WO2015182937A1 - 사이코스 에피머화 효소 및 이를 이용한 사이코스의 제조방법 - Google Patents

사이코스 에피머화 효소 및 이를 이용한 사이코스의 제조방법 Download PDF

Info

Publication number
WO2015182937A1
WO2015182937A1 PCT/KR2015/005208 KR2015005208W WO2015182937A1 WO 2015182937 A1 WO2015182937 A1 WO 2015182937A1 KR 2015005208 W KR2015005208 W KR 2015005208W WO 2015182937 A1 WO2015182937 A1 WO 2015182937A1
Authority
WO
WIPO (PCT)
Prior art keywords
epimerase
enzyme
seq
fructose
psicose
Prior art date
Application number
PCT/KR2015/005208
Other languages
English (en)
French (fr)
Inventor
김태균
김민수
김태용
송은범
오덕근
Original Assignee
대상 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대상 주식회사 filed Critical 대상 주식회사
Priority to US15/128,812 priority Critical patent/US9988618B2/en
Priority to JP2017503758A priority patent/JP6320621B2/ja
Priority to EP15800046.3A priority patent/EP3135762B1/en
Priority to CN201580018113.7A priority patent/CN106164265B/zh
Publication of WO2015182937A1 publication Critical patent/WO2015182937A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/24Preparation of compounds containing saccharide radicals produced by the action of an isomerase, e.g. fructose
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y501/00Racemaces and epimerases (5.1)
    • C12Y501/03Racemaces and epimerases (5.1) acting on carbohydrates and derivatives (5.1.3)

