WO2015165405A1 - 一种用于烯烃聚合的催化剂组分的制备方法 - Google Patents

一种用于烯烃聚合的催化剂组分的制备方法 Download PDF

Info

Publication number
WO2015165405A1
WO2015165405A1 PCT/CN2015/077844 CN2015077844W WO2015165405A1 WO 2015165405 A1 WO2015165405 A1 WO 2015165405A1 CN 2015077844 W CN2015077844 W CN 2015077844W WO 2015165405 A1 WO2015165405 A1 WO 2015165405A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
halogen
catalyst component
group
magnesium halide
Prior art date
Application number
PCT/CN2015/077844
Other languages
English (en)
French (fr)
Inventor
王世波
周俊领
刘东兵
张磊
吕新平
毛炳权
刘振杰
周歆
张长礼
邢宝泉
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司北京化工研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201410176105.2A external-priority patent/CN105085735B/zh
Priority claimed from CN201410177228.8A external-priority patent/CN105085743B/zh
Priority claimed from CN201410176179.6A external-priority patent/CN105085737B/zh
Priority claimed from CN201410177203.8A external-priority patent/CN105085742B/zh
Priority claimed from CN201410177192.3A external-priority patent/CN105085741B/zh
Priority claimed from CN201410176103.3A external-priority patent/CN105085734B/zh
Priority claimed from CN201410176229.0A external-priority patent/CN105085740B/zh
Priority to RU2016146550A priority Critical patent/RU2673609C2/ru
Priority to KR1020167033297A priority patent/KR102172790B1/ko
Priority to US15/307,209 priority patent/US10174141B2/en
Priority to EP15785255.9A priority patent/EP3138856B1/en
Priority to CA2947189A priority patent/CA2947189C/en
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司北京化工研究院 filed Critical 中国石油化工股份有限公司
Priority to SG11201609010RA priority patent/SG11201609010RA/en
Priority to BR112016025376-0A priority patent/BR112016025376B1/pt
Priority to JP2016565201A priority patent/JP6706582B2/ja
Publication of WO2015165405A1 publication Critical patent/WO2015165405A1/zh
Priority to PH12016502158A priority patent/PH12016502158A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/647Catalysts containing a specific non-metal or metal-free compound
    • C08F4/649Catalysts containing a specific non-metal or metal-free compound organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/65Pretreating the metal or compound covered by group C08F4/64 before the final contacting with the metal or compound covered by group C08F4/44
    • C08F4/652Pretreating with metals or metal-containing compounds
    • C08F4/654Pretreating with metals or metal-containing compounds with magnesium or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/65Pretreating the metal or compound covered by group C08F4/64 before the final contacting with the metal or compound covered by group C08F4/44
    • C08F4/652Pretreating with metals or metal-containing compounds
    • C08F4/654Pretreating with metals or metal-containing compounds with magnesium or compounds thereof
    • C08F4/6543Pretreating with metals or metal-containing compounds with magnesium or compounds thereof halides of magnesium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2410/00Features related to the catalyst preparation, the catalyst use or to the deactivation of the catalyst
    • C08F2410/06Catalyst characterized by its size

