WO2015152077A1 - 長尺のガスバリア性積層体およびその製造方法 - Google Patents

長尺のガスバリア性積層体およびその製造方法 Download PDF

Info

Publication number
WO2015152077A1
WO2015152077A1 PCT/JP2015/059728 JP2015059728W WO2015152077A1 WO 2015152077 A1 WO2015152077 A1 WO 2015152077A1 JP 2015059728 W JP2015059728 W JP 2015059728W WO 2015152077 A1 WO2015152077 A1 WO 2015152077A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
gas barrier
resin film
roll
smoothing
Prior art date
Application number
PCT/JP2015/059728
Other languages
English (en)
French (fr)
Inventor
渉 岩屋
公市 永元
智史 永縄
悠太 鈴木
近藤 健
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to EP15774061.4A priority Critical patent/EP3127696B1/en
Priority to US15/128,028 priority patent/US10377870B2/en
Priority to KR1020167027958A priority patent/KR102352337B1/ko
Priority to JP2016511632A priority patent/JP6666836B2/ja
Priority to CN201580018055.8A priority patent/CN106457755A/zh
Publication of WO2015152077A1 publication Critical patent/WO2015152077A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/40Distributing applied liquids or other fluent materials by members moving relatively to surface
    • B05D1/42Distributing applied liquids or other fluent materials by members moving relatively to surface by non-rotary members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/12Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/14Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by electrical means
    • B05D3/141Plasma treatment
    • B05D3/145After-treatment
    • B05D3/148After-treatment affecting the surface properties of the coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/02Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber
    • B05D7/04Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber to surfaces of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/56Three layers or more
    • B05D7/58No clear coat specified
    • B05D7/588No curing step for the last layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/283Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • C08J7/0423Coating with two or more layers, where at least one layer of a composition contains a polymer binder with at least one layer of inorganic material and at least one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/50Forming devices by joining two substrates together, e.g. lamination techniques
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2433/14Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2435/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Derivatives of such polymers
    • C08J2435/02Characterised by the use of homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2475/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/16Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers in which all the silicon atoms are connected by linkages other than oxygen atoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32412Plasma immersion ion implantation