Definitions

  • the present invention relates to a novel psychocos epimerizing enzyme capable of converting fructose into D-psicose, a method for preparing the same from recombinant strains, and a method for preparing D-psicose from fructose using the same.
  • D-psicose is an epimer of carbon number 3 of fructose, which has a sweetness of 70% compared to sugar (Oshima 2006), but has only 0.3% energy, so it is a low-calorie sweetener for diet foods. It is a functional monosaccharide applicable to (Matsuo et al. 2002). In addition, it has a function of inhibiting glucose absorption to suppress blood sugar, so it can be applied to food and drink for diabetics, food and drink for receiving diabetics, and to inhibit abdominal fat accumulation by inhibiting enzyme activity involved in lipid synthesis in the liver. It can be used in various functional foods such as health food (Matsuo et al. 2001; Iida et al. 2008; Hayashi et al. 2010; Hossain et al. 2011).
  • Korean Patent Publication No. 10-0744479 discloses a method of producing a psychose by a cosmos epimerase derived from Agrobacterium tumefaciens. In addition, Korean Patent Publication No.
  • Republic of Korea Patent Publication No. 10-1106253 includes a polynucleotide encoding an enzyme with a cyclose 3-epimerase enzyme of Agrobacterium tumefaciens C58 having the activity of catalyzing the conversion of fructose to the psychos E. coli and a method for producing a cycos from fructose using the same are disclosed, and the Republic of Korea Patent Publication No. 10-1339443 Korean Patent Publication No.
  • 10-2008-0071176 discloses a ketose 3-epimerase derived from a microorganism belonging to the genus Rhizobium, and a method for converting fructose into cycos using the same.
  • Korean Patent Laid-Open Publication No. 10-1318422 discloses a D-psicose 3-epimerase derived from Crosstridiuim scindens and a method for producing a cycose from fructose using the same. .
  • 10-2014-0021974 discloses a D-psychose 3 derived from Treponema monia ZAS-1, which exhibits a rapid psychocosylation rate and stability at high temperatures by inducing mutations at the gene level.
  • -An epimerizing enzyme is disclosed
  • Korean Patent Publication No. 10-1203856 discloses an improved thermal stability of the cyclic episcopy obtained through the mutation of a wild type cosmos epimerizing enzyme derived from Agrobacterium tumefaciens. Merylated enzyme variants are disclosed.
  • the present invention is derived from the background of the prior art, the first object of the present invention has the activity of converting fructose to the psychos, has a maximum activity at a relatively high temperature or less than neutral pH, excellent thermal stability It is to provide a D-psicose 3-epimerase.
  • the inventors of the present invention show that the enzyme derived from Flavonifractor plautii exhibits high activity against the conversion of fructose to cyclose , has excellent thermal stability, high temperature range and neutral or mild acidity. It was found that the optimum activity in the pH range corresponding to the present invention was completed.
  • the present invention provides a cosmos epimerizing enzyme consisting of the amino acid sequence of SEQ ID NO: 1.
  • the present invention provides a polynucleotide encoding a cosmos epimerase enzyme consisting of the amino acid sequence of SEQ ID NO: 1.
  • the present invention also provides a primer pair for synthesizing a polynucleotide encoding a cosmos epimerase enzyme consisting of the amino acid sequence of SEQ ID NO: 1.
  • the present invention also provides a recombinant vector comprising a polynucleotide encoding a cosmos epimerase enzyme consisting of the amino acid sequence of SEQ ID NO: 1.
  • the present invention is transfected by a recombinant vector comprising a polynucleotide encoding a cosmos epimerase consisting of the amino acid sequence of SEQ ID NO: 1 or a polynucleotide encoding a cosmos epimerase consisting of the amino acid sequence of SEQ ID NO: Provided are transformed recombinant strains.
  • the present invention is transfected by a recombinant vector comprising a polynucleotide encoding a cosmos epimerase consisting of the amino acid sequence of SEQ ID NO: 1 or a polynucleotide encoding a cosmos epimerase consisting of the amino acid sequence of SEQ ID NO: Culturing the transformed recombinant strain to express the psychocos epimerase; And it provides a method for producing a cosmos epimerase enzyme comprising the step of separating the cosmos epimerase enzyme from the lysate of the recombinant strain expressing the cosmos epimerase.
  • the present invention provides a composition for producing a psychos comprising a cosmos epimerizing enzyme consisting of the amino acid sequence of SEQ ID NO: 1.
  • the present invention is transfected by a recombinant vector comprising a polynucleotide encoding a cosmos epimerase consisting of the amino acid sequence of SEQ ID NO: 1 or a polynucleotide encoding a cosmos epimerase consisting of the amino acid sequence of SEQ ID NO:
  • a composition for the production of a cosmos comprising a transformed recombinant strain, a culture of the recombinant strain or a lysate of the recombinant strain.
  • the present invention provides a method for producing a psychos comprising the step of reacting fructose with a cyclic epimerase or a composition comprising the cyclic epimerase consisting of the amino acid sequence of SEQ ID NO: 1.
  • the present invention also relates to a recombinant vector comprising a fructose comprising a polynucleotide encoding a cosmos epimerase consisting of an amino acid sequence of SEQ ID NO: 1 or a polynucleotide encoding a cosmos epimerase consisting of an amino acid sequence of SEQ ID NO: 1 It provides a method for producing a psychos comprising the step of reacting with a recombinant strain transformed by, a culture of the recombinant strain, a lysate of the recombinant strain or a composition comprising any one or more thereof.
  • Novel psychos epimerase is an enzyme having the activity of producing a psychos by epimerizing the third carbon position of fructose, the conversion of fructose to a psychos at a relatively high temperature and a neutral pH below It has the maximum activity against, excellent thermal stability, and enables mass production of cycos from fructose in high yield in a short time. Therefore, the cosmos epimerization enzyme according to the present invention is advantageous to industrially manufacture the cosmos, and the produced cosmos is useful for not only the functional sugar industry but also health food materials, pharmaceuticals, and cosmetic materials using the same. It is expected to be.
  • 1 is a cleavage map of pET-FDPE, a recombinant expression vector.
  • FIG. 2 shows the results of SDS-PAGE of D-psicose 3-epimerase purified through His tag affinity chromatography in Example 2 of the present invention.
  • Figure 3 is a graph showing the activity of the D- cyclase 3-epimerase of the present invention according to the type of metal ions added.
  • the enzyme activity in the case of treating each metal ion was shown as relative to the enzyme activity in the control group as 100.
  • Figure 4 is a graph showing the activity of the metal ions and treatment concentrations added to the activity of the D- cyclase 3-epimerase of the present invention.
  • FIG. 5 is a graph showing the activity of the D- cyclase 3-epimerase enzyme of the present invention by reaction pH. In FIG. 5, the enzyme activity was shown as the maximum activity at 100.
  • Figure 6 is a graph showing the activity of the D- cyclase 3-epimerase enzyme of the present invention by reaction temperature. In FIG. 6, the enzyme activity was shown as the maximum activity at 100.
  • Figure 7 is a graph showing the activity of each substrate of the D- cyclase 3-epimerase of the present invention.
  • the enzyme activity was shown as relative to the enzyme activity of 100 for the reaction based on the psychocos.
  • One aspect of the present invention is directed to a novel D-psicose 3-epimerase (hereinafter referred to as a cosmos epimerase) capable of converting fructose into a psychose.
  • Said psychos epimerase is derived from Flavonifractor plautii , has a maximum activity for the conversion of fructose to psychos at a relatively high temperature and less than neutral pH, and excellent thermal stability It is possible to mass-produce cyclose from fructose in high yield in a short time.
  • the cyclic epimerase enzyme amplifies a specific DNA among a myriad of DNA present in Flavonifractor plautii genomic DNA by a polymerase reaction and inserts the amplified specific DNA into an expression vector to produce a recombinant expression vector.
  • the host strain may be transformed with the recombinant expression vector to prepare a recombinant strain, and then the recombinant strain may be cultured and expressed.
  • Psychos epimerase according to the present invention preferably has a molecular weight of 30 to 34 kDa, an optimum activity temperature in the range of 55 to 67 °C, the optimum active pH is in the range of 6.5 to 8.
  • Psychos epimerase according to the present invention is composed of the amino acid sequence of SEQ ID NO: 1, the equivalent range of the cosmos epimerase according to the present invention is not limited thereto.
  • the equivalent range of the cosmos epimerase according to the present invention may be one in which some of the amino acids of SEQ ID NO: 1 are substituted, inserted and / or deleted as long as the activity for converting fructose to psychos is maintained.
  • Substitution of the amino acid is preferably made by conservative amino acid replacement which does not change the properties of the protein.
  • modification of the amino acid may be made by glycosylation, acetylation, phosphorylation and the like.
  • the equivalent range of the cosmos epimerase according to the present invention may include a protein in which the structural stability against heat, pH, etc. is increased or the activity for the conversion of fructose to the psychos is increased by a mutation or modification on the amino acid sequence. have.
  • the equivalent range of the cosmos epimerase according to the present invention includes an amino acid sequence having at least 70%, at least 80%, at least 90%, at least 95%, or at least 99% homology with the amino acid sequence of SEQ ID NO: 1 It may be. Table 1 below shows amino acids that can replace amino acids in proteins by conservative amino acid substitutions.
  • Another aspect of the present invention relates to a method for preparing a novel psychocos epimerase or to various elements necessary for producing a novel psychocos epimerase.
  • Various elements required to prepare the novel cyclic epimerase include polynucleotides, primer pairs, recombinant vectors, recombinant strains, and the like.
  • the polynucleotide is a polynucleotide encoding an epimerization enzyme consisting of the amino acid sequence of SEQ ID NO: 1, and preferably consists of the nucleotide sequence of SEQ ID NO: 2.
  • polynucleotide refers to any polyribonucleotide (RNA) or polydeoxyribonucleotide (DNA) that is non-modified or modified.
  • the polynucleotide includes single- or double-stranded DNA, DNA that is a mixture of single- and double-stranded regions, single- and double-stranded RNA, RNA that is a mixture of single- and double-stranded regions, or hybrid molecules thereof.
  • the equivalent range of the polynucleotide encoding the epimerizing enzyme includes a sequence having substantial identity to the nucleotide sequence of SEQ ID NO: 2.
  • the substantial identity above aligns the nucleotide sequence of SEQ ID NO: 2 with any other sequence as closely as possible and analyzes the sequence so that any other sequence is at least 70%, at least 90%, Or 98% or more sequence homology.
  • One of ordinary skill in the art can use the same or similar to the extent of the substantial homology by substituting, adding or deleting one or more bases of the base sequence of the polynucleotide using genetic recombination techniques known in the art.
  • polynucleotides encoding enzymes with activity can be prepared. Such homology comparisons can be performed by calculating homology between two or more sequences as a percentage using a commercially available computer program.
  • the primer pair is for synthesizing a polynucleotide encoding a cosmos epimerizing enzyme consisting of the amino acid sequence of SEQ ID NO: 1, preferably the forward primer having a nucleotide sequence of SEQ ID NO: 3 and the nucleotide sequence of SEQ ID NO: 4 It consists of a reverse primer having a.
  • the recombinant vector comprises a polynucleotide encoding a cosmos epimerase enzyme consisting of the amino acid sequence of SEQ ID NO: 1.
  • the recombinant vector may be provided in a form in which a polynucleotide encoding a cyclic epimerase is inserted into a cloning vector or an expression vector using known standard methods.
  • the term "cloning vector" is defined as a substance capable of carrying and reproducing a DNA fragment into a host cell.
  • the cloning vector may further include a polyadenylation signal, a transcription termination sequence, and multiple cloning sites.
  • the multiple cloning site includes at least one endonuclease restriction site.
  • the cloning vector may further comprise a promoter.
  • the polynucleotide encoding the cyclic epimerase may be located upstream of the polyadenylation signal and the transcription termination sequence, and at least one endonuine.
  • An endonuclease restriction site may be located upstream of the polyadenylation signal and the transcription termination sequence.
  • expression vector in the present invention is defined as the DNA sequence necessary for the transcription and translation of the cloned DNA in a suitable host.
  • expression vector in the present invention means a gene construct comprising an essential regulatory element operably linked to an insert such that the insert is expressed when present in a cell of an individual.
  • the expression vector can be prepared and purified using standard recombinant DNA techniques.
  • the type of the expression vector is not particularly limited as long as it functions to express a desired gene in various host cells of prokaryotic and eukaryotic cells and to produce a desired protein, but has a promoter that exhibits strong activity and a strong expression ability, and a natural state.
  • Vectors capable of producing large quantities of foreign proteins in the form of The expression vector preferably contains at least a promoter, an initiation codon, a gene encoding a desired protein, and a termination codon terminator.
  • Promoter means the minimum sequence sufficient to direct transcription.
  • sufficient promoter constructs may be included to express a regulated promoter dependent gene induced by cell type specific or external signals or agents, which constructs may be located in the 5 'or 3' portion of the gene. . Both conservative promoters and inducible promoters are included. Promoter sequences may be derived from prokaryotes, eukaryotes or viruses.
  • operably linked means that one function is regulated by another with polynucleotide sequence association on a single polynucleotide.
  • a promoter can control the expression of a coding sequence (ie, when the coding sequence is under transcriptional control of the promoter)
  • the promoter may be linked to the coding sequence to operate, or the ribosomal binding site may facilitate translation. If located, the ribosomal binding site is linked to the coding sequence to operate.
  • the coding sequence can be linked to and operate in regulatory sequences in either the sense direction or the antisense direction.
  • the recombinant vector is preferably an expression vector, and the expression vector preferably has a cleavage map of FIG. 1.
  • the recombinant strain comprises a polynucleotide that is transformed by a polynucleotide encoding a cosmos epimerase consisting of the amino acid sequence of SEQ ID NO: 1 or encoding a cosmos epimerase consisting of the amino acid sequence of SEQ ID NO: 1 Transformed by a recombinant vector.
  • the term “recombinant strain” refers to a cell into which a polynucleotide encoding one or more target proteins or an expression vector having the same is introduced and transformed into a host cell.
  • Methods for preparing a transformant by introducing the expression vector into a host cell include transient transfection, micro-injection, transduction, cell fusion, calcium phosphate precipitation, liposome mediated transfection ( liposemmediated transfection, DEAE Dextran-mediated transfection, polybrene-mediated transfection, electroporation, electroinjection, PEG, etc.
  • liposemmediated transfection liposemmediated transfection, DEAE Dextran-mediated transfection, polybrene-mediated transfection, electroporation, electroinjection, PEG, etc.
  • There is a chemical treatment method, a method using a gene gun, etc. but is not limited thereto.
  • the host cell that can be transformed with the expression vector in the present invention is not limited to the kind if it is known in the art, such as prokaryotic cells, plant cells, insect cells, animal cells, preferably high DNA introduction efficiency A host having high expression efficiency of the introduced DNA is usually used.
