WO2018155374A1 - 複合焼結体、静電チャック部材、および静電チャック装置 - Google Patents

複合焼結体、静電チャック部材、および静電チャック装置 Download PDF

Info

Publication number
WO2018155374A1
WO2018155374A1 PCT/JP2018/005719 JP2018005719W WO2018155374A1 WO 2018155374 A1 WO2018155374 A1 WO 2018155374A1 JP 2018005719 W JP2018005719 W JP 2018005719W WO 2018155374 A1 WO2018155374 A1 WO 2018155374A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum oxide
sintered body
crystal grains
composite sintered
silicon carbide
Prior art date
Application number
PCT/JP2018/005719
Other languages
English (en)
French (fr)
Inventor
宣浩 日▲高▼
弘訓 釘本
Original Assignee
住友大阪セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友大阪セメント株式会社 filed Critical 住友大阪セメント株式会社
Priority to KR1020197018799A priority Critical patent/KR102543049B1/ko
Priority to JP2018540079A priority patent/JP6781261B2/ja
Priority to CN201880008846.6A priority patent/CN110248910B/zh
Priority to US16/480,264 priority patent/US11842914B2/en
Publication of WO2018155374A1 publication Critical patent/WO2018155374A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/101Refractories from grain sized mixtures
    • C04B35/103Refractories from grain sized mixtures containing non-oxide refractory materials, e.g. carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • H01J37/32724Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68757Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a coating or a hardness or a material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • C04B2235/3834Beta silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6586Processes characterised by the flow of gas
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/85Intergranular or grain boundary phases
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/002Cooling arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection

Definitions

  • the present invention relates to a composite sintered body, an electrostatic chuck member, and an electrostatic chuck device.
  • the present application claims priority based on Japanese Patent Application Nos. 2017-032622 and 2017-032623 filed in Japan on February 23, 2017, the contents of which are incorporated herein by reference.
  • a semiconductor manufacturing apparatus that performs a plasma process has an electrostatic chuck device.
  • the electrostatic chuck device can easily attach and fix a plate-like sample (for example, a wafer) on a sample stage.
  • the electrostatic chuck device can maintain the wafer at a desired temperature.
  • An electrostatic chuck device includes an electrostatic chucking electrode that generates an electrostatic force (Coulomb force) between a base body on which a main surface is placed on a wafer and a wafer placed on the placement surface. (For example, refer patent document 1).
  • the substrate on which the wafer is placed is heated to a high temperature by the plasma. Therefore, the base is formed using a ceramic material having heat resistance and insulation.
  • the wafer is fixed by using an electrostatic force generated between the wafer and the electrostatic chucking electrode. That is, when the electrostatic chuck device fixes the wafer, a voltage is applied to the electrostatic chucking electrode to generate an electrostatic force between the wafer and the electrostatic chucking electrode. On the other hand, when removing the wafer fixed to the mounting surface of the electrostatic chuck device, voltage application to the electrostatic chucking electrode is stopped, and the electrostatic force between the wafer and the electrostatic chucking electrode is lost.
  • devices using semiconductors tend to be highly integrated.
  • wiring miniaturization also referred to as a microfabrication technique
  • 3D also referred to as a three-dimensional mounting technique
  • the conditions for using the semiconductor manufacturing apparatus and the electrostatic chuck apparatus used in the semiconductor manufacturing apparatus are becoming strict.
  • Semiconductor manufacturing apparatuses are required to (i) reduce the in-plane temperature distribution (temperature difference) of the wafer, and (ii) be able to reliably carry out deep drilling technology.
  • the “degree of in-plane temperature distribution (temperature difference) of the wafer placed on the sample stage” may be referred to as “thermal uniformity”. “High soaking” means that the in-plane temperature distribution of the wafer is small.
  • the electrostatic chuck device in order to reduce the in-plane temperature distribution (temperature difference) of the wafer, a fine groove is provided in the sample stage, and a gaseous refrigerant (for example, helium) is caused to flow in the groove.
  • a gaseous refrigerant for example, helium
  • a technique for cooling a wafer placed on a sample stage is known.
  • the electrostatic chuck device when the gas pressure of the refrigerant is increased, the electrostatic chuck device is required to have a high adsorption force so that the wafer is not detached by the pressure received from the refrigerant. In order to obtain a high attracting force, it is preferable that the dielectric constant of the substrate of the electrostatic chuck device is high.
  • the present invention has been made in view of such circumstances, and is suitably used in an electrostatic chuck device, can improve productivity, and is a composite sintered material that achieves both high dielectric constant and high withstand voltage.
  • the purpose is to provide a body. It is another object of the present invention to provide an electrostatic chuck member and an electrostatic chuck device using such a composite sintered body.
  • the ceramic material which is a material for forming the substrate, becomes easily conductive when heated, and the breakdown voltage (withstand voltage) decreases.
  • the electrostatic chuck device is heated to a high temperature in the plasma process. For this reason, electrostatic chuck devices that use ceramic materials as the substrate forming material may cause breakdown of the substrate with reduced withstand voltage depending on the usage conditions, resulting in damage to the semiconductor elements and wiring patterns that are processed in the plasma process. As a result, the yield may be reduced.
  • the inventor paid attention to the above-mentioned phenomenon of ceramic materials. That is, it was considered that if the withstand voltage of the ceramic material used as the substrate forming material is not easily lowered even under high temperature conditions, the breakdown of the substrate can be prevented and the yield can be improved.
  • the inventors have examined that when the electrostatic chuck device is heated by plasma or a built-in heater and becomes a high temperature, the electrical resistance value (volume specific resistance value) of the substrate, which is a mounting surface on which the wafer is mounted. It has been found that one of the above-mentioned problems is that the lowering of the current becomes easier to energize. When the volume resistivity decreases when the temperature of the substrate becomes high, even after the voltage application to the electrostatic chucking electrode is stopped, the polarization is difficult to be eliminated and the Coulomb force tends to remain. This is considered to be one of the factors that make it difficult to remove.
  • the inventor completed the present invention as a result of intensive studies based on these ideas.
  • a composite sintered body of ceramics including aluminum oxide as a main phase and silicon carbide as a subphase, the crystal grains of the aluminum oxide at grain boundaries, and the silicon carbide
  • a composite sintered body having an interface layer made of a material other than the aluminum oxide and the silicon carbide at the interface with crystal grains.
  • the above aspect of the present invention may be configured such that the interface layer has a thickness of 0.6 nm to 2.5 nm.
  • the above aspect of the present invention may be configured such that the volume resistivity value is 5 ⁇ 10 15 ⁇ ⁇ cm or more in the entire range from room temperature to 300 ° C.
