WO2015137270A1 - 誘電体材料及び静電チャック装置 - Google Patents

誘電体材料及び静電チャック装置 Download PDF

Info

Publication number
WO2015137270A1
WO2015137270A1 PCT/JP2015/056799 JP2015056799W WO2015137270A1 WO 2015137270 A1 WO2015137270 A1 WO 2015137270A1 JP 2015056799 W JP2015056799 W JP 2015056799W WO 2015137270 A1 WO2015137270 A1 WO 2015137270A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric material
dielectric
electrostatic chuck
oxide
less
Prior art date
Application number
PCT/JP2015/056799
Other languages
English (en)
French (fr)
Inventor
石塚 雅之
大朗 長友
Original Assignee
住友大阪セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友大阪セメント株式会社 filed Critical 住友大阪セメント株式会社
Priority to US15/120,150 priority Critical patent/US9944561B2/en
Priority to CN201580007766.5A priority patent/CN105980331B/zh
Priority to JP2015515734A priority patent/JP6103046B2/ja
Priority to KR1020167024011A priority patent/KR101757793B1/ko
Publication of WO2015137270A1 publication Critical patent/WO2015137270A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/185Mullite 3Al2O3-2SiO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • C04B35/505Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds based on yttrium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6264Mixing media, e.g. organic solvents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/002Inhomogeneous material in general
    • H01B3/004Inhomogeneous material in general with conductive additives or conductive layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/10Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances metallic oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N13/00Clutches or holding devices using electrostatic attraction, e.g. using Johnson-Rahbek effect
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • C04B2235/764Garnet structure A3B2(CO4)3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase

Definitions

  • the present invention relates to a dielectric material and an electrostatic chuck device.
  • This application claims priority on March 10, 2014 based on Japanese Patent Application No. 2014-046815 for which it applied to Japan, and uses the content here.
  • the etching technique is an important one of the fine processing techniques.
  • a plasma etching technique capable of high-efficiency and fine processing of a large area has become mainstream.
  • This plasma etching technique is a kind of dry etching technique. Specifically, a mask pattern is formed with a resist on a solid material to be processed, and a reactive gas is introduced into the vacuum while the solid material is supported in a vacuum. A high frequency electric field is applied to. As a result, the accelerated electrons collide with gas molecules and enter a plasma state.
  • This is a technique for forming a fine pattern in a solid material by reacting radicals (free radicals) and ions generated from this plasma with the solid material and removing them as reaction products.
  • plasma CVD method as one of thin film growth techniques in which source gases are combined by the action of plasma and the resulting compound is deposited on a substrate.
  • plasma discharge is performed by applying a high-frequency electric field to a gas containing raw material molecules.
  • film-forming method which decomposes
  • a wafer to be processed is simply attached and fixed to a sample stage, and the wafer is maintained at a desired temperature.
  • An electrostatic chuck device is used as the device.
  • This electrostatic chuck device includes a substantially disk-shaped dielectric plate on which a wafer is placed, and an electrostatic chucking electrode embedded in the dielectric plate. By applying a DC voltage between the dielectric plate and the wafer placed on the dielectric plate, an electrostatic adsorption force due to a Coulomb force or a slight leakage current is generated. The wafer is fixed on the dielectric plate by this electrostatic attraction force.
  • the dielectric plate used in the electrostatic chuck device ceramics such as aluminum oxide, aluminum nitride, and yttrium oxide are generally used.
  • an electrostatic chuck device for example, a silicon nitride-containing yttrium oxide sintered body containing 5 to 40% by volume of silicon nitride is used, and the volume resistivity at room temperature is 1 ⁇ 10 15 ⁇ ⁇ cm or more and
  • an electrostatic chuck device that realizes a high adsorbing force and excellent desorption response of an object to be processed by constituting an electrostatic chuck substrate made of a ceramic member having a dielectric constant of 10 or more (Patent Document 1). ).
  • the average value of the relative density measured at a plurality of measurement points including the central portion and the outer peripheral portion of the wafer surface is 98% or more, and the average value of the volume resistivity at 50 ° C. is 10 7 ⁇ ⁇ cm to 10 12 ⁇ .
  • Patent Document 2 An electrostatic chuck that can perform uniform processing on a semiconductor substrate such as a silicon wafer has been proposed (Patent Document 2).
  • Patent Document 3 An electrostatic chuck using aluminum oxide or aluminum nitride as an insulating substrate has been proposed as an electrostatic chuck in which the residual adsorption suppressing power hardly deteriorates with time (Patent Document 3).
  • this electrostatic chuck by setting the dielectric loss of the material used for the insulating substrate to 1 ⁇ 10 ⁇ 4 or less, the temperature distribution on the surface of the insulating substrate is improved, and as a result, the unevenness of the surface temperature is improved. ing.
  • JP 2006-225185 A Japanese Patent Laid-Open No. 2003-40674 Republished WO2012 / 014873
  • the electrostatic chuck described in Patent Document 3 uses a high-purity insulating material such as aluminum oxide or aluminum nitride, so that a uniform temperature distribution can be obtained, but the dielectric constant is low and the adsorption is high. There was a problem that power could not be obtained. Therefore, when the volume resistance value is increased, there is a problem that the charge that exerts the adsorption force is difficult to escape and the desorption response is deteriorated. Furthermore, in a material in which a conductive material is dispersed in the second layer, the second layer causes a large dielectric loss. For this reason, the electrostatic attraction force becomes excessively large, and it has been difficult to realize an electrostatic chuck that achieves both the electrostatic attraction force and the uniformity of the in-plane temperature of the workpiece.
  • a high-purity insulating material such as aluminum oxide or aluminum nitride
  • the present invention has been made in view of the above circumstances, and sufficient electrostatic adsorption force, good desorption responsiveness and high withstand voltage can be obtained, and no temperature difference occurs in the surface of the composite sintered body.
  • an object is to provide an inexpensive dielectric material and an electrostatic chuck device using the dielectric material for a substrate.
  • the present inventors have provided the present invention. That is, by controlling the difference between the maximum value and the minimum value of the dielectric constant and dielectric loss of a composite sintered body in which conductive particles are dispersed in an insulating material, the electrostatic adsorption force, desorption response, and withstand voltage are improved.
  • the temperature difference within the surface of the composite sintered body is extremely small, and further, by controlling the volume resistivity, withstand voltage, thermal conductivity, etc., the electrostatic adsorption force, desorption responsiveness and withstand voltage can be reduced. It was found that the temperature was further improved and no temperature difference occurred in the surface of the composite sintered body, and the present invention was completed.
  • the dielectric material according to the first aspect of the present invention is a dielectric material composed of a composite sintered body in which conductive particles are dispersed in an insulating material, and has a dielectric constant of 10 or more at a frequency of 40 Hz.
  • the difference between the maximum value and the minimum value of dielectric loss at a frequency of 1 MHz within the surface of the composite sintered body is 0.002 or less.
  • the dielectric material preferably has the following characteristics.
  • the dielectric material preferably has a volume resistivity at 20 ° C. of 10 13 ⁇ ⁇ cm or more and a withstand voltage of 5 kV / mm or more.
  • the dielectric material preferably has a volume resistivity at 120 ° C. of 10 13 ⁇ ⁇ cm or more and a withstand voltage of 5 kV / mm or more.
  • the dielectric material preferably has a thermal conductivity of 20 W / m ⁇ K or more.
  • the dielectric loss of the dielectric material at a frequency of 40 Hz is preferably 0.01 or more and 0.05 or less.
  • An electrostatic chuck apparatus is an electrostatic chuck apparatus that electrostatically attracts a plate-like sample to one main surface of a base, wherein the base is the dielectric according to the first aspect of the present invention. It is characterized by using a body material.
  • the base is preferably made of the dielectric material.
  • the composite sintered body in which conductive particles are dispersed in an insulating material has a dielectric constant of 10 or more at a frequency of 40 Hz, and a frequency of 1 MHz within the surface of the composite sintered body.
  • the difference between the maximum value and the minimum value of dielectric loss was set to 0.002 or less.
  • any one or more of the volume resistivity, withstand voltage, thermal conductivity, and dielectric loss at a frequency of 40 Hz of the dielectric material are preferably controlled. This can further improve the electrostatic adsorption force, desorption response, and withstand voltage, and eliminate the temperature difference in the surface of the composite sintered body. Therefore, the reliability of the dielectric material can be maintained for a long time.
  • the electrostatic chuck device of the present invention is formed by using the dielectric material of the present invention on a substrate that electrostatically attracts a plate-like sample. Therefore, the electrostatic adsorption force and desorption response of the plate sample can be improved, and the withstand voltage of the substrate itself can be improved. Furthermore, the temperature difference on one main surface of the substrate for electrostatically adsorbing the plate-like sample can be made extremely small. Therefore, various treatments can be performed uniformly over the entire surface of the plate-like sample, and the reliability of the obtained product can be improved.
  • the example of the preferable form for implementing the dielectric material and electrostatic chuck apparatus of this invention is demonstrated based on drawing. This embodiment is specifically described for better understanding of the gist of the invention, and does not limit the present invention unless otherwise specified.
  • the present invention relates to a dielectric material and an electrostatic chuck device, and more specifically, is suitably used for a vacuum process apparatus such as an etching apparatus, a sputtering apparatus, or a CVD apparatus applied to a manufacturing process of a semiconductor device, a liquid crystal display device or the like. .
  • the apparatus of the present invention has a high adsorption force for an object to be processed such as a plate-like sample, and is excellent in heat uniformity when a high frequency is applied to a mounting surface on which the object to be processed is mounted. By these things, it is possible to prevent the yield of the obtained semiconductor device, liquid crystal display device and the like from decreasing.
  • the dielectric material of the present embodiment is a dielectric material made of a composite sintered body in which conductive particles are dispersed in an insulating material.
  • the dielectric constant at a frequency of 40 Hz is 10 or more, and the difference between the maximum value and the minimum value of dielectric loss at a frequency of 1 MHz within the surface of the composite sintered body is 0.002 or less.
  • the insulating material examples include various ceramic resins such as polyimide resin and silicon resin in addition to insulating ceramics.
  • the organic resin has a defect that the insulating characteristics are liable to deteriorate due to heat generation. Therefore, in this embodiment, insulating ceramics that hardly cause deterioration of insulating characteristics due to heat generation are used.
  • it is not limited to insulating ceramics, and other materials may be used.
  • this insulating ceramic examples include aluminum oxide (Al 2 O 3 ), yttrium oxide (Y 2 O 3 ), silicon oxide (SiO 2 ), zirconium oxide (ZrO 2 ), mullite (3Al 2 O 3 .2SiO 2). ), Hafnium oxide (HfO 2 ), scandium oxide (Sc 2 O 3 ), neodymium oxide (Nd 2 O 3 ), niobium oxide (Nb 2 O 5 ), samarium oxide (Sm 2 O 3 ), ytterbium oxide (Yb 2) Examples thereof include oxides such as O 3 ), erbium oxide (Er 2 O 3 ), and cerium oxide (CeO 2 ). One of these oxides may be selected and used, or two or more may be mixed and used as a composite oxide.
  • the insulating ceramic other than the above examples include nitrides such as aluminum nitride (AlN), silicon nitride (Si 3 N 4 ), and boron nitride (BN). These nitrides may be used by selecting only one kind, or may be used as a composite nitride by mixing two or more kinds, but only one kind is used alone from the viewpoint of chemical stability. It is preferable.
  • AlN aluminum nitride
  • Si 3 N 4 silicon nitride
  • BN boron nitride
  • aluminum oxide (Al 2 O 3 ) is particularly excellent in heat resistance, and conductive particles are dispersed in the aluminum oxide (Al 2 O 3 ) to form a composite sintered body. Since the mechanical properties are also good, it is suitable as the dielectric material of this embodiment.
  • yttrium oxide (Y 2 O 3 ), yttrium aluminum garnet (YAG: 3Y 2 O 3). ⁇ 5Al 2 O 3) or the like may be used as the insulating ceramic.
  • the average particle diameter of these average insulating ceramics can be arbitrarily selected, but may be, for example, 1 ⁇ m or less.
  • the lower limit of the average particle diameter may be 0.001 ⁇ m, 0.01 ⁇ m, or 0.05 ⁇ m.
  • the upper limit may be 1 ⁇ m, 0.7 ⁇ m, or 0.5 ⁇ m.
  • the raw material powder of aluminum oxide (Al 2 O 3 ) has an average particle diameter of 1 ⁇ m or less and high purity.
  • the average particle diameter can be arbitrarily selected, but may be 1 ⁇ m or less, for example.
  • the lower limit of the average particle diameter may be 0.001 ⁇ m, 0.01 ⁇ m, or 0.05 ⁇ m.
  • the upper limit may be 1 ⁇ m or 0.5 ⁇ m.
  • the said average particle diameter is an average primary particle diameter measured from the SEM photograph.
  • the reason why the average particle diameter of the aluminum oxide (Al 2 O 3 ) powder is preferably 1 ⁇ m or less is as follows.
  • the average particle diameter of the aluminum oxide powder exceeds 1 ⁇ m
  • the average particle diameter of the aluminum oxide particles in the aluminum oxide sintered body obtained by firing the aluminum oxide powder exceeds 2 ⁇ m.
  • the substrate of the electrostatic chuck apparatus is manufactured using this sintered body, the upper surface of the substrate on the side on which the plate-like sample is placed is easily etched by plasma, and sputter marks can be formed on the upper surface of the substrate. There is sex. As a result, the object to be processed such as a silicon wafer may be contaminated depending on circumstances.
  • the conductive particles are not particularly limited as long as they can be dispersed in the insulating material (insulating particles) without deteriorating the electrical characteristics of the insulating material.
  • conductive ceramic particles such as silicon carbide (SiC) particles, molybdenum (Mo) particles, tungsten (W) particles, refractory metal particles such as tantalum (Ta) particles, and carbon (C) particles
  • the composite sintered body is preferably not a solid solution or a reaction product of conductive particles and an insulating material.
  • silicon carbide (SiC) particles are conductive because they are semiconductors themselves. Therefore, when this is combined with aluminum oxide (Al 2 O 3 ) particles, the resulting composite sintered body has low temperature dependence of electrical characteristics, excellent corrosion resistance to halogen gas, heat resistance, heat resistance It is preferable because it has high impact properties and is less likely to be damaged by thermal stress even when used at high temperatures.
  • silicon carbide (SiC) particles it is preferable to use silicon carbide particles having a ⁇ -type crystal structure because of excellent conductivity. In order to control the conductivity of the silicon carbide particles within an appropriate range, it is preferable to appropriately control the content of nitrogen contained as an impurity in the silicon carbide particles.
  • silicon carbide (SiC) particles silicon carbide particles obtained by various methods such as a plasma CVD method, a precursor method, a thermal carbon reduction method, and a laser pyrolysis method can be used.
  • a high-purity material in order to prevent adverse effects such as contamination by the dielectric material in the semiconductor process.
  • the conductive particles used as the raw material are mixed conductive particles in which a plurality of types such as two, three, or four types having different average particle diameters are mixed.
  • the mixed conductive particles include conductive particles having a particle size of 40 nm or less and conductive particles having a particle size of 80 nm or more.
  • the amount of the conductive particles having a particle diameter of 40 nm or less can be arbitrarily selected, but is preferably 1 to 40% by mass, more preferably 20 to 40% by mass.
  • the amount of the conductive particles having a particle diameter of 80 nm or more can be arbitrarily selected, but is preferably 1 to 40% by mass, more preferably 20 to 40% by mass. Further, when the particle size distribution of the mixed conductive particles is measured, it is preferable that the cumulative particle diameter content rate curve is smooth with respect to the particle diameter, but a plurality of peaks are provided if necessary. You may do it. It is also preferable that the mixed conductive particles further include conductive particles having a particle size larger than 40 nm and smaller than 80 nm. The amount can be arbitrarily selected, but is preferably 20 to 98% by mass, more preferably 20 to 60% by mass.
  • the mixed conductive particles include SiC particles having an average particle diameter of 0.03 ⁇ m, SiC particles having an average particle diameter of 0.05 ⁇ m, and SiC particles having an average particle diameter of 0.1 ⁇ m in a mass ratio.
  • Mixed particles and the like mixed at a ratio of 1: 1: 1 are preferably used.
  • the particle size is a particle size measured from a TEM photograph.
  • the particle size distribution of the conductive particles used as the raw material it is difficult to be affected by the temperature history and the firing atmosphere in the firing process. Therefore, the change in the microstructure of the conductive particles as the obtained sintered body is suppressed, and as a result, the dispersion state of the conductive particles in the composite sintered body is There is no difference between the outer peripheral portion and a uniform dielectric loss can be obtained in the plane of the composite sintered body.
  • the content of the conductive particles in the dielectric material is preferably 4% by mass or more and 20% by mass or less, more preferably 5% by mass or more and 20% by mass or less, and more preferably 5% by mass or more and More preferably, it is 12 mass% or less.
  • the reason why the range of the content ratio of the conductive particles is the above range is that when the content ratio of the conductive particles is less than 4% by mass, the amount of the conductive particles is too small with respect to the amount of the insulating material. Therefore, it is not preferable because good conductivity may not be obtained.
  • the content of the conductive particles exceeds 20% by mass, the amount of the conductive particles is too much with respect to the amount of the insulating material, and the withstand voltage characteristic of the dielectric material may be lowered. Therefore, it is not preferable. Moreover, when it exceeds 20 mass%, electroconductive particle will aggregate easily. For this reason, the particle diameter of the conductive particles per se tends to increase due to such agglomeration or abnormal grain growth during firing, and in some cases, a large number of conductive particles of 2 ⁇ m or more tend to be generated.
  • a dielectric material that is, a composite sintered body is produced by molding and firing using the coarse particles
  • the upper surface of the composite sintered body on which the plate-like sample is placed is easily etched by plasma. Therefore, sputter marks may be easily formed on the upper surface of the composite sintered body, which may cause contamination of a plate-like sample such as a silicon wafer.
  • the dielectric material of the present invention it is important that no solid solution or compound produced by the reaction between the conductive particles and the insulating material is present in the composite sintered body obtained by molding and firing. .
  • the content of conductive particles in this dielectric material varies depending on the type of insulating material used and the required characteristics, so it depends on the type of insulating material used and the required characteristics. It is preferable to optimize within the above range.
  • the dielectric constant and dielectric loss of the dielectric material can be measured using a dielectric constant measuring device such as a dielectric measurement system 126096W (manufactured by Toyo Technica Co., Ltd.).
  • the dielectric material of the present invention preferably has a dielectric constant of 10 or more at a frequency of 40 Hz, more preferably 12 or more, and still more preferably 13 or more.
  • the upper limit is not particularly limited and can be arbitrarily selected, but examples include 200 or less and 150 or less.
  • the frequency is set to 40 Hz.
  • the dielectric material actually exhibits an electrostatic attraction force when a DC voltage is applied, but there is no simple method for measuring the dielectric constant with a direct current. Therefore, the measurement of the dielectric constant by alternating current was adopted, and the frequency at that time was set to 40 Hz, which is the lowest practical frequency.
  • the dielectric constant at a frequency of 40 Hz is 10 or more
  • the dielectric constant of the dielectric material correlates with the amount of electric charge generated on the surface in order to develop an adsorption force when a voltage is applied. This is because the greater the rate, the greater the adsorption power. This is because, in particular, in a Coulomb electrostatic chuck apparatus having a volume resistance value of 10 13 ⁇ ⁇ cm or more, a sufficient attracting force can be obtained when the dielectric constant is 10 or more.
  • this electrostatic chuck device by further setting the dielectric constant to 12 or more, even when protrusions or grooves are formed on the surface of the electrostatic chuck device, good adsorption characteristics can be obtained.
  • the difference between the maximum value and the minimum value of dielectric loss at a frequency of 1 MHz on the surface is preferably 0.002 or less.
  • the reason for setting the frequency to 1 MHz is that, in a semiconductor manufacturing apparatus such as a plasma processing apparatus in which an electrostatic chuck apparatus is used, the frequency of the high frequency that generates plasma is 13.56 MHz or several tens of MHz. This is because the dielectric characteristics at a frequency higher than the dielectric constant that affects the adsorption characteristics are required.
  • the magnitude of the dielectric loss is proportional to the amount of heat generated from the dielectric material when a high frequency is applied to the dielectric material, and increases as the frequency increases.
  • the entire dielectric material has the same dielectric loss and the same calorific value, there is no problem because temperature management can be performed using the attached heating device or cooling device.
  • temperature management cannot be performed using a heating device or a cooling device, and temperature distribution occurs in the plate-like material, which is not preferable.
  • the upper limit of the variation width of the dielectric loss at which no temperature distribution occurs in the dielectric material is 0.002.
  • the dielectric loss at a frequency of 40 Hz is preferably 0.01 or more and 0.05 or less.
  • the reason why the dielectric loss at a frequency of 40 Hz is in the above range is that when the dielectric loss at a frequency of 40 Hz is 0.01 or more, the application of voltage is stopped when the plate material is desorbed. This is because the electric charge that expresses is easily extinguished by dielectric loss.
  • the dielectric loss is 0.01 or more.
  • the dielectric loss at a frequency of 40 Hz exceeds 0.05, when a high frequency voltage is applied to the dielectric material, heat may be generated by this application. Therefore, the temperature rise due to the heat generation is not preferable because there is a possibility that it cannot be controlled by a heating device or a cooling device generally attached to the electrostatic chuck device.
  • the dielectric material whose dielectric loss is controlled has a very small variation in dielectric loss. Therefore, for example, when used for a substrate of an electrostatic chuck device, it is excellent in adsorption characteristics and desorption characteristics, can treat a plate-like sample uniformly, and can improve productivity.
  • the volume resistivity of the dielectric material can be measured by a three-terminal method.
  • the volume resistivity of the dielectric material is preferably 10 13 ⁇ ⁇ cm or more at 20 ° C. or 120 ° C. The reason is that if the volume resistivity is 10 13 ⁇ ⁇ cm or more, a charge is generated on the surface by applying a voltage to this dielectric material, and it functions as a coulomb-type electrostatic chuck device. Because it does.
  • the volume resistivity is less than 10 13 ⁇ ⁇ cm, the voltage applied to the dielectric material causes the electric charge to move inside the dielectric material to generate a leakage current, or the withstand voltage decreases. This is not preferable because of this problem.
  • the upper limit of the volume resistivity of the dielectric material can be arbitrarily selected, but is preferably 10 15 ⁇ ⁇ cm or less.
  • the dielectric strength of this dielectric material is preferably 5 kV / mm or more, more preferably 7 kV / mm or more, and even more preferably 8 kV / mm, both at 20 ° C. and 120 ° C. That's it.
  • the reason why the withstand voltage is set to 5 kV / mm or more is that when the withstand voltage is less than 5 kV / mm, when used as an electrostatic chuck device, the voltage for adsorption is increased to 5 kV / mm or more. This is because there is a possibility that sufficient adsorption power cannot be obtained.
  • an upper limit can be selected arbitrarily, it is preferably 20 kV / mm or less, and may be 15 kV / mm or less.
  • the thermal conductivity of the dielectric material is preferably 20 W / m ⁇ K or more. More preferably, it is 25 W / m ⁇ K or more.
  • the reason why the thermal conductivity is set to 20 W / m ⁇ K or more is that when the thermal conductivity is less than 20 W / m ⁇ K, when used as an electrostatic chuck device, the attached heating device or cooling This is because the temperature of the apparatus cannot be transmitted uniformly within the adsorption surface.
  • the upper limit can be arbitrarily selected, but is preferably 50 W / m ⁇ K or less.
  • the dielectric material of the present embodiment is a slurry obtained by mixing a raw material powder of an insulating material, a raw material powder of conductive particles, and a dispersion medium, and spray-drying the slurry to form a granule. And it can produce by baking under the pressurization of 100 Mpa or less.
  • a raw material powder of an insulating material, a raw material powder of conductive particles, and a dispersion medium are mixed to form a slurry.
  • water and an organic solvent can be used as a dispersion medium used for this slurry.
  • the organic solvent include monohydric alcohols such as methanol, ethanol, 2-propanol, butanol, and octanol and modified products thereof; alcohols belonging to monocyclic monoterpenes such as ⁇ -terpineol; and carbitols such as butyl carbitol.
  • Esters such as ethyl acetate, butyl acetate, ethyl lactate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, butyl carbitol acetate, ⁇ -butyrolactone; diethyl ether, ethylene glycol monomethyl ether (methyl cellosolve), ethylene glycol mono Ethers such as ethyl ether (ethyl cellosolve), ethylene glycol monobutyl ether (butyl cellosolve), diethylene glycol monomethyl ether, diethylene glycol monoethyl ether; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, acetyl acetone, cyclohexanone; benzene, toluene, xylene, Aromatic hydrocarbons such as ethylbenzene; dimethylform Bromide
  • a dispersant or a binder may be added when preparing this slurry.
  • the dispersant and binder for example, polycarboxylic acid salts such as polycarboxylic acid ammonium salts, organic polymers such as polyethylene glycol, polyvinyl alcohol, and polyvinylpyrrolidone are preferably used.
  • the slurry is dispersed and stirred at high pressure, preferably caused to collide.
  • the pressure at that time is preferably 100 MPa or more and 250 MPa or less. The reason for this is that a pressure of 100 MPa or more is necessary to break the aggregates to be generated, while 250 MPa is the limit considering the mechanical strength of the apparatus.
  • the dispersion treatment it is also preferable to add the dispersion treatment using a disperser such as an ultrasonic homogenizer or a bead mill.
  • a disperser such as an ultrasonic homogenizer or a bead mill.
  • the conductive particles in the dielectric material obtained by compounding using this non-uniformly mixed slurry Also, the distribution of the non-uniformity may become non-uniform, and the reproducibility of electrical characteristics such as dielectric loss and the uniformity of the composition in the sintered body may deteriorate. Therefore, it is preferable to select a dispersion medium, a dispersant, and a dispersion treatment condition and mix them uniformly.
  • the slurry is then spray dried by a spray drying method.
  • the spray drying apparatus can be arbitrarily selected, but a spray dryer or the like is preferably used.
  • a spray dryer or the like is preferably used.
  • by spraying the slurry into a heated air stream and drying only the dispersion medium is dissipated in the state where the insulating material and the conductive particles in the slurry are uniformly dispersed, and the insulating material is dispersed in the insulating material.
  • Granules (granulated powder) in which conductive particles are uniformly dispersed are obtained.
  • the average particle size of the granules at this time is preferably 30 to 150 ⁇ m, and more preferably 50 to 100 ⁇ m. This average particle diameter is a value measured using a vibrating sieve.
  • this granule is shape
  • the shape and thickness of the molded body are set in consideration of the shape and thickness when molded and fired to form a composite sintered body. There is a need to.
  • this molded body is fired. In this embodiment, this compact is sandwiched between plates having a flatness of 0.2 mm or less, preferably carbon plates.
  • the reason why the flatness of the surface of the plate was set to 0.2 mm or less was obtained when there was unevenness larger than 0.2 mm on the surface of the plate, resulting in uneven pressurization on the molded body.
  • the composite sintered body has a variation in sintering density due to non-uniform pressing, and the variation in the sintering density causes a variation in electrical characteristics such as dielectric loss.
  • the compact sandwiched between the plates is fired under a pressure that can be arbitrarily selected in a predetermined firing atmosphere, preferably 1 MPa or more and 100 MPa or less, more preferably 5 to 50 MPa.
  • a dielectric material made of a sintered body is used.
  • the firing atmosphere can be arbitrarily selected, but when conductive silicon carbide (SiC) particles, molybdenum (Mo) particles, tungsten (W) particles, tantalum (Ta) particles, etc. are used as the conductive particles, Therefore, a non-oxidizing atmosphere such as an argon (Ar) atmosphere or a nitrogen (N 2 ) atmosphere is preferable.
  • the reason why the pressure during firing is set to 1 MPa or more and 100 MPa or less is that when the pressure is less than 1 MPa, the sintered density of the obtained composite sintered body is lowered and corrosion resistance may be lowered. .
  • a dense sintered body cannot be obtained, conductivity is increased, and the use is limited when used as a member for a semiconductor manufacturing apparatus, so that versatility may be impaired.
  • the pressure exceeds 100 MPa there is no problem with the sintered density and conductivity of the obtained composite sintered body, but with the increase in the size of semiconductor device members, a large composite sintered body firing device is designed. This is because there is a possibility that the pressing area may be limited.
  • the normal baking temperature used for the insulating material to be used can be applied for the baking temperature.
  • the temperature is preferably 1500 ° C. or higher and 1900 ° C. or lower.