  • the host cell may be Escherichia coli.
  • Bacillus subtilis Bacillus strains such as Bacillus thuringiensis, Corynebacterial strains such as Corynebacterium glutamicum, Salmonella strains such as Salmonella typhimurium, Other Ceratia Strains selected from the group consisting of enterobacteria and strains such as Marsesons and various Pseudomonas species may be used.
  • the method for preparing the cyclic epimerase is transformed by a polynucleotide encoding a cyclic epimerase consisting of the amino acid sequence of SEQ ID NO: 1 or encoding a cosmos epimerase consisting of the amino acid sequence of SEQ ID NO: 1 Culturing the recombinant strain transformed with the recombinant vector comprising a polynucleotide to express a physicosomal enzyme; And separating the sicose epimerase from the lysate of the recombinant strain in which the cosmos epimerase is expressed.
  • Expression of the protein by the host cell can be induced using the inducing factor IPTG (isopropyl-1-thio- ⁇ -D-galactopyranoside), the induction time can be controlled to maximize the amount of protein.
  • the psychos epimerase can be recovered from the lysate of the recombinant strain.
  • Cells used for protein expression can be disrupted by a variety of physical or chemical means, such as freeze-thaw repetition, sonication, mechanical disruption or cytolysis, and can be isolated or purified by conventional biochemical separation techniques (Sambrook et al., Molecular Cloning: A laborarory Manual, 2nd Ed., Cold Spring Harbor Laboratory Press, 1989; Deuscher, M., Guide to Protein Purification Methods Enzymology, Vol. 182. Academic Press. Inc., San Diego, CA, 1990).
  • the method of separating or purifying proteins expressed by the host cell may include electrophoresis, centrifugation, gel filtration, precipitation, dialysis, chromatography (ion exchange chromatography, affinity chromatography, immunosorbent affinity chromatography, Reversed phase HPLC, gel permeation HPLC), isoelectric focus and various variations or complex methods thereof.
  • the step of separating the cosmos epimerase from the lysate of the recombinant strain may be preferably carried out by affinity chromatography using a peptide tag (affinity chromatography).
  • the peptide tag is known as HA tag, FLAG tag, His tag, BCCP (biotin carboxyl carrier protein), c-myc tag, V5 tag, glutathione-S-transferase (GST) or maltose binding protein (MBP), etc.
  • Various tags may be used, and preferably, His tags. His-tagged proteins are specifically trapped on a column of Ni-NTA (nickel-nitrilotriacetic acid) resin and can be eluted by EDTA or imidazole.
  • Another aspect of the present invention is directed to a method for preparing psychocos from fructose or to various elements necessary for producing psychocos from fructose.
  • various elements necessary to prepare a psychose from the fructose is a composition for producing a psychose.
  • composition for producing a psychos includes a psychos epimerizing enzyme consisting of the amino acid sequence of SEQ ID NO: 1.
  • another example of the composition for producing a psychos is transformed into a polynucleotide encoding a psychos epimerizing enzyme consisting of the amino acid sequence of SEQ ID NO: 1 or encoding a psychos epimerizing enzyme consisting of the amino acid sequence of SEQ ID NO: 1
  • a recombinant strain transformed with a recombinant vector comprising a polynucleotide, a culture of said recombinant strain or a lysate of said recombinant strain.
  • the composition for producing the psychos may preferably further include one or more selected from the group consisting of manganese ions, nickel ions and cobalt ions, more preferably may further include nickel ions or cobalt ions.
  • the novel psychocos epimerase according to the present invention exhibits metalloenzyme properties in which activation is controlled by metal ions, and the reaction by the enzyme is carried out in the presence of specific metal ions such as nickel ions or cobalt ions. Can increase the production yield of the course.
  • one example of a method for producing a psychose from fructose includes the step of reacting fructose with a composition comprising a cyclic epistemase or a cosmos epimerase consisting of the amino acid sequence of SEQ ID NO: 1.
  • a method for preparing a psychose from fructose is a fructose transformed by a polynucleotide encoding a cyclic epimerase enzyme consisting of the amino acid sequence of SEQ ID NO: 1 or a psychose consisting of the amino acid sequence of SEQ ID NO: 1 Reacting with a recombinant strain transformed with a recombinant vector comprising a polynucleotide encoding an epimerase, a culture of said recombinant strain, a lysate of said recombinant strain, or a composition comprising any one or more thereof. .
  • the method for producing a psychose from fructose may further comprise the step of adding a metal ion, the type of metal ion is as described above.
  • the metal ion may be added to fructose, which is a substrate, or added to a mixture of enzyme and fructose.
  • the metal ion is added to the carrier to which the enzyme is immobilized (before the addition of fructose), to the mixture of the carrier to which the enzyme is immobilized (after the addition of fructose) or to the mixture of fructose and the mixture upon addition of fructose. It may be added in the form.
  • the metal ions may be added to the culture or culture may be performed in a culture medium to which the metal ions are added.
  • the psychos epimerase or the recombinant strain is preferably immobilized on a carrier.
  • the carrier may create an environment in which the activity of the immobilized enzyme can be maintained for a long time, and may be selected from all known carriers that can be used for enzyme immobilization.
  • sodium alginate may be used as the carrier.
  • Sodium alginate is a natural colloidal polysaccharide that is abundant in the algae cell walls.
  • the strain or enzyme may be stably immobilized to yield an excellent psychocos yield.
  • sodium alginate solution e.g. aqueous sodium alginate solution
  • w / v aqueous sodium alginate solution
  • sodium alginate at a concentration of (w / v) of about 2.5%, in order to further improve the yield of psychose.
  • the solution can be used for immobilization of the recombinant strain.
  • the reaction temperature in the method for producing a psychocos from the fructose is 55 ⁇ 67 °C, preferably 55 ⁇ 65 °C, considering the stability of the enzyme, more preferably in the range of 55 ⁇ 60 °C, the reaction pH is 6.5 -8, Preferably it is 6.5-7.5, More preferably, it is the range of 6.5-7.
  • the concentration of fructose is not particularly limited in the method for producing a psychose from fructose, in consideration of productivity and economical efficiency, it is preferable that it is 35 to 75% (w / w) based on the total reactants, and 40 to 700% It is more preferable that it is (w / w).
  • the amount of the enzyme used in the method for producing a psychocos from fructose may be 0.001 to 0.1 mg / ml, preferably 0.01 to 0.1 mg / ml, more preferably 0.02 to 0.05 mg / ml, based on the total reactants. have.
  • the host strain of the recombinant strain is preferably a food-safe strain.
  • the food-safe strain refers to GRAS (generally accepted as safe) strains that are generally recognized as safe, and may be, for example, Corynebacterium strains.
  • the genus Corynebacterium strain is an industrial microorganism producing chemicals having various uses in the fields of feed, pharmaceuticals and foods including L-lysine, L-threonine and various nucleic acids. These strains of the genus Corynebacterium are GRAS (Generally Recognized As Safe) strains, and have strain characteristics that are easy for genetic manipulation and mass culture.
  • the Corynebacterium strain is a strain having a high stability in a variety of process conditions, and has a relatively solid cell membrane structure compared to other bacteria, and because of this it is present in a stable state under high osmotic pressure due to high sugar concentration, etc. Biological properties. Specific examples of the strains of the genus Corynebacterium include Corynebacterium glutamicum ( Corynebacterium glutamicum ).
  • Genomic DNA was extracted from Flavonifractor plautii KCTC 5970, distributed by the Korea Microbial Resources Center, and used as a template.
  • a polymerase chain reaction (PCR) was performed using a primer for cloning the polynucleotide of No. 2) and an Ex-Taq (TAKARA) polymerase.
  • Table 2 shows the primers used to clone the gene encoding the D-psicose 3-epimerase from the genomic DNA of Flavonifractor plautii .
  • the primers shown in Table 2 were prepared by Bioneer co., KR.
  • the target DNA amplified by PCR corresponds to the polynucleotide of SEQ ID NO: 2.
  • the target DNA amplified by the PCR reaction was inserted into the same restriction enzyme recognition site of the expression vector pET15b vector (Novagen) using the restriction enzymes Nde I and Xho I to prepare a recombinant expression vector pET-FDPE.
  • a single colony of the transformed recombinant strain was inoculated in 15 ml of LB-ampicilline medium (Difco) and then precultured for about 6 hours at 37 ° C. and 200 rpm. The whole culture was then inoculated in 500 ml of LB-ampicilline medium and shaken at 37 ° C. and 200 rpm. Thereafter, when the absorbance (at 600 nm) of the culture solution was 0.5, IPTG was added to a concentration of 0.1 mM to induce overexpression of the target enzyme. At this time, from the time of induction of overexpression, the culture was switched to the conditions of 16 ° C. and 150 rpm and maintained for about 16 hours. Thereafter, the culture medium of the recombinant strain was centrifuged at 13000 rpm for 2 minutes to remove the supernatant, and the cells of the recombinant strain were recovered.
  • LB-ampicilline medium Difco
  • the cells of the recovered recombinant strains were suspended in lysis buffer (50 mM Tris_HCl 300 mM NaCl pH8.0, 10 mM imidazol) and treated with ultrasound to disrupt cells.
  • the cell lysate was centrifuged at 13000 rpm for 10 minutes to collect only the supernatant, and then applied to a Ni-NTA column (Bio-Rad, Profinia) previously equilibrated with lysis buffer, followed by 20 mM imidazol in 50 mM Tris_HCl 300 mM NaCl pH8.0. Buffer solution containing 200 mM imidazol was flowed sequentially.
  • the target protein was eluted by flowing 50 mM Tris_HCl 300 mM NaCl pH8.0 and 200 mM imidazol.
  • the eluted protein was confirmed to be D-psicose 3-epimerase from the experimental results described below.
  • the eluted protein was then stored in a buffer solution for measuring enzyme activity (PIPES, pH 7.5) and used in the next experiment.
  • PPES enzyme activity
  • SDS-PAGE was performed on the eluted protein, and it was confirmed that the size of the eluted protein was 32 kDa.
  • FIG. 2 shows the results of SDS-PAGE of D-psicose 3-epimerase purified through His tag affinity chromatography in Example 2 of the present invention.
  • Figure 3 is a graph showing the activity of the D- cyclase 3-epimerase of the present invention according to the type of metal ions added.
  • the enzyme activity in the case of treating each metal ion was shown as relative to the enzyme activity in the control group as 100.
  • the D-psicose 3-epimerase obtained in Example 2 was found to increase the activity of converting fructose to psychos by the addition of manganese ions, nickel ions, and cobalt ions. In particular, the effect of the increase of activity was large in nickel ion and cobalt ion.
  • FIG. 4 is a graph showing the activity of the metal ions and treatment concentrations added to the activity of the D- cyclase 3-epimerase of the present invention. As shown in FIG. 4, manganese ions, nickel ions, and cobalt ions were found to increase the activity of D-psicose 3-epimerase at various concentration ranges.
  • a test solution of various pHs was prepared using MES buffer, PIPES buffer, EPPS buffer, and CHES buffer. Specifically, NiSO 4 was treated in a buffer solution of the purified enzyme at a concentration of 1 mM, and then mixed with a 100 mM fructose aqueous solution in a weight ratio of 1: 1, the buffer concentration was 50 mM, and the enzyme concentration was 0.025 ml / mg. , Test solutions were prepared at various pHs with a fructose concentration of 50 mM. Thereafter, the test solution was reacted at 60 ° C.
  • FIG. 5 is a graph showing the activity of the D- cyclase 3-epimerase enzyme of the present invention by reaction pH. In FIG. 5, the enzyme activity was shown as the maximum activity at 100. As shown in FIG. 5, the D-psicose 3-epimerase of the present invention showed high activity at a pH of 6.5-8, preferably 6.5-7.5, and showed maximum activity at pH 7.
  • NiSO 4 was treated in a buffer solution of purified enzyme (PIPES, pH 7.5) at a concentration of 1 mM, and then mixed with a 100 mM fructose aqueous solution in a weight ratio of 1: 1 to pH 7.0 and enzyme concentration of 0.025 ml. / Mg and a fructose concentration of 50 mM was made. Thereafter, the test solution was allowed to react at various temperatures for 10 minutes, and then the reaction was stopped by addition of aqueous hydrochloric acid solution. Thereafter, the amount of produced cosmos (mM) was analyzed by HPLC, and the enzyme activity was calculated by dividing it by the amount of enzyme and the reaction time.
  • PPES purified enzyme
  • Figure 6 is a graph showing the activity of the D- cyclase 3-epimerase enzyme of the present invention by reaction temperature. In FIG. 6, the enzyme activity was shown as the maximum activity at 100. As shown in FIG. 6, the D-psicose 3-epimerase of the present invention exhibited high activity at a temperature of 55-67 ° C. and showed maximum activity at 65 ° C. FIG.
  • NiSO 4 was treated in a buffer solution of purified enzyme (PIPES, pH 7.5) at a concentration of 1 mM, and then mixed with a 100 mM aqueous solution of a substrate at a weight ratio of 1: 1.
  • the pH was 7.0 and the enzyme concentration was 0.025 ml / mg.
  • a test solution having a substrate concentration of 50 mM Thereafter, the test solution was reacted at 65 ° C. for 10 minutes, and then the reaction was stopped by addition of aqueous hydrochloric acid solution. Thereafter, the corresponding epimer amount (mM) of the substrate was analyzed by HPLC, and the enzyme activity was calculated by dividing it by the enzyme amount and the reaction time.
  • Figure 7 is a graph showing the activity of each substrate of the D- cyclase 3-epimerase of the present invention.
  • the enzyme activity was shown as relative to the enzyme activity of 100 for the reaction based on the psychocos.
  • the D-psicose 3-epimerase of the present invention exhibited high activity against psychos and fructose, and in particular, the activity of converting fructose to D-psicose was conventional D-psicose 3 It seems to be very high compared to epimerase.
  • D-psicose can be prepared from fructose in high yield using the D-psicose 3-epimerase of the present invention.
  • Example 2 After preparing the D- cyclose 3-epimerase obtained in Example 2 to a concentration of 0.05 mg / ml in 50 mM PIPES buffer solution, it was set to a temperature of 55 °C, 60 °C, 65 °C and 70 °C, respectively It was soaked in water bath and stored for heat treatment. After removing the buffer solution of the enzyme purified by storage time, and treated with NiSO 4 at a concentration of 1 mM, the buffer solution of the enzyme was mixed with a 100 mM aqueous solution in a weight ratio of 1: 1 to pH 7.0 and the enzyme concentration Was 0.025 mL / mg, and a test solution was prepared having a substrate concentration of 50 mM.
  • the test solution was reacted at 65 ° C. for 10 minutes, and then the reaction was stopped by addition of aqueous hydrochloric acid solution. Thereafter, the amount of produced cosmos (mM) was analyzed by HPLC, and the enzyme activity was calculated by dividing it by the amount of enzyme and the reaction time. As a result, the enzyme activity was maintained even after heat treatment of the buffer solution of the enzyme purified at 55 °C for 250 minutes. In addition, when the buffer solution of the enzyme purified at 60 °C heat treatment for about 200 minutes, the enzyme activity was reduced to about 80% level than before the heat treatment. In general, most of the D-cyclic 3-epimerases have a half-life at 50 ° C. (the heat treatment time at which the activity of the enzyme is 50% compared to before heat treatment) is approximately one hour. D-Pycosyl 3-epimerase was shown to have very good thermal stability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 발명은 플라보니프랙터 플라우티(Flavonifractor plautii)에서 유래하고, 과당을 사이코스로 전환시킬 수 있는 신규 사이코스 에피머화 효소를 제공한다. 본 발명에 따른 신규한 사이코스 에피머화 효소는 과당의 3번째 탄소 위치를 에피머화하여 사이코스를 생산하는 활성을 보유한 효소로서, 상대적으로 높은 온도와 중성 이하의 pH에서 과당의 사이코스로의 전환에 대한 최대 활성을 가지고, 열 안정성이 우수하고, 짧은 시간 동안에 높은 수율로 과당으로부터 사이코스의 대량 생산이 가능하다. 따라서, 본 발명에 따른 사이코스 에피머화 효소는 사이코스를 산업적으로 제조하는데에 유리하고, 이렇게 생산된 사이코스는 기능성 당 산업뿐만 아니라 이를 이용한 건강식품 소재, 의약용, 화장품용 소재 등 유용하게 사용될 것으로 기대된다.