  • Another aspect of the present invention is a composite sintered body of ceramics containing aluminum oxide as a main phase and silicon carbide as a subphase, and the average crystal grain size of the aluminum oxide is 0.8 ⁇ m or more and 1
  • the silicon carbide crystal grains are dispersed in the crystal grains of the aluminum oxide and in the crystal grain boundaries of the aluminum oxide, and the silicon carbide crystal grains are dispersed in the crystal grains of the aluminum oxide.
  • the number ratio of the crystal grains of the composite sintered body is 50% or more and 60% or less with respect to the total number of the silicon carbide crystal grains.
  • the average crystal grain size of the silicon carbide crystal grains dispersed in the crystal grains of the aluminum oxide is the crystal of the silicon carbide dispersed in the crystal grain boundaries of the aluminum oxide. It is good also as a structure smaller than the average crystal grain diameter of a grain.
  • Another embodiment of the present invention is the above-described composite sintered body as a forming material, and a plate-like substrate whose one main surface is a placement surface on which a plate-like sample is placed; Provides an electrostatic chuck member having an electrostatic chucking electrode provided on the opposite side or inside the substrate.
  • Another aspect of the present invention includes the electrostatic chuck member described above and a cooling unit that cools the plate-like sample placed on the placement surface.
  • the placement surface includes the plate-like member.
  • a plurality of protrusions supporting a sample are provided, and the cooling means provides an electrostatic chuck device that supplies heat transfer gas between the plurality of protrusions.
  • the present invention has the following aspects.
  • a composite sintered body of ceramics containing aluminum oxide as a main phase and silicon carbide as a subphase, and the silicon carbide crystal grains located between at least two crystal grains of the aluminum oxide A composite sintered body having an interface layer containing a material other than the aluminum oxide and the silicon carbide at a grain boundary between the crystal grains of the aluminum oxide and the crystal grains of the silicon carbide.
  • the average crystal grain size of the aluminum oxide is 0.8 ⁇ m or more and 1.2 ⁇ m or less, and the crystal grains of the silicon carbide are grain boundaries within the crystal grains of the aluminum oxide and between the crystal grains of the aluminum oxide.
  • the number ratio of the silicon carbide crystal grains dispersed in the aluminum oxide crystal grains is 50% or more and 60% or less with respect to the total number of the silicon carbide crystal grains [
  • the average crystal grain size of the silicon carbide crystal grains dispersed in the aluminum oxide crystal grains is the average crystal grain size of the silicon carbide crystal grains dispersed in the aluminum oxide crystal grain boundaries.
  • the composite sintered body according to [4] which is smaller than the diameter.
  • the silicon carbide crystal grains are dispersed in the aluminum oxide crystal grains and in the aluminum oxide crystal grain boundaries, and the number of silicon carbide crystal grains dispersed in the aluminum oxide crystal grains.
  • the composite sintered body having a ratio of 50% to 60% with respect to the total number of crystal grains of the silicon carbide.
  • the average crystal grain size of the silicon carbide crystal grains dispersed in the aluminum oxide crystal grains is the average crystal grain size of the silicon carbide crystal grains dispersed in the aluminum oxide crystal grain boundaries.
  • the composite sintered body according to [6] which is smaller than the diameter.
  • An electrostatic chuck member comprising: a main surface opposite to one main surface or an electrode for electrostatic attraction provided in the base.
  • An electrostatic chuck apparatus provided with a plurality of supporting protrusions, wherein the cooling means supplies a heat transfer gas between the plurality of protrusions.
  • a composite sintered body for an electrostatic chuck that is suitably used for an electrostatic chuck device and can improve productivity.
  • a composite sintered body having both a high relative dielectric constant and a high withstand voltage can be provided.
  • An electrostatic chuck member and an electrostatic chuck device using such a composite sintered body for electrostatic chucks can be provided.
  • FIG. 1 is a cross-sectional view showing the electrostatic chuck device of this embodiment.
  • the electrostatic chuck device 1 of the present embodiment includes an electrostatic chuck portion 2 and a temperature adjustment base portion 3.
  • the electrostatic chuck portion 2 has a disk shape in plan view with one main surface (upper surface) side as a mounting surface.
  • the temperature adjusting base portion 3 is provided below the electrostatic chuck portion 2 and adjusts the electrostatic chuck portion 2 to a desired temperature.
  • the temperature adjusting base portion 3 has a disk shape with a thickness in plan view.
  • the electrostatic chuck portion 2 and the temperature adjusting base portion 3 are bonded to each other via an adhesive layer 8 provided between the electrostatic chuck portion 2 and the temperature adjusting base portion 3.
  • an adhesive layer 8 provided between the electrostatic chuck portion 2 and the temperature adjusting base portion 3.
  • the electrostatic chuck unit 2 (also referred to as an electrostatic chuck member) includes a mounting plate 11, a support plate 12, an electrostatic chucking electrode 13, and an insulating material layer 14.
  • the upper surface of the mounting plate 11 is a mounting surface 11a on which a plate-like sample W such as a semiconductor wafer is mounted.
  • the support plate 12 is integrated with the mounting plate 11.
  • the support plate 12 supports the bottom side of the mounting plate 11.
  • the electrostatic chucking electrode 13 is provided between the mounting plate 11 and the support plate 12.
  • the insulating material layer 14 insulates the periphery of the electrostatic attraction electrode 13.
  • the mounting plate 11 and the support plate 12 correspond to the “base” in the present invention.
  • the base body includes the mounting plate 11 and the support plate 12.
  • the electrostatic chuck member is provided on a base body, on which one main surface is a plate-like sample mounting surface, on a main surface opposite to the one main surface of the base body or in the base body. And an electrostatic adsorption electrode provided.
  • a fine groove is provided in the sample stage, and a gaseous refrigerant (for example, helium) is provided in the groove.
  • a gaseous refrigerant for example, helium
  • a technique for cooling a wafer placed on a sample stage by flowing is known.
  • the electrostatic chuck device is required to have a high adsorption force so that the wafer is not detached by the pressure received from the refrigerant.
  • the relative dielectric constant of the mounting plate 11 and the support plate 12 which are the bases of the electrostatic chuck device is 12 or more. It is preferable that it is 13 or more.
  • the upper limit value of the relative dielectric constant of the mounting plate 11 and the support plate 12 is not particularly limited, but is about 14.
  • the withstand voltage of the mounting plate and the support plate 12 which are the substrates of the present embodiment is 19 kV or more, and 16 kV The above is preferable.
  • the upper limit value of the withstand voltage of the mounting plate 11 and the support plate 12 is not particularly limited, it is about 25 kV.
  • the mounting plate 11 and the support plate 12 are disk-like members having the same shape of the surfaces overlapped with each other.
  • the mounting plate 11 and the support plate 12 have mechanical strength.
  • the mounting plate 11 and the support plate 12 are made of a ceramic sintered body having durability against a corrosive gas and its plasma. Details of the material for forming the mounting plate 11 and the support plate 12 will be described later.
