WO2015156024A1 - 半導体装置及び半導体装置の製造方法 - Google Patents

半導体装置及び半導体装置の製造方法 Download PDF

Info

Publication number
WO2015156024A1
WO2015156024A1 PCT/JP2015/053693 JP2015053693W WO2015156024A1 WO 2015156024 A1 WO2015156024 A1 WO 2015156024A1 JP 2015053693 W JP2015053693 W JP 2015053693W WO 2015156024 A1 WO2015156024 A1 WO 2015156024A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
type
trench
outer peripheral
semiconductor device
Prior art date
Application number
PCT/JP2015/053693
Other languages
English (en)
French (fr)
Inventor
秀史 高谷
順 斎藤
明高 添野
敏雅 山本
成雅 副島
Original Assignee
トヨタ自動車株式会社
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社, 株式会社デンソー filed Critical トヨタ自動車株式会社
Priority to CN201580018706.3A priority Critical patent/CN106165103B/zh
Priority to DE112015001751.8T priority patent/DE112015001751B4/de
Priority to US15/124,326 priority patent/US9853139B2/en
Publication of WO2015156024A1 publication Critical patent/WO2015156024A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/761PN junctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0661Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body specially adapted for altering the breakdown voltage by removing semiconductor material at, or in the neighbourhood of, a reverse biased junction, e.g. by bevelling, moat etching, depletion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/408Electrodes ; Multistep manufacturing processes therefor with an insulating layer with a particular dielectric or electrostatic property, e.g. with static charges or for controlling trapped charges or moving ions, or with a plate acting on the insulator potential or the insulator charges, e.g. for controlling charges effect or potential distribution in the insulating layer, or with a semi-insulating layer contacting directly the semiconductor surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors

Definitions

  • the technology disclosed in this specification relates to a semiconductor device.
  • the semiconductor device disclosed in Japanese Patent Publication No. 2013-191734 has a MOSFET and a plurality of termination trenches formed around the MOSFET.
  • Each termination trench extends in an annular shape so as to surround a region where the MOSFET is formed.
  • An insulating layer is disposed in each termination trench.
  • a p-type floating region is formed in the semiconductor layer in the range in contact with the bottom surface of each termination trench.
  • the depletion layer when the depletion layer extends to the adjacent p-type floating region, the depletion layer extends further to the outer peripheral side from the p-type floating region. Thus, the depletion layer spreads widely around the region where the MOSFET is formed, passing through each p-type floating region. Thereby, the breakdown voltage of the semiconductor device is improved.
  • the p-type floating region described above is formed by forming a termination trench, implanting p-type impurities into the bottom surface of the termination trench, and then diffusing the implanted p-type impurities into the semiconductor layer.
  • the diffusion distance of the p-type impurity may be shortened, and the interval between the p-type floating regions may not be sufficiently narrowed. In such a case, it becomes difficult to sufficiently extend the depletion layer in the region of the interval.
  • the present specification includes a semiconductor substrate, a front surface electrode formed on the front surface of the semiconductor substrate, and a back surface electrode formed on the back surface of the semiconductor substrate, and switching between the front surface electrode and the back surface electrode.
  • a semiconductor device is provided.
  • the semiconductor substrate includes an n-type first region in contact with the surface electrode, a p-type second region in contact with the surface electrode and in contact with the first region, and a lower region of the second region.
  • N-type third region disposed on the side and separated from the first region by the second region, and penetrating from the surface through the first region and the second region into the third region
  • a reaching gate trench a p-type fourth region in contact with the lower end of the gate trench, a termination trench formed on the surface outside the second region, and a p-type lower end p in contact with the lower end of the termination trench
  • a p-type side surface p-type region that is in contact with the outer peripheral side surface of the termination trench and is connected to the lower-end p-type region and exposed on the surface; It is formed on the outer peripheral side, and A plurality of p-type guard ring regions that are formed on the outer peripheral side of the termination trench and connected to the third region, and the side surface p-type region is separated from the plurality of guard ring regions.
  • an n-type outer peripheral n-type region separating the plurality of guard ring regions from each other.
  • the outer peripheral side means the side far from the second region.
  • a switching element is formed by the first region, the second region, the third region, and the fourth region.
  • a depletion layer spreads from the second region to the third region.
  • the depletion layer reaches the lower end of the gate trench.
  • the depletion layer reaches the fourth region.
  • a depletion layer also spreads from the fourth region into the third region.
  • the depletion layer extends from the lower end p-type region and the side surface p-type region into the outer peripheral n-type region.
  • the depletion layer extending from the side surface p-type region reaches the guard ring region adjacent to the side surface p-type region, the depletion layer further extends from the guard ring region toward the adjacent guard ring region.
  • the depletion layer extends toward the outer peripheral side via each guard ring region.
  • the depletion layer extends widely in the outer peripheral region, and a breakdown voltage is secured.
  • extension of the depletion layer can be promoted by the guard ring exposed on the surface of the semiconductor substrate.
  • the guard ring region is formed in a range exposed on the surface of the semiconductor substrate, it can be formed with high accuracy. For this reason, the space
  • FIG. 1 is a plan view of a semiconductor device 10 of Example 1.
  • FIG. FIG. 2 is a longitudinal sectional view taken along line II-II in FIG.
  • FIG. 6 is an explanatory diagram of a manufacturing process of the semiconductor device 10 according to the first embodiment.
  • FIG. 6 is an explanatory diagram of a manufacturing process of the semiconductor device 10 according to the first embodiment.
  • FIG. 6 is an explanatory diagram of a manufacturing process of the semiconductor device 10 according to the first embodiment.
  • FIG. 6 is an explanatory diagram of a manufacturing process of the semiconductor device 10 according to the first embodiment.
  • FIG. 6 is a plan view of the semiconductor device according to the second embodiment.
  • FIG. 8 is a longitudinal sectional view taken along line VIII-VIII in FIG. 7.
  • FIG. 10 is an explanatory diagram of a manufacturing process of the semiconductor device of Example 2.
  • FIG. 10 is an explanatory diagram of a manufacturing process of the semiconductor device of Example 2.
  • FIG. 10 is an explanatory diagram of a manufacturing process of the semiconductor device of Example 2.
  • FIG. 6 is a plan view of a semiconductor device according to Example 3.
  • FIG. 13 is a longitudinal sectional view taken along line XIII-XIII in FIG. 12.
  • FIG. 13 is a longitudinal sectional view taken along line XIV-XIV in FIG. 12.
  • the features of the embodiments described below are listed below. The following features are all independently useful.
  • the width of the termination trench is wider than the width of the gate trench.
  • the lower end p-type region and the side surface p-type region contain Al.
  • An isolation trench is formed on the surface between the second region (body region 26) and the termination trench.
  • a p-type fifth region (p-type floating region 103) is formed at a position in contact with the lower end of the isolation trench.
  • a p-type sixth region (side surface p-type region 108) that is in contact with the side surface on the inner peripheral side of the termination trench and connected to the lower end p-type region and exposed on the surface between the termination trench and the isolation trench Is formed.
  • the termination trench includes a first trench, a second trench formed on the outer peripheral side of the first trench, and a third trench connecting the first trench and the second trench.
  • the side surface p-type region is in contact with the outer peripheral side surface of the second trench.
  • the lower end p-type region is in contact with the lower ends of the first trench, the second trench, and the third trench.
  • An insulating film is further provided to cover the inner side surface, bottom surface, and outer side surface of the termination trench.
  • a method of manufacturing a semiconductor device includes a step of forming a termination trench in a semiconductor substrate, and implanting p-type impurities into the side and bottom surfaces of the termination trench along a direction inclined with respect to the surface of the semiconductor substrate. Thus, there is a step of forming the lower end p-type region and the side surface p-type region.
  • the semiconductor device 10 includes a semiconductor substrate 12 made of SiC (silicon carbide).
  • the semiconductor substrate 12 has a MOSFET region 20 and an outer peripheral region 50.
  • a MOSFET is formed in the MOSFET region 20.
  • the outer peripheral region 50 is a region outside the MOSFET region 20.
  • the outer peripheral region 50 is a region between the MOSFET region 20 and the end face 12 a of the semiconductor substrate 12.
  • a breakdown voltage structure is formed in the outer peripheral region 50.
  • only the termination trench 54 and the guard ring region 64 are shown in the outer peripheral region 50 in consideration of easy viewing.
  • a source region 22 As shown in FIG. 2, in the MOSFET region 20, a source region 22, a body region 26, drift regions 28 a and 28 b), a drain region 30, a p-type floating region 32, a gate trench 34, a source electrode 36 and a drain electrode 38. Is formed.
  • the source electrode 36 is formed on the upper surface 72 of the semiconductor substrate 12 in the MOSFET region 20.
  • the drain electrode 38 is formed on the lower surface of the semiconductor substrate 12.
  • a plurality of source regions 22 are formed in the MOSFET region 20.
  • the source region 22 is an n-type region containing an n-type impurity at a high concentration.
  • the source region 22 is formed in a range exposed on the upper surface of the semiconductor substrate 12.
  • the source region 22 is electrically connected to the source electrode 36.
  • the body region 26 is formed on the side and the lower side of the source region 22 and is in contact with the source region 22.
  • Body region 26 is a p-type region.
  • the body region 26 is exposed on the upper surface of the semiconductor substrate 12 at a position where the source region 22 is not formed.
  • the body region 26 is electrically connected to the source electrode 36.
  • the drift region 28a is an n-type region containing an n-type impurity at a low concentration.
  • the n-type impurity concentration of drift region 28 a is lower than the n-type impurity concentration of source region 22.
  • the drift region 28 a is formed below the body region 26.
  • the drift region 28 a is in contact with the body region 26 and is separated from the source region 22 by the body region 26.
  • the drain region 30 is an n-type region containing an n-type impurity at a high concentration.
  • the n-type impurity concentration of the drain region 30 is higher than the n-type impurity concentration of the drift region 28a.
  • the drain region 30 is formed below the drift region 28a. Drain region 30 is in contact with drift region 28a and is separated from body region 26 by drift region 28a.
  • the drain region 30 is formed in a range exposed on the lower surface of the semiconductor substrate 12.
  • the drain region 30 is electrically connected to the drain electrode 38.
  • a plurality of gate trenches 34 are formed in the MOSFET region 20.
  • the gate trench 34 is a groove formed in the upper surface 72 of the semiconductor substrate 12.
  • Each gate trench 34 penetrates the source region 22 and the body region 26 and reaches the drift region 28.
  • the plurality of gate trenches 34 extend in parallel to each other.
  • a bottom insulating layer 34a, a gate insulating film 34b, and a gate electrode 34c are formed in each gate trench 34.
  • the bottom insulating layer 34 a is a thick insulating layer formed at the bottom of the gate trench 34.
  • a side surface of the gate trench 34 above the bottom insulating layer 34a is covered with a gate insulating film 34b.
  • a gate electrode 34c is formed in the gate trench 34 above the bottom insulating layer 34a.
  • the gate electrode 34c faces the source region 22, the body region 26, and the drift region 28a through the gate insulating film 34b.
  • the gate electrode 34c is insulated from the semiconductor substrate 12 by the gate insulating film 34b and the bottom insulating layer 34a.
  • the upper surface of the gate electrode 34c is covered with an insulating layer 34d.
  • the p-type floating region 32 is formed in the semiconductor substrate 12 in a range in contact with the bottom surface (that is, the lower end) of each gate trench 34.
  • the periphery of the p-type floating region 32 is surrounded by the drift region 28.
  • the p-type floating regions 32 are separated from each other by the drift region 28.
  • Each p-type floating region 32 is separated from the body region 26 by the drift region 28.
  • the drift region 28 b is formed in the outer peripheral region 50.
  • the drift region 28b is an n-type region continuous from the drift region 28a, and has substantially the same n-type impurity concentration as the drift region 28a.
  • the drift region 28 a and the drift region 28 b may be collectively referred to as the drift region 28.
  • the drain region 30 described above is formed below the drift region 28b. That is, the drift region 28 and the drain region 30 are formed across the MOSFET region 20 and the outer peripheral region 50.
  • the drift region 28 and the drain region 30 extend to the end face 12 a of the semiconductor substrate 12.
  • the drain electrode 38 is formed on the entire lower surface of the semiconductor substrate 12 including the outer peripheral region 50. Further, the upper surface 72 of the semiconductor substrate 12 in the outer peripheral region 50 is covered with an insulating film 70.
  • a termination trench 54 is formed on the surface 72 of the semiconductor substrate 12 in the outer peripheral region 50.
  • the inner peripheral side surface 55 b, the bottom surface, and the outer peripheral side surface 55 a of the termination trench 54 are covered with an insulating film 70.
  • the termination trench 54 is not completely filled with the insulating film 70, and a gap (space) 70a is formed between the insulating film 70 covering the inner peripheral side surface 55b and the insulating film 70 covering the outer peripheral side surface 55a. Is formed. Note that a material different from the insulating film 70 may be filled in the gap 70a.
  • the termination trench 54 is formed at a position adjacent to the body region 26.
  • the termination trench 54 has substantially the same depth as the gate trench 34. As shown in FIG.
  • the termination trench 54 extends around the MOSFET region 20 when the surface 72 of the semiconductor substrate 12 is viewed in plan. Therefore, body region 26 is separated from any p-type region in outer peripheral region 50 by termination trench 54. Thus, since the p-type region on the outer peripheral side of the termination trench 54 is not electrically connected to the source electrode 36, the p-type region on the outer peripheral side of the termination trench 54 is not the body region 26. That is, the termination trench 54 is formed outside the body region 26.
  • a lower end p-type region 60 is formed at a position in contact with the lower end (that is, the bottom surface) of the termination trench 54.
  • a side surface p-type region 62 is formed at a position in contact with the outer peripheral side surface 55 a of the termination trench 54.
  • Side p-type region 62 extends from surface 72 to lower end p-type region 60. That is, the side surface p-type region 62 is exposed to the surface 72 and is connected to the lower end p-type region 60. Since the lower end p-type region 60 and the side surface p-type region 62 are one continuous p-type region, these may be collectively referred to as a boundary p-type region 59 below.
  • the boundary p-type region 59 contains Al as a p-type impurity.
  • the boundary p-type region 59 does not contain a p-type impurity other than Al except for an uncontrollable error level.
  • the boundary p-type region 59 is formed so as to go around the MOSFET region 20 along the termination trench 54.
  • the boundary p-type region 59 is separated from the body region 26 by the drift region 28.
  • a plurality of guard ring regions 64 are formed on the outer peripheral side of the side surface p-type region 62.
  • Each guard ring region 64 is a p-type region and is formed in a range exposed to the surface 72.
  • Each guard ring region 64 is formed only in a shallow range. Therefore, the lower end of each guard ring region 64 is located above (the surface 72 side) the lower end of the side surface p-type region 62.
  • a drift region 28 b is formed below each guard ring region 64.
  • a drift region 28 b is formed between the guard ring region 64 on the innermost peripheral side (the MOSFET region 20 side) and the side surface p-type region 62.