Description

사이코스 에피머화 효소 및 이를 이용한 사이코스의 제조방법
본 발명은 과당을 D-사이코스로 전환시킬 수 있는 신규 사이코스 에피머화 효소, 재조합 균주로부터 이를 제조하는 방법 및 이를 이용하여 과당으로부터 D-사이코스를 제조하는 방법 등에 관한 것이다.
D-사이코스(D-psicose)는 과당(fructose)의 3번 탄소의 에피머(epimer)로써 설탕과 비교했을 때 70% 감미도를 갖지만(Oshima 2006) 에너지는 0.3% 밖에 없으므로 다이어트 식품의 저칼로리 감미료로 적용 가능한 기능성 단당류이다(Matsuo et al. 2002). 또한 포도당의 흡수를 억제하여 혈당 억제 작용을 하는 기능이 있어 당뇨병 환자용 음식품, 수신용 음식품 등에 응용할 수 있으며, 간에서의 지질합성에 관여하는 효소 활성을 억제는 기능이 있어 복부지방 축적 억제를 할 수 있으므로 건강식품 등 여러 기능성 식품 등에 사용할 수 있다(Matsuo et al. 2001; Iida et al. 2008; Hayashi et al. 2010; Hossain et al. 2011).
위와 같은 특징으로 사이코스는 설탕을 대체 할 수 있는 좋은 소스이나 사이코스는 자연계에 극히 드물게 존재하는 단당류인 희소당에 속하기 때문에 식품산업에 적용하기 위해서는 사이코스를 효율적으로 생산하는 방법이 필요하다. 기존의 사이코스 생산 방법으로는 주로 화학적 과정을 거쳐 생산되었다. 빌릭(Bilik)등은 몰리브산 이온의 촉매작용을 이용하여 과당에서 사이코스로 전환하는 방법을 제안하였다. 맥도날드(McDonald)는 1,2:4,5-디-δ-이소프로필리덴-베타-D-프락토피라노스(1,2:4,5-di-δ-isopropylidene-beta-D-fructopyranose)로부터 3단계의 화학적 처리과정으로 사이코스를 생산하였다. 또한 도너 (Doner)는 에탄올과 트리메틸아민과 함께 과당을 가열하여 사이코스를 생산하였다. 그러나 이들 화학적 생산방법에는 비용이 많이 소모되는 반면 그 효율은 낮고 또한 부산물들이 많이 발생한다는 단점이 있다.
생물학적 사이코스 생산방법으로는 미생물의 세포반응을 이용하여 갈락티톨 (galactitol), D-타가토스 또는 D-탈리톨 등으로부터 사이코스를 생산하는 방법이 제안되었다(Ken Izumori). 그러나 이 방법은 기질이 희소당에 속하기 때문에 산업적 생산에 응용하기 힘들다. 산업화에 가장 효율적인 방법은 D-케토오스 3-에피머화효소 군중 과당에서 사이코스로 전환하는 효소를 찾는 방법이다. 기존에 발표된 내용은 크로스트리디움 셀루로리티쿰 H(10)(Mu et al. 2011), 아그로박테리움 투메패시언스(Kim et al. 2006), 슈도모나스 치코리(Itoh at al. 1994), 리조비움 스페로이데스 (Zhang et al. 2009) 유래의 D-타가토스 3-에피머화 효소를 대장균에 삽입하여 형질전환 시킨 후 형질전환 된 대장균에서 발현된 D-타가토스 3-에피머화 효소를 사용하여 과당에서 사이코스를 생산하였다. 효소를 사용하여 과당에서 사이코스를 생산하는 기술과 관련하여, 대한민국 등록특허공보 제10-0744479호에는 아그로박테리움 투메패시엔스 유래의 사이코스 에피머화 효소에 의한 사이코스의 생산 방법이 개시되어 있고, 대한민국 등록특허공보 제10-0832339호에는 과당을 사이코스로 전환하는 활성을 지닌 시노리조비움 속 (Sinorhizobium) YB-58 KCTC 10983BP와 이를 이용하여 과당을 사이코스로 전환하는 방법이 개시되어 있고, 대한민국 등록특허공보 제10-1106253호에는 과당의 사이코스로의 전환을 촉매하는 활성을 가진 아그로박테리움 투메패시엔스 C58의 사이코스 3-에피머화 효소가진 효소를 코딩하는 폴리뉴클레오티드를 포함하는 대장균 및 이를 이용하여 과당으로부터 사이코스를 생산하는 방법이 개시되어 있고, 대한민국 등록특허공보 제10-1339443호에는 공개특허공보 제10-2008-0071176호에는 리조븀속(genus Rhizobium)에 속하는 미생물로부터 유래하는 케토오스 3-에피머라아제(ketose 3-epimerase) 및 이를 이용하여 과당을 사이코스로 전환하는 방법이 개시되어 있고, 대한민국 등록특허공보 제10-1318422호에는 크로스트리디움 신댄스(Clostridiuim scindens)로부터 유래된 D-사이코스 3-에피머화 효소 및 이를 이용하여 과당으로부터 사이코스를 생산하는 방법이 개시되어 있다.
그러나 기존의 기능이 밝혀진 효소적 방법에 의하면 사이코스를 생산하는 방법은 중온 및 알칼리 조건의 pH 하에서 최적을 나타낸다. 알칼리 조건하에서의 반응은 비특이적 반응과 당의 갈변화를 유도하기 때문에 산업화에 적당하지 않다. 또한 기존의 효소들은 높은 온도에서 안정성이 떨어지거나 느린 반응속도적 측면으로 인해 산업화에 적용되는 사이코스 생산의 제조원가를 상승하는 요인을 가지고 있는 문제가 있었다. 그러므로 사이코스의 생산 수율, 온도, pH 및 반응 속도 모두가 산업화에 적합한 신규한 D-사이코스 3-에피머화 효소 개발이 필요하다. 이와 관련하여 대한민국 공개특허공보 제10-2014-0021974호에는 유전자 수준에서 돌연변이를 유도하여 높은 온도에서의 빠른 사이코스 전환속도와 안정성을 보이는 트레포네마 프리미티아 ZAS-1 유래의 D-사이코스 3-에피머화 효소가 개시되어 있고, 대한민국 등록특허공보 제10-1203856호에는 아그로박테리움 투머파시엔스(Agrobacterium tumefaciens) 유래의 야생형 사이코스 에피머화 효소의 변이를 통해 수득한 열 안정성이 향상된 사이코스 에피머화 효소 변이체가 개시되어 있다.
본 발명은 종래의 배경하에서 도출된 것으로서, 본 발명은 첫 번째 목적은 과당을 사이코스로 전환하는 활성을 가지고 있고, 상대적으로 높은 온도 또는 중성 이하의 pH에서 최대 활성을 가지며, 열 안정성이 우수한 신규 D-사이코스 3-에피머화 효소를 제공하는데에 있다.
본 발명의 두 번째 목적은 신규 D-사이코스 3-에피머화 효소를 제조하는 방법 또는 신규 D-사이코스 3-에피머화 효소를 제조하기 위해 필요한 다양한 요소들을 제공하는데에 있다.
본 발명의 세 번째 목적은 과당으로부터 사이코스를 제조하는 방법 또는 과당으로부터 사이코스를 제조하기 위해 필요한 다양한 요소들을 제공하는데에 있다.
본 발명의 발명자들은 플라보니프랙터 플라우티(Flavonifractor plautii)에서 유래하는 효소가 과당을 사이코스로로 전환하는 것에 대해 높은 활성을 나타내고, 열 안정성이 우수하고, 고온의 온도 범위 및 중성 또는 약 산성에 해당하는 pH 범위에서 최적 활성을 보인다는 점을 발견하고, 본 발명을 완성하였다.
상기 첫 번째 목적을 해결하기 위하여 본 발명은 서열번호 1의 아미노산 서열로 이루어진 사이코스 에피머화 효소를 제공한다.
상기 두 번째 목적을 해결하기 위하여, 본 발명은 서열번호 1의 아미노산 서열로 이루어진 사이코스 에피머화 효소를 코딩하는 폴리뉴클레오티드를 제공한다. 또한, 본 발명은 서열번호 1의 아미노산 서열로 이루어진 사이코스 에피머화 효소를 코딩하는 폴리뉴클레오티드를 합성하기 위한 프라이머 쌍을 제공한다. 또한, 본 발명은 서열번호 1의 아미노산 서열로 이루어진 사이코스 에피머화 효소를 코딩하는 폴리뉴클레오티드를 포함하는 재조합 벡터를 제공한다. 또한, 본 발명은 서열번호 1의 아미노산 서열로 이루어진 사이코스 에피머화 효소를 코딩하는 폴리뉴클레오티드 또는 서열번호 1의 아미노산 서열로 이루어진 사이코스 에피머화 효소를 코딩하는 폴리뉴클레오티드를 포함하는 재조합 벡터에 의해 형질전환된 재조합 균주를 제공한다. 또한, 본 발명은 서열번호 1의 아미노산 서열로 이루어진 사이코스 에피머화 효소를 코딩하는 폴리뉴클레오티드 또는 서열번호 1의 아미노산 서열로 이루어진 사이코스 에피머화 효소를 코딩하는 폴리뉴클레오티드를 포함하는 재조합 벡터에 의해 형질전환된 재조합 균주를 배양하여 사이코스 에피머화 효소를 발현시키는 단계; 및 상기 사이코스 에피머화 효소가 발현된 재조합 균주의 파쇄물로부터 사이코스 에피머화 효소를 분리하는 단계를 포함하는 사이코스 에피머화 효소의 제조방법을 제공한다.
상기 세 번째 목적을 해결하기 위하여, 본 발명은 서열번호 1의 아미노산 서열로 이루어진 사이코스 에피머화 효소를 포함하는 사이코스 생산용 조성물을 제공한다. 또한, 본 발명은 서열번호 1의 아미노산 서열로 이루어진 사이코스 에피머화 효소를 코딩하는 폴리뉴클레오티드 또는 서열번호 1의 아미노산 서열로 이루어진 사이코스 에피머화 효소를 코딩하는 폴리뉴클레오티드를 포함하는 재조합 벡터에 의해 형질전환된 재조합 균주, 상기 재조합 균주의 배양물 또는 상기 재조합 균주의 파쇄물을 포함하는 사이코스 생산용 조성물을 제공한다. 또한, 본 발명은 과당을 서열번호 1의 아미노산 서열로 이루어진 사이코스 에피머화 효소 또는 상기 사이코스 에피머화 효소를 포함하는 조성물과 반응시키는 단계를 포함하는 사이코스의 제조방법을 제공한다. 또한, 본 발명은 과당을 서열번호 1의 아미노산 서열로 이루어진 사이코스 에피머화 효소를 코딩하는 폴리뉴클레오티드 또는 서열번호 1의 아미노산 서열로 이루어진 사이코스 에피머화 효소를 코딩하는 폴리뉴클레오티드를 포함하는 재조합 벡터에 의해 형질전환된 재조합 균주, 상기 재조합 균주의 배양물, 상기 재조합 균주의 파쇄물 또는 이들 중 어느 하나 이상을 포함하는 조성물과 반응시키는 단계를 포함하는 사이코스의 제조방법을 제공한다.
본 발명에 따른 신규한 사이코스 에피머화 효소는 과당의 3번째 탄소 위치를 에피머화하여 사이코스를 생산하는 활성을 보유한 효소로서, 상대적으로 높은 온도와 중성 이하의 pH에서 과당의 사이코스로의 전환에 대한 최대 활성을 가지고, 열 안정성이 우수하고, 짧은 시간 동안에 높은 수율로 과당으로부터 사이코스의 대량 생산이 가능하다. 따라서, 본 발명에 따른 사이코스 에피머화 효소는 사이코스를 산업적으로 제조하는데에 유리하고, 이렇게 생산된 사이코스는 기능성 당 산업뿐만 아니라 이를 이용한 건강식품 소재, 의약용, 화장품용 소재 등 유용하게 사용될 것으로 기대된다.
도 1은 재조합 발현벡터인 pET-FDPE의 개열 지도이다.
도 2는 본 발명의 실시예 2에서 His 태그 어피니티 크로마토그래피를 통해 정제된 D-사이코스 3-에피머화 효소에 대해 SDS-PAGE를 실시한 결과이다.
도 3은 본 발명의 D-사이코스 3-에피머화 효소의 활성을 첨가된 금속 이온 종류에 따라 나타낸 그래프이다. 도 3에서 각 금속 이온을 처리한 경우의 효소 활성은 대조군에서의 효소 활성을 100으로 하여 상대적으로 나타내었다.
도 4는 본 발명의 D-사이코스 3-에피머화 효소의 활성을 첨가된 금속 이온 종류 및 처리 농도별로 나타낸 그래프이다.
도 5는 본 발명의 D-사이코스 3-에피머화 효소의 활성을 반응 pH별로 나타낸 그래프이다. 도 5에서 효소 활성은 최대 활성을 100으로 하여 상대적으로 나타내었다.
도 6은 본 발명의 D-사이코스 3-에피머화 효소의 활성을 반응 온도별로 나타낸 그래프이다. 도 6에서 효소 활성은 최대 활성을 100으로 하여 상대적으로 나타내었다.
도 7은 본 발명의 D-사이코스 3-에피머화 효소의 기질별 활성을 나타낸 그래프이다. 도 7에서 효소 활성은 사이코스를 기질로 하는 반응의 효소 활성을 100으로 하여 상대적으로 나타내었다.
이하, 본 발명을 구체적으로 설명한다.
본 발명의 일 측면은 과당을 사이코스로 전환시킬 수 있는 신규 D-사이코스 3-에피머화 효소(이하, 사이코스 에피머화 효소라 한다)에 관한 것이다. 상기 사이코스 에피머화 효소는 플라보니프랙터 플라우티(Flavonifractor plautii)에서 유래한 것으로서, 상대적으로 높은 온도와 중성 이하의 pH에서 과당의 사이코스로의 전환에 대한 최대 활성을 가지고, 열 안정성이 우수하고, 짧은 시간 동안에 높은 수율로 과당으로부터 사이코스의 대량 생산이 가능하다. 상기 사이코스 에피머화 효소는 플라보니프랙터 플라우티(Flavonifractor plautii) 유전체 DNA에 존재하는 무수한 DNA 중 특정 DNA을 중합효소반응에 의해 증폭시키고, 증폭된 특정 DNA를 발현 벡터에 삽입하여 재조합 발현 벡터를 제조한 후, 상기 재조합 발현 벡터로 숙주 균주를 형질전환시켜 재조합 균주를 제조한 후, 상기 재조합 균주를 배양하여 발현시키는 방법으로 얻어질 수 있다. 본 발명에 따른 사이코스 에피머화 효소는 바람직하게는 분자량이 30 내지 34 kDa이고 최적 활성 온도가 55~67℃의 범위이고, 최적 활성 pH가 6.5~8의 범위이다. 본 발명에 따른 사이코스 에피머화 효소는 서열번호 1의 아미노산 서열로 이루어지나, 본 발명에 따른 사이코스 에피머화 효소의 균등 범위는 이에 한정되지 않는다. 예를 들어, 본 발명에 따른 사이코스 에피머화 효소의 균등 범위는 과당을 사이코스로 전환하는 활성이 유지되는 한, 서열번호 1의 아미노산 중 일부가 치환, 삽입 및/또는 결실된 것일 수 있다. 상기 아미노산의 치환은 바람직하게는 단백질의 특성이 바뀌지 않는 보존적 아미노산 치환(conservative amino acid replacement)에 의해 이루어지는 것이 바람직하다. 또한, 상기 아미노산의 변형은 글리코실화, 아세틸화, 포스포릴화 등에 의해 이루어질 수 있다. 또한, 본 발명에 따른 사이코스 에피머화 효소의 균등 범위는 아미노산 서열상의 변이 또는 수식에 의해서 열, pH등에 대한 구조적 안정성이 증가하거나 과당의 사이코스로의 전환에 대한 활성이 증가한 단백질을 포함할 수 있다. 또한, 본 발명에 따른 사이코스 에피머화 효소의 균등 범위는 서열번호 1의 아미노산 서열과 70% 이상, 80% 이상, 90% 이상, 95%이상, 또는 99% 이상의 상동성을 갖는 아미노산 서열을 포함하는 것일 수 있다. 하기 표 1은 보존적 아미노산 치환에 의해 단백질 내 아미노산을 대체할 수 있는 아미노산들을 보여준다.
표 1
펩티드 내 아미노산 잔기 보존적 치환기
Ala Ser
Arg Lys
Asn Gln, His
Asp Glu
Gln Asn
Cys Ser
Glu Asp
Gly Pro
His Asn, Gln
Ile Leu, Val
Leu Ile, Val
Lys Arg, Gln
Met Leu, Ile
Phe Met, Leu, Tyr
Ser Thr, Gly
Thr Ser, Val
Trp Tyr
Tyr Trp, Phe
Val Ile, Leu
본 발명의 다른 측면은 신규 사이코스 에피머화 효소를 제조하는 방법 또는 신규 사이코스 에피머화 효소를 제조하기 위해 필요한 다양한 요소들에 관한 것이다. 상기 신규 사이코스 에피머화 효소를 제조하기 위해 필요한 다양한 요소들로는 폴리뉴클레오티드, 프라이머 쌍, 재조합 벡터, 재조합 균주 등이 있다.