  • a plurality of protrusions 11b having a diameter smaller than the thickness of the plate-like sample W are formed on the mounting surface 11a of the mounting plate 11 at predetermined intervals. These protrusions 11b support the plate-like sample W.
  • the total thickness including the mounting plate 11, the support plate 12, the electrostatic chucking electrode 13 and the insulating material layer 14, that is, the thickness of the electrostatic chuck portion 2 is, for example, 0.7 mm or more and 5.0 mm or less. is there.
  • the thickness of the electrostatic chuck portion 2 includes the protruding portion 11b. In other words, the thickness of the electrostatic chuck portion 2 is the minimum dimension from the surface opposite to the surface in contact with the electrostatic attraction electrode 13 of the support plate 12 to the upper surface of the protruding portion 11b.
  • the thickness of the electrostatic chuck portion 2 is less than 0.7 mm, it is difficult to ensure the mechanical strength of the electrostatic chuck portion 2. In other words, if the thickness of the electrostatic chuck portion 2 is 0.7 mm or more, the mechanical strength of the electrostatic chuck portion 2 can be ensured.
  • the thickness of the electrostatic chuck portion 2 exceeds 5.0 mm, the heat capacity of the electrostatic chuck portion 2 increases. Thereby, the thermal responsiveness of the plate-shaped sample W mounted is deteriorated, and the heat transfer in the lateral direction of the electrostatic chuck portion is increased. Therefore, it becomes difficult to maintain the in-plane temperature of the plate-like sample W in a desired temperature pattern.
  • the thickness of the electrostatic chuck portion 2 is 5.0 mm or less, the heat capacity of the electrostatic chuck portion 2 becomes an appropriate value, and the thermal responsiveness of the plate-like sample W to be placed is deteriorated, or the electrostatic chuck The increase in the heat transfer in the lateral direction of the part is suppressed. Therefore, the in-plane temperature of the plate-like sample W can be maintained in a desired temperature pattern.
  • the thickness of each part demonstrated here is an example, Comprising: It does not restrict to the said range.
  • the electrostatic chucking electrode 13 is used as an electrostatic chuck electrode for generating a charge and fixing the plate-like sample W with electrostatic chucking force.
  • the shape and size of the electrostatic attraction electrode 13 are appropriately adjusted depending on the application.
  • the electrode 13 for electrostatic adsorption includes an aluminum oxide-tantalum carbide (Al 2 O 3 —Ta 4 C 5 ) conductive composite sintered body, an aluminum oxide-tungsten (Al 2 O 3 —W) conductive composite sintered body, Aluminum oxide-silicon carbide (Al 2 O 3 -SiC) conductive composite sintered body, aluminum nitride-tungsten (AlN-W) conductive composite sintered body, aluminum nitride-tantalum (AlN-Ta) conductive composite sintered body Body and conductive ceramics such as yttrium oxide-molybdenum (Y 2 O 3 -Mo) conductive composite sintered body, or refractory metals such as tungsten (W), tantalum (Ta), molybdenum (Mo), etc. It is preferable.
  • the thickness of the electrode 13 for electrostatic attraction is not particularly limited. For example, a thickness of 0.1 ⁇ m or more and 100 ⁇ m or less can be selected, and a thickness of 5 ⁇ m or more and 20 ⁇ m or less is more preferable.
  • the thickness of the electrostatic attraction electrode 13 is less than 0.1 ⁇ m, it is difficult to ensure sufficient conductivity. In other words, when the thickness of the electrostatic attraction electrode 13 is 0.1 ⁇ m or more, sufficient conductivity can be ensured.
  • the thickness of the electrostatic chucking electrode 13 exceeds 100 ⁇ m, the electrostatic chucking electrode 13 and the mounting plate are placed due to the difference in thermal expansion coefficient between the electrostatic chucking electrode 13 and the mounting plate 11 and the support plate 12. Cracks are likely to enter the joint interface between the plate 11 and the support plate 12. In other words, if the thickness of the electrostatic attraction electrode 13 is 100 ⁇ m or less, cracks are unlikely to occur at the bonding interface between the electrostatic attraction electrode 13 and the mounting plate 11 and the support plate 12.
  • the electrostatic chucking electrode 13 having such a thickness can be easily formed by a film forming method such as a sputtering method or a vapor deposition method, or a coating method such as a screen printing method.
  • the insulating material layer 14 surrounds the electrostatic adsorption electrode 13 and protects the electrostatic adsorption electrode 13 from corrosive gas and its plasma.
  • the insulating material layer 14 joins and integrates the boundary portion between the mounting plate 11 and the support plate 12, that is, the outer peripheral region other than the electrostatic adsorption electrode 13.
  • the insulating material layer 14 is located in a region that is sandwiched between the mounting plate 11 and the support plate 12 and surrounds the outer periphery of the electrostatic chucking electrode 13, and electrostatically attracts the mounting plate 11, the support plate 12, and the electrostatic chuck.
  • the electrodes 13 are fixed so as to adhere to each other.
  • the same composition as the material which comprises the mounting board 11 and the support plate 12, or the main component is comprised with the same insulating material.
  • the temperature adjusting base unit 3 adjusts the electrostatic chuck unit 2 to a desired temperature.
  • the temperature adjusting base portion 3 has a thick disk shape.
  • a liquid-cooled base in which a flow path 3A for circulating a refrigerant is formed is suitable.
  • the material constituting the temperature adjusting base 3 is not particularly limited as long as it is a metal excellent in thermal conductivity, conductivity and workability, or a composite material containing these metals.
  • a metal excellent in thermal conductivity, conductivity and workability or a composite material containing these metals.
  • aluminum (Al), aluminum alloy, copper (Cu), copper alloy, and stainless steel (SUS) are preferably used. It is preferable that at least the surface of the temperature adjusting base 3 exposed to plasma is anodized or an insulating film such as alumina is formed.
  • the adhesive layer 6 is made of a sheet-like or film-like adhesive resin having heat resistance and insulating properties such as polyimide resin, silicon resin, and epoxy resin.
  • the adhesive layer is formed with a thickness of about 5 to 100 ⁇ m, for example.
  • the insulating plate 7 is made of a thin plate, sheet or film of a heat-resistant resin such as polyimide resin, epoxy resin, and acrylic resin.
  • the insulating plate 7 may be an insulating ceramic plate instead of a resin sheet, or may be a sprayed film having an insulating property such as alumina.
  • the focus ring 10 is an annular member in plan view that is placed on the peripheral edge of the temperature adjusting base 3.
  • the focus ring 10 is made of, for example, a material having electric conductivity equivalent to that of the plate-like sample W (wafer) placed on the placement surface.
  • the electrostatic chucking electrode 13 is connected to a power feeding terminal 15 for applying a DC voltage to the electrostatic chucking electrode 13.