Definitions

  • the present invention relates to a long gas barrier laminate excellent in workability at the time of winding in a roll shape or unwinding from a roll, and a method for producing the same.
  • displays such as liquid crystal displays and electroluminescence (EL) displays are formed by laminating a gas barrier layer on a transparent plastic film instead of a glass plate in order to realize thinning, weight reduction, flexibility, and the like. So-called gas barrier films are used.
  • Patent Document 1 discloses a transparent gas barrier in which at least one surface smooth layer and at least one inorganic barrier layer are laminated on a transparent plastic substrate, and the arithmetic average roughness of the surface smooth layer or the like is defined. A functional film is described.
  • Patent Document 2 discloses a gas barrier that has a smooth layer (surface smoothing layer) on both sides and rolls up a resin film that defines the hardness of the smooth layer surfaces on both sides in a roll shape, and then draws out the resin film.
  • a method for producing a gas barrier film characterized by providing a layer is described.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a long gas barrier laminate excellent in workability at the time of winding in a roll or when unwinding from a roll, and a method for producing the same. To do.
  • the present inventors have a functional layer laminated on one surface side of the substrate, and a smoothing layer and a gas barrier layer on the other surface side of the substrate.
  • a long gas barrier laminate in which the layers are laminated in this order, and the static friction between the surface of the functional layer on the side opposite to the substrate side and the surface of the gas barrier layer on the side opposite to the substrate side
  • the gas barrier laminate having a coefficient in a specific range has been found to be excellent in workability when being wound into a roll or when being unwound from a roll, and the present invention has been completed.
  • gas barrier laminates (1) to (7) and methods for producing the gas barrier laminates (8) to (9).
  • the coefficient of static friction between the surface of the functional layer opposite to the substrate side and the surface of the gas barrier layer opposite to the substrate side is 0.35 to 0.80.
  • the arithmetic mean roughness (Ra) of the surface of the functional layer opposite to the substrate side is 5 nm or more, the maximum cross-sectional height (Rt) of the roughness curve is 100 nm or more,
  • Laminated body Laminated body.
  • the coefficient of static friction between the surface of the functional layer opposite to the substrate side and the surface of the smoothing layer opposite to the substrate side is 0.35 to 0.80.
  • the arithmetic mean roughness (Ra) of the surface of the smoothing layer opposite to the substrate side is 5 nm or less, and the maximum cross-sectional height (Rt) of the roughness curve is 100 nm or less.
  • the long gas barrier laminate as described in 1). (5) The long gas barrier laminate according to (1), wherein the functional layer is a hard coat layer made of a cured product of the active energy ray-curable resin composition. (6) The long gas barrier laminate according to (1), wherein the smoothing layer is made of a cured product of an active energy ray-curable resin composition. (7) The long gas barrier laminate according to (1), wherein the gas barrier layer is a layer obtained by modifying a layer containing a polysilazane compound.
  • a method for producing a long gas barrier laminate characterized by comprising: (9) The method for producing a long gas barrier laminate according to (1), wherein the functional layer is formed on the resin film while transporting the substrate resin film in a certain direction, and then obtained. Step (bI) for winding up the obtained resin film with a functional layer into a roll, and continuously feeding out the resin film from the roll of the resin film with a functional layer obtained in step (bI).
  • the resin film is continuously unwound from the roll-shaped functional layer and the resin film with a smoothing layer obtained in step (b-II), and is transported in a fixed direction, while the functional film and the resin film with a smoothing layer are smoothed.
  • the manufacturing method of the elongate gas-barrier laminated body characterized by these.
  • a long gas barrier laminate having excellent workability when being wound up in a roll or when being taken out from a roll, and a method for producing the same.
  • the long gas barrier laminate of the present invention has a functional layer laminated on one surface side of a substrate, and is smoothed on the other surface side of the substrate.
  • the gas barrier layer is a long gas barrier laminate in which a layer and a gas barrier layer are laminated in this order.
  • the functional layer has a surface on the side opposite to the substrate side and a gas barrier layer on the side opposite to the substrate side. The coefficient of static friction with the surface is 0.35 to 0.80.
  • Base material which comprises the gas-barrier laminated body of this invention can carry
  • “long” means that the shape is a strip shape whose longitudinal direction is longer (preferably 10 times or longer) than the width direction. In the following description, “long” may be omitted.
  • the length of the base material is not particularly limited, but is usually 400 to 2000 m.
  • the width (length in the width direction) of the substrate is not particularly limited, but is usually 450 to 1300 mm, preferably 530 to 1280 mm.
  • the thickness of the substrate is not particularly limited, but is usually 1 to 60 ⁇ m, preferably 5 to 50 ⁇ m, more preferably 10 to 30 ⁇ m.
  • a resin film is mentioned as a base material.
  • Resin components of the resin film include polyimide, polyamide, polyamideimide, polyphenylene ether, polyether ketone, polyether ether ketone, polyolefin, polyester, polycarbonate, polysulfone, polyethersulfone, polyphenylene sulfide, acrylic resin, cycloolefin Examples thereof include polymers and aromatic polymers. These resin components can be used alone or in combination of two or more.
  • polyester, polyamide, polysulfone, polyether sulfone, polyphenylene sulfide, or cycloolefin-based polymer is more preferable, and polyester or cycloolefin-based polymer is more preferable because of excellent transparency and versatility.
  • polyester examples include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and polyarylate.
  • cycloolefin polymers examples include norbornene polymers, monocyclic olefin polymers, cyclic conjugated diene polymers, vinyl alicyclic hydrocarbon polymers, and hydrides thereof.
  • the resin film may contain various additives as long as the effects of the present invention are not hindered.
  • the additive include an ultraviolet absorber, an antistatic agent, a stabilizer, an antioxidant, a plasticizer, a lubricant, a filler, and a coloring pigment. What is necessary is just to determine suitably content of these additives according to the objective.
  • the resin film can be obtained by preparing a resin composition containing predetermined components and molding it into a film.
  • the molding method is not particularly limited, and a known method such as a casting method or a melt extrusion method can be used.
  • the functional layer constituting the gas barrier laminate of the present invention include a hard coat layer, an antiglare hard coat layer and an antistatic layer, and surface protection, antiglare and surface protection, respectively. Has antistatic and surface protection functions.
  • the functional layer may be an ultraviolet absorbing layer, an infrared absorbing layer, a primer layer, or the like.
  • the hard coat layer preferably has a pencil hardness of H or higher. When the pencil hardness is H or more, sufficient scratch resistance can be provided.
  • the surface resistivity of the antistatic layer is preferably set to a value in the range of 1 ⁇ 10 4 to 1 ⁇ 1011 ⁇ / ⁇ .
  • the obtained gas barrier laminate is wound in a roll shape. Excellent workability when taking out or unwinding from a roll.
  • the active energy ray-curable resin composition is a composition that contains a polymerizable compound and can be cured by irradiation with active energy rays.
  • the polymerizable compound include polymerizable prepolymers and polymerizable monomers.
  • the polymerizable prepolymer includes a polyester oligomer having a hydroxyl group at both ends, a polyester acrylate prepolymer obtained by a reaction with (meth) acrylic acid, a low molecular weight bisphenol type epoxy resin or a novolac type epoxy resin, )
  • epoxy acrylate prepolymer polyurethane oligomer obtained by reaction with acrylic acid, urethane acrylate prepolymer, polyether polyol obtained by reaction of (meth) acrylic acid, and (meth) acrylic acid
  • examples thereof include a polyol acrylate prepolymer to be obtained.
  • Examples of the polymerizable monomer include 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, and hydroxypivalic acid.
  • the active energy ray-curable resin composition may contain a polymer resin component that does not have reaction curability, such as an acrylic resin.
  • the viscosity of the composition can be adjusted by adding a polymer resin component.
  • Active energy rays include ultraviolet rays, electron beams, ⁇ rays, ⁇ rays, ⁇ rays and the like. Among these, ultraviolet rays are preferable as the active energy rays because they can be generated using a relatively simple apparatus.
  • the active energy ray curable resin composition (that is, the ultraviolet curable resin composition) preferably contains a photopolymerization initiator.
  • a photoinitiator will not be specifically limited if a polymerization reaction is started by irradiation of an ultraviolet-ray.
  • the photopolymerization initiator include benzoin-based polymerization initiators such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin-n-butyl ether, and benzoin isobutyl ether; acetophenone, 4′-dimethylaminoacetophenone, 2,2 -Dimethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- [ 4- (Methylthio) phenyl] -2-morpholino-propan-1-one, 2-hydroxy-1- ⁇ 4- [4- (2-hydroxy-2-methyl-propionyl) -
  • the active energy ray-curable resin composition preferably contains fine particles such as organic fine particles and inorganic fine particles.
  • fine particles such as organic fine particles and inorganic fine particles.
  • organic fine particles examples include polystyrene resins, styrene-acrylic copolymer resins, acrylic resins, amino resins, divinylbenzene resins, silicone resins, urethane resins, melamine resins, urea resins, phenolic resins, Examples thereof include fine particles made of benzoguanamine resin, xylene resin, polycarbonate resin, polyethylene resin, polyvinyl chloride resin, and the like. Among these, silicone fine particles made of a silicone resin are preferable.
  • Examples of the inorganic fine particles include silica particles, metal oxide particles, and alkyl silicate particles.
  • Examples of the silica particles include colloidal silica and hollow silica.
  • Examples of the metal oxide particles include particles of titanium oxide, zinc oxide, zirconium oxide, tantalum oxide, indium oxide, hafnium oxide, tin oxide, niobium oxide, and the like.
  • As the alkyl silicate particles the formula: R a —O [— ⁇ Si (OR b ) 2 ⁇ —O—] n —R a (wherein R a and R b represent an alkyl group having 1 to 10 carbon atoms). , N represents an integer of 1 or more).
  • silica particles or alkyl silicate particles are preferable because they are excellent in compatibility with the curable component and can efficiently control the refractive index of the optical adjustment layer. These fine particles can be used singly or in combination of two or more.
  • the shape of the fine particles is not particularly limited, and fine particles having various shapes such as an amorphous shape and a true spherical shape can be used.
  • the average particle diameter of the fine particles is usually 0.001 to 10 ⁇ m, preferably 0.005 to 5 ⁇ m.
  • the average particle diameter of the fine particles can be measured by a laser diffraction / scattering method.
  • the content of the fine particles is preferably from 0.1 to 170 mass%, more preferably from 1 to 50 mass%, based on the solid content of the resin composition.
  • the active energy ray-curable resin composition preferably contains a leveling agent.
  • the leveling agent include siloxane compounds. Of these, compounds having a dialkylsiloxane skeleton such as polydimethylsiloxane and derivatives thereof are preferred.
  • the content of the leveling agent is preferably 0.01 to 10% by mass, and 0.05 to 5% by mass in the solid content of the resin composition. More preferred.
  • the active energy ray-curable resin composition may contain other components as long as the effects of the present invention are not hindered.
  • other components include an antistatic agent, a stabilizer, an antioxidant, a plasticizer, a lubricant, and a coloring pigment. What is necessary is just to determine these content suitably according to the objective.
  • the method for forming the hard coat layer is not particularly limited.
  • an active energy ray-curable resin composition and, if necessary, a coating liquid containing a solvent was prepared, and then this coating liquid was coated on a substrate by a known method, and obtained.
  • a hard coat layer composed of a cured product of the active energy ray-curable resin composition can be formed.
  • Solvents used for preparing the coating liquid include aromatic hydrocarbon solvents such as benzene and toluene; ester solvents such as ethyl acetate and butyl acetate; ketone solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; n-pentane And aliphatic hydrocarbon solvents such as n-hexane and n-heptane; and alicyclic hydrocarbon solvents such as cyclopentane and cyclohexane. These solvents can be used alone or in combination of two or more.
  • Examples of the coating method include a bar coating method, a spin coating method, a dipping method, a roll coating, a gravure coating, a knife coating, an air knife coating, a roll knife coating, a die coating, a screen printing method, a spray coating, and a gravure offset method.
  • drying method When the coating film is dried, conventionally known drying methods such as hot air drying, hot roll drying, and infrared irradiation can be adopted as the drying method.
  • the drying temperature is usually in the range of 60 to 130 ° C.
  • the drying time is usually several seconds to several tens of minutes.
  • the coating film can be cured by irradiating the coating film with active energy rays.
  • active energy rays include ultraviolet rays, electron beams, ⁇ rays, ⁇ rays, ⁇ rays, and the like. Among these, since it can generate
  • ultraviolet rays are used as the active energy rays, light sources such as an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc, a black light lamp, and a metal halide lamp can be used as the ultraviolet ray source. No particular restrictions on the quantity of ultraviolet light, it is usually 100mJ / cm 2 ⁇ 1,000mJ / cm 2.
  • the irradiation time is usually several seconds to several hours, and the irradiation temperature is usually room temperature to 100 ° C.
  • the thickness of the hard coat layer is usually 20 ⁇ m or less, preferably 0.5 to 20 ⁇ m, more preferably 1.0 to 10 ⁇ m.
  • the antistatic layer is not particularly limited, but is preferably composed of a composition for forming an antistatic layer containing a condensation polymer of a metal alkoxide and / or a partially hydrolyzed metal alkoxide. By providing this antistatic layer, antistatic properties are imparted to the gas barrier laminate.
  • the metal alkoxide is generally represented by M (OR) n, and the metal M is not particularly limited.
  • Alkali metals such as lithium, sodium and potassium; magnesium; alkaline earth metals such as calcium, strontium and barium; scandium and yttrium Periodic Table Group 3 Elements; Periodic Table Group 4 Elements such as Titanium, Zirconium and Hafnium; Periodic Table Group 5 Elements such as Vanadium, Niobium and Tantalum; Periodic Table Group 6 Elements such as Molybdenum and Tungsten; Periodic Table Group 8 elements such as zinc; Periodic Table Group 12 elements such as zinc; Periodic Table Group 13 elements such as boron, aluminum, gallium, and indium; Periodic Table Group 14 elements such as silicon, germanium, tin, and lead; Examples thereof include Group 15 elements of the periodic table such as phosphorus, antimony and bismuth; lanthanoids such as lanthanum and the like.
  • metal alkoxides may be used alone, or a plurality of kinds of metal alkoxides may be mixed and used.
  • R represents an alkyl group, and in the present invention, an alkyl group having 1 to 10 carbon atoms is preferable, and an alkyl group having 1 to 5 carbon atoms is more preferable.
  • n is an integer determined by the valence of the metal M, but is usually in the range of 1 to 5.
  • the composition for forming an antistatic layer preferably contains fine particles such as organic fine particles and inorganic fine particles.
  • fine particles such as organic fine particles and inorganic fine particles.
  • the method for forming the antistatic layer is not particularly limited, and various methods can be used. However, it is preferable to form a coating solution containing a metal alkoxide and / or a partial hydrolyzate of metal alkoxide.
  • a coating method for the coating solution a commonly used method can be appropriately used. For example, a gravure coating method, a bar coating method, a spray coating method, a spin coating method and the like can be mentioned.
  • a metal alkoxide and / or a partial hydrolyzate of metal alkoxide can be dissolved in a solvent, and an organic solvent can be particularly preferably used.
  • the organic solvent that can be used is not particularly limited, and for example, alcohol solvents such as ethanol and isopropanol, and ketone solvents such as methyl ethyl ketone can be used.
  • the metal alkoxide and / or metal alkoxide partial hydrolyzate is a condensation polymer formed by a hydrolysis reaction and a polycondensation reaction to form an antistatic layer. In order to accelerate the hydrolysis reaction, hydrochloric acid or nitric acid is used. An acid catalyst such as may be added.
  • heat treatment for the purpose of promoting drying and polycondensation reaction of the metal alkoxide and / or the partial hydrolyzate of metal alkoxide. It is preferable to do.
  • the heating conditions are not particularly limited as long as the above-described object can be achieved, but it is usually preferable that the heating time is in the range of 40 to 120 ° C. and the heating time is about 20 seconds to 5 minutes. From the standpoint of productivity and prevention of heat shrinkage wrinkles, the heating temperature is more preferably in the range of 60 to 110 ° C. and the heating time of about 30 seconds to 2 minutes.
  • the thickness of the antistatic layer is usually 20 ⁇ m or less, preferably 0.05 to 10 ⁇ m, more preferably 0.08 to 3 ⁇ m.
  • the arithmetic average roughness (Ra) of the surface of the functional layer is preferably 5 nm or more, more preferably 5 to 20 nm, still more preferably 5 to 10 nm.
  • the maximum cross-sectional height (Rt) of the roughness curve of the functional layer surface is preferably 100 nm or more, more preferably 100 to 1000 nm, still more preferably 100 to 800 nm.
  • the arithmetic average roughness (Ra) and the maximum cross-sectional height (Rt) of the roughness curve of the surface of the functional layer and the surface of other layers are used. Can be sought.
  • the smoothing layer which comprises the gas-barrier laminated body of this invention reduces the unevenness
  • cured material of an active energy ray curable resin composition is mentioned, for example.
  • the active energy ray-curable resin composition include those similar to the active energy ray-curable resin composition for forming the hard coat layer.
  • the smoothing layer preferably has better smoothness than the functional layer, it preferably does not contain a component that roughens the surface of the smoothing layer, such as the fine particles.
  • the smoothing layer can be formed by a method similar to the method for forming the hard coat layer.
  • the thickness of the smoothing layer is usually 20 ⁇ m or less, preferably 0.1 to 20 ⁇ m, more preferably 0.5 to 10 ⁇ m.
  • the arithmetic average roughness (Ra) of the smoothing layer surface is preferably 5 nm or less, more preferably 0.1 to 5 nm, and still more preferably 0.1 It is ⁇ 4 nm, particularly preferably 1 to 4 nm.
  • the maximum sectional height (Rt) of the roughness curve on the smoothing layer surface is preferably 100 nm or less, more preferably 1 to 100 nm, still more preferably 20 to 80 nm, and particularly preferably 30 to 65 nm.
  • the gas barrier layer which comprises the gas barrier laminated body of this invention is a layer which has the characteristic (gas barrier property) which suppresses permeation
  • the gas barrier layer for example, a layer obtained by subjecting a layer containing an inorganic vapor deposition film or a polymer (hereinafter sometimes referred to as “polymer layer”) to a modification treatment [in this case, the gas barrier layer is It does not mean only the region modified by ion implantation or the like, but means “a polymer layer including a modified region”. ] Etc. are mentioned.
  • the inorganic vapor deposition film examples include vapor deposition films of inorganic compounds and metals.
  • inorganic oxides such as silicon oxide, aluminum oxide, magnesium oxide, zinc oxide, indium oxide and tin oxide
  • inorganic nitrides such as silicon nitride, aluminum nitride and titanium nitride
  • inorganic carbides Inorganic sulfides
  • inorganic oxynitrides such as silicon oxynitride
  • Examples of the raw material for the metal vapor deposition film include aluminum, magnesium, zinc, and tin. These can be used alone or in combination of two or more. Among these, an inorganic vapor-deposited film using an inorganic oxide, inorganic nitride or metal as a raw material is preferable from the viewpoint of gas barrier properties, and further, an inorganic material using an inorganic oxide or inorganic nitride as a raw material from the viewpoint of transparency. A vapor deposition film is preferred.
  • a PVD (physical vapor deposition) method such as a vacuum vapor deposition method, a sputtering method, or an ion plating method, a thermal CVD (chemical vapor deposition) method, a plasma CVD method, a photo CVD method, etc.
  • the CVD method is mentioned.
  • the thickness of the inorganic vapor deposition film varies depending on the inorganic compound to be used, but is preferably in the range of 50 to 300 nm, more preferably 50 to 200 nm from the viewpoint of gas barrier properties and handling properties.
  • the polymer to be used is a silicon-containing polymer, polyimide, polyamide, polyamideimide, polyphenylene ether, polyether ketone, polyether ether ketone, polyolefin, polyester,
  • Examples include polycarbonate, polysulfone, polyethersulfone, polyphenylene sulfide, polyarylate, acrylic resin, cycloolefin polymer, and aromatic polymer. These polymers can be used alone or in combination of two or more.
  • a silicon-containing polymer is preferable as the polymer because a gas barrier layer having better gas barrier properties can be formed.
  • the silicon-containing polymer include polysilazane compounds, polycarbosilane compounds, polysilane compounds, and polyorganosiloxane compounds.
  • a polysilazane compound is preferable because a gas barrier layer having excellent gas barrier properties can be formed even if it is thin.
  • the polysilazane compound is a polymer having a repeating unit containing —Si—N— bond (silazane bond) in the molecule. Specifically, the formula (1)
  • the compound which has a repeating unit represented by these is preferable.
  • the number average molecular weight of the polysilazane compound to be used is not particularly limited, but is preferably 100 to 50,000.
  • n represents arbitrary natural numbers.
  • Rx, Ry, and Rz each independently represent a hydrogen atom, an unsubstituted or substituted alkyl group, an unsubstituted or substituted cycloalkyl group, an unsubstituted or substituted alkenyl group, unsubstituted or substituted Represents a non-hydrolyzable group such as an aryl group having a group or an alkylsilyl group;