상기 폴리뉴클레오티드는 서열번호 1의 아미노산 서열로 이루어진 에피머화 효소를 코딩하는 폴리뉴클레오티드이고, 바람직하게는 서열 번호 2의 염기 서열로 이루어진다. 본 발명에서 용어 "폴리뉴클레오티드"는 비변형(non-modified) 또는 변형된(modified) 모든 폴리리보뉴클레오티드(RNA) 또는 폴리데옥시리보뉴클레오티드(DNA)를 의미한다. 상기 폴리뉴클레오티드는 단일- 또는 이중-가닥 DNA, 단일-및 이중-가닥 영역의 혼합물인 DNA, 단일- 및 이중-가닥 RNA, 단일- 및 이중-가닥 영역의 혼합물인 RNA 또는 이들의 하이브리드 분자를 포함하나 이에 제한되는 것은 아니다. 또한, 상기 에피머화 효소를 코딩하는 폴리뉴클레오티드의 균등 범위는 서열번호 2의 염기서열에 대하여 실질적 동일성을 갖는 서열을 포함한다. 상기의 실질적인 동일성은 서열번호 2 의 염기 서열과 임의의 다른 서열을 최대한 대응되도록 정렬하고, 그 서열을 분석하여, 상기 임의의 다른 서열이 서열번호 2의 염기 서열과 70% 이상, 90% 이상, 또는 98% 이상의 서열 상동성을 갖는 것을 의미한다. 당해 분야의 통상의 지식을 가진 기술자는 당해 분야에 공지된 유전자 재조합 기술 등을 이용하여 상기 폴리뉴클레오티드의 염기서열 중 하나 또는 그 이상의 염기를 치환, 부가 또는 결실시킴으로써 상기 실질적 상동성을 갖는 범위에서 동일한 활성을 갖는 효소를 암호화하는 폴리뉴클레오티드를 제조할 수 있음을 용이하게 이해할 수 있을 것이다. 이러한 상동성의 비교는 시판되는 컴퓨터 프로그램을 이용하여 2개 이상의 서열 간의 상동성을 백분율(%)로 계산하여 수행될 수 있다.
또한, 상기 프라이머 쌍은 서열번호 1의 아미노산 서열로 이루어진 사이코스 에피머화 효소를 코딩하는 폴리뉴클레오티드를 합성하기 위한 것으로서, 바람직하게는 서열번호 3의 염기 서열을 가진 순방향 프라이머와 서열번호 4의 염기 서열을 가진 역방향 프라이머로 구성된다.
또한, 상기 재조합 벡터는 서열번호 1의 아미노산 서열로 이루어진 사이코스 에피머화 효소를 코딩하는 폴리뉴클레오티드를 포함한다. 상기 재조합 벡터는 사이코스 에피머화 효소를 코딩하는 폴리뉴클레오티드를 공지의 표준 방법을 사용하여 클로닝 벡터나 발현 벡터 내로 삽입한 형태로 제공될 수 있다. 본 발명에서 용어 "클로닝 벡터"는 숙주 세포 내로 DNA 단편을 운반하고 이를 재생산할 수 있는 물질로 정의된다. 본 발명에서 클로닝 벡터는 폴리아데닐레이션 시그널(polyadenylation signal), 전사 종결 서열(transcription termination sequence) 및 다중 클로닝 위치(multiple cloning site)를 더 포함할 수 있다. 이때, 상기 다중 클로닝 위치(multiple cloning site)는 적어도 하나의 엔도뉴클레아제(endonuclease) 제한효소 절단위치(restriction site)를 포함한다. 또한, 클로닝 벡터는 프로모터를 더 포함할 수 있다. 일 예로, 본 발명에서 사이코스 에피머화 효소를 코딩하는 폴리뉴클레오티드는 폴리아데닐레이션 시그널(polyadenylation signal) 및 전사 종결 서열(transcription termination sequence)의 상류(upstream)에 위치할 수 있고, 적어도 하나의 엔도뉴클레아제(endonuclease) 제한효소 절단위치(restriction site)가 폴리아데닐레이션 시그널(polyadenylation signal) 및 전사 종결 서열(transcription termination sequence)의 상류(upstream)에 위치할 수 있다. 또한, 본 발명에서 용어 "발현 벡터"는 적절한 숙주 안에서 클로닝된 DNA의 전사와 번역을 위해 필요한 DNA 서열로 정의된다. 또한, 본 발명에서 용어 "발현 벡터"는 개체의 세포 내에 존재하는 경우 삽입물이 발현되도록 삽입물에 작동가능하게 연결된 필수적인 조절 요소를 포함하는 유전자 작제물을 의미한다. 상기 발현 벡터는 표준적인 재조합 DNA 기술을 이용하여 제조 및 정제될 수 있다. 상기 발현 벡터의 종류는 원핵세포 및 진핵세포의 각종 숙주 세포에서 원하는 유전자를 발현하고, 원하는 단백질을 생산하는 기능을 하는 한 특별히 한정되지 않지만, 강력한 활성을 나타내는 프로모터와 강한 발현력을 보유하면서 자연 상태와 유사한 형태의 외래 단백질을 대량으로 생산할 수 있는 벡터가 바람직하다. 발현 벡터는 적어도, 프로모터, 개시코돈, 원하는 단백질을 코드하는 유전자 및 종결코돈 터미네이터를 포함하고 있는 것이 바람직하다. 그 외에 시그널 펩티드를 코딩하는 DNA, 추가적 발현 조절 서열, 원하는 유전자의 5'측 및 3'측의 비번역 영역, 선택마커 영역, 또는 복제가능단위 등을 적절하게 포함할 수도 있다. "프로모터"는 전사를 지시하기에 충분한 최소 서열을 의미한다. 또한, 세포 유형 특이적 또는 외부의 신호 또는 제제에 의해 유도되는 조절 가능한 프로모터 의존적 유전자를 발현하도록 하는 데 충분한 프로모터 구성이 포함될 수 있으며, 이러한 구성들은 유전자의 5' 또는 3' 부분에 위치할 수 있다. 보존적 프로모터 및 유도적 프로모터 둘 다 포함된다. 프로모터 서열은 원핵생물, 진핵생물 또는 바이러스로부터 유래될 수 있다. 용어 "작동가능하게 연결된"은 단일 폴리뉴클레오티드 상의 폴리뉴클레오티드 서열 연관성으로 하나의 기능이 다른 것에 의해 조절된다는 것을 의미한다. 예를 들어, 프로모터가 코딩 서열의 발현을 제어할 수 있는 경우(즉, 코딩 서열이 프로모터의 전사 조절하에 있는 경우) 프로모터는 코딩 서열과 연결되어 작동되거나, 리보좀 결합 자리가 번역을 촉진시킬 수 있도록 위치하고 있다면, 리보좀 결합 자리는 코딩 서열에 연결되어 작동되는 것이다. 코딩 서열은 센스 방향 또는 안티센스 방향에서 조절 서열에 연결되어 작동될 수 있다. 본 발명에 따른 발현 벡터는 재조합 벡터는 바람직하게는 발현 벡터이고, 상기 발현 벡터는 바람직하게는 도 1의 개열 지도를 갖는다.
또한, 상기 재조합 균주는 서열번호 1의 아미노산 서열로 이루어진 사이코스 에피머화 효소를 코딩하는 폴리뉴클레오티드에 의해 형질전환되거나 서열번호 1의 아미노산 서열로 이루어진 사이코스 에피머화 효소를 코딩하는 폴리뉴클레오티드를 포함하는 재조합 벡터에 의해 형질전환된 것이다. 본 발명에서 용어, "재조합 균주"는 하나 이상의 목적 단백질을 코딩하는 폴리뉴클레오티드 또는 이를 갖는 발현 벡터가 숙주세포에 도입되어 형질전환된 세포를 의미한다. 상기 발현 벡터를 숙주세포에 도입하여 형질전환체를 제조하기 위한 방법으로는 일시적인 형질감염(transient transfection), 미세 주사, 형질 도입(transduction), 세포 융합, 칼슘 포스페이트 침전법, 리포좀 매개된 형질감염(liposemmediated transfection), DEAE 덱스트란-매개된 형질 감염(DEAE Dextran-mediated transfection), 폴리브렌-매개된 형질 감염(polybrene-mediated transfection), 전기천공법(electroporation) , 전기주입법(electroinjection), PEG 등의 화학적 처리방법, 유전자 총(gene gun) 등을 이용하는 방법 등이 있으나, 여기에 한정되는 것은 아니다. 본 발명에서 발현 벡터로 형질전환될 수 있는 숙주 세포로는 원핵 세포, 식물 세포, 곤충 세포, 동물 세포 등 당업계에 공지된 것이라면 그 종류가 크게 제한되지 않으며, 바람직하게는 DNA의 도입효율이 높고, 도입된 DNA의 발현효율이 높은 숙주가 통상 사용된다. 예를 들어, 상기 숙주 세포는 대장균일 수 있다. 상기 대장균으로 BL21, JM109, K-12, LE392, RR1, DH5α 또는 W3110 등을 있으나, 이에 제한되는 것은 아니다. 이 외에도, 상기 숙주 세포로서 바실러스 서브틸리스, 바실러스 츄린겐시스와 같은 바실러스속 균주, 코리네박테리움 글루타미쿰과 같은 코리네 박테리아속 균주, 살모넬라 티피무리움 등의 살모넬라속 균주, 기타 세라티아 마르세슨스 및 다양한 슈도모나스 종과 같은 장내균과 균주 등으로 이루어진 군에서 선택된 균주를 사용하여도 무방하다.
또한, 상기 사이코스 에피머화 효소의 제조방법은 서열번호 1의 아미노산 서열로 이루어진 사이코스 에피머화 효소를 코딩하는 폴리뉴클레오티드에 의해 형질전환되거나 서열번호 1의 아미노산 서열로 이루어진 사이코스 에피머화 효소를 코딩하는 폴리뉴클레오티드를 포함하는 재조합 벡터에 의해 형질전환된 재조합 균주를 배양하여 사이코스 에피머화 효소를 발현시키는 단계; 및 상기 사이코스 에피머화 효소가 발현된 재조합 균주의 파쇄물로부터 사이코스 에피머화 효소를 분리하는 단계를 포함한다. 숙주 세포에 의한 단백질의 발현은 유도 인자인 IPTG(isopropyl-1-thio-β-D-galactopyranoside)를 사용하여 발현을 유도할 수 있고, 유도시간은 단백질의 양을 최대화되게 조절할 수 있다. 본 발명에서 사이코스 에피머화 효소는 재조합 균주의 파쇄물로부터 회수될 수 있다. 단백질 발현에 사용된 세포는 동결-해동 반복, 초음파 처리, 기계적 파괴 또는 세포 분해제와 같은 다양한 물질적 또는 화학적 수단에 의해 파괴될 수 있으며, 통상적인 생화학 분리 기술에 의해서 분리 또는 정제가 가능하다(Sambrook et al., Molecular Cloning: A laborarory Manual, 2nd Ed., Cold Spring Harbor Laboratory Press, 1989; Deuscher, M., Guide to Protein Purification Methods Enzymology, Vol. 182. Academic Press. Inc., San Diego, CA, 1990). 예를 들어, 숙주 세포에 의해 발현된 단백질의 분리 또는 정제 방법으로는 전기영동, 원심분리, 겔 여과, 침전, 투석, 크로마토그래피(이온교환크로마토그래피, 친화성 크로마토그래피, 면역흡착 친화력 크로마토그래피, 역상 HPLC, 겔 침투 HPLC), 등전성 포커스 및 이의 다양한 변화 또는 복합 방법을 포함하나, 이에 국한되지 않는다. 한편, 본 발명에서 재조합 균주의 파쇄물로부터 사이코스 에피머화 효소를 분리하는 단계는 바람직하게는 펩티드 태그를 이용한 친화성 크로마토그래피(affinity chromatography)에 의해 수행될 수 있다. 상기 펩티드 태그로는 HA 태그, FLAG 태그, His 태그, BCCP (biotin carboxyl carrier protein), c-myc 태그, V5 태그, 글루타티온-S-트랜스퍼라아제 (GST) 또는 MBP(maltose binding protein) 등과 같이 공지의 다양한 태그를 사용할 수 있으며, 이중 His 태그인 것이 바람직하다. His-태깅된 단백질은 Ni-NTA(니켈-니트릴로트리아세트산) 수지의 칼럼 상에 특이적으로 트랩핑되며, EDTA 또는 이미다졸에 의해 용출될 수 있다.
본 발명의 또 다른 측면은 과당으로부터 사이코스를 제조하는 방법 또는 과당으로부터 사이코스를 제조하기 위해 필요한 다양한 요소들에 관한 것이다. 상기 과당으로부터 사이코스를 제조하기 위해 필요한 다양한 요소들로는 사이코스 생산용 조성물이 있다.
상기 사이코스 생산용 조성물의 일 예는 서열번호 1의 아미노산 서열로 이루어진 사이코스 에피머화 효소를 포함한다. 또한, 상기 사이코스 생산용 조성물의 다른 예는 서열번호 1의 아미노산 서열로 이루어진 사이코스 에피머화 효소를 코딩하는 폴리뉴클레오티드로 형질전환되거나 서열번호 1의 아미노산 서열로 이루어진 사이코스 에피머화 효소를 코딩하는 폴리뉴클레오티드를 포함하는 재조합 벡터에 의해 형질전환된 재조합 균주, 상기 재조합 균주의 배양물 또는 상기 재조합 균주의 파쇄물을 포함한다. 이때, 상기 사이코스 생산용 조성물은 바람직하게는 망간 이온, 니켈 이온 및 코발트 이온으로 이루어진 군에서 선택되는 1종 이상을 더 포함할 수 있고, 더 바람직하게는 니켈 이온 또는 코발트 이온을 더 포함할 수 있다. 본 발명에 따른 신규 사이코스 에피머화 효소는 금속 이온에 의해 활성화가 조절되는 금속효소(metalloenzyme) 특성을 나타내며, 상기 효소에 의한 반응을 니켈 이온 또는 코발트 이온과 같은 특정 금속 이온의 존재 하에서 수행함으로써 사이코스의 생산 수율을 증가시킬 수 있다.
또한, 상기 과당으로부터 사이코스를 제조하는 방법의 일 예는 과당을 서열번호 1의 아미노산 서열로 이루어진 사이코스 에피머화 효소 또는 상기 사이코스 에피머화 효소를 포함하는 조성물과 반응시키는 단계를 포함한다. 또한, 상기 과당으로부터 사이코스를 제조하는 방법의 다른 예는 과당을 서열번호 1의 아미노산 서열로 이루어진 사이코스 에피머화 효소를 코딩하는 폴리뉴클레오티드에 의해 형질전환되거나 서열번호 1의 아미노산 서열로 이루어진 사이코스 에피머화 효소를 코딩하는 폴리뉴클레오티드를 포함하는 재조합 벡터에 의해 형질전환된 재조합 균주, 상기 재조합 균주의 배양물, 상기 재조합 균주의 파쇄물 또는 이들 중 어느 하나 이상을 포함하는 조성물과 반응시키는 단계를 포함한다. 또한, 상기 과당으로부터 사이코스를 제조하는 방법은 금속 이온을 첨가하는 단계를 추가로 포함할 수 있으며, 금속 이온의 종류는 전술한 바와 같다. 일 예로, 상기 금속 이온은 기질인 과당에 첨가되거나, 효소와 과당의 혼합물에 첨가될 수 있다. 또한, 다른 예로 상기 금속 이온은 효소가 고정화된 담체에 첨가되거나(과당 첨가 전), 상기 효소가 고정화된 담체와 과당의 혼합물에 첨가되거나(과당 첨가 후), 또는 과당 첨가시에 과당과 혼합물의 형태로 첨가될 수 있다. 재조합 균주를 사용하는 경우, 상기 금속 이온이 배양물에 첨가되거나 금속 이온이 첨가된 배양 배지에서 배양이 수행될 수도 있다. 또한, 상기 과당으로부터 사이코스를 제조하는 방법에서 상기 사이코스 에피머화 효소 또는 상기 재조합 균주는 바람직하게는 담체에 고정화된다. 상기 담체는 고정된 효소의 활성이 장기간 유지될 수 있는 환경을 조성할 수 있는 것으로, 효소 고정화 용도로 사용할 수 있는 공지된 모든 담체에서 선택될 수 있다. 예를 들어, 상기 담체로 알긴산나트륨(soduim alginate)을 사용할 수 있다. 알긴산나트륨은 해조류의 세포벽에 풍부하게 존재하는 천연 콜로이드성 다당류로, 만누로닉산(β-D-mannuronic acid)과 글루로닉산(α-L-gluronic acid)이 조성되어 있고, 함량 면에서는 무작위로 베타-1,4 결합을 이루어 형성되어, 균주 또는 효소가 안정적으로 고정되어 우수한 사이코스 수율을 나타내는 데 유리할 수 있다. 일 예로, 사이코스의 수율을 보다 증진시키기 위하여 1.5 내지 4.0%(w/v) 농도의 알긴산나트륨 용액(예컨대, 알긴산나트륨 수용액), 바람직하게는 약 2.5%의 (w/v) 농도의 알긴산나트륨 용액을 재조합 균주의 고정화에 사용할 수 있다. 또한, 상기 과당으로부터 사이코스를 제조하는 방법에서 반응 온도는 55~67℃, 바람직하게는 55~65℃, 효소의 안정성을 고려할 때 더 바람직하게는 55~60℃의 범위이고, 반응 pH는 6.5~8, 바람직하게는 6.5~7.5, 더 바람직하게는 6.5~7의 범위이다. 또한, 상기 과당으로부터 사이코스를 제조하는 방법에서 과당의 농도는 특별히 제한되지 않으나, 생산성 내지 경제성을 고려할 때 전체 반응물을 기준으로 35~75%(w/w)인 것이 바람직하고, 40~700%(w/w)인 것이 더 바람직하다. 또한, 상기 과당으로부터 사이코스를 제조하는 방법에서 사용되는 효소의 양은 전체 반응물 기준으로 0.001~0.1 ㎎/㎖, 바람직하게는 0.01~0.1 ㎎/㎖, 더 바람직하게는 0.02~0.05 ㎎/㎖일 수 있다. 또한, 재조합 균주를 이용하여 과당으로부터 사이코스를 제조하는 경우 상기 재조합 균주의 숙주 균주는 식품학적으로 안전한 균주인 것이 바람직하다. 상기 식품학적으로 안전한 균주는 일반적으로 안전한 것으로 인정되는 GRAS(generally accepted as safe) 균주를 의미하며, 예를 들어 코리네박테리움속 균주일 수 있다. 상기 코리네박테리움속 균주는 L-라이신, L-쓰레오닌 및 각종 핵산을 포함한 사료, 의약품 및 식품 등의 분야에서 다양한 용도를 갖는 화학물질을 생산하는 산업용 미생물이다. 이러한 코리네박테리움속 균주는 GRAS (Generally Recognized As Safe) 균주이고, 유전자 조작 및 대량 배양에 용이한 균주 특성을 보유하고 있다. 또한, 코리네박테리움속 균주는 다양한 공정 조건에서 높은 안정성을 가지는 균주이며, 다른 세균에 비하여 상대적으로 단단한 세포막 구조를 가지고 있으며, 이로 인하여 높은 당 농도 등에 의한 높은 삼투압 하에서도 균체가 안정적인 상태로 존재하는 생물학적 특성을 보인다. 상기 코리네박테리움속 균주의 구체적인 예로는 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) 등이 있다.