  • the firing temperature exceeds 1900 ° C., the sintering may proceed excessively and abnormal grain growth may occur.
  • the firing time may be a time sufficient to obtain a dense composite sintered body, and is, for example, about 1 to 6 hours.
  • the dielectric material according to the present embodiment thus obtained reduces the insulating property of the insulating material by uniformly dispersing the insulating material and the conductive particles without causing solid solution or reaction. Without increasing the dielectric constant of the dielectric material. Accordingly, both high insulation and high dielectric constant can be achieved in a wide temperature range.
  • the dielectric material of the present embodiment has a small in-plane variation in dielectric loss and can be suitably used as a substrate for an electrostatic chuck device.
  • the dielectric constant at a frequency of 40 Hz of the composite sintered body obtained by dispersing conductive particles in the insulating material is 10 or more, and within the surface of the composite sintered body. Since the difference between the maximum value and the minimum value of the dielectric loss at a frequency of 1 MHz is set to 0.002 or less, by controlling the dielectric constant of the composite sintered body and the difference between the maximum value and the minimum value of the dielectric loss, The desorption response and the withstand voltage can be improved, and the temperature difference in the surface of the composite sintered body can be made extremely small. Therefore, the reliability of the dielectric material can be improved.
  • the voltage can be further improved, and the temperature difference in the surface of the composite sintered body can be eliminated. Therefore, the reliability of the dielectric material can be maintained for a long time.
  • FIG. 1 is a cross-sectional view illustrating an example of an electrostatic chuck device according to an embodiment of the present invention.
  • the electrostatic chuck member (base body) 2 since the upper surface (one main surface) 2a is a mounting surface on which various wafers (plate-like samples) W such as silicon wafers are mounted, the electrostatic chuck member (base body) 2 and this An electrostatic chuck portion 4 is configured by the electrostatic chucking electrode 3 provided on the lower surface (another main surface) 2 b side of the electrostatic chuck member 2.
  • a sheet-like or film-like insulating layer 6 is bonded to the electrostatic adsorption electrode 3 via a sheet-like or film-like (first) organic adhesive layer 5.
  • the sheet-like or film-like insulating layer 6 and the electrostatic chuck portion 4 are provided with a base for supporting the electrostatic chuck portion 4 and adjusting the temperature of the wafer W via the (second) organic adhesive layer 7.
  • the part (base) 8 is bonded.
  • the electrostatic chuck member 2 is a disk-shaped member made of the dielectric material of the present embodiment.
  • the thickness is preferably 0.3 mm or more and 5 mm or less, and more preferably 0.4 mm or more and 3 mm or less. The reason is that if the thickness of the electrostatic chuck member 2 is less than 0.3 mm, the mechanical strength of the electrostatic chuck member 2 may not be ensured.
  • the thickness of the electrostatic chuck member 2 exceeds 5 mm, the distance between the upper surface 2a for attracting the wafer W and the electrostatic attracting electrode 3 increases, and the attracting force decreases. Along with this decrease, the heat capacity of the electrostatic chuck member 2 increases, the heat exchange efficiency with the wafer W to be mounted decreases, and it becomes difficult to maintain the in-plane temperature of the wafer W in a desired temperature pattern. It is.
  • the surface roughness Ra of the upper surface 2a on which the wafer W of the electrostatic chuck member 2 is placed is preferably larger than 0.002 ⁇ m. More preferably, it is larger than 0.005 ⁇ m.
  • the reason why the surface roughness Ra of the upper surface 2a is larger than 0.002 ⁇ m is that when the surface roughness Ra is 0.002 ⁇ m or less, the heat transfer effect on the upper surface 2a becomes insufficient. It is because it is not preferable.
  • the upper surface 2a of the electrostatic chuck member 2 on which the wafer W is placed is mirror-polished.
  • the surface roughness Ra of the upper surface 2a is preferably 0.5 ⁇ m or less, and more preferably 0.15 ⁇ m or less.
  • a flow path for circulating a heat medium such as He gas or N 2 gas may be formed between the upper surface 2 a of the electrostatic chuck member 2, that is, between the adsorption surface of the wafer W and the wafer W.
  • any of protrusions, grooves, protrusions and grooves may be formed on the upper surface 2a of the electrostatic chuck member 2 to form an uneven surface.
  • the electrostatic chucking electrode 3 is used as an electrostatic chuck electrode for generating an electric charge and fixing the wafer W to the upper surface 2a of the electrostatic chuck member 2 by electrostatic chucking force.
  • the shape and size are appropriately adjusted depending on the application.
  • metals such as gold (Au), silver (Ag), and copper (Cu), which are nonmagnetic materials having conductivity, titanium, tungsten, molybdenum, platinum, and the like are used.
  • Refractory metals carbon materials such as graphite, carbon, conductive ceramics such as silicon carbide (SiC), titanium nitride (TiN), titanium carbide (TiC), tungsten carbide (WC), TiC-Ni system, TiC-Co system A cermet such as B 4 C—Fe is preferably used.
  • the thermal expansion coefficient of these materials is preferably as close as possible to the thermal expansion coefficient of the electrostatic chuck member 2.
  • the thickness of the electrostatic adsorption electrode 3 is not particularly limited, but when used as a plasma generating electrode, it is preferably 5 ⁇ m or more and 200 ⁇ m or less, particularly preferably 10 ⁇ m or more and 100 ⁇ m or less. The reason is that if the thickness is less than 5 ⁇ m, sufficient conductivity may not be ensured. On the other hand, when the thickness exceeds 200 ⁇ m, the bonding interface between the electrostatic chuck member 2 and the electrostatic chucking electrode 3 is caused by the difference in thermal expansion coefficient between the electrostatic chuck member 2 and the electrostatic chucking electrode 3. May be easily cracked, and the entire lower surface of the electrostatic adsorption electrode 3 cannot be covered with the organic adhesive layer 5, which may reduce the lateral insulation of the electrostatic adsorption electrode 3. Because there is.
  • the electrostatic adsorption electrode 3 having such a thickness can be easily formed by a film forming method such as a sputtering method or a vapor deposition method, or a coating method such as a screen printing method.
  • a film forming method such as a sputtering method or a vapor deposition method
  • a coating method such as a screen printing method.
  • the wafer W is placed on the upper surface 2 a, and a predetermined voltage is applied between the wafer W and the electrostatic chucking electrode 3, thereby using the electrostatic force to make the wafer W Is fixed to the upper surface 2a of the electrostatic chuck member 2.
  • the organic adhesive layer 5 is a sheet-like or film-like adhesive made of acrylic, epoxy, polyethylene, or the like, and is preferably a thermocompression-type organic adhesive sheet or film.
  • the preferable reason is that the thermocompression bonding organic adhesive sheet or film is placed on the electrostatic adsorption electrode 3 and evacuated, and then thermocompression bonded to the electrostatic adsorption electrode 3. This is because bubbles and the like are not easily generated, and therefore are difficult to peel off, and the adsorption characteristics and voltage resistance characteristics of the electrostatic chuck portion 4 can be maintained well.
  • the thickness of the organic adhesive layer 5 is not particularly limited. Considering the adhesive strength and ease of handling, the thickness is preferably 5 ⁇ m or more and 100 ⁇ m or less, more preferably 10 ⁇ m or more and 50 ⁇ m or less. When the thickness is 5 ⁇ m or more and 100 ⁇ m or less, the adhesive strength between the organic adhesive layer 5 and the lower surface of the electrostatic adsorption electrode 3 is improved, and the thickness of the organic adhesive layer 5 is further increased. It becomes uniform. As a result, the heat transfer coefficient between the electrostatic chuck member 2 and the base portion 8 becomes uniform, the heating characteristic or cooling characteristic of the wafer W placed thereon becomes uniform, and the in-plane temperature of the wafer W becomes uniform. It becomes.
  • the thickness of the organic adhesive layer 5 is less than 5 ⁇ m, the heat transfer between the electrostatic chuck portion 4 and the base portion 8 is improved, but the thickness of the organic adhesive layer 5 is reduced. It may be too much. From this, the adhesive strength between the organic adhesive layer 5 and the lower surface of the electrostatic adsorption electrode 3 is weakened, and between the organic adhesive layer 5 and the lower surface of the electrostatic adsorption electrode 3. It is not preferable because peeling may occur easily. On the other hand, if the thickness exceeds 100 ⁇ m, the thickness of the organic adhesive layer 5 may be too thick, so that sufficient heat transfer between the electrostatic chuck portion 4 and the base portion 8 can be ensured. This is not preferable because the heating efficiency or cooling efficiency when the temperature of the wafer W is adjusted is lowered.
  • the thickness of the organic adhesive layer 5 is made uniform, and the gap between the electrostatic chuck member 2 and the base portion 8 is made uniform.
  • the heat transfer coefficient becomes uniform. Therefore, the heating characteristic or the cooling characteristic is made uniform by improving the temperature adjustment function of the wafer W, and the in-plane temperature of the wafer W is made uniform.
  • the insulating layer 6 For the formation of the insulating layer 6, a sheet-like or film-like insulating material made of an insulating resin that can withstand the applied voltage in the electrostatic chuck portion 4, for example, polyimide, polyamide, aromatic polyamide or the like is preferably used. It is done.
  • the outer peripheral portion of the insulating layer 6 is set inside the outer peripheral portion of the electrostatic chuck member 2.
  • the insulating layer 6 is improved in plasma resistance against oxygen-based plasma and corrosion resistance against corrosive gas, and suppresses generation of particles and the like. Is done.
  • the thickness of the insulating layer 6 is arbitrarily selected, but is preferably 40 ⁇ m or more and 200 ⁇ m or less, more preferably 50 ⁇ m or more and 100 ⁇ m or less. If the thickness of the insulating layer 6 is less than 40 ⁇ m, the insulation with respect to the electrode 3 for electrostatic attraction is lowered, the electrostatic attraction force is weakened, and the wafer W can be satisfactorily fixed to the upper surface 2a (mounting surface). This is because it may disappear. On the other hand, if the thickness exceeds 200 ⁇ m, sufficient heat transfer between the electrostatic chuck portion 4 and the base portion 8 cannot be ensured, and the temperature adjustment function of the wafer W is reduced, that is, heating efficiency or cooling efficiency is reduced. This is because it may decrease.
  • the organic adhesive layer 7 adheres and fixes the electrostatic chuck portion 4 and the insulating layer 6 to the base portion 8.
  • the organic adhesive layer 7 is provided so as to cover the electrostatic adsorption electrode 3, the organic adhesive layer 5, and the insulating layer 6, thereby protecting it from oxygen-based plasma and corrosive gas.
  • a material having high plasma resistance, high thermal conductivity, and high temperature regulation efficiency from the base portion 8, that is, high heating efficiency or cooling efficiency is preferable.
  • a silicone resin composition that is a resin excellent in heat resistance and elasticity is preferable.
  • This silicone resin composition is a silicon compound having a siloxane bond (Si—O—Si).
  • a silicone resin having a thermosetting temperature of 70 ° C. to 140 ° C.
  • the thermosetting temperature is lower than 70 ° C.
  • the electrostatic chuck portion 4 and the insulating layer 6 and the base portion 8 are joined, curing starts in the middle of the joining process, which hinders the joining work. This is not preferable.
  • the thermosetting temperature exceeds 140 ° C., there is a possibility that the thermal expansion difference between the electrostatic chuck portion 4 and the insulating layer 6 and the base portion 8 cannot be absorbed.
  • the thermal conductivity of the organic adhesive layer 7 is preferably 0.25 W / mk or more, more preferably 0.5 W / mk or more.
  • the reason why the thermal conductivity of the organic adhesive layer 7 is limited to 0.25 W / mk or more is that if the thermal conductivity is less than 0.25 W / mk, the temperature adjustment efficiency from the base portion 8, that is, the heating efficiency. Alternatively, the cooling efficiency is lowered, and there is a possibility that the wafer W placed on the upper surface 2a of the electrostatic chuck portion 4 cannot be efficiently heated or cooled.
  • the thickness of the organic adhesive layer 7 is preferably 50 ⁇ m or more and 500 ⁇ m or less. If the thickness of the organic adhesive layer 7 is less than 50 ⁇ m, the organic adhesive layer 7 becomes too thin. As a result, sufficient adhesive strength cannot be secured, and the insulating layer 6 and the electrostatic chuck This is because peeling or the like may occur between the portion 4 and the base portion 8. On the other hand, if the thickness exceeds 500 ⁇ m, the heat transferability between the insulating layer 6 and the electrostatic chuck portion 4 and the base portion 8 cannot be sufficiently secured, and the heating efficiency or the cooling efficiency may be lowered. Because.
  • the thermal conductivity of the organic adhesive layer 7 equal to or higher than the thermal conductivity of the organic adhesive layer 5 and the thermal conductivity of the insulating layer 6, the organic adhesive layer 7
  • the temperature rise of the layer 7 can be suppressed, and the variation in the in-plane temperature due to the variation in the thickness of the organic adhesive layer 7 can be reduced.
  • the temperature of the wafer W to be mounted can be made uniform, and the in-plane temperature of the wafer W can be made uniform, which is preferable.
  • the organic adhesive layer 7 is a surface-coated nitride in which a coating layer made of silicon oxide (SiO 2 ) is formed on the surface of a filler having an average particle size of 1 ⁇ m or more and 10 ⁇ m or less, for example, aluminum nitride (AlN) particles. It is preferable that aluminum (AlN) particles are contained.
  • the surface-coated aluminum nitride (AlN) particles are mixed to improve the thermal conductivity of the silicone resin, and the heat transfer rate of the organic adhesive layer 7 is controlled by adjusting the mixing rate. be able to.
  • the base portion 8 is a thick disk-shaped temperature adjusting member for adjusting the temperature by heating or cooling the wafer W placed on the electrostatic chuck portion 4. By heating or cooling the electrostatic chuck portion 4 through the organic adhesive layer 5, the insulating layer 6, and the organic adhesive layer 7, the wafer W can be adjusted to a desired temperature pattern.
  • the base portion 8 is connected to an external high-frequency power source (not shown). Inside the base portion 8, water for heating or cooling or temperature adjustment, an insulating heat medium, A flow path for circulating the refrigerant is formed.
  • the material constituting the base portion 8 is not particularly limited as long as it is either a metal having excellent thermal conductivity, electrical conductivity, or workability, or a metal-ceramic composite material.
  • a metal having excellent thermal conductivity, electrical conductivity, or workability or a metal-ceramic composite material.
  • aluminum (Al), copper (Cu), stainless steel (SUS), etc. are preferably used.
  • the side surface of the base portion 8, that is, at least the surface exposed to plasma, is preferably coated with an alumite treatment or an insulating thermal spray material such as aluminum oxide or yttrium oxide.
  • this base portion 8 at least the surface exposed to the plasma is subjected to an alumite treatment or an insulating film, so that the plasma resistance is improved and abnormal discharge is prevented. Will be improved. Moreover, since it becomes difficult for a surface to be damaged, generation
  • the heat transfer coefficient is less than 100W / m 2 K or more and 3000W / m 2 ⁇ K between the electrostatic chuck portion 4 and the base portion 8, 300W / m 2 ⁇ More preferably, it is K or more and 1000 W / m 2 ⁇ K or less.
  • the reason why the heat transfer coefficient is set to 100 W / m 2 K or more is to ensure responsiveness when the temperature of the electrostatic chuck portion 4 made of a dielectric material is controlled using the base portion 8.
  • the reason why the heat transfer coefficient is set to 3000 W / m 2 K or less is that when the heat transfer coefficient between the base portion 8 and the electrostatic chuck portion 4 exceeds 3000 W / m 2 K, the amount of heat from the base portion 8 is increased. This is because, without being transmitted to the electrostatic chuck portion 4, it is scattered from the joint portion to the outside of the periphery, and it becomes difficult to control the temperature in the vicinity of the outer peripheral portion.
  • the difference between the maximum value and the minimum value of the heat transfer coefficient between the electrostatic chuck portion 4 and the base portion 8 is preferably 100 W / m 2 K or less in the plane. The reason is that if the difference between the maximum value and the minimum value exceeds 100 W / m 2 K, the temperature of the base portion 8 cannot be uniformly transmitted within the adsorption surface.
  • a heater for heating the electrostatic chuck portion 4 may be provided on the organic adhesive layer 7 between the electrostatic chuck portion 4 and the base portion 8.
  • this heater in order to reduce the thickness of the organic adhesive layer 7, it is preferable to use a thin film.
  • a non-magnetic metal or conductive ceramic in order to eliminate heat generation due to high frequency, it is preferable to use a non-magnetic metal or conductive ceramic as the material of the heater.
  • the dielectric material of the present embodiment is used for the disk-shaped electrostatic chuck member 2. Therefore, the electrostatic adsorption force and desorption response of the plate-like sample W can be improved, and the withstand voltage of the electrostatic chuck member 2 itself can be improved. Furthermore, the temperature difference on the upper surface 2a of the electrostatic chuck member 2 that electrostatically attracts the plate-like sample W can be made extremely small. Therefore, various treatments can be performed uniformly over the entire surface of the plate-like sample W, and the reliability of the obtained product can be improved.
  • FIG. 2 is a cross-sectional view showing a modification of the electrostatic chuck device of the present embodiment.
  • the electrostatic chuck device 11 is different from the electrostatic chuck device 1 described above in that a support plate 12 made of an insulating ceramic is provided so as to cover the lower surface of the electrostatic chucking electrode 3. It is integrated with the electric chuck member 2 and bonded to the base portion 8 via the organic adhesive layer 7. Since other points are the same as those of the electrostatic chuck device 1 described above, description thereof is omitted.
  • the insulating ceramic that is a component of the support plate 12 may be an insulating ceramic having the same composition as the insulating ceramic used for the electrostatic chuck member 2 described above, or may be an insulating ceramic having a different composition. .
  • the difference in thermal expansion coefficient between ceramics is preferably 10% or less. In this case, it is more preferable to use insulating ceramics having the same composition for the support plate 12 and the electrostatic chuck member 2. Further, since heat generation due to high frequency occurs even in an insulating material, it is preferable to use an insulating ceramic having a dielectric loss variation of 0.002 or less measured at a frequency of 1 MHz.
  • An electrode material to be an electrostatic chucking electrode 3 is applied to the lower surface 2b of the electrostatic chuck member 2, and an insulating ceramic powder to be the support plate 12 is formed into a predetermined shape so as to cover the electrode material.
  • a method of integrating the electrostatic chuck member 2, the electrostatic chucking electrode 3, and the support plate 12 by placing the compacts and firing them at a predetermined temperature.
  • An electrode material to be the electrostatic chucking electrode 3 is applied to the lower surface 2b of the electrostatic chuck member 2, and the support plate 12 and the electrode plate are not applied to the lower surface 2b of the electrostatic chuck member 2.
  • a method of integrating the electrostatic chuck member 2, the electrostatic chucking electrode 3, and the support plate 12 by applying a material containing the insulating ceramic powder and hot pressing them at a predetermined temperature and pressure.
  • the thickness of the ceramic member including the support plate 12 and the electrostatic chuck member 2 is preferably 5 mm or less, more preferably 3 mm or less. Although a lower limit can be selected arbitrarily, it is preferable that it is 0.1 mm or more. By reducing the thickness of the ceramic member to 5 mm or less, the amount of heat generated by dielectric loss can be reduced, and the temperature distribution can be made more uniform.
  • the plate-shaped sample When it is necessary to heat the plate-shaped sample placed on the electrostatic chuck device 11, the plate-shaped sample is heated inside one or both of the support plate 12 and the electrostatic chuck member 2.
  • a heater may be embedded.
  • the thickness of the ceramic member including the support plate 12 and the electrostatic chuck member 2 when the heater is embedded is preferably 7 mm or less, and more preferably 5 mm or less.
  • This electrostatic chuck device 11 can also exhibit the same operations and effects as the electrostatic chuck device 1 described above.
  • the support plate 12 made of insulating ceramics, it is possible to reduce warpage during temperature rise. Further, since the support plate 12 is also made of an insulating ceramic, the durability of the electrostatic chuck device 11 can be enhanced.
  • Silicon carbide (SiC) powder having an average particle size of 0.03 ⁇ m, silicon carbide (SiC) powder having an average particle size of 0.05 ⁇ m, and silicon carbide (SiC) powder having an average particle size of 0.1 ⁇ m Were mixed at a mass ratio of 1: 1: 1 to obtain a silicon carbide (SiC) mixed powder. Next, these silicon carbide (SiC) mixed powders were weighed so that the aluminum oxide (Al 2 O 3 ) powder having an average particle diameter of 8% by mass and the average particle diameter of 0.1 ⁇ m was 92% by mass, and these powders 72 parts by mass of water was added to 100 parts by mass of the total mass of the body and stirred to obtain a slurry.
  • Al 2 O 3 aluminum oxide
  • this slurry is put into a wet jet mill (Sugino Machine HJP-25010), pressurized at a pressure of 150 MPa, and subjected to a dispersion treatment for 120 minutes by causing the slurries to collide obliquely. Got. Next, this dispersion was sprayed using a spray dryer and dried at 200 ° C. to obtain an Al 2 O 3 —SiC composite powder having an aluminum oxide (Al 2 O 3 ) content of 92 mass%.
  • the Al 2 O 3 —SiC composite powder was molded into a predetermined shape using a molding machine.
  • the molded body is sandwiched between carbon plates having a flatness of 0.1 mm, and the molded body is stored in a hot press with the carbon plates sandwiched between them.
  • argon (Ar) atmosphere at 1650 ° C. and a pressure of 25 MPa. Firing was performed for 2 hours to obtain an Al 2 O 3 —SiC composite sintered body.
  • this composite sintered body is machined to be processed into a disk shape having a diameter of 300 mm and a thickness of 1.0 mm, thereby producing a dielectric plate made of the Al 2 O 3 —SiC composite sintered body of Example 1. did.
  • Example 2 The Al 2 O 3 —SiC of Example 2 was the same as Example 1 except that the silicon carbide (SiC) mixed powder was 11% by mass and the aluminum oxide (Al 2 O 3 ) powder was 89% by mass. A dielectric plate made of a composite sintered body was produced.
  • Example 3 The Al 2 O 3 —SiC of Example 3 was the same as Example 1 except that the silicon carbide (SiC) mixed powder was 9 mass% and the aluminum oxide (Al 2 O 3 ) powder was 91 mass%. A dielectric plate made of a composite sintered body was produced.
  • Example 4 The silicon carbide (SiC) mixed powder is 91% by mass of aluminum oxide (Al 2 O 3 ) powder having an average particle diameter of 0.1 ⁇ m with respect to 9% by mass, and further the firing temperature is 1800 ° C. and the pressure is A dielectric plate made of the Al 2 O 3 —SiC composite sintered body of Example 4 was produced in the same manner as Example 1 except that the pressure was 40 MPa.
  • SiC silicon carbide
  • Al 2 O 3 aluminum oxide
  • Example 5 Silicon carbide (SiC) powder having an average particle size of 0.03 ⁇ m, silicon carbide (SiC) powder having an average particle size of 0.05 ⁇ m, and silicon carbide (SiC) powder having an average particle size of 0.1 ⁇ m, Were mixed at a mass ratio of 1: 2: 1 to obtain a silicon carbide (SiC) mixed powder. Except for using 90% by mass of aluminum oxide (Al 2 O 3 ) powder having an average particle size of 0.1 ⁇ m with respect to 10% by mass of the silicon carbide (SiC) mixed powder, the same as in Example 1, A dielectric plate made of the Al 2 O 3 —SiC composite sintered body of Example 5 was produced.
  • Al 2 O 3 aluminum oxide
  • Example 6 The Al 2 O 3 —SiC of Example 6 was the same as Example 1 except that the silicon carbide (SiC) mixed powder was 12 mass% and the aluminum oxide (Al 2 O 3 ) powder was 88 mass%. A dielectric plate made of a composite sintered body was produced.
  • Example 7 Silicon carbide (SiC) powder having an average particle size of 0.03 ⁇ m, silicon carbide (SiC) powder having an average particle size of 0.05 ⁇ m, and silicon carbide (SiC) powder having an average particle size of 0.1 ⁇ m, Were mixed at a mass ratio of 1: 1: 1 to obtain a silicon carbide (SiC) mixed powder.
  • silicon carbide (SiC) mixed powders were weighed so that the yttrium oxide (Y 2 O 3 ) powder having an average particle diameter of 10% by mass and an average particle diameter of 0.1 ⁇ m would be 90% by mass, and these powders 72 parts by mass of water was added to 100 parts by mass of the total mass of the body and stirred to obtain a slurry.
  • SiC silicon carbide
  • the slurry was put into a wet jet mill apparatus, pressurized at a pressure of 150 MPa, and subjected to a dispersion treatment by causing the slurries to collide obliquely to obtain a dispersion.
  • this dispersion was sprayed using a spray dryer and dried at 200 ° C. to obtain a Y 2 O 3 —SiC composite powder having a content of 90% by mass of yttrium oxide (Y 2 O 3 ).
  • this Y 2 O 3 —SiC composite powder was molded into a predetermined shape using a molding machine.
  • the molded body is sandwiched between carbon plates having a flatness of 0.1 mm, and the molded body is stored in a hot press with the carbon plates sandwiched between the carbon plates.
  • an argon (Ar) atmosphere at 1500 ° C. and a pressure of 20 MPa. Firing was performed for 2 hours to obtain a Y 2 O 3 —SiC composite sintered body of Example 7.
  • this composite sintered body is machined to be processed into a disk shape having a diameter of 300 mm and a thickness of 1.0 mm, thereby producing a dielectric plate made of the Y 2 O 3 —SiC composite sintered body of Example 7. did.
  • Comparative Example 1 The silicon carbide (SiC) mixed powder is replaced with silicon carbide (SiC) powder having an average particle diameter of 0.05 ⁇ m, and the average particle diameter is 0.1 ⁇ m with respect to 8% by mass of the silicon carbide (SiC) powder.
  • a dielectric plate made of the Al 2 O 3 —SiC composite sintered body of Comparative Example 1 was produced in the same manner as in Example 1 except that the aluminum oxide (Al 2 O 3 ) powder was changed to 92% by mass.
  • Comparative Example 2 The silicon carbide (SiC) mixed powder is replaced with silicon carbide (SiC) powder having an average particle diameter of 0.03 ⁇ m, and the average particle diameter is 0.1 ⁇ m with respect to 10% by mass of the silicon carbide (SiC) powder.
  • a dielectric plate made of the Al 2 O 3 —SiC composite sintered body of Comparative Example 2 was produced in the same manner as in Example 1 except that the aluminum oxide (Al 2 O 3 ) powder was changed to 90% by mass.
  • Comparative Example 3 The silicon carbide (SiC) mixed powder is replaced with silicon carbide (SiC) powder having an average particle diameter of 0.05 ⁇ m, and the average particle diameter is 0.1 ⁇ m with respect to 9% by mass of the silicon carbide (SiC) powder.
  • Al 2 O 3 —SiC of Comparative Example 3 was the same as Example 1 except that the aluminum oxide (Al 2 O 3 ) powder was 91% by mass, the firing temperature was 1800 ° C., and the pressure was 40 MPa. A dielectric plate made of a composite sintered body was produced.
  • Comparative Example 4 The silicon carbide (SiC) mixed powder is replaced with silicon carbide (SiC) powder having an average particle diameter of 0.03 ⁇ m, and the average particle diameter is 0.1 ⁇ m with respect to 12% by mass of the silicon carbide (SiC) powder.
  • a dielectric plate made of the Al 2 O 3 —SiC composite sintered body of Comparative Example 4 was produced in the same manner as in Example 1 except that the aluminum oxide (Al 2 O 3 ) powder was 88% by mass.
  • Comparative Example 5 The silicon carbide (SiC) mixed powder is replaced with silicon carbide (SiC) powder having an average particle diameter of 0.03 ⁇ m, and the average particle diameter is 0.1 ⁇ m with respect to 32% by mass of the silicon carbide (SiC) powder.
  • a dielectric plate made of the Al 2 O 3 —SiC composite sintered body of Comparative Example 5 was produced in the same manner as in Example 1 except that the amount of aluminum oxide (Al 2 O 3 ) powder was changed to 68% by mass.
  • volume resistivity, dielectric constant, dielectric loss, withstand voltage, and temperature distribution were evaluated.
  • the volume resistivity, dielectric constant, dielectric loss, withstand voltage and temperature distribution were measured and evaluated.
  • the outer peripheral part measured a 10-mm location from the edge to the inside. The evaluation method for each of these items is as follows.
  • the dielectric plates of Examples 1 to 6 have less variation in dielectric loss and a narrower temperature distribution when a high frequency is applied than the dielectric plates of Comparative Examples 1 to 4.
  • the volume resistivity was significantly reduced to 10 2 ⁇ ⁇ cm, the dielectric constant was less than 2, and the withstand voltage was less than 2 kV / mm. Therefore, the temperature distribution on the surface of the dielectric plate and the dielectric loss at 40 Hz and 1 MHz are not measured.
  • the electrostatic chuck apparatus 1 using the dielectric plate of Example 1 was prepared, and the heat transfer coefficient between the electrostatic chuck member 2 and the base portion 8 was measured.
  • the average value of the heat transfer coefficient was 625 W / m 2 ⁇ K
  • the in-plane maximum value of the heat transfer coefficient was 630 W / m 2 ⁇ K
  • the minimum value was 617 W / m 2 ⁇ K.
  • Electrostatic chuck apparatus Electrostatic chuck member (base