  • alkyl group of the unsubstituted or substituted alkyl group examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a t-butyl group, Examples thereof include alkyl groups having 1 to 10 carbon atoms such as n-pentyl group, isopentyl group, neopentyl group, n-hexyl group, n-heptyl group and n-octyl group.
  • Examples of the unsubstituted or substituted cycloalkyl group include cycloalkyl groups having 3 to 10 carbon atoms such as a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cycloheptyl group.
  • alkenyl group of an unsubstituted or substituted alkenyl group examples include, for example, a vinyl group, 1-propenyl group, 2-propenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group and the like having 2 to 2 carbon atoms. 10 alkenyl groups are mentioned. *
  • substituents for the alkyl group, cycloalkyl group and alkenyl group include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom; hydroxyl group; thiol group; epoxy group; glycidoxy group; (meth) acryloyloxy group
  • halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom
  • hydroxyl group such as hydroxyl group; thiol group; epoxy group; glycidoxy group; (meth) acryloyloxy group
  • An unsubstituted or substituted aryl group such as a phenyl group, a 4-methylphenyl group, and a 4-chlorophenyl group;
  • aryl group of an unsubstituted or substituted aryl group examples include aryl groups having 6 to 10 carbon atoms such as a phenyl group, a 1-naphthyl group, and a 2-naphthyl group.
  • substituent of the aryl group examples include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom; alkyl groups having 1 to 6 carbon atoms such as methyl group and ethyl group; carbon numbers such as methoxy group and ethoxy group 1-6 alkoxy groups; nitro groups; cyano groups; hydroxyl groups; thiol groups; epoxy groups; glycidoxy groups; (meth) acryloyloxy groups; unsubstituted phenyl groups, 4-methylphenyl groups, 4-chlorophenyl groups, etc.
  • alkylsilyl group examples include trimethylsilyl group, triethylsilyl group, triisopropylsilyl group, tri-t-butylsilyl group, methyldiethylsilyl group, dimethylsilyl group, diethylsilyl group, methylsilyl group, and ethylsilyl group.
  • Rx, Ry, and Rz a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a phenyl group is preferable, and a hydrogen atom is particularly preferable.
  • Examples of the polysilazane compound having a repeating unit represented by the formula (1) include inorganic polysilazanes in which Rx, Ry, and Rz are all hydrogen atoms, and organic polysilazanes in which at least one of Rx, Ry, and Rz is not a hydrogen atom. It may be.
  • a modified polysilazane compound can also be used as the polysilazane compound.
  • Examples of the modified polysilazane include, for example, JP-A-62-195024, JP-A-2-84437, JP-A-63-81122, JP-A-1-138108, and JP-A-2-175726.
  • JP-A-5-238827, JP-A-5-238827, JP-A-6-122852, JP-A-6-306329, JP-A-6-299118, JP-A-9-31333 Examples thereof include those described in Kaihei 5-345826 and JP-A-4-63833.
  • the polysilazane compound perhydropolysilazane in which Rx, Ry, and Rz are all hydrogen atoms is preferable from the viewpoint of easy availability and the ability to form an ion-implanted layer having excellent gas barrier properties.
  • a polysilazane compound a commercially available product as a glass coating material or the like can be used as it is.
  • the polysilazane compounds can be used alone or in combination of two or more.
  • the polymer layer may contain other components as long as the object of the present invention is not impaired.
  • other components include a curing agent, an anti-aging agent, a light stabilizer, and a flame retardant.
  • the content of the polymer in the polymer layer is preferably 50% by mass or more and more preferably 70% by mass or more because a gas barrier layer having more excellent gas barrier properties can be obtained.
  • the thickness of the polymer layer is not particularly limited, but is preferably in the range of 50 to 300 nm, more preferably 50 to 200 nm.
  • a gas barrier laminate having a sufficient gas barrier property can be obtained even when the thickness of the polymer layer is nano-order.
  • the method for forming the polymer layer is not particularly limited.
  • a polymer layer forming solution containing at least one kind of polymer, optionally other components, a solvent, etc. is prepared, and then this polymer layer forming solution is applied by a known method to obtain A polymer layer can be formed by drying the obtained coating film.
  • Solvents used in the polymer layer forming solution include aromatic hydrocarbon solvents such as benzene and toluene; ester solvents such as ethyl acetate and butyl acetate; ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone; n- And aliphatic hydrocarbon solvents such as pentane, n-hexane, and n-heptane; and alicyclic hydrocarbon solvents such as cyclopentane and cyclohexane. These solvents can be used alone or in combination of two or more.
  • the coating methods for the polymer layer forming solution include bar coating, spin coating, dipping, roll coating, gravure coating, knife coating, air knife coating, roll knife coating, die coating, screen printing method, spray coating, and gravure. Examples include an offset method.
  • drying the formed coating film As a method for drying the formed coating film, conventionally known drying methods such as hot air drying, hot roll drying, and infrared irradiation can be employed.
  • the heating temperature is usually in the range of 60 to 130 ° C.
  • the heating time is usually several seconds to several tens of minutes.
  • the polymer layer modification treatment examples include ion implantation treatment, plasma treatment, ultraviolet irradiation treatment, and heat treatment.
  • the ion implantation treatment is a method of injecting ions into the polymer layer to modify the polymer layer.
  • the plasma treatment is a method for modifying the polymer layer by exposing the polymer layer to plasma.
  • plasma treatment can be performed according to the method described in Japanese Patent Application Laid-Open No. 2012-106421.
  • the ultraviolet irradiation treatment is a method for modifying the polymer layer by irradiating the polymer layer with ultraviolet rays.
  • the ultraviolet modification treatment can be performed according to the method described in JP2013-226757A.
  • the ion implantation treatment is preferable because the gas barrier layer can be efficiently modified to the inside without roughening the surface of the polymer layer and more excellent in gas barrier properties.
  • ions to be injected into the polymer layer ions of rare gases such as argon, helium, neon, krypton, and xenon; ions of fluorocarbon, hydrogen, nitrogen, oxygen, carbon dioxide, chlorine, fluorine, sulfur, etc .; methane, ethane, etc.
  • Ion of alkane gases such as ethylene and propylene
  • Ions of alkadiene gases such as pentadiene and butadiene
  • Ions of alkyne gases such as acetylene
  • Aromatic carbonization such as benzene and toluene
  • Examples include ions of hydrogen-based gases; ions of cycloalkane-based gases such as cyclopropane; ions of cycloalkene-based gases such as cyclopentene; ions of metals; ions of organosilicon compounds. These ions can be used alone or in combination of two or more.
  • ions of rare gases such as argon, helium, neon, krypton, and xenon are preferable because ions can be more easily implanted and a gas barrier layer having better gas barrier properties can be obtained.
  • the ion implantation amount can be appropriately determined according to the purpose of use of the gas barrier laminate (necessary gas barrier properties, transparency, etc.).
  • Examples of the method of implanting ions include a method of irradiating ions accelerated by an electric field (ion beam), a method of implanting ions in plasma, and the like.
  • the latter method of implanting plasma ions is preferable because the desired barrier layer can be easily obtained.
  • plasma is generated in an atmosphere containing a plasma generation gas such as a rare gas, and a negative high voltage pulse is applied to the polymer layer, whereby ions (positive ions) in the plasma are It can carry out by injecting into the surface part of a polymer layer.
  • a plasma generation gas such as a rare gas
  • the thickness of the region into which ions are implanted can be controlled by implantation conditions such as ion type, applied voltage, and processing time, and is determined according to the thickness of the polymer layer, the purpose of use of the laminate, etc. Usually, it is 10 to 300 nm.
  • the long gas barrier laminate of the present invention is formed by laminating the functional layer on one surface side of the substrate, and on the other surface side of the substrate.
  • the smoothing layer and the gas barrier layer are laminated in this order, and the coefficient of static friction between the surface of the functional layer opposite to the substrate side and the surface of the gas barrier layer opposite to the substrate side is 0. .35 to 0.80.
  • the coefficient of static friction between the surface of the functional layer opposite to the substrate side and the surface of the gas barrier layer opposite to the substrate side is 0.35 to 0.80, preferably 0.40 to 0.75.
  • the coefficient of static friction between the functional layer and the gas barrier layer is within the above range, when winding the long gas barrier laminate of the present invention into a roll or when unwinding from the roll, blocking, air biting, etc. Problems are less likely to occur.
  • the coefficient of static friction between the surface of the functional layer opposite to the substrate side and the surface of the smoothing layer opposite to the substrate side is preferably 0. .35 to 0.80, more preferably 0.40 to 0.75.
  • the coefficient of static friction between the functional layer and the smoothing layer is within the above range, the functional layer and the resin film with the smoothing layer, which is a production intermediate of the long gas barrier laminate of the present invention, are rolled. Problems such as blocking and air biting are less likely to occur when winding onto a roll or when unwinding from a roll.
  • the static friction coefficient of the functional layer, the smoothing layer, and the gas barrier layer can be measured according to JIS K7125.
  • Examples of the long gas barrier laminate of the present invention include those having a layer structure of functional layer / base material / smoothing layer / gas barrier layer.
  • the long gas barrier laminate of the present invention may have a layer other than the functional layer, the substrate, the smoothing layer, and the gas barrier layer.
  • Examples of layers other than the base material, the smoothing layer, and the gas barrier layer include a conductor layer, a shock absorbing layer, a pressure-sensitive adhesive layer, and a process sheet.
  • seat has a role which protects a laminated body, when a laminated body is preserve
  • the gas barrier laminate of the present invention can be produced by the method described later.
  • the thickness of the gas barrier laminate of the present invention is not particularly limited, but is preferably 5 to 100 ⁇ m, more preferably 10 to 50 ⁇ m, and still more preferably 20 to 40 ⁇ m.
  • the water vapor permeability of the gas barrier laminate of the present invention at a temperature of 40 ° C. and a relative humidity of 90% is preferably 0.1 g / (m 2 ⁇ day) or less, more preferably 0.05 g / (m 2 ⁇ day). Hereinafter, it is more preferably 0.03 g / (m 2 ⁇ day) or less. There is no particular lower limit, and the lower the better, the better, but it is usually 0.001 g / (m 2 ⁇ day) or more.
  • the water vapor transmission rate can be measured by the method described in the examples.
  • the gas barrier laminate of the present invention has excellent gas barrier properties, it is suitably used as a member for electronic devices.
  • the electronic device include a liquid crystal display, an organic EL display, an inorganic EL display, electronic paper, and a solar battery.
  • the production method of the present invention is a method for producing a long gas barrier laminate of the present invention, comprising the following steps (aI) to (a-III): A production method (a) having the following steps, or a production method (b) having the following steps (bI) to (b-III).
  • Step (aI) is a step of winding the obtained resin film with a smoothing layer into a roll after forming a smoothing layer on the resin film while conveying the resin film for a substrate in a certain direction. It is.
  • Examples of the substrate resin film to be used and the method of forming the smoothing layer include the same ones as described above.
  • a method for transporting the resin film and a method for winding the resin film with a smoothing layer after forming the smoothing layer a conventional method for producing a laminated film by a roll-to-roll method can be used.
  • step (a-II) the resin film is continuously fed out from the roll of the resin film with a smoothing layer obtained in step (aI) and conveyed in a fixed direction, while the resin film with a smoothing layer is conveyed.
  • the obtained functional layer and the resin film with a smoothing layer are wound into a roll.
  • the coefficient of static friction between the surface of the smoothing layer opposite to the substrate side and the surface of the functional layer opposite to the substrate side is preferably 0.35 to 0. .80, more preferably 0.40 to 0.75.
  • the functional layer and the resin film with the smoothing layer which is a production intermediate of the long gas barrier laminate, are wound into a roll. At this time, when unwinding from the roll, problems such as blocking and air biting are less likely to occur.
  • Examples of the method for forming the functional layer include the same ones as described above.
  • a method for feeding and transporting a resin film with a smoothing layer from a roll, and a method for winding up the functional layer and the resin film with a smoothing layer after the formation of the functional layer a conventional method for producing a laminated film by a roll-to-roll method Can be used.
  • step (a-III) the functional film and smoothing layer are continuously fed out from the roll of the functional layer and resin film with a smoothing layer obtained in step (a-II) and conveyed in a certain direction.
  • a gas barrier layer having a coefficient of static friction with the functional layer of 0.35 to 0.80 on the surface of the smoothing layer of the resin film with a functionalized layer and then winding the obtained gas barrier laminate in a roll shape. is there.
  • the gas barrier layer provided on the smoothing layer is usually excellent in smoothness. Therefore, the gas barrier laminate having such a gas barrier layer also tends to have problems such as blocking and air biting when it is wound up in a roll or when it is unwound from the roll. In the present invention, these problems can be solved by controlling the friction coefficient between the functional layer and the gas barrier layer.
  • Examples of the method for forming the gas barrier layer include the same methods as described above.
  • the conventional method for producing a laminated film by a roll-to-roll method is used as a method of feeding and transporting a functional layer and a resin film with a smoothing layer from a roll, and a method of winding a gas barrier laminate after forming a gas barrier layer. can do.
  • Step (bI) is a step of winding the obtained resin film with a functional layer into a roll after forming the functional layer on the resin film while conveying the resin film for a substrate in a certain direction.
  • Step (b-1) is the same as step (a-1) except that a functional layer is formed instead of the smoothing layer.
  • step (b-II) the resin film of the resin film with a functional layer is continuously fed out from the roll of the resin film with a functional layer obtained in the step (bI) and conveyed in a certain direction.
  • Step (b-II) is the same as step (a-II) except that a smoothing layer is formed instead of the functional layer.
  • the coefficient of static friction between the surface of the functional layer opposite to the substrate side and the surface of the smoothing layer opposite to the substrate side is preferably 0.35 to 0. .80, more preferably 0.40 to 0.75.
  • the functional layer and the resin film with the smoothing layer which is a production intermediate of the long gas barrier laminate, are wound into a roll. At this time, when unwinding from the roll, problems such as blocking and air biting are less likely to occur.
  • step (b-III) the resin film is continuously unwound from the roll-shaped functional film and the smoothing layer-attached resin film obtained in step (b-II), and conveyed in a fixed direction.
  • a step of forming a gas barrier layer having a coefficient of static friction with a functional layer of 0.35 to 0.80 on the smoothing layer surface of the resin film with a smoothing layer, and then winding the obtained gas barrier laminate in a roll shape It is.
  • Step (b-III) is the same as step (a-III).
  • the long gas barrier laminate of the present invention can be efficiently produced.
  • Resin film (1) is fed out from a roll of polyethylene terephthalate film (manufactured by Teijin DuPont, trade name: PET25 Tetron HPE, thickness: 25 ⁇ m, referred to as “resin film (1)” hereinafter the same shall apply). ), The smoothing layer forming solution obtained in Production Example 1 was applied on the resin film (1) by the bar coating method, and the obtained coating film was heated and dried at 70 ° C. for 1 minute.
  • UV light irradiation is performed using a UV light irradiation line (high pressure mercury lamp, line speed, 20 m / min, integrated light quantity 100 mJ / cm 2 , peak intensity 1.466 W, number of passes twice), and a 1 ⁇ m thick smoothing layer is formed And the obtained resin film with a smoothing layer was wound up in roll shape.
  • a UV light irradiation line high pressure mercury lamp, line speed, 20 m / min, integrated light quantity 100 mJ / cm 2 , peak intensity 1.466 W, number of passes twice
  • Photopolymerization initiator-containing urethane hard coating agent (Arakawa Chemical Industries, trade name: Beamset 575CB, solid content 100%) 100 parts, spherical silicone bead fine particles (Momentive Performance Materials Japan, (Product name: Tospearl 130, average particle size 3.0 ⁇ m, solid content 100%) 5 parts, ethyl cellosolve 61.6 parts and isobutanol 61.6 parts are uniformly mixed to form a hard coat layer with a solid content of 46%.
  • Solution (1) was prepared.
  • the resin film is unwound from the roll of the resin film with a smoothing layer obtained in Production Example 2, and the hard coat layer forming solution (1) is applied to the surface of the resin film while the resin film is conveyed by the bar coating method.
  • the coating film obtained was heated and dried at 70 ° C.
  • the resin film with a smoothing layer (1) was wound up in a roll shape.
  • Silica coating liquid (product of Colcoat, product name: Colcoat N103-X, solid content 2%) 100 parts of tetraethoxylane hydrolysis / dehydration condensation compound, spherical silicone beads fine particles (Momentive Performance Materials 0.1 part by Japan Co., Ltd., trade name: Tospearl 130, average particle size 3.0 ⁇ m, solid content 100%) was uniformly mixed to prepare an antistatic layer forming solution (2) having a solid content of 2%. Next, the resin film is unwound from the roll of the resin film with a smoothing layer obtained in Production Example 2, and the antistatic layer forming solution (2) is applied to the surface of the resin film while the resin film is conveyed by the bar coating method.
  • the coating film obtained was dried by heating at 70 ° C. for 1 minute to form an antistatic layer A having a thickness of 100 nm, and the resulting antistatic layer A / resin film / smoothing layer structure
  • the antistatic layer A and the smoothing layer-attached resin film (2) were wound into a roll.
  • the resin film is unwound from the roll of the resin film with a smoothing layer obtained in Production Example 2, and while the resin film is conveyed, the antiglare hard coat layer forming solution (3) is applied to the resin film surface. After coating by the bar coating method and heating and drying the obtained coating film at 70 ° C.
  • UV light irradiation was performed using a UV light irradiation line (high pressure mercury lamp, line speed, 20 m / min, integrated light quantity 100 mJ / cm 2 , peak intensity 1.466 W, number of passes 2 times), anti-glare hard coat layer A having a thickness of 2 ⁇ m was formed, and the resulting anti-glare hard coat layer A / resin film / smoothing layer
  • the antiglare layer and the resin film with a smoothing layer (3) having the structure were wound up in a roll shape.
  • an antistatic layer B was prepared in the same manner as in Example 4 except that no spherical silicone bead fine particles were added, and the antistatic layer B / resin film / smoothing layer had a layer structure. Layer B and the resin film with smoothing layer (5) were wound up in a roll.
  • Example 1 The resin film (1) is unwound from the roll of the hard coat layer A and the resin film with a smoothing layer (1) obtained in Production Example 3, and the smoothing layer surface is conveyed while the resin film (1) is conveyed.
  • Perhydropolysilazane manufactured by AZ Electronic Materials, trade name: AZNL110A-20
  • argon (Ar) is ion-implanted on the surface of the perhydropolysilazane layer using a plasma ion implantation apparatus to form a gas barrier layer, and hard coat layer A / base material (resin film) / A long gas barrier laminate 1 having a layer structure of smoothing layer / gas barrier layer was obtained.
  • Table 1 shows the evaluation results of the surface roughness, static friction coefficient, winding property, pencil hardness, surface resistivity, and antiglare property of each layer of the long gas barrier laminate 1.
  • the plasma ion implantation apparatus and plasma ion implantation conditions used for forming the gas barrier layer are as follows.
  • RF power supply Model number “RF” 56000
  • JEOL high voltage pulse power supply “PV-3-HSHV-0835”, Kurita Manufacturing Co., Ltd.
  • Plasma generated gas Ar ⁇ Gas flow rate: 100sccm ⁇ Duty ratio: 0.5% ⁇ Repetition frequency: 1000Hz ⁇ Applied voltage: -10kV ⁇ RF power supply: frequency 13.56 MHz, applied power 1000 W -Chamber internal pressure: 0.2 Pa ⁇ Pulse width: 5 ⁇ sec ⁇ Processing time (ion implantation time): 5 minutes ⁇ Conveying speed: 0.2 m / min
  • Example 2 In Example 1, in place of the hard coat layer A and the resin film with a smoothing layer (1), except that the antistatic layer A and the resin film with a smoothing layer (2) obtained in Production Example 4 were used, In the same manner as in Example 1, a long gas barrier laminate 2 was obtained. Table 1 shows the surface roughness and static friction coefficient of each layer of the long gas barrier laminate 2.
  • Example 3 In Example 1, except that the antiglare layer and the resin film with a smoothing layer (3) obtained in Production Example 5 were used in place of the hard coat layer A and the resin film with a smoothing layer (1). In the same manner as in Example 1, a long gas barrier laminate 3 was obtained. Table 1 shows the surface roughness and static friction coefficient of each layer of the long gas barrier laminate 3.
  • Example 1 In Example 1, instead of using the hard coat layer A and the resin film with a smoothing layer (1), the hard coat layer B and the resin film with a smoothing layer (4) obtained in Production Example 6 were used. In the same manner as in Example 1, a long gas barrier laminate 4 was obtained. Table 1 shows the surface roughness and static friction coefficient of each layer of the long gas barrier laminate 4.
  • Example 2 In Example 1, instead of using the hard coat layer A and the resin film with a smoothing layer (1), the antistatic layer B and the resin film with a smoothing layer (5) obtained in Production Example 7 were used, In the same manner as in Example 1, a long gas barrier laminate 5 was obtained. Table 1 shows the surface roughness and static friction coefficient of each layer of the long gas barrier laminate 5.
  • Table 1 shows the following.
  • the gas barrier laminates of Examples 1 to 3 are excellent in winding property because no blocking or air biting occurs during winding.
  • the gas barrier laminates of Comparative Examples 1 and 2 are inferior in winding property because blocking and air biting occur when winding.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Laminated Bodies (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

 本発明は、基材の一方の側に、機能層が積層されてなり、基材のもう一方の側に、平滑化層及びガスバリア層がこの順に積層されてなる、長尺のガスバリア性積層体であって、基材側とは逆側の機能層の面と、基材側とは逆側の平滑化層の面との静摩擦係数が0.35~0.80であることを特徴とする、長尺のガスバリア性積層体とその製造方法である。本発明によれば、ロール状に巻き取る際やロールから繰り出す際の作業性に優れる長尺のガスバリア性積層体とその製造方法が提供される。

Description

長尺のガスバリア性積層体およびその製造方法
 本発明は、ロール状に巻き取る際やロールから繰り出す際の作業性に優れる長尺のガスバリア性積層体と、その製造方法に関する。
 近年、液晶ディスプレイやエレクトロルミネッセンス(EL)ディスプレイ等のディスプレイには、薄型化、軽量化、フレキシブル化等を実現するために、ガラス板に代えて、透明プラスチックフィルム上にガスバリア層が積層されてなる、いわゆるガスバリアフィルムが用いられている。
 ガスバリアフィルムにおいては、基材表面の凹凸を埋め、層間密着性を向上させるために、基材上に平滑化層を設けることが提案されている。
 例えば、特許文献1には、透明プラスチック基材上に、少なくとも一層の表面平滑層と、少なくとも一層の無機バリア層とが積層されてなり、表面平滑層等の算術平均粗さを規定した透明ガスバリア性フィルムが記載されている。
 ガスバリアフィルムを工業的に生産する際は、通常、ロールtoロール方式が採用される。
 例えば、特許文献2には、両面に平滑層(表面平滑化層)を有し、両側の平滑層表面の硬度を規定した樹脂フィルムをロール状に巻き取った後、該樹脂フィルムを繰り出しながらガスバリア層を設けることを特徴とするガスバリア性フィルムの製造方法が記載されている。
特開2003-154596号公報 国際公開2010/026852号
 上記のように、ガスバリアフィルムに平滑化層を設けることで、層間密着性が向上し、その結果、ガスバリアフィルムのガスバリア性等が向上することが知られている。
 しかしながら、このようなガスバリアフィルムをロールtoロール方式により製造する場合、ロール状に巻き取る際やロールから繰り出す際に、ブロッキング(フィルム同士が貼り付く)やエア噛み(しわが拠る)等の問題が生じることがあった。
 本発明は、上記実情に鑑みてなされたものであり、ロール状に巻き取る際やロールから繰り出す際の作業性に優れる長尺のガスバリア性積層体と、その製造方法を提供することを目的とする。
 本発明者らは、上記課題を解決すべく鋭意検討した結果、基材の一方の面側に、機能層が積層されてなり、基材のもう一方の面側に、平滑化層及びガスバリア層がこの順に積層されてなる、長尺のガスバリア性積層体であって、機能層の、基材側とは反対側の面と、ガスバリア層の、基材側とは反対側の面との静摩擦係数が、特定の範囲内にあるガスバリア性積層体は、ロール状に巻き取る際やロールから繰り出す際の作業性に優れるものであることを見出し、本発明を完成するに至った。
 かくして本発明によれば、下記(1)~(7)のガスバリア性積層体、及び(8)~(9)のガスバリア性積層体の製造方法が提供される。
(1)基材の一方の面側に、機能層が積層されてなり、基材のもう一方の面側に、平滑化層及びガスバリア層がこの順に積層されてなる、長尺のガスバリア性積層体であって、機能層の、基材側とは反対側の面と、ガスバリア層の、基材側とは反対側の面との静摩擦係数が、0.35~0.80であることを特徴とする、長尺のガスバリア性積層体。
(2)機能層の、基材側とは反対側の面の、算術平均粗さ(Ra)が5nm以上、粗さ曲線の最大断面高さ(Rt)が100nm以上であり、ガスバリア層の、基材側とは反対側の面の、算術平均粗さ(Ra)が5nm以下、粗さ曲線の最大断面高さ(Rt)が100nm以下である、(1)に記載の長尺のガスバリア性積層体。
(3)前記機能層の、基材側とは反対側の面と、平滑化層の、基材側とは反対側の面との静摩擦係数が0.35~0.80である、(1)に記載の長尺のガスバリア性積層体。
(4)前記平滑化層の、基材側とは反対側の面の、算術平均粗さ(Ra)が5nm以下、粗さ曲線の最大断面高さ(Rt)が100nm以下である、(1)に記載の長尺のガスバリア性積層体。
(5)前記機能層が、活性エネルギー線硬化型樹脂組成物の硬化物からなるハードコート層である、(1)に記載の長尺のガスバリア性積層体。
(6)前記平滑化層が、活性エネルギー線硬化型樹脂組成物の硬化物からなるものである、(1)に記載の長尺のガスバリア性積層体。
(7)前記ガスバリア層が、ポリシラザン系化合物を含む層を改質処理して得られる層である、(1)に記載の長尺のガスバリア性積層体。
(8)前記(1)に記載の長尺のガスバリア性積層体の製造方法であって、基材用樹脂フィルムを一定方向に搬送しながら、前記樹脂フィルム上に平滑化層を形成した後、得られた平滑化層付樹脂フィルムをロール状に巻き取るステップ(a-I)、ステップ(a-I)で得られた平滑化層付樹脂フィルムのロールから前記樹脂フィルムを連続的に繰り出し、一定方向に搬送しながら、平滑化層付樹脂フィルムの樹脂フィルム表面に、機能層を形成した後、得られた機能層及び平滑化層付樹脂フィルムをロール状に巻き取るステップ(a-II)、及び、ステップ(a-II)で得られた機能層及び平滑化層付樹脂フィルムのロールから前記樹脂フィルムを連続的に繰り出し、一定方向に搬送しながら、機能層及び平滑化層付樹脂フィルムの平滑化層表面に、機能層との静摩擦係数が0.35~0.80であるガスバリア層を形成した後、得られたガスバリア性積層体をロール状に巻き取るステップ(a-III)、を有すること、を特徴とする長尺のガスバリア性積層体の製造方法。
(9)前記(1)に記載の長尺のガスバリア性積層体の製造方法であって、基材用樹脂フィルムを一定方向に搬送しながら、前記樹脂フィルム上に機能層を形成した後、得られた機能層付樹脂フィルムをロール状に巻き取るステップ(b-I)、ステップ(b-I)で得られた機能層付樹脂フィルムのロールから前記樹脂フィルムを連続的に繰り出し、一定方向に搬送しながら、機能層付樹脂フィルムの樹脂フィルム表面に、平滑化層を形成した後、得られた機能層及び平滑化層付樹脂フィルムをロール状に巻き取るステップ(b-II)、及び、ステップ(b-II)で得られたロール状の機能層及び平滑化層付樹脂フィルムから前記樹脂フィルムを連続的に繰り出し、一定方向に搬送しながら、機能層及び平滑化層付樹脂フィルムの平滑化層表面に、機能層との静摩擦係数が0.35~0.80であるガスバリア層を形成した後、得られたガスバリア性積層体をロール状に巻き取るステップ(b-III)、を有すること、を特徴とする長尺のガスバリア性積層体の製造方法。
 本発明によれば、ロール状に巻き取る際やロールから繰り出す際の作業性に優れる長尺のガスバリア性積層体とその製造方法が提供される。
 以下、本発明を、1)長尺のガスバリア性積層体、及び、2)長尺のガスバリア性積層体の製造方法、に項分けして詳細に説明する。
1)長尺のガスバリア性積層体
 本発明の長尺のガスバリア性積層体は、基材の一方の面側に、機能層が積層されてなり、基材のもう一方の面側に、平滑化層及びガスバリア層がこの順に積層されてなる、長尺のガスバリア性積層体であって、機能層の、基材側とは反対側の面と、ガスバリア層の、基材側とは反対側の面との静摩擦係数が0.35~0.80であることを特徴とする。
(1)基材
 本発明のガスバリア性積層体を構成する基材は、機能層、平滑化層及びガスバリア層を担持でき、長尺のシートまたはフィルム状のものであれば、特に限定されない。
 本発明において、「長尺」とは、その形状が、幅方向に比べて、長手方向が長い(好ましくは10倍以上の長さ)帯状であることを意味する。また、以下の説明において、「長尺の」を省略することがある。
 基材の長さ(長手方向の長さ)は、特に限定されないが、通常、400~2000mである。基材の幅(幅方向の長さ)は、特に限定されないが、通常、450~1300mm、好ましくは530~1280mmである。基材の厚みは、特に限定されないが、通常、1~60μm、好ましくは5~50μm、より好ましくは10~30μmである。
 基材としては、樹脂フィルムが挙げられる。樹脂フィルムの樹脂成分としては、ポリイミド、ポリアミド、ポリアミドイミド、ポリフェニレンエーテル、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリオレフィン、ポリエステル、ポリカーボネート、ポリスルフォン、ポリエーテルスルフォン、ポリフェニレンスルフィド、アクリル系樹脂、シクロオレフィン系ポリマー、芳香族系重合体等が挙げられる。
 これらの樹脂成分は、一種単独で、あるいは二種以上を組み合わせて用いることができる。
 これらの中でも、透明性に優れ、汎用性があることから、ポリエステル、ポリアミド、ポリスルフォン、ポリエーテルスルフォン、ポリフェニレンスルフィド又はシクロオレフィン系ポリマーがより好ましく、ポリエステル又はシクロオレフィン系ポリマーがさらに好ましい。
 ポリエステルとしては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリアリレート等が挙げられる。
 シクロオレフィン系ポリマーとしては、ノルボルネン系重合体、単環の環状オレフィン系重合体、環状共役ジエン系重合体、ビニル脂環式炭化水素重合体、及びこれらの水素化物が挙げられる。
 本発明の効果を妨げない範囲において、樹脂フィルムは各種添加剤を含有していてもよい。添加剤としては、紫外線吸収剤、帯電防止剤、安定剤、酸化防止剤、可塑剤、滑剤、充填剤、着色顔料等が挙げられる。これらの添加剤の含有量は、目的に合わせて適宜決定すればよい。
 樹脂フィルムは、所定の成分を含む樹脂組成物を調製し、これをフィルム状に成形することにより得ることができる。成形方法は特に限定されず、キャスト法や溶融押出法等の公知の方法を利用することができる。
(2)機能層
 本発明のガスバリア性積層体を構成する機能層は、例えば、ハードコート層、防眩性ハードコート層および帯電防止層等が挙げられ、それぞれ表面保護、防眩および表面保護、帯電防止および表面保護の機能を有する。また、機能層は、紫外線吸収層、赤外線吸収層、プライマー層等であってもよい。
 上記ハードコート層の硬度は、鉛筆硬度でH以上であることが好ましい。鉛筆硬度でH以上であれば、十分な耐スクラッチ性を備えることができる。
 また、上記帯電防止層の表面抵抗率は、1×10~1×1011Ω/□の範囲内の値とすることが好ましい。
また、機能層を設けることにより、機能層と平滑化層との間や、機能層とガスバリア層との間の摩擦が適度なものになるため、得られるガスバリア性積層体は、ロール状に巻き取る際や、ロールから繰り出す際の作業性に優れる。
 ハードコート層としては、例えば、活性エネルギー線硬化型樹脂組成物の硬化物からなる層が挙げられる。
 活性エネルギー線硬化型樹脂組成物は、重合性化合物を含有し、活性エネルギー線の照射により硬化し得る組成物である。
 重合性化合物としては、重合性プレポリマーや重合性モノマーが挙げられる。
 重合性プレポリマーとしては、両末端に水酸基を有するポリエステルオリゴマーと、(メタ)アクリル酸との反応により得られるポリエステルアクリレート系プレポリマー、低分子量のビスフェノール型エポキシ樹脂やノボラック型エポキシ樹脂と、(メタ)アクリル酸との反応により得られるエポキシアクリレート系プレポリマー、ポリウレタンオリゴマーと、(メタ)アクリル酸との反応により得られるウレタンアクリレート系プレポリマー、ポリエーテルポリオールと、(メタ)アクリル酸との反応により得られるポリオールアクリレート系プレポリマー等が挙げられる。
 重合性モノマーとしては、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、カプロラクトン変性ジシクロペンテニルジ(メタ)アクリレート、エチレンオキシド変性リン酸ジ(メタ)アクリレート、アリル化シクロヘキシルジ(メタ)アクリレート、イソシアヌレートジ(メタ)アクリレート等の2官能(メタ)アクリレート;トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、プロピオン酸変性ジペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、プロピレンオキシド変性トリメチロールプロパントリ(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレート等の3官能(メタ)アクリレート;プロピオン酸変性ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート等の4官能以上の(メタ)アクリレート;エチレングリコールジビニルエーテル、ペンタエリスリトールジビニルエーテル、1,6-ヘキサンジオールジビニルエーテル、トリメチロールプロパンジビニルエーテル、エチレンオキサイド変性ヒドロキノンジビニルエーテル、エチレンオキサイド変性ビスフェノールAジビニルエーテル、ペンタエリスリトールトリビニルエーテル、ジペンタエリスリトールヘキサビニルエーテル、ジトリメチロールプロパンポリビニルエーテル等のビニル化合物:等が挙げられるが、必ずしもこれらに限定されるものではない。
 これらの重合性化合物は一種単独で、あるいは二種以上を組み合わせて用いることができる。
 ここで、(メタ)アクリロイル基なる表記は、アクリロイル基及びメタクリロイル基の両方を含む意味である。
 また、前記活性エネルギー線硬化性樹脂組成物中に、それ自身は反応硬化性を有しないような高分子樹脂成分、例えばアクリル樹脂を含ませてもよい。高分子樹脂成分の添加により該組成物の粘度を調整することができる。
 活性エネルギー線としては、紫外線、電子線、α線、β線、γ線等が挙げられる。これらの中でも、比較的簡便な装置を用いて発生させることができることから、活性エネルギー線としては、紫外線が好ましい。
 活性エネルギー線として紫外線を用いる場合、活性エネルギー線硬化型樹脂組成物(すなわち、紫外線硬化型樹脂組成物)は、光重合開始剤を含有することが好ましい。
 光重合開始剤は、紫外線の照射により重合反応を開始させるものであれば、特に限定されない。光重合開始剤としては、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾイン-n-ブチルエーテル、ベンゾインイソブチルエーテル等のベンゾイン系重合開始剤;アセトフェノン、4’-ジメチルアミノアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノ-プロパン-1-オン、2-ヒロドキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オン等のアセトフェノン系重合開始剤;ベンゾフェノン、4-フェニルベンゾフェノン、4,4’-ジエチルアミノベンゾフェノン、4,4’-ジクロロベンゾフェノン等のベンゾフェノン系重合開始剤;2-メチルアントラキノン、2-エチルアントラキノン、2-t-ブチルアントラキノン、2-アミノアントラキノン等のアントラキノン系重合開始剤;2-メチルチオキサントン、2-エチルチオキサントン、2-クロロチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン等のチオキサントン系重合開始剤;等が挙げられる。
 光重合開始剤の含有量は、特に限定されないが、通常、前記重合性化合物に対して、0.2~30質量%、好ましくは0.5~20質量%である。
 活性エネルギー線硬化型樹脂組成物は、有機微粒子、無機微粒子等の微粒子を含有するものが好ましい。微粒子を含有する活性エネルギー線硬化型樹脂組成物を用いることで、ハードコート層の表面粗さおよび防眩性を効率よく制御することができる。
 有機微粒子としては、ポリスチレン系樹脂、スチレン-アクリル系共重合体樹脂、アクリル系樹脂、アミノ系樹脂、ジビニルベンゼン系樹脂、シリコーン系樹脂、ウレタン系樹脂、メラミン系樹脂、尿素樹脂、フェノール系樹脂、ベンゾグアナミン系樹脂、キシレン系樹脂、ポリカーボネート系樹脂、ポリエチレン系樹脂、ポリ塩化ビニル系樹脂などからなる微粒子が挙げられる。これらの中でも、シリコーン樹脂からなるシリコーン微粒子が好ましい。
 無機微粒子としては、シリカ粒子、金属酸化物粒子、アルキルシリケート粒子等が挙げられる。
 シリカ粒子としては、コロイダルシリカ、中空シリカ等が挙げられる。
 金属酸化物粒子としては、酸化チタン、酸化亜鉛、酸化ジルコニウム、酸化タンタル、酸化インジウム、酸化ハフニウム、酸化錫、酸化ニオブ等の粒子が挙げられる。
 アルキルシリケート粒子としては、式:R-O〔-{Si(OR}-O-〕-R(式中、R及びRは炭素数1~10のアルキル基を表し、nは1以上の整数を表す。)で示されるアルキルシリケートの粒子が挙げられる。
 これらの中でも、硬化性成分との相溶性に優れ、かつ、光学調整層の屈折率を効率よく制御し得ることから、シリカ粒子又はアルキルシリケート粒子が好ましい。
 これらの微粒子は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
 微粒子の形状は、特に制限なく、例えば、無定形状、真球状などの種々の形状の微粒子を用いることができる。
 微粒子の平均粒径は、通常、0.001~10μm、好ましくは0.005~5μmである。微粒子の平均粒径は、レーザー回折/散乱法により測定することができる。
 活性エネルギー線硬化型樹脂組成物が微粒子を含有する場合、微粒子の含有量は、前記樹脂組成物の固形分中、0.1~170質量%が好ましく、1~50質量%がより好ましい。
 活性エネルギー線硬化型樹脂組成物は、レベリング剤を含有するものが好ましい。レベリング剤を含有する活性エネルギー線硬化型樹脂組成物を用いることで、ハードコート層の表面粗さを効率よく制御することができる。
 レベリング剤としては、シロキサン系化合物が挙げられる。なかでも、ポリジメチルシロキサンおよびその誘導体等のジアルキルシロキサン骨格を有する化合物が好ましい。
 活性エネルギー線硬化型樹脂組成物がレベリング剤を含有する場合、レベリング剤の含有量は、前記樹脂組成物の固形分中、0.01~10質量%が好ましく、0.05~5質量%がより好ましい。
 活性エネルギー線硬化型樹脂組成物は、本発明の効果を妨げない範囲で、その他の成分を含有してもよい。
 その他の成分としては、帯電防止剤、安定剤、酸化防止剤、可塑剤、滑剤、着色顔料等が挙げられる。これらの含有量は、目的に合わせて適宜決定すればよい。
 ハードコート層を形成する方法は特に限定されない。例えば、活性エネルギー線硬化型樹脂組成物、及び必要に応じて溶媒を含有する塗工液を調製し、次いで、基材上に、この塗工液を公知の方法により塗工し、得られた塗膜を硬化させることにより、活性エネルギー線硬化型樹脂組成物の硬化物からなるハードコート層を形成することができる。また、必要に応じて、塗膜を硬化させる前に、乾燥処理を施してもよい。
 塗工液の調製に用いる溶媒としては、ベンゼン、トルエンなどの芳香族炭化水素系溶媒;酢酸エチル、酢酸ブチルなどのエステル系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン系溶媒;n-ペンタン、n-ヘキサン、n-ヘプタンなどの脂肪族炭化水素系溶媒;シクロペンタン、シクロヘキサンなどの脂環式炭化水素系溶媒;等が挙げられる。
 これらの溶媒は1種単独で、あるいは2種以上を組み合わせて用いることができる。
 塗工方法としては、バーコート法、スピンコート法、ディッピング法、ロールコート、グラビアコート、ナイフコート、エアナイフコート、ロールナイフコート、ダイコート、スクリーン印刷法、スプレーコート、グラビアオフセット法等が挙げられる。
 塗膜を乾燥させる場合、その乾燥方法としては、熱風乾燥、熱ロール乾燥、赤外線照射等、従来公知の乾燥方法を採用できる。乾燥温度は、通常60~130℃の範囲である。乾燥時間は、通常数秒から数十分である。
 塗膜の硬化は、塗膜に活性エネルギー線を照射することにより行うことができる。
 活性エネルギー線としては、紫外線、電子線、α線、β線、γ線等が挙げられる。これらの中でも、比較的簡便な装置を用いて発生させることができることから、活性エネルギー線としては、電子線、紫外線が好ましく、紫外線がより好ましい。
 活性エネルギー線として紫外線を用いる場合、紫外線源としては、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、ブラックライトランプ、メタルハライドランプ等の光源を用いることができる。紫外線の光量には特に制限はないが、通常100mJ/cm~1,000mJ/cmである。照射時間は、通常数秒~数時間であり、照射温度は、通常室温~100℃である。
 ハードコート層の厚みは、通常、20μm以下、好ましくは0.5~20μm、より好ましくは1.0~10μmである。
 帯電防止層は、特に限定されないが、金属アルコキシド及び/又は金属アルコキシドの部分加水分解物の縮合重合体を含む帯電防止層形成用組成物からなるものであることが好ましい。この帯電防止層を設けることにより、ガスバリア性積層体に帯電防止性が付与される。
 金属アルコキシドは一般にM(OR)nで表され、金属Mとしては特に限定されず、リチウム、ナトリウム、カリウム等のアルカリ金属;マグネシウム;カルシウム、ストロンチウム、バリウム等のアルカリ土類金属、スカンジウム、イットリウム等の周期表第3族元素;チタン、ジルコニウム、ハフニウム等の周期表第4族元素;バナジウム、ニオブ、タンタル等の周期表第5族元素;モリブデン、タングステン等の周期表第6族元素;鉄等の周期表第8族元素;亜鉛等の周期表第12族元素;ホウ素、アルミニウム、ガリウム、インジウム等の周期表第13族元素;ケイ素、ゲルマニウム、スズ、鉛等の周期表第14族元素;リン、アンチモン、ビスマス等の周期表第15族元素;ランタン等のランタノイド等が挙げられる。これらのうち帯電防止性が高く、平滑化層との接着性が高いとの観点からケイ素が最も好ましい。すなわち、テトラアルコキシシランが最も好ましい。上記金属アルコキシドは単独で用いてもよく、また複数種の金属アルコキシドを混合して用いてもよい。
 また、Rはアルキル基を示し、本発明では炭素数1~10のアルキル基が好ましく、炭素数1~5のアルキル基がさらに好ましい。ひとつの金属アルコキシドに複数のアルキル基が存在する場合には、それらは同一でも異なっていてもよい。nは金属Mの価数によって決定される整数であるが、通常1~5の範囲である。
 これらの金属アルコキシドはあらかじめ部分的に加水分解されているものでもよく、また金属アルコキシドと部分的に加水分解されている金属アルコキシドが混合されていてもよい。
 帯電防止層形成用組成物は、有機微粒子、無機微粒子等の微粒子を含有するものが好ましい。微粒子を含有する帯電防止層形成用組成物を用いることで、帯電防止層の表面粗さを効率よく制御することができる。このような微粒子としては、ハードコート層の説明で記載したものと同様のものが使用できる。
 帯電防止層の形成方法は特に限定されず、種々の方法が用いられるが、金属アルコキシド及び/又は金属アルコキシドの部分加水分解物を含む塗工液を塗工して形成することが好ましい。
 また塗工液の塗工方法としては、通常慣用される方法を適宜用いることができる。例えば、グラビアコート法、バーコート法、スプレーコート法、スピンコート法などが挙げられる。なお、塗工時には金属アルコキシド及び/又は金属アルコキシドの部分加水分解物を溶剤に溶解させて塗工することができ、特に有機系の溶剤を好適に用いることができる。使用し得る有機系の溶剤としては特に限定されず、例えばエタノール、イソプロパノール等のアルコール溶剤、メチルエチルケトン等のケトン溶剤を用いることができる。
 上記金属アルコキシド及び/又は金属アルコキシドの部分加水分解物は、加水分解反応と重縮合反応によって縮合重合体をなし、帯電防止層を形成するものであり、加水分解反応を促進させるために塩酸や硝酸等の酸触媒を加えてもよい。
 また、金属アルコキシド及び/又は金属アルコキシドの部分加水分解物を上記方法で塗工した後、乾燥や金属アルコキシド及び/又は金属アルコキシドの部分加水分解物の重縮合反応を促進することを目的に加熱処理することが好ましい。加熱条件としては上記目的を達成し得る範囲内で、特に限定されないが、通常40~120℃の範囲で、加熱時間20秒から5分程度行うことが好ましい。生産性と熱収縮しわの発生を防止するとの観点から、加熱温度は60~110℃の範囲、加熱時間30秒~2分程度行うことがさらに好ましい。
 帯電防止層の厚みは、通常、20μm以下、好ましくは0.05~10μm、より好ましくは0.08~3μmである。
 機能層表面(機能層の、基材側とは反対側の面)の算術平均粗さ(Ra)は、好ましくは5nm以上、より好ましくは5~20nm、さらに好ましくは5~10nmである。
 機能層表面の粗さ曲線の最大断面高さ(Rt)は、好ましくは100nm以上、より好ましくは100~1000nm、さらに好ましくは100~800nmである。
 機能層表面がこのような粗さであることで、後述する摩擦特性を有するガスバリア性積層体を効率よく得ることができる。
 機能層表面やその他の層の表面の、算術平均粗さ(Ra)や、粗さ曲線の最大断面高さ(Rt)は、光干渉顕微鏡を用いて、500μm×500μmの領域について観察することにより求めることができる。
(3)平滑化層
 本発明のガスバリア性積層体を構成する平滑化層は、基材表面の凹凸を低減化し、ガスバリア性積層体の層間密着性を向上させるものである。
 平滑化層としては、例えば、活性エネルギー線硬化型樹脂組成物の硬化物からなる層が挙げられる。
 活性エネルギー線硬化型樹脂組成物としては、ハードコート層形成用の活性エネルギー線硬化型樹脂組成物と同様のものが挙げられる。
 ただし、平滑化層は、機能層よりも平滑性に優れるものが好ましいため、前記微粒子等の、平滑化層の表面を粗くする成分を含まないものが好ましい。
 平滑化層は、ハードコート層の形成方法と同様の方法により形成することができる。
 平滑化層の厚みは、通常、20μm以下、好ましくは0.1~20μm、より好ましくは0.5~10μmである。
 平滑化層表面(平滑化層の、基材側とは反対側の面)の算術平均粗さ(Ra)は、好ましくは5nm以下、より好ましくは0.1~5nm、さらに好ましくは0.1~4nm、特に好ましくは1~4nmである。
 平滑化層表面の粗さ曲線の最大断面高さ(Rt)は、好ましくは100nm以下、より好ましくは1~100nm、さらに好ましくは20~80nm、特に好ましくは30~65nmである。
 平滑化層表面がこのような粗さであることで、ガスバリア性積層体の層間密着性が向上するとともに、後述する摩擦特性を有するガスバリア性積層体を効率よく得ることができる。
(4)ガスバリア層
 本発明のガスバリア性積層体を構成するガスバリア層は、酸素や水蒸気等のガスの透過を抑制する特性(ガスバリア性)を有する層である。
 ガスバリア層としては、例えば、無機蒸着膜や重合体を含む層(以下、「重合体層」ということがある。)に改質処理を施して得られたもの〔この場合、ガスバリア層とは、イオン注入処理等により改質された領域のみを意味するのではなく、「改質された領域を含む重合体層」を意味する。〕等が挙げられる。
 無機蒸着膜としては、無機化合物や金属の蒸着膜が挙げられる。
 無機化合物の蒸着膜の原料としては、酸化珪素、酸化アルミニウム、酸化マグネシウム、酸化亜鉛、酸化インジウム、酸化スズ等の無機酸化物;窒化ケイ素、窒化アルミニウム、窒化チタン等の無機窒化物;無機炭化物;無機硫化物;酸化窒化ケイ素等の無機酸化窒化物;無機酸化炭化物;無機窒化炭化物;無機酸化窒化炭化物等が挙げられる。
 金属の蒸着膜の原料としては、アルミニウム、マグネシウム、亜鉛、及びスズ等が挙げられる。
 これらは1種単独で、あるいは2種以上を組み合わせて用いることができる。
 これらの中では、ガスバリア性の観点から、無機酸化物、無機窒化物又は金属を原料とする無機蒸着膜が好ましく、さらに、透明性の観点から、無機酸化物又は無機窒化物を原料とする無機蒸着膜が好ましい。
 無機蒸着膜を形成する方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法等のPVD(物理的蒸着)法や、熱CVD(化学的蒸着)法、プラズマCVD法、光CVD法等のCVD法が挙げられる。
 無機蒸着膜の厚さは、使用する無機化合物によっても異なるが、ガスバリア性と取り扱い性の観点から、好ましくは50~300nm、より好ましくは50~200nmの範囲である。
 重合体層に改質処理を施して得られるガスバリア層において、用いる重合体としては、ケイ素含有重合体、ポリイミド、ポリアミド、ポリアミドイミド、ポリフェニレンエーテル、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリオレフィン、ポリエステル、ポリカーボネート、ポリスルホン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリアリレート、アクリル系樹脂、シクロオレフィン系ポリマー、芳香族系重合体等が挙げられる。
 これらの重合体は1種単独で、あるいは2種以上を組合せて用いることができる。
 これらの中でも、より優れたガスバリア性を有するガスバリア層を形成し得ることから、重合体としては、ケイ素含有重合体が好ましい。ケイ素含有重合体としては、ポリシラザン系化合物、ポリカルボシラン系化合物、ポリシラン系化合物、及びポリオルガノシロキサン系化合物等が挙げられる。なかでも、薄くても優れたガスバリア性を有するガスバリア層を形成できることから、ポリシラザン系化合物が好ましい。ポリシラザン系化合物を含む層に改質処理を施すことで、酸素、窒素、ケイ素を主構成原子として有する層(酸窒化珪素層)を形成することができる。
 ポリシラザン系化合物は、分子内に-Si-N-結合(シラザン結合)を含む繰り返し単位を有する重合体である。具体的には、式(1)
Figure JPOXMLDOC01-appb-C000001
で表される繰り返し単位を有する化合物が好ましい。また、用いるポリシラザン系化合物の数平均分子量は、特に限定されないが、100~50,000であるのが好ましい。
 前記式(1)中、nは任意の自然数を表す。
Rx、Ry、Rzは、それぞれ独立して、水素原子、無置換若しくは置換基を有するアルキル基、無置換若しくは置換基を有するシクロアルキル基、無置換若しくは置換基を有するアルケニル基、無置換若しくは置換基を有するアリール基又はアルキルシリル基等の非加水分解性基を表す。
 前記無置換若しくは置換基を有するアルキル基のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-へキシル基、n-ヘプチル基、n-オクチル基等の炭素数1~10のアルキル基が挙げられる。
 無置換若しくは置換基を有するシクロアルキル基のシクロアルキル基としては、シクロブチル基、シクロペンチル基、シクロへキシル基、シクロへプチル基等の炭素数3~10のシクロアルキル基が挙げられる。
 無置換若しくは置換基を有するアルケニル基のアルケニル基としては、例えば、ビニル基、1-プロペニル基、2-プロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基等の炭素数2~10のアルケニル基が挙げられる。 
 前記アルキル基、シクロアルキル基及びアルケニル基の置換基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;ヒドロキシル基;チオール基;エポキシ基;グリシドキシ基;(メタ)アクリロイルオキシ基;フェニル基、4-メチルフェニル基、4-クロロフェニル基等の無置換若しくは置換基を有するアリール基;等が挙げられる。
 無置換又は置換基を有するアリール基のアリール基としては、例えば、フェニル基、1-ナフチル基、2-ナフチル基等の炭素数6~10のアリール基が挙げられる。
 前記アリール基の置換基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;メチル基、エチル基等の炭素数1~6のアルキル基;メトキシ基、エトキシ基等の炭素数1~6のアルコキシ基;ニトロ基;シアノ基;ヒドロキシル基;チオール基;エポキシ基;グリシドキシ基;(メタ)アクリロイルオキシ基;フェニル基、4-メチルフェニル基、4-クロロフェニル基等の無置換若しくは置換基を有するアリール基;等が挙げられる。
 アルキルシリル基としては、トリメチルシリル基、トリエチルシリル基、トリイソプロピルシリル基、トリt-ブチルシリル基、メチルジエチルシリル基、ジメチルシリル基、ジエチルシリル基、メチルシリル基、エチルシリル基等が挙げられる。
 これらの中でも、Rx、Ry、Rzとしては、水素原子、炭素数1~6のアルキル基、又はフェニル基が好ましく、水素原子が特に好ましい。
 前記式(1)で表される繰り返し単位を有するポリシラザン系化合物としては、Rx、Ry、Rzが全て水素原子である無機ポリシラザン、Rx、Ry、Rzの少なくとも1つが水素原子ではない有機ポリシラザンのいずれであってもよい。
 また、本発明においては、ポリシラザン系化合物として、ポリシラザン変性物を用いることもできる。ポリシラザン変性物としては、例えば、特開昭62-195024号公報、特開平2-84437号公報、特開昭63-81122号公報、特開平1-138108号公報等、特開平2-175726号公報、特開平5-238827号公報、特開平5-238827号公報、特開平6-122852号公報、特開平6-306329号公報、特開平6-299118号公報、特開平9-31333号公報、特開平5-345826号公報、特開平4-63833号公報等に記載されているものが挙げられる。
 これらの中でも、ポリシラザン系化合物としては、入手容易性、及び優れたガスバリア性を有するイオン注入層を形成できる観点から、Rx、Ry、Rzが全て水素原子であるペルヒドロポリシラザンが好ましい。 
 また、ポリシラザン系化合物としては、ガラスコーティング材等として市販されている市販品をそのまま使用することもできる。
 ポリシラザン系化合物は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
 重合体層は、上述した重合体の他に、本発明の目的を阻害しない範囲で他の成分を含有してもよい。他の成分としては、硬化剤、老化防止剤、光安定剤、難燃剤等が挙げられる。
 重合体層中の重合体の含有量は、より優れたガスバリア性を有するガスバリア層が得られることから、50質量%以上が好ましく、70質量%以上がより好ましい。
 重合体層の厚みは、特に制限されないが、好ましくは50~300nm、より好ましくは50~200nmの範囲である。
 本発明においては、重合体層の厚みがナノオーダーであっても、充分なガスバリア性を有するガスバリア性積層体を得ることができる。
 重合体層を形成する方法は特に限定されない。例えば、重合体の少なくとも一種、所望により他の成分、及び溶剤等を含有する重合体層形成用溶液を調製し、次いで、この重合体層形成用溶液を、公知の方法により塗工し、得られた塗膜を乾燥することにより、重合体層を形成することができる。
 重合体層形成用溶液に用いる溶媒としては、ベンゼン、トルエンなどの芳香族炭化水素系溶媒;酢酸エチル、酢酸ブチルなどのエステル系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン系溶媒;n-ペンタン、n-ヘキサン、n-ヘプタンなどの脂肪族炭化水素系溶媒;シクロペンタン、シクロヘキサンなどの脂環式炭化水素系溶媒;等が挙げられる。
 これらの溶媒は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
 重合体層形成用溶液の塗工方法としては、バーコート法、スピンコート法、ディッピング法、ロールコート、グラビアコート、ナイフコート、エアナイフコート、ロールナイフコート、ダイコート、スクリーン印刷法、スプレーコート、グラビアオフセット法等が挙げられる。
 形成された塗膜を乾燥する方法としては、熱風乾燥、熱ロール乾燥、赤外線照射等、従来公知の乾燥方法が採用できる。加熱温度は、通常60~130℃の範囲である。加熱時間は、通常数秒から数十分である。
 重合体層の改質処理としては、イオン注入処理、プラズマ処理、紫外線照射処理、熱処理等が挙げられる。
 イオン注入処理は、後述するように、重合体層にイオンを注入して、重合体層を改質する方法である。
 プラズマ処理は、重合体層をプラズマ中に晒して、重合体層を改質する方法である。例えば、特開2012-106421号公報に記載の方法に従って、プラズマ処理を行うことができる。
 紫外線照射処理は、重合体層に紫外線を照射して重合体層を改質する方法である。例えば、特開2013-226757号公報に記載の方法に従って、紫外線改質処理を行うことができる。
 これらの中でも、重合体層の表面を荒らすことなく、その内部まで効率よく改質し、よりガスバリア性に優れるガスバリア層を形成できることから、イオン注入処理が好ましい。
 重合体層に注入するイオンとしては、アルゴン、ヘリウム、ネオン、クリプトン、キセノン等の希ガスのイオン;フルオロカーボン、水素、窒素、酸素、二酸化炭素、塩素、フッ素、硫黄等のイオン;メタン、エタン等のアルカン系ガス類のイオン;エチレン、プロピレン等のアルケン系ガス類のイオン;ペンタジエン、ブタジエン等のアルカジエン系ガス類のイオン;アセチレン等のアルキン系ガス類のイオン;ベンゼン、トルエン等の芳香族炭化水素系ガス類のイオン;シクロプロパン等のシクロアルカン系ガス類のイオン;シクロペンテン等のシクロアルケン系ガス類のイオン;金属のイオン;有機ケイ素化合物のイオン;等が挙げられる。
 これらのイオンは、1種単独で、あるいは2種以上を組み合わせて用いることができる。
 これらの中でも、より簡便にイオンを注入することができ、より優れたガスバリア性を有するガスバリア層が得られることから、アルゴン、ヘリウム、ネオン、クリプトン、キセノン等の希ガスのイオンが好ましい。
 イオンの注入量は、ガスバリア性積層体の使用目的(必要なガスバリア性、透明性等)等に合わせて適宜決定することができる。
 イオンを注入する方法としては、電界により加速されたイオン(イオンビーム)を照射する方法、プラズマ中のイオンを注入する方法等が挙げられる。なかでも、本発明においては、簡便に目的のバリア層が得られることから、後者のプラズマイオンを注入する方法が好ましい。
 プラズマイオン注入は、例えば、希ガス等のプラズマ生成ガスを含む雰囲気下でプラズマを発生させ、重合体層に負の高電圧パルスを印加することにより、該プラズマ中のイオン(陽イオン)を、重合体層の表面部に注入して行うことができる。
 イオン注入により、イオンが注入される領域の厚みは、イオンの種類や印加電圧、処理時間等の注入条件により制御することができ、重合体層の厚み、積層体の使用目的等に応じて決定すればよいが、通常、10~300nmである。
(4)長尺のガスバリア性積層体
 本発明の長尺のガスバリア性積層体は、前記基材の一方の面側に、前記機能層が積層されてなり、基材のもう一方の面側に、前記平滑化層及びガスバリア層がこの順に積層されてなり、機能層の、基材側とは反対側の面と、ガスバリア層の、基材側とは反対側の面との静摩擦係数が0.35~0.80であることを特徴とする。
 機能層の、基材側とは反対側の面と、ガスバリア層の、基材側とは反対側の面との静摩擦係数は、0.35~0.80であり、好ましくは0.40~0.75である。
 機能層とガスバリア層との間の静摩擦係数が上記範囲内にあることで、本発明の長尺のガスバリア性積層体をロール状に巻き取る際やロールから繰り出す際に、ブロッキングやエア噛み等の問題が起きにくくなる。
 本発明の長尺のガスバリア性積層体は、機能層の、基材側とは反対側の面と、平滑化層の、基材側とは反対側の面との静摩擦係数が、好ましくは0.35~0.80であり、より好ましくは0.40~0.75である。
 機能層と平滑化層との間の静摩擦係数が上記範囲内にあることで、本発明の長尺のガスバリア性積層体の製造中間体である、機能層及び平滑化層付樹脂フィルムをロール状に巻き取る際やロールから繰り出す際に、ブロッキングやエア噛み等の問題が起きにくくなる。
 機能層、平滑化層、ガスバリア層の静摩擦係数は、JIS K7125に準拠して測定することができる。
 本発明の長尺のガスバリア性積層体としては、機能層/基材/平滑化層/ガスバリア層、という層構成を有するものが挙げられる。
 本発明の長尺のガスバリア性積層体は、機能層、基材、平滑化層、ガスバリア層以外の層を有するものであってもよい。
 基材、平滑化層、ガスバリア層以外の層としては、導電体層、衝撃吸収層、粘着剤層、工程シート等が挙げられる。なお、工程シートは、積層体を保存、運搬等する際に、積層体を保護する役割を有し、積層体が使用される際には剥離されるものである。
 本発明のガスバリア性積層体は、後述する方法により製造することができる。
 本発明のガスバリア性積層体の厚みは、特に限定されないが、好ましくは、5~100μm、より好ましくは、10~50μm、さらに好ましくは、20~40μmである。
 本発明のガスバリア性積層体の、温度40℃、相対湿度90%における水蒸気透過率は、好ましくは0.1g/(m・day)以下、より好ましくは0.05g/(m・day)以下、さらに好ましくは、0.03g/(m・day)以下である。下限値は特になく、小さいほど好ましいが、通常は、0.001g/(m・day)以上である。
 水蒸気透過率は、実施例に記載の方法により測定することができる。
 本発明のガスバリア性積層体は、優れたガスバリア性を有しているので、電子デバイス用部材として好適に用いられる。
 電子デバイスとしては、液晶ディスプレイ、有機ELディスプレイ、無機ELディスプレイ、電子ペーパー、太陽電池等が挙げられる。
2)長尺のガスバリア性積層体の製造方法
 本発明製造方法は、本発明の長尺のガスバリア性積層体の製造方法であって、以下のステップ(a-I)~(a-III)を有する製造方法(a)、又は、以下のステップ(b-I)~(b-III)を有する製造方法(b)である。
〔製造方法(a)〕
 基材用樹脂フィルムのロールから前記樹脂フィルムを一定方向に搬送しながら、前記樹脂フィルム上に平滑化層を形成した後、得られた平滑化層付樹脂フィルムをロール状に巻き取るステップ(a-I)
 ステップ(a-I)で得られた平滑化層付樹脂フィルムのロールから前記樹脂フィルムを連続的に繰り出し、一定方向に搬送しながら、平滑化層付樹脂フィルムの樹脂フィルム表面に、機能層を形成した後、得られた機能層及び平滑化層付樹脂フィルムをロール状に巻き取るステップ(a-II)
 ステップ(a-II)で得られた機能層及び平滑化層付樹脂フィルムのロールから前記樹脂フィルムを連続的に繰り出し、一定方向に搬送しながら、機能層及び平滑化層付樹脂フィルムの平滑化層表面に、機能層との静摩擦係数が0.35~0.80であるガスバリア層を形成した後、得られたガスバリア性積層体をロール状に巻き取るステップ(a-III)
 ステップ(a-I)は、基材用樹脂フィルムを一定方向に搬送しながら、前記樹脂フィルム上に平滑化層を形成した後、得られた平滑化層付樹脂フィルムをロール状に巻き取るステップである。
 用いる基材用樹脂フィルムや、平滑化層の形成方法としては、先に示したものと同様のものが挙げられる。
 樹脂フィルムを搬送する方法、及び、平滑化層の形成後に平滑化層付樹脂フィルムを巻き取る方法としては、ロールtoロール方式による従来の積層フィルムの製造方法を利用することができる。
 ステップ(a-II)は、ステップ(a-I)で得られた平滑化層付樹脂フィルムのロールから前記樹脂フィルムを連続的に繰り出し、一定方向に搬送しながら、平滑化層付樹脂フィルムの樹脂フィルム表面に、機能層を形成した後、得られた機能層及び平滑化層付樹脂フィルムをロール状に巻き取るステップである。
 ステップ(a-II)において、平滑化層の、基材側とは反対側の面と、機能層の、基材側とは反対側の面との静摩擦係数は、好ましくは0.35~0.80であり、より好ましくは0.40~0.75である。機能層と平滑化層との間の静摩擦係数が上記範囲内にあることで、長尺のガスバリア性積層体の製造中間体である、機能層及び平滑化層付樹脂フィルムをロール状に巻き取る際や、ロールから繰り出す際に、ブロッキングやエア噛み等の問題がより生じにくくなる。
 機能層の形成方法としては、先に示したものと同様のものが挙げられる。
 ロールから平滑化層付樹脂フィルムを繰り出し、搬送する方法、及び、機能層の形成後に機能層及び平滑化層付樹脂フィルムを巻き取る方法としては、ロールtoロール方式による従来の積層フィルムの製造方法を利用することができる。
 ステップ(a-III)は、ステップ(a-II)で得られた機能層及び平滑化層付樹脂フィルムのロールから前記樹脂フィルムを連続的に繰り出し、一定方向に搬送しながら、機能層及び平滑化層付樹脂フィルムの平滑化層表面に、機能層との静摩擦係数が0.35~0.80であるガスバリア層を形成した後、得られたガスバリア性積層体をロール状に巻き取るステップである。
 平滑化層上に設けられたガスバリア層は通常平滑性に優れる。したがって、このようなガスバリア層を有するガスバリア性積層体もまた、これをロール状に巻き取る際や、ロールから繰り出す際に、ブロッキングやエア噛み等の問題が生じ易くなる。
 本発明においては、機能層とガスバリア層との間の摩擦係数を制御することにより、これらの問題を解消することができる。
 ガスバリア層の形成方法としては、先に示したものと同様のものが挙げられる。
 ロールから機能層及び平滑化層付樹脂フィルムを繰り出し、搬送する方法、及び、ガスバリア層の形成後にガスバリア性積層体を巻き取る方法としては、ロールtoロール方式による従来の積層フィルムの製造方法を利用することができる。
〔製造方法(b)〕
 基材用樹脂フィルムを一定方向に搬送しながら、前記樹脂フィルム上に機能層を形成した後、得られた機能層付樹脂フィルムをロール状に巻き取るステップ(b-I)
 ステップ(b-I)で得られた機能層付樹脂フィルムのロールから前記樹脂フィルムを連続的に繰り出し、一定方向に搬送しながら、機能層付樹脂フィルムの樹脂フィルム表面に、平滑化層を形成した後、得られた機能層及び平滑化層付樹脂フィルムをロール状に巻き取るステップ(b-II)
 ステップ(b-II)で得られたロール状の機能層及び平滑化層付樹脂フィルムから前記樹脂フィルムを連続的に繰り出し、一定方向に搬送しながら、機能層及び平滑化層付樹脂フィルムの平滑化層表面に、機能層との静摩擦係数が0.35~0.80であるガスバリア層を形成した後、得られたガスバリア性積層体をロール状に巻き取るステップ(b-III)
 ステップ(b-I)は、基材用樹脂フィルムを一定方向に搬送しながら、前記樹脂フィルム上に機能層を形成した後、得られた機能層付樹脂フィルムをロール状に巻き取るステップである。
 ステップ(b-1)は、平滑化層の代わりに機能層を形成することを除き、ステップ(a-1)と同様のステップである。
 ステップ(b-II)は、ステップ(b-I)で得られた機能層付樹脂フィルムのロールから前記樹脂フィルムを連続的に繰り出し、一定方向に搬送しながら、機能層付樹脂フィルムの樹脂フィルム表面に、平滑化層を形成した後、得られた機能層及び平滑化層付樹脂フィルムをロール状に巻き取るステップである。
 ステップ(b-II)は、機能層の代わりに平滑化層を形成することを除き、ステップ(a-II)と同様のステップである。
 ステップ(b-II)において、機能層の、基材側とは反対側の面と、平滑化層の、基材側とは反対側の面との静摩擦係数は、好ましくは0.35~0.80であり、より好ましくは0.40~0.75である。機能層と平滑化層との間の静摩擦係数が上記範囲内にあることで、長尺のガスバリア性積層体の製造中間体である、機能層及び平滑化層付樹脂フィルムをロール状に巻き取る際や、ロールから繰り出す際に、ブロッキングやエア噛み等の問題がより生じにくくなる。
 ステップ(b-III)は、ステップ(b-II)で得られたロール状の機能層及び平滑化層付樹脂フィルムから前記樹脂フィルムを連続的に繰り出し、一定方向に搬送しながら、機能層及び平滑化層付樹脂フィルムの平滑化層表面に、機能層との静摩擦係数が0.35~0.80であるガスバリア層を形成した後、得られたガスバリア性積層体をロール状に巻き取るステップである。
 ステップ(b-III)は、ステップ(a-III)と同様のステップである。
 本発明の方法〔製造方法(a)又は製造方法(b)〕によれば、本発明の長尺のガスバリア性積層体を効率よく製造することができる。
 以下、実施例を挙げて本発明を更に詳細に説明する。但し、本発明は、以下の実施例になんら限定されるものではない。
 各例中の部及び%は、特に断りのない限り、質量基準である。
(ガスバリア性積層体の各層の厚みの測定)
 実施例及び比較例で得られたガスバリア性積層体の各層の厚みは、触針式段差計(AMBIOS TECNOLOGY社製、XP-1)を用いて測定した。
(各層の平滑性)
 実施例及び比較例で得られたガスバリア性積層体又はその製造中間体における各層の平滑性は、光干渉顕微鏡(Veeco社製、「NT1100」)を用いて、250,000μm(500μm×500μm)の領域について、各層を観察し、算術平均粗さ(Ra)、粗さ曲線の最大断面高さ(Rt)を求めた。
(静摩擦係数)
 実施例及び比較例で得られたガスバリア性積層体における、機能層の、基材側とは反対側の面と、平滑化層の、基材側とは反対側の面との静摩擦係数(表1中、静摩擦係数1と表記)、および、ガスバリア性積層体の製造中間体である、機能層及び平滑化層付樹脂フィルムにおける、機能層の、基材側とは反対側の面と、平滑化層の、基材側とは反対側の面との静摩擦係数(表1中、静摩擦係数2と表記)は、それぞれ、2枚のガスバリア性積層体又はその製造中間体を用意し、所定の層が対向するように重ね合わせ、JIS K7125に準拠して測定した。
(巻き取り性評価)
 実施例1~3及び比較例1で得た長尺のガスバリア性積層体1~5をロール状に巻き取り、以下の基準により巻き取り性を評価した。評価結果を第1表に示す。
○:ブロッキング、エア噛みのどちらも発生しない。
×:少なくとも、ブロッキング又はエア噛みのいずれかが発生した。
(鉛筆硬度)
 実施例及び比較例で得られたガスバリア性積層体の機能層の表面について、鉛筆引掻塗膜硬さ試験機[東洋精機製作所社製、型式「NP」]を用いて、JIS K 5600-5-4に準拠して、鉛筆法により測定した。
(表面抵抗率)
 実施例及び比較例で得られたガスバリア性積層体の機能層側の表面抵抗率を、デジタルエレクトロメータ(アドバンテスト社製)に連結した平行電極を用いて測定した。
(防眩性)
 実施例及び比較例で得られたガスバリア性積層体を、黒色の板の上に、機能層が上になるように載置した。
 次いで、機能層の上方で、3波長蛍光灯を点灯し、機能層によって反射させ、下記基準に沿って評価した。得られた結果を表2に示す。
 ○:機能層での反射により視認される蛍光灯の輪郭がぼやける
 ×:機能層での反射により視認される蛍光灯の輪郭がぼやけない
〔製造例1〕
 ジペンタエリスリトールヘキサアクリレート(新中村化学社製、商品名:A-DPH)20部をメチルイソブチルケトン100部に溶解させた後、光重合開始剤(BASF社製、商品名:Irgacure127)3部を添加して、平滑化層形成用溶液を調製した。
〔製造例2〕
 ポリエチレンテレフタレートフィルム(帝人デュポン社製、商品名:PET25テトロンHPE、厚み:25μm、「樹脂フィルム(1)」という。以下にて同じ。)のロールから樹脂フィルム(1)を繰り出し、樹脂フィルム(1)を搬送しながら、樹脂フィルム(1)上に、製造例1で得た平滑化層形成用溶液をバーコート法により塗布し、得られた塗膜を70℃で1分間加熱乾燥した後、UV光照射ラインを用いてUV光照射を行い(高圧水銀灯、ライン速度、20m/分、積算光量100mJ/cm、ピーク強度1.466W、パス回数2回)、厚み1μmの平滑化層を形成し、得られた平滑化層付樹脂フィルムをロール状に巻き取った。
(製造例3)
 光重合開始剤含有ウレタン系ハードコート剤(荒川化学工業社製、商品名:ビームセット575CB、固形分100%)100部に、真球状シリコーンビーズ微粒子(モメンティブ・パフォーマンス・マテリアルズ・ジャパン社製、商品名:トスパール130、平均粒径3.0μm、固形分100%)5部、エチルセロソルブ61.6部及びイソブタノール61.6部を均一に混合し、固形分46%のハードコート層形成用溶液(1)を調製した。
 次いで、製造例2で得た平滑化層付樹脂フィルムのロールから前記樹脂フィルムを繰り出し、前記樹脂フィルムを搬送しながら、その樹脂フィルム面に、ハードコート層形成用溶液(1)をバーコート法により塗布し、得られた塗膜を70℃で1分間加熱乾燥した後、UV光照射ラインを用いてUV光照射を行い(高圧水銀灯、ライン速度、20m/分、積算光量100mJ/cm、ピーク強度1.466W、パス回数2回)、厚さ2μmのハードコート層Aを形成し、得られた、ハードコート層A/樹脂フィルム/平滑化層、の層構成を有するハードコート層A及び平滑化層付樹脂フィルム(1)をロール状に巻き取った。
(製造例4)
 テトラエトキシランの加水分解・脱水縮合化合物であるシリケートコーティング液(コルコート社製、製品名:コルコートN103-X、固形分2%)100部に、真球状シリコーンビーズ微粒子(モメンティブ・パフォーマンス・マテリアルズ・ジャパン社製、商品名:トスパール130、平均粒径3.0μm、固形分100%)0.1部を均一に混合し、固形分2%の帯電防止層形成用溶液(2)を調整した。
 次いで、製造例2で得た平滑化層付樹脂フィルムのロールから前記樹脂フィルムを繰り出し、前記樹脂フィルムを搬送しながら、その樹脂フィルム面に、帯電防止層形成用溶液(2)をバーコート法により塗布し、得られた塗膜を70℃で1分間加熱乾燥し、厚さ100nmの帯電防止層Aを形成し、得られた、帯電防止層A/樹脂フィルム/平滑化層、の層構成を有する帯電防止層A及び平滑化層付樹脂フィルム(2)をロール状に巻き取った。
(製造例5)
 多官能(メタ)アクリレートとしてのジペンタエリスリトールヘキサアクリレート(新中村化学工業製、NKエステルA-DPH)100部、光重合開始剤としての1-ヒドロキシシクロヘキシルフェニルケトン(BASF社製、イルガキュア184)3部、シリコーン樹脂微粒子(モメンティブ社製、トスパール 120、体積平均粒子径:2μm)5部と、シリカナノ粒子(日産化学工業社製、MIBK-ST、平均粒径:10nm)18部とを混合後、プロピレングリコールモノメチルエーテルで希釈し、固形分濃度30%の防眩性ハードコート層形成用溶液(3)を得た。
 次いで、製造例2で得た平滑化層付樹脂フィルムのロールから前記樹脂フィルムを繰り出し、前記樹脂フィルムを搬送しながら、その樹脂フィルム面に、防眩性ハードコート層形成用溶液(3)をバーコート法により塗布し、得られた塗膜を70℃で1分間加熱乾燥した後、UV光照射ラインを用いてUV光照射を行い(高圧水銀灯、ライン速度、20m/分、積算光量100mJ/cm、ピーク強度1.466W、パス回数2回)、厚さ2μmの防眩性ハードコート層Aを形成し、得られた防眩性ハードコート層A/樹脂フィルム/平滑化層、の層構成を有する防眩層及び平滑化層付樹脂フィルム(3)をロール状に巻き取った。
(製造例6)
 製造例3において、ハードコート層形成用溶液(1)に代えて、平滑化層形成用溶液をそのままハードコート層形成用溶液として用いたことを除き、製造例3と同様にして、ハードコート層B/樹脂フィルム/平滑化層、の層構成を有するハードコート層B及び平滑化層付樹脂フィルム(4)をロール状に巻き取った。
(製造例7)
 製造例4において、真球状シリコーンビーズ微粒子を添加しないことを除き、実施例4と同様にして帯電防止層Bを作製し、帯電防止層B/樹脂フィルム/平滑化層の層構成を有する帯電防止層B及び平滑化層付樹脂フィルム(5)をロール状に巻き取った。
〔実施例1〕
 製造例3で得たハードコート層A及び平滑化層付樹脂フィルム(1)のロールから前記樹脂フィルム(1)を繰り出し、前記樹脂フィルム(1)を搬送しながら、その平滑化層表面に、ペルヒドロポリシラザン(AZエレクトロニックマテリアルズ社製、商品名:AZNL110A-20)をバーコート法により塗布し、得られた塗膜を120℃で2分間加熱し、厚み150nmのペルヒドロポリシラザン層を形成した。その後、改質処理として、プラズマイオン注入装置を用いてペルヒドロポリシラザン層の表面に、アルゴン(Ar)をプラズマイオン注入し、ガスバリア層を形成し、ハードコート層A/基材(樹脂フィルム)/平滑化層/ガスバリア層、の層構成を有する長尺のガスバリア性積層体1を得た。
 長尺のガスバリア性積層体1の各層の表面粗さ、静摩擦係数、並びに、巻き取り性、鉛筆硬度、表面抵抗率及び防眩性の評価結果を第1表に示す。
 ガスバリア層を形成するために用いたプラズマイオン注入装置及びプラズマイオン注入条件は以下の通りである。
(プラズマイオン注入装置)
RF電源:型番号「RF」56000、日本電子社製
高電圧パルス電源:「PV-3-HSHV-0835」、栗田製作所社製
(プラズマイオン注入条件)
・プラズマ生成ガス:Ar
・ガス流量:100sccm
・Duty比:0.5%
・繰り返し周波数:1000Hz
・印加電圧:-10kV
・RF電源:周波 13.56MHz、印加電力 1000W
・チャンバー内圧:0.2Pa
・パルス幅:5μsec
・処理時間(イオン注入時間):5分間
・搬送速度:0.2m/分
〔実施例2〕
 実施例1において、ハードコート層A及び平滑化層付樹脂フィルム(1)に代えて、製造例4で得た帯電防止層A及び平滑化層付樹脂フィルム(2)を用いたことを除き、実施例1と同様にして長尺のガスバリア性積層体2を得た。
 長尺のガスバリア性積層体2の各層の表面粗さ、静摩擦係数を第1表に示す。
〔実施例3〕
 実施例1において、ハードコート層A及び平滑化層付樹脂フィルム(1)に代えて、製造例5で得た防眩層及び平滑化層付樹脂フィルム(3)を用いたことを除き、実施例1と同様にして長尺のガスバリア性積層体3を得た。
 長尺のガスバリア性積層体3の各層の表面粗さ、静摩擦係数を第1表に示す。
〔比較例1〕
 実施例1において、ハードコート層A及び平滑化層付樹脂フィルム(1)に代えて、製造例6で得たハードコート層B及び平滑化層付樹脂フィルム(4)を用いたことを除き、実施例1と同様にして長尺のガスバリア性積層体4を得た。
 長尺のガスバリア性積層体4の各層の表面粗さ、静摩擦係数を第1表に示す。
〔比較例2〕
 実施例1において、ハードコート層A及び平滑化層付樹脂フィルム(1)に代えて、製造例7で得た帯電防止層B及び平滑化層付樹脂フィルム(5)を用いたことを除き、実施例1と同様にして長尺のガスバリア性積層体5を得た。
 長尺のガスバリア性積層体5の各層の表面粗さ、静摩擦係数を第1表に示す。
Figure JPOXMLDOC01-appb-T000002
 第1表から、以下のことがわかる。
 実施例1~3のガスバリア性積層体は、巻き取る際に、ブロッキングやエア噛みが発生せず、巻き取り性に優れている。
 一方、比較例1、2のガスバリア性積層体は、巻き取る際に、ブロッキングやエア噛みが発生するため、巻き取り性に劣っている。

Claims (9)

  1.  基材の一方の面側に、機能層が積層されてなり、基材のもう一方の面側に、平滑化層及びガスバリア層がこの順に積層されてなる、長尺のガスバリア性積層体であって、
     機能層の、基材側とは反対側の面と、ガスバリア層の、基材側とは反対側の面との静摩擦係数が、0.35~0.80であることを特徴とする、長尺のガスバリア性積層体。
  2.  機能層の、基材側とは反対側の面の、算術平均粗さ(Ra)が5nm以上、粗さ曲線の最大断面高さ(Rt)が100nm以上であり、
     ガスバリア層の、基材側とは反対側の面の、算術平均粗さ(Ra)が5nm以下、粗さ曲線の最大断面高さ(Rt)が100nm以下である、請求項1に記載の長尺のガスバリア性積層体。
  3.  前記機能層の、基材側とは反対側の面と、平滑化層の、基材側とは反対側の面との静摩擦係数が0.35~0.80である、請求項1に記載の長尺のガスバリア性積層体。
  4.  前記平滑化層の、基材側とは反対側の面の、算術平均粗さ(Ra)が5nm以下、粗さ曲線の最大断面高さ(Rt)が100nm以下である、請求項1に記載の長尺のガスバリア性積層体。
  5.  前記機能層が、活性エネルギー線硬化型樹脂組成物の硬化物からなるハードコート層である、請求項1に記載の長尺のガスバリア性積層体。
  6.  前記平滑化層が、活性エネルギー線硬化型樹脂組成物の硬化物からなるものである、請求項1に記載の長尺のガスバリア性積層体。
  7.  前記ガスバリア層が、ポリシラザン系化合物を含む層を改質処理して得られる層である、請求項1に記載の長尺のガスバリア性積層体。
  8.  請求項1に記載の長尺のガスバリア性積層体の製造方法であって、
     基材用樹脂フィルムを一定方向に搬送しながら、前記樹脂フィルム上に平滑化層を形成した後、得られた平滑化層付樹脂フィルムをロール状に巻き取るステップ(a-I)、
     ステップ(a-I)で得られた平滑化層付樹脂フィルムのロールから前記樹脂フィルムを連続的に繰り出し、一定方向に搬送しながら、平滑化層付樹脂フィルムの樹脂フィルム表面に、機能層を形成した後、得られた機能層及び平滑化層付樹脂フィルムをロール状に巻き取るステップ(a-II)、及び、
     ステップ(a-II)で得られた機能層及び平滑化層付樹脂フィルムのロールから前記樹脂フィルムを連続的に繰り出し、一定方向に搬送しながら、機能層及び平滑化層付樹脂フィルムの平滑化層表面に、機能層との静摩擦係数が0.35~0.80であるガスバリア層を形成した後、得られたガスバリア性積層体をロール状に巻き取るステップ(a-III)、
    を有すること、を特徴とする長尺のガスバリア性積層体の製造方法。
  9.  請求項1に記載の長尺のガスバリア性積層体の製造方法であって、
     基材用樹脂フィルムを一定方向に搬送しながら、前記樹脂フィルム上に機能層を形成した後、得られた機能層付樹脂フィルムをロール状に巻き取るステップ(b-I)、
     ステップ(b-I)で得られた機能層付樹脂フィルムのロールから前記樹脂フィルムを連続的に繰り出し、一定方向に搬送しながら、機能層付樹脂フィルムの樹脂フィルム表面に、平滑化層を形成した後、得られた機能層及び平滑化層付樹脂フィルムをロール状に巻き取るステップ(b-II)、及び、
     ステップ(b-II)で得られたロール状の機能層及び平滑化層付樹脂フィルムから前記樹脂フィルムを連続的に繰り出し、一定方向に搬送しながら、機能層及び平滑化層付樹脂フィルムの平滑化層表面に、機能層との静摩擦係数が0.35~0.80であるガスバリア層を形成した後、得られたガスバリア性積層体をロール状に巻き取るステップ(b-III)、
    を有すること、を特徴とする長尺のガスバリア性積層体の製造方法。
PCT/JP2015/059728 2014-03-31 2015-03-27 長尺のガスバリア性積層体およびその製造方法 WO2015152077A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP15774061.4A EP3127696B1 (en) 2014-03-31 2015-03-27 Elongated gas barrier laminate and method for producing same
US15/128,028 US10377870B2 (en) 2014-03-31 2015-03-27 Elongated gas barrier laminate and method for producing same
KR1020167027958A KR102352337B1 (ko) 2014-03-31 2015-03-27 장척의 가스 배리어성 적층체 및 그 제조 방법
JP2016511632A JP6666836B2 (ja) 2014-03-31 2015-03-27 長尺のガスバリア性積層体およびその製造方法
CN201580018055.8A CN106457755A (zh) 2014-03-31 2015-03-27 长尺寸的阻气性层合体及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-073106 2014-03-31
JP2014073106 2014-03-31