이하, 본 발명을 실시예를 통하여 보다 구체적으로 설명한다. 다만 하기 실시예는 본 발명의 기술적 특징을 명확하게 예시하기 위한 것일 뿐, 본 발명의 보호범위를 제한하는 것은 아니다.
실시예 1 : D-사이코스 3-에피머화 효소를 생산하는 재조합 균주의 제조
한국 미생물자원센터에서 분양받은 플라보니프랙터 플라우티(Flavonifractor plautii) KCTC 5970으로부터 유전체 DNA(genomic DNA)를 추출한 후 이를 주형으로 이용하고, D-사이코스 3-에피머화 효소를 코딩하는 유전자(서열번호 2의 폴리뉴클레오티드)를 클로닝하기 위한 프라이머 및 Ex-Taq(TAKARA) 중합효소를 이용하여 중합연쇄반응(polymerase chain reaction, PCR)을 수행하였다. 하기 표 2는 플라보니프랙터 플라우티(Flavonifractor plautii)의 유전체 DNA(genomic DNA)로부터 D-사이코스 3-에피머화 효소를 코딩하는 유전자를 클로닝하기 위해 사용된 프라이머를 나타낸 것이다. 하기 표 2에 나타난 프라이머는 Bioneer co.,KR에 의뢰하여 제작하였다.
표 2
서열번호 프라이머 종류 염기서열(5'→3') 프라이머에 포함된 제한효소 인식부위
3 사이코스 에피머화 효소 클로닝용 forward primer CGG CAT ATG AAC CCG ATT GGA ATG CAC TAC Nde I
4 사이코스 에피머화 효소 클로닝용 reverse primer CGG CTC GAG TTA CGC GGT CAG CTC CTT GAG G Xho I
이후, gel extraction kit(Qiagen)를 이용하여 PCR 산물로터 원하는 목적 DNA만을 분리한 후 Easy T-벡터(promega)에 결합하고, 분리한 목적 DNA의 염기서열 분석을 Bioneer co.,KR에 위탁하여 측정하였다. 그 결과, PCR을 통해 증폭된 목적 DNA가 서열번호 2의 폴리뉴클레오티드에 해당하는 것을 확인하였다. 이후, PCR 반응에 의해 증폭된 목적 DNA를 제한효소인 Nde I과 Xho I을 이용하여 발현벡터인 pET15b 벡터(Novagen)의 동일한 제한효소 인식부위에 삽입하여 재조합 발현벡터인 pET-FDPE를 제작하였다. 도 1은 재조합 발현벡터인 pET-FDPE의 개열 지도이다. 이후, 컴피턴트 세포인 BL21(제조사 : RBC, Taipei, Taiwan) 대장균을 전기천공을 이용하여 재조합 발현벡터인 pET-FDPE로 형질전환시켜 재조합 균주를 제조하였다.
실시예 2 : D-사이코스 3-에피머화 효소의 발현 및 정제
형질전환된 재조합 균주의 단일 콜로니를 15㎖의 LB-ampicilline 배지(Difco)에 접종한 후 37℃ 및 200rpm의 조건에서 약 6시간 동안 전 배양(pre culture) 하였다. 이후 전 배양액을 500㎖의 LB-ampicilline 배지에 접종하고 37 ℃ 및 200rpm의 조건에서 진탕배양하였다. 이후, 배양액의 흡광도(at 600㎚)가 0.5일 때 IPTG를 0.1mM의 농도가 되도록 첨가하여 목적 효소의 과발현을 유도하였다. 이때 과발현 유도 시점부터 배양은 16℃ 및 150rpm의 조건으로 전환하여 약 16시간 동안 유지하였다. 이후, 재조합 균주의 배양액을 13000rpm에서 2분 동안 원심분리하여 상등액을 제거하고 재조합 균주의 균체를 회수하였다.
회수된 재조합 균주의 균체를 lysis buffer(50mM Tris_HCl 300mM NaCl pH8.0, 10 mM imidazol)에 현탁시킨 후 초음파로 처리하여 세포를 파쇄하였다. 세포 파쇄액을 13000rpm에서 10분 동안 원심분리하여 상등액만을 모은 후, 미리 lysis buffer로 평형시킨 Ni-NTA 칼럼(Bio-Rad, Profinia)에 적용시킨 다음 50mM Tris_HCl 300mM NaCl pH8.0에 20 mM imidazol과 200 mM imidazol이 함유된 완충용액을 순차적으로 흘려주었다. 마지막으로 50mM Tris_HCl 300mM NaCl pH8.0, 200 mM imidazol을 흘려주어 목적 단백질을 용출하였다. 용출된 단백질은 후술하는 실험 결과로부터 D-사이코스 3-에피머화 효소인 것으로 확인되었다. 이후 용출된 단백질을 효소 활성 측정용 버퍼 용액(PIPES, pH 7.5)에 보관하여 다음 실험에 사용하였다. 또한, 용출된 단백질에 대해 SDS-PAGE를 실시하였고, 용출된 단백질의 크기가 32 kDa인 것을 확인하였다. 도 2는 본 발명의 실시예 2에서 His 태그 어피니티 크로마토그래피를 통해 정제된 D-사이코스 3-에피머화 효소에 대해 SDS-PAGE를 실시한 결과이다.
실시예 3 : D-사이코스 3-에피머화 효소의 특성 확인
(1) D-사이코스 3-에피머화 효소의 금속 이온 요구성 분석
상기 실시예 2에서 얻은 D-사이코스 3-에피머화 효소에 대해 금속 이온이 영향을 미치는지 알아보았다.
정제된 효소 버퍼 용액(PIPES, pH 7.5)에 ZnSO4, CaCl2, MnSO4, NiSO4, CoCl2, MgSO4, CuSO4, CaCO3, FeSO4를 각각 1 mM이 되게 넣어준 후, 약 1시간 동안 금속 이온을 효소에 결합시켰다. 이후, 금속 이온이 결합된 효소를 기질인 100 mM 과당 수용액과 1:1의 중량비로 혼합하여 효소 농도가 0.025㎖/㎎이고 과당 농도가 50 mM인 혼합물을 만들고, 60℃에서 10분 동안 반응시킨 후, 염산 수용액을 첨가하여 반응을 중지시켰다. 또한, 대조군으로 금속 이온을 처리하지 않은 효소(None)를 이용하여 동일한 실험을 진행하였다. 이후, 생산된 사이코스 양(mM)을 측정하고, 이를 효소 양과 반응시간으로 나누어 효소 활성을 계산하였다. 사이코스 양은 HPLC로 분석하였다. 상기 HPLC 분석은 87C(BIO-RAD) 컬럼을 사용하여 80℃에서, 이동상으로 물 100%(v/v)를 0.6 ml/min 유속으로 흘려 주면서 수행하였으며, Refractive Index Detector(Agilent 1260 TID)로 사이코스를 검출하여, 생산된 사이코스 양을 분석하였다. 도 3은 본 발명의 D-사이코스 3-에피머화 효소의 활성을 첨가된 금속 이온 종류에 따라 나타낸 그래프이다. 도 3에서 각 금속 이온을 처리한 경우의 효소 활성은 대조군에서의 효소 활성을 100으로 하여 상대적으로 나타내었다. 도 3에서 보이는 바와 같이 상기 실시예 2에서 얻은 얻어진 D-사이코스 3-에피머화 효소는 망간 이온, 니켈 이온, 코발트 이온의 첨가에 의해 과당을 사이코스로 전환하는 활성이 증가하는 것으로 나타났고, 특히 니켈 이온 및 코발트 이온에서 활성 증가의 효과가 컸다.
이후, 정제된 D-사이코스 3-에피머화 효소 용액에 MnSO4, NiSO4, CoCl2을 다양한 농도별로 처리하고 동일한 실험을 진행하였다. 도 4는 본 발명의 D-사이코스 3-에피머화 효소의 활성을 첨가된 금속 이온 종류 및 처리 농도별로 나타낸 그래프이다. 도 4에서 보이는 바와 같이 망간 이온, 니켈 이온, 코발트 이온은 다양한 농도 범위에서 D-사이코스 3-에피머화 효소의 활성을 증가시키는 것으로 나타났다.
(2) D-사이코스 3-에피머화 효소의 pH 또는 온도 변화에 따른 활성 분석
상기 실시예 2에서 얻은 D-사이코스 3-에피머화 효소의 최적 pH를 알아보기 위해 MES 버퍼, PIPES 버퍼, EPPS 버퍼, CHES 버퍼를 이용하여 다양한 pH의 시험 용액을 만들었다. 구체적으로 정제된 효소의 버퍼 용액에 NiSO4을 1 mM의 농도로 처리한 후, 이를 100 mM 과당 수용액과 1:1의 중량비로 혼합하여 버퍼 농도가 50 mM이고, 효소 농도가 0.025㎖/㎎이고, 과당 농도가 50 mM인 다양한 pH의 시험 용액을 만들었다. 이후, 시험 용액을 60℃에서 10분 동안 반응시킨 후, 염산 수용액을 첨가하여 반응을 중지시켰다. 이후, 생산된 사이코스 양(mM)을 HPLC로 분석하여 측정하고, 이를 효소 양과 반응시간으로 나누어 효소 활성을 계산하였다. 도 5는 본 발명의 D-사이코스 3-에피머화 효소의 활성을 반응 pH별로 나타낸 그래프이다. 도 5에서 효소 활성은 최대 활성을 100으로 하여 상대적으로 나타내었다. 도 5에서 보이는 바와 같이 본 발명의 D-사이코스 3-에피머화 효소는 6.5~8의 pH, 바람직하게는 6.5~7.5의 pH에서 높은 활성을 나타냈고, pH 7에서 최대 활성을 보였다.
또한, 정제된 효소의 버퍼 용액(PIPES, pH 7.5)에 NiSO4을 1 mM의 농도로 처리한 후, 이를 100 mM 과당 수용액과 1:1의 중량비로 혼합하여 pH가 7.0이고 효소 농도가 0.025㎖/㎎이고, 과당 농도가 50 mM인 시험 용액을 만들었다. 이후, 시험 용액을 다양한 온도에서 10분 동안 반응시킨 후, 염산 수용액을 첨가하여 반응을 중지시켰다. 이후, 생산된 사이코스 양(mM)을 HPLC로 분석하여 측정하고, 이를 효소 양과 반응시간으로 나누어 효소 활성을 계산하였다. 도 6은 본 발명의 D-사이코스 3-에피머화 효소의 활성을 반응 온도별로 나타낸 그래프이다. 도 6에서 효소 활성은 최대 활성을 100으로 하여 상대적으로 나타내었다. 도 6에서 보이는 바와 같이 본 발명의 D-사이코스 3-에피머화 효소는 55~67℃의 온도에서 높은 활성을 나타냈고, 65℃에서 최대 활성을 보였다.
(3) D-사이코스 3-에피머화 효소의 기질 특이성 분석
상기 실시예 2에서 얻은 D-사이코스 3-에피머화 효소의 사이코스, 과당, 타가토스 등과 같은 다양한 기질에 대한 반응 활성을 분석하였다.
정제된 효소의 버퍼 용액(PIPES, pH 7.5)에 NiSO4을 1 mM의 농도로 처리한 후, 이를 100 mM 기질 수용액과 1:1의 중량비로 혼합하여 pH가 7.0이고 효소 농도가 0.025㎖/㎎이고, 기질 농도가 50 mM인 시험 용액을 만들었다. 이후, 시험 용액을 65℃에서 10분 동안 반응시킨 후, 염산 수용액을 첨가하여 반응을 중지시켰다. 이후, 기질의 대응하는 에피머 양(mM)을 HPLC로 분석하여 측정하고, 이를 효소 양과 반응시간으로 나누어 효소 활성을 계산하였다. 도 7은 본 발명의 D-사이코스 3-에피머화 효소의 기질별 활성을 나타낸 그래프이다. 도 7에서 효소 활성은 사이코스를 기질로 하는 반응의 효소 활성을 100으로 하여 상대적으로 나타내었다. 도 7에서 보이는 바와 같이 본 발명의 D-사이코스 3-에피머화 효소는 사이코스와 과당에 대해 높은 활성을 나타내었고, 특히 과당을 D-사이코스로 전환하는 활성이 종래의 D-사이코스 3-에피머화 효소에 비해 매우 높은 것으로 판단된다. 따라서, 본 발명의 D-사이코스 3-에피머화 효소를 사용하여 과당으로부터 D-사이코스를 높은 수율로 제조할 수 있다.
(4) D-사이코스 3-에피머화 효소의 열 안정성 분석
상기 실시예 2에서 얻은 D-사이코스 3-에피머화 효소를 50 mM PIPES 버퍼 용액에 0.05 ㎎/㎖의 농도가 되도록 준비한 후, 이를 55℃, 60℃, 65℃ 및 70℃로 온도로 각각 설정된 수욕(water bath)에 담가두고 보관하여 열 처리를 하였다. 보관 시간별로 정제된 효소의 버퍼 용액을 꺼내고, 여기에 NiSO4을 1 mM의 농도로 처리한 후, 효소의 버퍼 용액을 100 mM 기질 수용액과 1:1의 중량비로 혼합하여 pH가 7.0이고 효소 농도가 0.025㎖/㎎이고, 기질 농도가 50 mM인 시험 용액을 만들었다. 이후, 시험 용액을 65℃에서 10분 동안 반응시킨 후, 염산 수용액을 첨가하여 반응을 중지시켰다. 이후, 생산된 사이코스 양(mM)을 HPLC로 분석하여 측정하고, 이를 효소 양과 반응시간으로 나누어 효소 활성을 계산하였다. 그 결과, 55℃에서 정제된 효소의 버퍼 용액을 250분 동안 열 처리하여도 효소 활성은 그대로 유지되었다. 또한, 60℃에서 정제된 효소의 버퍼 용액을 약 200분 동안 열 처리하는 경우 효소 활성은 열 처리하기 전에 비해 약 80% 수준으로 감소하였다. 일반적으로 대부분의 D-사이코스 3-에피머화 효소들은 50℃에서 반감기(열 처리 전과 비교하였을 때 효소의 활성이 50%가 되는 열 처리 시간)의 가 대략 한 시간 정도인 것을 감안할 때, 본 발명의 D-사이코스 3-에피머화 효소는 열 안정성이 매우 우수한 것으로 나타났다.
(5) 고농도 과당에서 D-사이코스 3-에피머화 효소의 활성 분석
70 중량% 농도의 과당 700㎕를 60℃에서 예열한 후, 여기에 상기 실시예 2에서 얻은 D-사이코스 3-에피머화 효소의 농도가 0.1㎎/㎖인 PIPES 버퍼 용액 280㎕를 넣고, 60℃에서 반응시켰다. 반응 시간별로 반응 생성물을 10㎕씩 취하고, 25배로 희석하고 염산 수용액을 첨가하여 반응을 중지시켰다. 이후, 생산된 사이코스 양(mM)을 HPLC로 분석하여 측정하고, 이를 기질로 사용한 과당의 양으로 나누어 전환율을 계산하였다. 하기 표 3에 반응 시간별 과당의 사이코스로의 전환율을 나타내었다. 하기 표 3에서 보이는 바와 같이 본 발명의 D-사이코스 3-에피머화 효소는 고농도 과당과 반응하였을 때 약 18시간 만에 33%를 초과하는 최대 전환율에 도달하였다.
표 3
반응 경과 시간(hr) 과당의 사이코스로의 전환율(%)
1 9.04
2 15.20
3 19.52
4 22.36
5 24.66
6 26.75
7 27.94
18 33.62
28 33.67
이상에서와 같이 본 발명을 상기의 실시예를 통해 설명하였지만 본 발명이 반드시 여기에만 한정되는 것은 아니며 본 발명의 범주와 사상을 벗어나지 않는 범위 내에서 다양한 변형실시가 가능함은 물론이다. 따라서, 본 발명의 보호범위는 본 발명에 첨부된 특허청구의 범위에 속하는 모든 실시 형태를 포함하는 것으로 해석되어야 한다.