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

 本発明の誘電体材料は、絶縁性材料中に導電性粒子を分散した複合焼結体からなる誘電体材料であり、周波数40Hzにおける誘電率は10以上、かつ、この複合焼結体の表面内にて周波数1MHzにおける誘電損失の最大値と最小値の差は0.002以下である。

Description

誘電体材料及び静電チャック装置
 本発明は、誘電体材料及び静電チャック装置に関する。
 本願は、2014年3月10日に、日本に出願された特願2014-046815号に基づき優先権を主張し、その内容をここに援用する。
 近年、半導体製造プロセスにおいては、素子の高集積化や高性能化に伴い、微細加工技術の更なる向上が求められている。この半導体製造プロセスの中でもエッチング技術は、微細加工技術の重要な一つである。近年では、エッチング技術の内でも、高効率かつ大面積の微細加工が可能なプラズマエッチング技術が主流となっている。
 このプラズマエッチング技術はドライエッチング技術の一種である。具体的に説明すると、加工対象となる固体材料の上にレジストでマスクパターンを形成し、この固体材料を真空中に支持した状態で、この真空中に反応性ガスを導入し、この反応性ガスに高周波の電界を印加する。このことにより、加速された電子がガス分子と衝突してプラズマ状態となる。そして、このプラズマから発生するラジカル(フリーラジカル)とイオンを固体材料と反応させて反応生成物として取り除くことにより、固体材料に微細パターンを形成する技術である。
 一方、原料ガスをプラズマの働きで化合させ、得られた化合物を基板の上に堆積させる薄膜成長技術の一つとして、プラズマCVD法がある。この方法では、原料分子を含むガスに高周波の電界を印加することによりプラズマ放電させる。そして、このプラズマ放電にて加速された電子によって原料分子を分解させ、得られた化合物を堆積させる成膜方法である。低温では熱的励起だけでは起こらなかった反応も、プラズマ中では、系内のガスが相互に衝突し活性化されラジカルとなるので、反応が可能となる。
 プラズマエッチング装置や、プラズマCVD装置等のプラズマを用いた半導体製造装置においては、従来から、試料台に簡単に被処理物であるウエハを取付け、固定するとともに、このウエハを所望の温度に維持する装置として、静電チャック装置が使用されている。
 この静電チャック装置は、ウエハが載置される略円板状の誘電体板と、この誘電体板の内部に埋設された静電吸着用電極とを備えたものである。この誘電体板と、この誘電体板上に載置されるウエハとの間に直流電圧を印加することで、クーロン力あるいは微少な漏れ電流による静電吸着力を発生させる。そしてこの静電吸着力によりウエハを誘電体板上に固定している。
 この静電チャック装置に用いられる誘電体板としては、酸化アルミニウム、窒化アルミニウム、及び酸化イットリウム等のセラミックスが一般に用いられている。
 このような静電チャック装置としては、例えば、窒化ケイ素を5~40体積%含む窒化ケイ素含有酸化イットリウム焼結体を用いて、室温における体積抵抗率が1×1015Ω・cm以上、かつ比誘電率が10以上のセラミックス部材からなる静電チャックの基体を構成することにより、高い吸着力と優れた被処理物の脱着応答性を実現した静電チャック装置が提案されている(特許文献1)。
 また、半導体プロセスにおけるチップの歩留まりや信頼性を向上させるためには、ウエハの表面温度の面内ばらつきを小さくする必要がある。そこで、ウエハの表面の中心部及び外周部を含む複数の測定点で測定した相対密度の平均値が98%以上、50℃の体積固有抵抗値の平均値が10Ω・cm~1012Ω・cm、周波数が1MHzにおける誘電損失の平均値が50×10-4以下、及び、誘電損失の最大値と最小値の差が前記平均値の50%以下の窒化アルミニウム焼結体を用いることで、シリコンウエハ等の半導体基板の均一な処理を行うことができる、静電チャックが提案されている(特許文献2)。
 一方、残留吸着の抑制力が経時的に劣化し難い静電チャックとして、酸化アルミニウムや窒化アルミニウムを絶縁基体に用いた静電チャックが提案されている(特許文献3)。
 この静電チャックでは、絶縁基体に用いる材料の誘電損失を1×10-4以下とすることで、この絶縁基体の表面における温度分布が改善され、その結果、表面温度のムラが改善されたとされている。
特開2006-225185号公報 特開2003-40674号公報 再公表WO2012/014873号公報
 しかしながら、特許文献1に記載された窒化ケイ素含有酸化イットリウム焼結体では、吸着力に優れているものの、窒化ケイ素が焼結体中で偏在した場合には誘電損失のばらつきが大きくなる。そのばらつきにより、高周波電圧による発熱が焼結体の面内にて異なることとなり、その結果、被処理物の面内温度に温度差が生じる。そのため、各種処理が不均一になって不良品が発生する確率が高くなり、得られた製品の信頼性が低下するという問題点があった。また、酸化イットリウムは希土類酸化物であるから、他の金属酸化物等と比べて高価であるという問題点もある。
 また、特許文献2に記載された窒化アルミニウム焼結体では、誘電損失のばらつきは小さいものの、体積抵抗値が低いことから耐電圧が低い。よって、漏れ電流や絶縁破壊により被処理物が破壊される虞があるという問題点があった。
 また、特許文献3に記載された静電チャックでは、酸化アルミニウムや窒化アルミニウム等の高純度の絶縁性材料を使用しているので、均一な温度分布は得られるものの、誘電率が低く、高い吸着力が得られないという問題点があった。
 そこで、体積抵抗値を高くすると、吸着力を発現させた電荷が逃げ難くなり、脱着応答性が悪くなるという問題点があった。
 さらに、導電性の材料を第2層中に分散させた材料では、第2層が誘電損失を大きくする原因となる。このことから、静電吸着力が大きくなりすぎてしまい、静電吸着力と被処理物の面内温度の均一性とを両立させた静電チャックを実現することが困難であった。
 本発明は、上記の事情に鑑みてなされたものであって、十分な静電吸着力、良好な脱着応答性及び高い耐電圧が得られ、複合焼結体の表面内に温度差が生じず、しかも安価な誘電体材料、及び、この誘電体材料を基体に用いた静電チャック装置を提供することを目的とする。
 本発明者等は、上記の課題を解決するべく鋭意検討を行った結果、本発明を提供するに至った。すなわち、絶縁性材料中に導電性粒子を分散した複合焼結体の誘電率及び誘電損失の最大値と最小値の差を制御することで、静電吸着力、脱着応答性及び耐電圧が向上し、かつ複合焼結体の表面内における温度差も極めて小さくなること、さらに、体積抵抗率、耐電圧、熱伝導率等を制御することで、静電吸着力、脱着応答性及び耐電圧がさらに向上し、かつ複合焼結体の表面内における温度差も生じないことを知見し、本発明を完成するに到った。
 すなわち、本発明の第一の態様である誘電体材料は、絶縁性材料中に導電性粒子が分散された複合焼結体からなる誘電体材料であって、周波数40Hzにおける誘電率は10以上、かつ、前記複合焼結体の表面内にて周波数1MHzにおける誘電損失の最大値と最小値の差は0.002以下であることを特徴とする。
 前記誘電体材料は以下の特徴を有する事が好ましい。
前記誘電体材料の、20℃における体積抵抗率は1013Ω・cm以上、耐電圧は5kV/mm以上であることが好ましい。
 前記誘電体材料の、120℃における体積抵抗率は1013Ω・cm以上、耐電圧は5kV/mm以上であることが好ましい。
 前記誘電体材料の、熱伝導率は20W/m・K以上であることが好ましい。
 前記誘電体材料の、周波数40Hzにおける誘電損失は0.01以上かつ0.05以下であることが好ましい。
 本発明の第二の態様である静電チャック装置は、基体の一主面に板状試料を静電吸着する静電チャック装置であって、前記基体が本発明の第一の態様である誘電体材料を用いてなることを特徴とする。前記基体が前記誘電体材料により形成されていることが好ましい。
 本発明の誘電体材料によれば、絶縁性材料中に導電性粒子を分散した複合焼結体の周波数40Hzにおける誘電率を10以上、かつ、この複合焼結体の表面内にて周波数1MHzにおける誘電損失の最大値と最小値の差を0.002以下とした。このように、複合焼結体の誘電率、及び誘電損失の最大値と最小値の差を制御することにより、静電吸着力、脱着応答性及び耐電圧を向上させることができ、複合焼結体の表面内における温度差を極めて小さくすることができる。したがって、誘電体材料の信頼性を向上させることができる。
 また、この誘電体材料の体積抵抗率、耐電圧、熱伝導率、周波数40Hzにおける誘電損失のうちいずれかの特性またはこれら複数の特性を好ましく制御する。このことにより、静電吸着力、脱着応答性及び耐電圧をさらに向上させることができ、複合焼結体の表面内における温度差を無くすことができる。したがって、誘電体材料の信頼性を長期に亘って維持することができる。
 本発明の静電チャック装置は、板状試料を静電吸着する基体に本発明の誘電体材料を用いて形成している。その為、板状試料の静電吸着力及び脱着応答性を向上させることができ、基体自体の耐電圧を向上させることができる。さらに、板状試料を静電吸着する基体の一主面における温度差を極めて小さくすることができる。したがって、板状試料の全面に亘って各種処理を均一に行うことができ、得られた製品の信頼性を向上させることができる。
本発明の一実施形態の静電チャック装置の例を示す断面図である。 本発明の一実施形態の静電チャック装置の変形例を示す断面図である。
 本発明の誘電体材料及び静電チャック装置を実施するための好ましい形態の例について、図面に基づき説明する。
 なお、この形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
 本発明は、誘電体材料及び静電チャック装置に関し、さらに詳しくは、半導体装置、液晶ディスプレイ装置等の製造プロセスに適用されるエッチング装置、スパッタリング装置、CVD装置等の真空プロセス装置に好適に用いられる。本発明の装置は、板状試料等の被処理物の吸着力が高く、この被処理物を載置する載置面に高周波を印加した際の均熱性に優れる。これらのことにより、得られる半導体装置、液晶ディスプレイ装置等の歩留まりの低下を防止することが可能である。
[誘電体材料]
 本実施形態の誘電体材料は、絶縁性材料中に導電性粒子を分散してなる複合焼結体からなる誘電体材料である。周波数40Hzにおける誘電率は10以上、かつ、この複合焼結体の表面内にて周波数1MHzにおける誘電損失の最大値と最小値の差は0.002以下である。
 絶縁性材料の例としては、絶縁性セラミックスの他、ポリイミド樹脂やシリコン樹脂等の各種有機樹脂もあるが、有機樹脂は発熱による絶縁特性の劣化が生じ易いという欠点がある。
 そこで、本実施形態では、発熱による絶縁特性の劣化が生じ難い絶縁性セラミックスを用いた。ただし絶縁性セラミックスに限定されることはなく他の材料を用いても良い。
 この絶縁性セラミックスの例としては、酸化アルミニウム(Al)、酸化イットリウム(Y)、酸化ケイ素(SiO)、酸化ジルコニウム(ZrO)、ムライト(3Al・2SiO)、酸化ハフニウム(HfO)、酸化スカンジウム(Sc)、酸化ネオジム(Nd)、酸化ニオブ(Nb)、酸化サマリウム(Sm)、酸化イッテルビウム(Yb)、酸化エルビウム(Er)、酸化セリウム(CeO)等の酸化物を挙げることができる。これらの酸化物は、1種のみを選択して用いてもよく、2種以上を混合して複合酸化物として用いてもよい。
 また、上記以外の絶縁性セラミックスとしては、窒化アルミニウム(AlN)、窒化ケイ素(Si)、窒化ホウ素(BN)等の窒化物を挙げることができる。これらの窒化物は、1種のみを選択して用いてもよく、2種以上を混合して複合窒化物として用いてもよいが、化学的安定性の点から、1種のみを単独で用いることが好ましい。
 これらの絶縁性セラミックスの中でも、特に酸化アルミニウム(Al)は、耐熱性に優れ、この酸化アルミニウム(Al)中に導電性粒子を分散して複合焼結体とした場合の機械的特性も良好であるから、本実施形態の誘電体材料として好適である。
 ここで、絶縁性セラミックス中のアルミニウム(Al)の含有量を少なくしたい場合や耐食性をさらに高めたい場合には、酸化イットリウム(Y)、イットリウム・アルミニウム・ガーネット(YAG:3Y・5Al)等を絶縁性セラミックスとして用いることもできる。
これら平均絶縁性セラミックスの平均粒子径は任意に選択できるが、例えば1μm以下であってもよい。例を挙げると平均粒子径の下限は0.001μmであっても良く、0.01μmであってもよく、0.05μmであっても良い。上限は1μmであっても良く、0.7μmであっても良く、0.5μmであっても良い。
 絶縁性セラミックスとして酸化アルミニウム(Al)を用いる場合、酸化アルミニウム(Al)の原料粉体としては、平均粒子径が1μm以下かつ高純度であることが特に好ましいが、特段限定されない。平均粒子径は任意に選択できるが、例えば1μm以下であってもよい。例を挙げると平均粒子径の下限は0.001μmであっても良く、0.01μmであってもよく、0.05μmであっても良い。上限は1μmであってもよく、0.5μmであっても良い。
なお前記平均粒子径は、SEM写真より計測した平均1次粒子径である。
 ここで、酸化アルミニウム(Al)粉体の平均粒子径を1μm以下が好ましいとしたのは、以下の理由からである。酸化アルミニウム粉体の平均粒子径が1μmを超えると、この酸化アルミニウム粉体を焼成して得られた酸化アルミニウム焼結体中の酸化アルミニウム粒子の平均粒子径が2μmを越えることとなる。この焼結体を用いて静電チャック装置の基体を作製すると、この基体の板状試料を載置する側の上面がプラズマによりエッチングされ易くなり、この基体の上面にスパッタ痕が形成される可能性がある。その結果、シリコンウエハ等の被処理物を場合によっては汚染する可能性があるからである。
 導電性粒子としては、絶縁性材料の電気的特性を劣化させることなく、この絶縁性材料(絶縁性粒子)中に分散することができるものであればよく、特に制限はない。炭化ケイ素(SiC)粒子等の導電性セラミックス粒子、モリブデン(Mo)粒子、タングステン(W)粒子、タンタル(Ta)粒子等の高融点金属粒子、炭素(C)粒子の群から選択される1種または2種以上であることが好ましい。特に絶縁性材料(絶縁性粒子)と固溶体や反応生成物を生成することのない導電性粒子を用いることが好ましい。
 ここで、導電性粒子が絶縁性材料(絶縁性粒子)と固溶体や反応生成物を生成した場合、電気的特性の温度変化が大きくなり、したがって、120℃での体積抵抗率が1013Ω・cm以上、耐電圧が5kV/mm以上の特性が得られなくなるので好ましくない。従って、本発明では、複合焼結体は、導電性粒子と絶縁性材料との固溶体や反応生成物ではないことが好ましい。
 ただし、導電性粒子の表面等に不可避で存在する酸化物層等の非導電性成分が絶縁性材料(絶縁性粒子)と固溶体や反応生成物を形成した場合には、これらの固溶体や反応生成物は導電性粒子の電気的特性に影響を及ぼさないので全く問題はない。
 これらの導電性粒子のなかでも、炭化ケイ素(SiC)粒子は、それ自体が半導体であるから導電性を有している。その為、これを酸化アルミニウム(Al)粒子と複合化した場合、得られる複合焼結体は、電気的特性の温度依存性が小さく、ハロゲンガスに対する耐蝕性に優れ、耐熱性、耐熱衝撃性に富み、かつ高温下の使用においても熱応力による損傷の可能性が小さいので、好ましい。
 炭化ケイ素(SiC)粒子としては、導電性に優れることからβ型の結晶構造を有する炭化ケイ素粒子を使用することが好ましい。なお、この炭化ケイ素粒子の導電性を適正な範囲に制御するためには、炭化ケイ素粒子中の不純物として含まれる窒素の含有率を適宜制御することが好ましい。
 炭化ケイ素(SiC)粒子としては、プラズマCVD法、前駆体法、熱炭素還元法、レーザー熱分解法等の各種の方法により得られた炭化ケイ素粒子を用いることができる。特に、本実施形態の誘電体材料を半導体プロセスにて用いる場合、半導体プロセスでの誘電体材料による汚染等の悪影響を防ぐために、純度の高いものを用いることが好ましい。
 複合焼結体を作製する場合、原料に用いる導電性粒子としては、平均粒子径の異なるものを2種や3種や4種など複数種混合した、混合導電性粒子として使用することが好ましい。
 一例を挙げると、この混合導電性粒子には、粒子径が40nm以下の導電性粒子と、粒子径が80nm以上の導電性粒子が含まれていることが好ましい。粒子径が40nm以下の導電性粒子の量は任意で選択できるが、1~40質量%であることが好ましく、20~40質量%であることがより好ましい。
粒子径が80nm以上の導電性粒子の量は任意に選択できるが、1~40   質量%であることが好ましく、20~40質量%であることがより好ましい。また、この混合導電性粒子の粒度分布を測定した場合には、積算粒子径の含有率の曲線が粒子径に対して滑らかになっていることが好ましいが、必要に応じて複数のピークを有していても良い。
混合導電性粒子は粒子径が40nmより大きく80nmより小さい導電性粒子をさらに含む事も好ましい。量は任意で選択できるが、20~98質量%であることが好ましく、20~60質量%であることがより好ましい。
具体的な混合導電性粒子の例を挙げると、平均粒子径0.03μmのSiC粒子と、平均粒子径0.05μmのSiC粒子と、平均粒子径0.1μmのSiC粒子とを、質量比で1:1:1の割合で混合した混合粒子等が好適に用いられる。
なお前記粒子径は、TEM写真より計測した粒子径である。
 このように、原料に用いる導電性粒子の粒度分布を横に広くすることで、焼成過程での温度履歴や焼成雰囲気等の影響を受け難くなる。したがって、得られた焼結体である導電性粒子の微構造の変化が抑制され、その結果、複合焼結体中での導電性粒子の分散状態については、この複合焼結体の中心部と外周部とで差が無くなり、よって、この複合焼結体の面内において均一な誘電損失を得ることができる。
 この誘電体材料中における導電性粒子の含有率は、4質量%以上かつ20質量%以下であることが好ましく、5質量%以上かつ20質量%以下であることがより好ましく、5質量%以上かつ12質量%以下であることがさらに好ましい。
 ここで、導電性粒子の含有率の範囲を上記の範囲とした理由は、導電性粒子の含有率が4質量%未満では、導電性粒子の量が絶縁性材料の量に対して少なすぎてしまい、良好な導電性が得られなくなる可能性があるので好ましくない。
 一方、導電性粒子の含有率が20質量%を超えると、導電性粒子の量が絶縁性材料の量に対して多すぎてしまい、この誘電体材料の耐電圧特性が低下する可能性があるので好ましくない。
 また、20質量%を超えると導電性粒子が凝集し易くなる。その為、この凝集や焼成時の異常粒成長等により導電性粒子自体の粒子径が大きくなり易く、場合によっては2μm以上の導電性粒子が多く発生し易くなる。この粗い粒子を用いて成形・焼成して誘電体材料、すなわち複合焼結体を作製すると、この複合焼結体の板状試料を載置する側の上面がプラズマによりエッチングされ易くなる。よって、この複合焼結体の上面にスパッタ痕が形成されやすくなる可能性があり、シリコンウエハ等の板状試料を汚染させる原因となる可能性がある。
 本発明の誘電体材料は、成形・焼成して得られた複合焼結体中に、導電性粒子と絶縁性材料とが反応して生じた固溶体や化合物が存在していないことが重要である。
 なお、この誘電体材料における導電性粒子の含有率は、使用する絶縁性材料の種類や必要な特性により異なるので、導電性粒子の含有率を使用する絶縁性材料の種類や必要な特性に応じて上記の範囲内で最適化することが好ましい。
[誘電体材料の電気的特性]
(1)誘電率及び誘電損失
 誘電体材料の誘電率及び誘電損失は、誘電率測定装置、例えば、誘電体測定システム126096W(東陽テクニカ社製)等を用いて測定することができる。
 本発明の誘電体材料は、周波数40Hzにおける誘電率は10以上であることが好ましく、12以上であることがより好ましく、13以上であることがさらに好ましい。上限値はとくになく任意に選択できるが、例を挙げれば、200以下や、150以下であることを挙げることができる。