  • the innermost guard ring region 64 is separated from the side surface p-type region 62 by the drift region 28 b.
  • a drift region 28 b is formed between the guard ring regions 64.
  • the guard ring regions 64 are separated from each other by the drift region 28b.
  • Each guard ring region 64 contains Al as a p-type impurity.
  • Each guard ring region 64 does not contain p-type impurities other than Al except for an uncontrollable error level.
  • the operation of the semiconductor device 10 will be described.
  • a voltage that makes the drain electrode 38 positive is applied between the drain electrode 38 and the source electrode 36.
  • the gate-on voltage is applied to the gate electrode 34c, whereby the MOSFET in the MOSFET region 20 is turned on. That is, a channel is formed in the body region 26 at a position facing the gate electrode 34 c, and from the source electrode 36 to the drain electrode 38 via the source region 22, the channel, the drift region 28, and the drain region 30. Current flows.
  • the application of the gate-on voltage to the gate electrode 34c is stopped, the channel disappears and the MOSFET is turned off.
  • the depletion layer extending from the above-described pn junction reaches the boundary p-type region 59 below the termination trench 54 as indicated by an arrow 82 in FIG. Then, a depletion layer spreads from the boundary p-type region 59 into the drift region 28.
  • the drift region 28 between the gate trench 34 and the termination trench 54 has a depletion layer extending from the p-type floating region 32 below the gate trench 34 and a boundary p-type region 59 below the termination trench 54 (that is, the lower end p). Depleted by the depletion layer extending from the mold region 60).
  • the depth of the gate trench 34 and the depth of the termination trench 54 are substantially equal (that is, the position in the depth direction of the p-type floating region 32 and the position in the depth direction of the lower end p-type region 60).
  • equipotential lines extend in the lateral direction (direction parallel to the surface 72). Thereby, electric field concentration in the vicinity of the termination trench 54 is suppressed.
  • the boundary p-type region 59 extends from the lower end of the termination trench 54 to the surface 72 of the semiconductor substrate 12. For this reason, in the vicinity of the surface 72, the depletion layer spreads from the boundary p-type region 59 toward the innermost guard ring region 64. When the depletion layer reaches the innermost guard ring region 64, the depletion layer extends from the guard ring region 64 to the adjacent guard ring region 64. In this way, the depletion layer spreads to the outer peripheral side via each guard ring region 64 sequentially. For this reason, the depletion layer extends widely in the outer peripheral region 50. Thereby, a high breakdown voltage in the outer peripheral region 50 is realized.
  • the boundary p-type region 59 on the lower side of the termination trench 54 is provided at a deep position like the p-type floating region 32, so that the electric field in the vicinity of the outer peripheral end of the MOSFET region 20. Concentration is suppressed. Further, since the boundary p-type region 59 extends from the bottom surface of the termination trench 54 to the surface 72 of the semiconductor substrate 12 on the outer peripheral side of the termination trench 54, a guard ring formed only in a shallow range near the surface 72. A depletion layer can reach the region 64. As a result, extension of the depletion layer in the outer peripheral region 50 is promoted by the plurality of guard ring regions 64. Further, since the guard ring regions 64 are separated from each other, the potential can be distributed relatively evenly in the outer peripheral region 50. For this reason, a high breakdown voltage in the outer peripheral region 50 is realized.
  • this manufacturing method is characterized by the step of forming the outer peripheral region 50, the step of forming the outer peripheral region 50 will be described below, and the description of the step of forming the MOSFET region 20 will be omitted.
  • a semiconductor substrate 12 in which a body region 26 and a drift region 28 are formed is prepared.
  • Al p-type impurity
  • Al is implanted by ion implantation into a range corresponding to the guard ring region 64 in the surface 72 of the semiconductor substrate 12.
  • Al is injected only in a shallow range near the surface 72 of the semiconductor substrate 12 by setting the Al implantation energy low.
  • the ion implantation depth is shallow, the implantation range can be controlled with high accuracy.
  • the termination trench 54 is formed by selectively etching the surface 72 of the semiconductor substrate 12.
  • the termination trench 54 is formed at a position adjacent to the body region 26.
  • Al is implanted into the termination trench 54 by ion implantation. This ion implantation is performed after masking so that Al is not implanted into the surface 72 and the side surface 55 b on the inner peripheral side of the termination trench 54.
  • Al is implanted into the bottom surface of the termination trench 54 and the side surface 55a on the outer peripheral side by inclining the ion implantation direction with respect to the surface 72 of the semiconductor substrate 12.
  • the Al injected into the semiconductor substrate 12 is activated by annealing the semiconductor substrate 12. Thereby, as shown in FIG. 6, a guard ring region 64, a lower end p-type region 60, and a side surface p-type region 62 are formed.
  • an insulating film 70 is formed on the surface 72 and the inner surface of the termination trench 54. Since the termination trench 54 is wide, the termination trench 54 is not completely filled with the insulating film 70. That is, a gap 70a is formed between the insulating film 70 covering the inner peripheral side surface 55b and the insulating film 70 covering the outer peripheral side surface 55a. As a result, the outer peripheral region 50 is completed. Note that a material different from the insulating film 70 may be embedded in the gap 70a in a subsequent process.
  • the side surface p-type region 62 is formed by oblique ion implantation with respect to the side surface 55 a on the outer peripheral side of the termination trench 54.
  • the width of the side surface p-type region 62 (the dimension in the lateral direction (lateral direction in FIG. 2) of the semiconductor substrate 12) can be controlled by the ion implantation depth into the side surface 55a. Since the ion implantation depth into the side surface 55a can be controlled with high accuracy, according to this manufacturing method, the width of the side surface p-type region 62 can be accurately controlled. Therefore, the side surface p-type region 62 having a narrow width can be formed.
  • the side surface p-type region 62 is formed by ion implantation of Al.
  • the side surface p-type region 62 having a narrow width can be formed with high accuracy.
  • the guard ring region 64 is formed by ion implantation into a shallow range near the surface 72. In ion implantation into a shallow range, the ion implantation range can be accurately controlled. Therefore, the guard ring region 64 having a narrow width can be formed.
  • the guard ring region 64 is formed by Al ion implantation. As a result, the width of the guard ring region 64 can be further reduced. Thus, according to the above method, the guard ring region 64 having a narrow width can be formed with high accuracy.
  • the guard ring region 64 and the side surface p-type region 62 can be formed with high accuracy as described above, according to this method, the distance between the side surface p type region 62 and the guard ring region 64, and The interval between the guard ring regions 64 can be reduced. Therefore, according to this method, the depletion layer can be reliably extended in the outer peripheral region 50, and a high breakdown voltage in the outer peripheral region 50 can be realized. Further, according to this method, the area of the outer peripheral region 50 can be reduced, and the small semiconductor device 10 can be manufactured.
  • the isolation trench 102 is formed on the surface 72 between the body region 26 and the termination trench 54 in the semiconductor device of the second embodiment shown in FIGS.
  • An insulating layer 104 is embedded in the isolation trench 102.
  • the isolation trench 102 is formed so as to make a round around the MOSFET region 20.
  • a p-type floating region 103 is formed at a position in contact with the lower end of the isolation trench 102.
  • the p-type floating region 103 is formed so as to make a round around the MOSFET region 20 along the isolation trench 102.
  • a p-type region 106 is formed on the outer peripheral side of the isolation trench 102.
  • the p-type region 106 is formed in a range exposed on the surface 72 of the semiconductor substrate 12. A surface 72 of the p-type region 106 is covered with an insulating film 70. Therefore, the p-type region 106 is not in contact with the source electrode 36. Isolation trench 102 separates p-type region 106 from body region 26. Further, in the semiconductor device of the second embodiment, the side surface p-type region 108 is formed along the side surface 55 b on the inner peripheral side of the termination trench 54. Side p-type region 108 extends from p-type region 106 to lower end p-type region 60. The side surface p-type region 108 is connected to the p-type region 106 and is connected to the lower end p-type region 60. Side p-type region 108 contains Al as a p-type impurity. Other configurations of the semiconductor device of the second embodiment are the same as those of the semiconductor device of the first embodiment.
  • a depletion layer spreads from the whole of the p-type region 106, the side surface p-type region 108, the lower end p-type region 60, and the side surface p-type region 62 into the drift region 28 around them. For this reason, in the vicinity of the surface 72, the depletion layer spreads from the side surface p-type region 62 toward the innermost guard ring region 64. When the depletion layer reaches the innermost guard ring region 64, the depletion layer extends from the guard ring region 64 to the adjacent guard ring region 64. In this way, the depletion layer spreads to the outer peripheral side via each guard ring region 64 sequentially. For this reason, the depletion layer extends widely in the outer peripheral region 50. Thereby, a high breakdown voltage in the outer peripheral region 50 is realized.
  • Example 2 a method for manufacturing the semiconductor device of Example 2 (a step of forming the outer peripheral region 50) will be described.
  • the semiconductor substrate 12 is processed as shown in FIG.
  • Al is implanted into the termination trench 54 by oblique ion implantation similar to that in the first embodiment.
  • the side surface 55b on the inner peripheral side of the termination trench 54 is not masked in the oblique ion implantation. Therefore, when Al is injected into the outer peripheral side surface 55a of the lower termination trench 54a in FIG. 7, Al is also injected into the inner peripheral side surface 55b of the upper termination trench 54b in FIG.
  • Al is also implanted into the inner peripheral side surface 55b of the lower termination trench 54a of FIG.
  • Al is implanted into the side surfaces on both sides of the termination trench 54.
  • the Al injected into the semiconductor substrate 12 is activated by annealing the semiconductor substrate 12.
  • a guard ring region 64, a side surface p-type region 108, a lower end p-type region 60, and a side surface p-type region 62 are formed. That is, in the second embodiment, Al is implanted into the inner peripheral side surface 55b of the termination trench 54, so that the side surface p-type region 108 is formed along the inner peripheral side surface 55b.
  • the isolation trench 102 is formed in the inner surface 72 of the termination trench 54.
  • the p-type region 106 adjacent to the termination trench 54 is separated from the body region 26.
  • the p-type floating region 103 is formed by ion implantation into the bottom surface of the isolation trench 102.
  • the insulating layer 104 is formed in the isolation trench 102.
  • an insulating film 70 is formed on the surface 72 and the inner surface of the termination trench 54. The insulating film 70 is formed so as to cover the entire surface of the p-type region 106. This prevents the p-type region 106 from coming into contact with the source electrode 36 to be formed later.
  • the outer peripheral region 50 shown in FIG. 8 is completed through the above steps.
  • Example 2 Al is also implanted into the inner peripheral side surface 55b of the termination trench 54b, so that the p-type region 106 and the lower p-type region 60 are connected by the side p-type region 108.
  • isolation trenches 102 are formed to isolate these p-type regions from body region 26.
  • the p-type floating region 103 is formed at a position in contact with the lower end of the isolation trench 102, the depletion layer can easily spread to the outer peripheral region 50.
  • the termination trench 54 is constituted by a first trench 53a, a second trench 53b, and a third trench 53c.
  • the first trench 53 a extends so as to make a round around the MOSFET region 20.
  • the second trench 53b is formed on the outer peripheral surface 72 of the first trench 53a and extends so as to make a round around the first trench 53a.
  • a plurality of third trenches 53c are formed on the surface 72 between the first trench 53a and the second trench 53b.
  • the third trench 53c extends from the inner peripheral side toward the outer peripheral side.
  • the third trench 53c is connected to the first trench 53a, and the other end of the third trench 53c is connected to the second trench 53b. As shown in FIGS. 13 and 14, the trenches 53a to 53c have substantially the same depth.
  • the lower end p-type region 60 is formed at a position in contact with the lower ends of the trenches 53a to 53c.
  • the lower end p-type region 60 is formed along the trenches 53a to 53c.
  • the side surface p-type region 62 is formed in a range in contact with the outer side surface 55a of the second trench 53b.
  • the side surface p-type region 62 is formed only on the side surface 55a on the outer peripheral side of the second trench 53b at the connection portion between the second trench 53b and the third trench 53c, and in the second trench 53b at other positions. Not formed.
  • Other configurations of the semiconductor device according to the third embodiment are the same as those of the semiconductor device according to the first embodiment.
  • the semiconductor device of Example 3 has the same structure as the semiconductor device of Example 1 shown in FIG. Therefore, a depletion layer spreads in the outer peripheral region 50 as in the first embodiment. Further, the semiconductor device of the third embodiment can be manufactured by the same process as that of the first embodiment although the shape of the termination trench 54 is different from that of the first embodiment. In the ion implantation (Al implantation) for the side surface p-type region 62, the width of the termination trench 54 (the horizontal dimension in FIG. 14) is wide in the portion where the third trench 53c is formed as shown in FIG. Al is injected into the outer peripheral side surface 55a of the two trenches 53b.
  • the width of the first trench 53a and the second trench 53b (lateral dimension in FIG. 13) is narrow as shown in FIG. Al is hardly implanted. Therefore, the side surface p-type region 62 is formed only at the connection portion between the third trench 53c and the second trench 53b.
  • the semiconductor device having a MOSFET has been described.
  • another element such as an IGBT may be formed instead of the MOSFET.
  • the semiconductor substrate 12 is made of SiC.
  • a semiconductor substrate made of another material such as Si may be used.
  • a p-type region connected to a predetermined potential may be formed instead of the p-type floating regions 32 and 103 in the above-described embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

 より高い耐圧を実現可能な半導体装置を提供する。提供される半導体装置は、ゲートトレンチの下端に接するp型の第4領域と、第2領域の外側において半導体基板の表面に形成されている終端トレンチと、終端トレンチの下端に接するp型の下端p型領域と、終端トレンチの外周側の側面に接しており、下端p型領域と繋がっており、半導体基板の表面に露出しているp型の側面p型領域と、側面p型領域よりも外周側に形成されており、表面に露出しているp型の複数のガードリング領域を有する。

Description

半導体装置及び半導体装置の製造方法
(関連出願の相互参照)
 本出願は、2014年4月9日に出願された日本特許出願特願2014-080012の関連出願であり、この日本特許出願に基づく優先権を主張するものであり、この日本特許出願に記載された全ての内容を、本明細書を構成するものとして援用する。
 本明細書が開示する技術は、半導体装置に関する。
 日本国特許公開第2013-191734号公報に開示の半導体装置は、MOSFETと、MOSFETの周囲に形成されている複数の終端トレンチを有する。各終端トレンチは、MOSFETが形成されている領域を囲むように環状に伸びている。各終端トレンチ内には、絶縁層が配置されている。また、各終端トレンチの底面に接する範囲の半導体層には、p型フローティング領域が形成されている。MOSFETがオフする際には、MOSFETのボディ領域から外周側(終端トレンチが形成されている領域)に向かって空乏層が伸びる。最も内側の終端トレンチの下側のp型フローティング領域まで空乏層が伸びると、そのp型フローティングから外周側に向かってさらに空乏層が伸びる。これによって、空乏層が隣のp型フローティング領域まで伸びると、そのp型フローティング領域からさらに外周側に空乏層が伸びる。このように、空乏層は、各p型フローティング領域を経由しながら、MOSFETが形成されている領域の周囲に広く広がる。これによって、半導体装置の耐圧が向上される。
 近年、上述したタイプの半導体装置に対する耐圧の要求がますます高まっている。従来は、上述したp型フローティング領域は、終端トレンチを形成した後に終端トレンチの底面にp型不純物を注入し、その後、注入したp型不純物を半導体層内に拡散させることで形成される。しかしながら、半導体の材料や、その他の製造工程の各種条件によっては、p型不純物の拡散距離が短くなり、各p型フローティング領域の間の間隔を十分に狭めることができない場合がある。このような場合、当該間隔の領域に十分に空乏層を伸展させることが困難となる。各終端トレンチの間の間隔を狭くすることで各p型フローティング領域の間の間隔を狭めることも考え得るが、加工精度の問題等により各終端トレンチ間の間隔を狭くすることには限界がある。従来の終端トレンチの構造では、耐圧の向上に限界があった。したがって、本明細書では、より高耐圧を実現可能な半導体装置を開示する。
 本明細書は、半導体基板と、前記半導体基板の表面に形成されている表面電極と、前記半導体基板の裏面に形成されている裏面電極を有し、前記表面電極と前記裏面電極の間をスイッチングする半導体装置を提供する。前記半導体基板は、前記表面電極と接しているn型の第1領域と、前記表面電極と接しており、前記第1領域と接しているp型の第2領域と、前記第2領域の下側に配置されており、前記第2領域によって前記第1領域から分離されているn型の第3領域と、前記表面から前記第1領域及び前記第2領域を貫通して前記第3領域に達するゲートトレンチと、前記ゲートトレンチの下端に接するp型の第4領域と、前記第2領域の外側において前記表面に形成されている終端トレンチと、前記終端トレンチの下端に接するp型の下端p型領域と、前記終端トレンチの外周側の側面に接しており、前記下端p型領域と繋がっており、前記表面に露出しているp型の側面p型領域と、前記側面p型領域よりも外周側に形成されており、前記表面に露出しているp型の複数のガードリング領域と、前記終端トレンチよりも外周側に形成されており、前記第3領域と繋がっており、前記側面p型領域を前記複数のガードリング領域から分離しており、前記複数のガードリング領域を互いから分離しているn型の外周n型領域を有する。
 なお、本明細書において、外周側とは、第2領域から遠い側を意味する。
 この半導体装置では、第1領域、第2領域、第3領域、第4領域によってスイッチング素子が形成されている。スイッチング素子がオフすると、第2領域から第3領域内に空乏層が広がる。空乏層がゲートトレンチの下端に達すると、空乏層が第4領域に到達する。すると、第4領域からも第3領域内に空乏層が広がる。これによって、スイッチング素子が形成されている領域における耐圧が確保される。また、第2領域から第3領域内に広がる空乏層が終端トレンチの下端に達すると、空乏層が下端p型領域に到達する。すると、空乏層が、下端p型領域及び側面p型領域から外周n型領域内に延びる。側面p型領域から伸びる空乏層が、側面p型領域の隣のガードリング領域に到達すると、そのガードリング領域から隣のガードリング領域に向かってさらに空乏層が伸びる。空乏層は、各ガードリング領域を経由して外周側に向かって広がる。これによって、外周側の領域に空乏層が広く伸展し、耐圧が確保される。このように、この半導体装置では、半導体基板の表面に露出するガードリングによって、空乏層の伸展を促進することができる。また、ガードリング領域は半導体基板の表面に露出する範囲に形成されているため、高精度に形成することができる。このため、ガードリング領域の間の間隔を容易に狭くすることができる。このため、この半導体装置では、ガードリング領域によって十分な耐圧を確保することができる。
実施例1の半導体装置10の平面図。 図1のII-II線における縦断面図。 実施例1の半導体装置10の製造工程の説明図。 実施例1の半導体装置10の製造工程の説明図。 実施例1の半導体装置10の製造工程の説明図。 実施例1の半導体装置10の製造工程の説明図。 実施例2の半導体装置の平面図。 図7のVIII-VIII線における縦断面図。 実施例2の半導体装置の製造工程の説明図。 実施例2の半導体装置の製造工程の説明図。 実施例2の半導体装置の製造工程の説明図。 実施例3の半導体装置の平面図。 図12のXIII-XIII線における縦断面図。 図12のXIV-XIV線における縦断面図。
 以下に説明する実施例の特徴について、以下に列記する。なお、以下の特徴は、何れも、独立して有用なものである。
(特徴1)終端トレンチの幅が、ゲートトレンチの幅よりも広い。
(特徴2)下端p型領域と側面p型領域が、Alを含有する。
(特徴3)第2領域(ボディ領域26)と終端トレンチの間の表面に、分離トレンチが形成されている。分離トレンチの下端に接する位置に、p型の第5領域(p型フローティング領域103)が形成されている。終端トレンチと分離トレンチの間に、終端トレンチの内周側の側面に接しており、下端p型領域と繋がっており、表面に露出しているp型の第6領域(側面p型領域108)が形成されている。分離トレンチが、第2領域と第6領域を分離している。なお、本明細書において、内周側とは、第2領域に近い側を意味する。
(特徴4)終端トレンチが、第1トレンチと、第1トレンチよりも外周側に形成されている第2トレンチと、第1トレンチと第2トレンチを接続する第3トレンチを有している。側面p型領域が、第2トレンチの外周側の側面に接している。下端p型領域が、第1トレンチ、第2トレンチ及び第3トレンチの下端に接する。
(特徴5)
 終端トレンチの内周側の側面、底面及び外周側の側面を覆う絶縁膜をさらに有する。内周側の側面を覆う絶縁膜と外周側の側面を覆う絶縁膜の間に、絶縁膜が充填されていない領域が形成されている。
(特徴6)半導体装置を製造する方法は、半導体基板に終端トレンチを形成する工程と、半導体基板の表面に対して傾斜する向きに沿って、終端トレンチの側面と底面にp型不純物を注入することで、下端p型領域と側面p型領域を形成する工程を有する。
 図1に示すように、実施例1に係る半導体装置10はSiC(シリコンカーバイド)からなる半導体基板12を有している。半導体基板12は、MOSFET領域20と、外周領域50を有している。MOSFET領域20には、MOSFETが形成されている。なお、図1では、図の見易さを考慮して、MOSFET領域20内にゲートトレンチ34のみを示している。外周領域50は、MOSFET領域20の外側の領域である。本実施例では、外周領域50は、MOSFET領域20と半導体基板12の端面12aとの間の領域である。外周領域50には、耐圧構造が形成されている。なお、図1では、図の見易さを考慮して、外周領域50内に終端トレンチ54と、ガードリング領域64のみを示している。
 図2に示すように、MOSFET領域20内には、ソース領域22、ボディ領域26、ドリフト領域28a、28b)、ドレイン領域30、p型フローティング領域32、ゲートトレンチ34、ソース電極36、ドレイン電極38が形成されている。
 ソース電極36は、MOSFET領域20内の半導体基板12の上面72に形成されている。
 ドレイン電極38は、半導体基板12の下面に形成されている。
 ソース領域22は、MOSFET領域20内に複数個形成されている。ソース領域22は、高濃度にn型不純物を含むn型領域である。ソース領域22は、半導体基板12の上面に露出する範囲に形成されている。ソース領域22は、ソース電極36と導通している。
 ボディ領域26は、ソース領域22の側方及び下側に形成されており、ソース領域22に接している。ボディ領域26は、p型領域である。ボディ領域26は、ソース領域22が形成されていない位置において半導体基板12の上面に露出している。ボディ領域26は、ソース電極36と導通している。
 ドリフト領域28aは、低濃度にn型不純物を含むn型領域である。ドリフト領域28aのn型不純物濃度は、ソース領域22のn型不純物濃度よりも低い。ドリフト領域28aは、ボディ領域26の下側に形成されている。ドリフト領域28aは、ボディ領域26に接しており、ボディ領域26によってソース領域22から分離されている。
 ドレイン領域30は、高濃度にn型不純物を含むn型領域である。ドレイン領域30のn型不純物濃度は、ドリフト領域28aのn型不純物濃度よりも高い。ドレイン領域30は、ドリフト領域28aの下側に形成されている。ドレイン領域30は、ドリフト領域28aに接しており、ドリフト領域28aによってボディ領域26から分離されている。ドレイン領域30は、半導体基板12の下面に露出する範囲に形成されている。ドレイン領域30は、ドレイン電極38と導通している。
 ゲートトレンチ34は、MOSFET領域20内に複数個形成されている。ゲートトレンチ34は、半導体基板12の上面72に形成された溝である。各ゲートトレンチ34は、ソース領域22とボディ領域26を貫通し、ドリフト領域28に達している。図1に示すように、複数のゲートトレンチ34は、互いに平行に伸びている。図2に示すように、各ゲートトレンチ34内には、ボトム絶縁層34aと、ゲート絶縁膜34bと、ゲート電極34cが形成されている。ボトム絶縁層34aは、ゲートトレンチ34の底部に形成された厚い絶縁層である。ボトム絶縁層34aの上側のゲートトレンチ34の側面は、ゲート絶縁膜34bによって覆われている。ボトム絶縁層34aの上側のゲートトレンチ34内には、ゲート電極34cが形成されている。ゲート電極34cは、ゲート絶縁膜34bを介して、ソース領域22、ボディ領域26及びドリフト領域28aと対向している。ゲート電極34cは、ゲート絶縁膜34b及びボトム絶縁層34aによって、半導体基板12から絶縁されている。ゲート電極34cの上面は、絶縁層34dによって覆われている。
 p型フローティング領域32は、半導体基板12内であって、各ゲートトレンチ34の底面(すなわち、下端)に接する範囲に形成されている。p型フローティング領域32の周囲は、ドリフト領域28に囲まれている。各p型フローティング領域32は、ドリフト領域28によって、互いに分離されている。また、各p型フローティング領域32は、ドリフト領域28によって、ボディ領域26から分離されている。
 ドリフト領域28bは、外周領域50内に形成されている。ドリフト領域28bは、ドリフト領域28aから連続するn型領域であり、ドリフト領域28aと略同じn型不純物濃度を有している。以下では、ドリフト領域28aとドリフト領域28bをまとめて、ドリフト領域28という場合がある。ドリフト領域28bの下側には、上述したドレイン領域30が形成されている。すなわち、ドリフト領域28とドレイン領域30は、MOSFET領域20から外周領域50に跨って形成されている。ドリフト領域28とドレイン領域30は、半導体基板12の端面12aまで広がっている。また、ドレイン電極38は、外周領域50を含む半導体基板12の下面全体に形成されている。また、外周領域50内の半導体基板12の上面72は、絶縁膜70によって覆われている。
 外周領域50内の半導体基板12の表面72には、終端トレンチ54が形成されている。終端トレンチ54の内周側の側面55b、底面及び外周側の側面55aは、絶縁膜70によって覆われている。但し、終端トレンチ54内は絶縁膜70が完全には充填されておらず、内周側の側面55bを覆う絶縁膜70と外周側の側面55aを覆う絶縁膜70の間に隙間(空間)70aが形成されている。なお、隙間70a内に、絶縁膜70とは異なる物質が充填されていてもよい。終端トレンチ54は、ボディ領域26に隣接する位置に形成されている。終端トレンチ54は、ゲートトレンチ34と略同じ深さを有している。図1に示すように、終端トレンチ54は、半導体基板12の表面72を平面視したときに、MOSFET領域20の周囲を一巡するように伸びている。したがって、ボディ領域26は、終端トレンチ54によって、外周領域50内のいずれのp型領域からも分離されている。このように、終端トレンチ54よりも外周側のp型領域はソース電極36とは導通していないので、終端トレンチ54よりも外周側のp型領域はボディ領域26ではない。すなわち、終端トレンチ54は、ボディ領域26の外側に形成されている。
 図2に示すように、終端トレンチ54の下端(すなわち、底面)に接する位置に、下端p型領域60が形成されている。また、終端トレンチ54の外周側の側面55aに接する位置には、側面p型領域62が形成されている。側面p型領域62は、表面72から下端p型領域60まで伸びている。すなわち、側面p型領域62は、表面72に露出しているとともに、下端p型領域60と繋がっている。下端p型領域60と側面p型領域62は連続する1つのp型領域であるので、以下ではこれらをまとめて境界部p型領域59と呼ぶ場合がある。境界部p型領域59は、p型不純物としてAlを含有している。境界部p型領域59は、制御不可能な誤差レベルを除いて、Al以外のp型不純物を含有していない。境界部p型領域59は、終端トレンチ54に沿って、MOSFET領域20の周囲を一巡するように形成されている。境界部p型領域59は、ドリフト領域28によってボディ領域26から分離されている。
 側面p型領域62の外周側には、複数のガードリング領域64が形成されている。各ガードリング領域64は、p型領域であり、表面72に露出する範囲に形成されている。各ガードリング領域64は、浅い範囲にのみ形成されている。したがって、各ガードリング領域64の下端は、側面p型領域62の下端よりも上側(表面72側)に位置している。各ガードリング領域64の下側には、ドリフト領域28bが形成されている。最も内周側(MOSFET領域20側)のガードリング領域64と側面p型領域62の間には、ドリフト領域28bが形成されている。ドリフト領域28bによって、最も内周側のガードリング領域64が側面p型領域62から分離されている。また、各ガードリング領域64の間には、ドリフト領域28bが形成されている。ドリフト領域28bによって、各ガードリング領域64が互いから分離されている。各ガードリング領域64は、p型不純物としてAlを含有している。各ガードリング領域64は、制御不可能な誤差レベルを除いて、Al以外のp型不純物を含有していない。
 次に、半導体装置10の動作について説明する。半導体装置10を動作させる際には、ドレイン電極38とソース電極36の間にドレイン電極38がプラスとなる電圧が印加される。さらに、ゲート電極34cに対してゲートオン電圧が印加されることで、MOSFET領域20内のMOSFETがオンする。すなわち、ゲート電極34cに対向している位置のボディ領域26にチャネルが形成され、ソース電極36から、ソース領域22、チャネル、ドリフト領域28、ドレイン領域30を経由して、ドレイン電極38に向かって電流が流れる。ゲート電極34cへのゲートオン電圧の印加を停止すると、チャネルが消失し、MOSFETがオフする。MOSFETがオフすると、ボディ領域26とドリフト領域28の境界部のpn接合からドリフト領域28内に空乏層が広がる。空乏層がMOSFET領域20内のp型フローティング領域32に到達すると、p型フローティング領域32からもドリフト領域28内に空乏層が広がる。これによって、2つのp型フローティング領域32の間のドリフト領域28が効果的に空乏化される。このため、MOSFET領域20内における電界集中が抑制される。これによって、MOSFET領域20内における高い耐圧が実現される。
 また、上述したpn接合から伸びる空乏層は、図2の矢印82に示すように、終端トレンチ54の下側の境界部p型領域59にも到達する。すると、境界部p型領域59からドリフト領域28内に空乏層が広がる。ゲートトレンチ34と終端トレンチ54の間のドリフト領域28は、ゲートトレンチ34の下側のp型フローティング領域32から広がる空乏層と終端トレンチ54の下側の境界部p型領域59(すなわち、下端p型領域60)から広がる空乏層によって空乏化される。このとき、ゲートトレンチ34の深さと終端トレンチ54の深さが略等しい(すなわち、p型フローティング領域32の深さ方向の位置と下端p型領域60の深さ方向の位置が略等しい)ため、ゲートトレンチ34と終端トレンチ54の間のドリフト領域28において等電位線が横方向(表面72と平行な方向)に伸びる。これによって、終端トレンチ54の近傍における電界集中が抑制される。
 また、境界部p型領域59は、終端トレンチ54の下端から半導体基板12の表面72まで広がっている。このため、表面72の近傍では、境界部p型領域59から最も内周側のガードリング領域64に向かって空乏層が広がる。空乏層が最も内周側のガードリング領域64に到達すると、そのガードリング領域64からその隣のガードリング領域64に空乏層が伸展する。このように、空乏層が、各ガードリング領域64を順次経由して外周側に広がる。このため、外周領域50内に空乏層が広く伸展する。これによって、外周領域50内における高い耐圧が実現される。
 このように、半導体装置10では、終端トレンチ54の下側の境界部p型領域59がp型フローティング領域32と同様に深い位置に設けられていることによって、MOSFET領域20の外周端近傍における電界集中が抑制される。また、終端トレンチ54よりも外周側において境界部p型領域59が終端トレンチ54の底面から半導体基板12の表面72まで伸びていることで、表面72近傍の浅い範囲内にのみ形成されたガードリング領域64に空乏層が到達することが可能となっている。その結果、複数のガードリング領域64によって外周領域50における空乏層の伸展が促進される。また、各ガードリング領域64が互いから分離されているため、外周領域50内において電位が比較的均等に分布することができる。このため、外周領域50における高い耐圧が実現されている。
 次に、半導体装置10の製造方法について説明する。なお、この製造方法は、外周領域50を形成する工程に特徴を有するので、以下では外周領域50を形成する工程について説明し、MOSFET領域20を形成する工程については説明を省略する。
 まず、図3に示すようにボディ領域26とドリフト領域28が形成された半導体基板12を準備する。次に、半導体基板12の表面72のうちのガードリング領域64に相当する範囲に、イオン注入によって、Al(p型不純物)を注入する。ここでは、Alの注入エネルギーを低く設定することで、半導体基板12の表面72近傍の浅い範囲にのみAlを注入する。このように、イオンの注入深さが浅いと、その注入範囲を高精度に制御することができる。
 次に、図4に示すように、半導体基板12の表面72を選択的にエッチングすることによって、終端トレンチ54を形成する。終端トレンチ54は、ボディ領域26に隣接する位置に形成する。
 次に、図5に示すように、イオン注入によって、終端トレンチ54に対してAlを注入する。このイオン注入は、表面72及び終端トレンチ54の内周側の側面55bにAlが注入されないようにマスキングした上で行う。ここでは、イオン注入の方向を半導体基板12の表面72に対して傾斜させることで、終端トレンチ54の底面と外周側の側面55aにAlを注入する。
 次に、半導体基板12をアニールすることで、半導体基板12に注入されたAlを活性化させる。これによって、図6に示すように、ガードリング領域64、下端p型領域60及び側面p型領域62を形成する。
 次に、図2に示すように、表面72及び終端トレンチ54の内面に絶縁膜70を形成する。終端トレンチ54の幅が広いので、終端トレンチ54は絶縁膜70によって完全には充填されない。すなわち、内周側の側面55bを覆う絶縁膜70と外周側の側面55aを覆う絶縁膜70の間に、隙間70aが形成される。これによって、外周領域50が完成する。なお、隙間70aには、その後の工程において、絶縁膜70とは別の材料が埋め込まれてもよい。
 以上に説明したように、この製造方法では、終端トレンチ54の外周側の側面55aに対する斜めイオン注入によって側面p型領域62を形成する。側面55aへのイオン注入深さによって、側面p型領域62の幅(半導体基板12の横方向(図2の横方向)の寸法)を制御することができる。側面55aへのイオン注入深さは高精度に制御することができるため、この製造方法によれば、側面p型領域62の幅を正確に制御することができる。したがって、幅が狭い側面p型領域62を形成することができる。また、側面p型領域62は、Alのイオン注入により形成される。AlはSiC中における拡散係数が小さいため、上記のアニール時にAlの拡散距離が小さい。このようにp型不純物としてAlを用いることによって、側面p型領域62の幅をより小さくすることが可能とされている。このように、上記の製造方法によれば、幅が狭い側面p型領域62を高精度に形成することができる。
 また、ガードリング領域64は、表面72近傍の浅い範囲へのイオン注入によって形成される。浅い範囲へのイオン注入では、イオン注入範囲を正確に制御することができる。したがって、幅が狭いガードリング領域64を形成することができる。また、ガードリング領域64は、Alのイオン注入によって形成される。これによって、ガードリング領域64の幅をより小さくすることが可能とされている。このように、上記の方法によれば、幅が狭いガードリング領域64を高精度に形成することができる。
 また、上記のようにガードリング領域64と側面p型領域62を高精度に形成することができるため、この方法によれば、側面p型領域62とガードリング領域64の間の間隔、及び、各ガードリング領域64の間の間隔を狭小化することができる。したがって、この方法によれば、外周領域50に確実に空乏層を伸展されることが可能であり、外周領域50における高い耐圧を実現することができる。また、この方法によれば、外周領域50の面積を小さくすることが可能であり、小型な半導体装置10を製造することができる。
 図7、8に示す実施例2の半導体装置は、ボディ領域26と終端トレンチ54の間の表面72に、分離トレンチ102が形成されている。分離トレンチ102内には、絶縁層104が埋め込まれている。図7に示すように、分離トレンチ102は、MOSFET領域20の周囲を一巡するように形成されている。図8に示すように、分離トレンチ102の下端に接する位置には、p型フローティング領域103が形成されている。p型フローティング領域103は、分離トレンチ102に沿ってMOSFET領域20の周囲を一巡するように形成されている。分離トレンチ102の外周側には、p型領域106が形成されている。p型領域106は、半導体基板12の表面72に露出する範囲に形成されている。p型領域106の表面72は絶縁膜70に覆われている。したがって、p型領域106は、ソース電極36には接触していない。分離トレンチ102は、p型領域106をボディ領域26から分離している。また、第2実施例の半導体装置では、終端トレンチ54の内周側の側面55bに沿って、側面p型領域108が形成されている。側面p型領域108は、p型領域106から下端p型領域60まで伸びている。側面p型領域108は、p型領域106と繋がっているとともに、下端p型領域60と繋がっている。側面p型領域108は、p型不純物としてAlを含有している。実施例2の半導体装置のその他の構成は、実施例1の半導体装置の構成と等しい。
 次に、実施例2の半導体装置の外周領域50における空乏層の広がり方について説明する。MOSFETがオフすると、ボディ領域26とドリフト領域28の境界部のpn接合から、図8の矢印112に示すように、分離トレンチ102の下側のp型フローティング領域103に到達する。すると、p型フローティング領域103から矢印114に示すように空乏層が伸びる。この空乏層は、下端p型領域60または側面p型領域108に到達する。すると、p型領域106、側面p型領域108、下端p型領域60及び側面p型領域62の全体からそれらの周囲のドリフト領域28内に空乏層が広がる。このため、表面72の近傍では、側面p型領域62から最も内周側のガードリング領域64に向かって空乏層が広がる。空乏層が最も内周側のガードリング領域64に到達すると、そのガードリング領域64からその隣のガードリング領域64に空乏層が伸展する。このように、空乏層が、各ガードリング領域64を順次経由して外周側に広がる。このため、外周領域50内に空乏層が広く伸展する。これによって、外周領域50内における高い耐圧が実現される。
 次に、実施例2の半導体装置の製造方法(外周領域50を形成する工程)について説明する。まず、実施例1と同様にして、図4に示すように半導体基板12を加工する。次に、実施例1と同様の斜めイオン注入によって終端トレンチ54に対してAlを注入する。但し、実施例2では、斜めイオン注入において、終端トレンチ54の内周側の側面55bをマスキングしない。このため、図7の下側の終端トレンチ54aの外周側の側面55aにAlを注入する際には、図7の上側の終端トレンチ54bの内周側の側面55bにもAlが注入され、図7の上側の終端トレンチ54bの外周側の側面55aにAlを注入する際には、図7の下側の終端トレンチ54aの内周側の側面55bにもAlが注入される。このため、実施例2では、図9に示すように、終端トレンチ54の両側の側面にAlが注入される。
 次に、半導体基板12をアニールすることで、半導体基板12に注入されたAlを活性化させる。これによって、図10に示すように、ガードリング領域64、側面p型領域108、下端p型領域60及び側面p型領域62を形成する。すなわち、実施例2では、終端トレンチ54の内周側の側面55bにAlが注入されるので、その内周側の側面55bに沿って側面p型領域108が形成される。
 次に、図11に示すように、半導体基板12の表面72を選択的にエッチングすることによって、終端トレンチ54の内周側の表面72に分離トレンチ102を形成する。これによって、終端トレンチ54に隣接するp型領域106が、ボディ領域26から分離される。次に、分離トレンチ102の底面へのイオン注入によって、p型フローティング領域103を形成する。次に、分離トレンチ102内に、絶縁層104を形成する。次に、表面72及び終端トレンチ54の内面に絶縁膜70を形成する。絶縁膜70は、p型領域106の表面全体を覆うように形成する。これによって、p型領域106が、後に形成されるソース電極36と接触することが防止される。以上の工程によって、図8に示す外周領域50が完成する。
 以上に説明したように、実施例2では、終端トレンチ54bの内周側の側面55bにもAlが注入されるので、p型領域106と下端p型領域60が側面p型領域108によって接続される。したがって、これらのp型領域をボディ領域26から分離するために、分離トレンチ102が形成される。また、分離トレンチ102の下端に接する位置にp型フローティング領域103が形成されていることで、空乏層が外周領域50に広がり易くなっている。
 図12~14に示す実施例3の半導体装置では、終端トレンチ54が、第1トレンチ53aと、第2トレンチ53bと、第3トレンチ53cによって構成されている。図12に示すように、第1トレンチ53aは、MOSFET領域20の周囲を一巡するように伸びている。第2トレンチ53bは、第1トレンチ53aの外周側の表面72に形成されており、第1トレンチ53aの周囲を一巡するように伸びている。第3トレンチ53cは、第1トレンチ53aと第2トレンチ53bの間の表面72に複数個形成されている。第3トレンチ53cは、内周側から外周側に向かって伸びている。第3トレンチ53cの一端は第1トレンチ53aに接続されており、第3トレンチ53cの他端は第2トレンチ53bに接続されている。図13、14に示すように、トレンチ53a~53cは、略同じ深さを有している。下端p型領域60は、トレンチ53a~53cの下端に接する位置に形成されている。下端p型領域60は、トレンチ53a~53cに沿って形成されている。また、側面p型領域62は、第2トレンチ53bの外周側の側面55aに接する範囲に形成されている。但し、側面p型領域62は、第2トレンチ53bと第3トレンチ53cとの接続部における第2トレンチ53bの外周側の側面55aにのみ形成されており、その他の位置の第2トレンチ53bには形成されていない。実施例3の半導体装置のその他の構成は、実施例1の半導体装置の構成と等しい。
 実施例3の半導体装置は、図14の断面において、図2に示す実施例1の半導体装置と同じ構造を有している。したがって、実施例1と同様にして、外周領域50に空乏層が広がる。また、実施例3の半導体装置は、終端トレンチ54の形状が実施例1とは異なるものの、実施例1と同様の工程によって製造することができる。側面p型領域62に対するイオン注入(Al注入)では、図14に示すように第3トレンチ53cが形成されている部分では終端トレンチ54の幅(図14の横方向の寸法)が広いので、第2トレンチ53bの外周側の側面55aにAlが注入される。他方、第3トレンチ53cが形成されていない部分では、図13に示すように第1トレンチ53a及び第2トレンチ53bの幅(図13の横方向の寸法)が狭いので、これらの外周側の側面にAlはほとんど注入されない。したがって、側面p型領域62は、第3トレンチ53cと第2トレンチ53bの接続部にのみ形成される。
 以上、実施例1~3について説明した。なお、実施例1~3では、MOSFETを有する半導体装置について説明したが、MOSFETに代えてIGBT等の他の素子が形成されていてもよい。また、上述した実施例では、半導体基板12がSiCにより構成されていたが、Si等の他の材質によって構成された半導体基板を使用してもよい。また、上述した実施例のp型フローティング領域32、103に代えて、所定の電位に接続されているp型領域が形成されていてもよい。
 以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例をさまざまに変形、変更したものが含まれる。
 本明細書または図面に説明した技術要素は、単独であるいは各種の組み合わせによって技術的有用性を発揮するものであり、出願時請求項記載の組み合わせに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。