Claims (20)

  1. 서열번호 1의 아미노산 서열로 이루어진 사이코스 에피머화 효소.
  2. 제 1항에 있어서, 상기 사이코스 에피머화 효소는 플라보니프랙터 플라우티(Flavonifractor plautii)에서 유래하는 것을 특징으로 하는 사이코스 에피머화 효소.
  3. 제 1항에 있어서, 상기 사이코스 에피머화 효소는 하기의 단계를 포함하는 방법에 의해 제조되는 것을 특징으로 하는 사이코스 에피머화 효소 :
    (a) 서열번호 1의 아미노산 서열로 이루어진 사이코스 에피머화 효소를 코딩하는 폴리뉴클레오티드 또는 상기 폴리뉴클레오티드를 포함하는 재조합 벡터에 의해 형질전환된 재조합 균주를 배양하여 사이코스 에피머화 효소를 발현시키는 단계; 및
    (b) 상기 사이코스 에피머화 효소가 발현된 재조합 균주의 파쇄물로부터 사이코스 에피머화 효소를 분리하는 단계.
  4. 제 3항에 있어서, 상기 폴리뉴클레오티드는 서열 번호 2의 염기 서열로 이루어진 것을 특징으로 하는 사이코스 에피머화 효소.
  5. 제 3항에 있어서, 상기 재조합 벡터는 도 1의 개열 지도를 갖는 것을 특징으로 하는 사이코스 에피머화 효소.
  6. 제 3항에 있어서, 상기 사이코스 에피머화 효소를 분리하는 단계는 펩티드 태그를 이용한 친화성 크로마토그래피(affinity chromatography)에 의해 수행되는 것을 특징으로 하는 사이코스 에피머화 효소.
  7. 서열번호 1의 아미노산 서열로 이루어진 사이코스 에피머화 효소, 재조합 균주, 상기 재조합 균주의 배양물 또는 상기 재조합 균주의 파쇄물을 포함하는 조성물로서,
    상기 재조합 균주는 서열번호 1의 아미노산 서열로 이루어진 사이코스 에피머화 효소를 코딩하는 폴리뉴클레오티드 또는 상기 폴리뉴클레오티드를 포함하는 재조합 벡터에 의해 형질전환된 것을 특징으로 하는 사이코스 생산용 조성물.
  8. 제 7항에 있어서, 상기 사이코스 에피머화 효소는 플라보니프랙터 플라우티(Flavonifractor plautii)에서 유래하는 것을 특징으로 하는 사이코스 생산용 조성물.
  9. 제 7항에 있어서, 상기 폴리뉴클레오티드는 서열 번호 2의 염기 서열로 이루어진 것을 특징으로 하는 사이코스 생산용 조성물.
  10. 제 7항에 있어서, 상기 재조합 벡터는 도 1의 개열 지도를 갖는 것을 특징으로 하는 사이코스 생산용 조성물.
  11. 제 7항 내지 제 10항 중 어느 한 항에 있어서, 상기 조성물은 망간 이온, 니켈 이온 및 코발트 이온으로 이루어진 군에서 선택되는 1종 이상을 더 포함하는 것을 특징으로 하는 사이코스 생산용 조성물.
  12. 과당을 서열번호 1의 아미노산 서열로 이루어진 사이코스 에피머화 효소, 재조합 균주, 상기 재조합 균주의 배양물, 상기 재조합 균주의 파쇄물 또는 이들 중 어느 하나 이상을 포함하는 조성물과 반응시키는 단계를 포함하고,
    상기 재조합 균주는 서열번호 1의 아미노산 서열로 이루어진 사이코스 에피머화 효소를 코딩하는 폴리뉴클레오티드 또는 상기 폴리뉴클레오티드를 포함하는 재조합 벡터에 의해 형질전환된 것을 특징으로 하는 사이코스의 제조방법.
  13. 제 12항에 있어서, 상기 사이코스 에피머화 효소는 플라보니프랙터 플라우티(Flavonifractor plautii)에서 유래하는 것을 특징으로 사이코스의 제조방법.
  14. 제 12항에 있어서, 상기 폴리뉴클레오티드는 서열 번호 2의 염기 서열로 이루어진 것을 특징으로 하는 사이코스의 제조방법.
  15. 제 12항에 있어서, 상기 재조합 벡터는 도 1의 개열 지도를 갖는 것을 특징으로 하는 사이코스의 제조방법.
  16. 제 12항에 있어서, 상기 조성물은 망간 이온, 니켈 이온 및 코발트 이온으로 이루어진 군에서 선택되는 1종 이상을 더 포함하는 것을 특징으로 하는 사이코스의 제조방법.
  17. 제 12항 내지 제 16항 중 어느 한 항에 있어서, 상기 반응 온도는 55~67℃이고, 반응 pH는 6.5~8인 것을 특징으로 하는 사이코스의 제조방법.
  18. 제 12항 내지 제 16항 중 어느 한 항에 있어서, 상기 과당의 농도는 35~75%(w/w)인 것을 특징으로 하는 사이코스의 제조방법.
  19. 제 12항 내지 제 16항 중 어느 한 항에 있어서, 상기 사이코스 에피머화 효소 또는 재조합 균주는 담체에 고정화된 것을 특징으로 하는 사이코스의 제조방법.
  20. 제 12항 내지 제 16항 중 어느 한 항에 있어서, 상기 재조합 균주의 숙주 균주는 식품학적으로 안전한 균주인 것을 특징으로 하는 사이코스의 제조방법.
PCT/KR2015/005208 2014-05-28 2015-05-22 사이코스 에피머화 효소 및 이를 이용한 사이코스의 제조방법 WO2015182937A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/128,812 US9988618B2 (en) 2014-05-28 2015-05-22 Psicose epimerase and psicose production method using same
JP2017503758A JP6320621B2 (ja) 2014-05-28 2015-05-22 プシコースエピマー化酵素及びこれを利用したプシコースの製造方法
EP15800046.3A EP3135762B1 (en) 2014-05-28 2015-05-22 Psicose epimerase and psicose production method using same
CN201580018113.7A CN106164265B (zh) 2014-05-28 2015-05-22 阿洛酮糖差向异构酶和使用它生产阿洛酮糖的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0064651 2014-05-28
KR20140064651A KR101473918B1 (ko) 2014-05-28 2014-05-28 사이코스 에피머화 효소, 이의 제조방법 및 이를 이용한 사이코스의 제조방법