 ここで、周波数を40Hzとしたのは、誘電体材料が実際に静電吸着力を発現するのは直流電圧を印加した場合であるが、直流で誘電率を測定する簡便な方法がない。従って、交流で誘電率を測定することを採用し、その際の周波数を実用的に最も低い周波数である40Hzとした。
 また、周波数40Hzにおける誘電率を10以上とした理由は、誘電体材料の誘電率は、電圧を印加したときに吸着力を発現するために表面に発生する電荷の量と相関しており、誘電率が大きいほど吸着力が大きくなるからである。特に、体積抵抗値が1013Ω・cm以上のクーロン型の静電チャック装置では、誘電率が10以上のときに十分な吸着力が得られるからである。この静電チャック装置では、さらに誘電率を12以上とすることで、静電チャック装置の表面に突起や溝を形成した場合においても、良好な吸着特性を得ることができる。
 本発明の誘電体材料では、その表面内にて周波数1MHzにおける誘電損失の最大値と最小値の差は0.002以下であることが好ましい。
 周波数を1MHzとした理由は、静電チャック装置が使用されるプラズマ処理装置等の半導体製造装置においてはプラズマを発生させる高周波の周波数が13.56MHzまたは数十MHzであるため、誘電体材料に対しては、吸着特性に影響する誘電率よりも、高い周波数での誘電特性が求められるからである。
 誘電損失の大きさは、誘電体材料に高周波を印加したときに、この誘電体材料から生じる発熱量と比例しており、周波数が高いほど大きくなる。
 ここで、誘電体材料の全体が同一の誘電損失を有し、同一の発熱量であれば、付設されている加熱装置や冷却装置を用いて温度管理を行うことができるので問題はない。しかしながら、誘電体材料の部分毎に誘電損失のばらつきがある場合には、誘電体材料の測定箇所毎に発熱量が変わってくる。その為、加熱装置や冷却装置では温度管理ができず、板状材料に温度分布が生じるので好ましくない。
 これらを考慮すると、誘電体材料に温度分布が生じない誘電損失のばらつきの幅の上限は0.002である。そこで、この誘電損失のばらつきを0.002以下とすることで、誘電損失が高い場合においても均一な温度分布を得ることができる。
(2)誘電損失の数値範囲
 本発明の誘電体材料においては、周波数40Hzにおける誘電損失は0.01以上かつ0.05以下であることが好ましい。
 ここで、周波数40Hzにおける誘電損失を上記の範囲とした理由は、周波数40Hzにおける誘電損失を0.01以上とすれば、電圧の印加を停止して板状材料を脱離させる際に、吸着力を発現する電荷が誘電損失によって消滅し易くなるからである。
 特に、体積抵抗値が1013Ω・cm以上のクーロン型の静電チャック装置では、漏れ電流による電荷の消失が期待できない。そこで、優れた脱離特性を得るためには、誘電損失が0.01以上であることが好ましくなる。
 一方、周波数40Hzにおける誘電損失が0.05を超えると、この誘電体材料に高周波電圧を印加した場合に、この印加によって発熱が生じる可能性がある。その為、この発熱による温度上昇を、静電チャック装置に一般的に付設されている加熱装置や冷却装置では制御できなくなる可能性があるので好ましくない。
 上記のように誘電損失が制御された誘電体材料は、誘電損失のばらつきが非常に小さい。その為、例えば、静電チャック装置の基体に使用した場合に、吸着特性及び脱着特性に優れ、板状試料の処理を均一に行うことができ、また、生産性を高めることができる。
(3)体積抵抗率
 誘電体材料の体積抵抗率は、3端子法にて測定することができる。
 この誘電体材料の体積抵抗率は、20℃においても、また、120℃においても、1013Ω・cm以上であることが好ましい。その理由は、体積抵抗率が1013Ω・cm以上であれば、この誘電体材料に電圧を印加することで吸着力を発現する電荷が表面に発生し、クーロン型の静電チャック装置として機能するからである。一方、体積抵抗率が1013Ω・cm未満では、誘電体材料に印加した電圧により、この誘電体材料の内部を電荷が移動して漏れ電流が発生したり、あるいは耐電圧が低下したり等の不具合が生じるので好ましくない。誘電体材料の体積抵抗率の上限は任意に選択できるが、1015Ω・cm以下であることが好ましい。
(4)耐電圧
 この誘電体材料の耐電圧は、20℃においても、また、120℃においても、5kV/mm以上であることが好ましく、より好ましくは7kV/mm以上、さらに好ましくは8kV/mm以上である。ここで、耐電圧を5kV/mm以上とした理由は、耐電圧が5kV/mm未満であると、静電チャック装置として使用した場合に、吸着させるための電圧を5kV/mm以上に高めることができず、十分な吸着力が得られない可能性があるからである。上限値は任意に選択できるが、20kV/mm以下であることが好ましく、15kV/mm以下であってもよい。
(5)熱伝導率
 この誘電体材料の熱伝導率は、20W/m・K以上であることが好ましい。より好ましくは25W/m・K以上である。
 ここで、熱伝導率を20W/m・K以上とした理由は、熱伝導率が20W/m・K未満であると、静電チャック装置として使用した場合に、付設されている加熱装置や冷却装置の温度を、吸着面内に均一に伝達することができないからである。上限値は任意に選択できるが、50W/m・K以下であることが好ましい。
[誘電体材料の製造方法]
 本実施形態の誘電体材料は、絶縁性材料の原料粉体と導電性粒子の原料粉体と分散媒とを混合してスラリーとし、このスラリーを噴霧乾燥して顆粒とし、この顆粒を1MPa以上かつ100MPa以下の加圧下にて焼成することにより、作製することができる。
 次に、この製造方法について詳細に説明する。
 まず、絶縁性材料の原料粉体と導電性粒子の原料粉体と分散媒とを混合してスラリーとする。
 このスラリーに用いられる分散媒としては、水および有機溶媒が使用可能である。
 有機溶媒としては、例えば、メタノール、エタノール、2-プロパノール、ブタノール、オクタノール等の一価アルコール類およびその変性体;α-テルピネオール等の単環式モノテルペンに属するアルコール類;ブチルカルビトール等のカルビトール類;
 酢酸エチル、酢酸ブチル、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、ブチルカルビトールアセテート、γ-ブチロラクトン等のエステル類;ジエチルエーテル、エチレングリコールモノメチルエーテル(メチルセロソルブ)、エチレングリコールモノエチルエーテル(エチルセロソルブ)、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル等のエーテル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、アセチルアセトン、シクロヘキサノン等のケトン類;ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素;ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド類;が好適に用いられる。
 これらの有機溶媒は、これらのうち1種のみを単独で用いてもよく、2種以上を混合して用いてもよい。
 このスラリーを調製する際に分散剤やバインダーを添加してもよい。
 分散剤やバインダーとしては、例えば、ポリカルボン酸アンモニウム塩等のポリカルボン酸塩、ポリエチレングリコール、ポリビニルアルコール、ポリビニルピロリドン等の有機高分子等が好適に用いられる。
 得られた誘電体材料内で誘電損失のばらつきを小さくするためには、スラリー内に生成する凝集体を破壊して微粒子とし、この微粒子の状態で均一に分散させることが重要である。
 生成する凝集体を破壊するには、スラリー同士を高圧にて分散及び撹拌する、好ましくは衝突させる方法が好ましい。
その際の圧力としては、100MPa以上かつ250MPa以下が好ましい。その理由としては、生成する凝集体を破壊するためには100MPa以上の圧力が必要であるからであり、一方、装置の機械的強度を考慮すると、250MPaが限界であるからである。
 この分散処理の際には、超音波ホモジナイザー、ビーズミル等の分散機を用いて分散処理を加えることも好ましい。
 なお、絶縁性粒子の原料粉体と導電性粒子の原料粉体が均一に混合されていないと、この不均一に混合されたスラリーを用いて複合化して得られる誘電体材料中の導電性粒子の分布も不均一となり、誘電損失等の電気的特性の再現性およびその焼結体内での組成の均一性が悪化する可能性がある。よって、分散媒や分散剤、分散処理条件を選定して均一に混合することが好ましい。
 次いで、このスラリーを噴霧乾燥法により噴霧乾燥する。噴霧乾燥装置は任意に選択できるが、スプレードライヤー等が好適に用いられる。
 ここでは、スラリーを加熱された気流中に噴霧し乾燥することにより、スラリー中の絶縁性材料と導電性粒子とが均一に分散された状態で、分散媒のみが散逸し、絶縁性材料中に導電性粒子が均一に分散した顆粒(造粒粉)が得られる。この時の顆粒の平均粒子径は、30~150μmであることが好ましく、50~100μmであることがより好ましい。この平均粒子径は振動篩を用いて測定された値である。
 次いで、この顆粒を通常の成形手段から選択できる方法により所定形状に成形し、成形体とする。例えば、静電チャック装置の基体に用いられる誘電体材料を作製する場合には、成形し焼成して複合焼結体とした場合の形状や厚みを考慮して、成形体の形状や厚みを設定する必要がある。
 次いで、この成形体を、焼成する。本実施形態では、この成形体を、0.2mm以下の平面度を有する板、好ましくはカーボン板にて挟む。ここで、前記板の表面の平面度を0.2mm以下とした理由は、前記板の表面に0.2mmより大きな凹凸があると、成形体への加圧が不均一になり、得られた複合焼結体に不均一な加圧に起因する焼結密度のばらつきが生じ、この焼結密度のばらつきが誘電損失のような電気的特性がばらつく要因となるからである。
 次いで、前記板にて挟まれた成形体を、所定の焼成雰囲気にて、任意に選択できる加圧下、好ましくは1MPa以上かつ100MPa以下、より好ましくは5 ~50MPaの加圧下にて焼成し、複合焼結体からなる誘電体材料とする。
 ここで、焼成雰囲気としては任意に選択できるが、導電性粒子として導電性炭化ケイ素(SiC)粒子、モリブデン(Mo)粒子、タングステン(W)粒子、タンタル(Ta)粒子等を用いた場合、これらの酸化を防止する必要があることから、非酸化性雰囲気、例えば、アルゴン(Ar)雰囲気、窒素(N)雰囲気等が好ましい。
 ここで、焼成時の圧力を1MPa以上かつ100MPa以下とした理由は、圧力が1MPa未満では、得られた複合焼結体の焼結密度が低くなり、耐食性が低下する可能性があるからである。また、緻密な焼結体が得られず、導電性も高くなり、半導体製造装置用部材として使用する際に用途が限定されてしまい、汎用性が損なわれる可能性があるからである。一方、圧力が100MPaを超えると、得られた複合焼結体の焼結密度、導電性とも問題はないが、半導体装置用部材の大型化に伴い、大型の複合焼結体の焼成装置を設計する際に、加圧面積に制限が生じる可能性があるからである。
 また、焼成温度は、使用する絶縁性材料に用いられる通常の焼成温度を適用することができる。例えば、絶縁性材料に酸化アルミニウム(Al)を使用する場合には、1500℃以上かつ1900℃以下が好ましい。
 ここで、絶縁性材料に酸化アルミニウム(Al)を使用した成形体を1500℃以上かつ1900℃以下にて焼成することが好ましい理由は、焼成温度が1500℃未満では、焼結が不十分なものとなり、緻密な複合焼結体が得られなくなる可能性があるからであり、一方、焼成温度が1900℃を超えると、焼結が進みすぎて異常粒成長等が生じる等の可能性があり、その結果、緻密な複合焼結体が得られなくなる可能性があるからである。
 また、焼成時間は、緻密な複合焼結体が得られるのに十分な時間であればよく、例えば、1~6時間程度である。
 このようにして得られた本実施形態の誘電体材料は、絶縁性材料と導電性粒子とが固溶や反応などをせずに均一に分散することで、絶縁性材料の絶縁性を低下させることなく誘電体材料の誘電率を増加させることができる。したがって、広い温度範囲において高い絶縁性と高い誘電率を両立させることができる。
 以上により、本実施形態の誘電体材料は、誘電損失の面内ばらつきが小さく、静電チャック装置用基体として好適に用いることができる。
 本実施形態の誘電体材料によれば、絶縁性材料中に導電性粒子を分散してなる複合焼結体の周波数40Hzにおける誘電率を10以上、かつ、この複合焼結体の表面内にて周波数1MHzにおける誘電損失の最大値と最小値の差を0.002以下としたので、複合焼結体の誘電率及び誘電損失の最大値と最小値の差を制御することにより、静電吸着力、脱着応答性及び耐電圧を向上させることができ、複合焼結体の表面内における温度差を極めて小さくすることができる。したがって、誘電体材料の信頼性を向上させることができる。
 また、この誘電体材料の体積抵抗率、耐電圧、熱伝導率、周波数40Hzにおける誘電損失のうちいずれかの特性またはこれら複数の特性を制御することにより、静電吸着力、脱着応答性及び耐電圧をさらに向上させることができ、複合焼結体の表面内における温度差を無くすことができる。したがって、誘電体材料の信頼性を長期に亘って維持することができる。
[静電チャック装置]
 図1は、本発明の一実施形態の静電チャック装置の例を示す断面図である。この静電チャック装置1においては、上面(一主面)2aがシリコンウエハ等の各種ウエハ(板状試料)Wを載置する載置面であるため静電チャック部材(基体)2と、この静電チャック部材2の下面(他の一主面)2b側に設けられた静電吸着用電極3とにより、静電チャック部4が構成されている。そして、この静電吸着用電極3には、シート状またはフィルム状の(第1の)有機系接着剤層5を介してシート状またはフィルム状の絶縁層6が接着される。このシート状またはフィルム状の絶縁層6及び静電チャック部4には、(第2の)有機系接着剤層7を介して、静電チャック部4を支持するとともにウエハWを温度調節するベース部(基台)8が接着されている。
 以下、この静電チャック装置1について詳細に説明する。
 静電チャック部材2は、本実施形態の誘電体材料からなる円板状の部材である。その厚みは0.3mm以上かつ5mm以下が好ましく、0.4mm以上かつ3mm以下がより好ましい。その理由は、静電チャック部材2の厚みが0.3mmを下回ると、静電チャック部材2の機械的強度を確保することができない可能性があるからである。一方、静電チャック部材2の厚みが5mmを上回ると、ウエハWを吸着する上面2aと静電吸着用電極3との間の距離が増加し、吸着力が低下する。その低下とともに、静電チャック部材2の熱容量が大きくなり、載置されるウエハWとの熱交換効率が低下し、ウエハWの面内温度を所望の温度パターンに維持することが困難になるからである。
 この静電チャック装置1の温度分布に係わる特性を向上させるためには、この静電チャック部材2のウエハWを載置する上面2aの表面粗さRaは0.002μmより大であることが好ましく、0.005μmより大であることがより好ましい。
 ここで、上面2aの表面粗さRaを0.002μmより大とした理由は、表面粗さRaが0.002μm以下であると、この上面2aにおける熱伝達効果が不十分なものとなるので、好ましくないからである。
 一方、この静電チャック装置1のパーティクルの発生に対する不具合を無くすためには、静電チャック部材2のウエハWを載置する上面2aは鏡面研磨されていることが好ましい。この上面2aの表面粗さRaは0.5μm以下であることが好ましく、0.15μm以下であることがより好ましい。
 また、この静電チャック部材2の上面2a、すなわちウエハWの吸着面とウエハWとの間にHeガス、Nガス等の熱媒体を循環させる流路を形成することとしてもよい。
 さらに、この静電チャック部材2の上面2aに突起、溝、突起および溝、のいずれかを形成して凹凸面としてもよい。
 静電吸着用電極3は、電荷を発生させて静電吸着力でウエハWを静電チャック部材2の上面2aに固定するための静電チャック用電極として用いられる。その用途によって、その形状及び大きさが適宜調整される。
 この静電吸着用電極3を構成する材料としては、導電性を有する非磁性材料である金(Au)、銀(Ag)、銅(Cu)等の金属、チタン、タングステン、モリブデン、白金等の高融点金属、グラファイト、カーボン等の炭素材料、炭化ケイ素(SiC)、窒化チタン(TiN)、炭化チタン(TiC)、炭化タングステン(WC)等の導電性セラミックス、TiC-Ni系、TiC-Co系、BC-Fe系等のサーメット等が好適に用いられる。これらの材料の熱膨張係数は、静電チャック部材2の熱膨張係数にできるだけ近似していることが好ましい。
 この静電吸着用電極3の厚みは、特に限定されるものではないが、プラズマ発生用電極として使用する場合には、5μm以上かつ200μm以下が好ましく、特に好ましくは10μm以上かつ100μm以下である。その理由は、厚みが5μmを下回ると、充分な導電性を確保することができない可能性があるからである。一方、厚みが200μmを越えると、静電チャック部材2と静電吸着用電極3との間の熱膨張率差に起因して、静電チャック部材2と静電吸着用電極3との接合界面にクラックが入り易くなるとともに、静電吸着用電極3の下面全体を有機系接着剤層5で覆うことができなくなり、この静電吸着用電極3の側面方向の絶縁性が低下する可能性があるからである。
 このような厚みの静電吸着用電極3は、スパッタ法や蒸着法等の成膜法、あるいはスクリーン印刷法等の塗工法により容易に形成することができる。
 この静電チャック部4では、その上面2aにウエハWを載置し、このウエハWと静電吸着用電極3との間に所定の電圧を印加することにより、静電気力を利用してウエハWを静電チャック部材2の上面2aに吸着固定することが可能な構造となっている。
 有機系接着剤層5は、アクリル、エポキシ、ポリエチレン等からなるシート状またはフィルム状の接着剤であり、熱圧着式の有機系接着剤シートまたはフィルムであることが好ましい。
 好ましい理由は、熱圧着式の有機系接着剤シートまたはフィルムは、静電吸着用電極3上に重ね合わせて、真空引きした後、熱圧着することにより、静電吸着用電極3との間に気泡等が生じ難く、したがって、剥がれ難くなり、静電チャック部4の吸着特性や耐電圧特性を良好に保持することができるからである。
 この有機系接着剤層5の厚みは、特に限定されるものではない。接着強度及び取り扱い易さ等を考慮すると、5μm以上かつ100μm以下が好ましく、より好ましくは10μm以上かつ50μm以下である。
 厚みが5μm以上かつ100μm以下であれば、この有機系接着剤層5と静電吸着用電極3の下面との間の接着強度が向上し、さらに、この有機系接着剤層5の厚みがより均一になる。その結果、静電チャック部材2とベース部8との間の熱伝達率が均一になり、載置されたウエハWの加熱特性あるいは冷却特性が均一化され、このウエハWの面内温度が均一化される。
 なお、この有機系接着剤層5の厚みが5μmを下回ると、静電チャック部4とベース部8との間の熱伝達性は良好となるものの、有機系接着剤層5の厚みが薄くなりすぎる可能性がある。このことから、この有機系接着剤層5と静電吸着用電極3の下面との間の接着強度が弱くなり、この有機系接着剤層5と静電吸着用電極3の下面との間に剥離が生じ易くなる可能性があるので好ましくない。一方、厚みが100μmを超えると、有機系接着剤層5の厚みが厚くなりすぎる可能性があることから、静電チャック部4とベース部8との間の熱伝達性を十分確保することができなくなり、ウエハWを温度調節する場合の加熱効率あるいは冷却効率が低下するので、好ましくない。
 このように、有機系接着剤層5をシート状またはフィルム状の接着剤としたことにより、有機系接着剤層5の厚みが均一化され、静電チャック部材2とベース部8との間の熱伝達率が均一になる。よって、ウエハWの温度調節機能の向上により加熱特性あるいは冷却特性が均一化され、このウエハWの面内温度が均一化される。
 絶縁層6の形成には、静電チャック部4における印加電圧に耐えうる絶縁性樹脂からなるシート状またはフィルム状の絶縁性材料であり、例えば、ポリイミド、ポリアミド、芳香族ポリアミド等が好適に用いられる。この絶縁層6の外周部は、静電チャック部材2の外周部より内側とされている。
 このように、絶縁層6を静電チャック部材2より内側に設けることで、この絶縁層6の酸素系プラズマに対する耐プラズマ性、腐食性ガスに対する耐腐食性が向上し、パーティクル等の発生も抑制される。
 この絶縁層6の厚みは任意で選択されるが、40μm以上かつ200μm以下が好ましく、より好ましくは50μm以上かつ100μm以下である。
 この絶縁層6の厚みが40μmを下回ると、静電吸着用電極3に対する絶縁性が低下し、静電吸着力も弱くなり、ウエハWを上面2a(載置面)に良好に固定することができなくなる可能性があるからである。一方、厚みが200μmを超えると、静電チャック部4とベース部8との間の熱伝達性を十分確保することができなくなり、ウエハWの温度調節機能の低下、すなわち加熱効率あるいは冷却効率が低下する可能性があるからである。
 有機系接着剤層7は、静電チャック部4及び絶縁層6とベース部8とを接着・固定する。有機系接着剤層7は、静電吸着用電極3、有機系接着剤層5及び絶縁層6を覆うように設けられたことにより、酸素系プラズマや腐食性ガスから保護する。耐プラズマ性が高く、熱伝導率が高く、ベース部8からの温度調節効率、すなわち加熱効率あるいは冷却効率が高い材料が好ましい。例えば、耐熱性、弾性に優れた樹脂であるシリコーン系樹脂組成物が好ましい。
 このシリコーン系樹脂組成物は、シロキサン結合(Si-O-Si)を有するケイ素化合物であり、例えば、熱硬化温度が70℃~140℃のシリコーン樹脂を用いることが好ましい。
 ここで、熱硬化温度が70℃を下回ると、静電チャック部4及び絶縁層6とベース部8とを接合する際に、接合過程の途中で硬化が始まってしまい、接合作業に支障を来す可能性があるので好ましくない。一方、熱硬化温度が140℃を超えると、静電チャック部4及び絶縁層6とベース部8との熱膨張差を吸収することができない可能性がある。その結果、静電チャック部材2の載置面における平坦度が低下するのみならず、静電チャック部4及び絶縁層6とベース部8との間の接合力が低下し、これらの間で剥離が生じる可能性があるので好ましくない。
 有機系接着剤層7の熱伝導率は、0.25W/mk以上が好ましく、より好ましくは0.5W/mk以上である。
 ここで、有機系接着剤層7の熱伝導率を0.25W/mk以上と限定した理由は、熱伝導率が0.25W/mk未満では、ベース部8からの温度調節効率、すなわち加熱効率あるいは冷却効率が低下し、静電チャック部4の上面2aに載置されるウエハWを効率的に加熱あるいは冷却することができなくなる可能性があるからである。
 この有機系接着剤層7の厚みは、50μm以上かつ500μm以下が好ましい。
 この有機系接着剤層7の厚みが50μmを下回ると、この有機系接着剤層7が薄くなりすぎてしまい、その結果、接着強度を十分確保することができなくなり、絶縁層6及び静電チャック部4とベース部8との間で剥離等が生じる可能性があるからである。一方、厚みが500μmを超えると、絶縁層6及び静電チャック部4とベース部8との間の熱伝達性を十分確保することができなくなり、加熱効率あるいは冷却効率が低下する可能性があるからである。
 さらに、この有機系接着剤層7の熱伝導率を、上記の有機系接着剤層5の熱伝導率及び絶縁層6の熱伝導率と同等またはそれ以上とすることで、この有機系接着剤層7の温度上昇を抑制することができ、この有機系接着剤層7の厚みのバラツキによる面内温度のバラツキを低減することができる。その結果、載置されるウエハWの温度を均一化することができ、このウエハWの面内温度を均一化することができるので、好ましい。
 この有機系接着剤層7には、平均粒径が1μm以上かつ10μm以下のフィラー、例えば、窒化アルミニウム(AlN)粒子の表面に酸化ケイ素(SiO)からなる被覆層が形成された表面被覆窒化アルミニウム(AlN)粒子が含有されていることが好ましい。
 この表面被覆窒化アルミニウム(AlN)粒子は、シリコーン樹脂の熱伝導性を改善するために混入されたもので、その混入率を調整することにより、有機系接着剤層7の熱伝達率を制御することができる。
 ベース部8は、静電チャック部4に載置されるウエハWを、加熱あるいは冷却して温度を調整するための厚みのある円板状の温度調節用部材である。有機系接着剤層5、絶縁層6及び有機系接着剤層7を介して静電チャック部4を加熱あるいは冷却することにより、ウエハWを所望の温度パターンに調整することができる。このベース部8は外部の高周波電源(図示略)に接続されており、このベース部8の内部には、必要に応じて、加熱あるいは冷却用あるいは温度調節用の水、絶縁性の熱媒あるいは冷媒を循環させる流路が形成されている。
 このベース部8を構成する材料としては、熱伝導性、電気導電性、加工性に優れた金属、金属-セラミックス複合材料のいずれかであれば特に制限はない。例えば、アルミニウム(Al)、銅(Cu)、ステンレス鋼(SUS) 等が好適に用いられる。このベース部8の側面、すなわち少なくともプラズマに曝される面は、アルマイト処理、もしくは酸化アルミニウム、酸化イットリウム等の絶縁性の溶射材料にて被覆されていることが好ましい。
 このベース部8では、少なくともプラズマに曝される面にアルマイト処理または絶縁膜の成膜が施されていることにより、耐プラズマ性が向上する他、異常放電が防止され、したがって、耐プラズマ安定性が向上したものとなる。また、表面に傷が付き難くなるので、傷の発生を好ましく防止することができる。
 この静電チャック装置1では、静電チャック部4とベース部8との間の熱伝達率は100W/mK以上かつ3000W/m・K以下であることが好ましく、300W/m・K以上かつ1000W/m・K以下であることがより好ましい。
 ここで、熱伝達率を100W/mK以上とした理由は、ベース部8を用いて誘電体材料からなる静電チャック部4の温度制御をする際の応答性を確保するためである。一方、熱伝達率を3000W/mK以下とした理由は、ベース部8と静電チャック部4との間の熱伝達率が3000W/mKを超えると、ベース部8からの熱量が静電チャック部4へ伝わらずに、接合部分から周辺外部へ飛散してしまい、外周部分近傍の温度制御がし難くなるからである。
 この静電チャック装置1では、静電チャック部4とベース部8との間の熱伝達率は、面内において、最大値と最小値の差が100W/mK以下であることが好ましい。その理由としては、最大値と最小値の差が100W/mKを超えると、ベース部8の温度を、吸着面内に均一に伝達することができないからである。
 この静電チャック装置1では、静電チャック部4とベース部8との間の有機系接着剤層7に静電チャック部4を加熱するためのヒーターを備えてもよい。このヒーターとしては、有機系接着剤層7の厚みを薄くするために、薄膜状のものを用いることが好ましい。
 また、高周波による発熱をなくすためには、このヒーターの材質に、非磁性体の金属または導電性セラミックスを使用することが好ましい。
 本実施形態の静電チャック装置1によれば、本実施形態の誘電体材料を円板状の静電チャック部材2に用いた。その為、板状試料Wの静電吸着力及び脱着応答性を向上させることができ、静電チャック部材2自体の耐電圧を向上させることができる。さらに、板状試料Wを静電吸着する静電チャック部材2の上面2aにおける温度差を極めて小さくすることができる。したがって、板状試料Wの全面に亘って各種処理を均一に行うことができ、得られた製品の信頼性を向上させることができる。
 図2は、本実施形態の静電チャック装置の変形例を示す断面図である。この静電チャック装置11が上述した静電チャック装置1と異なる点は、静電吸着用電極3の下面を覆うように絶縁性セラミックスからなる支持板12が設けられ、この支持板12は、静電チャック部材2と一体化されるとともに、有機系接着剤層7を介してベース部8に接着されている点である。これ以外の点については、上述した静電チャック装置1と同様であるから、説明を省略する。
 支持板12の成分である絶縁性セラミックスとしては、上述した静電チャック部材2に用いられる絶縁性セラミックスと同一組成の絶縁性セラミックスであってもよく、異なる組成の絶縁性セラミックスであってもよい。
 特に、支持板12と静電チャック部材2との間の熱膨張差による反りや微細クラックの発生等を防止するためには、支持板12と静電チャック部材2それぞれに用いられている絶縁性セラミックスの熱膨張係数の差が10%以下であることが好ましい。この場合、支持板12と静電チャック部材2に同一の組成の絶縁性セラミックスを用いることがより好ましい。
 また、高周波による発熱は絶縁性材料でも生じるので、用いる絶縁性セラミックスとしては、周波数1MHzにて測定した誘電損失のばらつきが0.002以下のものを使用することが好ましい。
 支持板12と静電チャック部材2とを一体化する方法としては様々な方法があり、例えば次のような方法がある。
(1)静電チャック部材2の下面2bに静電吸着用電極3となる電極材料を塗布し、この電極材料を覆うように、支持板12となる絶縁性セラミックス粉体を所定形状に成形した成形体を載置し、これらを所定の温度にて焼成することにより、静電チャック部材2、静電吸着用電極3及び支持板12を一体化する方法。
(2)静電チャック部材2の下面2bに静電吸着用電極3となる電極材料を塗布し、この静電チャック部材2の下面2bのうち電極材料が塗布されていない領域に支持板12となる絶縁性セラミックス粉体を含む材料を塗布し、これらを所定の温度及び圧力にてホットプレスすることにより、静電チャック部材2、静電吸着用電極3及び支持板12を一体化する方法。
 これらの方法にて得られた静電チャック装置11では、支持板12と静電チャック部材2とを合わせたセラミックス部材の厚みは、5mm以下とすることが好ましく、より好ましくは3mm以下である。下限値は任意に選択できるが0.1 mm以上であることが好ましい。
 セラミックス部材の厚みを5mm以下と薄くすることで、誘電損失による発熱量を減らすことができ、温度分布をより均一にすることができる。
 この静電チャック装置11に載置される板状試料を加熱する必要がある場合には、支持板12と静電チャック部材2のうちいずれか一方または双方の内部に、板状試料を加熱するためのヒーターを埋め込んでもよい。
 ここで、ヒーターを埋め込んだ場合の支持板12と静電チャック部材2とを合わせたセラミックス部材の厚みは、7mm以下とすることが好ましく、より好ましくは5mm以下である。
 この静電チャック装置11においても、上述した静電チャック装置1と同様の作用、効果を奏することができる。
 しかも、静電吸着用電極3の下面が絶縁性セラミックスからなる支持板12により覆われているので、昇温時の反りを低減させることができる。
 また、支持板12も絶縁性セラミックスにより構成されているので、静電チャック装置11の耐久を高めることができる。
 以下、実施例及び比較例により本発明を具体的に説明するが、本発明はこれらの実施例のみによって限定されるものではない。
「実施例1」
 平均粒子径が0.03μmの炭化ケイ素(SiC)粉体と、平均粒子径が0.05μmの炭化ケイ素(SiC)粉体と、平均粒子径が0.1μmの炭化ケイ素(SiC)粉体とを、質量比で1:1:1の割合で混合し、炭化ケイ素(SiC)混合粉体を得た。
 次いで、この炭化ケイ素(SiC)混合粉体が8質量%、平均粒子径が0.1μmの酸化アルミニウム(Al)粉体が92質量%となるようにこれらを秤量し、これらの粉体の全質量100質量部に対して水を72質量部添加して撹拌し、スラリーを得た。
 次いで、このスラリーを湿式ジェットミル装置((株)スギノマシン HJP-25010)に投入し、150MPaの圧力にて加圧し、スラリー同士を斜向衝突させることで120分間の分散処理をし、分散液を得た。
 次いで、この分散液を、スプレードライヤーを用いてスプレーし200℃にて乾燥し、酸化アルミニウム(Al)の含有率が92質量%のAl-SiC複合粉体を得た。
 次いで、このAl-SiC複合粉体を成形機を用いて所定形状に成形した。次いで、この成形体を平面度が0.1mmのカーボン板に挟み、この成形体をカーボン板にて挟んだ状態でホットプレスに収納し、アルゴン(Ar)雰囲気下、1650℃、圧力25MPaにて2時間焼成を行い、Al-SiC複合焼結体を得た。
 次いで、この複合焼結体に機械加工を施して、直径300mm、厚み1.0mmの円板状に加工し、実施例1のAl-SiC複合焼結体からなる誘電体板を作製した。
「実施例2」
 炭化ケイ素(SiC)混合粉体を11質量%、酸化アルミニウム(Al)粉体を89質量%とした以外は、実施例1と同様にして、実施例2のAl-SiC複合焼結体からなる誘電体板を作製した。
「実施例3」
 炭化ケイ素(SiC)混合粉体を9質量%、酸化アルミニウム(Al)粉体を91質量%とした以外は、実施例1と同様にして、実施例3のAl-SiC複合焼結体からなる誘電体板を作製した。
「実施例4」
 炭化ケイ素(SiC)混合粉体を、9質量%に対して平均粒子径が0.1μmの酸化アルミニウム(Al)粉体を91質量%とし、さらに、焼成温度を1800℃、圧力を40MPaとした以外は、実施例1と同様にして、実施例4のAl-SiC複合焼結体からなる誘電体板を作製した。
「実施例5」
 平均粒子径が0.03μmの炭化ケイ素(SiC)粉体と、平均粒子径が0.05μmの炭化ケイ素(SiC)粉体と、平均粒子径が0.1μmの炭化ケイ素(SiC)粉体とを、質量比で1:2:1の割合で混合し、炭化ケイ素(SiC)混合粉体を得た。この炭化ケイ素(SiC)混合粉体10質量%に対して平均粒子径が0.1μmの酸化アルミニウム(Al)粉体を90質量%とした以外は、実施例1と同様にして、実施例5のAl-SiC複合焼結体からなる誘電体板を作製した。
「実施例6」
 炭化ケイ素(SiC)混合粉体を12質量%、酸化アルミニウム(Al)粉体を88質量%とした以外は、実施例1と同様にして、実施例6のAl-SiC複合焼結体からなる誘電体板を作製した。
「実施例7」
 平均粒子径が0.03μmの炭化ケイ素(SiC)粉体と、平均粒子径が0.05μmの炭化ケイ素(SiC)粉体と、平均粒子径が0.1μmの炭化ケイ素(SiC)粉体とを、質量比で1:1:1の割合で混合し、炭化ケイ素(SiC)混合粉体を得た。
 次いで、この炭化ケイ素(SiC)混合粉体が10質量%、平均粒子径が0.1μmの酸化イットリウム(Y)粉体が90質量%となるようにこれらを秤量し、これらの粉体の全質量100質量部に対して水を72質量部添加して撹拌し、スラリーを得た。
 次いで、このスラリーを湿式ジェットミル装置に投入し、150MPaの圧力にて加圧し、スラリー同士を斜向衝突させることで分散処理し、分散液を得た。
 次いで、この分散液を、スプレードライヤーを用いてスプレーし200℃にて乾燥し、酸化イットリム(Y)の含有率が90質量%のY-SiC複合粉体を得た。
 次いで、このY-SiC複合粉体を成形機を用いて所定形状に成形した。次いで、この成形体を平面度が0.1mmのカーボン板に挟み、この成形体をカーボン板にて挟んだ状態でホットプレスに収納し、アルゴン(Ar)雰囲気下、1500℃、圧力20MPaにて2時間焼成を行い、実施例7のY-SiC複合焼結体を得た。
 次いで、この複合焼結体に機械加工を施して、直径300mm、厚み1.0mmの円板状に加工し、実施例7のY-SiC複合焼結体からなる誘電体板を作製した。
「比較例1」
 炭化ケイ素(SiC)混合粉体を、平均粒子径が0.05μmの炭化ケイ素(SiC)粉体に替え、この炭化ケイ素(SiC)粉体8質量%に対して平均粒子径が0.1μmの酸化アルミニウム(Al)粉体を92質量%とした以外は、実施例1と同様にして、比較例1のAl-SiC複合焼結体からなる誘電体板を作製した。
「比較例2」
 炭化ケイ素(SiC)混合粉体を、平均粒子径が0.03μmの炭化ケイ素(SiC)粉体に替え、この炭化ケイ素(SiC)粉体10質量%に対して平均粒子径が0.1μmの酸化アルミニウム(Al)粉体を90質量%とした以外は、実施例1と同様にして、比較例2のAl-SiC複合焼結体からなる誘電体板を作製した。
「比較例3」
 炭化ケイ素(SiC)混合粉体を、平均粒子径が0.05μmの炭化ケイ素(SiC)粉体に替え、この炭化ケイ素(SiC)粉体9質量%に対して平均粒子径が0.1μmの酸化アルミニウム(Al)粉体を91質量%とし、さらに、焼成温度を1800℃、圧力を40MPaとした以外は、実施例1と同様にして、比較例3のAl-SiC複合焼結体からなる誘電体板を作製した。
「比較例4」
 炭化ケイ素(SiC)混合粉体を、平均粒子径が0.03μmの炭化ケイ素(SiC)粉体に替え、この炭化ケイ素(SiC)粉体12質量%に対して平均粒子径が0.1μmの酸化アルミニウム(Al)粉体を88質量%とした以外は、実施例1と同様にして、比較例4のAl-SiC複合焼結体からなる誘電体板を作製した。
「比較例5」
 炭化ケイ素(SiC)混合粉体を、平均粒子径が0.03μmの炭化ケイ素(SiC)粉体に替え、この炭化ケイ素(SiC)粉体32質量%に対して平均粒子径が0.1μmの酸化アルミニウム(Al)粉体を68質量%とした以外は、実施例1と同様にして、比較例5のAl-SiC複合焼結体からなる誘電体板を作製した。
「誘電体板の評価」
 実施例1~7及び比較例1~5それぞれの誘電体板に対して、体積抵抗率、誘電率、誘電損失、耐電圧及び温度分布を評価した。
 ここでは、直径300mm、厚み1.0mmの誘電体板の中心1点と、外周部を90°ごとに4分割した4点(0°、90°、180°及び270°)の合計5点について、体積抵抗率、誘電率、誘電損失、耐電圧及び温度分布を測定し評価した。外周部は縁部から内部へ10mmの箇所を測定した。
 これらの各項目の評価方法は下記のとおりである。
(1)体積抵抗率
 デジタル超高抵抗/電流計R83040A(アドバンテスト社製)を用いて、3端子法にて測定した。ここでは、印加電圧を500Vとし、この電圧を60秒間保持したときの電流値を基に体積抵抗率を算出した。測定した5点の体積抵抗率の平均値を表1に示す。体積抵抗率は1013Ω・cm以上であることが好ましい。この時の測定時の温度は20℃である。
(2)誘電率及び誘電損失
 誘電体測定システム126096W(東陽テクニカ社製)を用いて、40Hzにおける誘電率、及び40Hzと1MHzの誘電損失を測定した。測定した5点の誘電率の平均値を表1に示す。また、測定した5点それぞれの誘電損失の値を表2に示す。周波数40Hzにおける誘電損失は0.01以上かつ0.05以下であることが好ましく、誘電率は10以上であることが好ましい。
(3)耐電圧
 誘電体板を35mm角のシリコンウエハにて電極間の沿面放電が生じない様に挟み、10kV/mmまでは1kV/mm毎に、10kV/mm以上では0.5kV/mm毎に、所定の測定電圧まで電圧を上げ、この所定の測定電圧を印加した1分間保持後の電流値を測定した。この場合、1分間保持後の電流値が保持当初の時点での電流値と同等であった場合、さらに電圧を上げて、1分間保持後の電流値が保持当初の時点での電流値と比べて上昇している場合に、その印加電圧を耐電圧値とした。測定結果を表1に示す。誘電体材料の耐電圧は、5kV/mm以上であることが好ましい。この時の測定時の温度は20℃である。
(4)温度分布
 誘電体板における均熱性を調べるために、誘電体板の表面における温度分布を測定し評価した。
 ここでは、誘電体板を用いて図1に示す静電チャック装置1の静電チャック部材2を作製し、この静電チャック部材2に13.56MHzの高周波を印加して、表面内の温度分布を赤外線サーモグラフィにて測定し、最高温度と最低温度の差を算出した。この温度差の結果を温度分布として表1に示す。温度分布は小さいほど好ましい。
Figure JPOXMLDOC01-appb-T000001
                  
Figure JPOXMLDOC01-appb-T000002
                  
 表1及び表2によれば、実施例1~6の誘電体板では、比較例1~4の誘電体板と比べて、誘電損失のばらつきが小さく、高周波を印加した際の温度分布が狭くなっていることが分かった。
 比較例5の誘電体板では、体積抵抗率が10Ω・cmと大幅に低くなり、誘電率が2未満、耐電圧が2kV/mm未満となった。したがって、誘電体板の表面における温度分布及び40Hzと1MHzの誘電損失については測定していない。
 さらに、実施例1の誘電体板を用いた静電チャック装置1を用意して、静電チャック部材2とベース部8との間の熱伝達率を測定した。その結果、熱伝達率の平均値は625W/m・Kであり、熱伝達率の面内の最大値は630W/m・K、最小値は617W/m・Kであった。
 このように、本実施形態の誘電体板を図1に示す静電チャック装置1の静電チャック部材2に用いることで、高周波を印加した際の温度分布が狭い静電チャック装置を提供することができることが確認された。
 十分な静電吸着力、良好な脱着応答性及び高い耐電圧が得られ、複合焼結体の表面内に温度差が生じず、しかも安価な誘電体材料、及び、この誘電体材料を基体に用いた静電チャック装置を提供する。
 1 静電チャック装置
 2 静電チャック部材(基体)
 2a 上面(一主面)
2b 下面
 3 静電吸着用電極
 4 静電チャック部
 8 ベース部
 11 静電チャック装置
 12 支持板
 W 板状試料