Definitions

  • the invention belongs to the technical field of olefin polymerization catalyst manufacturing, relates to a preparation method of a catalyst component for olefin polymerization, and further relates to a catalyst component for homopolymerization or copolymerization of olefins and a preparation method thereof.
  • the catalysts associated with the polymerization process have also made great progress.
  • the high-efficiency catalyst still plays an important role in the field of polyolefin catalysts due to its excellent polymerization performance and mature application technology.
  • people are paying more and more attention to the production and development of new structural polyolefin resins, and the comprehensive performance requirements for olefin polymerization catalysts are also getting higher and higher, not only to adapt to the process equipment, but also to adjust and control the resin structure.
  • Mg-Ti high-efficiency catalysts are suitable for this application.
  • the preparation method of the Mg-Ti high-efficiency catalyst is currently carried out by a method of dissolving and precipitating, that is, a method of dissolving a magnesium compound in a solvent and then precipitating it.
  • a method of dissolving and precipitating that is, a method of dissolving a magnesium compound in a solvent and then precipitating it.
  • Japanese Patent Laid-Open No. 54-40293 proposes to dissolve magnesium compounds with titanate.
  • Japanese Patent Publication No. 56-811 and Japanese Patent Application Laid-Open No. Sho 58-83006 propose to dissolve magnesium compounds with alcohol, aldehyde, amine, carboxylic acid and the like.
  • Japanese Patent Publication No. Sho 58-19307 proposes to dissolve a magnesium compound with an organic phosphorus compound.
  • Japanese Patent Publication No. 58-183708 proposes a method of dissolving a magnesium compound by mixing an organic epoxy compound with an organophosphorus compound (phosphate compound).
  • the magnesium compound solution described in 183708 is used for catalyzing the polymerization of olefins after the catalyst is precipitated, and the catalytic activity is low, and the activity is remarkably decreased when the polymerization time is prolonged, and the bulk density of the polymer is also low.
  • the Mg-Ti high-efficiency catalyst is also often prepared by a chemical reaction.
  • many invention patents involve the use of chemical compounds such as organometallic magnesium compounds, chlorinating agents, and transition metal titanium compounds.
  • a variety of different types of catalysts have been prepared from such reactants, which are disclosed in Chinese Patent Nos. CN1158136, CN1299375, CN1795213, and U.S. Patent Nos. 3,787,384, 4,148,754, 4,173, 547, 4,508, 843 and 5,124, 296.
  • the technical problem to be solved by the present invention is to provide a method for preparing a catalyst component for olefin polymerization, which has high polymerization activity, slow activity decay, and hydrogen modulating for the olefin polymerization catalyst component prepared by the method. It has good sensitivity and is beneficial to the long-term smooth operation of the polymerization device.
  • a suitable catalyst system for olefin polymerization or copolymerization can be obtained by selecting a suitable magnesium halide dissolution precipitation system during the preparation of the catalyst.
  • the catalytic system has high polymerization activity, stable polymerization kinetics, slow activity decay, good hydrogen modulation sensitivity, good catalyst particle morphology and narrow particle size distribution, resulting in good polymer particle morphology and narrow particle size distribution.
  • the fine powder is small and the bulk density is large, which is favorable for the long-term smooth operation of the polymerization device; the stereoregularity of the olefin polymer having a carbon number of 3 or more is high.
  • the raw material consumption is small, the equipment utilization rate is high, and the operation is convenient and the environment is friendly.
  • the present invention has been made based on the above findings.
  • the present invention provides a catalyst component for olefin polymerization, which is obtained by mixing a magnesium halide solution containing an organic epoxy compound with a halogen-containing compound to precipitate a solid;
  • the organic epoxy compound is a ternary epoxy compound as shown in Formula I,
  • R 2 and R 3 in formula I are independently selected from H or a C 1 -C 10 hydrocarbyl or halohydrocarbyl group, which may be a saturated or unsaturated linear, branched or cyclic chain; or the organic epoxy compound Is a 4-8 member epoxy compound;
  • the halogen-containing compound includes a halogen-containing titanium compound, a halogenated organic hydrocarbon compound, an acid chloride compound, a halogen-containing phosphorus compound, a halogen-containing boron compound, a halogenated organoaluminum compound, and At least one of a halogen-containing silicon compound;
  • the magnesium halide solution is formed by dissolving anhydrous magnesium halide in a mixed solvent containing an oxygen-containing organotitanium compound, an organic epoxy compound, a hydroxyl group-containing compound, and an inert diluent.
  • the magnesium halide solution is formed by dissolving anhydrous magnesium halide in a mixed solvent composed of an oxygen-containing organotitanium compound, an organic epoxy compound, a hydroxyl group-containing compound, and an inert diluent.
  • a suitable magnesium halide dissolution precipitation system can be obtained during the preparation of the catalyst to obtain a good catalyst system for olefin polymerization or copolymerization, and surprisingly,
  • the inventors of the present invention have found that a mixed solvent comprising an oxygen-containing organotitanium compound, an organic epoxy compound, a hydroxyl group-containing compound and an inert diluent, preferably an oxygen-containing organotitanium compound, an organic epoxy compound, a hydroxyl group-containing compound, and an inert solvent are used.
  • a mixed solvent of a diluent can dissolve the anhydrous magnesium halide well and form a uniform magnesium halide solution therewith.
  • the formed magnesium halide solution is mixed with the halogen-containing compound to precipitate a solid to obtain a catalyst component for olefin polymerization or copolymerization.
  • the catalytic component has high polymerization activity, and the polymerization kinetics are stable, the activity decay is relatively slow, the hydrogen modulation sensitivity is good, the catalyst particle shape is good, the particle size distribution is narrow, and the polymer particle shape is good, and the particle size distribution is good.
  • the narrow, fine powder and large bulk density are beneficial to the long-term smooth operation of the polymerization device; the stereoregularity of the olefin polymer having a carbon number of 3 or more is high.
  • the magnesium halide has the formula MgX 2 , wherein X is a halogen; and the oxygen-containing organotitanium compound is of the formula Ti(OR 1 ) n X 4-n
  • R 1 is a C 1 -C 20 hydrocarbon group, which may be a saturated or unsaturated linear, branched or cyclic chain, 0 ⁇ n ⁇ 4, and X is a halogen
  • Is HOR 4 wherein R 4 is a C 1 -C 20 hydrocarbyl group, which may be a saturated or unsaturated linear, branched or cyclic chain
  • the inert diluent is a C 3 -C 100 aliphatic hydrocarbon or
  • the halogenated hydrocarbon, or an aromatic hydrocarbon or a halogenated hydrocarbon thereof may be a saturated or unsaturated linear, branched or cyclic chain; preferably, the inert diluent is a C 4
  • the magnesium halide is magnesium chloride, magnesium bromide, magnesium iodide, and a mixture thereof;
  • the oxygen-containing organotitanium compound is a titanate compound and a mixture thereof, preferably titanic acid.
  • the hydroxyl group-containing compound is a fatty alcohol, an aromatic alcohol or a phenol, preferably methanol, ethanol, isopropanol, positive Butanol, n-hexanol, isooctanol, benzyl alcohol and phenylethyl alcohol;
  • the inert diluent is selected from the group consisting of benzene, toluene, xylene, n-butane, isobutane, isopentane, n-pentane, n-hexane, ring Hexane, heptane, octane, decane, 1,2-dichloroethane, chlorobenzene, and mixtures thereof.
  • the oxygen-containing organotitanium compound is 0.01 to 2.0 moles, preferably 0.1 to 1.5 moles per mole of the magnesium halide;
  • the organic epoxy compound is 0.01 to 10 moles, preferably 0.1 to 6.5 moles, and the hydroxyl group-containing compound is 0.01.
  • -20 moles, preferably 0.1-15 moles, of the halogen-containing compound is 0.1-100 moles, preferably 0.5-50 moles.
  • the organic epoxy compound is selected from the group consisting of ethylene oxide, propylene oxide, butylene oxide, butadiene oxide, butadiene double oxide, epichlorohydrin, methyl glycidyl ether, Diglycidyl ether and One or more of tetrahydrofuran.
  • the halogen-containing titanium-containing compound is a compound represented by the formula: Ti(OR 5 ) n X 4-n wherein R 5 is a C 1 - C 20 hydrocarbon group or a halogen
  • the hydrocarbyl group may be a saturated or unsaturated linear, branched or cyclic chain, 0 ⁇ n ⁇ 3, wherein X is a halogen.
  • the halogen-containing titanium-containing compound is at least selected from the group consisting of titanium tetrachloride, titanium tetrabromide, titanium tetraiodide, titanium monochlorotriethoxy, titanium dichlorodiethoxytitanium and trichloromonoethoxytitanium.
  • titanium tetrachloride, titanium tetrabromide, titanium tetraiodide is preferred.
  • the halogenated organic hydrocarbon compound is a compound of the formula R 5 X, wherein R 5 is a C 1 - C 20 hydrocarbon group or a halogenated hydrocarbon group, which may be saturated. Or an unsaturated linear, branched or cyclic chain wherein X is a halogen.
  • the halogenated organic hydrocarbon compound is selected from the group consisting of chlorocyclohexane, bromocyclohexane, chloro-tert-butane, bromo-tert-butane, chlorobenzene, trichlorobenzene, 1,1-dichloroethane, and At least one of 1,1-dichloropropane.
  • the acid halide compound is a compound of the formula R 5 COX wherein R 5 is a C 1 - C 20 hydrocarbon group or a hydrogen, which may be a saturated or unsaturated linear, branched or cyclic chain. a chain in which X is a halogen.
  • the acid halide compound includes at least one of an acid fluoride compound, an acid chloride compound, an acid bromide compound, and an acid iodine compound.
  • the acid halide compound is an acid chloride compound.
  • the acid chloride compound is a compound of the formula R 5 COCl, wherein R 5 is a C 1 - C 20 hydrocarbon group or hydrogen, and may be saturated or unsaturated. Straight, branched or endless chain.
  • the acid chloride compound is at least one selected from the group consisting of formyl chloride, acetyl chloride, propionyl chloride, butyryl chloride, benzoyl chloride, phthaloyl chloride, phenylacetyl chloride, phenylpropionyl chloride, and phenylbutyryl chloride.
  • the halogen-containing phosphorus-containing compound is selected from the group consisting of dichloromethylphosphine, dichloroethylphosphorus, dichlorobutylphosphine, phosphorus trichloride, phosphorus pentachloride, phosphorus oxychloride, methyl dichlorophosphate, and dichlorochloride. At least one of ethyl phosphate and butyl dichlorophosphate; at least one of phosphorus trichloride, phosphorus pentachloride and phosphorus oxychloride.
  • the halogen-containing boron-containing compound is a compound of the formula BR 5 q X 3-q , wherein R 5 is a C 1 -C 20 alkyl or alkoxy group. , 0 ⁇ q ⁇ 3, wherein X is a halogen.
  • the halogen-containing boron-containing compound is selected from the group consisting of dichloromethyl boron, dichloroethyl boron, dichlorobutyl boron, dichloromethoxy boron, dichloroethoxy boron, boron trichloride and dichlorobutoxy At least one of the boron groups.
  • the halogenated organoaluminum compound is a compound represented by the formula: AlR 5 n X 3-n wherein R 5 is a C 1 -C 20 hydrocarbon group, preferably not higher than A straight or branched hydrocarbon group of 6 carbon atoms, wherein 0.5 ⁇ n ⁇ 2.5, and X is a halogen.
  • the halogenated organoaluminum compound is at least one selected from the group consisting of ethylaluminum dichloride, ethylaluminum sesquichloride, diethylaluminum chloride, and dichloroisobutylaluminum.
  • the halogen-containing silicon-containing compound is a compound represented by the formula (R 5 O) q SiR 6 n X 4-nq , wherein R 5 and R 6 are independently selected from the group consisting of a hydrocarbon group or a halogenated hydrocarbon group of C 1 -C 20 , which may be a saturated or unsaturated linear, branched or cyclic chain, wherein q and n are both 0 or a positive number, and 0 ⁇ q + n ⁇ 3, wherein X is a halogen.
  • the halogen-containing silicon-containing compound is selected from the group consisting of silicon tetrachloride, silicon tetrabromide, trichloro-ethoxysilane, trichlorophenyl silicon, trichloromethyl silicon, trichloroethyl silicon, dichlorodimethoxy At least one of silicon, dichloromethylmethoxysilane, and dichloromethylphenoxysilane; preferably silicon tetrachloride, silicon tetrabromide, trichloro-ethoxysilane, trichlorophenyl silicon .
  • Another aspect of the present invention provides a process for preparing a catalyst component for olefin polymerization, comprising first dissolving an anhydrous magnesium halide containing an oxygen-containing organotitanium compound, an organic epoxy compound, a hydroxyl group-containing compound, and an inert diluent.
  • the organic epoxy compound is A ternary epoxy compound of the formula I, wherein R 2 and R 3 are independently selected from H or a C 1 -C 10 hydrocarbyl or halohydrocarbyl group, which may be a saturated or unsaturated linear or branched chain.
  • the organic epoxy compound is a 4-8 member epoxy compound
  • the halogen-containing compound includes a halogen-containing titanium compound, a halogenated organic hydrocarbon compound, an acid halide compound, and a halogen-containing phosphorus compound At least one of a compound, a halogen-containing boron-containing compound, a halogenated organoaluminum compound, and a halogen-containing silicon-containing compound.
  • the magnesium halide solution obtained in the present invention is in the form of an amorphous magnesium halide, that is, the magnesium halide solution of the present invention does not contain a crystalline magnesium halide.
  • the raw material anhydrous magnesium halide is a crystalline magnesium halide, which may be a plurality of crystal forms such as ⁇ , ⁇ or ⁇ .
  • the mixed solvent may contain, in addition to the above-mentioned four essential organic solvents, other organic solvents, for example, an organic solvent selected from the group consisting of esters, ketones, and amines. The amount of these other organic solvents is premised on not affecting the phase of the final magnesium halide solution product.
  • the mixed solvent does not contain a phosphate compound, and the thus obtained magnesium halide solution has a better performance in the downstream application process, for example, it is used in the preparation of the catalyst to make the solid component easily precipitate and make corresponding The activity of the catalyst is increased; and a phosphorus-containing substance having a large residual toxicity in the downstream catalyst product is avoided.
  • the phosphate compound in the present invention is, for example, tributyl phosphate, triisobutyl phosphate, tripropyl phosphate, triethyl phosphate or trimethyl phosphate.
  • the magnesium halide solution is dissolved in anhydrous magnesium halide by oxygenated organic titanation It is formed by a mixed solvent of a compound, an organic epoxy compound, a hydroxyl group-containing compound, and an inert diluent. That is, it is preferred that the mixed solvent of the present invention contains only the above-mentioned four essential organic solvents.
  • the magnesium halide has the formula MgX 2 wherein X is a halogen.
  • the oxygen-containing organotitanium compound is represented by the formula Ti(OR 1 ) n X 4-n wherein R 1 is a C 1 - C 20 hydrocarbon group, which may be a saturated or unsaturated linear, branched or cyclic chain. Chain, 0 ⁇ n ⁇ 4, X is a halogen. It is preferred to use tetravalent titanium compounds because they are usually liquid at normal temperature and generally have good compatibility with some solvents.
  • the hydroxyl group-containing compound has the formula HOR 4 , wherein R 4 is a C 1 -C 20 hydrocarbon group, which may be a saturated or unsaturated linear, branched or cyclic chain; the inert diluent is C 3 - C 100 aliphatic hydrocarbon or its halogenated hydrocarbon, or an aromatic hydrocarbon or a halogenated hydrocarbon thereof, may be a saturated or unsaturated linear, branched or cyclic chain; preferably the inert diluent is C 4 -C 20 hydrocarbon compound.
  • the magnesium halide is magnesium chloride, magnesium bromide, magnesium iodide and a mixture thereof, and more preferably the magnesium halide used in the reaction is magnesium chloride or a mixture containing magnesium chloride; the oxygen-containing organotitanium compound is a titanate compound.
  • the hydroxyl group-containing compound is a fatty alcohol, an aromatic alcohol or a phenol, preferably methanol, Ethanol, isopropanol, n-butanol, n-hexanol, isooctanol, benzyl alcohol and phenylethyl alcohol;
  • the inert diluent is selected from the group consisting of benzene, toluene, xylene, n-butane, isobutane, isopentane, positive Pentane, n-hexane, cyclohexane, heptane, octane, decane, 1,2-dichloroethane, chlorobenzene, and mixtures thereof.
  • the oxygen-containing organotitanium compound is 0.01 to 2.0 moles, preferably 0.1 to 1.5 moles per mole of the magnesium halide; and the organic epoxy compound is 0.01 to 10 moles, preferably 0.1 to 6.5 moles.
  • the hydroxyl group-containing compound is 0.01 to 20 moles, preferably 0.1 to 15 moles, and the halogen-containing compound is 0.1 to 100 moles, preferably 0.5 to 50 moles.
  • the molar concentration of the magnesium halide in the magnesium halide solution is from 0.0001 to 20 mol/L, preferably from 0.001 to 10 mol/L.
  • a mixed solvent comprising an oxygen-containing organotitanium compound, an organic epoxy compound, a hydroxyl group-containing compound, and an inert diluent, preferably an oxygen-containing organotitanium compound, an organic epoxy compound, or the like
  • the mixed solvent of the hydroxy compound and the inert diluent in the above amounts can better dissolve the anhydrous magnesium halide and form a uniform magnesium halide solution therewith.
  • the formed magnesium halide solution is mixed with the above-mentioned halogen-containing compound to precipitate a solid to obtain a catalyst component for olefin polymerization or copolymerization.
  • the catalytic component has extremely high polymerization activity, and the polymerization kinetics are stable, the activity decays slowly, and the hydrogen modulation sensitivity is good; the catalyst particle shape is good, the particle size distribution is narrow, and the polymer particle shape is good, and the particle size distribution is narrow.
  • the fine powder is small and the bulk density is large, which is favorable for the long-term smooth operation of the polymerization device; the stereoregularity of the olefin polymer having a carbon number of 3 or more is high.
  • the organic epoxy compound represented by the formula I includes an aliphatic olefin having 2 to 8 carbon atoms, an oxide of a diolefin or a halogenated aliphatic olefin or a diene, a glycidyl ether, a compound such as an ether.
  • the organic epoxy compound is selected from the group consisting of ethylene oxide, propylene oxide, butylene oxide, butadiene oxide, butadiene double oxide, epichlorohydrin, methyl glycidyl ether, diglycidyl One or more of ether and tetrahydrofuran.
  • the halogen-containing titanium-containing compound is a compound of the formula Ti(OR 5 ) n X 4-n wherein R 5 is a C 1 -C 20 hydrocarbon group or a halogenated group.
  • the hydrocarbon group may be a saturated or unsaturated linear, branched or cyclic chain, 0 ⁇ n ⁇ 3, wherein X is a halogen.
  • the halogen-containing titanium-containing compound is selected from the group consisting of titanium tetrachloride, titanium tetrabromide, titanium tetraiodide, titanium monochlorotrioxide, titanium dichlorodiethoxyoxide, and trichloro-ethoxy At least one of the base titanium; preferably titanium tetrachloride, titanium tetrabromide, titanium tetraiodide.
  • the halogenated organic hydrocarbon compound is a compound of the formula R 5 X, wherein R 5 is a C 1 - C 20 hydrocarbyl or halohydrocarbyl group, which may be saturated or An unsaturated linear, branched or cyclic chain wherein X is a halogen.
  • the halogenated organic hydrocarbon compound is selected from the group consisting of chlorocyclohexane, bromocyclohexane, chloro-tert-butane, bromo-tert-butane, chlorobenzene, trichlorobenzene, 1,1- At least one of dichloroethane and 1,1-dichloropropane.
  • the acyl halide compound is a compound of the formula R 5 COX wherein R 5 is a C 1 - C 20 hydrocarbyl group or hydrogen, which may be saturated or unsaturated.
  • R 5 is a C 1 - C 20 hydrocarbyl group or hydrogen, which may be saturated or unsaturated.
  • the acid halide compound includes at least one of an acid fluoride compound, an acid chloride compound, an acid bromide compound, and an acid iodine compound.
  • the acid halide compound is an acid chloride compound.
  • the acid chloride compound is a compound of the formula R 5 COCl, wherein R 5 is a C 1 -C 20 hydrocarbon group or hydrogen, which may be saturated or unsaturated. Straight, branched or endless chain.
  • the acid chloride compound is at least one selected from the group consisting of formyl chloride, acetyl chloride, propionyl chloride, butyryl chloride, benzoyl chloride, phthaloyl chloride, phenylacetyl chloride, phenylpropionyl chloride and phenylbutyryl chloride. .
  • the halogen-containing phosphorus-containing compound is selected from the group consisting of dichloromethylphosphorus, dichloroethylphosphine, dichlorobutylphosphine, phosphorus trichloride, phosphorus pentachloride, phosphorus oxychloride, and dichlorophosphoric acid. At least one of a methyl ester, ethyl dichlorophosphate, and butyl dichlorophosphate; at least one of phosphorus trichloride, phosphorus pentachloride, and phosphorus oxychloride.
  • the halogen-containing boron-containing compound is a compound of the formula BR 5 q X 3-q , wherein R 5 is a C 1 -C 20 alkyl or alkoxy group, 0 ⁇ q ⁇ 3, wherein X is a halogen.
  • the halogen-containing boron-containing compound is selected from the group consisting of dichloromethyl boron, dichloroethyl boron, dichlorobutyl boron, dichloromethoxy boron, dichloroethoxy boron, and boron trichloride. And at least one of dichlorobutoxyboron.
  • the halogenated organoaluminum compound is a compound of the formula AlR 5 n X 3-n wherein R 5 is a C 1 -C 20 hydrocarbyl group, preferably not higher than 6 A straight or branched hydrocarbon group of one carbon atom, wherein 0.5 ⁇ n ⁇ 2.5, and X is a halogen.
  • the halogenated organoaluminum compound is at least one selected from the group consisting of ethylaluminum dichloride, ethylaluminum sesquichloride, diethylaluminum chloride, and dichloroisobutylaluminum.
  • the halogen-containing silicon-containing compound is a compound of the formula (R 5 O) q SiR 6 n X 4-nq , wherein R 5 and R 6 are independently selected from C a hydrocarbon group or a halogenated hydrocarbon group of 1 to C 20 which may be a saturated or unsaturated linear, branched or cyclic chain, wherein q and n are both 0 or a positive number, and 0 ⁇ q + n ⁇ 3, wherein X It is halogen.
  • the halogen-containing silicon-containing compound is selected from the group consisting of silicon tetrachloride, silicon tetrabromide, trichloro-ethoxysilane, trichlorophenyl silicon, trichloromethyl silicon, trichloroethyl silicon, At least one of dichlorodimethoxysilane, dichloromethylmethoxysilane, and dichloromethylphenoxysilane; preferably silicon tetrachloride, silicon tetrabromide, trichloro-ethoxysilane, Trichlorophenyl silicon.
  • the temperature at which the magnesium compound, the organic epoxy compound, the hydroxyl group-containing compound and the organotitanium compound are in contact with each other depends on the nature of the reactant, and is generally selected to be dissolved at a relatively high temperature.
  • the temperature is usually not higher than 200 ° C, and generally not higher than 150 ° C.
  • the time of dissolution depends on the nature of the reactants and the operating conditions, and the general time is selected to enable a completely clear solution, typically for a period of from 10 minutes to 24 hours, preferably from 2 to 16 hours.