Publications (1)

Publication Number Publication Date
WO2015182937A1 true WO2015182937A1 (ko) 2015-12-03

Family

ID=52679228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/005208 WO2015182937A1 (ko) 2014-05-28 2015-05-22 사이코스 에피머화 효소 및 이를 이용한 사이코스의 제조방법

Country Status (6)

Country Link
US (1) US9988618B2 (ko)
EP (1) EP3135762B1 (ko)
JP (1) JP6320621B2 (ko)
KR (1) KR101473918B1 (ko)
CN (1) CN106164265B (ko)
WO (1) WO2015182937A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020500556A (ja) * 2016-12-08 2020-01-16 サムヤン コーポレイション プシコースの製造方法
CN114787178A (zh) * 2020-04-27 2022-07-22 大象(株) 阿洛酮糖差向异构酶变体及其制备方法和利用其的阿洛酮糖制备方法
US11485963B2 (en) * 2017-11-15 2022-11-01 Cj Cheiljedang Corporation D-Psicose 3-epimerase and method for producing D-Psicose using the same

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101656063B1 (ko) * 2015-05-22 2016-09-08 주식회사 삼양사 사이코스 에퍼머화 효소의 발현 시스템 및 이를 이용한 사이코스의 생산
WO2016068656A2 (ko) 2014-10-30 2016-05-06 주식회사 삼양사 사이코스 에퍼머화 효소의 발현 시스템 및 이를 이용한 사이코스의 생산
KR102087396B1 (ko) * 2015-11-16 2020-03-10 주식회사 삼양사 과당-함유 기질로부터 사이코스를 생산하는 방법
KR101944103B1 (ko) * 2015-12-07 2019-01-30 주식회사 삼양사 마이크로박테리움 속 균주 및 이를 이용한 사이코스 생산방법
CN106520746B (zh) * 2016-12-02 2017-12-26 山东百龙创园生物科技股份有限公司 一种高纯度d‑阿洛酮糖的制备方法
CN106434494B (zh) * 2016-12-02 2017-11-07 山东百龙创园生物科技股份有限公司 一株枯草芽孢杆菌及其培养方法与应用
AU2017376628B2 (en) * 2016-12-14 2021-04-29 Bonumose, Inc. Enzymatic production of D-allulose
CN108531527A (zh) * 2017-03-03 2018-09-14 上海立足生物科技有限公司 一种d-阿洛酮糖-3-差向异构酶的应用
KR101944104B1 (ko) * 2017-06-02 2019-01-30 주식회사 삼양사 마이크로박테리움 속 균주 및 이를 이용한 사이코스 생산방법
CA3071275A1 (en) * 2017-07-31 2019-02-07 Cj Cheiljedang Corporation Use of psicose-6-phosphate phosphatase for producing psicose and method for producing psicose using said enzyme
EP3676388A1 (en) * 2017-08-31 2020-07-08 Novozymes A/S Polypeptides having d-psicose 3-epimerase activity and polynucleotides encoding same
CN108588149B (zh) * 2017-10-29 2022-06-10 中国科学院天津工业生物技术研究所 一种阿果糖浆及其制备方法
KR20210044241A (ko) 2018-08-08 2021-04-22 아처 다니엘 미드랜드 캄파니 에피머라제 효소 및 그의 용도
KR102054961B1 (ko) * 2019-01-24 2019-12-12 주식회사 삼양사 마이크로박테리움 속 균주 및 이를 이용한 사이코스 생산방법
KR102068752B1 (ko) 2019-01-24 2020-01-21 주식회사 삼양사 마이크로박테리움 속 균주 및 이를 이용한 사이코스 생산방법
KR102080886B1 (ko) * 2019-05-21 2020-02-24 씨제이제일제당 주식회사 부반응성이 낮은 리불로스-인산 3-에피머화 효소의 모티프 및 이를 포함하는 효소
CN111019928B (zh) * 2019-12-11 2022-08-16 吉林中粮生化有限公司 D-阿洛酮糖3-差向异构酶的编码基因、载体、重组细胞以及它们的应用
KR102254411B1 (ko) * 2019-12-19 2021-05-24 대상 주식회사 알룰로스 에피머화 효소 변이체, 이의 제조방법 및 이를 이용한 알룰로스의 제조방법
CN112831489B (zh) * 2020-09-18 2022-06-10 中国科学院天津工业生物技术研究所 一种阿洛酮糖3-差向异构酶固定化酶、其固定化方法与应用
CN113667707B (zh) * 2021-10-21 2022-04-15 中粮营养健康研究院有限公司 由葡萄糖生产d-阿洛酮糖的方法
KR20230073739A (ko) 2021-11-19 2023-05-26 대상 주식회사 열 안정성이 우수한 알룰로스 에피머화 효소 변이체, 이의 제조방법 및 이를 이용한 알룰로스의 제조방법
CN114262703A (zh) * 2021-12-31 2022-04-01 保龄宝生物股份有限公司 一种利用膜富集d-阿洛酮糖3-差向异构酶的方法及应用
CN114601745B (zh) * 2022-03-25 2023-06-27 上海龙殷生物科技有限公司 一种护肤品原料、化妆品、制备方法及应用
CN114561417B (zh) * 2022-04-27 2022-08-09 中国科学院天津工业生物技术研究所 用于制备阿洛酮糖的谷氨酸棒杆菌工程菌株及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110035805A (ko) * 2009-09-30 2011-04-06 씨제이제일제당 (주) 사이코스-에피머화 효소의 고정화 및 이를 이용한 사이코스의 제조방법
KR20140021974A (ko) * 2012-08-10 2014-02-21 주식회사 삼양제넥스 사이코스 에피머화 효소 및 이를 이용한 사이코스로 전환용 조성물

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006129554A1 (en) 2005-05-30 2006-12-07 Fujifilm Corporation Album creating apparatus, album creating method and program
KR100744479B1 (ko) * 2005-06-01 2007-08-01 씨제이 주식회사 사이코스 에피머화 효소에 의한 사이코스의 생산 방법
WO2007058086A1 (ja) 2005-11-15 2007-05-24 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo ケトース3-エピメラーゼとその製造方法並びに用途
KR100832339B1 (ko) 2006-12-11 2008-05-26 솔젠트 (주) 과당을 사이코스로 전환하는 신규한 시노리조비움 속균주와 이를 이용한 사이코스 생산법
KR101106253B1 (ko) 2009-10-16 2012-01-18 경상대학교산학협력단 사이코스 3-에피머라제 효소를 코딩하는 폴리뉴클레오티드를 포함하는 대장균 및 그를 이용하여 사이코스를 생산하는 방법
CN102373230A (zh) * 2010-08-27 2012-03-14 天津工业生物技术研究所 某种梭菌d-塔格糖3-差向异构酶的核苷酸序列及其应用
KR101203856B1 (ko) * 2011-08-24 2012-11-21 씨제이제일제당 (주) 열 안정성이 향상된 사이코스 에피머화 효소 변이체 및 이를 이용한 사이코스의 연속적 생산
WO2014025235A1 (ko) * 2012-08-10 2014-02-13 주식회사 삼양제넥스 사이코스 에피머화 효소 및 이를 이용한 사이코스로 전환용 조성물
GB2508586B (en) * 2012-09-27 2020-09-02 Tate & Lyle Ingredients Americas Llc A protein
KR101318422B1 (ko) 2013-04-09 2013-10-15 주식회사 삼양제넥스 D-사이코스 에피머화 효소, 및 이를 이용하는 사이코스 생산방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110035805A (ko) * 2009-09-30 2011-04-06 씨제이제일제당 (주) 사이코스-에피머화 효소의 고정화 및 이를 이용한 사이코스의 제조방법
KR20140021974A (ko) * 2012-08-10 2014-02-21 주식회사 삼양제넥스 사이코스 에피머화 효소 및 이를 이용한 사이코스로 전환용 조성물

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE NCBI [O] 9 May 2013 (2013-05-09), "AP endonuclease [Clostridiales", XP055240988, retrieved from ncbi Database accession no. WP_007494289 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020500556A (ja) * 2016-12-08 2020-01-16 サムヤン コーポレイション プシコースの製造方法
US11485963B2 (en) * 2017-11-15 2022-11-01 Cj Cheiljedang Corporation D-Psicose 3-epimerase and method for producing D-Psicose using the same
CN114787178A (zh) * 2020-04-27 2022-07-22 大象(株) 阿洛酮糖差向异构酶变体及其制备方法和利用其的阿洛酮糖制备方法

Also Published As

Publication number Publication date
CN106164265B (zh) 2019-10-25
EP3135762A1 (en) 2017-03-01
CN106164265A (zh) 2016-11-23
JP6320621B2 (ja) 2018-05-09
US9988618B2 (en) 2018-06-05
EP3135762A4 (en) 2017-09-20
KR101473918B1 (ko) 2014-12-17
JP2017510302A (ja) 2017-04-13
US20170101637A1 (en) 2017-04-13
EP3135762B1 (en) 2019-07-10

Similar Documents

Publication Publication Date Title
WO2015182937A1 (ko) 사이코스 에피머화 효소 및 이를 이용한 사이코스의 제조방법
JP2017510302A5 (ko)
KR102132381B1 (ko) 아스로박터 글로비포미스에 의해 생산되는 케토오스 3-에피머라제
CN110462036B (zh) 一种新型d-阿洛酮糖3-差向异构酶以及使用该酶制备d-阿洛酮糖的方法
CN108330119A (zh) 一种壳聚糖酶及其在壳寡糖制备中的应用
WO2021221418A1 (ko) 알룰로스 에피머화 효소 변이체, 이의 제조방법 및 이를 이용한 알룰로스의 제조방법
EP3865574B1 (en) Allulose epimerase variant, method for producing same, and method for producing allulose using same
CN108531470B (zh) 一种硫酸岩藻多糖裂解酶tflfm及其制备方法和应用
WO2021125514A1 (ko) 알룰로스 에피머화 효소 변이체, 이의 제조방법 및 이를 이용한 알룰로스의 제조방법
CN111187764A (zh) 一种深海来源的壳聚糖酶csn5及其编码基因和应用
KR20180041377A (ko) 가야도모나스 주비니에게 g7 유래 신규 알파-네오아가로바이오스 하이드로레이즈 및 이의 이용
WO2023090495A1 (ko) 열 안정성이 우수한 알룰로스 에피머화 효소 변이체, 이의 제조방법 및 이를 이용한 알룰로스의 제조방법
CN106119235A (zh) 一种来源于伯克霍尔德氏菌的dpe及其应用
KR101841267B1 (ko) 라이보스-5-인산 이성화효소, 이의 제조방법 및 이를 이용한 알로스의 제조방법
KR102093509B1 (ko) 알로스 제조용 조성물 및 알로스 제조방법
KR20170117860A (ko) 딕토글로무스 투르기둠 유래 프락토스 에피머화효소를 이용하는 타가토스의 생산 방법 및 그에 필요한 조성물
EP3990655A1 (en) Enzymatic production of levan-based, prebiotic fructooligosaccharides
KR20200087064A (ko) 가야도모나스 주비니에게 g7 유래 알파-네오아가로올리고당 가수분해효소의 이용

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15800046

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015800046

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15128812

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017503758

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE