, becomes possible without pretreatment. Moreover, since it is solid, it has the characteristics also in the point which is easy to shape
  • the ICI cone plate viscosity is 0.01 to 10 Pa ⁇ s in the range of 100 to 200 ° C. By adjusting to the said range, it becomes solid at normal temperature (25 degreeC), becomes easy to shape
  • each component that has been conventionally difficult to knead due to its crystallinity has a high softening point or melting point, and is sufficiently melted and dispersed in the curing agent.
  • the softening point is preferably 20 to 150 ° C., more preferably 40 to 130 ° C., further preferably 50 to 100 ° C., and particularly preferably 70 to 100 ° C. By being at such a softening point, sufficient kneading can be easily performed.
  • thermosetting resin composition of the present invention is a resin composition containing a polyvalent carboxylic acid (A) represented by the above formula (1), a thermosetting resin, and other components as required.
  • A polyvalent carboxylic acid
  • thermosetting resins can be contained as another component.
  • thermosetting resin curing agent components include trimellitic acid, trimellitic anhydride, cyclohexanetricarboxylic acid, and cyclohexanetricarboxylic anhydride, pyromellitic acid, hydrogenated pyromellitic acid, pyromellitic anhydride, Examples thereof include one or more compounds selected from hydrogenated pyromellitic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, and polyvalent carboxylic acids other than polyvalent carboxylic acid (A).
  • a cured product having a high crosslinking density can be obtained, so that a cured product having a high glass transition temperature can be obtained.
  • carboxylic acids such as trimellitic acid, trimellitic anhydride, cyclohexanetricarboxylic acid, cyclohexanetricarboxylic anhydride, pyromellitic acid, hydrogenated pyromellitic acid, pyromellitic acid anhydride, and hydrogenated pyromellitic acid anhydride or
  • An acid anhydride has a high softening point or melting point because it has crystallinity, and a specific melting point is 150 ° C. to 300 ° C., which may cause a problem in molding.
  • hexahydrophthalic anhydride and methylhexahydrophthalic anhydride have a melting point of not more than room temperature, there may be a problem in molding.
  • Hydrophthalic anhydride is preferred, with cyclohexanetricarboxylic anhydride, hexahydrophthalic anhydride, and methylhexahydrophthalic anhydride being more preferred.
  • cyclohexanetricarboxylic acid anhydride examples include cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride and cyclohexane-1,2,3-tricarboxylic acid-1,2-anhydride.
  • these acid anhydrides can be used in combination, but cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride is preferred.
  • thermosetting resin composition of the present invention trimellitic acid, trimellitic anhydride, cyclohexanetricarboxylic acid, cyclohexanetricarboxylic anhydride, pyromellitic acid, hydrogenated pyromellitic acid, pyromellitic anhydride, hydrogenated pyromellitic
  • the total of one or more compounds selected from acid anhydride, hexahydrophthalic anhydride, and methylhexahydrophthalic anhydride is 1% by weight to 90% by weight in the ratio of the thermosetting resin composition. Preferably there is.
  • the glass transition temperature is not sufficiently high, and if it is higher than 90% by weight, the melting point becomes high, which may make handling difficult. More preferably, it is 10 to 60% by weight, and still more preferably 20 to 50% by weight.
  • polyvalent carboxylic acid other than polyvalent carboxylic acid (A) of this invention which can be contained as a component of the hardening
  • numerator represented by following formula (22) is shown.
  • examples thereof include polyvalent carboxylic acids having an ester structure (preferably two ester structures) and having a plurality of carboxyl groups at the terminals.
  • P represents a residue of a polyhydric alcohol having 2 to 20 carbon atoms which may contain 0 to 6 oxygen, nitrogen and phosphorus atoms
  • R represents an aliphatic having 2 to 20 carbon atoms.
  • N and k are 1 to 6 on average, and the total of n is 2 or more and less than 12.
  • the polycarboxylic acid represented by the formula (22) is preferably a compound obtained by an esterification reaction of a bi- to hexafunctional polyhydric alcohol having 6 or more carbon atoms and a saturated aliphatic cyclic acid anhydride.
  • the linking group R is preferably a cycloalkane skeleton or a norbornane skeleton having 4 to 10 carbon atoms, and the cycloalkane skeleton is substituted or unsubstituted.
  • the cyclohexane structure particularly the methylcyclohexane structure having a methyl group is preferred from the optical properties of the cured product.
  • the norbornane skeleton is preferably a norbornane or methylnorbornane structure.
  • substituent that can be applied to the substituted one include an alkyl group having 1 to 3 carbon atoms and a carboxyl group.
  • the linking group P is a residue of a polyhydric alcohol having 2 to 10 carbon atoms (residue obtained by removing a hydroxyl group from the polyhydric alcohol used in the reaction), and is preferably a branched cross-linking group or a cycloalkyl group.
  • P is preferably a divalent crosslinking group defined by the following (a) or (b).
  • the substituent R 9 represents a group other than a hydrogen atom in the formula (2A) described later. It is more preferable.
  • the softening point of the said polyhydric carboxylic acid is 50 degreeC or more normally, 60 degreeC or more is preferable and 80 degreeC or more is more preferable.
  • it is 500 degrees C or less, It is preferable that it is 300 degrees C or less, and it is more preferable that it is 200 degrees C or less.
  • the particularly preferable polyvalent carboxylic acid can be obtained by addition reaction of a bi- to hexafunctional polyhydric alcohol having 6 or more carbon atoms and a saturated aliphatic cyclic acid anhydride.
  • These polyvalent carboxylic acids may be a mixture containing two types of polyvalent carboxylic acids.
  • a method of obtaining a polyvalent carboxylic acid mixture containing at least two polycarboxylic acids a method of mixing at least two single polycarboxylic acids obtained by the above method, or the above polyvalent carboxylic acid Is added as the saturated aliphatic cyclic acid anhydride by using a mixture of at least two kinds of saturated aliphatic cyclic acid anhydrides selected from the following, or by using two kinds of the above polyhydric alcohols.
  • the saturated aliphatic cyclic acid anhydride used for the synthesis of the polyvalent carboxylic acid has a cyclohexane structure, has a methyl group substitution or a carboxyl group substitution on the cyclohexane ring, or is unsubstituted and bonded to the cyclohexane ring And compounds having one or more (preferably one) acid anhydride groups in the molecule.
  • hexahydrophthalic anhydride methylhexahydrophthalic anhydride, and cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride, trimellitic anhydride, cyclohexanetricarboxylic anhydride, pyromellitic anhydride And at least one acid anhydride selected from the group consisting of hydrogenated pyromellitic acid anhydride.
  • the bi- to hexafunctional polyhydric alcohol having 6 or more carbon atoms used for the synthesis of the polyvalent carboxylic acid is specifically a polyvalent alcohol in which a hydroxyl group is added to the terminal of the crosslinking group P in the formula (21) Carboxylic acid can be mentioned.
  • the crosslinkable group represented by P is preferably a divalent crosslinkable group defined by the above (a) or (b), which will be specifically described below.
  • the divalent crosslinking group defined in (a) is a divalent chain alkyl chain obtained by removing a hydroxyl group from a divalent alcohol (diol) having a branched structure having 6 to 20 carbon atoms.
  • the side chain may be branched from any carbon atom constituting the main chain, and includes, for example, a case where the side chain is branched from a carbon atom to which an alcoholic hydroxyl group is bonded (terminal carbon atom of the main chain).
  • Any crosslinking group having such a structure may be used, and a specific example of such a crosslinking group is shown in the following formula (a1).
  • the alkylene bridging group defined in (a) is not particularly limited as long as it has a structure having an alkyl branched chain (side chain) with respect to the main chain alkylene group, but the main chain has 3 or more main chain carbon atoms.
  • those having at least one alkyl side chain are preferred, and those having two or more alkyl side chains are particularly preferred.
  • More preferable examples include a bridging group having a linear main chain having 3 to 12 carbon atoms and 2 to 4 side chains, and at least one of the side chains having 2 to 10 carbon atoms. Can do.
  • a crosslinking group in which at least two of the side chains have 2 to 10 carbon atoms is more preferable.
  • the 2 to 4 side chains are preferably branched from carbon atoms having different main chains.
  • More specific examples of the compound include a compound in which a hydroxyl group is bonded to the position of * in the crosslinking group described in the formula (a1).
  • polyhydric alcohols used as the raw material polyhydric alcohols having at least two side chains and at least two of which are side chains having 2 to 4 carbon atoms are preferred.
  • particularly preferred polyhydric alcohols are 2,4-diethyl-1,5-pentanediol, 2-ethyl-2-butyl-1,3-propanediol, 2-ethyl-1,3- Examples include hexanediol, and particularly 2,4-diethyl-1,5-pentanediol.
  • Examples of the crosslinking group defined in (b) include a divalent group represented by the following formula (b1).
  • the crosslinked polycyclic diol residue is a diol residue having a tricyclodecane structure or a pentacyclopentadecane structure as the main skeleton, and is represented by the following formula (b2). Is done.
  • a plurality of R 8 each independently represents a hydrogen atom or a methyl group.
  • a bridging group in which all R 8 are hydrogen atoms is preferable.
  • Specific examples include tricyclodecane dimethanol, methyl tricyclodecane dimethanol, and pentacyclopentadecane dimethanol.
  • the reaction between the acid anhydride and the polyhydric alcohol is generally an addition reaction using an acid or a base as a catalyst, but in the present invention, a reaction without a catalyst is particularly preferable.
  • a catalyst examples of the catalyst that can be used include hydrochloric acid, sulfuric acid, methanesulfonic acid, trifluoromethanesulfonic acid, paratoluenesulfonic acid, nitric acid, trifluoroacetic acid, trichloroacetic acid and other acidic compounds, sodium hydroxide, hydroxide Metal hydroxides such as potassium, calcium hydroxide and magnesium hydroxide, amine compounds such as triethylamine, tripropylamine and tributylamine, pyridine, dimethylaminopyridine, 1,8-diazabicyclo [5.4.0] undec-7 -Heterocyclic compounds such as ene, imidazole, triazole, tetrazole, tetramethylammonium hydrox
  • the amount of the catalyst used is not particularly limited, but it is usually preferable to use 0.001 to 5 parts by weight, if necessary, with respect to 100 parts by weight of the total weight of the raw materials.
  • a reaction without a solvent is preferable, but an organic solvent may be used.
  • the amount of the organic solvent used is 0.005 to 1 part by weight, preferably 0.005 to 0.7 part, based on 1 part of the total amount of the acid anhydride and the polyhydric alcohol as reaction substrates. More preferably, it is 0.005 to 0.5 part (that is, 50% by weight or less).
  • the amount of the organic solvent used exceeds 1 part by weight with respect to 1 part by weight of the reaction substrate, it is not preferable because the progress of the reaction becomes extremely slow.
  • organic solvents that can be used include alkanes such as hexane, cyclohexane and heptane, aromatic hydrocarbon compounds such as toluene and xylene, ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone and anone, diethyl ether , Ethers such as tetrahydrofuran and dioxane, and ester compounds such as ethyl acetate, butyl acetate and methyl formate can be used.
  • alkanes such as hexane, cyclohexane and heptane
  • aromatic hydrocarbon compounds such as toluene and xylene
  • ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone and anone
  • diethyl ether Ethers such as tetrahydrofuran and dioxane
  • the reaction temperature is preferably 30 to 200 ° C, more preferably 40 to 200 ° C, and particularly preferably 40 to 150 ° C.
  • the reaction at 100 ° C. or lower is preferred, and the reaction at 30 to 100 ° C. or 40 to 100 ° C. is particularly preferred because of the volatilization of the acid anhydride.
  • the reaction ratio between the acid anhydride and the polyhydric alcohol is theoretically preferably equimolar, but can be changed as necessary.
  • the specific charging ratio of the two at the time of reaction is such that the polyhydric alcohol is equivalent to 0.001 to 2 equivalents in terms of the hydroxyl group equivalent to 1 equivalent of the acid anhydride group in terms of the functional group equivalent. It is preferable to charge at a ratio of preferably 0.01 to 1.5 equivalents, more preferably 0.1 to 1.2 equivalents.
  • the polyvalent carboxylic acid obtained is preferably solid, and in order to obtain a solid resinous polycarboxylic acid, ideally, an equimolar equivalent or more of polyhydric alcohol is preferably used.
  • the equivalent ratio of the alcoholic hydroxyl group to the acid anhydride equivalent is preferably 0.85 to 1.20 molar equivalent, and particularly preferably 0.90 to 1.10 molar equivalent.
  • reaction time depends on the reaction temperature, the amount of catalyst, etc., from the viewpoint of industrial production, a long reaction time is not preferable because it consumes a great deal of energy.
  • An excessively short reaction time means that the reaction is abrupt and is not preferable from the viewpoint of safety.
  • a preferred range is 1 to 48 hours, preferably 1 to 36 hours, more preferably 1 to 24 hours, and still more preferably about 2 to 10 hours.
  • the target polycarboxylic acid is obtained by removing the catalyst by neutralization, washing with water, adsorption, etc., and distilling off the solvent.
  • the target polyvalent carboxylic acid can be obtained by distilling off the solvent as necessary.
  • the target polyvalent carboxylic acid is obtained by removing the solvent.
  • the desired polycarboxylic acid can be obtained by taking it out as it is.
  • the most preferable production method is a method in which the acid anhydride and the polyhydric alcohol are reacted at 40 to 150 ° C. under non-catalytic conditions to remove the solvent and then taken out.
  • the polycarboxylic acid thus obtained or a mixture containing the polyvalent carboxylic acid usually shows a colorless to pale yellow solid resinous form (which may crystallize in some cases).
  • the softening point of the polyvalent carboxylic acid is preferably 50 to 190 ° C, more preferably 55 to 150 ° C, and particularly preferably 60 to 120 ° C.
  • the crosslinking group is an alkylene group having a side chain defined by (a)
  • the polyvalent carboxylic acid is in the form of a solid resin.
  • the bridging group is a bridging group defined by (b)
  • the aliphatic hydrocarbon group is a cycloalkane skeleton or a norbornane skeleton having 4 to 10 carbon atoms
  • all of the alicyclic substituents contain many hydrogen atoms.
  • Divalent carboxylic acids are colored during curing and are not suitable for particularly severe optical applications.
  • the compound having a methyl group or a carboxyl group as the substituent is less colored and the optical properties are improved.
  • the substituent is a methyl group or a carboxyl group.
  • the substituent is preferably a formula having a methyl group or a carboxyl group, or both.
  • the mixture containing polyvalent carboxylic acid (22) is preferred.
  • a polyvalent carboxylic acid mixture containing two or more of the polyvalent carboxylic acids at least the polyvalent carboxylic acid of the formula (22) in which the substituent is not a hydrogen atom (the substituent is the alkyl group, preferably a methyl group, or A mixture containing 50 mol% or more of a polyvalent carboxylic acid having a carboxyl group) with respect to the total amount of the polyvalent carboxylic acid is preferable. More preferably, a polyvalent carboxylic acid mixture containing 70 mol% or more, most preferably 90 mol% or more of the polyvalent carboxylic acid of the formula (22) in which the substituent is not a hydrogen atom is preferable.
  • the balance is a polyvalent carboxylic acid of the following formula (2A) in which R 3 is a hydrogen atom.
  • a polyvalent carboxylic acid represented by the following formula (2A) is used as a suitable polyvalent carboxylic acid other than the polyvalent carboxylic acid of the present invention.
  • R 9 represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or a carboxyl group.
  • R 9 represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or a carboxyl group.
  • R 9 represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or a carboxyl group.
  • an alkyl group or carboxyl group having 1 to 3 carbon atoms as R 9 can be suitably used.
  • the terminal carboxylic acid oligoester is preferably a polyvalent carboxylic acid having a number average molecular weight Mn of 300 or more.
  • thermosetting resin composition of the present invention the polyvalent carboxylic acid represented by the above formula (1) and trimellitic acid, trimellitic anhydride, cyclohexanetricarboxylic acid, cyclohexanetricarboxylic anhydride, pyromellitic Functional group in one or a mixture of two or more compounds selected from acid, hydrogenated pyromellitic acid, pyromellitic anhydride, hydrogenated pyromellitic anhydride, hexahydrophthalic anhydride, and methylhexahydrophthalic anhydride
  • the equivalent weight is 250 g / eq. Or less, preferably 240 g / eq. The following is more preferable.
  • trimellitic acid, trimellitic anhydride, cyclohexanetricarboxylic acid, and cyclohexanetricarboxylic anhydride trimellitic acid, trimellitic anhydride, cyclohexanetricarboxylic acid, and cyclohexanetricarboxylic anhydride, pyromellitic acid, hydrogenated pyromellitic acid, pyromellitic acid anhydride, hydrogenated pyromellitic acid anhydride
  • the effect of the compound amount of one or more compounds selected from hexahydrophthalic anhydride and methylhexahydrophthalic anhydride is effectively exhibited, and a cured product having excellent heat resistance can be obtained.
  • polyvalent carboxylic acid (A) represented by the above formula (1) trimellitic acid, trimellitic anhydride, cyclohexanetricarboxylic acid, and cyclohexanetricarboxylic anhydride, pyromellitic acid, hydrogenated pyromellitic acid, Heat containing a curing agent for thermosetting resin containing one or more compounds selected from pyromellitic anhydride, hydrogenated pyromellitic anhydride, hexahydrophthalic anhydride, and methylhexahydrophthalic anhydride
  • Examples of the curing agent that can be used in combination include an amine compound, an acid anhydride compound having an unsaturated ring structure, an acid anhydride having an organosiloxane skeleton, an amide compound, a phenol compound, and a carboxylic acid compound.
  • Specific examples of the curing agent that can be used include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, polyamide resin synthesized from ethylenediamine and phthalic anhydride, pyromellitic anhydride.
  • thermosetting resin composition in the present invention is a composition containing a thermosetting resin such as an epoxy resin, a phenol resin, a urea resin, a melamine resin, and an unsaturated polyester resin.
  • a thermosetting resin such as an epoxy resin, a phenol resin, a urea resin, a melamine resin, and an unsaturated polyester resin.
  • the epoxy resin It is desirable to use
  • the epoxy resin can be used without any particular limitation as long as it is usually blended as a conventional thermosetting resin composition or epoxy resin composition.
  • epoxidized phenol and aldehyde novolac resins such as phenol novolac type epoxy resin, orthocresol novolac type epoxy resin, diglycidyl ether such as bisphenol A, bisphenol F, bisphenol S, alkyl-substituted bisphenol, Glycidylamine type epoxy resin obtained by reaction of polyamine such as diaminodiphenylmethane and isocyanuric acid and epichlorohydrin, alicyclic epoxy resin obtained by oxidizing olefin bond with peracid such as peracetic acid, diglycidyl isocyanurate, triglycidyl isocyanate Examples thereof include nurate and silsesquioxane compounds, and these may be used alone or in combination of two or more.
  • epoxy resins those having high heat resistance are preferable. Specifically, from the viewpoints of melt viscosity, coloring of the cured product and glass transition temperature, glycidyl ether type epoxy resin, alicyclic epoxy A resin, triglycidyl isocyanurate is preferred.
  • an active group an acid anhydride group or a hydroxyl group
  • a curing agent for a thermosetting resin capable of reacting with the epoxy group one functional group of carboxylic acid
  • the acid anhydride is considered to be monofunctional), particularly preferably 0.5 to 1.2 equivalents.
  • curing may be incomplete and good cured properties may not be obtained, and coloration is likely to occur. There is also a problem.
  • Curing accelerators include 2-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-phenylimidazole, 1-benzyl- 2-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole, 2,4-diamino-6 (2′-methylimidazole (1 ′)) ) Ethyl-s-triazine, 2,4-diamino-6 (2′-undecylimidazole (1 ′)) ethyl-s-triazine, 2,4-diamino-6 (2′-ethyl, 4-methylimidazole (
  • phosphonium compounds more preferably quaternary phosphonium
  • zinc stearate examples of quaternary phosphonium products available on the market include PX-4ET and PX-4MP (both manufactured by Nippon Chemical Industry Co., Ltd.).
  • the curing accelerator is usually used in an amount of 0.001 to 15 parts by weight, preferably 0.01 to 5 parts by weight, based on 100 parts by weight of the epoxy resin.
  • additives other than those mentioned above generally used additives for epoxy resins, such as dyes, fluorescent whitening agents, reinforcing materials, fillers, white pigments or other pigments, nucleating agents , Surfactants, plasticizers, viscosity modifiers, fluidity modifiers, flame retardants, antioxidants, ultraviolet absorbers, and light stabilizers may be added.
  • the filler examples include, but are not limited to, crystalline silica, fused silica, antimony oxide, titanium oxide, magnesium oxide, zirconium oxide, aluminum hydroxide, magnesium hydroxide, and alumina. These may be used alone or in combination of two or more.
  • the blending amount of the inorganic filler is preferably 1 to 1000 parts by weight, and more preferably 1 to 800 parts by weight with respect to 100 parts by weight of the total amount of the curable resin composition.
  • a white pigment for example, an alumina, magnesium oxide, antimony oxide, titanium oxide, a zirconium oxide, a zinc oxide, basic zinc carbonate, a kaolin, a calcium carbonate etc. can be used.
  • the white pigment may be a hollow particle.
  • you may surface-treat with a silicon compound, an aluminum compound, organic substance etc. suitably with respect to a white pigment. These may be used alone or in combination of two or more.
  • the average particle size of the white pigment is preferably in the range of 0.01 to 50 ⁇ m.
  • the average particle diameter can be measured using, for example, a laser diffraction / scattering particle size distribution meter.
  • the crystal form of titanium oxide is not particularly limited, and may be a rutile type, anatase type, or a mixture of both, but the anatase type has a photocatalytic function and deteriorates the resin.
  • the rutile type is preferable.
  • CR-95 titanium oxide manufactured by Ishihara Sangyo Co., Ltd.
  • the content of the white pigment is in the range of 10% to 95% by weight, more preferably 50% to 95%, based on the entire resin composition. If the total content is less than 10% by weight, the light reflection characteristics of the cured product tend not to be obtained sufficiently, and if it exceeds 95% by weight, the moldability of the resin composition tends to be poor, and the substrate tends to be difficult to produce. It is in.
  • the melt viscosity of the thermosetting resin curing agent under high temperature conditions during molding is higher than that of conventional acid anhydride curing agents and the like. Specifically, it is 0 at a molding temperature range of 100 ° C. to 200 ° C. It is desirable that the pressure be set to 0.01 Pa ⁇ s to 10 Pa ⁇ s. If it is less than 0.01 Pa ⁇ s, burrs are likely to occur. On the other hand, when it is larger than 10 Pa ⁇ s, the productivity is lowered.
  • the ICI viscosity of the thermosetting resin curing agent at 150 ° C. is preferably 0.01 Pa ⁇ s to 10 Pa ⁇ s, more preferably 0.05 Pa ⁇ s to 5 Pa ⁇ s. .
  • the softening point is preferably in the range of 20 ° C to 150 ° C. More specifically, it is preferably in the range of 30 ° C. to 130 ° C., more preferably in the range of 40 ° C. to 120 ° C.
  • the glass transition temperature of the cured product is desirably higher than the molding temperature.
  • the glass transition temperature of the cured product is lower than the molding temperature, the cured product in the mold is in a low-elasticity rubber state, so the rubber-like cured product will be taken out of the mold, and when the ejector is pushed in There is a risk of malfunction due to deformation.
  • the glass transition temperature is preferably 30 ° C. or higher, more preferably 40 ° C. or higher, and further preferably 50 ° C. or higher.
  • 150 degreeC or less is preferable and, as for the glass transition temperature of hardened
  • thermosetting resin composition of the present invention can be obtained by uniformly dispersing and mixing the various components described above.
  • the method is not particularly limited. Can be mentioned.
  • the conditions for kneading or melt-kneading may be determined depending on the types and amounts of the components, and are not particularly limited. However, kneading at 20 to 100 ° C. for 5 to 40 minutes is more preferable.
  • the kneading temperature is less than 20 ° C., the dispersibility of each component is lowered and it is difficult to sufficiently knead.
  • the kneading temperature is higher than 100 ° C., the crosslinking reaction of the resin composition proceeds and the resin composition There is a risk that things will harden.
  • thermosetting resin composition of the present invention is preferably capable of being pressed (tablet) at room temperature of 0 to 30 ° C. before heat molding.
  • the pressure molding may be performed under conditions of 0.01 to 10 MPa and 1 to 5 seconds.
  • the mold used at the time of pressing (tablet) molding is not particularly limited, and for example, it is composed of a vertical mold (upper mold) and a mortar mold (lower mold) made of a ceramic material, a fluorine resin material, or the like. It is preferable to use what is used.
  • thermosetting resin composition of the present invention is useful in applications such as optical semiconductor sealing materials and optical semiconductor reflectors that require high glass transition temperatures and high transmittance.
  • the production method is not particularly limited.
  • the thermosetting resin composition of the present invention is poured into a mold, for example, cured for 60 to 800 seconds under conditions of a mold temperature of 150 to 190 ° C. and a molding pressure of 2 to 20 MPa. Heat curing is performed at a curing temperature of 150 ° C. to 180 ° C. for 1 to 3 hours.
  • a light reflection preventing member having a cylindrical hollow portion is disposed on a substrate, and a cylinder is formed.
  • An optical semiconductor element is disposed on the substrate in the internal space of the hollow shape. And the one end part and board
  • ratios, percentages, parts, weights, and the like are based on mass unless otherwise specified.
  • the expression “X to Y” indicates a range from X to Y, and the range includes X and Y.
  • Example implemented as composition (C)- Each physical property value in Synthesis Examples and Examples was measured by the following method. Here, a part represents a mass part unless otherwise specified.
  • GPC GPC was measured under the following conditions. Various conditions of GPC Manufacturer: Waters column: SHODEX GPC LF-G (guard column), KF-603, KF-602.5, KF-602, KF-601 (2) Flow rate: 0.4 ml / min. Column temperature: 40 ° C Solvent: THF (tetrahydrofuran) Detector: RI (differential refraction detector)
  • ⁇ Acid value measured by the following method. About 0.15 g of the sample is weighed and dissolved in 20 ml of methyl ethyl ketone and 20 ml of ethanol, and then titrated with a 0.1N sodium hydroxide solution using a titrator AT-610 manufactured by Kyoto Electronics Industry, and the acid value is measured. did.
  • ⁇ Functional group equivalent Measured by the following method. About 0.15 g of the polyvalent carboxylic acid composition was weighed and dissolved in 40 ml of methanol (special grade reagent), and then stirred at 20 to 28 ° C. for 10 minutes to obtain a measurement sample. The measurement sample was titrated with a 0.1N sodium hydroxide solution using a titrator AT-610 manufactured by Kyoto Electronics Industry, and the value obtained as the acid value was calculated as the functional group equivalent.
  • ⁇ Melting point using DSC It was measured by the method described in JIS K7121, and the peak of the melting peak was defined as the melting point. Viscosity: Measured at 25 ° C. using an E-type viscometer (TV-20) manufactured by Toki Sangyo Co., Ltd. ⁇ Decrease in thermal weight: Using TG / DTA6200 manufactured by Shimadzu Corporation, the temperature was increased from 30 ° C. at 20 ° C./min, heated to 120 ° C., and the weight decrease rate after holding at 120 ° C. for 60 minutes was measured. During measurement, 200 ml / min. Air was blown on.
  • the obtained reaction solution was concentrated under reduced pressure at 100 ° C., and toluene was distilled off to obtain 71.5 g of a polyvalent carboxylic acid (A-1) mainly composed of the following formula (23).
  • the obtained compound had a GPC purity (GPC area%) of 92%, an acid value of 203.4 mgKOH / g, and a white solid in appearance.
  • the melting point (peak peak value) using DSC was 57.0 ° C., and the thermal weight loss was ⁇ 3.4%.
  • a GPC chart of the obtained compound is shown in FIG.
  • Example 2 Production of Polyvalent Carboxylic Acid Composition (C-1)
  • a glass 500 ml separable flask 26.1 g of tris (2-hydroxyethyl) isocyanurate and Guatemalacid MH-T (Shikoku Chemicals) were purged with nitrogen.
  • 123.4 g of 4-methylhexahydrophthalic anhydride manufactured by Kogyo
  • a Dimroth condenser, a stirrer, and a thermometer were installed, and the flask was immersed in an oil bath.
  • the oil bath was heated, the internal temperature was kept at 78 ° C., and the reaction was allowed to proceed for 4 hours.
  • a peak of 1 area% or less of tris (2-hydroxyethyl) isocyanurate was confirmed by GPC, and 147 g of a polyvalent carboxylic acid composition (C-1) which is a mixture of a polyvalent carboxylic acid and a carboxylic anhydride compound was obtained. It was. The resulting mixture is a colorless and transparent liquid, and the purity by GPC is 59.5 area% of the polyvalent carboxylic acid (A-1) represented by the above formula (23), and is represented by the following formula (24).
  • the amount of 4-methylhexahydrophthalic acid was 1.3 area%, and the amount of 4-methylhexahydrophthalic anhydride was 39.3 area%.
  • the functional group equivalent was 206 g / eq, the viscosity was 32154 mPa ⁇ s, and the thermal weight loss was ⁇ 20.8%.
  • Example 3 Production of Polycarboxylic Acid Composition (C-2)
  • 20 g of the polycarboxylic acid composition (C-1) obtained in Example 2 and Guatemalacid MH-T (Shikoku Chemical Industries) 6.67 g of 4-methylhexahydrophthalic acid (manufactured) was added and mixed with a case to obtain 26.6 g of a polyvalent carboxylic acid composition (C-2).
  • the obtained mixture is a colorless and transparent liquid, and the purity by GPC is 46.2 area% of polycarboxylic acid ((A-1) represented by the above formula (23)), 4-methylhexahydrophthalic acid.
  • Example 4 Production of Polycarboxylic Acid Composition (C-3)
  • 3 g of the polycarboxylic acid (A-1) obtained in Production Example 1 and Ricacid MH-T (manufactured by Shikoku Kasei Kogyo Co., Ltd.) 7 g of 4-methylhexahydrophthalic acid) was charged and heated in an oven heated to 80 ° C. After 2 hours, the mixture was taken out and mixed well with a bottle, and further heated for 2 hours to obtain 10 g of a polyvalent carboxylic acid composition (C-3).
  • the obtained polyvalent carboxylic acid composition (C-3) is a colorless and transparent liquid, and the purity by GPC is 34.3 when the polyvalent carboxylic acid ((A-1) represented by the above formula (23)) is 34.3.
  • Area%, 4-methylhexahydrophthalic acid was 2.6 area%, and 4-methylhexahydrophthalic anhydride was 63.1 area%.
  • the functional group equivalent was 187 g / eq, the viscosity was 1884 mPa ⁇ s, and the thermal weight loss was ⁇ 28.2%.
  • Tris (3-carboxypropyl) isocyanurate was found to be liquefied. It did not dissolve in MH-T. When stirring was stopped and it was confirmed after 15 hours in a room temperature (25 ° C.) environment, tris (3-carboxypropyl) isocyanurate was precipitated.
  • Example 5 Preparation of epoxy resin composition
  • Example 6 Preparation of epoxy resin composition
  • the polyvalent carboxylic acid composition (C-1) of Example 5 was changed to the polyvalent carboxylic acid composition (C-2) obtained in Example 3. It carried out similarly to Example 5 and obtained the epoxy resin composition of this invention.
  • Example 7 Preparation of epoxy resin composition The same procedure as in Example 5 was conducted except that the zinc octylate of Example 5 was changed to a quaternary phosphonium bromide salt curing accelerator U-CAT5003 (manufactured by San Apro). An epoxy resin composition of the present invention was obtained.
  • Example 8 Preparation of epoxy resin composition
  • the polyvalent carboxylic acid composition (C-1) of Example 5 was changed to the polyvalent carboxylic acid composition (C-2) obtained in Example 3 to obtain octyl.
  • the epoxy resin composition of the present invention was obtained in the same manner as in Example 5 except that the zinc acid was changed to the quaternary phosphonium bromide salt curing accelerator U-CAT5003 (manufactured by San Apro).
  • Comparative Example 3 Preparation of Epoxy Resin Composition The same procedure as in Comparative Example 2 was conducted except that the zinc octylate of Comparative Example 3 was changed to a quaternary phosphonium bromide salt curing accelerator U-CAT5003 (manufactured by San Apro). The epoxy resin composition of the comparative example was obtained.
  • a light-emitting element having a surface-mounted LED using a gold wire (2.3 ⁇ 0.4 mm opening, 0.4 mm deep, the top of the gold wire being 0.1 mm from the opening
  • the mold was cast so that the opening was a flat surface. After pre-curing at 120 ° C. for 1 hour, it was cured at 150 ° C. for 3 hours to seal the surface-mounted LED. Visual evaluation of the presence or absence of gold wire exposure (the upper end of the gold wire is above the uppermost surface of the cured product and not completely sealed) due to the volatilization of the curing agent after sealing in this way did.
  • B gold wire is exposed.
  • the compositions of Examples 5 to 8 have an appropriate viscosity for use as an LED encapsulant, and are excellent in workability with little decrease in thermal weight during curing. Furthermore, these cured products have high cured product transmittance and hardness, and there was no exposure of gold wires of the surface-mounted LED sealed with them, whereas only 4-methylhexahydrophthalic anhydride was used. In Comparative Examples 2 and 3 cured with 1, the weight loss during curing was remarkable, and the exposure of the gold wire was confirmed. From the above, the epoxy resin composition using the polyvalent carboxylic acid composition of the present invention is particularly suitable as a curable resin composition for optical semiconductor encapsulation.
  • R 6 in the formula (1) is an organic group containing a carboxyl group represented by the formula (9) in which R 2b is an ethylene group and a propylene group
  • GPC, acid value, functional group equivalent, viscosity, and thermogravimetric decrease were measured by the same method as described above.
  • a part represents a mass part unless otherwise specified.
  • Example 9 Production of polyvalent carboxylic acid (A-2)
  • 26.1 g of tris (2-hydroxyethyl) isocyanurate, 31.0 g of succinic anhydride, methyl isobutyl were subjected to nitrogen purge.
  • 100 g of ketone was charged, a Dimroth condenser, a stirrer, and a thermometer were installed, and the flask was immersed in an oil bath. The oil bath was heated, the internal temperature was kept at 80 ° C., and the reaction was allowed to proceed for 62 hours.
  • the obtained reaction solution was concentrated under reduced pressure at 100 ° C., and methyl isobutyl ketone was distilled off to obtain 67.8 g of a polyvalent carboxylic acid (A-2) having the following formula (26) as a main component.
  • the GPC area% of the obtained compound is 90.0% for the compound represented by the formula (26), 2.1% for the multimer of the compound represented by the formula (26), and represented by the formula (27).
  • the compound was 4.6%, succinic anhydride was 0.8%, and succinic acid was 2.6%.
  • the acid value of A-2 was 218.1 mgKOH / g, and the appearance was a pale yellow transparent liquid. Further, the thermogravimetric decrease was -0.6%.
  • a GPC chart of the obtained A-2 is shown in FIG.
  • Example 10 Production of polyvalent carboxylic acid (A-3) 26.1 g of tris (2-hydroxyethyl) isocyanurate, 35.5 g of glutaric anhydride, 100 g of toluene while purging with nitrogen in a glass 500 ml separable flask Were installed, a Dimroth condenser, a stirrer, and a thermometer were installed, and the flask was immersed in an oil bath. The oil bath was heated, the internal temperature was kept at 90 ° C., and the reaction was allowed to proceed for 32.5 hours.
  • A-3 polyvalent carboxylic acid
  • the obtained reaction solution was concentrated under reduced pressure at 100 ° C., and toluene was distilled off to obtain 56.7 g of a polyvalent carboxylic acid (A-3) having the following formula (28) as a main component.
  • the GPC area% of the obtained compound was 73.5% for the compound represented by the formula (28), 20.9% for the multimer of the compound represented by the formula (28), and 4.3% for glutaric anhydride. %, Glutaric acid was 1.3%.
  • the acid value of A-3 was 285.6 mgKOH / g, and the appearance was a pale yellow transparent liquid. Further, the thermogravimetric decrease was -0.7%.
  • a GPC chart of the obtained A-3 is shown in FIG.
  • Example 11 Production of polyvalent carboxylic acid composition (C-3)
  • 5 g of the polyvalent carboxylic acid (A-2) obtained in Example 9 and Rikacid MH-T (manufactured by Shikoku Kasei Kogyo Co., Ltd.) 4-methylhexahydrophthalic anhydride) was charged, and the mixture was heated in an oven heated to 80 ° C. After 2 hours, the mixture was taken out and mixed well with a bottle, and further heated for 2 hours to obtain 10 g of a polyvalent carboxylic acid composition (C-3).
  • the obtained polyvalent carboxylic acid composition (C-3) is a colorless and transparent liquid, and the GPC area% of the obtained polyvalent carboxylic acid composition (C-3) is represented by the formula (26). 48.8% of the compound, 1.3% of the multimer of the compound represented by the formula (26), 0.3% of the compound represented by the formula (27), 1.4% of succinic anhydride, 4% -Methylhexahydrophthalic anhydride 48.2%.
  • the functional group equivalent of C-3 was 278 mgKOH / g, the viscosity was 6216 mPa ⁇ s, and the thermal weight loss was ⁇ 19.9%.
  • Example 12 Production of polyvalent carboxylic acid composition (C-4)
  • a glass 50 ml bottle 5 g of the polyvalent carboxylic acid (A-3) obtained in Example 10 and Guatemalacid MH-T (manufactured by Shikoku Kasei Kogyo) 4-methylhexahydrophthalic anhydride) was charged, and the mixture was heated in an oven heated to 80 ° C. After 2 hours, the mixture was taken out and mixed well with a bottle, and further heated for 2 hours to obtain 10 g of a polycarboxylic acid composition (C-4).
  • the obtained polyvalent carboxylic acid composition (C-4) is a colorless and transparent liquid, and the GPC area% of the obtained polyvalent carboxylic acid composition (C-4) is represented by the formula (28). 40.6% of the compound, 11.5% of the multimer of the compound represented by the formula (28), 3.7% of glutaric anhydride, 0.7% of glutaric acid, 4-methylhexahydrophthalic anhydride It was 43.5%.
  • the functional group equivalent of C-4 was 308 mgKOH / g, the viscosity was 5356 mPa ⁇ s, and the thermal weight loss was ⁇ 24.7%.
  • Comparative Example 4 Dissolution test of polyvalent carboxylic acid having isocyanuric acid skeleton in carboxylic acid anhydride compound 3 g of isocyanuric acid tris (3-carboxypropyl) represented by the above formula (25) in a glass 50 ml bottle, Jamaicacid 7 g of MH-T (4-methylhexahydrophthalic acid manufactured by Shikoku Kasei Kogyo) was charged and heated in an oven heated to 80 ° C. After 2 hours, the mixture was taken out and mixed well with a medicine bottle. A rotator was placed in a glass bottle and heated on a magnetic stirrer heated to 90 ° C. with stirring for 5 hours.
  • MH-T 4-methylhexahydrophthalic acid manufactured by Shikoku Kasei Kogyo
  • Tris (3-carboxypropyl) isocyanurate was found to be liquefied. It did not dissolve in MH-T. When stirring was stopped and it was confirmed after 15 hours in a room temperature (25 ° C.) environment, tris (3-carboxypropyl) isocyanurate was precipitated.
  • Examples 9-12 represent GPC area% data.
  • Example 13 Preparation of epoxy resin composition Polyvalent carboxylic acid (A-2) obtained in Example 9, 3 ′, 4′-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate (( Co., Ltd., CEL2021P), and zinc octylate as a curing accelerator in a quantity ratio shown in Table 4 below in a polypropylene container, mixed and degassed for 5 minutes to obtain the epoxy resin composition of the present invention. It was.
  • Example 14 Preparation of epoxy resin composition Example 14 except that the polyvalent carboxylic acid (A-2) of Example 9 was changed to the polyvalent carboxylic acid composition (C-3) obtained in Example 11. In the same manner as in No. 13, an epoxy resin composition of the present invention was obtained.
  • Example 15 Preparation of epoxy resin composition Example 13 except that the polyvalent carboxylic acid (A-2) of Example 13 was changed to the polyvalent carboxylic acid (A-3) obtained in Example 2. It carried out similarly and the epoxy resin composition of this invention was obtained.
  • Example 16 Preparation of epoxy resin composition Example 16 except that the polyvalent carboxylic acid (A-1) of Example 13 was changed to the polyvalent carboxylic acid composition (C-4) obtained in Example 12. In the same manner as in No. 13, an epoxy resin composition of the present invention was obtained.
  • Comparative Example 5 Preparation of epoxy resin composition Jamaicacid MH-T (manufactured by Shin Nippon Rika Co., Ltd., 4-methylhexahydrophthalic anhydride) as an epoxy resin curing agent, 3 ′, 4′-epoxycyclohexylmethyl 3 as an epoxy resin , 4-epoxycyclohexanecarboxylate (manufactured by Daicel Corporation, CEL2021P), and zinc octylate as a curing accelerator are placed in a polypropylene container in the quantitative ratio shown in Table 4 below, mixed and degassed for 5 minutes. The epoxy resin composition of the comparative example was obtained.
  • Comparative Example 6 Preparation of epoxy resin composition The same procedure as in Comparative Example 5 was conducted except that the zinc octylate of Comparative Example 5 was changed to a quaternary phosphonium bromide salt curing accelerator U-CAT5003 (manufactured by San Apro). The epoxy resin composition of the comparative example was obtained.
  • the compositions of Examples 13 to 16 have an appropriate viscosity for use as an LED sealing material, and have a low work weight reduction during curing and excellent workability. Furthermore, these cured products have high cured product transmittance and hardness, and there was no exposure of gold wires of the surface-mounted LED sealed with them, whereas only 4-methylhexahydrophthalic anhydride was used. In Comparative Examples 5 and 6, which were cured in step 1, the weight loss during curing was significant, and exposure of the gold wire was confirmed. From the above, the epoxy resin composition using the polyvalent carboxylic acid composition of the present invention is particularly suitable as a curable resin composition for optical semiconductor encapsulation.
  • Example implemented as curable resin composition-
  • gel permeation chromatography hereinafter referred to as “GPC”
  • ICI viscosity was measured as follows.
  • GPC gel permeation chromatography
  • the column is a Shodex SYSTEM-21 column (KF-803L, KF-802.5 ( ⁇ 2), KF-802), the coupled eluent is tetrahydrofuran, and the flow rate is 1 ml / min.
  • the column temperature was 40 ° C.
  • the detection was performed by RI (Reflective index), and the standard curve made by Shodex was used for the calibration curve. Further, the functional group equivalent was calculated from the ratio calculated from GPC, and the value was determined with 1 equivalent each of carboxylic acid and acid anhydride.
  • ICI viscosity The melt viscosity in the cone plate method at 150 ° C was measured.
  • Softening point Measured by a method according to JIS K-7234.
  • thermosetting resin curing agent (C-5).
  • the obtained curing agent was colorless and solid.
  • the functional group equivalent was 232 g / eq. Met.
  • the ICI viscosity was 0.36 Pa ⁇ s at 150 ° C.
  • the softening point was 82.9 ° C.
  • R 10 represents a methyl group or a carboxyl group.
  • a plurality of R 10 may be the same or different.
  • thermosetting resin curing agent (C-6).
  • the obtained curing agent was colorless and solid.
  • the functional group equivalent was 195 g / eq. Met.
  • the ICI viscosity was 0.53 Pa ⁇ s at 150 ° C.
  • the softening point was 84.7 ° C.
  • Synthesis Example 3 (Glycidyl ether type epoxy resin B-1) A flask equipped with a stirrer, a reflux condenser, and a stirrer was once evacuated and purged with nitrogen. Then, a phenol compound (TPA1) (TrisP-PA Honshu Chemical Industry Co., Ltd.) was applied while purging with nitrogen (twice the volume of the kiln volume / hr). 142 parts, epichlorohydrin 370 parts, methyl glycidyl ether 37 parts and methanol 37 parts were added, and the temperature of the water bath was raised to 75 ° C.
  • TPA1 TrisP-PA Honshu Chemical Industry Co., Ltd.
  • thermosetting resin composition for thermosetting light reflection (Example 17 to Example 19) TEPIC-S (triglycidyl isocyanurate manufactured by Nissan Chemical Co., Ltd.), EHPE-3150 (alicyclic epoxy resin manufactured by Daicel Chemical Industries, Ltd.), Celoxide 2021P (alicyclic epoxy resin manufactured by Daicel Chemical Industries, Ltd.), Curing agent C-5 for thermosetting resin, curing agent C-6 for thermosetting resin, Ricacid MH-T (curing agent for epoxy resin made by Nippon Nippon Chemical Co., Ltd.), Hishikorin PX-4MP (curing made by Nippon Chemical Industry Co., Ltd.)
  • the components are blended according to the blending table shown in Table 5 and sufficiently kneaded with a mixer, then melt-kneaded under a predetermined condition with a mixing roll, cooled, and pulverized.
  • the unit of the compounding quantity of each component in Table 5 is parts by weight, and the blank represents that the
  • DMA Dynamic Mechanical Analysis
  • DMS6100 viscoelasticity manufactured by SII NanoTechnology Co., Ltd. according to the method described in JIS K7244 and JIS K7244-4 using a test piece prepared as follows. It measured on condition of the following using a measuring apparatus.
  • TMA Thermomechanical analysis
  • TMA test piece preparation method The resin composition of each example and each comparative example was transfer-molded under conditions of a mold temperature of 150 ° C., a molding pressure of 10.4 MPa, and a curing time of 300 seconds, and then post-cured at 150 ° C. for 3 hours to obtain a thickness of 4 A test piece of 0.0 mm was produced.
  • TMA measurement conditions Temperature rise condition: 2 ° C / min Measurement mode: Compression
  • thermosetting resin composition using the curing agent for thermosetting resins of the present invention gives a cured product having a sufficiently high glass transition temperature, a low coefficient of linear expansion, and little coloration of the cured product. I understand that.
  • thermosetting light reflecting resin composition (Examples 20 and 21) TEPIC-S (Nissan Chemical Co., Ltd. triglycidyl isocyanurate), Glycidyl ether type epoxy resin B-1, Hishicolin PX-4MP (Nippon Chemical Industry Co., Ltd. curing catalyst), CR-95 (Ishihara Sangyo Co., Ltd. oxidation)
  • TEPIC-S Non Chemical Co., Ltd. triglycidyl isocyanurate
  • Glycidyl ether type epoxy resin B-1 Glycidyl ether type epoxy resin B-1
  • Hishicolin PX-4MP Nippon Chemical Industry Co., Ltd. curing catalyst
  • CR-95 Ishihara Sangyo Co., Ltd. oxidation
  • thermosetting resin composition using the curing agent for thermosetting resins of the present invention gives a cured product having a sufficiently high glass transition temperature, a low coefficient of linear expansion, and little coloration of the cured product. I understand that.
  • thermosetting light reflecting resin composition EHPE-3150 (alicyclic epoxy resin manufactured by Daicel Chemical Industries, Ltd.), C-7 for thermosetting resin, Hishicolin PX-4MP (curing catalyst manufactured by Nippon Chemical Industry Co., Ltd.), CR-95 (Ishihara Sangyo)
  • EHPE-3150 alicyclic epoxy resin manufactured by Daicel Chemical Industries, Ltd.
  • C-7 thermosetting resin
  • Hishicolin PX-4MP curing catalyst manufactured by Nippon Chemical Industry Co., Ltd.
  • CR-95 Ishihara Sangyo
  • thermosetting resin composition using the curing agent for thermosetting resins of the present invention gives a cured product having a sufficiently high glass transition temperature, a low coefficient of linear expansion, and little coloration of the cured product. I understand that.
  • Example 23 Production of polyvalent carboxylic acid composition (C-8) THEIC-G (Isocyanuric acid tris (2-hydroxyethyl) manufactured by Shikoku Kasei Kogyo Co., Ltd.) while purging a glass 300 ml four-necked flask with nitrogen. 8 g, HTAn-S (hydrogenated trimellitic anhydride made by Mitsubishi Gas Chemical) and MEK 50 g were charged, a Dimroth condenser, a stirrer, and a thermometer were installed, and the flask was immersed in a water bath. The water bath was heated, the internal temperature was kept at 65 ° C., and the reaction was allowed to proceed for 6 hours.
  • C-8 g HTAn-S (hydrogenated trimellitic anhydride made by Mitsubishi Gas Chemical) and MEK 50 g were charged, a Dimroth condenser, a stirrer, and a thermometer were installed, and the flask was immersed in a water bath. The water bath
  • the appearance of the obtained compound is a colorless solid, and the purity by GPC (GPC area%) is 2.4% of the polyvalent carboxylic acid high molecular weight mixture represented by the formulas (a2 to a4), and the formula (a1) 82.9% of the polyvalent carboxylic acid represented by the formula, 1.5% of the cyclohexane-1,2,4-tricarboxylic acid represented by the formula (a5), and 4-methylhexa represented by the formula (a6) Hydrophthalic acid was 5.4% and 4-methylhexahydrophthalic anhydride was 7.8%.
  • the functional group equivalent was 188.8 g / eq
  • the ICI viscosity at 150 ° C. was 1.49 Pa ⁇ s
  • the softening point was 95.3 ° C.
  • a GPC chart of the obtained compound is shown in FIG.
  • R 9 represents a methyl group or a carboxyl group.
  • R9 represents the same meaning as described above.
  • Example 24 Preparation of thermosetting light reflecting resin composition Polycarboxylic acid composition (C-8) obtained in Example 23, EHPE-3150 (Daicel Chemical Industries, Ltd. alicyclic epoxy resin) ), Hishicolin PX-4MP (curing catalyst manufactured by Nippon Chemical Industry Co., Ltd.), FB-910 (silica manufactured by Denki Kagaku Kogyo Co., Ltd.), CR-75 (titanium oxide manufactured by Ishihara Sangyo Co., Ltd.) Each component was blended according to the blending table shown in Table 8, sufficiently kneaded with a mixer, then melt-kneaded with a mixing roll under predetermined conditions, cooled and pulverized to prepare the thermosetting resin composition of Example 24 did.
  • Table 8 shows the blending ratio of the thermosetting resin composition obtained in Example 24, the glass transition temperature, the linear expansion coefficient, and the reflectance.
  • the unit of the compounding amount of each component in Table 8 is parts by weight, and the blank indicates that the component is not used.
  • Example 25 Preparation of thermosetting light reflecting resin composition Polycarboxylic acid (A-3) obtained in Example 10, EHPE-3150 (Daicel Chemical Industries, Ltd. alicyclic epoxy resin), Using Hishicolin PX-4MP (curing catalyst manufactured by Nippon Chemical Industry Co., Ltd.), FB-910 (silica manufactured by Denki Kagaku Kogyo Co., Ltd.), CR-75 (titanium oxide manufactured by Ishihara Sangyo Co., Ltd.), Each component was blended according to the blending table shown in FIG. 9 and sufficiently kneaded with a mixer, then melt-kneaded under a predetermined condition with a mixing roll, cooled and ground to prepare a thermosetting resin composition of Example 25.
  • A-3300 Daicel Chemical Industries, Ltd. alicyclic epoxy resin
  • Hishicolin PX-4MP curing catalyst manufactured by Nippon Chemical Industry Co., Ltd.
  • FB-910 siliconca manufactured by Denki Kagaku Kogyo Co., Ltd
  • Table 9 shows the blending ratio of the thermosetting resin composition obtained in Example 25, the glass transition temperature, the linear expansion coefficient, and the reflectance.
  • the unit of the blending amount of each component in Table 9 is parts by weight, and the blank indicates that the component is not used.
  • the polyvalent carboxylic acid of the present invention and the polyvalent carboxylic acid composition containing the same are less volatile at the time of curing and excellent in curability, and the cured product gives a cured product with excellent transparency and hardness.
  • the used epoxy resin composition is useful for electrical and electronic material applications, particularly for optical semiconductor sealing and as an optical semiconductor reflector.
  • the polyvalent carboxylic acid of the present invention and the polyvalent carboxylic acid composition containing the same can sufficiently increase the glass transition temperature of the cured product, are excellent in moldability, and are less colored to the cured product.
  • the thermosetting resin composition using is useful as a sealing material and a reflective material for semiconductor devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Epoxy Resins (AREA)
  • Led Device Packages (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

 本発明は、硬化時に揮発が少なく硬化性に優れ、その硬化物が優れた透明性、硬さの硬化物を与え、さらに硬化物のガラス転移温度を十分高めることができ、成形性に優れ、硬化物への着色が少ない多価カルボン酸およびそれを含有する多価カルボン酸組成物、エポキシ樹脂組成物、熱硬化性樹脂組成物、その硬化物、半導体装置を提供することを目的とする。本発明の多価カルボン酸は、下記式(1)で表される。(式(1)中、Rは炭素数1~6のアルキレン基を、Rは水素原子又は炭素数1~10のカルボキシル基を含有する有機基をそれぞれ表す。式(1)中、複数存在するR、Rはそれぞれ同一であっても異なっていても構わないが、複数存在するR中、50モル%以上は炭素数1~10のカルボキシル基を含有する有機基である。)

Description

多価カルボン酸およびそれを含有する多価カルボン酸組成物、エポキシ樹脂組成物、熱硬化性樹脂組成物、それらの硬化物並びに光半導体装置
 本発明は特に光半導体封止用、光半導体反射材などの高い透明性、低着色性が求められる部分に用いるのに好適な、特に光半導体反射材あるいはそれを具備する光半導体装置に用いる場合、硬化物のガラス転移温度を十分高めることができ、成形性に優れる多価カルボン酸およびそれを含有する多価カルボン酸組成物、熱硬化性樹脂組成物、エポキシ樹脂組成物、それらを硬化してなる硬化物、並びに光半導体装置に関する。
 エポキシ樹脂組成物は、耐熱性に優れた樹脂として、建築、土木、自動車、航空機などの分野で使用されている。近年、特に半導体関連材料の分野においてはカメラ付き携帯電話、超薄型の液晶やプラズマTV、軽量ノート型パソコンなど、軽・薄・短・小がキーワードとなるような製品があふれ、これによりエポキシ樹脂に代表されるパッケージ材料にも非常に高い特性が求められてきている。
 さらに、近年オプトエレクトロニクス関連分野における利用が注目されており、高度情報化に伴い、膨大な情報を円滑に伝送、処理するために、従来の電気配線による信号伝送に変わり、光信号を生かした技術が開発されていく中で、光導波路、青色LED、および光半導体等の光学部品の分野においては透明性に優れた硬化物を与える樹脂組成物の開発が望まれている。
 一般にオプトエレクトロニクス関連分野で用いられるエポキシ樹脂の硬化剤としては酸無水物系の化合物が挙げられる。特に飽和炭化水素で形成された酸無水物は硬化物が耐光性に優れることから、利用されることが多い。これら酸無水物としては、メチルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸等の脂環式酸無水物が一般的であり、中でも常温で液状であるメチルテトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸等が取扱いの容易さから主に使用されている。
 しかしながら上記脂環式酸無水物をエポキシ樹脂の硬化剤として用いた場合、これらの化合物は蒸気圧が高く、硬化時に一部が蒸発するため、エポキシ樹脂の硬化剤として用いて開放系で熱硬化させる際には、酸無水物自体が大気中に揮発してしまう。この結果、大気への有害物質の放出による環境汚染、人体への悪影響、生産ラインの汚染、硬化物中に所定量のカルボン酸無水物(硬化剤)が存在しないことに起因するエポキシ樹脂組成物の硬化不良が起こるなどの問題が発生する。硬化剤の揮発による硬化条件のバラつきが、硬化物の物性のバラつきとなり、安定して目的とした性能を有する硬化物を得ることが困難となる。
 また、揮発の問題は、従来の酸無水物を硬化剤として用いて構成された光半導体封止用硬化性樹脂組成物でLED、特にSMD(Surface Mount Device)を封止した際は顕著であり、使用する樹脂量が少ないため、へこみが発生、ひどい場合には、ワイヤーが露出してしまう。さらには半田リフロー時のクラック、剥離、長期点灯にも耐えることが困難であるという問題が発生する。
 一方、イソシアヌル環を有する多価カルボン酸は、例えば特許文献1などで、エポキシ樹脂の硬化剤として公知である。しかしながら特許文献1に記載の多価カルボン酸は酸無水物化合物に溶解することが困難であり、室温(25℃)で、液状で使用することが必要な分野では適応が困難であった。
 熱硬化性樹脂組成物を半導体の封止材として利用したり、半導体用反射材として利用したりする場合、熱硬化性樹脂組成物が光半導体の発する光を吸収すると光半導体の照度が低下するため、熱硬化性樹脂組成物は高い透過率を有し、光や熱による着色の少ないものが望ましい。したがって、熱硬化性樹脂組成物に配合される硬化剤にも、高い透過率と光や熱による着色の少ないことが要求される。また、耐熱性、成型性、信頼性の観点から、硬化物のガラス転移温度が一定温度以上であることが重要であり、成形性の観点から硬化剤の軟化点や粘度についても一定の範囲にあることが重要である。
 熱硬化性樹脂用硬化剤として使用される酸無水物は、揮発性があること、また低融点であることから、金型成形には向かないことが問題となっていた。
 テトラカルボン酸無水物については、揮発性はないが、高融点(150℃以上)であるため、液状樹脂組成物としては扱い難く、成形性に劣ることから、液状の樹脂を成形させる用途への使用の困難さを考慮すると、目的とする用途には向かない。
 カルボン酸をエポキシ樹脂用硬化剤として使用する例も知られているが、比較的融点が高く(150℃以上)上記と同様の課題があり、それだけでなく加熱すると着色しやすいため高い透過率を確保することが極めて困難であることから目的とする用途には向かない。
 同様に、ポリカルボン酸化合物についても、高融点(150℃以上)であること、結晶性が高く樹脂混練が難しいこと、また着色があることが問題となり目的とする用途では使用できない。
 そのため、従来知られている材料として、上記目的を達成できる化合物は見出せていなかった。
日本国特許第3765946号公報 国際公開第2005/049597号パンフレット 国際公開第2005/121202号パンフレット
 本発明は、特にSMDタイプのLED封止材などの開放系で硬化に使用する場合は、硬化時に揮発が少なく硬化性に優れ、その硬化物は優れた透明性、硬さの硬化物を与える多価カルボン酸およびそれを含有する多価カルボン酸組成物、エポキシ樹脂組成物、その硬化物を提供することを目的とする。さらに、硬化物のガラス転移温度を十分高めることができ、成形性に優れ、硬化物への着色が少ない多価カルボン酸、それを用いた熱硬化性樹脂組成物、および、かかる熱硬化性樹脂組成物を封止材あるいは反射材として使用した半導体装置を提供する。
 本発明者らは前記したような実状に鑑み、鋭意検討した結果、イソシアヌル環を有する多価カルボン酸又はそれを含有する多価カルボン酸組成物、それらのいずれかを含有するエポキシ樹脂組成物または熱硬化性樹脂組成物が上記課題を解決することを見出し、本発明を完成させるに至った。
 すなわち本発明は、下記[1]~[18]に関する。
[1] 下記式(1)で表される多価カルボン酸。
Figure JPOXMLDOC01-appb-C000005
(式(1)中、Rは炭素数1~6のアルキレン基を、Rは水素原子又は炭素数1~10のカルボキシル基を含有する有機基をそれぞれ表す。式(1)中、複数存在するR、Rはそれぞれ同一であっても異なっていても構わないが、複数存在するR中、50モル%以上は炭素数1~10のカルボキシル基を含有する有機基である。)
[2] 下記式(1-1)で表され[1]に記載の多価カルボン酸。
Figure JPOXMLDOC01-appb-C000006
(式(1-1)中、Rは前記と同じ意味を表し、R2aは水素原子、炭素数1~6のアルキル基又はカルボキシル基をそれぞれ表す。式(1-1)中、複数存在するR、R2aはそれぞれ同一であっても異なっていても構わない。)
[3] 下記式(1-2)で表される[1]に記載の多価カルボン酸。
Figure JPOXMLDOC01-appb-C000007
(式(1-2)中、Rは前記と同じ意味を表し、R2bは炭素数1~10の直鎖または分岐構造を有するアルキレン基をそれぞれ表す。式(1-2)中、複数存在するR、R2bはそれぞれ同一であっても異なっていても構わない。)
[4] [1]~[3]のいずれか一項に記載の多価カルボン酸を含有する多価カルボン酸組成物。
[5] さらにカルボン酸無水物化合物を含有する[4]に記載の多価カルボン酸組成物。
[6] カルボン酸無水物化合物が下記式(2)~(7)で表される化合物より選択される一種以上である、[5]に記載の多価カルボン酸組成物。
Figure JPOXMLDOC01-appb-C000008
[7] [1]~[3]のいずれか一項に記載の多価カルボン酸又は[4]~[6]のいずれか一項に記載の多価カルボン酸組成物と、エポキシ樹脂を含有するエポキシ樹脂組成物。
[8] さらにエポキシ樹脂硬化促進剤を含有する[7]に記載のエポキシ樹脂組成物。
[9] エポキシ樹脂硬化促進剤が、金属石鹸である[8]に記載のエポキシ樹脂組成物。
[10] 金属石鹸が、カルボン酸亜鉛化合物である[9]に記載のエポキシ樹脂組成物。
[11] [7]~[10]のいずれか一項に記載のエポキシ樹脂組成物を硬化してなる硬化物。
[12] [1]~[3]のいずれか一項に記載の多価カルボン酸と、熱硬化性樹脂とを含有し、ICIコーンプレート粘度が100~200℃の範囲で0.01Pa・s~10Pa・sの範囲にある熱硬化性樹脂組成物。
[13] 軟化点が20℃~150℃の範囲にある[12]に記載の熱硬化性樹脂組成物。
[14] さらにトリメリット酸、無水トリメリット酸、シクロヘキサントリカルボン酸、シクロヘキサントリカルボン酸無水物、ピロメリット酸、水添ピロメリット酸、ピロメリット酸無水物、水添ピロメリット酸無水物、ヘキサヒドロ無水フタル酸、およびメチルヘキサヒドロ無水フタル酸から選ばれる1種または2種以上の化合物を含有する熱硬化性樹脂用硬化剤を含み、
 トリメリット酸、無水トリメリット酸、シクロヘキサントリカルボン酸、シクロヘキサントリカルボン酸無水物、ピロメリット酸、水添ピロメリット酸、ピロメリット酸無水物、水添ピロメリット酸無水物、ヘキサヒドロ無水フタル酸、およびメチルヘキサヒドロ無水フタル酸から選ばれる1種または2種以上の化合物が、全体の1重量%~90重量%を占める、[12]又は[13]に記載の熱硬化性樹脂組成物。
[15] その硬化物のガラス転移温度(Tg)が30℃以上である[12]~[14]のいずれか一項に記載の熱硬化性樹脂組成物。
[16] [12]~[15]のいずれか一項に記載の熱硬化性樹脂組成物を熱硬化してなる硬化物。
[17] [16]に記載の硬化物によって封止された光半導体装置。
[18] [16]に記載の硬化物を反射材として使用した光半導体装置。
 本発明によれば、イソシアヌル環を有する特定の構造の多価カルボン酸又はそれを含有する多価カルボン酸組成物を含有するエポキシ樹脂組成物は、硬化時の揮発が少なく硬化性に優れ、その硬化物は優れた透明性、硬さを有する硬化物を与えるため、高い透明性且つ薄膜の硬化物形成が求められ材料、特に光半導体(LEDなど)の封止用樹脂としてきわめて有用である。
 また、硬化物の十分なガラス転移温度を有し、成形性に優れ、硬化物にした際の着色が少ない多価カルボン酸、それを用いた熱硬化性樹脂組成物、およびその熱硬化性樹脂組成物を封止材あるいは反射材として使用した光半導体装置を提供できる。さらに、軟化点を抑えることで取扱いが容易になるとともに、十分な混練が可能となり硬化物性に優れる硬化物を提供することが可能となる。また硬化物の強靭性、樹脂の反応性にも優れた熱硬化性樹脂組成物を提供できる。
実施例1で得られた多価カルボン酸(A-1)のGPCチャートである。 実施例9で得られた多価カルボン酸(A-2)のGPCチャートである。 実施例10で得られた多価カルボン酸(A-3)のGPCチャートである。 実施例23で得られた多価カルボン酸組成物(C-8)のGPCチャートである。
 本発明の多価カルボン酸(A)は、下記式(1)で表される、イソシアヌル環を有する多価カルボン酸である。
Figure JPOXMLDOC01-appb-C000009
 式(1)中、Rは炭素数1~6のアルキレン基を、Rは水素原子又は炭素数1~10のカルボキシル基を含有する有機基をそれぞれ表す。
 Rの具体例としては、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、へキシレン基、イソプロピレン基、イソブチレン基、イソペンチレン基、ネオペンチレン基、イソヘキシレン基、シクロヘキシレン基等が挙げられるが、得られる硬化物の耐熱透明性の観点からメチレン基、エチレン基、プロピレン基が好ましく、エチレン基が特に好ましい。
 Rは水素原子又は炭素数1~10のカルボキシル基を含有する有機基である。ここで、有機基とは、H、C、N、O原子のみからなる基であり、Rは炭素数が1~10であれば良く、エステル結合、エーテル結合、ウレタン結合、アミド結合、カルボニル基を含んでいても良い。
 炭素数1~10のカルボキシル基を含有する有機基は、1つ以上のカルボキシル基を含有する。
 式(1)中、複数存在するR、Rはそれぞれ同一であっても異なっていても構わない。
 式(1)中、複数存在するR中、50モル%以上は炭素数1~10のカルボキシル基を含有する有機基である。50モル%以上であることにより硬化物の機械強度が優れる。また70モル%以上がより好ましい。
 Rのうち炭素数1~10のカルボキシル基を含有する有機基として、下記式(8)、(9)で表される有機基が挙げられる。
Figure JPOXMLDOC01-appb-C000010
 式(8)中、R2aは水素原子又は炭素数1~6のアルキル基又はカルボキシル基を、式(9)中、R2bは炭素数1~10の直鎖または分岐構造を有するアルキレン基を表し、式(8)、(9)中の*で式(1)中の酸素原子と結合していることをそれぞれ表す。
 R2aのうち炭素数1~6のアルキル基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、シクロペンチル基、ヘキシル基、イソヘキシル基、シクロヘキシル基等が挙げられるが、得られる硬化物の耐熱透明性の観点からメチル基が好ましい。
 R2aの中でも、メチル基、カルボキシル基が好ましく、多価カルボン酸(A)を含有する多価カルボン酸組成物(C)の室温(25℃)での粘度が上がりすぎない観点と、得られる硬化物の透明性の観点からはメチル基が好ましく、得られる硬化物のガスバリア性、高いガラス転移温度(Tg)、硬さの観点からはカルボキシル基が特に好ましい。
 R2bの具体例としては、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、へキシレン基、ヘプチレン基、オクチレン基、ノニニレン基、デシニレン基、イソプロピレン基、イソブチレン基、イソペンチレン基、ネオペンチレン基、イソヘキシレン基、イソヘプチレン基、イソオクチレン基、イソノニニレン基、イソデシニレン基、ジメチルプロピレン基、ジエチルプロピレン基、ジエチルブチレン基、ジエチルペンチレン基、ジエチルヘキシレン基等が挙げられるが、得られる硬化物の耐熱透明性の観点からエチレン基、プロピレン基、ジエチルプロピレン基が好ましく、本発明の多価カルボン酸(A)の軟化点および室温(25℃)での粘度が低粘度であることからプロピレン基が特に好ましい。
 Rのうち炭素数1~10のカルボキシル基を含有する有機基の具体例として、下記式(8-1)~(8-3)および(9-1)~(9-3)で表される有機基が挙げられる。
Figure JPOXMLDOC01-appb-C000011
 (式中、*は前記と同じ意味を表す。)
 式(1)で表される多価カルボン酸(A)は、下記式(10)で表される、イソシアヌル酸トリスヒドロキシアルキル化合物と、下記式(14)で表されるカルボン酸無水物化合物および/又は式(15)で表される、カルボン酸無水物化合物との付加反応により得ることができる。
Figure JPOXMLDOC01-appb-C000012
 式(10)中、Rは前記と同じ意味を表す。
Figure JPOXMLDOC01-appb-C000013
 式(14)中、R2aは前記と同じ意味を表す。
 式(15)中、Rは水素原子または炭素数1~4のアルキル基を、mは整数で1~9をそれぞれ表し、式(15)中、複数存在するRは同一であっても異なっていても構わない。Rの中の炭素数1~4のアルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基が挙げられる。mは整数で1~9を表し、得られる硬化物の耐熱透明性の観点から、1~5が好ましく、1~2が特に好ましい。
 式(10)で表される化合物の中でも、下記式(11)~(13)で表される化合物が、硬化物の透明性、ガスバリア性の観点から好ましい。
Figure JPOXMLDOC01-appb-C000014
 式(14)で表される化合物のうち、下記(5)~(7)で表される化合物が特に好ましい。
Figure JPOXMLDOC01-appb-C000015
 式(15)で表される化合物の中でも、下記式(2)~(4)で表される化合物が、硬化物の耐熱透明性、多価カルボン酸(A)の粘度、多価カルボン酸組成物(C)の粘度の観点から好ましい化合物として挙げられる。中でも、下記式(4)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000016
 本発明の多価カルボン酸(A)の製造は、溶媒中でも無溶剤でも行うことができる。溶剤としては、前述の式(10)で表されるイソシアヌル酸トリスヒドロキシアルキル化合物、式(14)や式(15)で表されるカルボン酸無水物化合物と反応しない溶剤であれば特に制限なく使用できる。使用しうる溶剤としては、例えばジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、テトラヒドロフラン、アセトニトリルなどの非プロトン性極性溶媒、メチルエチルケトン、シクロペンタノン、メチルイソブチルケトンなどのケトン類、トルエン、キシレンなどの芳香族炭化水素等が挙げられ、これらの中で、芳香族炭化水素やケトン類が好ましい。
 これらの溶剤は1種又は2種以上を混合して用いても良い。溶剤を用いる場合の使用量は、前述の式(10)で表されるイソシアヌル酸トリスヒドロキシアルキル化合物と式(14)で表されるカルボン酸無水物化合物および/又は式(15)で表されるカルボン酸無水物化合物の合計100質量部に対して、0.5~300質量部が好ましい。
 本発明の多価カルボン酸(A)は室温(25℃)にて固体であることが多いため、溶剤中で合成することが作業性の観点から好ましい。
 本発明の多価カルボン酸(A)は無触媒でも、触媒を用いても製造する事ができる。触媒を用いる場合、用い得る触媒は、塩酸、硫酸、メタンスルホン酸、トリフルオロメタンスルホン酸、パラトルエンスルホン酸、硝酸、トリフルオロ酢酸、トリクロロ酢酸等の酸性化合物、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化マグネシウム等の金属水酸化物、トリエチルアミン、トリプロピルアミン、トリブチルアミン等のアミン化合物、ピリジン、ジメチルアミノピリジン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、イミダゾール、トリアゾール、テトラゾール等の複素環式化合物、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルエチルアンモニウムヒドロキシド、トリメチルプロピルアンモニウムヒドロキシド、トリメチルブチルアンモニウムヒドロキシド、トリメチルセチルアンモニウムヒドロキシド、トリオクチルメチルアンモニウムヒドロキシド、テトラメチルアンモニウムクロリド、テトラメチルアンモニウムブロミド、テトラメチルアンモニウムヨージド、テトラメチルアンモニウムアセテート、トリオクチルメチルアンモニウムアセテート等の4級アンモニウム塩、オルトチタン酸テトラエチル、オルトチタン酸テトラメチル等のオルトチタン酸類、オクチル酸スズ、オクチル酸コバルト、オクチル酸亜鉛、オクチル酸マンガン、オクチル酸カルシウム、オクチル酸ナトリウム、オクチル酸カリウム等の金属石鹸類が挙げられる。
 触媒を用いる場合、1種または2種以上を混合して用いることもできる。
 触媒を用いる場合の使用量は、前述の式(10)で表されるイソシアヌル酸トリスヒドロキシアルキル化合物と式(14)で表されるカルボン酸無水物化合物および/又は式(15)で表されるカルボン酸無水物化合物の合計100質量部に対して、0.05~10質量部が好ましい。
 触媒の添加方法は、直接添加するか、可溶性の溶剤等に溶解させた状態で使用する。この際、メタノール、エタノール等のアルコール性の溶媒や水を用いることは、未反応の、式(14)や式(15)で表されるカルボン酸無水物化合物と反応してしまうため、避けることが好ましい。
 本発明においては、得られる多価カルボン酸(A)又は多価カルボン酸組成物(C)の硬化物において、透明性、耐熱透明性を向上させる観点からはオクチル酸亜鉛等のカルボン酸亜鉛を触媒として好ましく使用することができ、得られる多価カルボン酸(A)又は多価カルボン酸組成物(C)の着色を低減させる観点からは無触媒で反応を行うことが好ましい。
 中でも、透明性、耐硫化性に優れる硬化物を得るために、特にステアリン酸カルシウム、カルボン酸亜鉛(2-エチルヘキサン酸亜鉛、ステアリン酸亜鉛、ベヘン酸亜鉛、ミスチリン酸亜鉛)やリン酸エステル亜鉛(オクチルリン酸亜鉛、ステアリルリン酸亜鉛等)等の亜鉛化合物が好ましく使用できる。
 本発明の多価カルボン酸(A)の製造時の反応温度は、触媒量、使用溶剤にもよるが、通常20~160℃、好ましくは50~150℃、特に好ましくは60~145℃である。又、反応時間の総計は通常1~20時間、好ましくは3~18時間である。反応は2段階以上で行なっても良く、例えば20~100℃で1~8時間反応させた後に、100~160℃で1~12時間などで反応させても良い。これは特に式(14)や式(15)で表されるカルボン酸無水物化合物は揮発性の高いものが多く、そのようなものを用いる場合、あらかじめ20~100℃で反応させた後に、100~160℃で反応させることで、揮発を抑えることができる。これにより、大気中への有害物質の拡散を抑制するだけでなく、設計どおりの多価カルボン酸(A)をより確実に得ることができる。
 触媒を用いて製造を行なった場合は必要に応じてクエンチ、および/又は水洗を行なうことで触媒を除くことができるが、そのまま残存させ、多価カルボン酸(A)および/又は多価カルボン酸組成物(C)を含有するエポキシ樹脂組成物の硬化促進剤として利用することもできる。
 水洗工程を行なう場合、使用している溶剤の種類によっては水と分離可能な溶剤を加えることが好ましい。好ましい溶剤としては例えばメチルエチルケトン、メチルイソブチルケトン、シクロペンタノンなどのケトン類、酢酸エチル、酢酸ブチル、乳酸エチル、ブタン酸イソプロピルなどのエステル類、ヘキサン、シクロヘキサン、トルエン、キシレンなどの炭化水素等が例示できる。
 反応や水洗に溶剤を用いた場合、減圧濃縮などによって除くことができる。
 本発明の多価カルボン酸(A)を製造する際に、ゲルパーミエーションクロマトグラフィー(GPC){測定条件;カラム:SHODEX GPC LF-G(ガードカラム)、KF-603、KF-602.5、KF-602、KF-601(2本)、流速:0.4ml/min.カラム温度:40℃、使用溶剤:THF(テトラヒドロフラン)、検出器:RI(示差屈折検出器)}において、本願式(1)で表される化合物のピークより早いリテンションタイムのピークと遅いリテンションタイムのピークの化合物が混在している。当該早いリテンションタイムのピーク(以下、ピークfと称す。)としては、リテンションタイムが本願式(1)の化合物のピークより1~3分早い、例えば18~20分の化合物がある。当該ピークfの化合物のGPCの面積%としては、1~30面積%であることが機械的強度上昇の観点から好ましく1~10面積%であることが特に好ましい。また、当該遅いリテンションタイムのピークとしては2~3つ存在する可能性があり(以下、ピークsと称す。)、リテンションタイムが本願式(1)の化合物のピークより1~5分遅い、例えば21~25分の化合物が該当する。当該ピークsの化合物のGPCの面積%としては、1~10面積%であることが接着性向上の観点から好ましく、1~5面積%であることがより好ましい。また下記式(16)で表される多価カルボン酸の多量体が生成することがある。尚、これらの化合物はピークfの化合物に該当すると考えられる。
Figure JPOXMLDOC01-appb-C000017
 式(16)中、Rは前記と同じ意味を表し、Rは前記R2bと同じ意味又は下記式(17)で表される構造を表し、Rは水素原子又は下記式(18)で表される構造を表す。
Figure JPOXMLDOC01-appb-C000018
 式(17)中、R2aは前記と同じ意味を表し、**は式(16)中のRの隣のカルボニル炭素と結合していることを表す。
Figure JPOXMLDOC01-appb-C000019
 式(18)中、R、R、Rは前記と同じ意味を表し、***の部位で式(16)中のRが結合している酸素原子と結合していることを表す。
 前記式(16)で表される多価カルボン酸の多量体が多価カルボン酸(A)に含まれると、硬化物の機械強度が向上するため好ましいが、含有することにより多価カルボン酸(A)の粘度が過度に上昇しないために、多価カルボン酸(A)100質量部に対して、50質量部以下であることが好ましい。
 また、本発明の多価カルボン酸(A)を製造する際に、下記式(19)で表される二価のカルボン酸が生成することがある。尚、当該化合物はピークsの化合物に該当すると考えられる。ここで、前記製造法により得られる多価カルボン酸(A)の下記式(19)で表される化合物のGPC面積%は1~30面積%が好ましく、1~20面積%がより好ましい。
Figure JPOXMLDOC01-appb-C000020
 式(19)中、R、Rは前記と同じ意味を表す。
 前記式(15)で表される二価のカルボン酸が多価カルボン酸(A)に含まれると、硬化物の基材への接着性が向上するため好ましいが、含有することにより硬化物の機械強度が劣ってしまうために多価カルボン酸(A)100質量部に対して、20質量部以下であることが好ましい。
 また、本発明の多価カルボン酸(A)を製造する際に、下記式(19’)で表される一価のカルボン酸が生成することがある。尚、当該化合物はピークsの化合物に該当すると考えられる。ここで、前記製造法により得られる多価カルボン酸(A)の下記式(19’)で表される化合物のGPC面積%は1~10面積%が好ましく、1~5面積%がより好ましい。
Figure JPOXMLDOC01-appb-C000021
 式(19’)中、R、Rは前記と同じ意味を表す。
 前記式(19’)で表される一価のカルボン酸が多価カルボン酸(A)に含まれると、硬化物の基材への接着性が向上するため好ましいが、含有することにより硬化物の機械強度が劣る傾向にあるため多価カルボン酸(A)100質量部に対して、20質量部以下であることが好ましい。
 他にも、ピークsに該当する化合物としては、アルコールを溶剤に使用した場合は、アルコールと上記式(14)で表されるカルボン酸無水物化合物および/又は上記式(15)で表される化合物の反応物や溶剤中や空気中の水分と上記式(14)で表されるカルボン酸無水物化合物および/又は上記式(15)で表される化合物の反応物、未反応の酸無水物が挙げられる。ここで、アルコールと上記式(9)で表される化合物や溶剤中や空気中の水分と上記式(14)で表されるカルボン酸無水物化合物および/又は上記式(15)で表される化合物の反応物のGPCの面積%としては、硬化物の機械強度の点から5面積%以下が好ましく、3面積%以下であることがより好ましい。
 製造された本発明の多価カルボン酸(A)の酸価(JIS K-2501に記載の方法で測定)は150~415mgKOH/gのものが好ましく、185~375mgKOH/gのものがより好ましく、特に200~320mgKOH/gのものが好ましい。酸価が150mgKOH/g以上であれば硬化物の機械特性が向上するため好ましく、415mgKOH/g以下であれば、その硬化物が硬くなり過ぎず、弾性率が適度なものとなり好ましい。
 また、本発明の多価カルボン酸(A)の官能基当量は、135~312g/eqのものが好ましく、150~300g/eqのものがより好ましく、特に180~280g/eqが好ましい。
 次に本発明の多価カルボン酸組成物(C)について説明する。
 本発明の多価カルボン酸組成物(C)は、本発明の多価カルボン酸(A)を必須成分とする。
 また本発明の多価カルボン酸組成物(C)のうち、多価カルボン酸組成物(C’)は、本発明の多価カルボン酸(A)と、カルボン酸無水物化合物(B)を必須成分とする。
 多価カルボン酸組成物(C’)は多価カルボン酸(A)と、カルボン酸無水物化合物(B)を混合して得ることができる。
本発明の多価カルボン酸組成物(C’)は前記各成分を常温もしくは加温下で均一に混合することにより得られる。例えば、薬匙、押出機、ニーダー、三本ロール、万能ミキサー、プラネタリーミキサー、ホモミキサー、ホモディスパー、ビーズミル等を用いて均一になるまで充分に混合し、必要によりSUSメッシュ等によりろ過処理を行うことにより調製される。
 調製する際、後述するエポキシ樹脂(D)、硬化促進剤(E)、接着助剤、酸化防止剤、光安定剤等を一緒に混合してもよい。
 本発明の多価カルボン酸組成物(C)は、必要に応じて溶剤を混合させてワニスやインクとして使用することもできる。溶剤は本発明の多価カルボン酸(A)、カルボン酸無水物化合物(B)、エポキシ樹脂(D)、硬化促進剤(E)、接着助剤、酸化防止剤、光安定剤等に対して高い溶解性を有し、これらと反応しないものであれば使用できる。その具体例としてはジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、テトラヒドロフラン、アセトニトリルなどの非プロトン性極性溶媒、メチルエチルケトン、シクロペンタノン、メチルイソブチルケトンなどのケトン類、トルエン、キシレンなどの芳香族炭化水素等が挙げられ、これらの中で、芳香族炭化水素やケトン類が好ましい。
 本発明の多価カルボン酸組成物(C’)において、前述の多価カルボン酸(A)の製造の際に式(14)で表されるカルボン酸無水物化合物および/又は式(15)で表されるカルボン酸無水物化合物と、多価カルボン酸組成物(C’)中のカルボン酸無水物化合物(B)が同じである場合、多価カルボン酸(A)の製造時に式(10)で表されるイソシアヌル酸トリスヒドロキシアルキル化合物に対して過剰のカルボン酸無水物化合物(B)中で反応を行い、多価カルボン酸(A)の製造が終了した時点で、多価カルボン酸(A)とカルボン酸無水物(B)との混合物として得ることもできる。
 この反応の際の両者の仕込み比率としては、その官能基当量で、該酸無水物基1当量に対して、イソシアヌル酸トリスヒドロキシアルキル化合物の水酸基当量で、0.001~0.7当量、より好ましくは0.01~0.5当量の範囲で仕込むのが好ましい。
 このようにして得られた多価カルボン酸組成物(C’)にカルボン酸無水物(B)を混合することで、多価カルボン酸組成物(C’)中の多価カルボン酸(A)の濃度を調整することができる。
 多価カルボン酸(A)の製造時に、過剰のカルボン酸無水物化合物(B)を仕込んで反応させた場合、水洗工程時の水によって過剰のカルボン酸無水物化合物(B)が加水分解されてしまう恐れがあるため、前述の水洗工程は避けたほうがよい。
 本発明で使用するカルボン酸無水物化合物(B)は、分子内にカルボン酸無水物基を有する化合物であれば特に制限されないが、下記式(2)~(7)より一種以上選択されるカルボン酸無水物化合物であることが、硬化物の透明性の観点から好ましい。
Figure JPOXMLDOC01-appb-C000022
 本発明の多価カルボン酸組成物(C’)において、多価カルボン酸(A)とカルボン酸無水物化合物(B)の存在割合は、多価カルボン酸(A)100質量部に対してカルボン酸無水物化合物(B)が1~1000質量部が好ましく、さらに好ましくは10~800質量部、特に好ましくは50~500質量部である。
 本発明の多価カルボン酸(A)又は多価カルボン酸組成物(C)は、エポキシ樹脂の硬化剤として機能するものであり、他のエポキシ樹脂硬化剤を含有することもできる。例えば、アミン系硬化剤、フェノール系硬化剤、多価カルボン酸樹脂が挙げられ、多価カルボン酸樹脂が好ましい。
 多価カルボン酸樹脂は少なくとも2つ以上のカルボキシル基を有し、脂肪族炭化水素基またはシロキサン骨格を主骨格とすることを特徴とする化合物である。本発明においては多価カルボン酸樹脂とは単一の構造を有する多価カルボン酸化合物だけでなく、置換基の位置が異なる、あるいは置換基の異なる複数の化合物の混合体、すなわち多価カルボン酸組成物も含包し、本発明においてはそれらをまとめて多価カルボン酸樹脂と称す。
 多価カルボン酸樹脂としては、特に2~6官能のカルボン酸が好ましく、(a);分子内に2つ以上の水酸基を含有する多価アルコール化合物と(b);分子内に1つ以上の酸無水物基を含有する化合物との反応により得られた化合物がより好ましい。ここで、上記(a)及び(b)の反応物においては、さらに別のアルコール化合物を反応してもよく、(a)または(b)成分に該当する化合物を2種類以上使用しても良い。
(a);分子内に2つ以上の水酸基を含有する多価アルコール化合物としては、分子内に2つ以上のアルコール性水酸基を有する化合物であれば特に限定されないがエチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,2-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、シクロヘキサンジメタノール、2,4-ジエチルペンタンジオール、2-エチル-2-ブチル-1.3-プロパンジオール、ネオペンチルグリコール、トリシクロデカンジメタノール、ノルボルネンジオール、2,2’-ビス(4-ヒドロキシシクロヘキシル)プロパン、2-(1,1-ジメチル-2-ヒドロキシエチル)-5-エチル-5-ヒドロキシメチル-1,3-ジオキサン等のジオール類、グリセリン、トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、2-ヒドロキシメチル-1,4-ブタンジオール等のトリオール類、ペンタエリスリトール、ジトリメチロールプロパン等のテトラオール類、ジペンタエリスリトールなどのヘキサオール等、末端アルコールポリエステル、末端アルコールポリカーボネート、末端アルコールポリエーテル、シロキサン構造を有する多価アルコール等が挙げられる。
 特に好ましいアルコール類としては炭素数が5以上のアルコールであり、特に1,6-ヘキサンジオール、1,4-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,2-シクロヘキサンジメタノール、2,4-ジエチルペンタンジオール、2-エチル-2-ブチル-1,3-プロパンジオール、ネオペンチルグリコール、トリシクロデカンジメタノール、ノルボルネンジオール、2,2’-ビス(4-ヒドロキシシクロヘキシル)プロパン、2-(1,1-ジメチル-2-ヒドロキシエチル)-5-エチル-5-ヒドロキシメチル-1,3-ジオキサン等の化合物が挙げられ、中でも2-エチル-2-ブチル-1,3-プロパンジオール、ネオペンチルグリコール、2,4-ジエチルペンタンジオール、1,4-シクロヘキサンジメタノール、トリシクロデカンジメタノール、ノルボルネンジオール、2,2’-ビス(4-ヒドロキシシクロヘキシル)プロパン、2-(1,1-ジメチル-2-ヒドロキシエチル)-5-エチル-5-ヒドロキシメチル-1,3-ジオキサン等の化合物等の分岐鎖状構造や環状構造を有するアルコール類がより好ましい。高い耐硫化性を付与する観点から、2,4-ジエチルペンタンジオール、トリシクロデカンジメタノール、2,2’-ビス(4-ヒドロキシシクロヘキシル)プロパン、2-(1,1-ジメチル-2-ヒドロキシエチル)-5-エチル-5-ヒドロキシメチル-1,3-ジオキサン等の化合物が特に好ましい。中でも、特に分岐鎖状構造においては、分岐鎖を2つ以上有することが好ましく、特に分岐鎖が異なる炭素原子から伸びていることが好ましい。ここで、当該分岐鎖状構造や環状構造を有するアルコール類は炭素数が5~25であることが好ましく、5~20であることが特に好ましい。
 シロキサン構造を有する多価アルコールは特に限定されないが、例えば下記式で表されるシリコーンオイルを使用することができる。
Figure JPOXMLDOC01-appb-C000023
(式(20)中、Aはエーテル結合を介しても良い炭素総数1~10アルキレン基を表し、Aはメチル基又はフェニル基を表す。また、sは繰り返し数であり平均値を意味し、1~100である。)
 前記した、(a);分子内に2つ以上の水酸基を含有する多価アルコール化合物は単独で使用しても良いし、2種以上混合して使用しても良い。
 得られる多価カルボン酸樹脂を液状で使用し、高い耐硫化性を付与するため、前述したシロキサン構造を有する多価アルコールと、炭素数が5~25の分岐鎖状構造や環状構造を有するアルコール類を混合して用いることが好ましい。
 シロキサン構造を有する多価アルコールと炭素数が5~25の分岐鎖状構造や環状構造を有するアルコール類を混合して用いる場合、その使用量は全アルコール化合物中(シロキサン構造を有する多価アルコール)/(炭素数が5~25の分岐鎖状構造や環状構造を有するアルコール類)は1~20が好ましく、硬化物の耐熱透明性、多価カルボン酸樹脂の適度な粘度の観点から5~15が好ましく、6~10が特に好ましい。
 (b);分子内に1つ以上の酸無水物基を含有する化合物としては特にメチルテトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ブタンテトラカルボン酸無水物、ビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸無水物、メチルビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸無水物、シクロヘキサン-1,3,4-トリカルボン酸-3,4-無水物、無水グルタル酸、2,4-ジエチル無水グルタル酸、コハク酸無水物等が好ましく、中でもメチルヘキサヒドロ無水フタル酸、シクロヘキサン-1,3,4-トリカルボン酸-3,4-無水物、2,4-ジエチル無水グルタル酸、1,2,3,4-ブタンテトラカルボン酸二無水物、シクロヘキサンテトラカルボン酸二無水物、シクロペンタンテトラカルボン酸二無水物が好ましい。ここで、硬度を上げるためには、シクロヘキサン-1,3,4-トリカルボン酸-3,4-無水物が好ましく、照度保持率を上げるためにはメチルヘキサヒドロ無水フタル酸無水物が好ましく、多価カルボン酸樹脂の過度な粘度上昇を抑えるには2,4-ジエチルグルタル酸、グルタル酸が好ましい。
 付加反応の条件は、前述した本発明の多価カルボン酸(A)の製造と同様の条件で反応できる。
 本発明の多価カルボン酸(A)又は多価カルボン酸組成物(C)とその他のエポキシ樹脂硬化剤を併用する場合、全エポキシ樹脂硬化剤中、本発明の多価カルボン酸(A)又は多価カルボン酸組成物(C)の割合が30~99質量部であることが好ましく、60~97質量部が特に好ましい。30質量部を下回ると、硬化物の耐熱透明性が劣る恐れがある。
 次に本発明のエポキシ樹脂組成物について説明する。本発明におけるエポキシ樹脂組成物は、多価カルボン酸(A)又は多価カルボン酸組成物(C)と、エポキシ樹脂(D)を含有することを特徴とする。
 エポキシ樹脂(D)としては、例えばフェノール化合物のグリシジルエーテル化物であるエポキシ樹脂、各種ノボラック樹脂のグリシジルエーテル化物であるエポキシ樹脂、脂環式エポキシ樹脂、脂肪族系エポキシ樹脂、複素環式エポキシ樹脂、グリシジルエステル系エポキシ樹脂、グリシジルアミン系エポキシ樹脂、ハロゲン化フェノール類をグリシジル化したエポキシ樹脂、エポキシ基を持つ重合性不飽和化合物とそれ以外の他の重合性不飽和化合物との共重合体、エポキシ基をもつケイ素化合物とそれ以外のケイ素化合物との縮合物、シリコーン変性エポキシ樹脂等が挙げられる。
 前記フェノール類化合物のグリシジルエーテル化物であるエポキシ樹脂としては、例えば2-[4-(2,3-エポキシプロポキシ)フェニル]-2-[4-[1,1-ビス[4-(2,3-ヒドロキシ)フェニル]エチル]フェニル]プロパン、ビスフェノールA、ビスフェノールF、ビスフェノールS、4,4’-ビフェノール、テトラメチルビスフェノールA、ジメチルビスフェノールA、テトラメチルビスフェノールF、ジメチルビスフェノールF、テトラメチルビスフェノールS、ジメチルビスフェノールS、テトラメチル-4,4’-ビフェノール、ジメチル-4,4’-ビフェノール、1-(4-ヒドロキシフェニル)-2-[4-(1,1-ビス-(4-ヒドロキシフェニル)エチル)フェニル]プロパン、2,2’-メチレン-ビス(4-メチル-6-tert-ブチルフェノール)、4,4’-ブチリデン-ビス(3-メチル-6-tert-ブチルフェノール)、トリスヒドロキシフェニルメタン、レゾルシノール、ハイドロキノン、ピロガロール、フロログリシノール、ジイソプロピリデン骨格を有するフェノール類、1,1-ジ-4-ヒドロキシフェニルフルオレン等のフルオレン骨格を有するフェノール類、フェノール化ポリブタジエン等のポリフェノール化合物のグリシジルエーテル化物であるエポキシ樹脂等が挙げられる。
 前記各種ノボラック樹脂のグリシジルエーテル化物であるエポキシ樹脂としては、例えばフェノール、クレゾール類、エチルフェノール類、ブチルフェノール類、オクチルフェノール類、ビスフェノールA、ビスフェノールF及びビスフェノールS等のビスフェノール類、ナフトール類等の各種フェノールを原料とするノボラック樹脂、キシリレン骨格含有フェノールノボラック樹脂、ジシクロペンタジエン骨格含有フェノールノボラック樹脂、ビフェニル骨格含有フェノールノボラック樹脂、フルオレン骨格含有フェノールノボラック樹脂等の各種ノボラック樹脂のグリシジルエーテル化物等が挙げられる。
 前記脂環式エポキシ樹脂としては、例えば3,4-エポキシシクロヘキシルメチル-(3,4-エポキシ)シクロヘキシルカルボキシレート、ビス(3,4-エポキシシクロヘキシルメチル)アジペート等の脂肪族環骨格を有する脂環式エポキシ樹脂が挙げられる。
 前記脂肪族系エポキシ樹脂としては、例えば1,4-ブタンジオール、1,6-ヘキサンジオール、ポリエチレングリコール、ペンタエリスリトール等の多価アルコールのグリシジルエーテル類が挙げられる。
 前記複素環式エポキシ樹脂としては、例えばイソシアヌル環、ヒダントイン環等の複素環を有する複素環式エポキシ樹脂が挙げられる。
 前記グリシジルエステル系エポキシ樹脂としては、例えばヘキサヒドロフタル酸ジグリシジルエステル等のカルボン酸エステル類からなるエポキシ樹脂が挙げられる。
 前記グリシジルアミン系エポキシ樹脂としては、例えばアニリン、トルイジン等のアミン類をグリシジル化したエポキシ樹脂が挙げられる。
 前記ハロゲン化フェノール類をグリシジル化したエポキシ樹脂としては、例えばブロム化ビスフェノールA、ブロム化ビスフェノールF、ブロム化ビスフェノールS、ブロム化フェノールノボラック、ブロム化クレゾールノボラック、クロル化ビスフェノールS、クロル化ビスフェノールA等のハロゲン化フェノール類をグリシジル化したエポキシ樹脂が挙げられる。
 エポキシ基を持つ重合性不飽和化合物とそれ以外の他の重合性不飽和化合物との共重合体としては、市場から入手可能な製品ではマープルーフ(商品名)G-0115S、同G-0130S、同G-0250S、同G-1010S、同G-0150M、同G-2050M (日油(株)製)等が挙げられ、エポキシ基を持つ重合性不飽和化合物としては、例えばアクリル酸グリシジル、メタクリル酸グリシジル、4-ビニル-1-シクロヘキセン-1,2-エポキシド等が挙げられる。また他の重合性不飽和化合物としては、例えばメチル(メタ)アクリレート、エーテル(メタ)アクリレート、ベンジル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、スチレン、ビニルシクロヘキサンなどが挙げられる。これらエポキシ樹脂は1種又は2種以上を混合して用いても良い。
 前記エポキシ基をもつケイ素化合物とそれ以外のケイ素化合物との縮合物とは、例えばエポキシ基をもつアルコキシシラン化合物とメチル基やフェニル基を持つアルコキシシランとの加水分解縮合物や、エポキシ基をもつアルコキシシラン化合物とシラノール基をもつポリジメチルシロキサン、シラノール基をもつポリジメチルジフェニルシロキサン、シラノール基をもつポリフェニルシロキサンとの縮合物、またはそれらを併用し得られた縮合化合物のことである。エポキシ基をもつアルコキシシラン化合物としては、例えば2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン等が挙げられる。メチル基やフェニル基をもつアルコキシシラン化合物としては、例えばメチルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ジメチルジメトキシシラン、ジフェニルジメトキシシラン、メチルフェニルジメトキシシラン等が挙げられる。シラノール基をもつポリジメチルシロキサン、シラノール基をもつポリジメチルジフェニルシロキサンとしては、例えば市場から入手可能な製品では、X-21-5841、KF-9701(信越化学工業(株)製)BY16-873、PRX413(東レ・ダウコーニング(株)製)XC96-723、YF3804、YF3800、XF3905、YF3057(モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社)DMS-S12、DMS-S14、DMS-S15、DMS-S21、DMS-S27、DMS-S31、PDS-0338、PDS-1615(Gelest社製)等が挙げられる。
 前記シリコーン変性エポキシ樹脂とは、シリコーン鎖(Si-O鎖)を主骨格とし、一分子中にエポキシ基を2つ以上有する化合物のことである。シリコーン鎖は直鎖状、分岐状、環状、かご型、ラダー型のいずれであっても構わない。得られる硬化物の透明性、機械強度の観点から下記式(21)で表される環状シリコーン変性エポキシ樹脂が特に好ましい例として挙げられるが、これに限定されるものではない。
Figure JPOXMLDOC01-appb-C000024
 式(21)において、Rは炭素数1~6の炭化水素基を、Xはエポキシ基含有の有機基または炭素数1~6の炭化水素基を、nは1~3の整数をそれぞれ表す。式中に複数存在するR、Xはそれぞれ同一であっても異なっていても構わない。ただし、複数存在するX中、2つ以上はエポキシ基含有の有機基である。
 Rの具体例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、フェニル基が挙げられるが、硬化物の耐熱透明性の観点から、メチル基、フェニル基が好ましく、製造容易性の観点からメチル基が特に好ましい。
 Xにおける有機基とは、C、H、N、O原子からなる化合物を表し、エポキシ基含有の有機基の具体例としては、2,3-エポキシシクロヘキシルエチル基、3―グリシドキシプロピル基が挙げられ、硬化物の耐熱透明性の観点から2,3-エポキシシクロヘキシルエチル基が好ましい。ここで、有機基における炭素数は1~20であることが好ましく、3~15であることがより好ましい。また、炭素数1~5のアルキレン基を介在して2,3-エポキシシクロヘキシルエチル基、3―グリシドキシプロピル基が付加している基であることが好ましい。
 Xにおける炭素数1~6の炭化水素基の具体例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、フェニル基が挙げられるが、硬化物の耐熱透明性の観点から、メチル基、フェニル基が好ましく、製造容易性の観点からメチル基が特に好ましい。
 nは化合物の製造容易性から2が好ましい。
 式(21)で表される環状シリコーン変性エポキシ樹脂は、環状ハイドロジェンシロキサン化合物と分子内にエポキシ基を有するオレフィン化合物とのハイドロシリレーション反応によって得ることができる。
 環状ハイドロジェンシロキサン化合物の具体例としては、トリメチルトリシクロシロキサン、トリフェニルトリシクロシロキサン、テトラメチルテトラシクロシロキサン、テトラフェニルテトラシクロシロキサン、ペンタメチルペンタシクロシロキサン、ペンタフェニルペンタシクロシロキサン等が挙げられ、製造の容易性からテトラメチルテトラシロキサンが好ましい。
 分子内にエポキシ基を有するオレフィン化合物としては、4-ビニル-1,2-エポキシシクロヘキサン、3-グリシドキシ-1,2-プロペン等が挙げられ、硬化物の耐熱透明性の観点から4-ビニル-1,2-エポキシシクロヘキサンが好ましい。
 ハイドロシリレーション反応は、その触媒として例えば、ロジウム、パラジウム、白金などの公知の金属錯体を用いることができる。具体的には、トリストリフェニルホスフィンロジウムクロリド、ヘキサクロロ白金酸・6水和物等が挙げられ、硬化物の透明性の観点からヘキサクロロ白金酸・6水和物が好ましい。
 ハイドロシリレーション反応に用いる触媒は、溶媒に溶解して溶液にして用いることが、作業性の観点から好ましい。用いうる溶媒は、触媒を溶解する溶媒であれば用いることができるが、溶解性、作業性の観点から、テトラヒドロフラン、トルエンが好ましい。
 溶液として用いる場合、触媒を0.05~50重量%に調整して反応液に添加する。
 式(21)で表される環状シリコーン変性エポキシ樹脂は、具体的には下記式(21-1)~(21-6)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000025
 これらエポキシ樹脂(D)は1種又は2種以上を混合して用いても良い。
 前記したエポキシ樹脂(D)の中でも、透明性、耐熱透明性、耐光透明性の観点から、脂環式エポキシ樹脂、エポキシ基をもつケイ素化合物とそれ以外のケイ素化合物との縮合物、シリコーン変性エポキシ樹脂の併用は好ましい。その中でも、骨格にエポキシシクロヘキサン構造を有する環状シリコーン変性エポキシ樹脂が好ましい。
 エポキシ樹脂(D)は、多価カルボン酸(A)中のカルボン酸基1当量および/又は多価カルボン酸組成物(C’)中のカルボン酸無水物化合物(B)のカルボン酸無水物1当量に対し、エポキシ基が0.5~3.0当量になる範囲で使用することが好ましい。0.5当量以上であれば、硬化物の耐熱透明性が向上するため好ましく、3.0以下であれば硬化物の機械物性が向上するため好ましい。
 本発明のエポキシ樹脂組成物には、さらにエポキシ樹脂硬化促進剤(E)を含有することが好ましい。
 エポキシ樹脂硬化促進剤(E)としては本発明の多価カルボン酸(A)又は多価カルボン酸組成物(C)と、エポキシ樹脂(D)の硬化反応を促進する能力のあるものは何れも使用可能であるが、使用できる硬化促進剤(E)の例としては、アンモニウム塩系硬化促進剤、ホスホニウム塩系硬化促進剤、金属石鹸系硬化促進剤、イミダゾ-ル系硬化促進剤、アミン系硬化促進剤、ホスフィン系硬化促進剤、ホスファイト系硬化促進剤、ルイス酸系硬化促進剤等が挙げられる。
 本発明のエポキシ樹脂組成物においてエポキシ樹脂硬化促進剤(E)の配合比率は、エポキシ樹脂組成物100重量部に対して0.001~15重量部の硬化促進剤を使用することが好ましい。
 本発明のエポキシ樹脂組成物において、使用できるエポキシ樹脂硬化促進剤(E)の具体例としては、2-メチルイミダゾール、2-フェニルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、2,4-ジアミノ-6(2’-メチルイミダゾール(1’))エチル-s-トリアジン、2,4-ジアミノ-6(2’-ウンデシルイミダゾール(1’))エチル-s-トリアジン、2,4-ジアミノ-6(2’-エチル,4-メチルイミダゾール(1’))エチル-s-トリアジン、2,4-ジアミノ-6(2’-メチルイミダゾール(1’))エチル-s-トリアジン・イソシアヌル酸付加物、2-メチルイミダゾールイソシアヌル酸の2:3付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-フェニル-3,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-ヒドロキシメチル-5-メチルイミダゾール、1-シアノエチル-2-フェニル-3,5-ジシアノエトキシメチルイミダゾールの各種イミダゾール類、および、それらイミダゾール類とフタル酸、イソフタル酸、テレフタル酸、トリメリット酸、ピロメリット酸、ナフタレンジカルボン酸、マレイン酸、蓚酸等の多価カルボン酸との塩類、ジシアンジアミド等のアミド類、1,8-ジアザ-ビシクロ[5.4.0]ウンデセン-7等のジアザ化合物およびそれらのテトラフェニルボレート、フェノールノボラック等の塩類、前記多価カルボン酸類、又はホスフィン酸類との塩類、テトラブチルアンモニュウムブロマイド、セチルトリメチルアンモニュウムブロマイド、トリオクチルメチルアンモニュウムブロマイド等のアンモニュウム塩、トリフェニルホスフィン、トリ(トルイル)ホスフィン、テトラフェニルホスホニウムブロマイド、テトラフェニルホスホニウムテトラフェニルボレート等のホスフィン類やホスホニウム化合物、2,4,6-トリスアミノメチルフェノール等のフェノール類、アミンアダクト、オクチル酸スズ等の金属化合物等、およびこれら硬化促進剤をマイクロカプセルにしたマイクロカプセル型硬化促進剤等が挙げられる。これら硬化促進剤のどれを用いるかは、例えば透明性、硬化速度、作業条件といった得られる透明樹脂組成物に要求される特性によって適宜選択される。
 これらの中でも、硬化物の透明性の観点から、金属石鹸硬化促進剤が優れ、金属石鹸硬化促進剤の中でもカルボン酸亜鉛化合物が硬化物の透明性の観点から特に好ましい。
 金属石鹸系硬化促進剤としては、例えばオクチル酸スズ、オクチル酸コバルト、オクチル酸亜鉛、オクチル酸マンガン、オクチル酸カルシウム、オクチル酸ナトリウム、オクチル酸カリウム、ステアリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸マグネシウム、ステアリン酸アルミニウム、ステアリン酸バリウム、ステアリン酸リチウム、ステアリン酸ナトリウム、ステアリン酸カリウム、12-ヒドロキシリン酸カルシウム、12-ヒドロキシステアリン酸亜鉛、12-ヒドロキシステアリン酸マグネシウム、12-ヒドロキシステアリン酸アルミニウム、12-ヒドロキシステアリン酸バリウム、12-ヒドロキシステアリン酸リチウム、12-ヒドロキシステアリン酸ナトリウム、モンタン酸カルシウム、モンタン酸亜鉛、モンタン酸マグネシウム、モンタン酸アルミニウム、モンタン酸リチウム、モンタン酸ナトリウム、ベヘン酸カルシウム、ベヘン酸亜鉛、ベヘン酸マグネシウム、ベヘン酸リチウム、ベヘン酸ナトリウム、ベヘン酸銀、ラウリン酸カルシウム、ラウリン酸亜鉛、ラウリン酸バリウム、ラウリン酸リチウム、ウンデシレン酸亜鉛、リシノール酸亜鉛、リシノール酸バリウム、ミリスチン酸亜鉛、パルミチン酸亜鉛等が挙げられる。これら触媒は1種又は2種以上を混合して用いても良い。
 透明性、耐硫化性に優れる硬化物を得るために、特にステアリン酸亜鉛、モンタン酸亜鉛、ベヘン酸亜鉛、ラウリン酸亜鉛、ウンデシレン酸亜鉛、リシノール酸亜鉛、ミリスチン酸亜鉛、パルミチン酸亜鉛等の炭素数10~30のカルボン酸亜鉛、12-ヒドロキシステアリン酸亜鉛等の水酸基を有する炭素数10~30のモノカルボン酸化合物からなる亜鉛塩が好ましく使用できる。これらの中でも特に、ポットライフ、耐硫化性に優れる観点から、ステアリン酸亜鉛、ウンデシレン酸亜鉛等の炭素数10~20のモノカルボン酸化合物からなる亜鉛塩、12-ヒドロキシステアリン酸亜鉛等の水酸基を有する炭素数15~20のモノカルボン酸化合物からなる亜鉛塩が好ましく使用でき、さらに好ましくはステアリン酸亜鉛、ウンデシレン酸亜鉛、12-ヒドロキシステアリン酸亜鉛が使用でき、特に好ましくはステアリン酸亜鉛、12-ヒドロキシステアリン酸亜鉛が使用できる。
 アンモニウム塩系硬化促進剤としては、例えばテトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルエチルアンモニウムヒドロキシド、トリメチルプロピルアンモニウムヒドロキシド、トリメチルブチルアンモニウムヒドロキシド、トリメチルセチルアンモニウムヒドロキシド、トリオクチルメチルアンモニウムヒドロキシド、テトラメチルアンモニウムクロリド、テトラメチルアンモニウムブロミド、テトラメチルアンモニウムヨージド、テトラメチルアンモニウムアセテート、トリオクチルメチルアンモニウムアセテート等が挙げられる。ホスホニウム塩系硬化促進剤としては、例えばエチルトリフェニルホスホニウムブロミド、テトラフェニルホスホニウムテトラフェニルボレート、メチルトリブチルホスホニウムジメチルホスフェート、メチルトリブチルホスホニウムジエチルホスフェート等が挙げられる。
 その他の汎用用途には、上記アンモニウム塩系硬化促進剤、ホスホニウム塩系硬化促進剤、金属石鹸系硬化促進剤の他、イミダゾール系硬化促進剤、アミン系硬化促進剤、複素環化合物系硬化促進剤、ホスフィン系硬化促進剤、ホスファイト系硬化促進剤、ルイス酸系硬化促進剤等が使用できる。
 前記したエポキシ樹脂硬化促進剤(E)は、室温(25℃)において固体の化合物でも液体の化合物でも使用することができる。本発明のエポキシ樹脂組成物を室温(25℃)にて液状であることが必要な用途に使用する場合において、室温(25℃)にて固体の化合物を硬化促進剤として使用する場合、予め樹脂に溶解させて使用することもできる。また、室温(25℃)において固体の化合物を樹脂に分散させて使用することもできる。
 本発明のエポキシ樹脂組成物には、必要に応じてカップリング剤を使用することで、組成物の粘度調整、硬化物の硬度を補完することが可能である。
 使用できるカップリング剤としては、例えば3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、N-(2-アミノエチル)3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)3-アミノプロピルメチルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、ビニルトリメトキシシラン、N-(2-(ビニルベンジルアミノ)エチル)3-アミノプロピルトリメトキシシラン塩酸塩、3-メタクリロキシプロピルトリメトキシシラン、3-クロロプロピルメチルジメトキシシラン、3-クロロプロピルトリメトキシシラン等のシラン系カップリング剤;イソプロピル(N-エチルアミノエチルアミノ)チタネート、イソプロピルトリイソステアロイルチタネート、チタニウムジ(ジオクチルピロフォスフェート)オキシアセテート、テトライソプロピルジ(ジオクチルフォスファイト)チタネート、ネオアルコキシトリ(p-N-(β-アミノエチル)アミノフェニル)チタネート等のチタン系カップリング剤;Zr-アセチルアセトネート、Zr-メタクリレート、Zr-プロピオネート、ネオアルコキシジルコネート、ネオアルコキシトリスネオデカノイルジルコネート、ネオアルコキシトリス(ドデカノイル)ベンゼンスルフォニルジルコネート、ネオアルコキシトリス(エチレンジアミノエチル)ジルコネート、ネオアルコキシトリス(m-アミノフェニル)ジルコネート、アンモニウムジルコニウムカーボネート、Al-アセチルアセトネート、Al-メタクリレート、Al-プロピオネート等のジルコニウム、或いはアルミニウム系カップリング剤等が挙げられる。
 これらカップリング剤は1種又は2種以上を混合して用いても良い。
 カップリング剤は、本発明のエポキシ樹脂組成物において通常0.05~20重量部、好ましくは0.1~10重量部が必要に応じて含有される。
 本発明のエポキシ樹脂組成物には、必要に応じてナノオーダーレベルの無機充填材を使用することで、透明性を阻害せずに機械強度などを補完することが可能である。ナノオーダーレベルとしての目安は、平均粒径が500nm以下、特に平均粒径が200nm以下の充填材を使用することが透明性の観点では好ましい。無機充填剤としては、結晶シリカ、溶融シリカ、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、炭化ケイ素、窒化ケイ素、窒化ホウ素、ジルコニア、フォステライト、ステアタイト、スピネル、チタニア、タルク等の粉体またはこれらを球形化したビーズ等が挙げられるが、これらに限定されるものではない。これら充填材は、単独で用いてもよく、2種以上を用いてもよい。これら無機充填剤の含有量は、本発明のエポキシ樹脂組成物中において0~95重量%を占める量が用いられる。
 本発明のエポキシ樹脂組成物に着色防止目的のため、光安定剤としてのアミン化合物又は、酸化防止材としてのリン系化合物およびフェノール系化合物を含有することができる。
 前記アミン化合物としては、例えば、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシラート、テトラキス(2,2,6,6-トトラメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシラート、1,2,3,4-ブタンテトラカルボン酸と1,2,2,6,6-ペンタメチル-4-ピペリジノールおよび3,9-ビス(2-ヒドロキシ-1,1-ジメチルエチル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカンとの混合エステル化物、デカン二酸ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1-ウンデカンオキシ-2,2,6,6-テトラメチルピペリジン-4-イル)カーボネート、2,2,6,6,-テトラメチル-4-ピペリジルメタクリレート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン、1-〔2-〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ〕エチル〕-4-〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ〕-2,2,6,6-テトラメチルピペリジン、1,2,2,6,6-ペンタメチル-4-ピペリジニル-メタアクリレート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジニル)〔〔3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル〕メチル〕ブチルマロネート、デカン二酸ビス(2,2,6,6-テトラメチル-1(オクチルオキシ)-4-ピペリジニル)エステル,1,1-ジメチルエチルヒドロペルオキシドとオクタンの反応生成物、N,N’,N”’,N”’-テトラキス-(4,6-ビス-(ブチル-(N-メチル-2,2,6,6-テトラメチルピペリジン-4-イル)アミノ)-トリアジン-2-イル)-4,7-ジアザデカン-1,10-ジアミン、ジブチルアミン・1,3,5-トリアジン・N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル-1,6-ヘキサメチレンジアミンとN-(2,2,6,6-テトラメチル-4-ピペリジル)ブチルアミンの重縮合物、ポリ〔〔6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル〕〔(2,2,6,6-テトラメチル-4-ピペリジル)イミノ〕ヘキサメチレン〔(2,2,6,6-テトラメチル-4-ピペリジル)イミノ〕〕、コハク酸ジメチルと4-ヒドロキシ-2,2,6,6-テトラメチル-1-ピペリジンエタノールの重合物、2,2,4,4-テトラメチル-20-(β-ラウリルオキシカルボニル)エチル-7-オキサ-3,20-ジアザジスピロ〔5・1・11・2〕ヘネイコサン-21-オン、β-アラニン,N,-(2,2,6,6-テトラメチル-4-ピペリジニル)-ドデシルエステル/テトラデシルエステル、N-アセチル-3-ドデシル-1-(2,2,6,6-テトラメチル-4-ピペリジニル)ピロリジン-2,5-ジオン、2,2,4,4-テトラメチル-7-オキサ-3,20-ジアザジスピロ〔5,1,11,2〕ヘネイコサン-21-オン、2,2,4,4-テトラメチル-21-オキサ-3,20-ジアザジシクロ-〔5,1,11,2〕-ヘネイコサン-20-プロパン酸ドデシルエステル/テトラデシルエステル、プロパンジオイックアシッド,〔(4-メトキシフェニル)-メチレン〕-ビス(1,2,2,6,6-ペンタメチル-4-ピペリジニル)エステル、2,2,6,6-テトラメチル-4-ピペリジノールの高級脂肪酸エステル、1,3-ベンゼンジカルボキシアミド,N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジニル)等のヒンダートアミン系、オクタベンゾン等のベンゾフェノン系化合物、2-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール、2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-〔2-ヒドロキシ-3-(3,4,5,6-テトラヒドロフタルイミド-メチル)-5-メチルフェニル〕ベンゾトリアゾール、2-(3-tert-ブチル-2-ヒドロキシ-5-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ-tert-ペンチルフェニル)ベンゾトリアゾール、メチル3-(3-(2H-ベンゾトリアゾール-2-イル)-5-tert-ブチル-4-ヒドロキシフェニル)プロピオネートとポリエチレングリコールの反応生成物、2-(2H-ベンゾトリアゾール-2-イル)-6-ドデシル-4-メチルフェノール等のベンゾトリアゾール系化合物、2,4-ジ-tert-ブチルフェニル-3,5-ジ-tert-ブチル-4-ヒドロキシベンゾエート等のベンゾエート系、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-〔(ヘキシル)オキシ〕フェノール等のトリアジン系化合物等が挙げられるが、特に好ましくは、ヒンダートアミン系化合物である。
 前記光安定材であるアミン化合物として、次に示す市販品を使用することができる。
 市販されているアミン系化合物としては特に限定されず、例えば、チバスペシャリティケミカルズ製として、TINUVIN(商品名)765、TINUVIN770DF、TINUVIN144、TINUVIN123、TINUVIN622LD、TINUVIN152、CHIMASSORB(商品名)944、ADEKA製として、LA-52、LA-57、LA-62、LA-63P、LA-77Y、LA-81、LA-82、LA-87などが挙げられる。
 前記リン系化合物としては特に限定されず、例えば、1,1,3-トリス(2-メチル-4-ジトリデシルホスファイト-5-tert-ブチルフェニル)ブタン、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、フェニルビスフェノールAペンタエリスリトールジホスファイト、ジシクロヘキシルペンタエリスリトールジホスファイト、トリス(ジエチルフェニル)ホスファイト、トリス(ジ-イソプロピルフェニル)ホスファイト、トリス(ジ-n-ブチルフェニル)ホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、トリス(2,6-ジ-tert-ブチルフェニル)ホスファイト、トリス(2,6-ジ-tert-ブチルフェニル)ホスファイト、2,2’-メチレンビス(4,6-ジ-tert-ブチルフェニル)(2,4-ジ-tert-ブチルフェニル)ホスファイト、2,2’-メチレンビス(4,6-ジ-tert-ブチルフェニル)(2-tert-ブチル-4-メチルフェニル)ホスファイト、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェニル)(2-tert-ブチル-4-メチルフェニル)ホスファイト、2,2’-エチリデンビス(4-メチル-6-tert-ブチルフェニル)(2-tert-ブチル-4-メチルフェニル)ホスファイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-4,4’-ビフェニレンジホスホナイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-4,3’-ビフェニレンジホスホナイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-3,3’-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-tert-ブチルフェニル)-4,4’-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-tert-ブチルフェニル)-4,3’-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-tert-ブチルフェニル)-3,3’-ビフェニレンジホスホナイト、ビス(2,4-ジ-tert-ブチルフェニル)-4-フェニル-フェニルホスホナイト、ビス(2,4-ジ-tert-ブチルフェニル)-3-フェニル-フェニルホスホナイト、ビス(2,6-ジ-n-ブチルフェニル)-3-フェニル-フェニルホスホナイト、ビス(2,6-ジ-tert-ブチルフェニル)-4-フェニル-フェニルホスホナイト、ビス(2,6-ジ-tert-ブチルフェニル)-3-フェニル-フェニルホスホナイト、テトラキス(2,4-ジ-tert-ブチル-5-メチルフェニル)-4,4’-ビフェニレンジホスホナイト、トリブチルホスフェート、トリメチルホスフェート、トリクレジルホスフェート、トリフェニルホスフェート、トリクロルフェニルホスフェート、トリエチルホスフェート、ジフェニルクレジルホスフェート、ジフェニルモノオルソキセニルホスフェート、トリブトキシエチルホスフェート、ジブチルホスフェート、ジオクチルホスフェート、ジイソプロピルホスフェートなどが挙げられる。
 上記リン系化合物は、市販品を用いることもできる。市販されているリン系化合物としては特に限定されず、例えば、ADEKA製として、アデカスタブ(商品名)PEP-4C、アデカスタブPEP-8、アデカスタブPEP-24G、アデカスタブPEP-36、アデカスタブHP-10、アデカスタブ2112、アデカスタブ260、アデカスタブ522A、アデカスタブ1178、アデカスタブ1500、アデカスタブC、アデカスタブ135Aなどが挙げられる。
 前記フェノール化合物としては特に限定はされず、例えば、2,6-ジ-tert-ブチル-4-メチルフェノール、n-オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、テトラキス[メチレン-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン、2,4-ジ-tert-ブチル-6-メチルフェノール、1,6-ヘキサンジオール-ビス-[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-イソシアヌレイト、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ベンゼン、ペンタエリスリチル-テトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、3,9-ビス-〔2-[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)-プロピオニルオキシ]-1,1-ジメチルエチル〕-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、トリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、2,2’-ブチリデンビス(4,6-ジ-tert-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-tert-ブチルフェノール)、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-tert-ブチルフェノール)、2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェノールアクリレート、2-[1-(2-ヒドロキシ-3,5-ジ-tert-ペンチルフェニル)エチル]-4,6-ジ-tert-ペンチルフェニルアクリレート、4,4’-チオビス(3-メチル-6-tert-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-tert-ブチルフェノール)、2-tert-ブチル-4-メチルフェノール、2,4-ジ-tert-ブチルフェノール、2,4-ジ-tert-ペンチルフェノール、4,4’-チオビス(3-メチル-6-tert-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-tert-ブチルフェノール)、ビス-[3,3-ビス-(4’-ヒドロキシ-3’-tert-ブチルフェニル)-ブタノイックアシッド]-グリコールエステル、2,4-ジ-tert-ブチルフェノール、2,4-ジ-tert-ペンチルフェノール、2-[1-(2-ヒドロキシ-3,5-ジ-tert-ペンチルフェニル)エチル]-4,6-ジ-tert-ペンチルフェニルアクリレート、ビス-[3,3-ビス-(4’-ヒドロキシ-3’-tert-ブチルフェニル)-ブタノイックアシッド]-グリコールエステル等が挙げられる。
 上記フェノール系化合物は、市販品を用いることもできる。市販されているフェノール系化合物としては特に限定されず、例えば、チバスペシャリティケミカルズ製としてIRGANOX(商品名)1010、IRGANOX1035、IRGANOX1076、IRGANOX1135、IRGANOX245、IRGANOX259、IRGANOX295、IRGANOX3114、IRGANOX1098、IRGANOX1520L、アデカ製としては、アデカスタブAO-20、アデカスタブAO-30、アデカスタブAO-40、アデカスタブAO-50、アデカスタブAO-60、アデカスタブAO-70、アデカスタブAO-80、アデカスタブAO-90、アデカスタブAO-330、住友化学工業製として、Sumilizer(商品名)GA-80、Sumilizer MDP-S、Sumilizer BBM-S、Sumilizer GM、Sumilizer GS(F)、Sumilizer GPなどが挙げられる。
 このほか、樹脂の着色防止剤として市販されている添加材を使用することができる。例えば、チバスペシャリティケミカルズ製として、THINUVIN328、THINUVIN234、THINUVIN326、THINUVIN120、THINUVIN477、THINUVIN479、CHIMASSORB2020FDL、CHIMASSORB119FLなどが挙げられる。
 上記リン系化合物、アミン化合物、フェノール系化合物の中から少なくとも1種以上を含有することが好ましく、その配合量としては特に限定されないが、本発明のエポキシ樹脂組成物の全重量に対して、0.005~5.0重量%の範囲である。
 さらに本発明のエポキシ樹脂組成物には、必要に応じてバインダー樹脂を配合することも出来る。バインダー樹脂としてはブチラール系樹脂、アセタール系樹脂、アクリル系樹脂、エポキシ-ナイロン系樹脂、NBR-フェノール系樹脂、エポキシ-NBR系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、シリコーン系樹脂などが挙げられるが、これらに限定されるものではない。バインダー樹脂の配合量は、硬化物の難燃性、耐熱性を損なわない範囲であることが好ましく、樹脂成分100重量部に対して通常0.05~50重量部、好ましくは0.05~20重量部が必要に応じて用いられる。
 本発明のエポキシ樹脂組成物には、必要に応じて無機充填剤を添加することができる。無機充填剤としては、結晶シリカ、溶融シリカ、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、炭化ケイ素、窒化ケイ素、窒化ホウ素、ジルコニア、フォステライト、ステアタイト、スピネル、チタニア、タルク等の粉体またはこれらを球形化したビーズ等が挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。これら無機充填剤の含有量は、本発明の硬化性樹脂組成物中において0~95重量%を占める量が用いられる。更に本発明の硬化性樹脂組成物には、シランカップリング剤、ステアリン酸、パルミチン酸、ステアリン酸亜鉛、ステアリン酸カルシウム等の離型剤、顔料等の種々の配合剤、各種熱硬化性樹脂を添加することができる。
 本発明のエポキシ樹脂組成物は前記各成分を常温もしくは加温下で均一に混合することにより得られる。例えば、押出機、ニーダー、三本ロール、万能ミキサー、プラネタリーミキサー、ホモミキサー、ホモディスパー、ビーズミル等を用いて均一になるまで充分に混合し、必要によりSUSメッシュ等によりろ過処理を行うことにより調製される。
 本発明のエポキシ樹脂組成物は、本発明の多価カルボン酸(A)又は多価カルボン酸組成物(C)およびエポキシ樹脂(D)および任意に硬化促進剤(E)、酸化防止剤、光安定剤等の添加物を充分に混合することにより調製され、封止材として使用できる。混合方法としては、薬匙、ニーダー、三本ロール、万能ミキサー、プラネタリーミキサー、ホモミキサー、ホモディスパー、ビーズミル等を用いて常温または加温して混合する。
 本発明のエポキシ樹脂組成物をトルエン、キシレン、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等の溶剤に溶解させ、エポキシ樹脂組成物ワニスとし、ガラス繊維、カ-ボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維、紙などの基材に含浸させて加熱乾燥して得たプリプレグを熱プレス成形することにより、本発明のエポキシ樹脂組成物の硬化物とすることができる。この際の溶剤は、本発明のエポキシ樹脂組成物と該溶剤の混合物中で通常10~70重量%、好ましくは15~70重量%を占める量を用いる。また液状組成物のままRTM方式でカーボン繊維を含有するエポキシ樹脂硬化物を得ることもできる。
 また本発明のエポキシ樹脂組成物をフィルム型組成物の改質剤としても使用できる。具体的にはB-ステージにおけるフレキ性等を向上させる場合に用いることができる。このようなフィルム型の樹脂組成物を得る場合は、本発明のエポキシ樹脂組成物を剥離フィルム上に前記ワニスとして塗布し加熱下で溶剤を除去、Bステージ化を行うことによりシート状の接着剤として得る。このシート状接着剤は多層基板などにおける層間絶縁層として使用することが出来る。
 更に、エポキシ樹脂等の熱硬化性樹脂が使用される一般の用途が挙げられ、例えば、接着剤、塗料、コーティング剤、成形材料(シート、フィルム、FRP等を含む)、絶縁材料(プリント基板、電線被覆等を含む)、封止材としての用途の他、封止材、基板用のシアネート樹脂組成物や、レジスト用硬化剤としてアクリル酸エステル系樹脂等、他樹脂等への添加剤としての用途等が挙げられる。
 接着剤としては、土木用、建築用、自動車用、一般事務用、医療用の接着剤の他、電子材料用の接着剤が挙げられる。これらのうち電子材料用の接着剤としては、ビルドアップ基板等の多層基板の層間接着剤、ダイボンディング剤、アンダーフィル等の半導体用接着剤、BGA補強用アンダーフィル、異方性導電性フィルム(ACF)、異方性導電性ペースト(ACP)等の実装用接着剤等が挙げられる。
 封止剤としては、コンデンサ、トランジスタ、ダイオード、発光ダイオード、IC、LSIなど用のポッティング、ディッピング、トランスファーモールド封止、IC、LSI類のCOB、COF、TABなど用のポッティング封止、フリップチップなど用のアンダーフィル、QFP、BGA、CSPなどのICパッケージ類実装時の封止(補強用アンダーフィルを含む)などを挙げることができる。
 本発明で得られる硬化物は光学部品材料をはじめ各種用途に使用できる。光学用材料とは、可視光、赤外線、紫外線、X線、レーザーなどの光をその材料中を通過させる用途に用いる材料一般を示す。より具体的には、ランプタイプ、SMDタイプ等のLED用封止材の他、以下のようなものが挙げられる。液晶ディスプレイ分野における基板材料、導光板、プリズムシート、偏向板、位相差板、視野角補正フィルム、接着剤、偏光子保護フィルムなどの液晶用フィルムなどの液晶表示装置周辺材料である。また、次世代フラットパネルディスプレイとして期待されるカラーPDP(プラズマディスプレイ)の封止材、反射防止フィルム、光学補正フィルム、ハウジング材、前面ガラスの保護フィルム、前面ガラス代替材料、接着剤、またLED表示装置に使用されるLEDのモールド材、LEDの封止材、前面ガラスの保護フィルム、前面ガラス代替材料、接着剤、またプラズマアドレス液晶(PALC)ディスプレイにおける基板材料、導光板、プリズムシート、偏向板、位相差板、視野角補正フィルム、接着剤、偏光子保護フィルム、また有機EL(エレクトロルミネッセンス)ディスプレイにおける前面ガラスの保護フィルム、前面ガラス代替材料、接着剤、またフィールドエミッションディスプレイ(FED)における各種フィルム基板、前面ガラスの保護フィルム、前面ガラス代替材料、接着剤である。光記録分野では、VD(ビデオディスク)、CD/CD-ROM、CD-R/RW、DVD-R/DVD-RAM、MO/MD、PD(相変化ディスク)、光カード用のディスク基板材料、ピックアップレンズ、保護フィルム、封止材、接着剤などである。
 光学機器分野では、スチールカメラのレンズ用材料、ファインダプリズム、ターゲットプリズム、ファインダーカバー、受光センサー部である。また、ビデオカメラの撮影レンズ、ファインダーである。またプロジェクションテレビの投射レンズ、保護フィルム、封止材、接着剤などである。光センシング機器のレンズ用材料、封止材、接着剤、フィルムなどである。光部品分野では、光通信システムでの光スイッチ周辺のファイバー材料、レンズ、導波路、素子の封止材、接着剤などである。光コネクタ周辺の光ファイバー材料、フェルール、封止材、接着剤などである。光受動部品、光回路部品ではレンズ、導波路、LEDの封止材、CCDの封止材、接着剤などである。光電子集積回路(OEIC)周辺の基板材料、ファイバー材料、素子の封止材、接着剤などである。光ファイバー分野では、装飾ディスプレイ用照明・ライトガイドなど、工業用途のセンサー類、表示・標識類など、また通信インフラ用および家庭内のデジタル機器接続用の光ファイバーである。半導体集積回路周辺材料では、LSI、超LSI材料用のマイクロリソグラフィー用のレジスト材料である。自動車・輸送機分野では、自動車用のランプリフレクタ、ベアリングリテーナー、ギア部分、耐蝕コート、スイッチ部分、ヘッドランプ、エンジン内部品、電装部品、各種内外装品、駆動エンジン、ブレーキオイルタンク、自動車用防錆鋼板、インテリアパネル、内装材、保護・結束用ワイヤハーネス、燃料ホース、自動車ランプ、ガラス代替品である。また、鉄道車輌用の複層ガラスである。また、航空機の構造材の靭性付与剤、エンジン周辺部材、保護・結束用ワイヤハーネス、耐蝕コートである。建築分野では、内装・加工用材料、電気カバー、シート、ガラス中間膜、ガラス代替品、太陽電池周辺材料である。農業用では、ハウス被覆用フィルムである。次世代の光・電子機能有機材料としては、有機EL素子周辺材料、有機フォトリフラクティブ素子、光-光変換デバイスである光増幅素子、光演算素子、有機太陽電池周辺の基板材料、ファイバー材料、素子の封止材、接着剤などである。
 光学用材料の他の用途としては、硬化性樹脂組成物Aが使用される一般の用途が挙げられ、例えば、接着剤、塗料、コーティング剤、成形材料(シート、フィルム、FRP等を含む)、絶縁材料(プリント基板、電線被覆等を含む)、封止剤の他、他樹脂等への添加剤等が挙げられる。接着剤としては、土木用、建築用、自動車用、一般事務用、医療用の接着剤の他、電子材料用の接着剤が挙げられる。これらのうち電子材料用の接着剤としては、ビルドアップ基板等の多層基板の層間接着剤、ダイボンディング剤、アンダーフィル等の半導体用接着剤、BGA補強用アンダーフィル、異方性導電性フィルム(ACF)、異方性導電性ペースト(ACP)等の実装用接着剤等が挙げられる。
 高輝度白色LED等の光半導体素子は、一般的にサファイア、スピネル、SiC、Si、ZnO等の基板上に積層させたGaAs、GaP、GaAlAs,GaAsP、AlGa、InP、GaN、InN、AlN、InGaN等の半導体チップを、接着剤(ダイボンド材)を用いてリードフレームや放熱板、パッケージに接着させてなる。電流を流すために金ワイヤー等のワイヤーが接続されているタイプもある。光半導体素子は、その半導体チップを熱や湿気から守り、かつレンズ機能の役割を果たすためにエポキシ樹脂等の封止材で封止されている。本発明のエポキシ樹脂組成物はこの封止材に用いることができる。
 封止材の成形方式としては、光半導体素子が固定された基板を挿入した型枠内に封止材を注入した後に加熱硬化を行い成形する注入方式、金型上に封止材をあらかじめ注入し、そこに基板上に固定された光半導体素子を浸漬させて加熱硬化をした後に金型から離形する圧縮成形方式等が用いられている。
 注入方法としては、ディスペンサー等が挙げられる。
 加熱は、熱風循環式、赤外線、高周波等の方法が使用できる。加熱条件は例えば80~230℃で1分~24時間程度が好ましい。加熱硬化の際に発生する内部応力を低減する目的で、例えば80~120℃、30分~5時間予備硬化させた後に、120~180℃、30分~10時間の条件で後硬化させることができる。
 次に本発明の多価カルボン酸(A)と、熱硬化性樹脂とを含有する熱硬化性樹脂組成物に関して説明する。本発明の熱硬化性樹脂組成物はICIコーンプレート粘度が100~200℃の範囲で0.01Pa・s~10Pa・sの範囲にある。
 本発明の多価カルボン酸(A)を用いることで、優れた耐久性を実現することができるとともに、混練に適した熱硬化性樹脂組成物を得ることが可能となる。本発明の熱硬化性樹脂組成物はICIコーンプレート粘度が100~200℃の範囲で、0.01~10Pa・sであること、および室温で固形であることから、液状の場合にはプレポリマー化などの前処理なしでは不可能であった混練が、前処理なしで可能となる。また固形であるため、タブレットとして成形しやすい点にも特徴を有している。
 本発明の熱硬化性樹脂組成物においては、ICIコーンプレート粘度が100~200℃の範囲で、0.01~10Pa・sである。
 当該範囲に調整することにより、常温(25℃)で固形となり、成形が容易となり、ボイド等の不具合を効果的に防止することができるようになるためである。また、このような低粘度の熱硬化性樹脂組成物に設定することで、従来結晶性を有するため軟化点あるいは融点が高く、混練が困難であった各成分が硬化剤に十分に溶融・分散するため、結晶が崩れ、主剤となるエポキシ樹脂と十分混練されることとなり、各成分が効果的に配列し、優れた物性を有する硬化物を得ることができる。軟化点は、20~150℃であることが好ましく、40~130℃であることがより好ましく、50~100℃であることがさらに好ましく、特には70~100℃であることが好ましい。このような軟化点にあることで、十分な混練を容易に行うことが可能となる。
 当該範囲に調整することにより、各種成分をミキサー等によって容易に撹拌、混合することができ、それをさらにミキシングロール、押出機、ニーダー、ロール、エクストルーダー等によって混練または溶融混練し、冷却、粉砕することが可能となる。
 本発明の熱硬化性樹脂組成物は、上記式(1)で表される多価カルボン酸(A)と、熱硬化性樹脂と、必要に応じてその他の成分を含む樹脂組成物である。本発明の熱硬化性樹脂組成物においては、その他の成分として熱硬化性樹脂用硬化剤を含有させることができる。好適な熱硬化性樹脂用硬化剤の成分としては、トリメリット酸、無水トリメリット酸、シクロヘキサントリカルボン酸、およびシクロヘキサントリカルボン酸無水物、ピロメリット酸、水添ピロメリット酸、ピロメリット酸無水物、水添ピロメリット酸無水物、ヘキサヒドロ無水フタル酸、およびメチルヘキサヒドロ無水フタル酸、多価カルボン酸(A)以外の多価カルボン酸から選ばれる1種または2種以上の化合物が挙げられる。
 トリメリット酸、無水トリメリット酸、シクロヘキサントリカルボン酸、シクロヘキサントリカルボン酸無水物、ピロメリット酸、水添ピロメリット酸、ピロメリット酸無水物、水添ピロメリット酸無水物、ヘキサヒドロ無水フタル酸、およびメチルヘキサヒドロ無水フタル酸が存在すると架橋密度の高い硬化物が得られるため、高いガラス転移温度を有する硬化物を得ることができる。しかしながら、トリメリット酸、無水トリメリット酸、シクロヘキサントリカルボン酸、シクロヘキサントリカルボン酸無水物、ピロメリット酸、水添ピロメリット酸、ピロメリット酸無水物、および水添ピロメリット酸無水物などのカルボン酸あるいは酸無水物は、結晶性を有するため軟化点あるいは融点が高く、具体的な融点は150℃~300℃であるため、成型する際に問題となることがある。一方、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸については、融点が室温以下であるため、成形する際に問題となることがある。トリメリット酸、無水トリメリット酸、シクロヘキサントリカルボン酸、およびシクロヘキサントリカルボン酸無水物、ピロメリット酸、水添ピロメリット酸、ピロメリット酸無水物、水添ピロメリット酸無水物、ヘキサヒドロ無水フタル酸、およびメチルヘキサヒドロ無水フタル酸のうち、着色しにくさの点で、シクロヘキサントリカルボン酸、およびシクロヘキサントリカルボン酸無水物、水添ピロメリット酸、水添ピロメリット酸無水物、ヘキサヒドロ無水フタル酸、およびメチルヘキサヒドロ無水フタル酸が好ましく、シクロヘキサントリカルボン酸無水物、ヘキサヒドロ無水フタル酸、およびメチルヘキサヒドロ無水フタル酸がさらに好ましい。
 シクロヘキサントリカルボン酸無水物としては、シクロヘキサン‐1、2、4‐トリカルボン酸‐1、2‐無水物や、シクロヘキサン‐1、2、3‐トリカルボン酸‐1、2‐無水物が挙げられる。本発明では、これらの酸無水物を組み合わせて使用することもできるが、シクロヘキサン‐1、2、4‐トリカルボン酸‐1、2‐無水物が好ましい。
 本発明の熱硬化性樹脂組成物では、トリメリット酸、無水トリメリット酸、シクロヘキサントリカルボン酸、シクロヘキサントリカルボン酸無水物、ピロメリット酸、水添ピロメリット酸、ピロメリット酸無水物、水添ピロメリット酸無水物、ヘキサヒドロ無水フタル酸、およびメチルヘキサヒドロ無水フタル酸から選ばれる1種または2種以上の化合物の合計が、熱硬化性樹脂組成物に占める割合で、1重量%~90重量%であることが好ましい。1重量%より低いとガラス転移温度が十分に高くならず、90重量%より高いと融点が高くなり、取扱いが困難になる恐れがある。より好ましくは10~60重量%であり、さらに好ましくは20~50重量%である。
 また、本発明の熱硬化性樹脂用硬化剤の成分として含有させることができる本発明の多価カルボン酸(A)以外の多価カルボン酸としては、下記式(22)で表される、分子内にエステル構造(好ましくは2つのエステル構造)を有する、末端に複数のカルボキシル基を有する多価カルボン酸が挙げられる。
Figure JPOXMLDOC01-appb-C000026
(式(22)中、Pは0~6個の酸素原子、窒素原子、リン原子を含んでもよい炭素数2~20の多価アルコールの残基を、Rは炭素数2~20の脂肪族炭化水素基を示す。n、kは、平均で1~6を示す。またnの総計は2以上12未満である。)
 中でも、前記式(22)の多価カルボン酸が炭素数6以上の2~6官能の多価アルコールと飽和脂肪族環状酸無水物とのエステル化反応により得られた化合物であることが好ましい。
 より具体的には、前記式(22)に記載の多価カルボン酸において、連結基Rは炭素数4~10のシクロアルカン骨格、もしくはノルボルナン骨格が好ましく、シクロアルカン骨格においては置換、もしくは無置換のシクロヘキサン構造、特にメチル基を具備するメチルシクロヘキサン構造がその硬化物における光学特性から好ましい。またノルボルナン骨格としてはノルボルナン、メチルノルボルナン構造が好ましい。ここで、置換されたものにおいて適用できる置換基としては、炭素数1~3のアルキル基、カルボキシル基等が挙げられる。
 連結基Pは炭素数2~10の多価アルコールの残基(反応に用いた多価アルコールから水酸基を除いた残基)であるが、分岐鎖状の架橋基、もしくはシクロアルキル基が好ましく、特にPは下記(a)又は(b)で定義される2価の架橋基であることが好ましい。
(a)炭素数6~20の分岐構造を有する鎖状アルキル鎖であり、該鎖状アルキル鎖が炭素数3~12の直鎖の主鎖と、2~4個の側鎖を有し、かつその側鎖の少なくとも1つが炭素数2~10である架橋基、
又は、
(b)シクロ環上にメチル基を有してもよい、トリシクロデカンジメタノールおよびペンタシクロペンタデカンジメタノールから選ばれる少なくとも1種の架橋多環ジオールから、2つの水酸基を取り除いた2価の架橋基
 但し、Pが(b)の場合、連結基Rが炭素数4~10のシクロアルカン骨格又はノルボルナン骨格のときは、後述する式(2A)において置換基Rが水素原子以外の基を表すことがより好ましい。
 尚、上記多価カルボン酸の軟化点は通常50℃以上であるが、60℃以上が好ましく、80℃以上がより好ましい。上限値に特に制限はないが通常500℃以下であり、300℃以下であることが好ましく、200℃以下であることがより好ましい。
 上記特に好ましい多価カルボン酸は、炭素数6以上の2~6官能の多価アルコールと飽和脂肪族環状酸無水物とを、付加反応させることにより得ることができる。
 これらの多価カルボン酸は、2種の多価カルボン酸を含む混合物であってもよい。多価カルボン酸を少なくとも2種含む多価カルボン酸混合物を得る方法としては、上記方法で得られた単一の多価カルボン酸を少なくとも2種を混合する方法、または、上記の多価カルボン酸を合成する際に、上記飽和脂肪族環状酸無水物として、下記で選ばれる飽和脂肪族環状酸無水物から少なくとも2種の混合物を使用するか、前記多価アルコールを2種使用して、付加反応を行う方法がある。
 多価カルボン酸の合成に用いる飽和脂肪族環状酸無水物としては、シクロヘキサン構造を有し、該シクロヘキサン環上にメチル基置換もしくはカルボキシル基置換を有し、又は無置換であり、シクロヘキサン環に結合した酸無水物基を分子内に1つ以上(好ましくは1つ)有する化合物を挙げることができる。
 具体的にはヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、およびシクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物、無水トリメリット酸、シクロヘキサントリカルボン酸無水物、ピロメリット酸無水物、および水添ピロメリット酸無水物からなる群から選ばれる少なくとも1種の酸無水物が挙げられる。
 上記の多価カルボン酸の合成に用いる炭素数6以上の2~6官能の多価アルコールとしては、具体的には、前記式(21)中の架橋基Pの末端に水酸基を付けた多価カルボン酸を挙げることができる。
 前記式(21)において、Pで表される架橋基は、好ましくは前記(a)または(b)で定義される2価の架橋基であり、それらについて以下に具体的に説明する。
 前記(a)で定義される2価の架橋基は、炭素数6~20の分岐構造を有する2価のアルコール(ジオール)から、水酸基を除いた2価の鎖状アルキル鎖であり、ジオールの2個のアルコール性水酸基に挟まれたアルキル鎖を主鎖とし、該アルキル鎖から分岐したアルキル鎖(側鎖という)を有する構造である。該側鎖は、主鎖を構成するいずれの炭素原子から分岐していてもよく、例えばアルコール性水酸基が結合していた炭素原子(主鎖の末端炭素原子)から分岐している場合も含む。該構造を有する架橋基であれば何れでもよく、このような架橋基の具体例を下記式(a1)に示す。
Figure JPOXMLDOC01-appb-C000027
 前記式中、*印で式(21)におけるPの両側の酸素原子と結合する。
 上記(a)で定義されるアルキレン架橋基は、主鎖アルキレン基に対し、アルキル分岐鎖(側鎖)を有する構造であれば特に制限はないが、主鎖の炭素数が3以上の主鎖であり、少なくとも1個のアルキル側鎖を有するものが好ましく、またアルキル側鎖を2つ以上有するものが特に好ましい。より好ましいものとしては、炭素数3~12の直鎖の主鎖と、2~4個の側鎖を有し、かつその側鎖の少なくとも1つが炭素数2~10である架橋基を挙げることができる。この場合、側鎖の少なくとも2つが炭素数2~10である架橋基は更に好ましい。また、2~4個の側鎖は主鎖の異なる炭素原子から分岐していることが好ましい。
 より具体的な化合物としては前記式(a1)に記載した架橋基において、*印の位置にヒドロキシル基が結合した化合物を挙げることができる。
 原料として使用する多価アルコールの中では、少なくとも2個の側鎖を有し、該側鎖の中で少なくとも2個が炭素数2~4の側鎖である多価アルコールが好ましい。
 このような骨格の中で特に好ましい多価アルコールとしては2,4-ジエチル-1,5-ペンタンジオール、2-エチル-2-ブチル-1,3-プロパンジオール、2-エチル-1,3-ヘキサンジオールなどが挙げられ、特に2,4-ジエチル-1,5-ペンタンジオールが挙げられる。
 前記(b)で定義される架橋基としては、下記式(b1)で表される2価の基を挙げることができる。
Figure JPOXMLDOC01-appb-C000028
 前記(b)で定義される架橋基の場合の、架橋多環ジオール残基としては、トリシクロデカン構造、ペンタシクロペンタデカン構造を主骨格とするジオール残基であり、下記式(b2)で表される。
Figure JPOXMLDOC01-appb-C000029
 式中、複数存在するRはそれぞれ独立して、水素原子、もしくはメチル基を表す。これらの中で、Rが全て水素原子である架橋基が好ましい。
 具体的にはトリシクロデカンジメタノール、メチルトリシクロデカンジメタノール、ペンタシクロペンタデカンジメタノールなどが挙げられる。
 酸無水物と多価アルコールの反応としては一般に酸や塩基を触媒とする付加反応であるが、本発明においては特に無触媒での反応が好ましい。
 触媒を用いる場合、使用しうる触媒としては、例えば塩酸、硫酸、メタンスルホン酸、トリフルオロメタンスルホン酸、パラトルエンスルホン酸、硝酸、トリフルオロ酢酸、トリクロロ酢酸等の酸性化合物、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化マグネシウム等の金属水酸化物、トリエチルアミン、トリプロピルアミン、トリブチルアミン等のアミン化合物、ピリジン、ジメチルアミノピリジン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、イミダゾール、トリアゾール、テトラゾール等の複素環式化合物、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルエチルアンモニウムヒドロキシド、トリメチルプロピルアンモニウムヒドロキシド、トリメチルブチルアンモニウムヒドロキシド、トリメチルセチルアンモニウムヒドロキシド、トリオクチルメチルアンモニウムヒドロキシド、テトラメチルアンモニウムクロリド、テトラメチルアンモニウムブロミド、テトラメチルアンモニウムヨージド、テトラメチルアンモニウムアセテート、トリオクチルメチルアンモニウムアセテート等の4級アンモニウム塩等が挙げられる。これらの触媒は1種又は2種以上を混合して用いても良い。これらの中で、トリエチルアミン、ピリジン、ジメチルアミノピリジンが好ましい。
 触媒の使用量には、特に制限はないが、原料の総重量100重量部に対して、通常0.001~5重量部を、必要により使用するのが好ましい。
 本反応においては無溶剤での反応が好ましいが、有機溶剤を使用しても構わない。有機溶剤の使用量としては、反応基質である前記酸無水物と前記多価アルコールの総量1部に対し、重量比で0.005~1部であり、好ましくは0.005~0.7部、より好ましくは0.005~0.5部(すなわち50重量%以下)である。有機溶剤の使用量が上記反応基質1重量部に対して、重量比で1部を超える場合、反応の進行が極度に遅くなることから好ましくない。使用できる有機溶剤の具体的な例としてはヘキサン、シクロヘキサン、ヘプタン等のアルカン類、トルエン、キシレン等の芳香族炭化水素化合物、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、アノン等のケトン類、ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類、酢酸エチル、酢酸ブチル、蟻酸メチルなどのエステル化合物などが使用できる。
 本反応は20℃程度の温度でも十分に反応は進行する。反応時間の問題から反応温度は30~200℃が好ましく、より好ましくは40~200℃、特に好ましくは40~150℃である。特に本反応を無溶剤で行う場合は、酸無水物の揮発があるため、100℃以下での反応が好ましく、30~100℃または40~100℃での反応が特に好ましい。
 前記酸無水物と前記多価アルコールとの反応比率は理論的には等モルでの反応が好ましいが、必要に応じて変更可能である。
 反応させる際の具体的な両者の仕込み比率としては、その官能基当量で、該酸無水物基1当量に対して、該多価アルコールを、その水酸基当量で、0.001~2当量、より好ましくは0.01~1.5当量、さらに好ましくは0.1~1.2当量となる割合で仕込むのが好ましい。
 本発明においては得られる多価カルボン酸が固形であることが好ましく、固形の樹脂状多価カルボン酸を得るためには、理想的には等モル当量以上の多価アルコールを使用することが好ましいが、フィラーを添加するため流動性が重要となり、この流動性を確保する為に、その粘度バランスから、固形を保つ範囲(軟化点50℃以上)で多少のバランスを崩しても構わない。
 具体的には、酸無水物当量に対し、アルコール性水酸基の当量比において0.85~1.20モル当量が好ましく、特に0.90~1.10モル当量が好ましい。
 反応時間は反応温度、触媒量等にもよるが、工業生産という観点から、長時間の反応は多大なエネルギーを消費することになるため好ましくはない。また短すぎる反応時間はその反応が急激であることを意味し、安全性の面から好ましく無い。好ましい範囲としては1~48時間、好ましくは1~36時間、より好ましくは1~24時間、更に好ましくは2~10時間程度である。
 反応終了後、触媒を用いた場合は、それぞれ中和、水洗、吸着などによって触媒の除去を行い、溶剤を留去することで目的とする多価カルボン酸が得られる。一方、無触媒で反応を行った場合は必要に応じて溶剤を留去することで目的とする多価カルボン酸が得られる。また、溶剤を使用した場合には、溶剤を除去することで目的とする多価カルボン酸が得られる。さらに無溶剤、無触媒の場合はそのまま取り出すことで目的とする多価カルボン酸が得られる。
 最も好適な製造方法としては、前記酸無水物、前記多価アルコールを、無触媒の条件下、40~150℃で反応させ、溶剤を除去したのち取り出すという手法である。
 このようにして得られる前記多価カルボン酸または該多価カルボン酸を含む混合物は、通常、無色~淡黄色の固形の樹脂状を示す(場合によっては結晶化する)。該多価カルボン酸の軟化点は50~190℃であることが好ましく、55~150℃であることがより好ましく、60~120℃であることが特に好ましい。このような軟化点を有する多価カルボン酸を液状とすることなく直接熱硬化性樹脂組成物中に混ぜることで、極めて高い反射率保持率を有することとなり、耐熱試験にかけた際にも反射率が低下し難い反射部材を提供することが可能となる。
 通常、架橋基が、(a)で定義される側鎖を有するアルキレン基である場合、無色~淡黄色の固形の樹脂状を示す。
 本発明においては、このような多価カルボン酸を含む熱硬化性樹脂組成物を使用する最適な方法が、トランスファー成形であることから、多価カルボン酸は固形の樹脂状である。
 架橋基が(b)で定義される架橋基の場合、脂肪族炭化水素基が炭素数4~10のシクロアルカン骨格又はノルボルナン骨格であるとき、脂環式の置換基の全てが水素原子の多価カルボン酸は、硬化時の着色が見られ、特に厳しい光学用途には好適ではない。脂肪族炭化水素基が炭素数4~10のシクロアルカン骨格又はノルボルナン骨格であるとき、置換基がメチル基またはカルボキシル基の化合物ではそのような着色は少なく、その光学特性が向上する。
 前記(a)で定義される架橋基の化合物においても、脂肪族炭化水素基が炭素数4~10のシクロアルカン骨格又はノルボルナン骨格であるとき、置換基がメチル基またはカルボキシル基の化合物の場合の方が、光学特性が向上し、好ましい。
 すなわち、このような多価カルボン酸混合物として、炭素数4~10のシクロアルカン骨格又はノルボルナン骨格を有する多価カルボン酸を含むとき、置換基は好ましくはメチル基もしくはカルボキシル基、又は両者を有する式(22)の多価カルボン酸を含む混合物が好ましい。該多価カルボン酸を2種以上含む多価カルボン酸混合物の場合、少なくとも当該置換基が水素原子でない式(22)の多価カルボン酸(当該置換基が前記アルキル基、好ましくはメチル基、又はカルボキシル基の多価カルボン酸)を、多価カルボン酸の総量に対して、50モル%以上含む混合物が好ましい。より好ましくは、当該置換基が水素原子でない式(22)の多価カルボン酸を70モル%以上、最も好ましくは90モル%以上含む多価カルボン酸混合物が好ましい。残部が、Rが水素原子である下記式(2A)の多価カルボン酸である。
 本発明の熱硬化性樹脂組成物において、本発明の多価カルボン酸以外の好適な多価カルボン酸としては、下記式(2A)で表される多価カルボン酸が用いられる。
Figure JPOXMLDOC01-appb-C000030
(上記式中、Pは上記と同じ意味を表し、Rは水素原子、炭素数1~3のアルキル基またはカルボキシル基を表す。)
 ここで、上記式(2A)においては、上記に記載の通りの理由により、Rが炭素数1~3のアルキル基またはカルボキシル基を好適に使用できる。
 末端カルボン酸オリゴエステルは、数平均分子量Mnが300以上である多価カルボン酸であることが好ましい。
 さらに、本発明の熱硬化性樹脂組成物においては、上記式(1)で表される多価カルボン酸とトリメリット酸、無水トリメリット酸、シクロヘキサントリカルボン酸、およびシクロヘキサントリカルボン酸無水物、ピロメリット酸、水添ピロメリット酸、ピロメリット酸無水物、水添ピロメリット酸無水物、ヘキサヒドロ無水フタル酸、およびメチルヘキサヒドロ無水フタル酸から選ばれる1種または2種以上の化合物の混合物における官能基当量が250g/eq.以下であることが好ましく、240g/eq.以下であることがより好ましい。この範囲であることで、トリメリット酸、無水トリメリット酸、シクロヘキサントリカルボン酸、およびシクロヘキサントリカルボン酸無水物、ピロメリット酸、水添ピロメリット酸、ピロメリット酸無水物、水添ピロメリット酸無水物、ヘキサヒドロ無水フタル酸、およびメチルヘキサヒドロ無水フタル酸から選ばれる1種または2種以上の化合物の化合物量の効果が有効に発揮され、耐熱性に優れた硬化物を得ることが可能となる。
 また、重量比としては、上記式(1)で表される多価カルボン酸:(トリメリット酸、無水トリメリット酸、シクロヘキサントリカルボン酸、およびシクロヘキサントリカルボン酸無水物、ピロメリット酸、水添ピロメリット酸、ピロメリット酸無水物、水添ピロメリット酸無水物、ヘキサヒドロ無水フタル酸、およびメチルヘキサヒドロ無水フタル酸から選ばれる1種または2種以上の化合物)が99:1~10:90であることが好ましく、90:10~20:80がより好ましく、80:20~50:50であることが特に好ましい。上記比率にあることで、極めて耐熱性に優れるとともに、粘度も低く十分に混練することが可能となることから硬化物性にも優れる熱硬化性樹脂組成物となる。
 また、上記式(1)で表される多価カルボン酸(A)及び、トリメリット酸、無水トリメリット酸、シクロヘキサントリカルボン酸、およびシクロヘキサントリカルボン酸無水物、ピロメリット酸、水添ピロメリット酸、ピロメリット酸無水物、水添ピロメリット酸無水物、ヘキサヒドロ無水フタル酸、およびメチルヘキサヒドロ無水フタル酸から選ばれる1種または2種以上の化合物とを含む熱硬化性樹脂用硬化剤を含む熱硬化性樹脂組成物において、トリメリット酸、無水トリメリット酸、シクロヘキサントリカルボン酸、シクロヘキサントリカルボン酸無水物、ピロメリット酸、水添ピロメリット酸、ピロメリット酸無水物、水添ピロメリット酸無水物、ヘキサヒドロ無水フタル酸、およびメチルヘキサヒドロ無水フタル酸から選ばれる1種または2種以上の化合物が、熱硬化性樹脂組成物の1重量%~90重量%を占めることが好ましい。当該重量%であることで、混練性および成型性がより向上し、硬化物性にも優れる熱硬化性樹脂組成物となる。
 併用しうる硬化剤としては、例えばアミン系化合物、不飽和環構造を有する酸無水物系化合物、オルガノシロキサン骨格を有する酸無水物、アミド系化合物、フェノール系化合物、カルボン酸系化合物などが挙げられる。用いうる硬化剤の具体例としては、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンより合成されるポリアミド樹脂、無水フタル酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ブタンテトラカルボン酸無水物、ビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸無水物、メチルビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸無水物、ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、テルペンジフェノール、4,4’-ビフェノール、2,2’-ビフェノール、3,3’,5,5’-テトラメチル-[1,1’-ビフェニル]-4,4’-ジオール、ハイドロキノン、レゾルシン、ナフタレンジオール、トリス-(4-ヒドロキシフェニル)メタン、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、フェノール類(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p-ヒドロキシベンズアルデヒド、o-ヒドロキシベンズアルデヒド、p-ヒドロキシアセトフェノン、o-ヒドロキシアセトフェノン、ジシクロペンタジエン、フルフラール、4,4’-ビス(クロロメチル)-1,1’-ビフェニル、4,4’-ビス(メトキシメチル)-1,1’-ビフェニル、1,4’-ビス(クロロメチル)ベンゼン、1,4’-ビス(メトキシメチル)ベンゼン等との重縮合物及びこれらの変性物、テトラブロモビスフェノールA等のハロゲン化ビスフェノール類、イミダゾール、トリフルオロボラン-アミン錯体、グアニジン誘導体、テルペンとフェノール類の縮合物などが挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。
 本発明における熱硬化性樹脂組成物とは、エポキシ樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂等の熱硬化性樹脂等を含有する組成物であり、本発明においては、エポキシ樹脂を使用することが望ましい。
 エポキシ樹脂としては、従来の熱硬化性樹脂組成物やエポキシ樹脂組成物として通常配合されているものであれば、特に制限されることなく用いることができる。例えば、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂をはじめとするフェノール類とアルデヒド類のノボラック樹脂をエポキシ化したもの、ビスフェノールA、ビスフェノールF、ビスフェノールS、アルキル置換ビスフェノール等のジグリシジルエーテル、ジアミノジフェニルメタン、イソシアヌル酸等のポリアミンとエピクロルヒドリンの反応により得られるグリシジルアミン型エポキシ樹脂、オレフィン結合を過酢酸等の過酸で酸化して得られる脂環式エポキシ樹脂、ジグリシジルイソシアヌレート、トリグリシジルイソシアヌレート、シルセスキオキサン化合物等が挙げられ、これらは単独でも二種以上併用してもよい。これらエポキシ樹脂のうち、高い耐熱性を有するものが好ましいことから、具体的には、溶融粘度、得られる硬化物の着色およびガラス転移温度等の観点から、グリシジルエーテル型エポキシ樹脂、脂環式エポキシ樹脂、トリグリシジルイソシアヌレートが好ましい。
 エポキシ樹脂と、本発明の多価カルボン酸(A)とトリメリット酸、無水トリメリット酸、シクロヘキサントリカルボン酸、およびシクロヘキサントリカルボン酸無水物、ピロメリット酸、水添ピロメリット酸、ピロメリット酸無水物、水添ピロメリット酸無水物、ヘキサヒドロ無水フタル酸、およびメチルヘキサヒドロ無水フタル酸から選ばれる1種または2種以上の化合物とを含む熱硬化性樹脂用硬化剤の配合比は、エポキシ樹脂中のエポキシ基1当量に対して、当該エポキシ基と反応可能な熱硬化性樹脂用硬化剤中の活性基(酸無水物基や水酸基)が0.5~1.5当量(カルボン酸を1官能、酸無水物を1官能と考える)が好ましく、特に好ましくは0.5~1.2当量である。エポキシ基1当量に対して、0.5当量に満たない場合、あるいは1.5当量を超える場合、いずれも硬化が不完全となり良好な硬化物性が得られない恐れがあるほか、着色しやすくなる問題もある。
 本発明の硬化性樹脂組成物には、必要に応じて硬化促進剤を添加することができる。硬化促進剤としては、2-メチルイミダゾール、2-フェニルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、2,4-ジアミノ-6(2’-メチルイミダゾール(1’))エチル-s-トリアジン、2,4-ジアミノ-6(2’-ウンデシルイミダゾール(1’))エチル-s-トリアジン、2,4-ジアミノ-6(2’-エチル,4-メチルイミダゾール(1’))エチル-s-トリアジン、2,4-ジアミノ-6(2’-メチルイミダゾール(1’))エチル-s-トリアジン・イソシアヌル酸付加物、2-メチルイミダゾールイソシアヌル酸の2:3付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-フェニル-3,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-ヒドロキシメチル-5-メチルイミダゾール、1-シアノエチル-2-フェニル-3,5-ジシアノエトキシメチルイミダゾールの各種イミダゾール類、及び、それらイミダゾール類とフタル酸、イソフタル酸、テレフタル酸、トリメリット酸、ピロメリット酸、ナフタレンジカルボン酸、マレイン酸、蓚酸等の多価カルボン酸との塩類、ジシアンジアミド等のアミド類、1,8-ジアザ-ビシクロ[5.4.0]ウンデセン-7等のジアザ化合物及びそれらのテトラフェニルボレート、フェノールノボラック等の塩類、前記多価カルボン酸類、又はホスフィン酸類との塩類、テトラブチルアンモニウムブロマイド、セチルトリメチルアンモニウムブロマイド、トリオクチルメチルアンモニウムブロマイド、ヘキサデシルトリメチルアンモニウムヒドロキシド等の4級アンモニウム塩(好ましくはC1~C20アルキルアンモニウム塩、トリフェニルホスフィン、トリ(トルイル)ホスフィン、テトラフェニルホスホニウムブロマイド、テトラフェニルホスホニウムテトラフェニルボレート等のホスフィン類やホスホニウム化合物、2,4,6-トリスアミノメチルフェノール等のフェノール類、アミンアダクト、オクチル酸スズ、オクタン酸亜鉛、ステアリン酸亜鉛、ナフテン酸銅、ナフテン酸コバルト等の金属化合物等、及びこれら硬化促進剤をマイクロカプセルにしたマイクロカプセル型硬化促進剤等が挙げられる。これら硬化促進剤のどれを用いるかは、例えば透明性、硬化速度、作業条件といった得られる透明樹脂組成物に要求される特性によって適宜選択される。本発明において好ましいものとしては、ホスホニウム化合物(より好ましくは4級ホスホニウム)またはステアリン酸亜鉛が挙げられる。市場から入手可能な4級ホスホニウムの製品例としては、PX-4ET、PX-4MP(いずれも日本化学工業株式会社製)等が挙げられる。
 硬化促進剤は、エポキシ樹脂100重量部に対し通常0.001~15重量部、好ましくは0.01~5重量部の範囲で使用される。
 必要に応じて、上述した添加剤以外の添加剤として、一般によく使用されるエポキシ樹脂用添加剤、例えば、染料、蛍光増白剤、補強材、充填剤、白色顔料またはその他の顔料、核剤、界面活性剤、可塑剤、粘度調整剤、流動性調整剤、難燃剤、酸化防止剤、紫外線吸収剤、光安定剤を添加してもよい。
 上述した充填剤としては、結晶シリカ、溶融シリカ、酸化アンチモン、酸化チタン、酸化マグネシウム、酸化ジルコニウム、水酸化アルミニウム、水酸化マグネシウム、アルミナ等が挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。
 無機充填剤の配合量は、硬化性樹脂組成物の合計量100重量部に対して、1~1000重量部であることが好ましく、1~800重量部であることがより好ましい。
 上述した白色顔料としては、特に限定されないが、例えば、アルミナ、酸化マグネシウム、酸化アンチモン、酸化チタン、酸化ジルコニウム、酸化亜鉛、塩基性炭酸亜鉛、カオリン、炭酸カルシウム等を用いることができる。なお、白色顔料は中空粒子であってもよい。また、白色顔料に対して、ケイ素化合物、アルミニウム化合物、有機物等で適宜表面処理をしてもよい。これらは単独でも2種以上を併用しても構わない。また、上記白色顔料の平均粒径は、0.01~50μmの範囲にあることが好ましい。0.01μm未満であると粒子が凝集しやすく分散性が悪くなる傾向にあり、50μmを超えると硬化物の反射特性が十分に得られない傾向にある。上記平均粒径は、例えば、レーザー回折散乱式粒度分布計を用いて測定することができる。本発明においては酸化チタン、特に二酸化チタンの粉末を使用することが好ましい。白色度、光反射性、および隠蔽力が高く、分散性安定性に優れ、入手が容易なためである。酸化チタンの結晶形は特に限定されず、ルチル型であってもよいし、アナターゼ型であってもよいし、両者が混在していてもよいが、アナターゼ型は光触媒機能を有するため樹脂を劣化させる懸念があるので、本発明においてはルチル型が好ましい。例えば市場から入手可能な製品では、CR-95(石原産業(株)製酸化チタン)等が挙げられる。
 また、白色顔料の含有量は、樹脂組成物全体に対して、10重量%~95重量%、より好ましくは50~95%の範囲である。合計含有量が10重量%未満であると硬化物の光反射特性が十分得られない傾向にあり、95重量%を超えると樹脂組成物の成型性が悪くなり、基板の作製が困難となる傾向にある。
 成形時の高温条件下における熱硬化性樹脂用硬化剤の溶融粘度が、従来の酸無水物硬化剤等より高いことが望ましく、具体的には、成型温度領域である100℃~200℃で0.01Pa・s~10Pa・sにすることが望ましい。0.01Pa・sより小さいと、バリが生じやすい。一方、10Pa・sより大きいと生産性が低下する。
 本実施形態においては、150℃における熱硬化性樹脂用硬化剤のICI粘度が0.01Pa・s~10Pa・sであることが好ましく、0.05Pa・s~5Pa・sであることがより好ましい。
 軟化点は20℃~150℃の範囲にあることが望ましい。より具体的には、30℃~130℃の範囲にあることが好ましく、40℃~120℃の範囲にあることがより好ましい。
 硬化物のガラス転移温度は、成形温度よりも高いことが望ましい。硬化物のガラス転移温度が成形温度以下であると、金型の中にある硬化物は低弾性のゴム状態であるため、ゴム状硬化物を金型から取り出すことになり、イジェクターを押し込む際に、変形するなどして不具合が生じるおそれがある。具体的には、ガラス転移温度は30℃以上であることが好ましく、40℃以上であることがより好ましく、50℃以上であることがさらに好ましい。
 ここで、本願発明において、硬化物のガラス転移温度は、150℃以下が好ましく、140℃以下がより好ましい。
 本発明の熱硬化性樹脂組成物は、上記した各種成分を均一に分散混合することで得られる。その方法については特に限定されないが、各種成分をミキサー等によって十分均一に撹拌、混合した後、ミキシングロール、押出機、ニーダー、ロール、エクストルーダー等によって混練または溶融混練し、冷却、粉砕する方法を挙げることができる。混練または溶融混練の条件は、成分の種類や配合量により決定すればよく、特に限定されないが、20~100℃の範囲で5~40分間混練することがより好ましい。混練温度が20℃未満であると、各成分の分散性が低下し、十分に混練させることが困難であり、100℃よりも高温であると、樹脂組成物の架橋反応が進行し、樹脂組成物が硬化してしまう恐れがある。
 本発明の熱硬化性樹脂組成物は、加熱成型前、0~30℃の室温において加圧(タブレット)成型可能であることが望ましい。加圧成型は、例えば、0.01~10MPa、1~5秒程度の条件下で行う方法が挙げられる。また、加圧(タブレット)成型時に用いる金型は、特に限定されないが、例えば、セラミックス系材料やフッ素系樹脂材料等からなる杵型(上金型)と臼型(下金型)とで構成されるものを用いることが好ましい。
 本発明の熱硬化性樹脂組成物は、高いガラス転移温度および高い透過率を必要とする光半導体封止材料、光半導体用反射材などの用途において有用である。
 光反射用として使用する場合において、製造方法は特に限定されないが、例えば、本発明の熱硬化性樹脂組成物をトランスファー成型によって製造することが好ましい。本発明の熱硬化性樹脂組成物を金型に注入し、例えば、金型温度150~190℃、成形圧力2~20MPaの条件下で、60~800秒間硬化させた後に金型から取り出し、アフターキュア温度150℃~180℃で1~3時間にわたって熱硬化させる。
 本発明の光半導体装置は、代表的な構造について具体例を例示すると、国際公開第2012/124147号に記載の通り、基板上に円筒状の中空部を有する光反射防止部材を配置し、円筒状の中空部の内部空間において基板上に光半導体素子を配置する。そして、光半導体素子の一端部と基板をワイヤーで繋げ、上記中空部に封止樹脂が封入された構成を有している。
 本明細書において、比率、パーセント、部、重量などは、特に断りのない限り、質量に基づくものである。本明細書において、「X~Y」という表現は、XからYまでの範囲を示し、その範囲はX、Yを含む。
 以下、本発明を合成例、実施例により更に詳細に説明する。尚、本発明はこれら合成例、実施例に限定されるものではない。
-前記式(1)中のRが、R2aがメチル基である式(8)で表されるカルボキシル基を含む有機基である多価カルボン酸(A)を、液状の多価カルボン酸組成物(C)として実施した例-
 合成例、実施例中の各物性値は以下の方法で測定した。ここで、部は特に断りのない限り質量部を表す。
○GPC:GPCは下記条件にて測定した。
GPCの各種条件
メーカー:ウォーターズ
カラム:SHODEX GPC LF-G(ガードカラム)、KF-603、KF-602.5、KF-602、KF-601(2本)
流速:0.4ml/min.
カラム温度:40℃
使用溶剤:THF(テトラヒドロフラン)
検出器:RI(示差屈折検出器)
○酸価:以下の方法により測定した。
 サンプルを約0.15g秤量し、メチルエチルケトン20ml、エタノール20mlで溶解したのち、京都電子工業製滴定装置AT-610を使用し、0.1Nの水酸化ナトリウム溶液を用いて滴定し、酸価を測定した。
○官能基当量:以下の方法により測定した。
多価カルボン酸組成物を約0.15g秤量し、メタノール(試薬特級)40mlで溶解したのち、20~28℃で10分間撹拌し、測定サンプルとした。測定サンプルを、京都電子工業製滴定装置AT-610を使用し、0.1Nの水酸化ナトリウム溶液を用いて滴定し、酸価として得られた値を官能基当量として算出た。
○DSCを用いた融点:
 JIS K7121に記載の方法で測定し、融解ピークの頂点を融点とした。
○粘度:東機産業株式会社製E型粘度計(TV-20)を用い、25℃で測定した。
○熱重量減少:島津製作所製TG/DTA6200を用い、30℃から20℃/minで昇温させ、120℃まで加熱し、120℃で60分保持した後の重量減少率を測定した。測定中、200ml/min.で空気を流した。
実施例1;多価カルボン酸(A-1)の製造
 ガラス製500mlセパラブルフラスコに、窒素パージを施しながらイソシアヌル酸トリス(2-ヒドロキシエチル)26.1g、リカシッドMH-T(四国化成工業製 4-メチルヘキサヒドロフタル酸)52.1g、トルエン70gを仕込み、ジムロートコンデンサ、撹拌装置、温度計を設置し、オイルバスにフラスコを浸した。オイルバスを加熱し、内温を115℃に保ち、そのまま7時間反応させた。
 得られた反応液を100℃で減圧濃縮し、トルエンを留去することで、下記式(23)を主成分とする多価カルボン酸(A-1)を71.5g得た。得られた化合物のGPC純度(GPC面積%)は92%、酸価は203.4mgKOH/g、外観は白色の固体であった。また、DSCを用いた融点(ピーク頂点値)は57.0℃、熱重量減少は-3.4%であった。得られた化合物のGPCチャートを図1に示す。
Figure JPOXMLDOC01-appb-C000031
実施例2;多価カルボン酸組成物(C-1)の製造
 ガラス製500mlセパラブルフラスコに、窒素パージを施しながらイソシアヌル酸トリス(2-ヒドロキシエチル)26.1g、リカシッドMH-T(四国化成工業製 4-メチルヘキサヒドロフタル酸無水物)123.4gを仕込み、ジムロートコンデンサ、撹拌装置、温度計を設置し、オイルバスにフラスコを浸した。オイルバスを加熱し、内温を78℃に保ち、そのまま4時間反応させた。GPCでイソシアヌル酸トリス(2-ヒドロキシエチル)のピーク1面積%以下を確認し、多価カルボン酸とカルボン酸無水物化合物の混合物である多価カルボン酸組成物(C-1)147gが得られた。得られた混合物は無色透明の液状であり、GPCによる純度は前記式(23)で表される多価カルボン酸(A-1)が59.5面積%、下記式(24)で表される4-メチルヘキサヒドロフタル酸が1.3面積%、4-メチルヘキサヒドロフタル酸無水物が39.3面積%であった。また官能基当量は206g/eq、粘度は32154mPa・s、熱重量減少は-20.8%であった。
Figure JPOXMLDOC01-appb-C000032
実施例3;多価カルボン酸組成物(C-2)の製造
 ポリプロピレン製容器に、実施例2で得られた多価カルボン酸組成物(C-1)20g、リカシッドMH-T(四国化成工業製 4-メチルヘキサヒドロフタル酸)6.67gを仕込み、薬匙で混合することにより、多価カルボン酸組成物(C-2)が26.6g得られた。得られた混合物は無色透明の液状であり、GPCによる純度は多価カルボン酸(前記式(23)で表される(A-1))が46.2面積%、4-メチルヘキサヒドロフタル酸(前記式(24))が3.9面積%、4-メチルヘキサヒドロフタル酸無水物が49.9面積%であった。また官能基当量は187g/eq、粘度は24678mPa・s、熱重量減少は-31.7%であった。
実施例4;多価カルボン酸組成物(C-3)の製造
 ガラス製50mlビンに、製造例1で得られた多価カルボン酸(A-1)3g、リカシッドMH-T(四国化成工業製 4-メチルヘキサヒドロフタル酸)7gを仕込み、80℃に加温したオーブンに入れ加温した。2時間後に取り出し薬匙で良く混合後、さらに2時間加温し多価カルボン酸組成物(C-3)10gを得た。得られた多価カルボン酸組成物(C-3)は無色透明の液状であり、GPCによる純度は多価カルボン酸(前記式(23)で表される(A-1))が34.3面積%、4-メチルヘキサヒドロフタル酸が2.6面積%、4-メチルヘキサヒドロフタル酸無水物が63.1面積%であった。また官能基当量は187g/eq、粘度は1884mPa・s、熱重量減少は-28.2%であった。
比較例1;イソシアヌル酸骨格を有する多価カルボン酸のカルボン酸無水物化合物への溶解試験
 ガラス製50mlビンに、下記式(25)で表されるイソシアヌル酸トリス(3-カルボキシプロピル)3g、リカシッドMH-T(四国化成工業製 4-メチルヘキサヒドロフタル酸)7gを仕込み、80℃に加温したオーブンに入れ加温した。2時間後に取り出し薬匙で良く混合後、ガラスビンに回転子を入れ、90℃に加温したマグネチックスターラー上で5時間撹拌しながら加温したが、イソシアヌル酸トリス(3-カルボキシプロピル)はリカシッドMH-Tには溶解しなかった。撹拌を止めて室温(25℃)環境下で15時間後に確認したところ、イソシアヌル酸トリス(3-カルボキシプロピル)が沈殿していた。
Figure JPOXMLDOC01-appb-C000033
(評価試験)
 実施例1で得られた多価カルボン酸、実施例2~4、比較例1で得られた多価カルボン酸組成物、比較例Aとして4-メチルヘキサヒドロフタル酸無水物(新日本理化社製、リカシッドMH-T)の、各成分の含有量、酸価又は官能基当量、粘度、熱重量減少の測定結果を表1にまとめた。
Figure JPOXMLDOC01-appb-T000034
*GPCチャートの面積%のデータであることを表す。
 表1の結果から明らかなように、多価カルボン酸(A-1)および多価カルボン酸(A-1)を含有する多価カルボン酸組成物(C-1~C-3)は加熱時の重量減少が少ないのに対し、比較例Aの4-メチルヘキサヒドロフタル酸無水物は重量減少が大きい。また比較例1は白濁液体となり、放置することで沈殿が確認されたが、多価カルボン酸組成物(C-1~C-3)は無色透明液体であるため、特に液状で使用されることが求められる用途での使用に適している。
実施例5;エポキシ樹脂組成物の調製
 実施例2で得られた多価カルボン酸組成物(C-1)、エポキシ樹脂として3’,4’-エポキシシクロヘキシルメチル 3,4-エポキシシクロヘキサンカルボキシレート((株)ダイセル製、CEL2021P)、硬化促進剤としてオクチル酸亜鉛を、下記表2に記載の量比でポリプロピレン製容器に入れ、混合、5分間脱泡を行い、本発明のエポキシ樹脂組成物を得た。
実施例6;エポキシ樹脂組成物の調製
 実施例5の多価カルボン酸組成物(C-1)を、実施例3で得られた多価カルボン酸組成物(C-2)に変更した他は実施例5と同様に行い、本発明のエポキシ樹脂組成物を得た。
実施例7;エポキシ樹脂組成物の調製
 実施例5のオクチル酸亜鉛を、第4級ホスホニウムブロマイド塩の硬化促進剤U-CAT5003(サンアプロ社製)に変更した他は実施例5と同様に行い、本発明のエポキシ樹脂組成物を得た。
実施例8;エポキシ樹脂組成物の調製
 実施例5の多価カルボン酸組成物(C-1)を、実施例3で得られた多価カルボン酸組成物(C-2)に変更し、オクチル酸亜鉛を、第4級ホスホニウムブロマイド塩の硬化促進剤U-CAT5003(サンアプロ社製)に変更した他は実施例5と同様に行い、本発明のエポキシ樹脂組成物を得た。
比較例2;エポキシ樹脂組成物の調製
 エポキシ樹脂硬化剤としてリカシッドMH-T(新日本理化社製、4-メチルヘキサヒドロフタル酸無水物)、エポキシ樹脂として3’,4’-エポキシシクロヘキシルメチル 3,4-エポキシシクロヘキサンカルボキシレート((株)ダイセル製、CEL2021P)、硬化促進剤としてオクチル酸亜鉛を、下記表2に記載の量比でポリプロピレン製容器に入れ、混合、5分間脱泡を行い、比較例のエポキシ樹脂組成物を得た。
比較例3;エポキシ樹脂組成物の調製
 比較例3のオクチル酸亜鉛を、第4級ホスホニウムブロマイド塩の硬化促進剤U-CAT5003(サンアプロ社製)に変更した他は比較例2と同様に行い、比較例のエポキシ樹脂組成物を得た。
 実施例5~8、比較例2、3で得られたエポキシ樹脂組成物の配合比とその粘度、硬化時の重量減少、硬化物透過率、硬化物の硬さ、金ワイヤー露出の有無の結果を表2に示す。表2における試験は以下のように行った。
(1)粘度
 東機産業株式会社製E型粘度計(TV-20)を用い、25℃で測定した。
(2)硬化時の重量減少
 実施例5~8、比較例2、3で得られたエポキシ樹脂組成物を真空脱泡5分間実施後、予め質量を秤量しておいた、30mm×20mm×高さ0.8mmになるように耐熱テープでダムを作成したガラス基板上に静かに注型し、注型後の質量を秤量した。その注型物を、120℃×1時間の予備硬化の後150℃×3時間で硬化させ、硬化後の質量を秤量し、硬化時の重量減少率を算出した。
(3)硬化物透過率
 実施例5~8、比較例2、3で得られたエポキシ樹脂組成物を真空脱泡5分間実施後、30mm×20mm×高さ0.8mmになるように耐熱テープでダムを作成したガラス基板上に静かに注型した。その注型物を、120℃×1時間の予備硬化の後150℃×3時間で硬化させ、厚さ0.8mmの透過率用試験片を得た。得られた試験片を、ガラス基板から取り出し、下記条件にて400nmの光線透過率を測定した。
<分光光計測定条件>
メーカー:株式会社日立ハイテクノロジーズ
機種:U-3300
スリット幅:2.0nm
スキャン速度:120nm/分
(4)硬化物硬さ
 JIS K6253に記載の方法でデュロメータ硬さを測定した。
(5)金ワイヤーの露出
 実施例5~8、比較例2、3で得られたエポキシ樹脂組成物を真空脱泡5分間実施後、シリンジに充填し精密吐出装置を使用して発光波長450nmを持つ発光素子を、金ワイヤーを用いてなる表面実装型LED(2.3×0.4mmの開口部、0.4mmの深さを有し、金ワイヤーの最上部は開口部から0.1mmの位置に存在する)に開口部が平面になるように注型した。120℃×1時間の予備硬化の後150℃×3時間で硬化し、表面実装型LEDを封止した。このように封止した後の硬化剤の揮発に伴う、金ワイヤーの露出(金ワイヤーの上端が硬化物最上面よりも上部にあり、完全に封止されていない状態)の有無を目視で評価した。表中、A;金ワイヤーが露出していない、B;金ワイヤーが露出していることを表す。
Figure JPOXMLDOC01-appb-T000035
*硬化物が脆く割れてしまったため、ガラス基板から取り出すことができなかった。
 表2の結果から明らかなように実施例5~8の組成物は、LED封止材として用いるには適度な粘度であり、硬化時の熱重量減少も少なく作業性に優れる。さらに、それらの硬化物は高い硬化物透過率、硬さを有し、それらで封止した表面実装型LEDの金ワイヤーの露出がなかったのに対し、4-メチルヘキサヒドロフタル酸無水物のみで硬化した比較例2、3は硬化時の重量減少が著しく、金ワイヤーの露出が確認された。以上の事から、本発明の多価カルボン酸組成物を用いたエポキシ樹脂組成物は、特に光半導体封止用硬化性樹脂組成物として好適である。
-前記式(1)中のRが、R2bがエチレン基およびプロピレン基である式(9)で表されるカルボキシル基を含む有機基である多価カルボン酸(A)を、液状の多価カルボン酸組成物(C)として実施した例-
合成例、実施例中のGPC、酸価、官能基当量、粘度、熱重量減少は前記と同じ方法で測定した。ここで、部は特に断りのない限り質量部を表す。
実施例9;多価カルボン酸(A-2)の製造
 ガラス製500mlセパラブルフラスコに、窒素パージを施しながらイソシアヌル酸トリス(2-ヒドロキシエチル)26.1g、無水コハク酸31.0g、メチルイソブチルケトン100gを仕込み、ジムロートコンデンサ、撹拌装置、温度計を設置し、オイルバスにフラスコを浸した。オイルバスを加熱し、内温を80℃に保ち、そのまま62時間反応させた。
 得られた反応液を100℃で減圧濃縮し、メチルイソブチルケトンを留去することで、下記式(26)を主成分とする多価カルボン酸(A-2)を67.8g得た。得られた化合物のGPC面積%は、式(26)で表される化合物が90.0%、式(26)で表される化合物の多量体が2.1%、式(27)で表される化合物が4.6%、無水コハク酸が0.8%、コハク酸が2.6%であった。A-2の酸価は218.1mgKOH/g、外観は淡黄色透明液体であった。また、熱重量減少は-0.6%であった。得られたA-2のGPCチャートを図2に示す。
Figure JPOXMLDOC01-appb-C000036
実施例10;多価カルボン酸(A-3)の製造
 ガラス製500mlセパラブルフラスコに、窒素パージを施しながらイソシアヌル酸トリス(2-ヒドロキシエチル)26.1g、無水グルタル酸35.5g、トルエン100gを仕込み、ジムロートコンデンサ、撹拌装置、温度計を設置し、オイルバスにフラスコを浸した。オイルバスを加熱し、内温を90℃に保ち、そのまま32.5時間反応させた。
 得られた反応液を100℃で減圧濃縮し、トルエンを留去することで、下記式(28)を主成分とする多価カルボン酸(A-3)を56.7g得た。得られた化合物のGPC面積%は、式(28)で表される化合物が73.5%、式(28)で表される化合物の多量体が20.9%、無水グルタル酸が4.3%、グルタル酸が1.3%であった。A-3の酸価は285.6mgKOH/g、外観は淡黄色透明液体であった。また、熱重量減少は-0.7%であった。得られたA-3のGPCチャートを図3に示す。
Figure JPOXMLDOC01-appb-C000037
実施例11;多価カルボン酸組成物(C-3)の製造
 ガラス製50mlビンに、実施例9で得られた多価カルボン酸(A-2)5g、リカシッドMH-T(四国化成工業製 4-メチルヘキサヒドロ無水フタル酸)5gを仕込み、80℃に加温したオーブンに入れ加温した。2時間後に取り出し薬匙で良く混合後、さらに2時間加温し多価カルボン酸組成物(C-3)10gを得た。得られた多価カルボン酸組成物(C-3)は無色透明の液状であり、得られた多価カルボン酸組成物(C-3)のGPC面積%は、式(26)で表される化合物が48.8%、式(26)で表される化合物の多量体が1.3%、式(27)で表される化合物が0.3%、無水コハク酸が1.4%、4-メチルヘキサヒドロ無水フタル酸48.2%であった。C-3の官能基当量は278mgKOH/g、粘度は6216mPa・s、熱重量減少は-19.9%であった。
実施例12;多価カルボン酸組成物(C-4)の製造
 ガラス製50mlビンに、実施例10で得られた多価カルボン酸(A-3)5g、リカシッドMH-T(四国化成工業製 4-メチルヘキサヒドロ無水フタル酸)5gを仕込み、80℃に加温したオーブンに入れ加温した。2時間後に取り出し薬匙で良く混合後、さらに2時間加温し多価カルボン酸組成物(C-4)10gを得た。得られた多価カルボン酸組成物(C-4)は無色透明の液状であり、得られた多価カルボン酸組成物(C-4)のGPC面積%は、式(28)で表される化合物が40.6%、式(28)で表される化合物の多量体が11.5%、無水グルタル酸が3.7%、グルタル酸が0.7%、4-メチルヘキサヒドロ無水フタル酸43.5%であった。C-4の官能基当量は308mgKOH/g、粘度は5356mPa・s、熱重量減少は-24.7%であった。
比較例4;イソシアヌル酸骨格を有する多価カルボン酸のカルボン酸無水物化合物への溶解試験
 ガラス製50mlビンに、前記式(25)で表されるイソシアヌル酸トリス(3-カルボキシプロピル)3g、リカシッドMH-T(四国化成工業製 4-メチルヘキサヒドロフタル酸)7gを仕込み、80℃に加温したオーブンに入れ加温した。2時間後に取り出し薬匙で良く混合後、ガラスビンに回転子を入れ、90℃に加温したマグネチックスターラー上で5時間撹拌しながら加温したが、イソシアヌル酸トリス(3-カルボキシプロピル)はリカシッドMH-Tには溶解しなかった。撹拌を止めて室温(25℃)環境下で15時間後に確認したところ、イソシアヌル酸トリス(3-カルボキシプロピル)が沈殿していた。
(評価試験)
 実施例9、10で得られた多価カルボン酸、実施例11、12、比較例4で得られた多価カルボン酸組成物、比較例Bとして4-メチルヘキサヒドロフタル酸無水物(新日本理化社製、リカシッドMH-T)の、各成分の含有量、酸価又は官能基当量、粘度、熱重量減少の測定結果を表3にまとめた。
Figure JPOXMLDOC01-appb-T000038
*A-2、A-3は高粘ちょうの液体であるため、25℃での粘度は測定できなかった。
 実施例9~12の成分含有量はGPCの面積%のデータを表す。
 表3の結果から明らかなように、多価カルボン酸A-2、A-3および多価カルボン酸A-2、A-3をそれぞれ含有する多価カルボン酸組成物C-3、C-4は加熱時の重量減少が少ないのに対し、比較例Bの4-メチルヘキサヒドロフタル酸無水物は重量減少が大きい。また比較例4は白濁液体となり、放置することで沈殿が確認されたが、多価カルボン酸組成物C-3、C-4および多価カルボン酸A-2、A-3は無色透明液体であるため、特に液状で使用されることが求められる用途での使用に適している。
実施例13;エポキシ樹脂組成物の調製
 実施例9で得られた多価カルボン酸(A-2)、エポキシ樹脂として3’,4’-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート((株)ダイセル製、CEL2021P)、硬化促進剤としてオクチル酸亜鉛を、下記表4に記載の量比でポリプロピレン製容器に入れ、混合、5分間脱泡を行い、本発明のエポキシ樹脂組成物を得た。
実施例14;エポキシ樹脂組成物の調製
 実施例9の多価カルボン酸(A-2)を、実施例11で得られた多価カルボン酸組成物(C-3)に変更した他は実施例13と同様に行い、本発明のエポキシ樹脂組成物を得た。
実施例15;エポキシ樹脂組成物の調製
 実施例13の多価カルボン酸(A-2)を、実施例2で得られた多価カルボン酸(A-3)に変更した他は実施例13と同様に行い、本発明のエポキシ樹脂組成物を得た。
実施例16;エポキシ樹脂組成物の調製
 実施例13の多価カルボン酸(A-1)を、実施例12で得られた多価カルボン酸組成物(C-4)に変更した他は実施例13と同様に行い、本発明のエポキシ樹脂組成物を得た。
比較例5;エポキシ樹脂組成物の調製
 エポキシ樹脂硬化剤としてリカシッドMH-T(新日本理化社製、4-メチルヘキサヒドロフタル酸無水物)、エポキシ樹脂として3’,4’-エポキシシクロヘキシルメチル 3,4-エポキシシクロヘキサンカルボキシレート((株)ダイセル製、CEL2021P)、硬化促進剤としてオクチル酸亜鉛を、下記表4に記載の量比でポリプロピレン製容器に入れ、混合、5分間脱泡を行い、比較例のエポキシ樹脂組成物を得た。
比較例6;エポキシ樹脂組成物の調製
 比較例5のオクチル酸亜鉛を、第4級ホスホニウムブロマイド塩の硬化促進剤U-CAT5003(サンアプロ社製)に変更した他は比較例5と同様に行い、比較例のエポキシ樹脂組成物を得た。
 実施例13~16、比較例5、6で得られたエポキシ樹脂組成物の配合比とその粘度、硬化時の重量減少、硬化物透過率、硬化物の硬さ、金ワイヤー露出の有無の結果を表4に示す。表4における試験は前記と同様に行った。
Figure JPOXMLDOC01-appb-T000039
*硬化物が脆く割れてしまったため、ガラス基板から取り出すことができなかった。
 表4の結果から明らかなように実施例13~16の組成物は、LED封止材として用いるには適度な粘度であり、硬化時の熱重量減少も少なく作業性に優れる。さらに、それらの硬化物は高い硬化物透過率、硬さを有し、それらで封止した表面実装型LEDの金ワイヤーの露出がなかったのに対し、4-メチルヘキサヒドロフタル酸無水物のみで硬化した比較例5、6は硬化時の重量減少が著しく、金ワイヤーの露出が確認された。以上の事から、本発明の多価カルボン酸組成物を用いたエポキシ樹脂組成物は、特に光半導体封止用硬化性樹脂組成物として好適である。
-前記式(1)中のRが、R2aがメチル基又はカルボキシル基である式(8)で表されるカルボキシル基を含む有機基である多価カルボン酸(A)を、固形の熱硬化性樹脂組成物として実施した例-
 合成例において、ゲルパーミエーションクロマトグラフィー(以下、「GPC」という)、ICI粘度、軟化点の各測定は以下の通り行った。
1)GPC
 カラムは、Shodex SYSTEM-21カラム(KF-803L、KF-802.5(×2本)、KF-802)、連結溶離液はテトラヒドロフラン、流速は1ml/min.カラム温度は40℃、また検出はRI(Reflective index)で行い、検量線はShodex製標準ポリスチレンを使用した。また官能基当量はGPCより算出した比率より算出し、カルボン酸、酸無水物をそれぞれ1当量として値を求めた。
2)ICI粘度
 150℃におけるコーンプレート法における溶融粘度を測定した。
3)軟化点
JIS K-7234に準じた方法で測定した。
合成例1(熱硬化性樹脂用硬化剤C-5)
Figure JPOXMLDOC01-appb-C000040
 撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながらイソシアヌル酸トリス(2-ヒドロキシエチル)104.5部、メチルヘキサヒドロフタル酸無水物(新日本理化(株)製、リカシッドMHT)201.8部、MEK306.0部を加え、70℃で7時間加熱撹拌を行うことで、式(29)で示される化合物のMEK溶液を得た。そこへ、メチルヘキサヒドロフタル酸無水物(新日本理化(株)製、リカシッドMHT)61.3部を加え、70℃で1時間加熱撹拌を行った。その後、120℃1時間の条件で溶媒を除去し、熱硬化性樹脂用硬化剤(C-5)を得た。
得られた硬化剤は無色、固形であった。また、官能基当量は232g/eq.であった。ICI粘度は、150℃において0.36Pa・sであった。軟化点は、82.9℃であった。
合成例2(熱硬化性樹脂用硬化剤C-6)
Figure JPOXMLDOC01-appb-C000041
(式(30)中、R10はメチル基又はカルボキシル基をそれぞれ表す。式(30)中、複数存在するR10は同一であっても異なっていても構わない。)
 撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながらトリシクロデカンジメタノール98.1部、メチルヘキサヒドロフタル酸無水物(新日本理化(株)製、リカシッドMHT)166.3部、シクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物(三菱ガス化学製 H-TMAn)2.0部、MEK266.4部を加え、60℃で1時間反応後、80℃で5時間加熱撹拌を行うことで(30)式で示される化合物のMEK溶液を得た。そこへ、シクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物(三菱ガス化学製 H-TMAn)59.4部を加え、80℃で2時間加熱撹拌を行った。その後、150℃1時間の条件で溶媒を除去し、熱硬化性樹脂用硬化剤(C-6)を得た。
 得られた硬化剤は無色、固形であった。また、官能基当量は195g/eq.であった。ICI粘度は、150℃において0.53Pa・sであった。軟化点は、84.7℃であった。
合成例3(グリシジルエーテル型エポキシ樹脂B-1)
 攪拌機、還流冷却管、撹拌装置を備えたフラスコをいったん真空にし、窒素置換した後、窒素パージ(窯容量の2倍体積量/hr)を施しながらフェノール化合物(TPA1)(TrisP-PA 本州化学工業製)142部、エピクロロヒドリン370部、メチルグリシジルエーテルを37部、メタノール37部を加え、水浴を75℃にまで昇温した。内温が65℃を越えたところでフレーク状の水酸化ナトリウム42部を90分かけて分割添加した後、更に70℃で1時間後反応を行った。反応終了後水洗を行い、油層からロータリーエバポレータを用いて140℃で減圧下、過剰のエピクロルヒドリン等の溶剤を留去した。残留物にメチルイソブチルケトン400部を加え溶解し、70℃にまで昇温した。撹拌下で30重量%の水酸化ナトリウム水溶液8部を加え、1時間反応を行った後、洗浄水が中性になるまで水洗を行い、得られた溶液を、ロータリーエバポレータを用いて180℃で減圧下にメチルイソブチルケトン等を留去することでエポキシ樹脂(B-1)を182部得た。得られたエポキシ樹脂のエポキシ当量は222g/eq.、軟化点が59.6℃、ICI溶融粘度0.10Pa・s(150℃)、色相0.2以下(ガードナー 40%MEK溶液)であった。またMnは582、Mwは695、Mw/Mnは1.19(ポリスチレン換算)であった。全塩素が960ppmであった。
熱硬化性光反射用樹脂組成物の調製(実施例17~実施例19)
 TEPIC-S(日産化学株式会社製トリグリシジルイソシアヌレート)、EHPE-3150(ダイセル化学工業(株)製脂環式エポキシ樹脂)、セロキサイド2021P(ダイセル化学工業(株)製脂環式エポキシ樹脂)、熱硬化性樹脂用硬化剤C-5、熱硬化性樹脂用硬化剤C-6、リカシッドMH-T(新日本理化製エポキシ樹脂用硬化剤)、ヒシコーリンPX-4MP(日本化学工業株式会社製硬化触媒)を使用して、表5に示した配合表に従って各成分を配合し、ミキサーによって十分混練した後、ミキシングロールにより所定条件で溶融混練し、冷却、粉砕を行い、実施例17~実施例19の熱硬化性樹脂組成物を調製した。なお、表5中の各成分の配合量の単位は重量部であり、空欄は当該成分を使用していないことを表す。
熱硬化性樹脂組成物の評価
 実施例17~実施例19の樹脂組成物について、下記に示す方法により硬化物のDMA、TMA、透過率を測定した。その結果を表5に示す。
(a)DMA
 粘弾性測定(DMA:Dynamic Mechanical Analysis)については、下記のように作成した試験片を用いて、JIS K7244、JIS K7244-4に記載の方法に従って、エスアイアイ・ナノテクノロジー(株)製DMS6100粘弾性測定装置を使用して下記条件で測定した。ガラス転移温度(Tg)は、貯蔵弾性率(E’)と損失弾性率(E”)の商で表される損失係数(tanδ=E”/E’)の極大点を示す際の温度を示す。
(DMA試験片作成方法)
 各実施例及び各比較例の樹脂組成物を、成型型温度150℃、成型圧力10.4MPa、キュア時間300秒の条件でトランスファー成型した後、150℃で3時間ポストキュアすることにより、長さ50.0mm、幅5.0mm、厚み0.5mmのテストピースを作製した。
(DMA測定条件)
初期張力:0.1N
周波数:10Hz
測定モード:引張振動
測定温度:30℃~280℃
昇温速度:2℃/min
(b)熱機械分析(TMA)
 熱機械分析(TMA)は、下記のように作成した試験片を用いて、エスアイアイ・ナノテクノロジー(株)製TMA/SS6100装置を使用して、下記条件で測定した。なお、ガラス転移温度(Tg)は、得られたデータの線膨張係数の変化点として定義される。
(TMA試験片作成方法)
 各実施例及び各比較例の樹脂組成物を、成型型温度150℃、成型圧力10.4MPa、キュア時間300秒の条件でトランスファー成型した後、150℃で3時間ポストキュアすることにより、厚み4.0mmのテストピースを作製した。
(TMA測定条件)
昇温条件:2℃/分
測定モード:圧縮
(d)透過率
 各実施例及び各比較例の樹脂組成物を、成型型温度150℃ 、成型圧力10.4MPa、キュア時間300秒の条件でトランスファー成型した後、150℃ で3時間ポストキュアすることにより、厚み1.0mmのテストピースを作製した。ついで、積分球型分光光度計UV-3600型(株式会社島津製作所製)にて波長460nmにおける透過率を測定し、各テストピースの着色を評価した。
Figure JPOXMLDOC01-appb-T000042
 以上の結果から、本発明の熱硬化性樹脂用硬化剤を用いた熱硬化性樹脂組成物は、ガラス転移温度が十分に高く、線膨張率が低く、硬化物の着色が少ない硬化物を与えることがわかる。
熱硬化性光反射用樹脂組成物の調製(実施例20、21)
 TEPIC-S(日産化学株式会社製トリグリシジルイソシアヌレート)、グリシジルエーテル型エポキシ樹脂B-1、ヒシコーリンPX-4MP(日本化学工業株式会社製硬化触媒)、CR-95(石原産業(株)製酸化チタン)を使用して、表6に示した配合表に従って各成分を配合し、ミキサーによって十分混練した後、ミキシングロールにより所定条件で溶融混練し、冷却、粉砕を行い、実施例20、21の熱硬化性樹脂組成物を調製した。なお、表6中の各成分の配合量の単位は重量部であり、空欄は当該成分を使用していないことを表す。
Figure JPOXMLDOC01-appb-T000043
 以上の結果から、本発明の熱硬化性樹脂用硬化剤を用いた熱硬化性樹脂組成物は、ガラス転移温度が十分に高く、線膨張率が低く、硬化物の着色が少ない硬化物を与えることがわかる。
 撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながらイソシアヌル酸トリス(2-ヒドロキシエチル)130.6部、メチルヘキサヒドロフタル酸無水物(新日本理化(株)製、リカシッドMHT)164.0部、無水グルタル酸59.9部、MIBK350.0部を加え、85℃で9時間加熱撹拌を行うことで、目的とする化合物のMIBK溶液を得た。その後、150℃1時間の条件で溶媒を除去し、熱硬化性樹脂用硬化剤(C-7)を得た。
 得られた硬化剤は無色、固形であった。また、官能基当量は242g/eq.であった。ICI粘度は、150℃において0.51Pa・sであった。軟化点は、77.6℃であった。
熱硬化性光反射用樹脂組成物の調製(実施例22)
 EHPE-3150(ダイセル化学工業(株)製脂環式エポキシ樹脂)、熱硬化性樹脂用硬化剤C-7、ヒシコーリンPX-4MP(日本化学工業株式会社製硬化触媒)、CR-95(石原産業(株)製酸化チタン)を使用して、表7に示した配合表に従って各成分を配合し、ミキサーによって十分混練した後、ミキシングロールにより所定条件で溶融混練し、冷却、粉砕を行い、実施例22の熱硬化性樹脂組成物を調製した。なお、表7中の各成分の配合量の単位は重量部であり、空欄は当該成分を使用していないことを表す。
Figure JPOXMLDOC01-appb-T000044
 以上の結果から、本発明の熱硬化性樹脂用硬化剤を用いた熱硬化性樹脂組成物は、ガラス転移温度が十分に高く、線膨張率が低く、硬化物の着色が少ない硬化物を与えることがわかる。
実施例23;多価カルボン酸組成物(C-8)の製造
 ガラス製300ml4ツ口フラスコに、窒素パージを施しながらTHEIC-G(四国化成工業製 イソシアヌル酸トリス(2-ヒドロキシエチル))25.8g、HTMAn-S(三菱ガス化学製 水添トリメリット酸無水物)、MEK50gを仕込み、ジムロートコンデンサ、撹拌装置、温度計を設置し、ウォーターバスにフラスコを浸した。ウォーターバスを加熱し、内温を65℃に保ち、そのまま6時間反応させた。その後、リカシッドMH-T(新日本理化製 4-メチルヘキサヒドロフタル酸)49.4g、MEK50gを添加し、ウォーターバスを加熱し、内温を65℃に保ち、そのまま4時間反応させた。
 GPCでトリスヒドロキシエチルイソシアヌル酸のピーク面積1%以下を確認し、得られた反応液を150℃で減圧濃縮し、MEKを留去することで、下記式(a1)を主成分とする多価カルボン酸とカルボン酸無水物化合物の混合物である多価カルボン酸組成物(C-8)90.4gが得られた。得られた化合物の外観は無色の固体であり、GPCによる純度(GPC面積%)は式(a2~a4)で表される多価カルボン酸高分子量体混合物が2.4%、式(a1)で表される多価カルボン酸が82.9%、式(a5)で表されるシクロヘキサン-1,2,4-トリカルボン酸が1.5%、式(a6)で表される4-メチルヘキサヒドロフタル酸が5.4%、4-メチルヘキサヒドロフタル酸無水物が7.8%であった。また官能基当量は188.8g/eq、150℃におけるICI粘度は1.49Pa・s、軟化点は95.3℃であった。得られた化合物のGPCチャートを図4に示す。
Figure JPOXMLDOC01-appb-C000045
 式(a1)中、Rはメチル基、またはカルボキシル基である。
Figure JPOXMLDOC01-appb-C000046
 式(a2~a4)中、R9は前記と同じ意味を表す。
Figure JPOXMLDOC01-appb-C000047
実施例24;熱硬化性光反射用樹脂組成物の調製
 実施例23で得られた多価カルボン酸組成物(C-8)、EHPE-3150(ダイセル化学工業(株)製 脂環式エポキシ樹脂)、ヒシコーリンPX-4MP(日本化学工業(株)製 硬化触媒)、FB-910(電気化学工業(株)製 シリカ)、CR-75(石原産業(株)製 酸化チタン)、を使用して、表8に示した配合表に従って各成分を配合し、ミキサーによって十分混練した後、ミキシングロールにより所定条件で溶融混練し、冷却、粉砕を行い、実施例24の熱硬化性樹脂組成物を調製した。
 実施例24で得られた熱硬化性樹脂組成物の配合比と、そのガラス転移温度、線膨張係数、反射率の結果を表8に表す。なお、表8中の各成分の配合量の単位は重量部であり、空欄は当該成分を使用していないことを表す。
Figure JPOXMLDOC01-appb-T000048
実施例25;熱硬化性光反射用樹脂組成物の調製
 実施例10で得られた多価カルボン酸(A-3)、EHPE-3150(ダイセル化学工業(株)製 脂環式エポキシ樹脂)、ヒシコーリンPX-4MP(日本化学工業(株)製 硬化触媒)、FB-910(電気化学工業(株)製 シリカ)、CR-75(石原産業(株)製 酸化チタン)、を使用して、表9に示した配合表に従って各成分を配合し、ミキサーによって十分混練した後、ミキシングロールにより所定条件で溶融混練し、冷却、粉砕を行い、実施例25の熱硬化性樹脂組成物を調製した。
 実施例25で得られた熱硬化性樹脂組成物の配合比と、そのガラス転移温度、線膨張係数、反射率の結果を表9に表す。なお、表9中の各成分の配合量の単位は重量部であり、空欄は当該成分を使用していないことを表す。
Figure JPOXMLDOC01-appb-T000049
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 なお、本出願は、2014年7月24日付で出願された日本国特許出願(特願2014-150862)、2014年10月17日付で出願された日本国特許出願(特願2014-212176)、2014年12月16日付で出願された日本国特許出願(特願2014-254374)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。
 本発明の多価カルボン酸およびそれを含有する多価カルボン酸組成物は、硬化時に揮発が少なく硬化性に優れ、その硬化物は優れた透明性、硬さの硬化物を与えるので、これを用いたエポキシ樹脂組成物は、電気電子材料用途、特に光半導体封止用、光半導体反射材として有用である。また本発明の多価カルボン酸およびそれを含有する多価カルボン酸組成物は、その硬化物のガラス転移温度を十分高めることができ、成形性に優れ、硬化物への着色が少ないので、それを用いた熱硬化性樹脂組成物は、半導体装置用の封止材、反射材として有用である。