  • An inert diluent as described above may be added during dissolution.
  • the second step of the preparation of the catalyst component may also be referred to as a precipitation step in which the chlorination of the magnesium-titanium complex solution is completed to precipitate the liquid complex from the solution.
  • the method for contacting the magnesium-titanium complex solution with the halogen-containing compound may be carried out by any known suitable method, and the method of gradually adding the magnesium-titanium complex solution to the halogen-containing compound solution may be employed, or the halogen-containing compound may be used.
  • the manner in which the solution is gradually added dropwise to the magnesium-titanium complex solution.
  • the drip acceleration is usually selected to be local superheat which does not cause a reaction, and stirring is usually carried out during the dropwise addition to facilitate the smooth progress of the reaction.
  • the temperature can be controlled between -40 and 100 ° C, preferably between -20 and 80 ° C.
  • the reaction time of the precipitation step should be long enough to obtain a complete precipitation, and the reaction time can be from 1 minute to 10 hours, preferably from 0.5 to 8 hours.
  • the reaction at a certain temperature for a period of time for the ripening treatment is advantageous for the particle shape of the catalyst, and at the same time, the strength of the catalyst particles can be increased, thereby reducing the catalyst. Particle breakage during ethylene polymerization.
  • the temperature of the ripening treatment is generally equal to or higher than the temperature of the precipitation reaction, and the time of the ripening reaction can be controlled to be 0.5 to 15 hours, preferably 1 to 10 hours.
  • washing is generally carried out to remove excess reactants and by-products formed during the preparation, and any inert solvent can be used for this washing step, for example, benzene, toluene, xylene, isobutane can be selected. , pentane, hexane, heptane or cyclohexane and mixtures thereof, etc., in the experiment, hexane and toluene are usually selected as the inert solvent for washing.
  • the catalyst suspension may be directly subjected to a plurality of titanium treatments, or may be directly dried by a nitrogen purge under heating to obtain a catalyst powder.
  • the present invention also provides a catalyst for the polymerization of an olefin comprising the reaction product of the following components:
  • one or two or more kinds of organoaluminum compounds may be used in combination, preferably AlEt 3 , Al(iso-Bu) 3 , Al(nC 6 H 13 ) 3 , Al(nC 8 H 17 ) 3 , AlEt 2 Cl and so on.
  • the present invention still further provides a magnesium halide dissolution system for use in the preparation of an olefin polymerization catalyst component, which comprises an oxygen-containing organotitanium compound, an organic epoxy compound, a hydroxyl group-containing compound, and an inert diluent, wherein
  • the organic epoxy compound is a ternary epoxy compound as shown in Formula I.
  • R 2 and R 3 in formula I are independently selected from H or a C 1 -C 10 hydrocarbyl or halohydrocarbyl group, which may be a saturated or unsaturated linear, branched or cyclic chain; or the organic epoxy compound It is a 4-8 member epoxy compound.
  • the magnesium halide dissolution system is a mixed solvent composed of an oxygen-containing organotitanium compound, an organic epoxy compound, a hydroxyl group-containing compound, and an inert diluent.
  • the existing solvent for preparing an olefin polymerization catalyst and anhydrous magnesium halide can only form a suspension or suspension containing a magnesium halide, which is prepared by containing a suspension or suspension of a magnesium halide.
  • the catalyst component used in the polymerization of olefins has low polymerization activity, and the activity decays rapidly, and the hydrogen sensitivity is poor, which is not conducive to the long-term smooth operation of the polymerization device.
  • a catalyst system for olefin polymerization or copolymerization can be obtained by selecting the above-mentioned magnesium halide dissolution system during the preparation of the catalyst.
  • the catalytic system has high polymerization activity, and the polymerization kinetics are stable, the activity decay is relatively slow, the hydrogen modulation sensitivity is good, the catalyst particle shape is good, the particle size distribution is narrow, and the polymer particle shape is good, and the particle size is divided.
  • the cloth is narrow, the fine powder is small, and the bulk density is large, which is favorable for the long-term smooth operation of the polymerization device; the stereoregularity of the olefin polymer having a carbon number of 3 or more is high.
  • the raw material consumption is small, the equipment utilization rate is high, and the operation is convenient and the environment is friendly.
  • the magnesium halide has the formula MgX 2 , wherein X is a halogen; and the oxygen-containing organotitanium compound is of the formula Ti(OR 1 ) n X 4-n
  • R 1 is a C 1 -C 20 hydrocarbon group, which may be a saturated or unsaturated linear, branched or cyclic chain, 0 ⁇ n ⁇ 4, and X is a halogen
  • Is HOR 4 wherein R 4 is a C 1 -C 20 hydrocarbyl group, which may be a saturated or unsaturated linear, branched or cyclic chain
  • the inert diluent is a C 3 -C 100 aliphatic hydrocarbon or
  • the halogenated hydrocarbon, or an aromatic hydrocarbon or a halogenated hydrocarbon thereof may be a saturated or unsaturated linear, branched or cyclic chain; preferably, the inert diluent is a C 4
  • the oxygen-containing organotitanium compound is 0.01 to 2.0 moles, preferably 0.1 to 1.5 moles per mole of the magnesium halide; and the organic epoxy compound is 0.01 to 10 moles, preferably 0.1 to 6.5 moles.
  • the hydroxyl group-containing compound is 0.01 to 20 moles, preferably 0.1 to 15 moles.
  • the mixed solvent does not contain a phosphate compound, and the thus obtained magnesium halide solution has a better performance in the downstream application process, for example, it is used in the preparation of a catalyst to form a solid group.
  • the fraction is easily precipitated and the activity of the corresponding catalyst is increased; and the phosphorus-containing substance having a large toxicity remaining in the downstream catalyst product is avoided.
  • the phosphate compound in the present invention is, for example, tributyl phosphate, triisobutyl phosphate, tripropyl phosphate, triethyl phosphate or trimethyl phosphate.
  • the mixed solvent of the present invention contains only four organic solvents which are essential for the oxygen-containing organotitanium compound, the organic epoxy compound, the hydroxyl group-containing compound, and the inert diluent.
  • phosphate ester compound as used in the present invention, that is, an organophosphorus compound, is an ester derivative of phosphoric acid and belongs to a class of compounds of a phosphoric acid derivative. Since phosphoric acid is a tribasic acid, the phosphate ester can be classified into a primary phosphate (monophosphate, hydrocarbyl phosphate), a secondary phosphate (phosphoric acid diester), and a tertiary phosphate (phosphoric acid triester) depending on the number of substituted hydrocarbon groups.
  • a primary phosphate monophosphate, hydrocarbyl phosphate
  • secondary phosphate phosphoric acid diester
  • tertiary phosphate phosphoric acid triester
  • titanium compound as used in the present invention, a titanium-containing compound having an alkoxy group, such as tetrabutyl titanate, tetraethyl titanate or the like.
  • phenolic i.e., a phenolic compound, as used in the present invention, is a class of aromatic compounds of the formula ArOH having a structure in which the hydrogen on the aromatic ring is replaced by a hydroxyl group (-OH).
  • hydrocarbon compound as used in the present invention is a compound composed of a carbon atom and a hydrogen atom, and includes an alkane, a cycloalkane, an alkene, an alkyne, and an aromatic hydrocarbon.
  • ester compound as used in the present invention means a product formed by esterification of an alcohol with a carboxylic acid or an inorganic oxyacid in organic chemistry.
  • carboxylic acid ester In addition to the carboxylic acid ester, the ester also has an inorganic oxyacid ester such as nitric acid or sulfuric acid.
  • amine compound as used in the present invention is a type of organic compound formed by substitution of a hydrogen in an ammonia molecule (NH 3 ) with a hydrocarbon group.
  • ethylaluminum sesquichloride as used in the present invention is also referred to as ethyl sesquiamine chloride, and its molecular formula is C 6 H 15 Al 2 Cl 3 .
  • magnesium halide dissolution system means a plurality of constituents for dissolving magnesium halide or anhydrous magnesium halide during the preparation of a catalyst for olefin polymerization, for example, comprising an oxygen-containing organotitanium compound. , an organic epoxy compound, a hydroxyl group-containing compound, and an inert diluent for use in a mixed solvent, preferably composed of an oxygen-containing organotitanium compound, an organic epoxy compound, a hydroxyl group-containing compound, and an inert diluent for dissolving anhydrous magnesium halide Mixed solvent.
  • the catalyst component or catalyst to which the present invention relates is suitable for use in various olefin polymerization or copolymerization reactions; preferably in the homopolymerization or copolymerization of ethylene, propylene, butene, hexene and octene.
  • Particle size distribution of carrier and catalyst MASTERSIZE particle size distribution meter, n-hexane as dispersant, measuring range 0.02-2000 ⁇ m.
  • the magnesium halide solution was mixed with the halogen-containing titanium compound to precipitate a solid to obtain a catalyst component.
  • catalyst component Weigh 2.4 g of anhydrous magnesium chloride, add 8.8 ml of tetrabutyl titanate, 2.0 ml of epichlorohydrin, 2.2 ml of absolute ethanol and 50 ml of toluene, keep stirring at 60 ° C until a clear solution is formed. . Then add 100 ml of toluene, reduce the temperature of the solution to -20 ° C, and slowly use a burette.
  • the catalyst suspension was allowed to stand, settled, and washed four times with toluene, each time the amount of toluene was 50 ml, and then washed twice with hexane, each time the amount of hexane was 50 ml, after washing, at a bath temperature of 65 In the case of °C, it was purged with high-purity nitrogen gas to obtain an off-white solid fluid powder, i.e., the catalyst component of the present invention, having an average particle diameter of 3.48 ⁇ m.
  • Catalyst evaluation The evaluation conditions of the slurry polymerization of the catalyst were the same as those in Example 1, and the polymerization results are shown in Table 1.
  • catalyst component "2.2 ml of absolute ethanol" in the preparation procedure of Example 1 was adjusted to "11.8 ml of isooctanol", and other conditions were the same as in Example 1.
  • the obtained catalyst component had an average particle diameter of 3.92 ⁇ m.
  • Catalyst evaluation The evaluation conditions of the slurry polymerization of the catalyst were the same as those in Example 1, and the polymerization results are shown in Table 1.
  • catalyst component "2.2 ml of absolute ethanol" in the preparation procedure of Example 1 was adjusted to "6.9 ml of n-butanol", and other conditions were the same as in Example 1.
  • the obtained catalyst component had an average particle diameter of 2.82 ⁇ m.
  • catalyst component "8.8 ml of tetrabutyl titanate" in the preparation procedure of Example 1 was adjusted to "5.5 ml of tetraethyl titanate", and "2.0 ml of epichlorohydrin” was adjusted to "2.1 ml” Tetrahydrofuran", other conditions are the same as in Example 1.
  • the obtained catalyst component had an average particle diameter of 7.64 ⁇ m.
  • the magnesium halide solution is mixed with a halogenated organic hydrocarbon compound to precipitate a solid to obtain a catalyst component.
  • catalyst component Weigh 2.4 g of anhydrous magnesium chloride, add 8.8 ml of tetrabutyl titanate, 2.0 ml of epichlorohydrin, 2.2 ml of absolute ethanol and 50 ml of toluene, keep stirring at 60 ° C until a clear solution is formed. . Then add 100 ml of toluene, reduce the temperature of the solution to 0 ° C, slowly add 25 ml of chloro-tert-butane with a burette, and after the completion of the dropwise addition, maintain the reaction at 0 ° C for half an hour, then raise the temperature to 50 ° C to maintain the reaction for 3 hours.
  • Catalyst evaluation The evaluation conditions of the slurry polymerization of the catalyst were the same as those in Example 6, and the polymerization results are shown in Table 2.
  • catalyst component "8.8 ml of tetrabutyl titanate" in the preparation procedure of Example 6 was adjusted to "5.5 ml of tetraethyl titanate", and other conditions were the same as in Example 6.
  • the obtained catalyst component had an average particle diameter of 41.29 ⁇ m.
  • Catalyst evaluation The evaluation conditions of the slurry polymerization of the catalyst were the same as those in Example 6, and the polymerization results are shown in Table 2.
  • catalyst component "2.2 ml of absolute ethanol” in the preparation procedure of Example 6 was adjusted to "6.9 ml of n-butanol", and other conditions were the same as in Example 6.
  • the obtained catalyst component had an average particle diameter of 28.07 ⁇ m.
  • the magnesium halide solution was mixed with an acid chloride compound to precipitate a solid to obtain a catalyst component.
  • catalyst component Weigh 2.4 g of anhydrous magnesium chloride, add 8.8 ml of tetrabutyl titanate, 2.0 ml of epichlorohydrin, 2.2 ml of absolute ethanol and 50 ml of toluene, keep stirring at 60 ° C until a clear solution is formed. . Then add 100 ml of toluene, reduce the temperature of the solution to 0 ° C, slowly add 27 ml of benzoyl chloride into the burette. After the completion of the dropwise addition, maintain the reaction at 0 ° C for half an hour, then warm to 50 ° C to maintain the reaction for 3 hours.
  • the temperature was raised to 90 ° C to maintain the reaction for 2 hours to obtain a catalyst suspension.
  • Catalyst The suspension was allowed to stand, settled, and washed four times with toluene, each time the amount of toluene was 50 ml, and then washed twice with hexane, each time the amount of hexane was 50 ml, and after the washing was completed, the bath temperature was 65 ° C. In the case, it was purged with high-purity nitrogen gas to obtain an off-white solid fluid powder, that is, the catalyst component of the present invention, which had an average particle diameter of 35.63 ⁇ m. Elemental Analysis (ICP): Ti: 16.37% by weight, Mg: 13.16% by weight.
  • Catalyst evaluation The slurry polymerization evaluation conditions of the catalyst were the same as in Example 10, and the polymerization results are shown in Table 3.
  • catalyst component "27 ml of benzoyl chloride" in the preparation procedure of Example 10 was adjusted to "14 ml of benzoyl chloride", and other conditions were the same as in Example 10.
  • the obtained catalyst component had an average particle diameter of 38.18 ⁇ m.
  • Catalyst evaluation The slurry polymerization evaluation conditions of the catalyst were the same as in Example 10, and the polymerization results are shown in Table 3.
  • catalyst component "2.2 ml of absolute ethanol" in the preparation procedure of Example 10 was adjusted to "6.9 ml of n-butanol", and other conditions were the same as in Example 10.
  • the obtained catalyst component had an average particle diameter of 42.45 ⁇ m.
  • the magnesium halide solution was mixed with the halogen-containing phosphorus-containing compound to precipitate a solid to obtain a catalyst component.
  • catalyst component Weigh 2.4 g of anhydrous magnesium chloride, add 8.8 ml of tetrabutyl titanate, 2.0 ml of epichlorohydrin, 2.2 ml of absolute ethanol and 50 ml of toluene, keep stirring at 60 ° C until a clear solution is formed. . Then, 100 ml of toluene was added, the temperature of the solution was lowered to 0 ° C, and 35 ml of phosphorus trichloride was slowly added dropwise by a burette. After the completion of the dropwise addition, the reaction was maintained at 0 ° C for half an hour, and then the temperature was raised to 50 ° C to maintain the reaction for 3 hours.
  • Catalyst evaluation The evaluation conditions of the slurry polymerization of the catalyst were the same as those in Example 14, and the polymerization results are shown in Table 4.
  • catalyst component "8.8 ml of tetrabutyl titanate" in the preparation procedure of Example 14 was adjusted to "5.5 ml of tetraethyl titanate", and the other conditions were the same as those in Example 14.
  • the obtained catalyst component had an average particle diameter of 21.46 ⁇ m.
  • Catalyst evaluation The evaluation conditions of the slurry polymerization of the catalyst were the same as those in Example 14, and the polymerization results are shown in Table 4.
  • catalyst component Adjust “2.2 ml of absolute ethanol” in the preparation step of Example 14 to "4.6 ml of n-butanol", and adjust "reducing the temperature of the solution to 0 ° C” to "reducing the temperature of the solution to 45 ° C” and correspondingly “maintaining 0 ° C reaction for half an hour” was changed to "maintain 45 ° C reaction for half an hour", the other conditions are the same as in Example 14.
  • the obtained catalyst component had an average particle diameter of 26.35 ⁇ m.
  • the magnesium halide solution was mixed with the halogen-containing boron-containing compound to precipitate a solid to obtain a catalyst component.
  • catalyst component Weigh 2.4 g of anhydrous magnesium chloride, add 8.8 ml of tetrabutyl titanate, 2.0 ml of epichlorohydrin, 2.2 ml of absolute ethanol and 50 ml of toluene, keep stirring at 60 ° C until a clear solution is formed. . Then add 100 ml of toluene, reduce the temperature of the solution to 0 ° C, slowly add 50 ml of boron trichloride hexane solution (1 M) with a burette. After the completion of the dropwise addition, maintain the reaction at 0 ° C for half an hour, and then heat up to 50.
  • the reaction was maintained at ° C for 3 hours, and finally heated to 65 ° C for 2 hours to obtain a catalyst suspension.
  • the catalyst suspension was allowed to stand, settled, and washed four times with toluene, each time the amount of toluene was 50 ml, and then washed twice with hexane, each time the amount of hexane was 50 ml, after washing, at a bath temperature of 65 In the case of °C, it was purged with high-purity nitrogen gas to obtain an off-white solid fluid powder, i.e., the catalyst component of the present invention, having an average particle diameter of 25.57 ⁇ m.
  • Catalyst evaluation 1 L of hexane, 1 mmol of triethylaluminum and a certain amount of catalyst were added to a 2 L stainless steel stirred tank, then the temperature was raised to 80 ° C, 0.18 MPa of hydrogen was added at one time, and then the total pressure of the system was increased with ethylene. The polymerization was carried out at 0.73 MPa. After 2 hours of reaction, the addition of ethylene was stopped, the temperature was lowered, the pressure was released, the polyethylene powder was weighed, the activity of the catalyst was calculated, and the bulk density (BD) of the polyethylene powder and the load at 2.16 Kg were tested. The lower melt index (MI 2.16 ), the results are shown in Table 5.
  • Catalyst evaluation The evaluation conditions of the slurry polymerization of the catalyst were the same as those in Example 18. The polymerization results are shown in Table 5.
  • catalyst component "2.0 ml of epichlorohydrin" in the preparation step of Example 18 was adjusted to "2.1 mM tetrahydrofuran", and the other conditions were the same as those in Example 18.
  • the obtained catalyst component had an average particle diameter of 31.29 ⁇ m.
  • Catalyst evaluation The evaluation conditions of the slurry polymerization of the catalyst were the same as those in Example 18. The polymerization results are shown in Table 5.
  • catalyst component "2.2 ml of absolute ethanol" in the preparation step of Example 18 was adjusted to "4.6 ml of n-butanol", and the other conditions were the same as those in Example 18.
  • the obtained catalyst component had an average particle diameter of 20.85 ⁇ m.
  • the magnesium halide solution is mixed with the halogenated organoaluminum compound to precipitate a solid to obtain a catalyst component.
  • catalyst component Weigh 1.2 g of anhydrous magnesium chloride, add 4.4 ml of tetrabutyl titanate, 1.0 ml of epichlorohydrin, 1.1 ml of absolute ethanol and 50 ml of hexane, keep stirring at 60 ° C until transparent Solution. Then, 100 ml of hexane was further added, the temperature of the solution was lowered to 0 ° C, and 18 ml of a hexane solution of dichloroethylaluminum (3 M) was slowly added dropwise by a burette. After the completion of the dropwise addition, the reaction was maintained at 0 ° C for half an hour.
  • the temperature was further raised to 65 ° C to maintain the reaction for 3 hours to obtain a catalyst suspension.
  • the catalyst suspension was allowed to stand, settled, and washed four times with hexane, each time the amount of hexane was 50 ml. After the completion of the washing, the solution was purged with high-purity nitrogen at a bath temperature of 65 ° C to obtain fluidity.
  • the powder that is, the catalyst component of the present invention, had an average particle diameter of 15.68 ⁇ m. Elemental Analysis (ICP): Ti: 11.48% by weight, Mg: 13.78% by weight.
  • Catalyst evaluation The slurry polymerization evaluation conditions of the catalyst were the same as in Example 22, and the polymerization results are shown in Table 6.
  • catalyst component "4.4 ml of tetrabutyl titanate" in the preparation step of Example 22 was adjusted to "2.8 ml of tetraethyl titanate", and the other conditions were the same as those in Example 22.
  • the obtained catalyst component had an average particle diameter of 21.64 ⁇ m.
  • Catalyst evaluation The slurry polymerization evaluation conditions of the catalyst were the same as in Example 22, and the polymerization results are shown in Table 6.
  • the magnesium halide solution was mixed with the halogen-containing silicon-containing compound to precipitate a solid to obtain a catalyst component.
  • catalyst component Weigh 2.4 g of anhydrous magnesium chloride, add 8.8 ml of tetrabutyl titanate, 2.0 ml of epichlorohydrin, 2.2 ml of absolute ethanol and 50 ml of toluene, keep stirring at 60 ° C until a clear solution is formed. . Then, 100 ml of toluene was added, the temperature of the solution was lowered to 0 ° C, and 30 ml of silicon tetrachloride was slowly added dropwise by a burette. After the completion of the dropwise addition, the reaction was maintained at 0 ° C for half an hour, and then the temperature was raised to 50 ° C for 3 hours.
  • Catalyst evaluation The slurry polymerization evaluation conditions of the catalyst were the same as in Example 26, and the polymerization results are shown in Table 7.
  • catalyst component The "2.0 ml of epichlorohydrin" in the preparation step of Example 26 was adjusted to "2.1 ml of tetrahydrofuran", and the "temperature of the solution was lowered to 0 ° C” was adjusted to "reducing the temperature of the solution to 25" °C” and Correspondingly, the phrase “maintaining the reaction at 0 ° C for half an hour” was changed to "half the reaction at 25 ° C for half an hour”, and the other conditions were the same as those in Example 26.
  • the obtained catalyst component had an average particle diameter of 21.61 ⁇ m. Elemental Analysis (ICP): Ti: 0.60% by weight, Mg: 22.91% by weight.
  • catalyst component "8.8 ml of tetrabutyl titanate" in the preparation step of Example 26 was adjusted to "5.5 ml of tetraethyl titanate", and "2.0 ml of epichlorohydrin” was adjusted to "2.1 ml of tetrahydrofuran. ", and "reducing the temperature of the solution to 0 ° C” is adjusted to “reducing the temperature of the solution to 25 ° C” and correspondingly changing the "remaining 0 ° C reaction for half an hour” to "maintaining the reaction at 25 ° C for half an hour”, and other conditions are implemented.
  • the obtained catalyst component had an average particle diameter of 16.29 ⁇ m.
  • Catalyst evaluation The slurry polymerization evaluation conditions of the catalyst were the same as in Example 26, and the polymerization results are shown in Table 7.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

本发明提供一种用于烯烃聚合的催化剂组分的制备方法,包括先以无水卤化镁溶于包含含氧有机钛化合物、有机环氧化合物、含羟基类化合物和惰性稀释剂的混合溶剂而形成一种卤化镁溶液,且所述混合溶剂中不含磷酸酯类化合物;所述卤化镁溶液再与含卤化合物混合析出固体得到所述催化剂组分;其中所述含卤化合物包括含卤含钛化合物、卤代有机烃类化合物、酰卤类化合物、含卤含磷化合物、含卤含硼化合物、卤化有机铝化合物和含卤含硅化合物中至少一种。本发明制备的催化剂组分具有较好的颗粒形态,优良的氢调性能,有利于催化剂在淤浆或气相聚合工艺装置上的使用。

Description

一种用于烯烃聚合的催化剂组分的制备方法
相关技术的交叉引用
本申请要求享有2014年4月29日提交的中国专利申请CN 201410176103.3、CN 201410177203.8、CN 201410176105.2、CN 201410176229.0、CN 201410177192.3、CN 201410176179.6和CN 201410177228.8的优先权,其全部内容通过引用并入本文中。
技术领域
本发明属于烯烃聚合催化剂制造技术领域,涉及一种用于烯烃聚合的催化剂组分的制备方法,进一步涉及一种用于烯烃均聚合或共聚合的催化剂组分及其制备方法。
背景技术
随着烯烃聚合工艺的发展,与聚合工艺相配套的催化剂也取到了长足的进步,其中高效催化剂凭借其优良的聚合性能和成熟的应用技术在聚烯烃催化剂领域中仍旧占有重要的地位。尤其是人们越来越关注新型结构聚烯烃树脂的生产开发,对烯烃聚合催化剂的综合性能要求也越来越高,不但要适应工艺装置,而且还要对树脂结构可调可控。经过多年的探索研究,表明Mg-Ti系高效催化剂比较适合这种应用。
Mg-Ti系高效催化剂的制备方法目前多采用溶解析出的方法,即先使镁化合物溶于某种溶剂中,然后再沉淀析出的办法。如日特开昭54-40293提出用钛酸酯溶解镁化合物,日特开昭56-811和日特开昭58-83006提出用醇、醛、胺、羧酸等化合物溶解镁化合物,日特开昭58-19307提出用有机磷化合物溶解镁化合物,日特开昭58-183708提出用有机环氧化合物和有机磷化合物(磷酸酯类化合物)混合溶解镁化合物等方案。
虽然上述镁化合物溶解方法也能在一定程度上克服研磨粉碎法的缺点,但仍有一系列不足有待改进,如日特开昭54-40293、日特开昭58-19307、日特开昭58-183708所述的镁化合物溶液析出催化剂后用于催化烯烃聚合,其催化活性较低,并且当延长聚合时间时活性明显下降,聚合物的堆积密度也较低。
其次Mg-Ti系高效催化剂也多采用化学反应的制备方法。在化学反应法中,许多发明专利涉及采用有机金属镁化合物、氯化剂和过渡金属钛化合物等化学原 料,用这类反应物已制备出多种不同类型的催化剂,它们公开在中国专利CN1158136、CN1299375、CN1795213和美国专利US3787384、US4148754、US4173547、US4508843和5124296中。在这种类型的Mg-Ti催化剂中,催化剂的性能虽然容易调变,但普遍存在所得催化剂颗粒形态不好,分布较宽的问题,有的甚至是多峰分布,不利于聚合装置的长周期平稳运行。
由此可见,目前存在的问题是需要研究开发一种聚合活性高、活性衰减缓慢、氢调敏感性好,且有利于聚合装置的长周期平稳运行的烯烃聚合催化剂组分。
发明内容
本发明所要解决的技术问题是针对现有技术的不足,提供一种用于烯烃聚合的催化剂组分的制备方法,该方法所制备的烯烃聚合催化剂组分聚合活性高、活性衰减缓慢、氢调敏感性好,且有利于聚合装置的长周期平稳运行。
为实现上述目的,本发明的发明人对催化剂组分及其活性进行了大量的研究。本发明人通过反复实验发现,在催化剂的制备过程中选择合适的卤化镁溶解析出体系可以得到很好的用于烯烃聚合或共聚合的催化剂体系。这种催化体系具有很高的聚合活性,并且聚合动力学平稳,活性衰减比较慢,氢调敏感性好;催化剂颗粒形态好、粒径分布窄,导致聚合物颗粒形态较好,粒径分布窄,细粉少,堆积密度大,有利于聚合装置的长周期平稳运行;碳数在3或3以上的烯烃聚合物的立体规整性很高。另外,在催化剂合成过程中原料消耗少,设备利用率高,具有操作方便,环境友好的优点。本发明是基于上述发现做出的。
本发明一方面提供了一种用于烯烃聚合的催化剂组分,其由含有有机环氧化合物的卤化镁溶液与含卤化合物混合析出固体得到;其中,
所述有机环氧化合物为如通式I所示的三元环氧化合物,
Figure PCTCN2015077844-appb-000001
式I中R2和R3独立地选自H或C1-C10的烃基或卤代烃基,可以是饱和或不饱和的直链、支链或环状链;或所述有机环氧化合物为4-8元环氧化合物;所述含卤化合物包括含卤含钛化合物、卤代有机烃类化合物、酰氯类化合物、含卤含磷化合物、含卤含硼化合物、卤化有机铝化合物和含卤含硅化合物中至少一种;所述卤化镁溶液是以无水卤化镁溶于包含含氧有机钛化合物、有机环氧化合物、 含羟基类化合物和惰性稀释剂的混合溶剂而形成。
根据本发明,所述卤化镁溶液是以无水卤化镁溶于由含氧有机钛化合物、有机环氧化合物、含羟基类化合物和惰性稀释剂组成的混合溶剂而形成。
如前所述,本发明人通过反复实验发现,在催化剂的制备过程中选择合适的卤化镁溶解析出体系可以得到很好的用于烯烃聚合或共聚合的催化剂体系,并且令人意想不到的是,本发明的发明人发现采用包含含氧有机钛化合物、有机环氧化合物、含羟基类化合物和惰性稀释剂的混合溶剂,优选由含氧有机钛化合物、有机环氧化合物、含羟基类化合物和惰性稀释剂组成的混合溶剂可以很好地溶解无水卤化镁并与其形成均一的卤化镁溶液。进一步以所形成的卤化镁溶液与含卤化合物混合析出固体得到用于烯烃聚合或共聚合的催化剂组分。这种催化组分具有很高的聚合活性,并且聚合动力学平稳,活性衰减比较慢,氢调敏感性好;催化剂颗粒形态好、粒径分布窄,导致聚合物颗粒形态较好,粒径分布窄,细粉少,堆积密度大,有利于聚合装置的长周期平稳运行;碳数在3或3以上的烯烃聚合物的立体规整性很高。
在本发明的一个或多个实施方式中,所述卤化镁的通式为MgX2,式中X是卤素;所述含氧有机钛化合物如通式Ti(OR1)nX4-n所示,式中R1是C1-C20的烃基,可以是饱和或不饱和的直链、支链或环状链,0<n≤4,X是卤素;所述含羟基类化合物通式为HOR4,式中R4是C1-C20的烃基,可以是饱和或不饱和的直链、支链或环状链;所述惰性稀释剂为C3-C100的脂族烃或其卤代烃,或为芳香族烃或其卤代烃,可以是饱和或不饱和的直链、支链或环状链;优选所述惰性稀释剂为C4-C20的烃类化合物。
在本发明的一个或多个实施方式中,所述卤化镁为氯化镁、溴化镁、碘化镁及其混合物;所述含氧有机钛化合物为钛酸酯类化合物及其混合物,优选钛酸四乙酯、钛酸四异丙酯、钛酸四丁酯、钛酸四异辛酯;所述含羟基类化合物为脂肪醇、芳香醇或酚类,优选甲醇、乙醇、异丙醇、正丁醇、正己醇、异辛醇、苯甲醇和苯乙醇;所述惰性稀释剂选自苯、甲苯、二甲苯、正丁烷、异丁烷、异戊烷、正戊烷、正己烷、环己烷、庚烷、辛烷、癸烷、1,2-二氯乙烷、氯苯及其混合物。
根据本发明,以每摩尔卤化镁计,含氧有机钛化合物为0.01-2.0摩尔,优选0.1-1.5摩尔;有机环氧化合物为0.01-10摩尔,优选0.1-6.5摩尔,含羟基类化合物为0.01-20摩尔,优选0.1-15摩尔,含卤化合物为0.1-100摩尔,优选0.5-50摩尔。
根据本发明,所述有机环氧化合物选自环氧乙烷、环氧丙烷、环氧丁烷、丁二烯氧化物、丁二烯双氧化物、环氧氯丙烷、甲基缩水甘油醚、二缩水甘油醚和 四氢呋喃中的一种或多种。
在本发明的一个或多个实施方式中,所述含卤含钛化合物为如式Ti(OR5)nX4-n所示化合物,式中R5是C1-C20的烃基或卤代烃基,可以是饱和或不饱和的直链、支链或环状链,0≤n≤3,式中X为卤素。所述含卤含钛化合物选自四氯化钛、四溴化钛、四碘化钛、一氯三乙氧基钛、二氯二乙氧基钛和三氯一乙氧基钛中的至少一种;优选四氯化钛、四溴化钛、四碘化钛。
在本发明的一个或多个实施方式中,所述卤代有机烃类化合物为如式R5X所示化合物,式中R5是C1-C20的烃基或卤代烃基,可以是饱和或不饱和的直链、支链或环状链,式中X为卤素。所述卤代有机烃类化合物选自氯代环己烷、溴代环己烷、氯代叔丁烷、溴代叔丁烷、氯苯、三氯苯、1,1-二氯乙烷和1,1-二氯丙烷中的至少一种。
根据本发明,所述酰卤类化合物为如式R5COX所示化合物,式中R5是C1-C20的烃基或者是氢,可以是饱和或不饱和的直链、支链或环状链,式中X为卤素。所述酰卤类化合物包括酰氟类化合物、酰氯类化合物、酰溴类化合物和酰碘类化合物中的至少一种。优选酰卤类化合物为酰氯类化合物。
在本发明的一个或多个实施方式中,所述酰氯类化合物为如式R5COCl所示化合物,式中R5是C1-C20的烃基或者是氢,可以是饱和或不饱和的直链、支链或环状链。所述酰氯类化合物选自甲酰氯、乙酰氯、丙酰氯、丁酰氯、苯甲酰氯、邻苯二甲酰氯、苯乙酰氯、苯丙酰氯和苯丁酰氯中的至少一种。
在本发明的一个或多个实施方式中,所述含卤含磷化合物为如式OpPR5 qX3-q所示的化合物,式中R5是C1-C20的烷基或烷氧基,0≤q<3,p=0或1,式中X是卤素;或者所述含卤含磷化合物为五氯化磷。所述含卤含磷化合物选自二氯甲基磷、二氯乙基磷、二氯丁基磷、三氯化磷、五氯化磷、三氯氧磷、二氯磷酸甲酯、二氯磷酸乙酯和二氯磷酸丁酯中的至少一种;优选三氯化磷、五氯化磷和三氯氧磷中的至少一种。
在本发明的一个或多个实施方式中,所述含卤含硼化合物为如式BR5 qX3-q所示化合物,式中R5是C1-C20的烷基或烷氧基,0≤q<3,式中X为卤素。所述含卤含硼化合物选自二氯甲基硼、二氯乙基硼、二氯丁基硼、二氯甲氧基硼、二氯乙氧基硼、三氯化硼和二氯丁氧基硼中至少一种。
在本发明的一个或多个实施方式中,所述卤化有机铝化合物为如式AlR5 nX3-n所示化合物,式中R5是C1-C20的烃基,优选为不高于6个碳原子的直连或支链烃基,其中0.5≤n≤2.5,X为卤素。所述卤化有机铝化合物选自二氯乙基铝、倍半氯化乙基铝、氯化二乙基铝和二氯异丁基铝中的至少一种。
在本发明的一个或多个实施方式中,所述含卤含硅化合物为如式(R5O)qSiR6 nX4-n-q所示化合物,式中R5和R6独立地选自C1-C20的烃基或卤代烃基,可以是饱和或不饱和的直链、支链或环状链,q和n均为0或正数,且0≤q+n≤3,式中X为卤素。所述含卤含硅化合物选自四氯化硅、四溴化硅、三氯一乙氧基硅、三氯苯基硅、三氯甲基硅、三氯乙基硅、二氯二甲氧基硅、二氯甲基甲氧基硅烷、二氯甲基苯氧基硅烷中的至少一种;优选四氯化硅、四溴化硅、三氯一乙氧基硅、三氯苯基硅。
本发明另一方面提供了一种用于烯烃聚合的催化剂组分的制备方法,包括先以无水卤化镁溶于包含含氧有机钛化合物、有机环氧化合物、含羟基类化合物和惰性稀释剂的混合溶剂而形成一种卤化镁溶液,且所述混合溶剂中不含磷酸酯类化合物;所述卤化镁溶液再与含卤化合物混合析出固体得到所述催化剂组分;其中有机环氧化合物为如通式I所示的三元环氧化合物,式I中R2和R3独立地选自H或C1-C10的烃基或卤代烃基,可以是饱和或不饱和的直链、支链或环状链;或所述有机环氧化合物为4-8元环氧化合物;所述含卤化合物包括含卤含钛化合物、卤代有机烃类化合物、酰卤类化合物、含卤含磷化合物、含卤含硼化合物、卤化有机铝化合物和含卤含硅化合物中至少一种。
Figure PCTCN2015077844-appb-000002
本发明中得到的卤化镁溶液为无定形卤化镁形态,也就是说本发明的卤化镁溶液中不含有结晶态的卤化镁。本发明中,原料无水卤化镁为结晶态的卤化镁,其可以是α、β或γ等多种晶形。在本发明中,所述混合溶剂除了上述必不可少的四种有机溶剂外,还可以包含其它有机溶剂,例如为选自酯类、酮类和胺类等化合物的有机溶剂。这些其它有机溶剂的用量以不影响最终卤化镁溶液产品的相态为前提。
在本发明中,混合溶剂中不含磷酸酯类化合物,如此得到的卤化镁溶液在下游的应用过程中有更佳的表现,例如其用于催化剂制备中使得固体组分容易析出和使得相应的催化剂的活性提高;且避免了在下游的催化剂产品中残留毒性大的含磷物质。本发明中的磷酸酯类化合物例如为磷酸三丁酯、磷酸三异丁酯、磷酸三丙酯、磷酸三乙酯或磷酸三甲酯。
优选地,在本发明中,所述卤化镁溶液是以无水卤化镁溶于由含氧有机钛化 合物、有机环氧化合物、含羟基类化合物和惰性稀释剂组成的混合溶剂而形成。也就是说,优选本发明的混合溶剂中仅包含上述必不可少的四种有机溶剂。
在一个或多个具体的实施方式中,所述卤化镁的通式为MgX2,式中X是卤素。所述含氧有机钛化合物如通式Ti(OR1)nX4-n所示,式中R1是C1-C20的烃基,可以是饱和或不饱和的直链、支链或环状链,0<n≤4,X是卤素。优选使用四价钛化合物,因为他们通常在常温下呈液态,而且在通常情况下与一些溶剂具有很好的相容性。反应中具体使用的钛化合物优选通式中n=4的化合物及他们的混合物,其中钛酸四丁酯最为常用。所述含羟基类化合物通式为HOR4,式中R4是C1-C20的烃基,可以是饱和或不饱和的直链、支链或环状链;所述惰性稀释剂为C3-C100的脂族烃或其卤代烃,或为芳香族烃或其卤代烃,可以是饱和或不饱和的直链、支链或环状链;优选所述惰性稀释剂为C4-C20的烃类化合物。
优选的,所述卤化镁为氯化镁、溴化镁、碘化镁及其混合物,更优选反应中使用的卤化镁为氯化镁或含氯化镁的混合物;所述含氧有机钛化合物为钛酸酯类化合物及其混合物,优选钛酸四乙酯、钛酸四异丙酯、钛酸四丁酯、钛酸四异辛酯;所述含羟基类化合物为脂肪醇、芳香醇或酚类,优选甲醇、乙醇、异丙醇、正丁醇、正己醇、异辛醇、苯甲醇和苯乙醇;所述惰性稀释剂选自苯、甲苯、二甲苯、正丁烷、异丁烷、异戊烷、正戊烷、正己烷、环己烷、庚烷、辛烷、癸烷、1,2-二氯乙烷、氯苯及其混合物。
在一个或多个具体的实施方式中,以每摩尔卤化镁计,含氧有机钛化合物为0.01-2.0摩尔,优选0.1-1.5摩尔;有机环氧化合物为0.01-10摩尔,优选0.1-6.5摩尔,含羟基类化合物为0.01-20摩尔,优选0.1-15摩尔,含卤化合物为0.1-100摩尔,优选0.5-50摩尔。
在一个或多个具体的实施方式中,卤化镁溶液中卤化镁的摩尔浓度为0.0001-20mol/L,优选为0.001-10mol/L。
本发明的发明人通过反复实验研究发现,采用包含含氧有机钛化合物、有机环氧化合物、含羟基类化合物和惰性稀释剂的混合溶剂,优选由含氧有机钛化合物、有机环氧化合物、含羟基类化合物和惰性稀释剂按照上述用量组成的混合溶剂可以更好地溶解无水卤化镁并与其形成均一的卤化镁溶液。进一步所形成的卤化镁溶液与上述用量的含卤化合物混合析出固体得到用于烯烃聚合或共聚合的催化剂组分。这种催化组分具有极高的聚合活性,并且聚合动力学平稳,活性衰减慢,氢调敏感性好;催化剂颗粒形态好、粒径分布窄,导致聚合物颗粒形态较好,粒径分布窄,细粉少,堆积密度大,有利于聚合装置的长周期平稳运行;碳数在3或3以上的烯烃聚合物的立体规整性很高。
本发明中,优选的,通式I所示的有机环氧化合物包括有碳原子数在2-8的脂肪族烯烃、二烯烃或卤代脂族烯烃或二烯烃的氧化物、缩水甘油醚、内醚等化合物。优选所述有机环氧化合物选自环氧乙烷、环氧丙烷、环氧丁烷、丁二烯氧化物、丁二烯双氧化物、环氧氯丙烷、甲基缩水甘油醚、二缩水甘油醚和四氢呋喃中的一种或多种。
在一个或多个具体的实施方式中,所述含卤含钛化合物为如式Ti(OR5)nX4-n所示化合物,式中R5是C1-C20的烃基或卤代烃基,可以是饱和或不饱和的直链、支链或环状链,0≤n≤3,式中X为卤素。
本发明中,优选所述含卤含钛化合物选自四氯化钛、四溴化钛、四碘化钛、一氯三乙氧基钛、二氯二乙氧基钛和三氯一乙氧基钛中的至少一种;优选四氯化钛、四溴化钛、四碘化钛。
在一个或多个具体的实施方式中,所述卤代有机烃类化合物为如式R5X所示化合物,式中R5是C1-C20的烃基或卤代烃基,可以是饱和或不饱和的直链、支链或环状链,式中X为卤素。
本发明中,优选所述卤代有机烃类化合物选自氯代环己烷、溴代环己烷、氯代叔丁烷、溴代叔丁烷、氯苯、三氯苯、1,1-二氯乙烷和1,1-二氯丙烷中的至少一种。
在一个或多个具体的实施方式中,所述酰卤类化合物为如式R5COX所示化合物,式中R5是C1-C20的烃基或者是氢,可以是饱和或不饱和的直链、支链或环状链,式中X为卤素。
本发明中,所述酰卤类化合物包括酰氟类化合物、酰氯类化合物、酰溴类化合物和酰碘类化合物中的至少一种。优选酰卤类化合物为酰氯类化合物。
在一个或多个进一步具体的实施方式中,所述酰氯类化合物为如式R5COCl所示化合物,式中R5是C1-C20的烃基或者是氢,可以是饱和或不饱和的直链、支链或环状链。
本发明中,优选所述酰氯类化合物选自甲酰氯、乙酰氯、丙酰氯、丁酰氯、苯甲酰氯、邻苯二甲酰氯、苯乙酰氯、苯丙酰氯和苯丁酰氯中的至少一种。
在一个或多个具体的实施方式中,所述含卤含磷化合物为如式OpPR5 qX3-q所示的化合物,式中R5是C1-C20的烷基或烷氧基,0≤q<3,p=0或1,式中X是卤素;或者所述含卤含磷化合物为五氯化磷。
本发明中,优选所述含卤含磷化合物选自二氯甲基磷、二氯乙基磷、二氯丁基磷、三氯化磷、五氯化磷、三氯氧磷、二氯磷酸甲酯、二氯磷酸乙酯和二氯磷酸丁酯中的至少一种;优选三氯化磷、五氯化磷和三氯氧磷中的至少一种。
在一个或多个具体的实施方式中,所述含卤含硼化合物为如式BR5 qX3-q所示化合物,式中R5是C1-C20的烷基或烷氧基,0≤q<3,式中X为卤素。
本发明中,优选所述含卤含硼化合物选自二氯甲基硼、二氯乙基硼、二氯丁基硼、二氯甲氧基硼、二氯乙氧基硼、三氯化硼和二氯丁氧基硼中至少一种。
在一个或多个具体的实施方式中,所述卤化有机铝化合物为如式AlR5 nX3-n所示化合物,式中R5是C1-C20的烃基,优选为不高于6个碳原子的直连或支链烃基,其中0.5≤n≤2.5,X为卤素。
本发明中,优选所述卤化有机铝化合物选自二氯乙基铝、倍半氯化乙基铝、氯化二乙基铝和二氯异丁基铝中的至少一种。
在一个或多个具体的实施方式中,所述含卤含硅化合物为如式(R5O)qSiR6 nX4-n-q所示化合物,式中R5和R6独立地选自C1-C20的烃基或卤代烃基,可以是饱和或不饱和的直链、支链或环状链,q和n均为0或正数,且0≤q+n≤3,式中X为卤素。
本发明中,优选所述含卤含硅化合物选自四氯化硅、四溴化硅、三氯一乙氧基硅、三氯苯基硅、三氯甲基硅、三氯乙基硅、二氯二甲氧基硅、二氯甲基甲氧基硅烷、二氯甲基苯氧基硅烷中的至少一种;优选四氯化硅、四溴化硅、三氯一乙氧基硅、三氯苯基硅。在本发明制备卤化镁溶液的步骤中,镁化合物、有机环氧化合物、含羟基类化合物和有机钛化合物相互接触的温度取决于反应物的性质,一般选择在相对较高的温度下进行溶解较为有利,优选在反应物的分解温度以下,温度通常不高于200℃,一般不高于150℃。溶解的时间取决于反应物的性质和操作条件,一般的时间选择以能够获得完全透明的溶液为止,所需时间一般在10分钟至24小时,优选2至16小时。溶解时可以加入如上所述的惰性稀释剂。
催化剂组分制备的第二步也可称为沉淀步骤,在该步骤中完成镁钛配合物溶液的氯化反应,使液态配合物从溶液中沉淀析出。镁钛配合物溶液与含卤化合物的接触方法可以采用任何已知的合适的方法进行,可以采用将镁钛配合物溶液逐步滴加到含卤化合物溶液中的方式,也可以采用将含卤化合物溶液逐步滴加到镁钛配合物溶液中的方式。滴加速度通常选择以不引起反应的局部过热为准,在滴加过程中通常进行搅拌以利于反应的平稳进行。在该沉淀反应步骤中,温度可以控制在-40-100℃之间,优选在-20-80℃之间。沉淀步骤的反应时间应该长到足以获得完全的沉淀,反应时间可历时1分钟至10小时,优选0.5-8小时。
实验发现,在沉淀步骤之后,在一定温度下反应一段时间进行熟化处理对催化剂的粒形比较有利,同时也可以提高催化剂粒子的强度,从而减少催化剂在催 化乙烯聚合过程中的粒子破碎现象。熟化处理的温度一般等于或高于沉淀反应的温度,熟化反应的时间可以控制在0.5-15小时,优选1-10小时。
在进行熟化处理之后,一般要进行洗涤,以便除去过量的反应物和制备过程中形成的副产物,任何惰性溶剂均可用于这一洗涤步骤,例如可以选择苯、甲苯、二甲苯、异丁烷、戊烷、己烷、庚烷或环己烷及其混合物等,实验中通常选择己烷、甲苯为洗涤的惰性溶剂。在洗涤后,催化剂悬浮液可以直接进行多次载钛处理,也可以通过在加热情况下用氮气吹扫进行干燥,直接得到催化剂粉末。
本发明还提供一种用于烯烃聚合的催化剂,其包含下述组分的反应产物:
(a)上述方法制备得到的催化剂组分;
(b)至少一种通式为AlRmX3-m的有机铝化合物,式中R为氢或碳原子数为1-20的烃基,X为卤素,m为0<m≤3的数。
本发明中,可以选用一种或两种以上的有机铝化合物混合使用,优选AlEt3、Al(iso-Bu)3、Al(n-C6H13)3、Al(n-C8H17)3、AlEt2Cl等。
另外,本发明还进一步提供了一种用于烯烃聚合催化剂组分的制备过程中的卤化镁溶解体系,其包括含氧有机钛化合物、有机环氧化合物、含羟基类化合物和惰性稀释剂,其中有机环氧化合物为如通式I所示的三元环氧化合物,
Figure PCTCN2015077844-appb-000003
式I中R2和R3独立地选自H或C1-C10的烃基或卤代烃基,可以是饱和或不饱和的直链、支链或环状链;或所述有机环氧化合物为4-8元环氧化合物。
根据本发明,所述卤化镁溶解体系是由含氧有机钛化合物、有机环氧化合物、含羟基类化合物和惰性稀释剂组成的混合溶剂。
如前所述,现有的用于制备烯烃聚合催化剂的溶剂与无水卤化镁只能形成含有卤化镁的悬浮液或悬浊液,以此含有卤化镁的悬浮液或悬浊液制得的催化剂组分用于烯烃聚合反应时的聚合活性较低,且活性衰减较快,氢调敏感性较差,不利于聚合装置的长周期平稳运行。
如前所述,经本发明的发明人通过反复实验发现,在催化剂的制备过程中选择上述卤化镁溶解体系可以得到很好的用于烯烃聚合或共聚合的催化剂体系。这种催化体系具有很高的聚合活性,并且聚合动力学平稳,活性衰减比较慢,氢调敏感性好;催化剂颗粒形态好、粒径分布窄,导致聚合物颗粒形态较好,粒径分 布窄,细粉少,堆积密度大,有利于聚合装置的长周期平稳运行;碳数在3或3以上的烯烃聚合物的立体规整性很高。另外,在催化剂合成过程中原料消耗少,设备利用率高,具有操作方便,环境友好的优点。
在本发明的一个或多个实施方式中,所述卤化镁的通式为MgX2,式中X是卤素;所述含氧有机钛化合物如通式Ti(OR1)nX4-n所示,式中R1是C1-C20的烃基,可以是饱和或不饱和的直链、支链或环状链,0<n≤4,X是卤素;所述含羟基类化合物通式为HOR4,式中R4是C1-C20的烃基,可以是饱和或不饱和的直链、支链或环状链;所述惰性稀释剂为C3-C100的脂族烃或其卤代烃,或为芳香族烃或其卤代烃,可以是饱和或不饱和的直链、支链或环状链;优选所述惰性稀释剂为C4-C20的烃类化合物。
在一个或多个具体的实施方式中,以每摩尔卤化镁计,含氧有机钛化合物为0.01-2.0摩尔,优选0.1-1.5摩尔;有机环氧化合物为0.01-10摩尔,优选0.1-6.5摩尔,含羟基类化合物为0.01-20摩尔,优选0.1-15摩尔。
如前所述,在本发明中,所述混合溶剂中不含磷酸酯类化合物,如此得到的卤化镁溶液在下游的应用过程中有更佳的表现,例如其用于催化剂制备中使得固体组分容易析出和使得相应的催化剂的活性提高;且避免了在下游的催化剂产品中残留毒性大的含磷物质。本发明中的磷酸酯类化合物例如为磷酸三丁酯、磷酸三异丁酯、磷酸三丙酯、磷酸三乙酯或磷酸三甲酯。
优选地,本发明的混合溶剂中仅包含含氧有机钛化合物、有机环氧化合物、含羟基类化合物和惰性稀释剂必不可少的四种有机溶剂。
本发明中所述用语“磷酸酯类化合物”,亦即有机磷化合物,是磷酸的酯衍生物,属于磷酸衍生物的一类的化合物。由于磷酸为三元酸,因此根据取代烃基数的不同,磷酸酯可分为伯磷酸酯(磷酸一酯、烃基磷酸)、仲磷酸酯(磷酸二酯)和叔磷酸酯(磷酸三酯)。
本发明中所述用语“钛酸酯类化合物”,具有烃氧基基团的含钛化合物,如钛酸四丁酯、钛酸四乙酯等。
本发明中所述用语“酚类”,亦即酚类化合物,是一类通式为ArOH,结构为芳烃环上的氢被羟基(-OH)取代的一类芳香族化合物。
本发明中所述用语“烃类化合物”是碳原子与氢原子所构成的化合物,其包括烷烃、环烷烃、烯烃、炔烃、芳香烃。
本发明中所述用语“酯类化合物”是指有机化学中醇与羧酸或无机含氧酸发生酯化反应生成的产物。酯类除了羧酸酯外,也有硝酸、硫酸等无机含氧酸酯。
本发明中所述用语“酮类化合物”是通式为RC(=O)R′的一类有机化合物,其中 R和R′可以是相同或不同的原子或官能团,其结构特征是具有一个与两个碳原子相连接的羰基(C=O)。
本发明中所述用语“胺类化合物”是氨分子(NH3)中的氢被烃基取代后形成的一类有机化合物。
本发明中所述用语“倍半氯化乙基铝”亦称为乙基倍半铝氯化物,其分子式是C6H15Al2Cl3
本发明中所述用语“卤化镁溶解体系”是指在用于烯烃聚合的催化剂的制备过程中,用于溶解卤化镁或无水卤化镁的包含多种组成成分,例如包含含氧有机钛化合物、有机环氧化合物、含羟基类化合物和惰性稀释剂的用于混合溶剂,优选由含氧有机钛化合物、有机环氧化合物、含羟基类化合物和惰性稀释剂组成的用于溶解无水卤化镁的混合溶剂。
本发明涉及的催化剂组分或催化剂适用于各种烯烃聚合或共聚合反应;优选在乙烯、丙烯、丁烯、己烯和辛烯均聚合或共聚合反应中的应用。尤其是乙烯的均聚合或乙烯与其他α-烯烃的共聚合,其中α-烯烃采用丙烯、丁烯、戊烯、己烯、辛烯、4-甲基戊烯-1中的一种。
具体实施方式
测试方法:
1.载体和催化剂的粒度分布:MASTERSIZE粒度分布仪,正己烷作为分散剂,测量范围0.02-2000μm。
2.催化剂体系中金属(主要是钛、镁)的相对重量百分比:等离子发射光谱(ICP)。
3.熔融指数的测定:ASTM-D 1238。
4.堆积密度的测定:DIN-53194。
下面给出的实施例是为了说明本发明,而不是对本发明进行限制。
实施例
在下述实施例1-5中,在卤化镁溶液制备完成后,再将所述卤化镁溶液与含卤含钛化合物混合析出固体得到催化剂组分。
实施例1
催化剂组分的制备:称取2.4克无水氯化镁,加入8.8毫升钛酸四丁酯、2.0毫升环氧氯丙烷、2.2毫升无水乙醇和50毫升甲苯,在60℃保持搅拌溶解直至形成透明溶液。然后再补加100毫升甲苯,将溶液温度降至-20℃,用滴定管缓慢 滴加30毫升四氯化钛,滴加完成后,维持-20℃反应半小时,再升温到50℃维持反应4小时,最后升温到90℃维持反应3小时,得到催化剂悬浮液。将催化剂悬浮液静置、沉降,用甲苯洗涤四次,每次甲苯的用量为50毫升,再用己烷洗涤两次,每次己烷的用量为50毫升,洗涤完成后,在浴温65℃的情况下,用高纯氮气吹扫干燥,得灰白色固体流动性粉末,即本发明所述催化剂组分,其平均粒径为3.48μm。元素分析(ICP):Ti:9.82%(重量),Mg:15.42%(重量)。
催化剂评价:将1L己烷、1mmol三乙基铝和一定量的催化剂加入到2L不锈钢搅拌釜中,然后将温度提高到80℃,一次性加入0.18MPa的氢气,然后用乙烯将体系的总压力维持在0.73MPa进行聚合反应,反应2小时后,停止加入乙烯,降温,泄压,聚乙烯粉料称重,计算催化剂的活性,测试聚乙烯粉料的堆积密度(BD)和在2.16Kg负荷下的熔融指数(MI2.16),结果如表1所示。
实施例2
催化剂组分的制备:将实施例1制备步骤中的“将溶液温度降至-20℃”调整为“将溶液温度降至0℃”和相应将“维持-20℃反应半小时”改为“维持0℃反应半小时”,且将“滴加30毫升四氯化钛”调整为“滴加15毫升四氯化钛”,其他条件同实施例1。所得催化剂组分的平均粒径为8.65μm。元素分析(ICP):Ti:6.75%(重量),Mg:19.71%(重量)。
催化剂评价:催化剂的淤浆聚合评价条件同实施例1,聚合结果见表1。
实施例3
催化剂组分的制备:将实施例1制备步骤中的“2.2毫升无水乙醇”调整为“11.8毫升异辛醇”,其他条件同实施例1。所得催化剂组分的平均粒径为3.92μm。元素分析(ICP):Ti:27.61%(重量),Mg:10.10%(重量)。
催化剂评价:催化剂的淤浆聚合评价条件同实施例1,聚合结果见表1。
实施例4
催化剂组分的制备:将实施例1制备步骤中的“2.2毫升无水乙醇”调整为“6.9毫升正丁醇”,其他条件同实施例1。所得催化剂组分的平均粒径为2.82μm。元素分析(ICP):Ti:6.69%(重量),Mg:19.80%(重量)。
催化剂的淤浆聚合评价条件同实施例1,聚合结果见表1。
实施例5
催化剂组分的制备:将实施例1制备步骤中的“8.8毫升钛酸四丁酯”调整为“5.5毫升钛酸四乙酯”,且将“2.0毫升环氧氯丙烷”调整为“2.1毫升四氢呋喃”,其他条件同实施例1。所得催化剂组分的平均粒径为7.64μm。元素分析(ICP):Ti:12.22%(重量),Mg:16.06%(重量)。
催化剂的淤浆聚合评价条件同实施例1,聚合结果见表1。
表1
Figure PCTCN2015077844-appb-000004
在下述实施例6-9中,在卤化镁溶液制备完成后,再将所述卤化镁溶液与卤代有机烃类化合物混合析出固体得到催化剂组分。
实施例6
催化剂组分的制备:称取2.4克无水氯化镁,加入8.8毫升钛酸四丁酯、2.0毫升环氧氯丙烷、2.2毫升无水乙醇和50毫升甲苯,在60℃保持搅拌溶解直至形成透明溶液。然后再补加100毫升甲苯,将溶液温度降至0℃,用滴定管缓慢滴加25毫升氯代叔丁烷,滴加完成后,维持0℃反应半小时,再升温到50℃维持反应3小时,最后升温到90℃维持反应2小时,得到催化剂悬浮液。将催化剂悬浮液静置、沉降,用甲苯洗涤四次,每次甲苯的用量为50毫升,再用己烷洗涤两次,每次己烷的用量为50毫升,洗涤完成后,在浴温65℃的情况下,用高纯氮气吹扫干燥,得灰白色固体流动性粉末,即本发明所述催化剂组分,其平均粒径为33.72μm。元素分析(ICP):Ti:15.24%(重量),Mg:16.74%(重量)。
催化剂评价:将1L己烷、1mmol三乙基铝和一定量的催化剂加入到2L不锈钢搅拌釜中,然后将温度提高到85℃,一次性加入0.18MPa的氢气,然后用乙烯将体系的总压力维持在1.03MPa进行聚合反应,反应2小时后,停止加入乙烯,降温,泄压,聚乙烯粉料称重,计算催化剂的活性,测试聚乙烯粉料的堆积密度(BD)和在2.16Kg负荷下的熔融指数(MI2.16),结果如表2所示。
实施例7
催化剂组分的制备:将实施例6制备步骤中的“将溶液温度降至0℃”调整为“将溶液温度降至45℃”和相应将“维持0℃反应半小时”改为“维持45℃反应半小时”,其他条件同实施例6。所得催化剂组分的平均粒径为24.52μm。元素分析(ICP):Ti:8.33%(重量),Mg:14.17%(重量)。
催化剂评价:催化剂的淤浆聚合评价条件同实施例6,聚合结果见表2。
实施例8
催化剂组分的制备:将实施例6制备步骤中的“8.8毫升钛酸四丁酯”调整为“5.5毫升钛酸四乙酯”,其他条件同实施例6。所得催化剂组分的平均粒径为41.29μm。元素分析(ICP):Ti:6.53%(重量),Mg:12.20%(重量)。
催化剂评价:催化剂的淤浆聚合评价条件同实施例6,聚合结果见表2。
实施例9
催化剂组分的制备:将实施例6制备步骤中的“2.2毫升无水乙醇”调整为“6.9毫升正丁醇”,其他条件同实施例6。所得催化剂组分的平均粒径为28.07μm。元素分析(ICP):Ti:4.88%(重量),Mg:13.59%(重量)。
催化剂的淤浆聚合评价条件同实施例6,聚合结果见表2。
表2
Figure PCTCN2015077844-appb-000005
在下述实施例10-13中,在卤化镁溶液制备完成后,再将所述卤化镁溶液与酰氯类化合物混合析出固体得到催化剂组分。
实施例10
催化剂组分的制备:称取2.4克无水氯化镁,加入8.8毫升钛酸四丁酯、2.0毫升环氧氯丙烷、2.2毫升无水乙醇和50毫升甲苯,在60℃保持搅拌溶解直至形成透明溶液。然后再补加100毫升甲苯,将溶液温度降至0℃,用滴定管缓慢滴加27毫升苯甲酰氯,滴加完成后,维持0℃反应半小时,再升温到50℃维持反应3小时,最后升温到90℃维持反应2小时,得到催化剂悬浮液。将催化剂 悬浮液静置、沉降,用甲苯洗涤四次,每次甲苯的用量为50毫升,再用己烷洗涤两次,每次己烷的用量为50毫升,洗涤完成后,在浴温65℃的情况下,用高纯氮气吹扫干燥,得灰白色固体流动性粉末,即本发明所述催化剂组分,其平均粒径为35.63μm。元素分析(ICP):Ti:16.37%(重量),Mg:13.16%(重量)。
催化剂评价:将1L己烷、1mmol三乙基铝和一定量的催化剂加入到2L不锈钢搅拌釜中,然后将温度提高到85℃,一次性加入0.18MPa的氢气,然后用乙烯将体系的总压力维持在1.03MPa进行聚合反应,反应2小时后,停止加入乙烯,降温,泄压,聚乙烯粉料称重,计算催化剂的活性,测试聚乙烯粉料的堆积密度(BD)和在2.16Kg负荷下的熔融指数(MI2.16),结果如表3所示。
实施例11
催化剂组分的制备:将实施例10制备步骤中的“将溶液温度降至0℃”调整为“将溶液温度降至45℃”和相应将“维持0℃反应半小时”改为“维持45℃反应半小时”,其他条件同实施例10。所得催化剂组分的平均粒径为23.54μm。元素分析(ICP):Ti:9.86%(重量),Mg:18.25%(重量)。
催化剂评价:催化剂的淤浆聚合评价条件同实施例10,聚合结果见表3。
实施例12
催化剂组分的制备:将实施例10制备步骤中的“27毫升苯甲酰氯”调整为“14毫升苯甲酰氯”,其他条件同实施例10。所得催化剂组分的平均粒径为38.18μm。元素分析(ICP):Ti:15.27%(重量),Mg:12.47%(重量)。
催化剂评价:催化剂的淤浆聚合评价条件同实施例10,聚合结果见表3。
实施例13
催化剂组分的制备:将实施例10制备步骤中的“2.2毫升无水乙醇”调整为“6.9毫升正丁醇”,其他条件同实施例10。所得催化剂组分的平均粒径为42.45μm。元素分析(ICP):Ti:11.15%(重量),Mg:13.62%(重量)。
催化剂的淤浆聚合评价条件同实施例10,聚合结果见表3。
表3
Figure PCTCN2015077844-appb-000006
Figure PCTCN2015077844-appb-000007
在下述实施例14-17中,在卤化镁溶液制备完成后,再将所述卤化镁溶液与含卤含磷化合物混合析出固体得到催化剂组分。
实施例14
催化剂组分的制备:称取2.4克无水氯化镁,加入8.8毫升钛酸四丁酯、2.0毫升环氧氯丙烷、2.2毫升无水乙醇和50毫升甲苯,在60℃保持搅拌溶解直至形成透明溶液。然后再补加100毫升甲苯,将溶液温度降至0℃,用滴定管缓慢滴加35毫升三氯化磷,滴加完成后,维持0℃反应半小时,再升温到50℃维持反应3小时,最后升温到90℃维持反应2小时,得到催化剂悬浮液。将催化剂悬浮液静置、沉降,用甲苯洗涤四次,每次甲苯的用量为50毫升,再用己烷洗涤两次,每次己烷的用量为50毫升,洗涤完成后,在浴温65℃的情况下,用高纯氮气吹扫干燥,得灰白色固体流动性粉末,即本发明所述催化剂组分,其平均粒径为16.70μm。元素分析(ICP):Ti:0.54%(重量),Mg:26.39%(重量)。
催化剂评价:将1L己烷、1mmol三乙基铝和一定量的催化剂加入到2L不锈钢搅拌釜中,然后将温度提高到80℃,一次性加入0.18MPa的氢气,然后用乙烯将体系的总压力维持在0.73MPa进行聚合反应,反应2小时后,停止加入乙烯,降温,泄压,聚乙烯粉料称重,计算催化剂的活性,测试聚乙烯粉料的堆积密度(BD)和在2.16Kg负荷下的熔融指数(MI2.16),结果如表4所示。
实施例15
催化剂组分的制备:将实施例14制备步骤中的“将溶液温度降至0℃”调整为“将溶液温度降至45℃”和相应将“维持0℃反应半小时”改为“维持45℃反应半小时”,其他条件同实施例14。所得催化剂组分的平均粒径为33.56μm。元素分析(ICP):Ti:0.67%(重量),Mg:25.34%(重量)。
催化剂评价:催化剂的淤浆聚合评价条件同实施例14,聚合结果见表4。
实施例16
催化剂组分的制备:将实施例14制备步骤中的“8.8毫升钛酸四丁酯”调整为“5.5毫升钛酸四乙酯”,其他条件同实施例14。所得催化剂组分的平均粒径为21.46μm。元素分析(ICP):Ti:0.86%(重量),Mg:20.50%(重量)。
催化剂评价:催化剂的淤浆聚合评价条件同实施例14,聚合结果见表4。
实施例17
催化剂组分的制备:将实施例14制备步骤中的“2.2毫升无水乙醇”调整为“4.6毫升正丁醇”,且将“将溶液温度降至0℃”调整为“将溶液温度降至45℃”和相应将“维持0℃反应半小时”改为“维持45℃反应半小时”,其他条件同实施例14。所得催化剂组分的平均粒径为26.35μm。元素分析(ICP):Ti:0.97%(重量),Mg:28.82%(重量)。
催化剂的淤浆聚合评价条件同实施例14,聚合结果见表4。
表4
Figure PCTCN2015077844-appb-000008
在下述实施例18-21中,在卤化镁溶液制备完成后,再将所述卤化镁溶液与含卤含硼化合物混合析出固体得到催化剂组分。
实施例18
催化剂组分的制备:称取2.4克无水氯化镁,加入8.8毫升钛酸四丁酯、2.0毫升环氧氯丙烷、2.2毫升无水乙醇和50毫升甲苯,在60℃保持搅拌溶解直至形成透明溶液。然后再补加100毫升甲苯,将溶液温度降至0℃,用滴定管缓慢滴加50毫升三氯化硼己烷溶液(1M),滴加完成后,维持0℃反应半小时,再升温到50℃维持反应3小时,最后升温到65℃维持反应2小时,得到催化剂悬浮液。将催化剂悬浮液静置、沉降,用甲苯洗涤四次,每次甲苯的用量为50毫升,再用己烷洗涤两次,每次己烷的用量为50毫升,洗涤完成后,在浴温65℃的情况下,用高纯氮气吹扫干燥,得灰白色固体流动性粉末,即本发明所述催化剂组分,其平均粒径为25.57μm。元素分析(ICP):Ti:1.36%(重量),Mg:27.86%(重量)。
催化剂评价:将1L己烷、1mmol三乙基铝和一定量的催化剂加入到2L不锈钢搅拌釜中,然后将温度提高到80℃,一次性加入0.18MPa的氢气,然后用乙烯将体系的总压力维持在0.73MPa进行聚合反应,反应2小时后,停止加入乙烯,降温,泄压,聚乙烯粉料称重,计算催化剂的活性,测试聚乙烯粉料的堆积密度(BD)和在2.16Kg负荷下的熔融指数(MI2.16),结果如表5所示。
实施例19
催化剂组分的制备:将实施例18制备步骤中的“将溶液温度降至0℃”调整为“将溶液温度降至30℃”和相应将“维持0℃反应半小时”改为“维持30℃反应半小时”,其他条件同实施例18。所得催化剂组分的平均粒径为18.47μm。元素分析(ICP):Ti:1.54%(重量),Mg:27.95%(重量)。
催化剂评价:催化剂的淤浆聚合评价条件同实施例18,聚合结果见表5。
实施例20
催化剂组分的制备:将实施例18制备步骤中的“2.0毫升环氧氯丙烷”调整为“2.1毫四氢呋喃”,其他条件同实施例18。所得催化剂组分的平均粒径为31.29μm。元素分析(ICP):Ti:0.92%(重量),Mg:22.16%(重量)。
催化剂评价:催化剂的淤浆聚合评价条件同实施例18,聚合结果见表5。
实施例21
催化剂组分的制备:将实施例18制备步骤中的“2.2毫升无水乙醇”调整为“4.6毫升正丁醇”,其他条件同实施例18。所得催化剂组分的平均粒径为20.85μm。元素分析(ICP):Ti:0.76%(重量),Mg:21.65%(重量)。
催化剂的淤浆聚合评价条件同实施例18,聚合结果见表5。
表5
Figure PCTCN2015077844-appb-000009
在下述实施例22-25中,在卤化镁溶液制备完成后,再将所述卤化镁溶液与卤化有机铝化合物混合析出固体得到催化剂组分。
实施例22
催化剂组分的制备:称取1.2克无水氯化镁,加入4.4毫升钛酸四丁酯、1.0毫升环氧氯丙烷、1.1毫升无水乙醇和50毫升己烷,在60℃保持搅拌溶解直至形成透明溶液。然后再补加100毫升己烷,将溶液温度降至0℃,用滴定管缓慢滴加18毫升二氯乙基铝的己烷溶液(3M),滴加完成后,维持0℃反应半小时, 再升温到65℃维持反应3小时,得到催化剂悬浮液。将催化剂悬浮液静置、沉降,用己烷洗涤四次,每次己烷的用量为50毫升,洗涤完成后,在浴温65℃的情况下,用高纯氮气吹扫干燥,得流动性粉末,即本发明所述催化剂组分,其平均粒径为15.68μm。元素分析(ICP):Ti:11.48%(重量),Mg:13.78%(重量)。
催化剂评价:将1L己烷、1mmol三乙基铝和一定量的催化剂加入到2L不锈钢搅拌釜中,然后将温度提高到90℃,一次性加入0.4MPa的氢气,然后用乙烯将体系的总压力维持在1.0MPa进行聚合反应,反应2小时后,停止加入乙烯,降温,泄压,聚乙烯粉料称重,计算催化剂的活性,测试聚乙烯粉料的堆积密度(BD)和在2.16Kg负荷下的熔融指数(MI2.16),结果如表6所示。
实施例23
催化剂组分的制备:将实施例22制备步骤中的“将溶液温度降至0℃”调整为“将溶液温度降至45℃”和相应将“维持0℃反应半小时”改为“维持45℃反应半小时”,其他条件同实施例22。所得催化剂组分的平均粒径为14.77μm。元素分析(ICP):Ti:7.64%(重量),Mg:16.06%(重量)。
催化剂评价:催化剂的淤浆聚合评价条件同实施例22,聚合结果见表6。
实施例24
催化剂组分的制备:将实施例22制备步骤中的“4.4毫升钛酸四丁酯”调整为“2.8毫升钛酸四乙酯”,其他条件同实施例22。所得催化剂组分的平均粒径为21.64μm。元素分析(ICP):Ti:10.92%(重量),Mg:16.33%(重量)。
催化剂评价:催化剂的淤浆聚合评价条件同实施例22,聚合结果见表6。
实施例25
催化剂组分的制备:将实施例22制备步骤中的“1.1毫升无水乙醇”调整为“2.3毫升正丁醇”,且把“将溶液温度降至0℃”调整为“将溶液温度降至45℃”和相应将“维持0℃反应半小时”改为“维持45℃反应半小时”,其他条件同实施例22。所得催化剂组分的平均粒径为16.84μm。元素分析(ICP):Ti:8.19%(重量),Mg:12.57%(重量)。
催化剂的淤浆聚合评价条件同实施例22,聚合结果见表6。
表6
Figure PCTCN2015077844-appb-000010
Figure PCTCN2015077844-appb-000011
在下述实施例26-29中,在卤化镁溶液制备完成后,再将所述卤化镁溶液与含卤含硅化合物混合析出固体得到催化剂组分。
实施例26
催化剂组分的制备:称取2.4克无水氯化镁,加入8.8毫升钛酸四丁酯、2.0毫升环氧氯丙烷、2.2毫升无水乙醇和50毫升甲苯,在60℃保持搅拌溶解直至形成透明溶液。然后再补加100毫升甲苯,将溶液温度降至0℃,用滴定管缓慢滴加30毫升四氯化硅,滴加完成后,维持0℃反应半小时,再升温到50℃维持反应3小时,最后升温到90℃维持反应2小时,得到催化剂悬浮液。将催化剂悬浮液静置、沉降,用甲苯洗涤四次,每次甲苯的用量为50毫升,再用己烷洗涤两次,每次己烷的用量为50毫升,洗涤完成后,在浴温65℃的情况下,用高纯氮气吹扫干燥,得灰白色固体流动性粉末,即本发明所述催化剂组分,其平均粒径为23.66μm。元素分析(ICP):Ti:0.70%(重量),Mg:19.71%(重量)。
催化剂评价:将1L己烷、1mmol三乙基铝和一定量的催化剂加入到2L不锈钢搅拌釜中,然后将温度提高到85℃,一次性加入0.18MPa的氢气,然后用乙烯将体系的总压力维持在1.03MPa进行聚合反应,反应2小时后,停止加入乙烯,降温,泄压,聚乙烯粉料称重,计算催化剂的活性,测试聚乙烯粉料的堆积密度(BD)和在2.16Kg负荷下的熔融指数(MI2.16),结果如表7所示。
实施例27
催化剂组分的制备:将实施例26制备步骤中的“将溶液温度降至0℃”调整为“将溶液温度降至25℃”和相应将“维持0℃反应半小时”改为“维持25℃反应半小时”,其他条件同实施例26。所得催化剂组分的平均粒径为13.78μm。元素分析(ICP):Ti:0.86%(重量),Mg:20.50%(重量)。
催化剂评价:催化剂的淤浆聚合评价条件同实施例26,聚合结果见表7。
实施例28
催化剂组分的制备:将实施例26制备步骤中的“2.0毫升环氧氯丙烷”调整为“2.1毫升四氢呋喃”,且把“将溶液温度降至0℃”调整为“将溶液温度降至25℃”和 相应将“维持0℃反应半小时”改为“维持25℃反应半小时”,其他条件同实施例26。所得催化剂组分的平均粒径为21.61μm。元素分析(ICP):Ti:0.60%(重量),Mg:22.91%(重量)。
催化剂的淤浆聚合评价条件同实施例26,聚合结果见表7。
实施例29
催化剂组分的制备:将实施例26制备步骤中的“8.8毫升钛酸四丁酯”调整为“5.5毫升钛酸四乙酯”,把“2.0毫升环氧氯丙烷”调整为“2.1毫升四氢呋喃”,且把“将溶液温度降至0℃”调整为“将溶液温度降至25℃”和相应将“维持0℃反应半小时”改为“维持25℃反应半小时”,其他条件同实施例26。所得催化剂组分的平均粒径为16.29μm。元素分析(ICP):Ti:0.36%(重量),Mg:19.03%(重量)。
催化剂评价:催化剂的淤浆聚合评价条件同实施例26,聚合结果见表7。
表7
Figure PCTCN2015077844-appb-000012
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (25)

  1. 一种用于烯烃聚合的催化剂组分,其由含有有机环氧化合物的卤化镁溶液与含卤化合物混合析出固体得到;其中,
    所述有机环氧化合物为如通式I所示的三元环氧化合物,
    Figure PCTCN2015077844-appb-100001
    式I中R2和R3独立地选自H或C1-C10的烃基或卤代烃基,可以是饱和或不饱和的直链、支链或环状链;或所述有机环氧化合物为4-8元环氧化合物;
    所述含卤化合物包括含卤含钛化合物、卤代有机烃类化合物、酰卤类化合物、含卤含磷化合物、含卤含硼化合物、卤化有机铝化合物和含卤含硅化合物中至少一种;
    所述卤化镁溶液是以无水卤化镁溶于包含含氧有机钛化合物、有机环氧化合物、含羟基类化合物和惰性稀释剂的混合溶剂而形成。
  2. 根据权利要求1所述的催化剂组分,其特征在于,所述卤化镁溶液是以无水卤化镁溶于由含氧有机钛化合物、有机环氧化合物、含羟基类化合物和惰性稀释剂组成的混合溶剂而形成。
  3. 根据权利要求1所述的催化剂组分,其特征在于,所述卤化镁的通式为MgX2,式中X是卤素;所述含氧有机钛化合物如通式Ti(OR1)nX4-n所示,式中R1是C1-C20的烃基,可以是饱和或不饱和的直链、支链或环状链,0<n<4,X是卤素;所述含羟基类化合物通式为HOR4,式中R4是C1-C20的烃基,可以是饱和或不饱和的直链、支链或环状链;所述惰性稀释剂为C3-C100的脂族烃或其卤代烃,或为芳香族烃或其卤代烃,可以是饱和或不饱和的直链、支链或环状链;优选所述惰性稀释剂为C4-C20的烃类化合物。
  4. 根据权利要求1所述的催化剂组分,其特征在于,所述卤化镁为氯化镁、溴化镁、碘化镁及其混合物;所述含氧有机钛化合物为钛酸酯类化合物及其混合物,优选钛酸四乙酯、钛酸四异丙酯、钛酸四丁酯、钛酸四异辛酯;所述含羟基类化合物为脂肪醇、芳香醇或酚类,优选甲醇、乙醇、异丙醇、正丁醇、正己醇、异辛醇、苯甲醇和苯乙醇;所述惰性稀释剂选自苯、甲苯、二甲苯、正丁烷、异丁烷、异戊烷、正戊烷、正己烷、环己烷、庚烷、辛烷、癸烷、1,2-二氯乙烷、氯苯及其混合物。
  5. 根据权利要求1所述的催化剂组分,其特征在于,以每摩尔卤化镁计,含 氧有机钛化合物为0.01-2.0摩尔,优选0.1-1.5摩尔;有机环氧化合物为0.01-10摩尔,优选0.1-6.5摩尔,含羟基类化合物为0.01-20摩尔,优选0.1-15摩尔,含卤化合物为0.1-100摩尔,优选0.5-50摩尔。
  6. 根据权利要求1-5中任意一项所述的催化剂组分,其特征在于,所述有机环氧化合物选自环氧乙烷、环氧丙烷、环氧丁烷、丁二烯氧化物、丁二烯双氧化物、环氧氯丙烷、甲基缩水甘油醚、二缩水甘油醚和四氢呋喃中的一种或多种。
  7. 根据权利要求1-5中任意一项所述的催化剂组分,其特征在于,所述含卤含钛化合物为如式Ti(OR5)nX4-n所示化合物,式中R5是C1-C20的烃基或卤代烃基,可以是饱和或不饱和的直链、支链或环状链,0<n<3,式中X为卤素。
  8. 根据权利要求7中所述的催化剂组分,其特征在于,所述含卤含钛化合物选自四氯化钛、四溴化钛、四碘化钛、一氯三乙氧基钛、二氯二乙氧基钛和三氯一乙氧基钛中的至少一种;优选四氯化钛、四溴化钛、四碘化钛。
  9. 根据权利要求1-5中任意一项所述的催化剂组分,其特征在于,所述卤代有机烃类化合物为如式R5X所示化合物,式中R5是C1-C20的烃基或卤代烃基,可以是饱和或不饱和的直链、支链或环状链,式中X为卤素。
  10. 根据权利要求9所述的催化剂组分,其特征在于,所述卤代有机烃类化合物选自氯代环己烷、溴代环己烷、氯代叔丁烷、溴代叔丁烷、氯苯、三氯苯、1,1-二氯乙烷和1,1-二氯丙烷中的至少一种。
  11. 根据权利要求1-5中任意一项所述的催化剂组分,其特征在于,所述酰卤类化合物为如式R5COX所示化合物,式中R5是C1-C20的烃基或者是氢,可以是饱和或不饱和的直链、支链或环状链,式中X为卤素。
  12. 根据权利要求11所述的催化剂组分,其特征在于,所述酰卤类化合物包括酰氟类化合物、酰氯类化合物、酰溴类化合物和酰碘类化合物中的至少一种;优选酰卤类化合物为酰氯类化合物。
  13. 根据权利要求1-5中任意一项所述的催化剂组分,其特征在于,所述含卤含磷化合物为如式OpPR5 qX3-q所示的化合物,式中R5是C1-C20的烷基或烷氧基,0≤q<3,p=0或1,式中X是卤素;或者所述含卤含磷化合物为五氯化磷。
  14. 根据权利要求13所述的催化剂组分,其特征在于,所述含卤含磷化合物选自二氯甲基磷、二氯乙基磷、二氯丁基磷、三氯化磷、五氯化磷、三氯氧磷、二氯磷酸甲酯、二氯磷酸乙酯和二氯磷酸丁酯中的至少一种;优选三氯化磷、五氯化磷和三氯氧磷中的至少一种。
  15. 根据权利要求1-5中任意一项所述的催化剂组分,其特征在于,所述含卤含硼化合物为如式BR5 qX3-q所示化合物,式中R5是C1-C20的烷基或烷氧基, 0≤q<3,式中X为卤素。
  16. 根据权利要求15所述的催化剂组分,其特征在于,所述含卤含硼化合物选自二氯甲基硼、二氯乙基硼、二氯丁基硼、二氯甲氧基硼、二氯乙氧基硼、三氯化硼和二氯丁氧基硼中至少一种。
  17. 根据权利要求1-5中任意一项所述的催化剂组分,其特征在于,所述卤化有机铝化合物为如式AlR5 nX3-n所示化合物,式中R5是C1-C20的烃基,优选为不高于6个碳原子的直连或支链烃基,其中0.5≤n≤2.5,X为卤素。
  18. 根据权利要求17所述的催化剂组分,其特征在于,所述卤化有机铝化合物选自二氯乙基铝、倍半氯化乙基铝、氯化二乙基铝和二氯异丁基铝中的至少一种。
  19. 根据权利要求1-5中任意一项所述的催化剂组分,其特征在于,所述含卤含硅化合物为如式(R5O)qSiR6 nX4-n-q所示化合物,式中R5和R6独立地选自C1-C20的烃基或卤代烃基,可以是饱和或不饱和的直链、支链或环状链,q和n均为0或正数,且0≤q+n≤3,式中X为卤素。
  20. 根据权利要求19所述的催化剂组分,其特征在于,所述含卤含硅化合物选自四氯化硅、四溴化硅、三氯一乙氧基硅、三氯苯基硅、三氯甲基硅、三氯乙基硅、二氯二甲氧基硅、二氯甲基甲氧基硅烷、二氯甲基苯氧基硅烷中的至少一种;优选四氯化硅、四溴化硅、三氯一乙氧基硅、三氯苯基硅。
  21. 一种用于如权利要求1-20中任意一项所述的催化剂组分的制备方法,包括先以无水卤化镁溶于包含含氧有机钛化合物、有机环氧化合物、含羟基类化合物和惰性稀释剂的混合溶剂而形成一种卤化镁溶液,且所述混合溶剂中不含磷酸酯类化合物;所述卤化镁溶液再与含卤化合物混合析出固体得到所述催化剂组分;
    其中有机环氧化合物为如通式I所示的三元环氧化合物,
    Figure PCTCN2015077844-appb-100002
    式I中R2和R3独立地选自H或C1-C10的烃基或卤代烃基,可以是饱和或不饱和的直链、支链或环状链;或所述有机环氧化合物为4-8元环氧化合物;
    所述含卤化合物包括含卤含钛化合物、卤代有机烃类化合物、酰卤类化合物、含卤含磷化合物、含卤含硼化合物、卤化有机铝化合物和含卤含硅化合物中至少一种。
  22. 根据权利要求21所述的方法,其特征在于,所述卤化镁溶液是以无水卤化镁溶于由含氧有机钛化合物、有机环氧化合物、含羟基类化合物和惰性稀释剂组成的混合溶剂而形成。
  23. 一种用于烯烃聚合的催化剂,其包含下述组分的反应产物:
    (a)权利要求1-20之一所述的催化剂组分;
    (b)至少一种通式为AlRmX3-m的有机铝化合物,式中R为氢或碳原子数为1-20的烃基,X为卤素,m为0<m≤3的数。
  24. 一种用于烯烃聚合催化剂组分的制备过程中的卤化镁溶解体系,其包括含氧有机钛化合物、有机环氧化合物、含羟基类化合物和惰性稀释剂,其中有机环氧化合物为如通式I所示的三元环氧化合物,
    Figure PCTCN2015077844-appb-100003
    式I中R2和R3独立地选自H或C1-C10的烃基或卤代烃基,可以是饱和或不饱和的直链、支链或环状链;或所述有机环氧化合物为4-8元环氧化合物。
  25. 根据权利要求24所述的卤化镁溶解体系,其特征在于,所述卤化镁熔解体系是由含氧有机钛化合物、有机环氧化合物、含羟基类化合物和惰性稀释剂组成的混合溶剂。
PCT/CN2015/077844 2014-04-29 2015-04-29 一种用于烯烃聚合的催化剂组分的制备方法 WO2015165405A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2016565201A JP6706582B2 (ja) 2014-04-29 2015-04-29 オレフィン重合用の触媒成分の調製方法
BR112016025376-0A BR112016025376B1 (pt) 2014-04-29 2015-04-29 Método de preparação de um componente de catalisador para polimerização de olefina
SG11201609010RA SG11201609010RA (en) 2014-04-29 2015-04-29 Method for preparation of a catalyst component used for olefin polymerization
RU2016146550A RU2673609C2 (ru) 2014-04-29 2015-04-29 Способ получения компонента катализатора, использующегося для полимеризации олефина
CA2947189A CA2947189C (en) 2014-04-29 2015-04-29 Preparation method of a catalyst component for olefin polymerization
EP15785255.9A EP3138856B1 (en) 2014-04-29 2015-04-29 Method for preparation of a catalyst component used for olefin polymerization
US15/307,209 US10174141B2 (en) 2014-04-29 2015-04-29 Preparation method of a catalyst component for olefin polymerization
KR1020167033297A KR102172790B1 (ko) 2014-04-29 2015-04-29 올레핀 중합에 사용되는 촉매 성분의 제조 방법
PH12016502158A PH12016502158A1 (en) 2014-04-29 2016-10-28 Preparation method of a catalyst component for olefin polymerization

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
CN201410176105.2A CN105085735B (zh) 2014-04-29 2014-04-29 一种用于烯烃聚合的催化剂组分的制备方法
CN201410176229.0A CN105085740B (zh) 2014-04-29 2014-04-29 一种用于烯烃聚合的催化剂组分的制备方法
CN201410177228.8 2014-04-29
CN201410176103.3A CN105085734B (zh) 2014-04-29 2014-04-29 一种用于烯烃聚合的催化剂组分的制备方法
CN201410177192.3A CN105085741B (zh) 2014-04-29 2014-04-29 一种用于烯烃聚合的催化剂组分的制备方法
CN201410177203.8A CN105085742B (zh) 2014-04-29 2014-04-29 一种用于烯烃聚合的催化剂组分的制备方法
CN201410176103.3 2014-04-29
CN201410176179.6 2014-04-29
CN201410176105.2 2014-04-29
CN201410176179.6A CN105085737B (zh) 2014-04-29 2014-04-29 一种用于烯烃聚合的催化剂组分的制备方法
CN201410177192.3 2014-04-29
CN201410177228.8A CN105085743B (zh) 2014-04-29 2014-04-29 一种用于烯烃聚合的催化剂组分的制备方法
CN201410177203.8 2014-04-29
CN201410176229.0 2014-04-29

Publications (1)

Publication Number Publication Date
WO2015165405A1 true WO2015165405A1 (zh) 2015-11-05

Family

ID=54358185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/077844 WO2015165405A1 (zh) 2014-04-29 2015-04-29 一种用于烯烃聚合的催化剂组分的制备方法

Country Status (11)

Country Link
US (1) US10174141B2 (zh)
EP (1) EP3138856B1 (zh)
JP (1) JP6706582B2 (zh)
KR (1) KR102172790B1 (zh)
BR (1) BR112016025376B1 (zh)
CA (1) CA2947189C (zh)
MY (1) MY187602A (zh)
PH (1) PH12016502158A1 (zh)
RU (1) RU2673609C2 (zh)
SG (1) SG11201609010RA (zh)
WO (1) WO2015165405A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116041578A (zh) * 2021-10-28 2023-05-02 中国石油化工股份有限公司 催化剂组分及其制备方法、催化剂体系及其应用

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107880174B (zh) * 2016-09-30 2020-06-09 中国石油化工股份有限公司 用于烯烃聚合的催化剂组分及其制备与应用
CN112707978B (zh) * 2019-10-25 2023-05-12 中国石油化工股份有限公司 一种烯烃聚合用的镁基催化剂组分及其制备方法以及催化剂与应用
CN112759685B (zh) * 2019-11-01 2023-02-28 中国石油化工股份有限公司 用于乙烯聚合反应的催化剂组分及其制备方法、催化剂及其应用
EP4136066A1 (en) * 2020-04-17 2023-02-22 DSM IP Assets B.V. A process for preparation of substituted enamine compounds
KR102487346B1 (ko) * 2020-12-04 2023-01-11 한화토탈에너지스 주식회사 초고분자량 폴리에틸렌의 분자량분포 조절을 위한 지글러-나타 촉매의 제조방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06157658A (ja) * 1992-11-17 1994-06-07 Chisso Corp オレフィン重合用固体触媒成分の保存方法
CN101472957A (zh) * 2006-06-23 2009-07-01 巴塞尔聚烯烃意大利有限责任公司 氯醇镁基催化剂前体
CN101880342A (zh) * 2010-07-06 2010-11-10 中国石油天然气股份有限公司 一种烯烃聚合催化剂及其制备和应用
WO2012112264A1 (en) * 2011-02-16 2012-08-23 Fina Technology, Inc. Heat-treated ziegler-natta catalysts for ethylene polymerization
CN103059175A (zh) * 2012-11-22 2013-04-24 中国科学院化学研究所 烯烃聚合固体催化剂组分及其制备方法
CN103087222A (zh) * 2011-10-28 2013-05-08 住友化学株式会社 烯烃聚合催化剂,生产烯烃聚合物的方法,聚丙烯树脂组合物和包含其的制品
CN103087224A (zh) * 2011-10-28 2013-05-08 中国石油化工股份有限公司 一种用于乙烯聚合反应的催化剂组分及其制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5883006A (ja) * 1981-11-13 1983-05-18 Mitsui Petrochem Ind Ltd オレフインの重合方法
CN1169845C (zh) * 2002-02-07 2004-10-06 中国石油化工股份有限公司 用于烯烃聚合的固体催化剂组分和含该催化剂组分的催化剂及其应用
BRPI0619719B1 (pt) * 2005-10-31 2017-11-14 China Petroleum & Chemical Corporation Method for preparing a catalyst component for ethylene polymerization
CN101407561B (zh) * 2008-11-28 2011-01-05 北京化工大学 烯烃聚合催化剂
CN102020730B (zh) * 2009-09-10 2013-01-02 中国石油化工股份有限公司 一种用于乙烯聚合的催化剂组分和催化剂
RU2567391C2 (ru) * 2009-08-21 2015-11-10 Чайна Петролеум Энд Кемикал Корпорейшн Компонент катализатора для полимеризации этилена, приготовление такового и катализатор, включающий компонент катализатора
SA3686B1 (ar) * 2009-10-16 2014-10-22 China Petroleum& Chemical Corp مكون حفاز لبلمرة الأولفين وحفاز يشتمل عليه
CN102875707A (zh) * 2011-07-14 2013-01-16 中国石油化工股份有限公司 用于乙烯聚合或共聚合的催化剂组分的制备方法及其催化剂
CN103044583B (zh) * 2011-10-13 2015-10-28 中国石油化工股份有限公司 烯烃聚合物及其制备方法
SG11201609035PA (en) * 2014-04-29 2016-12-29 China Petroleum & Chem Corp Magnesium halide solution, and preparation method and application thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06157658A (ja) * 1992-11-17 1994-06-07 Chisso Corp オレフィン重合用固体触媒成分の保存方法
CN101472957A (zh) * 2006-06-23 2009-07-01 巴塞尔聚烯烃意大利有限责任公司 氯醇镁基催化剂前体
CN101880342A (zh) * 2010-07-06 2010-11-10 中国石油天然气股份有限公司 一种烯烃聚合催化剂及其制备和应用
WO2012112264A1 (en) * 2011-02-16 2012-08-23 Fina Technology, Inc. Heat-treated ziegler-natta catalysts for ethylene polymerization
CN103087222A (zh) * 2011-10-28 2013-05-08 住友化学株式会社 烯烃聚合催化剂,生产烯烃聚合物的方法,聚丙烯树脂组合物和包含其的制品
CN103087224A (zh) * 2011-10-28 2013-05-08 中国石油化工股份有限公司 一种用于乙烯聚合反应的催化剂组分及其制备方法
CN103059175A (zh) * 2012-11-22 2013-04-24 中国科学院化学研究所 烯烃聚合固体催化剂组分及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3138856A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116041578A (zh) * 2021-10-28 2023-05-02 中国石油化工股份有限公司 催化剂组分及其制备方法、催化剂体系及其应用

Also Published As

Publication number Publication date
BR112016025376A2 (pt) 2017-08-15
EP3138856B1 (en) 2020-11-04
EP3138856A4 (en) 2017-12-27
CA2947189C (en) 2022-08-30
US20170051086A1 (en) 2017-02-23
RU2016146550A3 (zh) 2018-09-28
JP2017514946A (ja) 2017-06-08
US10174141B2 (en) 2019-01-08
RU2016146550A (ru) 2018-05-30
MY187602A (en) 2021-10-01
BR112016025376A8 (pt) 2021-05-04
KR102172790B1 (ko) 2020-11-02
CA2947189A1 (en) 2015-11-05
KR20160149265A (ko) 2016-12-27
JP6706582B2 (ja) 2020-06-10
SG11201609010RA (en) 2016-12-29
PH12016502158A1 (en) 2016-12-19
BR112016025376B1 (pt) 2021-11-30
RU2673609C2 (ru) 2018-11-29
EP3138856A1 (en) 2017-03-08

Similar Documents

Publication Publication Date Title
WO2015165405A1 (zh) 一种用于烯烃聚合的催化剂组分的制备方法
JP4738685B2 (ja) オレフィン重合用触媒成分の製造法
RU2373227C2 (ru) Высокоактивный и с хорошей чувствительностью к водороду катализатор циглера-натта полимеризации этилена
US4328328A (en) Continuous process for production of olefin polymers or copolymers
US20090318643A1 (en) Catalyst Component for Ethylene Polymerization, Preparation Thereof and Catalyst Comprising the Same
JPS61287904A (ja) α−オレフイン重合体の製造方法
EP3036263B1 (en) Method for producing an ethylene based polymer in a polymerisation process using a self-limitng agent
JPS60195108A (ja) オレフイン重合用チタン触媒成分
RU2567391C2 (ru) Компонент катализатора для полимеризации этилена, приготовление такового и катализатор, включающий компонент катализатора
JP2006521451A (ja) 電子供与体としてシクロアルカンジカルボキシレートを含むオレフィン重合触媒
WO2015165402A1 (zh) 一种卤化镁溶液及其制备方法和应用
JPH0680091B2 (ja) オレフイン重合触媒の製造方法
CN105085735B (zh) 一种用于烯烃聚合的催化剂组分的制备方法
ES2687899T3 (es) Composición catalizadora y método de polimerización que la utiliza
CN105085743B (zh) 一种用于烯烃聚合的催化剂组分的制备方法
CN109705241A (zh) 球形催化剂和球形催化剂组分及其制备方法和应用以及烯烃的聚合方法
US11851506B2 (en) Process for preparation of a catalyst for polymerization of olefins
CN111057169B (zh) 一种烯烃聚合用催化剂及其制备方法和应用
KR840000256B1 (ko) 올레핀중합체 또는 공중합체의 제조방법
CN114437259A (zh) 一种烯烃聚合物在烯烃聚合中的应用、一种烯烃聚合催化剂和烯烃聚合方法
JP2019026751A (ja) 結晶性プロピレン重合体の製造方法
JPS61209206A (ja) α−オレフイン重合体製造方法
KR20010002459A (ko) 분자량 분포에서 고분자 테일을 갖는 에틸렌 중합체 및 공중합체 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15785255

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2947189

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15307209

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016565201

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12016502158

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016025376

Country of ref document: BR

REEP Request for entry into the european phase

Ref document number: 2015785255

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015785255

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167033297

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016146550

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112016025376

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20161028