Claims (7)

  1.  半導体基板と、前記半導体基板の表面に形成されている表面電極と、前記半導体基板の裏面に形成されている裏面電極を有し、前記表面電極と前記裏面電極の間をスイッチングする半導体装置であって、
     前記半導体基板が、
     前記表面電極と接しているn型の第1領域と、
     前記表面電極と接しており、前記第1領域と接しているp型の第2領域と、
     前記第2領域の下側に配置されており、前記第2領域によって前記第1領域から分離されているn型の第3領域と、
     前記表面から前記第1領域及び前記第2領域を貫通して前記第3領域に達するゲートトレンチと、
     前記ゲートトレンチの下端に接するp型の第4領域と、
     前記第2領域の外側において前記表面に形成されている終端トレンチと、
     前記終端トレンチの下端に接するp型の下端p型領域と、
     前記終端トレンチの外周側の側面に接しており、前記下端p型領域と繋がっており、前記表面に露出しているp型の側面p型領域と、
     前記側面p型領域よりも外周側に形成されており、前記表面に露出しているp型の複数のガードリング領域と、
     前記終端トレンチよりも外周側に形成されており、前記第3領域と繋がっており、前記側面p型領域を前記複数のガードリング領域から分離しており、前記複数のガードリング領域を互いから分離しているn型の外周n型領域、
     を有する半導体装置。
  2.  前記終端トレンチの幅が、前記ゲートトレンチの幅よりも広い請求項1の半導体装置。
  3.  前記下端p型領域と前記側面p型領域が、Alを含有する請求項1または2の半導体装置。
  4.  前記第2領域と前記終端トレンチの間の前記表面に、分離トレンチが形成されており、
     前記分離トレンチの下端に接する位置に、p型の第5領域が形成されており、
     前記終端トレンチと前記分離トレンチの間に、前記終端トレンチの内周側の側面に接しており、前記下端p型領域と繋がっており、前記表面に露出しているp型の第6領域が形成されており、
     前記分離トレンチが、前記第2領域と前記第6領域を分離している、
     請求項1~3のいずれか一項の半導体装置。
  5.  前記終端トレンチが、第1トレンチと、前記第1トレンチよりも外周側に形成されている第2トレンチと、前記第1トレンチと前記第2トレンチを接続する第3トレンチを有しており、
     前記側面p型領域が、前記第2トレンチの外周側の側面に接しており、
     前記下端p型領域が、前記第1トレンチ、前記第2トレンチ及び前記第3トレンチの下端に接する、
     請求項1~4のいずれか一項の半導体装置。
  6.  前記終端トレンチの内周側の側面、底面及び外周側の側面を覆う絶縁膜をさらに有し、
     内周側の側面を覆う前記絶縁膜と外周側の側面を覆う前記絶縁膜の間に、絶縁膜が充填されていない領域が形成されている、
     請求項1~5のいずれか一項の半導体装置。
  7.  請求項1~6のいずれか一項の半導体装置を製造する方法であって、
     半導体基板に前記終端トレンチを形成する工程と、
     前記半導体基板の表面に対して傾斜する向きに沿って、前記終端トレンチの側面と底面にp型不純物を注入することで、前記下端p型領域と前記側面p型領域を形成する工程、
     を有する方法。
PCT/JP2015/053693 2014-04-09 2015-02-10 半導体装置及び半導体装置の製造方法 WO2015156024A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580018706.3A CN106165103B (zh) 2014-04-09 2015-02-10 半导体器件及半导体器件的制造方法
DE112015001751.8T DE112015001751B4 (de) 2014-04-09 2015-02-10 Halbleitervorrichtung und Verfahren zur Herstellung der Halbleitervorrichtung
US15/124,326 US9853139B2 (en) 2014-04-09 2015-02-10 Semiconductor device and method for manufacturing the semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014080012A JP6231422B2 (ja) 2014-04-09 2014-04-09 半導体装置
JP2014-080012 2014-04-09

Publications (1)

Publication Number Publication Date
WO2015156024A1 true WO2015156024A1 (ja) 2015-10-15

Family

ID=54287605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053693 WO2015156024A1 (ja) 2014-04-09 2015-02-10 半導体装置及び半導体装置の製造方法

Country Status (5)

Country Link
US (1) US9853139B2 (ja)
JP (1) JP6231422B2 (ja)
CN (1) CN106165103B (ja)
DE (1) DE112015001751B4 (ja)
WO (1) WO2015156024A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018125331A (ja) * 2017-01-30 2018-08-09 株式会社東芝 半導体装置及びその製造方法
JP2020512682A (ja) * 2016-12-08 2020-04-23 クリー インコーポレイテッドCree Inc. イオン注入側壁を有するゲート・トレンチを備えるパワー半導体デバイス及び関連方法
US11355630B2 (en) 2020-09-11 2022-06-07 Wolfspeed, Inc. Trench bottom shielding methods and approaches for trenched semiconductor device structures

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9991379B1 (en) * 2016-11-17 2018-06-05 Sanken Electric Co., Ltd. Semiconductor device with a gate insulating film formed on an inner wall of a trench, and method of manufacturing the same
JP7190256B2 (ja) * 2018-02-09 2022-12-15 ローム株式会社 半導体装置
CN111384168A (zh) * 2018-12-27 2020-07-07 无锡华润华晶微电子有限公司 沟槽mosfet和沟槽mosfet的制造方法
US11158703B2 (en) * 2019-06-05 2021-10-26 Microchip Technology Inc. Space efficient high-voltage termination and process for fabricating same
IT201900013416A1 (it) * 2019-07-31 2021-01-31 St Microelectronics Srl Dispositivo di potenza a bilanciamento di carica e procedimento di fabbricazione del dispositivo di potenza a bilanciamento di carica
JP7363539B2 (ja) * 2020-01-31 2023-10-18 株式会社デンソー 窒化物半導体装置の製造方法
CN116544268B (zh) * 2023-07-06 2023-09-26 通威微电子有限公司 一种半导体器件结构及其制作方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1070271A (ja) * 1996-06-13 1998-03-10 Plessey Semiconductors Ltd 半導体デバイスの改良
JP2002368216A (ja) * 2001-06-11 2002-12-20 Toshiba Corp 半導体素子及びその製造方法
JP2007294556A (ja) * 2006-04-24 2007-11-08 Fuji Electric Device Technology Co Ltd 半導体装置
WO2011155394A1 (ja) * 2010-06-11 2011-12-15 トヨタ自動車株式会社 半導体装置および半導体装置の製造方法
JP2012195394A (ja) * 2011-03-16 2012-10-11 Toshiba Corp 半導体装置の製造方法
JP2013201287A (ja) * 2012-03-26 2013-10-03 Toshiba Corp パワー半導体装置
JP2013258369A (ja) * 2012-06-14 2013-12-26 Denso Corp 炭化珪素半導体装置およびその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1267415A3 (en) 2001-06-11 2009-04-15 Kabushiki Kaisha Toshiba Power semiconductor device having resurf layer
JP4453671B2 (ja) * 2006-03-08 2010-04-21 トヨタ自動車株式会社 絶縁ゲート型半導体装置およびその製造方法
US20120037954A1 (en) * 2010-08-10 2012-02-16 Force Mos Technology Co Ltd Equal Potential Ring Structures of Power Semiconductor with Trenched Contact
JP5742657B2 (ja) 2011-10-20 2015-07-01 住友電気工業株式会社 炭化珪素半導体装置およびその製造方法
JP5758824B2 (ja) 2012-03-14 2015-08-05 トヨタ自動車株式会社 半導体装置および半導体装置の製造方法
WO2013136898A1 (ja) * 2012-03-16 2013-09-19 富士電機株式会社 半導体装置
JP2013258327A (ja) * 2012-06-13 2013-12-26 Toshiba Corp 半導体装置及びその製造方法
KR20140022518A (ko) 2012-08-13 2014-02-25 삼성전자주식회사 반도체 장치 및 그 제조 방법
US9496382B2 (en) * 2013-11-21 2016-11-15 Chengdu Monolithic Power Systems Co., Ltd. Field effect transistor, termination structure and associated method for manufacturing
US9406543B2 (en) * 2013-12-10 2016-08-02 Samsung Electronics Co., Ltd. Semiconductor power devices and methods of manufacturing the same
US9478606B2 (en) * 2014-02-13 2016-10-25 Microsemi Corporation SiC transient voltage suppressor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1070271A (ja) * 1996-06-13 1998-03-10 Plessey Semiconductors Ltd 半導体デバイスの改良
JP2002368216A (ja) * 2001-06-11 2002-12-20 Toshiba Corp 半導体素子及びその製造方法
JP2007294556A (ja) * 2006-04-24 2007-11-08 Fuji Electric Device Technology Co Ltd 半導体装置
WO2011155394A1 (ja) * 2010-06-11 2011-12-15 トヨタ自動車株式会社 半導体装置および半導体装置の製造方法
JP2012195394A (ja) * 2011-03-16 2012-10-11 Toshiba Corp 半導体装置の製造方法
JP2013201287A (ja) * 2012-03-26 2013-10-03 Toshiba Corp パワー半導体装置
JP2013258369A (ja) * 2012-06-14 2013-12-26 Denso Corp 炭化珪素半導体装置およびその製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020512682A (ja) * 2016-12-08 2020-04-23 クリー インコーポレイテッドCree Inc. イオン注入側壁を有するゲート・トレンチを備えるパワー半導体デバイス及び関連方法
KR20210019127A (ko) * 2016-12-08 2021-02-19 크리, 인코포레이티드 주입된 측벽들을 가진 게이트 트렌치들을 갖는 전력 반도체 디바이스들 및 관련 방법들
KR102338173B1 (ko) * 2016-12-08 2021-12-09 크리, 인코포레이티드 주입된 측벽들을 가진 게이트 트렌치들을 갖는 전력 반도체 디바이스들 및 관련 방법들
JP7174702B2 (ja) 2016-12-08 2022-11-17 ウルフスピード インコーポレイテッド イオン注入側壁を有するゲート・トレンチを備えるパワー半導体デバイス及び関連方法
JP2018125331A (ja) * 2017-01-30 2018-08-09 株式会社東芝 半導体装置及びその製造方法
US11355630B2 (en) 2020-09-11 2022-06-07 Wolfspeed, Inc. Trench bottom shielding methods and approaches for trenched semiconductor device structures

Also Published As

Publication number Publication date
DE112015001751B4 (de) 2021-03-18
DE112015001751T5 (de) 2017-02-09
JP2015201557A (ja) 2015-11-12
US20170018643A1 (en) 2017-01-19
US9853139B2 (en) 2017-12-26
CN106165103B (zh) 2019-07-16
CN106165103A (zh) 2016-11-23
JP6231422B2 (ja) 2017-11-15

Similar Documents

Publication Publication Date Title
JP6231422B2 (ja) 半導体装置
JP6208612B2 (ja) 絶縁ゲート型半導体装置、及び、絶縁ゲート型半導体装置の製造方法
JP6169966B2 (ja) 半導体装置及び半導体装置の製造方法
JP6231396B2 (ja) 半導体装置及び半導体装置の製造方法
JP5136578B2 (ja) 半導体装置
US9780205B2 (en) Insulated gate type semiconductor device having floating regions at bottom of trenches in cell region and circumferential region and manufacturing method thereof
JP6193163B2 (ja) 絶縁ゲート型半導体装置
JP6493372B2 (ja) 半導体装置
WO2016009736A1 (ja) スイッチング素子
JP2010267762A5 (ja)
US20170012136A1 (en) Semiconductor device and manufacturing method thereof
JP5842896B2 (ja) 半導体装置
JP2017191817A (ja) スイッチング素子の製造方法
JP2020064910A (ja) スイッチング素子
JP6438247B2 (ja) 横型半導体装置
JP2017174961A (ja) スイッチング素子の製造方法
KR102183362B1 (ko) 높은 항복 전압을 갖는 트렌치 모스펫을 포함하는 반도체 장치
JP6681809B2 (ja) 半導体装置、および、半導体装置の製造方法
JP2009043795A (ja) 半導体装置
JP2017188562A (ja) スイッチング素子とその製造方法
JP2020077824A (ja) 半導体装置の製造方法
JP2018064023A (ja) 半導体装置の製造方法
JP2016096286A (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15776941

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15124326

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015001751

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15776941

Country of ref document: EP

Kind code of ref document: A1