Claims (18)

  1.  下記式(1)で表される多価カルボン酸。
    Figure JPOXMLDOC01-appb-C000001

    (式(1)中、Rは炭素数1~6のアルキレン基を、Rは水素原子又は炭素数1~10のカルボキシル基を含有する有機基をそれぞれ表す。式(1)中、複数存在するR、Rはそれぞれ同一であっても異なっていても構わないが、複数存在するR中、50モル%以上は炭素数1~10のカルボキシル基を含有する有機基である。)
  2.  下記式(1-1)で表される請求項1に記載の多価カルボン酸。
    Figure JPOXMLDOC01-appb-C000002

    (式(1-1)中、Rは前記と同じ意味を表し、R2aは水素原子、炭素数1~6のアルキル基又はカルボキシル基をそれぞれ表す。式(1-1)中、複数存在するR、R2aはそれぞれ同一であっても異なっていても構わない。)
  3.  下記式(1-2)で表される請求項1に記載の多価カルボン酸。
    Figure JPOXMLDOC01-appb-C000003

    (式(1-2)中、Rは前記と同じ意味を表し、R2bは炭素数1~10の直鎖または分岐構造を有するアルキレン基をそれぞれ表す。式(1-2)中、複数存在するR、R2bはそれぞれ同一であっても異なっていても構わない。)
  4.  請求項1~3のいずれか一項に記載の多価カルボン酸を含有する多価カルボン酸組成物。
  5.  さらにカルボン酸無水物化合物を含有する請求項4に記載の多価カルボン酸組成物。
  6.  カルボン酸無水物化合物が下記式(2)~(7)で表される化合物より選択される一種以上である、請求項5に記載の多価カルボン酸組成物。
    Figure JPOXMLDOC01-appb-C000004
  7.  請求項1~3のいずれか一項に記載の多価カルボン酸又は請求項4~6のいずれか一項に記載の多価カルボン酸組成物と、エポキシ樹脂を含有するエポキシ樹脂組成物。
  8.  さらにエポキシ樹脂硬化促進剤を含有する請求項7に記載のエポキシ樹脂組成物。
  9.  エポキシ樹脂硬化促進剤が、金属石鹸である請求項8に記載のエポキシ樹脂組成物。
  10.  金属石鹸が、カルボン酸亜鉛化合物である請求項9に記載のエポキシ樹脂組成物。
  11.  請求項7~10のいずれか一項に記載のエポキシ樹脂組成物を硬化してなる硬化物。
  12.  請求項1~3のいずれか一項に記載の多価カルボン酸と、熱硬化性樹脂とを含有し、ICIコーンプレート粘度が100~200℃の範囲で0.01Pa・s~10Pa・sの範囲にある熱硬化性樹脂組成物。
  13.  軟化点が20℃~150℃の範囲にある請求項12に記載の熱硬化性樹脂組成物。
  14.  さらにトリメリット酸、無水トリメリット酸、シクロヘキサントリカルボン酸、シクロヘキサントリカルボン酸無水物、ピロメリット酸、水添ピロメリット酸、ピロメリット酸無水物、水添ピロメリット酸無水物、ヘキサヒドロ無水フタル酸、およびメチルヘキサヒドロ無水フタル酸から選ばれる1種または2種以上の化合物を含有する熱硬化性樹脂用硬化剤を含み、
     トリメリット酸、無水トリメリット酸、シクロヘキサントリカルボン酸、シクロヘキサントリカルボン酸無水物、ピロメリット酸、水添ピロメリット酸、ピロメリット酸無水物、水添ピロメリット酸無水物、ヘキサヒドロ無水フタル酸、およびメチルヘキサヒドロ無水フタル酸から選ばれる1種または2種以上の化合物が、全体の1重量%~90重量%を占める、請求項12又は請求項13に記載の熱硬化性樹脂組成物。
  15.  その硬化物のガラス転移温度(Tg)が30℃以上である、請求項12~14のいずれか一項に記載の熱硬化性樹脂組成物。
  16.  請求項12~15のいずれか一項に記載の熱硬化性樹脂組成物を熱硬化してなる硬化物。
  17.  請求項16に記載の硬化物によって封止された光半導体装置。
  18.  請求項16に記載の硬化物を反射材として使用した光半導体装置。
PCT/JP2015/071044 2014-07-24 2015-07-23 多価カルボン酸およびそれを含有する多価カルボン酸組成物、エポキシ樹脂組成物、熱硬化性樹脂組成物、それらの硬化物並びに光半導体装置 WO2016013642A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016535981A JP6669653B2 (ja) 2014-07-24 2015-07-23 多価カルボン酸およびそれを含有する多価カルボン酸組成物、エポキシ樹脂組成物、熱硬化性樹脂組成物、それらの硬化物並びに光半導体装置
KR1020177005178A KR20170048357A (ko) 2014-07-24 2015-07-23 다가 카르복실산 및 그것을 함유하는 다가 카르복실산 조성물, 에폭시 수지 조성물, 열경화성 수지 조성물, 그것들의 경화물 및 광반도체 장치
CN201580051996.1A CN106795125A (zh) 2014-07-24 2015-07-23 多元羧酸和含有其的多元羧酸组合物、环氧树脂组合物、热固化性树脂组合物、它们的固化物以及光半导体装置

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014150862 2014-07-24
JP2014-150862 2014-07-24
JP2014-212176 2014-10-17
JP2014212176 2014-10-17
JP2014254374 2014-12-16
JP2014-254374 2014-12-16

Publications (1)

Publication Number Publication Date
WO2016013642A1 true WO2016013642A1 (ja) 2016-01-28

Family

ID=55162796

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2015/060776 WO2016013257A1 (ja) 2014-07-24 2015-04-06 多価カルボン酸およびそれを含有する多価カルボン酸組成物、エポキシ樹脂組成物、熱硬化性樹脂組成物、それらの硬化物並びに光半導体装置
PCT/JP2015/071044 WO2016013642A1 (ja) 2014-07-24 2015-07-23 多価カルボン酸およびそれを含有する多価カルボン酸組成物、エポキシ樹脂組成物、熱硬化性樹脂組成物、それらの硬化物並びに光半導体装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/060776 WO2016013257A1 (ja) 2014-07-24 2015-04-06 多価カルボン酸およびそれを含有する多価カルボン酸組成物、エポキシ樹脂組成物、熱硬化性樹脂組成物、それらの硬化物並びに光半導体装置

Country Status (5)

Country Link
JP (3) JP5864031B1 (ja)
KR (2) KR20170048356A (ja)
CN (2) CN107074785A (ja)
TW (2) TW201605816A (ja)
WO (2) WO2016013257A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016084373A (ja) * 2014-10-22 2016-05-19 信越化学工業株式会社 シリコーン変性エポキシ樹脂と多価カルボン酸化合物を含有するエポキシ樹脂およびその硬化物
JP2016135764A (ja) * 2014-07-24 2016-07-28 日本化薬株式会社 多価カルボン酸およびそれを含有する多価カルボン酸組成物、エポキシ樹脂組成物、熱硬化性樹脂組成物、それらの硬化物並びに光半導体装置
JP2017095548A (ja) * 2015-11-19 2017-06-01 信越化学工業株式会社 光半導体素子封止用熱硬化性エポキシ樹脂組成物及びそれを用いた光半導体装置
JPWO2016136281A1 (ja) * 2015-02-27 2017-07-27 クラスターテクノロジー株式会社 白色リフレクター成型用硬化性エポキシ樹脂組成物及びその硬化物、光半導体素子搭載用基板、並びに光半導体装置
WO2017131152A1 (ja) * 2016-01-27 2017-08-03 クラスターテクノロジー株式会社 白色リフレクター用硬化性エポキシ樹脂組成物及びその硬化物、光半導体素子搭載用基板、並びに光半導体装置
JP2017137408A (ja) * 2016-02-03 2017-08-10 クラスターテクノロジー株式会社 白色リフレクター用硬化性エポキシ樹脂組成物及びその硬化物、光半導体素子搭載用基板、並びに光半導体装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107250282A (zh) * 2015-02-05 2017-10-13 日本化药株式会社 含有多元醇化合物、酸酐化合物和热固化性树脂的热固化性树脂组合物及多元羧酸树脂、以及使用了其的热固化性树脂组合物、以及使用了前述热固化性树脂组合物中的任一种作为封装材料或者反射材料的光半导体装置
US20200391287A1 (en) * 2018-02-28 2020-12-17 Hitachi Chemical Company, Ltd. Compound powder
CN109134827B (zh) * 2018-08-21 2021-01-12 合肥工业大学 一种三官能度羧基环氧树脂固化剂及其制备方法
CN111410736B (zh) * 2020-05-06 2022-02-18 山东迈特新材料科技有限公司 一种赛克聚酯衍生物及其制备方法
CN113698575B (zh) * 2021-09-02 2022-04-26 四川大学 一种基于硅氧烷席夫碱结构的高抗冲击可重塑阻燃环氧树脂及制备方法
CN114853996B (zh) * 2022-05-18 2024-02-02 中南民族大学 耐高温超支化聚酯、制备方法、应用及尼龙复合材料
KR102638827B1 (ko) * 2023-08-14 2024-02-21 주식회사 엠티지 실리콘 조성물 및 개스킷

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51124197A (en) * 1975-04-22 1976-10-29 Dainippon Ink & Chem Inc A resin composition
JPS52145457A (en) * 1976-05-28 1977-12-03 Toray Ind Inc Polyamide molding composition
JPH01193317A (ja) * 1987-11-27 1989-08-03 Enichem Sintesi Spa 熱硬化性液状組成物
JPH05301938A (ja) * 1992-01-27 1993-11-16 Basf Corp カルボキシ官能性ポリウレタンおよび硬化性塗料組成物
JPH09176528A (ja) * 1995-12-25 1997-07-08 Dainippon Ink & Chem Inc 粉体塗料用樹脂組成物
JPH1088063A (ja) * 1996-09-13 1998-04-07 Mitsui Toatsu Chem Inc 艶消し塗料組成物
WO2006009118A1 (ja) * 2004-07-21 2006-01-26 Nissan Chemical Industries, Ltd. ハンダ用耐熱水溶性フラックス組成物
WO2008059856A1 (en) * 2006-11-15 2008-05-22 Hitachi Chemical Co., Ltd. Heat curable resin composition for light reflection, process for producing the resin composition, and optical semiconductor element mounting substrate and optical semiconductor device using the resin composition
JP2015165013A (ja) * 2014-02-05 2015-09-17 日本化薬株式会社 エポキシ樹脂硬化剤組成物およびエポキシ樹脂組成物

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02187421A (ja) * 1988-08-19 1990-07-23 Haisoole Japan Kk 紫外線感光又は透過素子用の紫外線透過性保護又は支持材料
JP2724499B2 (ja) * 1989-05-25 1998-03-09 新日本理化株式会社 エポキシ樹脂組成物
JP3876251B2 (ja) * 2003-12-12 2007-01-31 スタンレー電気株式会社 熱硬化性樹脂組成物及び該組成物を封止剤とする発光ダイオード
JP2008144127A (ja) * 2006-11-15 2008-06-26 Hitachi Chem Co Ltd 熱硬化性光反射用樹脂組成物、ならびにこれを用いた光半導体素子搭載用基板、光半導体装置およびこれらの製造方法
JP5638812B2 (ja) * 2010-02-01 2014-12-10 株式会社ダイセル 硬化性エポキシ樹脂組成物
KR20130100925A (ko) * 2010-06-30 2013-09-12 닛뽄 가야쿠 가부시키가이샤 다가 카르복실산 조성물, 경화제 조성물, 및 그 다가 카르복실산 조성물 또는 그 경화제 조성물을 에폭시 수지의 경화제로서 함유하는 경화성 수지 조성물
JP6021416B2 (ja) * 2012-05-01 2016-11-09 日東電工株式会社 光半導体装置用リフレクタ付リードフレームおよびそれを用いた光半導体装置並びにその製造方法
CN107074785A (zh) * 2014-07-24 2017-08-18 日本化药株式会社 多元羧酸和含有其的多元羧酸组合物、环氧树脂组合物、热固化性树脂组合物、它们的固化物以及光半导体装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51124197A (en) * 1975-04-22 1976-10-29 Dainippon Ink & Chem Inc A resin composition
JPS52145457A (en) * 1976-05-28 1977-12-03 Toray Ind Inc Polyamide molding composition
JPH01193317A (ja) * 1987-11-27 1989-08-03 Enichem Sintesi Spa 熱硬化性液状組成物
JPH05301938A (ja) * 1992-01-27 1993-11-16 Basf Corp カルボキシ官能性ポリウレタンおよび硬化性塗料組成物
JPH09176528A (ja) * 1995-12-25 1997-07-08 Dainippon Ink & Chem Inc 粉体塗料用樹脂組成物
JPH1088063A (ja) * 1996-09-13 1998-04-07 Mitsui Toatsu Chem Inc 艶消し塗料組成物
WO2006009118A1 (ja) * 2004-07-21 2006-01-26 Nissan Chemical Industries, Ltd. ハンダ用耐熱水溶性フラックス組成物
WO2008059856A1 (en) * 2006-11-15 2008-05-22 Hitachi Chemical Co., Ltd. Heat curable resin composition for light reflection, process for producing the resin composition, and optical semiconductor element mounting substrate and optical semiconductor device using the resin composition
JP2015165013A (ja) * 2014-02-05 2015-09-17 日本化薬株式会社 エポキシ樹脂硬化剤組成物およびエポキシ樹脂組成物

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016135764A (ja) * 2014-07-24 2016-07-28 日本化薬株式会社 多価カルボン酸およびそれを含有する多価カルボン酸組成物、エポキシ樹脂組成物、熱硬化性樹脂組成物、それらの硬化物並びに光半導体装置
JP2016084373A (ja) * 2014-10-22 2016-05-19 信越化学工業株式会社 シリコーン変性エポキシ樹脂と多価カルボン酸化合物を含有するエポキシ樹脂およびその硬化物
JPWO2016136281A1 (ja) * 2015-02-27 2017-07-27 クラスターテクノロジー株式会社 白色リフレクター成型用硬化性エポキシ樹脂組成物及びその硬化物、光半導体素子搭載用基板、並びに光半導体装置
JP2017095548A (ja) * 2015-11-19 2017-06-01 信越化学工業株式会社 光半導体素子封止用熱硬化性エポキシ樹脂組成物及びそれを用いた光半導体装置
WO2017131152A1 (ja) * 2016-01-27 2017-08-03 クラスターテクノロジー株式会社 白色リフレクター用硬化性エポキシ樹脂組成物及びその硬化物、光半導体素子搭載用基板、並びに光半導体装置
JP2017137408A (ja) * 2016-02-03 2017-08-10 クラスターテクノロジー株式会社 白色リフレクター用硬化性エポキシ樹脂組成物及びその硬化物、光半導体素子搭載用基板、並びに光半導体装置

Also Published As

Publication number Publication date
CN107074785A (zh) 2017-08-18
CN106795125A (zh) 2017-05-31
TW201605816A (zh) 2016-02-16
JP6669653B2 (ja) 2020-03-18
KR20170048356A (ko) 2017-05-08
JP2016135764A (ja) 2016-07-28
WO2016013257A1 (ja) 2016-01-28
JPWO2016013642A1 (ja) 2017-06-29
JP6595329B2 (ja) 2019-10-23
JP5864031B1 (ja) 2016-02-17
KR20170048357A (ko) 2017-05-08
JPWO2016013257A1 (ja) 2017-04-27
TW201609676A (zh) 2016-03-16

Similar Documents

Publication Publication Date Title
JP6595329B2 (ja) 多価カルボン酸およびそれを含有する多価カルボン酸組成物、エポキシ樹脂組成物、熱硬化性樹脂組成物、それらの硬化物並びに光半導体装置
JP5574447B2 (ja) 多価カルボン酸組成物およびその製造方法、ならびに該多価カルボン酸組成物を含有してなる硬化性樹脂組成物
JP5730852B2 (ja) オルガノポリシロキサンの製造方法、該製造方法により得られるオルガノポリシロキサン、該オルガノポリシロキサンを含有する組成物
JP5948317B2 (ja) 多価カルボン酸樹脂およびその組成物
WO2011108588A1 (ja) 硬化性樹脂組成物、及びその硬化物
TWI504628B (zh) Hardened resin composition and hardened product thereof
JP6058684B2 (ja) 多価カルボン酸樹脂およびエポキシ樹脂組成物
JP6143359B2 (ja) シリコーン変性エポキシ樹脂およびその組成物
JP6671222B2 (ja) エポキシ樹脂、それを含有するエポキシ樹脂組成物とその硬化物
JP5995238B2 (ja) エポキシ樹脂、およびエポキシ樹脂組成物
JP6377445B2 (ja) エポキシ樹脂組成物およびその硬化物
JP6884192B2 (ja) エポキシ樹脂硬化剤組成物、それを含有するエポキシ樹脂組成物、その硬化物
JP6501359B2 (ja) 硫黄系酸化防止剤を含有する硬化性樹脂組成物およびエポキシ樹脂組成物とその硬化物
JP6602170B2 (ja) 多価カルボン酸樹脂およびそれを含有する多価カルボン酸樹脂組成物、エポキシ樹脂組成物、熱硬化性樹脂組成物、それらの硬化物並びに半導体装置
JP6767816B2 (ja) 多価カルボン酸およびそれを含有する多価カルボン酸組成物、エポキシ樹脂組成物、それらの硬化物並びに光半導体装置
JP6478808B2 (ja) 多価カルボン酸およびそれを含有する多価カルボン酸組成物、エポキシ樹脂組成物
JP6376692B2 (ja) カルボン酸無水物基含有環状シロキサン化合物、それを含有するエポキシ樹脂組成物とその硬化物
JP2017082073A (ja) エポキシ樹脂硬化剤組成物、それを含有するエポキシ樹脂組成物、その硬化物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15825421

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016535981

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177005178

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15825421

Country of ref document: EP

Kind code of ref document: A1