Publications (1)

Publication Number Publication Date
WO2015152077A1 true WO2015152077A1 (ja) 2015-10-08

Family

ID=54240401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059728 WO2015152077A1 (ja) 2014-03-31 2015-03-27 長尺のガスバリア性積層体およびその製造方法

Country Status (7)

Country Link
US (1) US10377870B2 (ja)
EP (1) EP3127696B1 (ja)
JP (3) JP6666836B2 (ja)
KR (1) KR102352337B1 (ja)
CN (1) CN106457755A (ja)
TW (1) TWI664084B (ja)
WO (1) WO2015152077A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017132224A (ja) * 2016-01-29 2017-08-03 日東電工株式会社 積層フィルム
WO2017170252A1 (ja) * 2016-03-28 2017-10-05 リンテック株式会社 長尺のガスバリア性積層体
JP2021518929A (ja) * 2018-04-17 2021-08-05 エルジー・ケム・リミテッド 光拡散性バリアフィルム
JP2022505185A (ja) * 2018-10-26 2022-01-14 エルジー・ケム・リミテッド バリアーフィルム
US11512231B2 (en) * 2017-03-28 2022-11-29 Lintec Corporation Gas barrier laminate

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109153802B (zh) * 2016-03-18 2021-09-21 琳得科株式会社 底漆层形成用固化性组合物、阻气性层合膜和阻气性层合体
TWI699289B (zh) * 2016-03-25 2020-07-21 日商琳得科股份有限公司 阻氣薄膜及阻氣薄膜的製造方法
JP2018154012A (ja) * 2017-03-17 2018-10-04 コニカミノルタ株式会社 機能性フィルム、及び、電子デバイスの製造方法
WO2019078069A1 (ja) * 2017-10-20 2019-04-25 リンテック株式会社 ガスバリアフィルム用基材、ガスバリアフィルム、電子デバイス用部材、及び電子デバイス
KR102238878B1 (ko) 2018-04-25 2021-04-12 주식회사 엘지화학 배리어 필름
KR102566542B1 (ko) * 2018-05-15 2023-08-10 코닝 인코포레이티드 유기발광장치용 광추출 기판 및 그 제조방법
KR20200081700A (ko) 2018-12-28 2020-07-08 하태현 가정용 가스밸브 개폐 경보장치
KR20200081763A (ko) 2018-12-28 2020-07-08 하태현 가정용 전등소등을 위한 알림 장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0892727A (ja) * 1994-09-29 1996-04-09 Mitsubishi Chem Corp 透明なガスバリア性フィルムの製造方法
WO2013147090A1 (ja) * 2012-03-29 2013-10-03 リンテック株式会社 ガスバリア性積層体、その製造方法、電子デバイス用部材及び電子デバイス

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618885B2 (ja) 1986-02-12 1994-03-16 東燃株式会社 ポリシロキサザンおよびその製法
JP2507714B2 (ja) 1986-09-24 1996-06-19 東然株式会社 新規ポリチタノシラザン及びその製造方法
JP2613787B2 (ja) 1987-08-13 1997-05-28 財団法人石油産業活性化センター 無機シラザン高重合体、その製造方法及びその用途
JP2760555B2 (ja) 1988-03-24 1998-06-04 東燃株式会社 ポリボロシラザン及びその製造方法
JP2700233B2 (ja) 1988-12-26 1998-01-19 財団法人石油産業活性化センター 共重合シラザンおよびその製造法
US4965050A (en) 1989-01-18 1990-10-23 Ballard Medical Products Adaptation of pipetter
JP3042537B2 (ja) 1990-06-30 2000-05-15 東燃株式会社 改質ポリシラザン及びその製造方法
JP3283276B2 (ja) 1991-12-04 2002-05-20 東燃ゼネラル石油株式会社 改質ポリシラザン及びその製造方法
JPH05238827A (ja) 1992-02-26 1993-09-17 Tonen Corp コーティング用組成物及びコーティング方法
JPH06122852A (ja) 1992-10-09 1994-05-06 Tonen Corp コーティング用組成物及びコーティング方法
JP3307471B2 (ja) 1993-02-24 2002-07-24 東燃ゼネラル石油株式会社 セラミックコーティング用組成物及びコーティング方法
JP3385060B2 (ja) 1993-04-20 2003-03-10 東燃ゼネラル石油株式会社 珪素−窒素−酸素−(炭素)−金属系セラミックス被覆膜の形成方法
JP4070828B2 (ja) 1995-07-13 2008-04-02 Azエレクトロニックマテリアルズ株式会社 シリカ質セラミックス形成用組成物、同セラミックスの形成方法及び同セラミックス膜
WO2000005069A1 (fr) * 1998-07-24 2000-02-03 Japan Polyolefins Co., Ltd. Lamine impermeable au gaz, procede de production de ce lamine et conteneur en papier produit avec ce lamine
JP2003154596A (ja) 2001-11-22 2003-05-27 Nitto Denko Corp 透明ガスバリア性フィルム、及びそれを用いた透明導電性電極基材、表示素子、太陽電池又は面状発光体
JP4082965B2 (ja) 2002-08-28 2008-04-30 リンテック株式会社 防眩性ハードコートフィルム
KR100637131B1 (ko) * 2003-05-20 2006-10-20 삼성에스디아이 주식회사 유기 전계 발광 소자 및 그 제조방법
CN100476455C (zh) * 2004-12-22 2009-04-08 日东电工株式会社 防眩性硬涂薄膜及其制造方法
JP2007052333A (ja) * 2005-08-19 2007-03-01 Konica Minolta Opto Inc 表面凹凸形状光学フィルム、その製造方法及び偏光板、画像表示装置
TWI607231B (zh) * 2007-07-04 2017-12-01 琳得科股份有限公司 硬被覆膜
KR20100026852A (ko) 2008-09-01 2010-03-10 조규용 콘크리트 매설물 고정구
JPWO2010026852A1 (ja) 2008-09-02 2012-02-02 コニカミノルタホールディングス株式会社 樹脂フィルム及びその製造方法並びに有機エレクトロルミネッセンス素子
JP5544109B2 (ja) * 2009-03-31 2014-07-09 リンテック株式会社 ガスバリア性フィルムおよび電子デバイス
JP5507335B2 (ja) * 2009-05-20 2014-05-28 富士フイルム株式会社 機能性フィルムの製造方法及び製造装置
EP2480710B1 (en) 2009-09-25 2018-01-24 Toray Plastics (America) , Inc. Multi-layer high moisture barrier polylactic acid film and its method of forming
JP5471724B2 (ja) 2009-09-30 2014-04-16 大日本印刷株式会社 化粧シート
TWI535561B (zh) * 2010-09-21 2016-06-01 Lintec Corp A molded body, a manufacturing method thereof, an electronic device element, and an electronic device
JP5533585B2 (ja) 2010-11-18 2014-06-25 コニカミノルタ株式会社 ガスバリアフィルムの製造方法、ガスバリアフィルム及び電子機器
US20130344345A1 (en) * 2011-07-08 2013-12-26 Toray Plastics (America), Inc. Biaxially oriented bio-based polyester window films and laminates
EP2783846A4 (en) * 2011-11-24 2015-09-02 Konica Minolta Inc GAS BARRIER FILM AND ELECTRONIC DEVICE
JP5895687B2 (ja) 2012-04-26 2016-03-30 コニカミノルタ株式会社 ガスバリア性フィルム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0892727A (ja) * 1994-09-29 1996-04-09 Mitsubishi Chem Corp 透明なガスバリア性フィルムの製造方法
WO2013147090A1 (ja) * 2012-03-29 2013-10-03 リンテック株式会社 ガスバリア性積層体、その製造方法、電子デバイス用部材及び電子デバイス

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3127696A1 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017132224A (ja) * 2016-01-29 2017-08-03 日東電工株式会社 積層フィルム
WO2017170252A1 (ja) * 2016-03-28 2017-10-05 リンテック株式会社 長尺のガスバリア性積層体
JPWO2017170252A1 (ja) * 2016-03-28 2019-02-07 リンテック株式会社 長尺のガスバリア性積層体
JP6993962B2 (ja) 2016-03-28 2022-01-14 リンテック株式会社 長尺のガスバリア性積層体
US11512231B2 (en) * 2017-03-28 2022-11-29 Lintec Corporation Gas barrier laminate
JP2021518929A (ja) * 2018-04-17 2021-08-05 エルジー・ケム・リミテッド 光拡散性バリアフィルム
US11508937B2 (en) 2018-04-17 2022-11-22 Lg Chem, Ltd. Light-diffusing barrier film
JP7292651B2 (ja) 2018-04-17 2023-06-19 エルジー・ケム・リミテッド 光拡散性バリアフィルム
JP2022505185A (ja) * 2018-10-26 2022-01-14 エルジー・ケム・リミテッド バリアーフィルム
JP7150161B2 (ja) 2018-10-26 2022-10-07 エルジー・ケム・リミテッド バリアーフィルム
US12006575B2 (en) 2018-10-26 2024-06-11 Lg Chem, Ltd. Barrier film

Also Published As

Publication number Publication date
JPWO2015152077A1 (ja) 2017-04-13
TWI664084B (zh) 2019-07-01
JP6666836B2 (ja) 2020-03-18
JP6883127B2 (ja) 2021-06-09
US20170107344A1 (en) 2017-04-20
TW201544329A (zh) 2015-12-01
KR102352337B1 (ko) 2022-01-17
US10377870B2 (en) 2019-08-13
EP3127696B1 (en) 2024-05-01
JP2021107163A (ja) 2021-07-29
EP3127696A4 (en) 2017-12-20
EP3127696A1 (en) 2017-02-08
CN106457755A (zh) 2017-02-22
KR20160138447A (ko) 2016-12-05
JP2020073358A (ja) 2020-05-14

Similar Documents

Publication Publication Date Title
JP6883127B2 (ja) 長尺のガスバリア性積層体およびその製造方法
JP6690034B2 (ja) ガスバリア性積層体、電子デバイス用部材及び電子デバイス
TWI615273B (zh) 透明積層薄膜、透明導電性薄膜及氣體阻隔性積層薄膜
US10967618B2 (en) Curable composition for forming primer layer, gas barrier laminated film, and gas barrier laminate
JP6993962B2 (ja) 長尺のガスバリア性積層体
WO2016043141A1 (ja) ガスバリア性フィルム
WO2013175910A1 (ja) ガスバリア積層体、およびガスバリア積層体の製造方法
WO2015152076A1 (ja) 長尺のガスバリア性積層体及びその製造方法、電子デバイス用部材、並びに電子デバイス
JP6544832B2 (ja) ガスバリア性積層体、電子デバイス用部材および電子デバイス
TW201841773A (zh) 功能性薄膜及裝置
JP7137282B2 (ja) ガスバリアフィルム用基材、ガスバリアフィルム、電子デバイス用部材、及び電子デバイス
JP6694380B2 (ja) ガスバリア性積層体、電子デバイス用部材、および電子デバイス
JP7018872B2 (ja) ガスバリア性積層体、電子デバイス用部材及び電子デバイス
JPWO2017208770A1 (ja) 積層体、電子デバイス用部材、及び電子デバイス
JP5067333B2 (ja) ガスバリア性シートの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15774061

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016511632

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15128028

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015774061

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015774061

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167027958

Country of ref document: KR

Kind code of ref document: A