Claims (15)

  1.  絶縁性材料中に導電性粒子が分散された複合焼結体からなる誘電体材料であって、
     周波数40Hzにおける誘電率は10以上、かつ、前記複合焼結体の表面内にて周波数1MHzにおける誘電損失の最大値と最小値の差は0.002以下であることを特徴とする誘電体材料。
  2.  20℃における体積抵抗率は1013Ω・cm以上、耐電圧は5kV/mm以上であることを特徴とする請求項1記載の誘電体材料。
  3.  120℃における体積抵抗率は1013Ω・cm以上、耐電圧は5kV/mm以上であることを特徴とする請求項1または2記載の誘電体材料。
  4.  熱伝導率は20W/m・K以上であることを特徴とする請求項1ないし3のいずれか1項記載の誘電体材料。
  5.  周波数40Hzにおける誘電損失は0.01以上かつ0.05以下であることを特徴とする請求項1ないし4のいずれか1項記載の誘電体材料。
  6.  基体の一主面に板状試料を静電吸着する静電チャック装置であって、
     前記基体が請求項1ないし5のいずれか1項記載の誘電体材料から形成されていることを特徴とする静電チャック装置。
  7. 絶縁性材料が、絶縁性セラミックスであることを特徴とする請求項1記載の誘電体材料。
  8. 絶縁性材料が、酸化アルミニウム、酸化イットリウム、酸化ケイ素、酸化ジルコニウム、ムライト、酸化ハフニウム、酸化スカンジウム、酸化ネオジム、酸化ニオブ、酸化サマリウム、酸化イッテルビウム、酸化エルビウム、酸化セリウム、窒化アルミニウム、窒化ケイ素、窒化ホウ素、酸化イットリウム、イットリウム・アルミニウム・ガーネットからなる群から選択される少なくとも一つであることを特徴とする請求項1記載の誘電体材料。
  9. 絶縁性材料が、平均粒子径が1μm以下の粉体から得られたことを特徴とする請求項1記載の誘電体材料。
  10. 導電性粒子が、炭化ケイ素粒子、モリブデン粒子、タングステン粒子、タンタル粒子、炭素粒子からなる群から選択される少なくとも1種であることを特徴とする請求項1記載の誘電体材料。
  11. 導電性粒子が炭化ケイ素粒子であり、絶縁性材料が酸化アルミニウムであることを特徴とする請求項1記載の誘電体材料。
  12. 誘電体材料における導電性粒子の含有率が4質量%以上かつ20質量%以下であることを特徴とする請求項1記載の誘電体材料。
  13. 前記複合焼結体が、
    絶縁性材料の原料粉体と導電性粒子の原料粉体と分散媒とを混合しスラリーを形成する工程と、
    100MPa以上かつ250MPa以下の加圧下にて前記スラリーの紛体を分散させる工程と、
    前記スラリーを噴霧乾燥して顆粒とする工程と、
    前記顆粒を成形し成形体とし、成形体を0.2mm以下の平面度を有するカーボン板にて挟み、1MPa以上かつ100MPa以下の加圧下にて焼成する工程をこの順で含む方法によって得られたことを特徴とする請求項1記載の誘電体材料。
  14. 前記分散媒が水及び有機溶媒の少なくとも一つである、請求項13の誘電体材料。
  15. 絶縁性材料の原料粉体が酸化アルミニウム粉体であり、導電性粒子の原料粉体が炭化ケイ素粒子であることを特徴とする請求項13記載の誘電体材料。
PCT/JP2015/056799 2014-03-10 2015-03-09 誘電体材料及び静電チャック装置 WO2015137270A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/120,150 US9944561B2 (en) 2014-03-10 2015-03-09 Dielectric material and electrostatic chucking device
CN201580007766.5A CN105980331B (zh) 2014-03-10 2015-03-09 电介质材料及静电卡盘装置
JP2015515734A JP6103046B2 (ja) 2014-03-10 2015-03-09 誘電体材料、静電チャック装置
KR1020167024011A KR101757793B1 (ko) 2014-03-10 2015-03-09 유전체 재료 및 정전 척 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014046815 2014-03-10
JP2014-046815 2014-03-10

Publications (1)

Publication Number Publication Date
WO2015137270A1 true WO2015137270A1 (ja) 2015-09-17

Family

ID=54071715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056799 WO2015137270A1 (ja) 2014-03-10 2015-03-09 誘電体材料及び静電チャック装置

Country Status (5)

Country Link
US (1) US9944561B2 (ja)
JP (1) JP6103046B2 (ja)
KR (1) KR101757793B1 (ja)
CN (1) CN105980331B (ja)
WO (1) WO2015137270A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017122716A1 (ja) * 2016-01-12 2017-07-20 住友大阪セメント株式会社 静電チャック装置および静電チャック装置の製造方法
JP2017178663A (ja) * 2016-03-30 2017-10-05 住友大阪セメント株式会社 静電チャック装置
WO2018155374A1 (ja) * 2017-02-23 2018-08-30 住友大阪セメント株式会社 複合焼結体、静電チャック部材、および静電チャック装置
WO2019004402A1 (ja) * 2017-06-29 2019-01-03 住友大阪セメント株式会社 複合焼結体、静電チャック部材および静電チャック装置
CN109417013A (zh) * 2016-06-13 2019-03-01 应用材料公司 用于在等离子体处理期间控制在基板的电压波形的系统与方法
JP2019194351A (ja) * 2018-03-07 2019-11-07 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated プラズマ環境にあるチャンバ構成要素のためのY2O3−ZrO2耐エロージョン性材料
KR20200138243A (ko) 2018-03-30 2020-12-09 스미토모 오사카 세멘토 가부시키가이샤 정전 척 장치 및 그 제조 방법
US10974226B2 (en) * 2018-09-24 2021-04-13 Sabic Global Technologies B.V. Catalytic process for oxidative coupling of methane

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6854600B2 (ja) * 2016-07-15 2021-04-07 東京エレクトロン株式会社 プラズマエッチング方法、プラズマエッチング装置、および基板載置台
KR102027131B1 (ko) * 2016-12-26 2019-10-01 한국세라믹기술원 판상 세라믹-flg 복합체의 제조방법
JP7063326B2 (ja) * 2017-03-30 2022-05-09 住友大阪セメント株式会社 複合焼結体、静電チャック部材、静電チャック装置および複合焼結体の製造方法
JP6830030B2 (ja) * 2017-04-27 2021-02-17 新光電気工業株式会社 静電チャック及び基板固定装置
JP6910227B2 (ja) * 2017-07-14 2021-07-28 株式会社ディスコ 静電チャック
WO2019078364A1 (ja) 2017-10-20 2019-04-25 株式会社フェローテックセラミックス セラミックス、プローブ案内部品、プローブカードおよびパッケージ検査用ソケット
US10692653B2 (en) * 2017-10-27 2020-06-23 Yageo Corporation Ceramic sintered body and passive component including the same
WO2019163710A1 (ja) 2018-02-20 2019-08-29 日本碍子株式会社 複合焼結体、半導体製造装置部材および複合焼結体の製造方法
US11345639B2 (en) * 2018-03-22 2022-05-31 Sumitomo Osaka Cement Co., Ltd. Composite sintered body, electrostatic chuck member, electrostatic chuck device, and method for producing composite sintered body
WO2019182104A1 (ja) * 2018-03-23 2019-09-26 住友大阪セメント株式会社 静電チャック装置および静電チャック装置の製造方法
KR20200136922A (ko) * 2018-03-30 2020-12-08 스미토모 오사카 세멘토 가부시키가이샤 세라믹스 기체 및 서셉터
US20200058539A1 (en) * 2018-08-17 2020-02-20 Applied Materials, Inc. Coating material for processing chambers
US10665493B1 (en) * 2018-11-06 2020-05-26 Mikro Mesa Technology Co., Ltd. Micro device electrostatic chuck
KR101965895B1 (ko) * 2018-11-08 2019-04-04 주식회사 케이에스엠컴포넌트 정전 척 및 그 제조 방법
US11990362B2 (en) * 2019-05-22 2024-05-21 Sumitomo Osaka Cement Co., Ltd. Composite sintered body, electrostatic chuck member, electrostatic chuck device, and method for manufacturing composite sintered body
CN111081626A (zh) * 2019-12-31 2020-04-28 苏州芯慧联半导体科技有限公司 一种包含高电阻陶瓷热熔射材料的静电卡盘
JP7312712B2 (ja) * 2020-02-07 2023-07-21 新光電気工業株式会社 セラミックス基板、静電チャック、静電チャックの製造方法
JP7465771B2 (ja) * 2020-09-15 2024-04-11 日本碍子株式会社 複合焼結体、半導体製造装置部材および複合焼結体の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10275524A (ja) * 1997-03-31 1998-10-13 Kyocera Corp 耐プラズマ部材
JP2000107969A (ja) * 1998-08-03 2000-04-18 Tomoegawa Paper Co Ltd 静電チャック装置
JP2003040674A (ja) * 2001-07-25 2003-02-13 Kyocera Corp 抵抗体及びその製造方法並びに保持装置
JP2003152065A (ja) * 2001-11-14 2003-05-23 Sumitomo Osaka Cement Co Ltd 静電チャック及びその製造方法
JP2008266095A (ja) * 2007-04-24 2008-11-06 Kyocera Corp プラズマ処理装置用部材およびこれを用いたプラズマ処理装置
JP2013258429A (ja) * 2013-09-05 2013-12-26 Ngk Insulators Ltd 静電チャック

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001130968A (ja) * 1999-11-01 2001-05-15 Bridgestone Corp セラミックスラリー、及びその製造方法、並びにセラミック
JP2005174711A (ja) * 2003-12-10 2005-06-30 Tdk Corp 誘電体セラミックス粉末、誘電体セラミックス粉末の製造方法及び複合誘電体材料
JP2005203734A (ja) 2003-12-15 2005-07-28 Toshiba Ceramics Co Ltd 金属部材埋設セラミックス品とその製造方法
JP4648030B2 (ja) 2005-02-15 2011-03-09 日本碍子株式会社 イットリア焼結体、セラミックス部材、及び、イットリア焼結体の製造方法
JP4796354B2 (ja) 2005-08-19 2011-10-19 日本碍子株式会社 静電チャック及びイットリア焼結体の製造方法
JP4855177B2 (ja) * 2006-08-10 2012-01-18 住友大阪セメント株式会社 静電チャック装置
JP5668209B2 (ja) 2009-07-17 2015-02-12 富山県 複合粒子の粉砕及び分散方法
JP5720127B2 (ja) 2010-06-30 2015-05-20 住友大阪セメント株式会社 高周波透過材料
CN102834913B (zh) 2010-07-26 2016-01-06 京瓷株式会社 静电吸盘

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10275524A (ja) * 1997-03-31 1998-10-13 Kyocera Corp 耐プラズマ部材
JP2000107969A (ja) * 1998-08-03 2000-04-18 Tomoegawa Paper Co Ltd 静電チャック装置
JP2003040674A (ja) * 2001-07-25 2003-02-13 Kyocera Corp 抵抗体及びその製造方法並びに保持装置
JP2003152065A (ja) * 2001-11-14 2003-05-23 Sumitomo Osaka Cement Co Ltd 静電チャック及びその製造方法
JP2008266095A (ja) * 2007-04-24 2008-11-06 Kyocera Corp プラズマ処理装置用部材およびこれを用いたプラズマ処理装置
JP2013258429A (ja) * 2013-09-05 2013-12-26 Ngk Insulators Ltd 静電チャック

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11107719B2 (en) 2016-01-12 2021-08-31 Sumitomo Osaka Cement Co., Ltd. Electrostatic chuck device and method for manufacturing electrostatic chuck device
JP2018190987A (ja) * 2016-01-12 2018-11-29 住友大阪セメント株式会社 静電チャック装置
WO2017122716A1 (ja) * 2016-01-12 2017-07-20 住友大阪セメント株式会社 静電チャック装置および静電チャック装置の製造方法
JP2017178663A (ja) * 2016-03-30 2017-10-05 住友大阪セメント株式会社 静電チャック装置
CN109417013A (zh) * 2016-06-13 2019-03-01 应用材料公司 用于在等离子体处理期间控制在基板的电压波形的系统与方法
WO2018155374A1 (ja) * 2017-02-23 2018-08-30 住友大阪セメント株式会社 複合焼結体、静電チャック部材、および静電チャック装置
JPWO2018155374A1 (ja) * 2017-02-23 2019-02-28 住友大阪セメント株式会社 複合焼結体、静電チャック部材、および静電チャック装置
US11842914B2 (en) 2017-02-23 2023-12-12 Sumitomo Osaka Cement Co., Ltd. Composite sintered body, electrostatic chuck member, and electrostatic chuck device
WO2019004402A1 (ja) * 2017-06-29 2019-01-03 住友大阪セメント株式会社 複合焼結体、静電チャック部材および静電チャック装置
US20200211884A1 (en) * 2017-06-29 2020-07-02 Sumitomo Osaka Cement Co., Ltd. Composite sintered body, electrostatic chuck member, and electrostatic chuck device
JPWO2019004402A1 (ja) * 2017-06-29 2020-02-27 住友大阪セメント株式会社 複合焼結体、静電チャック部材および静電チャック装置
US11784079B2 (en) 2017-06-29 2023-10-10 Sumitomo Osaka Cement Co., Ltd. Composite sintered body, electrostatic chuck member, and electrostatic chuck device
JP7292060B2 (ja) 2018-03-07 2023-06-16 アプライド マテリアルズ インコーポレイテッド プラズマ環境にあるチャンバ構成要素のためのY2O3-ZrO2耐エロージョン性材料
JP2019194351A (ja) * 2018-03-07 2019-11-07 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated プラズマ環境にあるチャンバ構成要素のためのY2O3−ZrO2耐エロージョン性材料
KR20200138243A (ko) 2018-03-30 2020-12-09 스미토모 오사카 세멘토 가부시키가이샤 정전 척 장치 및 그 제조 방법
US11817339B2 (en) 2018-03-30 2023-11-14 Sumitomo Osaka Cement Co., Ltd. Electrostatic chuck device and method for manufacturing same
US10974226B2 (en) * 2018-09-24 2021-04-13 Sabic Global Technologies B.V. Catalytic process for oxidative coupling of methane

Also Published As

Publication number Publication date
US20170057875A1 (en) 2017-03-02
CN105980331A (zh) 2016-09-28
KR20160131007A (ko) 2016-11-15
KR101757793B1 (ko) 2017-07-14
CN105980331B (zh) 2020-06-19
JPWO2015137270A1 (ja) 2017-04-06
JP6103046B2 (ja) 2017-03-29
US9944561B2 (en) 2018-04-17

Similar Documents

Publication Publication Date Title
JP6103046B2 (ja) 誘電体材料、静電チャック装置
JP4855177B2 (ja) 静電チャック装置
US9837296B2 (en) Electrostatic chuck apparatus
US10273190B2 (en) Focus ring and method for producing focus ring
TWI518835B (zh) 靜電吸盤裝置
US7619870B2 (en) Electrostatic chuck
US9269600B2 (en) Electrostatic chuck device
US8284538B2 (en) Electrostatic chuck device
JP2008160097A (ja) 静電チャック、静電チャックの製造方法および基板処理装置
JP2014138164A (ja) 静電チャック装置
JP6155922B2 (ja) 静電チャック装置
US11817339B2 (en) Electrostatic chuck device and method for manufacturing same
US20080062610A1 (en) Electrostatic chuck device
JP6424563B2 (ja) 静電チャック装置およびその製造方法
JP2011159684A (ja) 静電チャック装置
JP6503689B2 (ja) 静電チャック装置およびその製造方法
JP6645319B2 (ja) 静電チャック装置
JP6531693B2 (ja) 静電チャック装置、静電チャック装置の製造方法
KR20230042679A (ko) 복합 소결체 및 복합 소결체의 제조 방법
JP2008042137A (ja) 静電チャック装置
JP7205320B2 (ja) 静電チャック装置およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015515734

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15762069

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15120150

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167024011

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15762069

Country of ref document: EP

Kind code of ref document: A1