  • the power feeding terminal 15 is inserted into a through hole 16 that penetrates the temperature adjusting base 3, the adhesive layer 8, and the support plate 12 in the thickness direction.
  • An insulator 15 a having an insulating property is provided on the outer peripheral side of the power feeding terminal 15.
  • the feeding terminal 15 is insulated from the metallic temperature adjusting base 3 by the insulator 15a.
  • the power feeding terminal 15 is shown as an integral member, but a plurality of members may be electrically connected to form the power feeding terminal 15.
  • the power feeding terminal 15 is inserted into the temperature adjusting base 3 and the support plate 12 having different thermal expansion coefficients. Therefore, for example, the portions inserted into the temperature adjusting base 3 and the support plate 12 may be made of different materials.
  • the material of the portion (extraction electrode) connected to the electrostatic adsorption electrode 13 and inserted into the support plate 12 is particularly limited as long as it is a conductive material having excellent heat resistance. Although it is not a thing, what the thermal expansion coefficient approximated to the thermal expansion coefficient of the electrode 13 for electrostatic attraction and the support plate 12 is preferable. For example, it is made of a conductive ceramic material such as Al 2 O 3 —TaC.
  • the portion of the power supply terminal 15 that is inserted into the temperature adjusting base 3 is made of, for example, a metal material such as tungsten (W), tantalum (Ta), molybdenum (Mo), niobium (Nb), and Kovar alloy. Become.
  • These two members may be connected with a silicon-based conductive adhesive having flexibility and electric resistance.
  • a heater element 5 is provided on the lower surface side of the electrostatic chuck portion 2.
  • the heater element 5 is a thin nonmagnetic metal plate having a constant thickness of 0.2 mm or less, preferably about 0.1 mm.
  • the heater element 5 is obtained, for example, by processing a titanium (Ti) thin plate, a tungsten (W) thin plate, a molybdenum (Mo) thin plate, or the like into a desired heater shape by a photolithography method or laser processing.
  • the heater shape for example, a shape in which a strip-like conductive thin plate is meandered and the entire outline is an annular shape can be mentioned.
  • Such a heater element 5 may be provided by processing and molding on the surface of the electrostatic chuck portion 2 after bonding a nonmagnetic metal thin plate to the electrostatic chuck portion 2.
  • the heater element 5 may be provided by transferring and printing on the surface of the electrostatic chuck portion 2 what is formed by machining the heater element 5 at a position different from the electrostatic chuck portion 2.
  • the heater element 5 is bonded and fixed to the bottom surface of the support plate 12 by the adhesive layer 4.
  • the adhesive layer 4 is made of a sheet-like or film-like silicon resin or acrylic resin having uniform heat resistance and insulation properties.
  • the heater element 5 is connected to a power supply terminal 17 for supplying power to the heater element 5.
  • the material constituting the power supply terminal 17 may be the same material as that of the previous power supply terminal 15.
  • the power supply terminals 17 are provided so as to fill the through holes 3 b formed in the temperature adjusting base portion 3.
  • a temperature sensor 20 is provided on the lower surface side of the heater element 5.
  • the installation hole 21 is formed so as to penetrate the temperature adjusting base portion 3 and the insulating plate 7 in the thickness direction.
  • a temperature sensor 20 is installed at the top of these installation holes 21.
  • the temperature sensor 20 is desirably installed as close to the heater element 5 as possible. Therefore, the temperature sensor 20 and the heater element 5 may be brought closer to each other by forming the installation hole 21 so as to protrude further toward the adhesive layer 8 from the structure shown in FIG.
  • a fluorescent light-emitting temperature sensor is a temperature sensor in which a phosphor layer is formed on the upper surface side of a rectangular parallelepiped transparent body made of quartz glass or the like.
  • the temperature sensor 20 is bonded to the lower surface of the heater element 5 with a silicon resin adhesive having translucency and heat resistance.
  • the phosphor layer is made of a material that generates fluorescence in response to heat input from the heater element 5.
  • a material for forming the phosphor layer a wide variety of fluorescent materials can be selected as long as the material generates fluorescence in response to heat generation.
  • the material for forming the phosphor layer include a fluorescent material to which a rare earth element having an energy level suitable for light emission is added, a semiconductor material such as AlGaAs, a metal oxide such as magnesium oxide, and a mineral such as ruby and sapphire. These materials can be appropriately selected and used.
  • the temperature sensor 20 corresponding to the heater element 5 is provided at an arbitrary position in the circumferential direction of the lower surface of the heater element 5 so as not to interfere with the power supply terminals 15 and 17.
  • the temperature measuring unit 22 measures the temperature of the heater element 5 from the fluorescence of these temperature sensors 20.
  • the temperature measurement unit 22 includes an excitation unit 23, a fluorescence detector 24, and a control unit 25.
  • the excitation unit 23 irradiates the phosphor layer with excitation light on the outer side (lower side) of the installation hole 21 of the temperature adjusting base unit 3.
  • the fluorescence detector 24 detects the fluorescence emitted from the phosphor layer.
  • the control unit 25 controls the excitation unit 23 and the fluorescence detector 24. Furthermore, the control unit 25 calculates the temperature of the main heater based on the fluorescence.
  • the electrostatic chuck device 1 has a gas hole 28 provided so as to penetrate the temperature adjusting base portion 3 to the mounting plate 11 in the thickness direction thereof.
  • a cylindrical insulator 29 is provided on the inner periphery of the gas hole 28.
  • a gas supply device (cooling means) 27 is connected to the gas hole 28.
  • a cooling gas (heat transfer gas) for cooling the plate-like sample W is supplied from the gas supply device 27 through the gas hole 28.
  • the cooling gas is supplied to the grooves 19 formed between the plurality of protrusions 11 b on the upper surface of the mounting plate 11 through the gas holes, and cools the plate-like sample W.
  • the electrostatic chuck device 1 has a pin insertion hole (not shown) provided so as to penetrate the temperature adjusting base portion 3 to the mounting plate 11 in the thickness direction thereof.
  • the pin insertion hole can adopt the same configuration as that of the gas hole 28, for example.
  • a lift pin for detaching the plate sample is inserted into the pin insertion hole.
  • the electrostatic chuck device 1 is configured as described above.
  • the composite sintered body that is the material of the base body (mounting plate 11 and support plate 12) of the first embodiment will be described in detail.
  • the mounting plate 11 and the support plate 12 of this embodiment are formed of a ceramic composite sintered body including aluminum oxide as a main phase and silicon carbide as a sub phase.
  • the composite sintered body is a composite sintered body of ceramics including aluminum oxide as a main phase and silicon carbide as a subphase, and at least two crystals of the aluminum oxide. At least one crystal grain of the silicon carbide located between the grains, and the aluminum oxide and the carbonized carbon at a grain boundary between one of the crystal grains of the aluminum oxide and the crystal grain of the silicon carbide. It has an interface layer containing a material other than silicon.
  • the mass ratio of aluminum oxide to silicon carbide is preferably 97: 3 to 88:12, and more preferably 96: 4 to 93: 7.
  • the average crystal grain size of aluminum oxide is preferably 0.8 ⁇ m or more and 1.2 ⁇ m or less.
  • average crystal grain size is an image taken by observing the surface with a scanning electric microscope (SEM) using a test piece obtained by cutting out a part of a composite sintered body. From the above, it is obtained by measuring the maximum dimension of any 200 crystal grains and calculating the average value.
  • SEM scanning electric microscope
  • the average crystal grain size of silicon carbide is preferably 0.1 ⁇ m or more and 0.5 ⁇ m or less.
  • the composite sintered body of the present embodiment has an interface layer made of a material other than aluminum oxide and silicon carbide at the interface between the crystal grains of aluminum oxide and the crystal grains of silicon carbide at the grain boundary.
  • the composite sintered body includes at least one silicon carbide crystal grain located between at least two crystal grains of aluminum oxide, and one of the crystal grains of aluminum oxide and the crystal of silicon carbide. It has an interface layer containing materials other than aluminum oxide and silicon carbide at grain boundaries with the grains.
  • grain boundary refers to a boundary (interface) between crystal grains constituting the composite sintered body in the composite sintered body which is a polycrystalline sintered body.
  • the boundary between crystal grains having different crystal orientations becomes apparent as an interface.
  • the interface layer can be confirmed by observing the surface with a transmission electron microscope (TEM) using a test piece obtained by cutting out a part of the composite sintered body.
  • TEM transmission electron microscope
  • the material of the interface layer is a “material other than aluminum oxide and silicon carbide”, that is, a material that is neither aluminum oxide nor silicon carbide.
  • the composite sintered body of the present embodiment is a composite sintered body made of aluminum oxide and silicon carbide
  • the elements constituting the interface layer are aluminum (Al), oxygen (O), silicon (Si ) And carbon (C).
  • the interface layer included in the composite sintered body according to the present embodiment is made of a material that is not aluminum oxide or silicon carbide.
  • the material for forming the interface layer that is, the material other than aluminum oxide and silicon carbide is presumed to be an oxide containing at least silicon atoms. Alternatively, it may be a mixed crystal of silicon carbide or aluminum oxide and an oxide containing silicon. These have a high probability of being high resistance as compared with silicon carbide as a conductor.
  • oxide containing silicon examples include silica.
  • materials other than aluminum oxide and silicon carbide contain at least oxygen and silicon, and may optionally contain at least one of aluminum and carbon.
  • the material other than aluminum oxide and silicon carbide may be a mixed crystal of an oxide containing silicon atoms or an oxide containing silicon and at least one of silicon carbide and aluminum oxide. More specifically, the material other than aluminum oxide and silicon carbide may be a mixed crystal of silica or at least one of silicon carbide and aluminum oxide and silica.
  • a composite sintered body having such an interface layer tends to have high resistance.
  • aluminum oxide as a main phase is an insulator
  • silicon carbide as a subphase is a conductor.
  • the silicon carbide crystal grains exist in the crystal grain boundaries of aluminum oxide. That is, silicon carbide crystal grains exist between at least two aluminum oxide crystal grains. Therefore, when an attempt is made to energize the composite sintered body, electrons enter the aluminum oxide crystal grain boundary where the silicon carbide crystal grains as conductors are arranged rather than penetrate into the aluminum oxide crystal grains and move. It is thought to move along.
  • the composite sintered body of the present application there is an interface layer that can become a resistance to electrons moving through the grain boundary. For this reason, the entire resistance is increased as compared with a conventional composite sintered body having no interface layer.
  • the resistance value of the conductor increases as the temperature rises, while the resistance value of the insulator (aluminum oxide) increases. Decreases. Due to the balance between the two, in the composite sintered body, the volume resistivity tends to decrease in the high temperature region as the temperature increases. In the composite sintered body of the present embodiment, the volume resistivity is unlikely to decrease due to the presence of an interface layer having a small volume dependence of the volume resistivity. As a result, a high volume resistivity can be maintained even in a high temperature range.
  • the composite sintered body of the present embodiment preferably has a volume specific resistance value of 5 ⁇ 10 15 ⁇ ⁇ cm or more in the entire range from room temperature (24 ° C.) to 300 ° C.
  • the “range from room temperature (24 ° C.) to 300 ° C.” is determined in consideration of the temperature conditions of the usage environment of the electrostatic chuck device. That is, the electrostatic chuck device having the composite sintered body of the present embodiment as a constituent material is in a range from room temperature (24 ° C.) to a temperature (300 ° C.) higher than a temperature assumed as a temperature condition in the plasma processing step.
  • the volume resistivity is kept high. Therefore, it becomes difficult to remove the wafer in a high temperature range, and an excessive current is suppressed from flowing through the wafer, thereby improving productivity.
  • the thickness of the interface layer is preferably 0.6 nm or more and 2.5 nm or less.
  • the “thickness” of the interface layer corresponds to a distance between line segments when the interface layer is sandwiched between two parallel line segments in a transmission electron micrograph in which the interface layer can be confirmed.
  • the thickness of arbitrary multiple places (for example, 5 places) of the interface layer is measured in the same visual field, and the average value of the obtained measurement values is adopted as the “interface layer thickness”.
  • the thickness of the interface layer is 0.6 nm or more, it is difficult to conduct electricity, and the breakdown voltage (withstand voltage) is difficult to decrease.
  • the thickness of the interface layer is 2.5 nm or less, the ratio of the interface layer having a small polarization ability does not increase excessively and the relative dielectric constant is unlikely to decrease. Therefore, when the composite sintered body according to the present embodiment is used as the base of the electrostatic chuck device, the electrostatic adsorption force for fixing the wafer can be made sufficiently large.
  • Silicon carbide is known to have a large number of crystal structures, and has cubic crystal structure of 3C type (zincblende type), hexagonal crystals such as 4H type and 6H type. Examples thereof include those having a wurtzite type crystal structure in the system and those having a rhombohedral system and a 15R type crystal structure. Among these, those having a 3C type crystal structure are referred to as “ ⁇ -SiC”. All other crystal structures are referred to as “ ⁇ -SiC”.
  • the silicon carbide contained in the composite sintered body is preferably ⁇ -SiC. Further, in the composite sintered body, it is preferable that the ⁇ -SiC crystal grains are present in a state of being surrounded by the aluminum oxide crystal grains as the matrix material.
  • the volume ratio of ⁇ -SiC is preferably 4% by volume or more and 15% by volume or less, and more preferably 6% by volume or more and 10% by volume or less with respect to the total volume of the sintered body.
  • the volume ratio of ⁇ -SiC When the volume ratio of ⁇ -SiC is less than 4% by volume, the effect of developing electronic conductivity by the silicon carbide particles is small. On the other hand, when the volume ratio of ⁇ -SiC is more than 15% by volume, the silicon carbide particles may be brought into contact with each other and the resistance value may be lowered via the silicon carbide particles.
  • the metal impurity content other than aluminum and silicon is preferably 100 ppm or less with respect to the total mass of the composite sintered body.
  • the metal impurity content is preferably 50 ppm or less, and more preferably 25 ppm or less, based on the total mass of the composite sintered body.
  • metal impurities are calcium (Ca), chromium (Cr), iron (Fe), nickel (Ni), copper (Cu), sodium (Na), magnesium (Mg), potassium (K). ), Titanium (Ti), manganese (Mn), zinc (Zn), barium (Ba) and yttrium (Y).
  • the mounting plate 11 and the support plate 12 of this embodiment are formed of a ceramic composite sintered body including aluminum oxide as a main phase and silicon carbide as a sub phase.
  • the composite sintered body is a composite sintered body of ceramics including aluminum oxide as a main phase and silicon carbide as a subphase, and the average crystal grain size of the aluminum oxide Is not less than 0.8 ⁇ m and not more than 1.2 ⁇ m, and the silicon carbide crystal grains are dispersed in the aluminum oxide crystal grains and in the aluminum oxide crystal grain boundaries, and in the aluminum oxide crystal grains
  • the number ratio of the dispersed silicon carbide crystal grains is 50% to 60% with respect to the total number of silicon carbide crystal grains.
  • the average crystal grain size of aluminum oxide is 0.8 ⁇ m or more and 1.2 ⁇ m or less.
  • the silicon carbide crystal grains are dispersed in the aluminum oxide crystal grains and in the crystal grain boundaries between the aluminum oxide crystal grains.
  • the number ratio of silicon carbide crystal grains dispersed in the aluminum oxide crystal grains is 50% to 60% with respect to the total number of silicon carbide crystal grains. It is. The proportion of silicon carbide crystal grains dispersed in the aluminum oxide crystal grains tends to increase as the average crystal grain size of aluminum oxide increases.
  • the “number ratio of silicon carbide crystal grains dispersed in aluminum oxide crystal grains” in the composite sintered body is a scanning electron micrograph of an arbitrary field of view of the composite sintered body. It calculates based on the result of having counted the crystal grain of silicon carbide visually. That is, in an electron micrograph at a magnification of 10000 times, 150 silicon carbide crystal grains randomly extracted are regarded as “the total number of silicon carbide crystal grains”, and silicon carbide dispersed in the aluminum oxide crystal grains The ratio of crystal grains is obtained. The same process is performed on the electron micrographs of two fields of view, and the average value is obtained as “the number ratio of the silicon carbide crystal grains dispersed in the aluminum oxide crystal grains”.
  • the composite sintered body that is the material of the mounting plate 11 and the support plate 12 can achieve both a high relative dielectric constant and a high withstand voltage by being configured as described above.
  • the relative dielectric constant increases. Tend to.
  • the composite sintered body of the present embodiment when the average crystal grain size of aluminum oxide is increased and the number ratio of silicon carbide crystal grains dispersed in the aluminum oxide crystal grains is increased, a certain average The withstand voltage increases until the crystal grain size, and then the withstand voltage tends to decrease.
  • FIGS. 6 to 8 are diagrams for explaining the electrical characteristics of the composite sintered body of the present embodiment, and are diagrams schematically showing crystals of the composite sintered body.
  • FIG. 6 is a diagram for explaining the electrical characteristics of the composite sintered body A2 in which the average crystal grain size of aluminum oxide is less than 0.8 ⁇ m.
  • FIG. 7 is a diagram for explaining electrical characteristics of the composite sintered body B2 in which the average crystal grain size of aluminum oxide is 0.8 ⁇ m or more and 1.2 ⁇ m or less.
  • FIG. 8 is a diagram illustrating the electrical characteristics of the composite sintered body C2 in which the average crystal grain size of aluminum oxide exceeds 1.2 ⁇ m.
  • the length L1 of the composite sintered body A2 shown in FIG. 6, the length L2 of the composite sintered body B2 shown in FIG. 7, and the length L3 of the composite sintered body C2 shown in FIG. 8 are the same. .
  • the hexagons in each figure show the crystal grains of aluminum oxide, which is the main phase. Moreover, the broken line of each figure shows the path
  • aluminum oxide that is the main phase is an insulator
  • silicon carbide that is a subphase is a conductor.
  • the silicon carbide crystal grains exist both in the aluminum oxide crystal grains and in the crystal grain boundaries between the aluminum oxide crystal grains. For this reason, when an attempt is made to energize the composite sintered body, electrons easily move through the crystal grain boundary where the silicon carbide crystal grains as the conductor are arranged.
  • the electrons are considered to move along the crystal grain boundary. That is, when the average crystal grain size of the aluminum oxide crystal grains is as small as less than 0.8 ⁇ m as in the case of the composite sintered body A2, the electrons are represented by the symbols A12 and A22 along the crystal grain boundaries between the aluminum oxide crystal grains. It is thought that it moves the shortest distance connecting
  • the composite sintered body B2 of FIG. 7 when a voltage is applied and an electric current is caused to flow from the reference sign B12 to the reference sign B22, electrons move along the crystal grain boundary between the aluminum oxide crystal grains. It is done. At this time, the composite sintered body B2 of FIG. 7 has an average crystal grain size of aluminum oxide larger than that of the composite sintered body A2 of FIG. Therefore, in the composite sintered body B2, the shortest distance connecting the reference sign B12 and the reference sign B22 along the crystal grain boundary is longer than that in the composite sintered body A2 having the configuration shown in FIG. Become. As a result, it is considered that when the same voltage is applied, the composite sintered body B2 in FIG. 7 is less likely to flow current than the composite sintered body A2 in FIG.
  • the tendency is different when a voltage is applied and an electric current is caused to flow from the reference C12 to the reference C22. That is, in the composite sintered body C2, the proportion of the number of silicon carbide dispersed in the aluminum oxide crystal grains is larger than in the composite sintered bodies A2 and B2 because the average crystal grain size of aluminum oxide is larger. Therefore, the insulating properties of the aluminum oxide crystal grains of the composite sintered body C2 are lower than those of the aluminum oxide crystal grains of the composite sintered bodies A2 and B2.
  • the shortest distance connecting the code C12 and the code C22 along the crystal grain boundary between aluminum oxide crystal grains is longer than that of the composite sintered body B2 having the configuration shown in FIG.
  • the moving distance of the electrons becomes longer than in the case of the composite sintered body B2.
  • the insulating properties of the aluminum oxide crystal grains are lowered. For this reason, when a voltage is applied to the composite sintered body C2, it is energetically advantageous that the electrons move in the crystal grains of aluminum oxide rather than the electrons move along the crystal grain boundaries. Therefore, it is considered that the composite sintered body C2 of FIG. 8 is more likely to flow current than the composite sintered body B2 of FIG.
  • the inventors is a composite sintered body of ceramics containing aluminum oxide as a main phase and silicon carbide as a sub phase, and the average crystal grain size of aluminum oxide is 0.8 ⁇ m or more and 1.2 ⁇ m.
  • the silicon carbide crystal grains in which the silicon carbide crystal grains are dispersed in the aluminum oxide crystal grains and in the crystal grain boundaries between the aluminum oxide crystal grains.
  • the composite sintered body in which the number ratio of grains is 50% or more and 60% or less of the entire crystal grains of silicon carbide exhibits the properties as described above, and can achieve both a high dielectric constant and a high withstand voltage. I understood.
  • the average crystal grain size of aluminum oxide can be adjusted by controlling the sintering temperature. As the sintering temperature increases, the average crystal grain size of aluminum oxide tends to increase. When the sintering temperature is lowered, the average crystal grain size of aluminum oxide tends to be reduced.
  • the ratio of the number of silicon carbide crystal grains dispersed in the aluminum oxide crystal grains can be adjusted by controlling the sintering temperature.
  • the sintering temperature is increased, grain growth of aluminum oxide is promoted. Therefore, when the sintering temperature increases, the number ratio of silicon carbide crystal grains present in the grains tends to increase.
  • the sintering temperature is lowered, grain growth of aluminum oxide is suppressed. Therefore, when the sintering temperature is lowered, the number ratio of silicon carbide crystal grains present in the grains tends to be reduced.
  • the silicon carbide contained in the composite sintered body is preferably ⁇ -SiC. Further, in the composite sintered body, it is preferable that the ⁇ -SiC crystal grains are present in a state of being surrounded by the aluminum oxide crystal grains as the matrix material.
  • the volume ratio of ⁇ -SiC is preferably 4% by volume or more and 15% by volume or less, and more preferably 6% by volume or more and 10% by volume or less with respect to the total volume of the composite sintered body.
  • the volume ratio of ⁇ -SiC When the volume ratio of ⁇ -SiC is less than 4% by volume, the effect of developing electronic conductivity due to the silicon carbide crystal grains is small. Further, when the volume ratio of ⁇ -SiC is more than 15% by volume, the silicon carbide crystal grains may be brought into contact with each other and the resistance value may be reduced via the silicon carbide crystal grains.
  • the content of metal impurities other than aluminum and silicon is preferably 100 ppm or less with respect to the total mass of the composite sintered body.
  • the metal impurity content is preferably 50 ppm or less, and more preferably 25 ppm or less, based on the total mass of the composite sintered body.
  • metal impurities are calcium (Ca), chromium (Cr), iron (Fe), nickel (Ni), copper (Cu), sodium (Na), magnesium (Mg), potassium (K), titanium (Ti), manganese (Mn), zinc (Zn), barium (Ba) and yttrium (Y).
  • the composite sintered body according to the present embodiment removes the dispersion medium from the slurry obtained in the step of mixing the aluminum oxide particles and the silicon carbide particles while injecting each other at high speed and colliding with each other, and the mixing step. After that, it is manufactured by a manufacturing method having a step of forming and a step of heating and pressure sintering at 1600 ° C. or higher while pressing and compacting the obtained molded body at a pressure of 25 MPa or higher in a non-oxidizing atmosphere. be able to.
  • the aluminum oxide particles to be used preferably have an aluminum oxide content of 99.99% by mass or more based on the total mass of the aluminum oxide particles.
  • Such high-purity aluminum oxide particles can be prepared by using the alum method.
  • the aluminum oxide particles prepared using the alum method can significantly reduce the content of sodium atoms, which are metal impurities, as compared with, for example, aluminum oxide particles prepared using the Bayer method. Further, various methods can be adopted as long as aluminum oxide particles having a desired purity can be obtained.
  • the following operation is performed. First, aluminum sulfate and ammonium sulfate are dissolved in pure water under heating, followed by stirring and cooling to obtain colorless and transparent crystals. In order to further increase the purity, recrystallization is repeated to remove impurities in the alum. Thereafter, for example, by heating to 1150 ° C., sulfur trioxide is eliminated and aluminum oxide is obtained.
  • preparing aluminum oxide particles by the Bayer method means performing the following operations. First, bauxite is washed with an aqueous sodium hydroxide solution at 250 ° C., for example. At this time, the aluminum oxide contained in the bauxite becomes aluminum hydroxide and dissolves in the aqueous solution. Components other than aluminum oxide contained in bauxite are removed by filtration as solid impurities. Next, the aqueous solution is cooled to precipitate aluminum hydroxide. Thereafter, for example, by heating to 1050 ° C., dehydration occurs from the aluminum hydroxide, and aluminum oxide is obtained.
  • a two-stream particle collision type pulverizing and mixing apparatus is used to pressurize the aluminum oxide particles dispersed in the dispersion medium and the silicon carbide particles dispersed in the dispersion medium at high speed, respectively. Mix while colliding with each other. Thereby, aluminum oxide particles and silicon carbide particles are pulverized, and a dispersion containing these pulverized particles is obtained.
  • the aluminum oxide particles and silicon carbide particles obtained by using the above pulverizing and mixing apparatus are particles having a small particle size distribution width with few coarse particles and excessively pulverized particles. Therefore, when mixed particles pulverized and mixed using a two-stream particle collision type pulverizing and mixing apparatus are used, abnormal particle growth with coarse particles as nuclei can be suppressed in the sintering step.
  • a dispersion liquid obtained by a pulverizing and mixing apparatus is spray-dried to obtain granules composed of mixed particles of aluminum oxide particles and silicon carbide particles.
  • the obtained granules are uniaxially molded (uniaxial press molding) according to the shape of the target sintered body.
  • the obtained molded body is heated to, for example, 500 ° C. in an inert gas atmosphere at normal pressure (without applying pressing pressure) to remove impurities such as moisture and dispersion medium contained in the molded body.
  • Nitrogen or argon can be used as the inert gas.
  • the heating temperature is not limited to 500 ° C. as long as impurities can be removed from the molded body without modifying the molded body.
  • an oxidation step of oxidizing the mixed particles constituting the compact by heating the compact from which impurities have been removed at 400 ° C. in the atmosphere.
  • an oxide film is formed on the surface of the silicon carbide particles contained in the mixed particles.
  • the metal impurities contained in the mixed particles are likely to be dissolved, so that the metal impurities contained in the mixed particles are present on the surface of the particles. Then, since it is easy to remove a metal impurity in the process of pressure sintering mentioned later, it is preferable.
  • the above-mentioned formed body is heated (preliminary) in a vacuum atmosphere (first non-oxidizing atmosphere) at a temperature lower than 1600 ° C. and normal pressure (without applying a press pressure). Heat).
  • a vacuum atmosphere first non-oxidizing atmosphere
  • Heat heat
  • the molding step when the molded body from which impurities are removed as described above is oxidized, the oxide film formed on the particle surface is volatilized by preheating in a vacuum atmosphere. At the same time, metal impurities contained in the oxide film evaporate. Therefore, metal impurities can be easily removed from the molded body. Therefore, according to such operation, it becomes easy to improve the purity of the mixed particles. Moreover, it becomes easy to control the volume resistance value of the substrate.
  • vacuum means “a state in a space filled with a substrate having a pressure lower than atmospheric pressure”, and is a state defined as a pressure that can be industrially used in the JIS standard. Point to.
  • the vacuum atmosphere may be a low vacuum (100 Pa or more), but is preferably a medium vacuum (0.1 Pa to 100 Pa), and a high vacuum (10 ⁇ 5 Pa to 0.1 Pa). More preferably.
  • the atmospheric pressure is returned to atmospheric pressure with argon.
  • the pre-heated shaped body is heated to 1600 ° C. or higher while being pressed and hardened at a pressure of 5 MPa or higher in an argon atmosphere (second non-oxidizing atmosphere), and pressure sintered. According to such an operation, sintering of the aluminum oxide particles and silicon carbide particles contained in the molded body proceeds, and a dense sintered body with few pores can be obtained.
  • sintering is performed in an argon atmosphere at 1600 ° C. to 1850 ° C. and a sintering pressure of 25 MPa to 50 MPa.
  • the sintered body obtained by such a method is reduced in metal impurity content and becomes highly pure.
  • the preheating time may be increased or the preheating temperature may be increased.
  • the composite sintered body of the present embodiment can be manufactured.
  • the mounting plate 11 and the support plate 12 which are bases constituting the electrostatic chuck member.
  • the projection part 11b formed in the mounting surface 11a of the mounting board 11 it can form suitably by a well-known method.
  • the composite sintered body having the above-described configuration it is possible to provide a composite sintered body for an electrostatic chuck that is suitably used for an electrostatic chuck device and can improve productivity.
  • the electrostatic chuck device having the above-described configuration, it is possible to provide an electrostatic chuck device capable of improving productivity.
  • the composite sintered body of the first embodiment and the composite sintered body of the second embodiment have been described separately.
  • the composite sintered body is the side surface described in the first embodiment.
  • the side surface as described in 2nd Embodiment may be provided.
  • Example 1A the volume specific resistance value of the disk-shaped sintered body was measured by the direct current three-terminal method.
  • FIG. 2 is a schematic diagram showing a state of the sintered body when measuring the volume resistivity value in this example.
  • reference numeral 100 denotes a sintered body
  • reference numeral 110 denotes a main electrode
  • reference numeral 120 denotes a guard electrode
  • reference numeral 130 denotes a counter electrode.
  • the main electrode diameter was 1.47 cm
  • the inner diameter of the guard electrode was 1.60 cm.
  • a dielectric impedance tangent is measured by a parallel plate method using a precision impedance analyzer (model number: 4294A, manufactured by Agilent Technologies) and a dielectric test fixture (model number: 16451B, manufactured by Agilent Technologies). It was measured.
  • ⁇ -SiC type silicon carbide ( ⁇ -SiC) particles having an average particle size of 0.03 ⁇ m and synthesized by thermal plasma CVD, and an average particle size of 0.1 ⁇ m and metal impurity content are oxidized.
  • the ⁇ -SiC particles were weighed to 8% by mass with respect to the total mass of ⁇ -SiC particles and Al 2 O 3 particles, and poured into distilled water containing a dispersant.
  • the dispersion into which ⁇ -SiC particles and Al 2 O 3 particles were added was dispersed by an ultrasonic dispersion device and then pulverized and mixed using a two-stream particle collision type pulverization and mixing device.
  • the obtained mixed solution was spray-dried with a spray drying device to obtain mixed particles of ⁇ -SiC and Al 2 O 3 .
  • the mixed particles were uniaxial press-molded at a press pressure of 8 MPa to obtain a molded body having a diameter of 320 mm ⁇ 15 mm.
  • the molded body was heated to 500 ° C. in a nitrogen atmosphere without applying a pressing pressure, and water and a dispersant (contaminants) were removed. Thereafter, the compact from which impurities were removed was heated to 400 ° C. in the atmosphere to oxidize the surface of ⁇ -SiC particles contained in the compact.
  • the obtained compact was set in a graphite mold and subjected to pressure sintering.
  • the molded body was heated to 1200 ° C. in a vacuum atmosphere without applying a press pressure.
  • sintering was performed at a press pressure of 40 MPa and 1800 ° C. in an argon atmosphere to obtain a composite sintered body of Example 1A.
  • the metal impurity content of the composite sintered body of Example 1A was 80 ppm with respect to the total mass of the composite sintered body.
  • the value measured by the ICP-MS method was adopted as the metal impurity content.
  • Comparative Example 1A As Al 2 O 3 particles, those having a metal impurity content of 800 ppm and an average particle diameter of 0.5 ⁇ m with respect to the total mass of the Al 2 O 3 particles and the metal impurities were used. Further, the molded body from which impurities were removed was exposed to a vacuum atmosphere from room temperature to the sintering temperature, except that heat treatment (sintering) was performed in an argon atmosphere, as in Example 1A. A sintered body of Comparative Example 1A was obtained.
  • the metal impurity content of the sintered body of Comparative Example 1A was 795 ppm with respect to the total mass of the composite sintered body.
  • the value measured by the ICP-MS method as in Example 1A was adopted.
  • Reference Example 1A A sintered body of Reference Example 1A was obtained in the same manner as in Example 1A, except that the starting material ⁇ -SiC particles was not used.
  • FIG. 3 and 4 are electron micrographs of the produced composite sintered body.
  • FIG. 3 shows the composite sintered body of Example 1A
  • FIG. 4 shows the composite sintered body of Comparative Example 1A.
  • the crystal indicated by symbol A1 indicates aluminum oxide
  • the crystal indicated by symbol B1 indicates silicon carbide.
  • FIG. 5 is a semi-logarithmic graph showing the results of confirming the temperature dependence of the volume resistivity of each sintered body produced.
  • the horizontal axis represents the measurement temperature (unit: ° C.)
  • the vertical axis represents the volume resistivity (unit: ⁇ ⁇ cm).
  • the composite sintered body of Example 1A had a volume resistivity of 5 ⁇ 10 15 ⁇ ⁇ cm or more in a wide range from ⁇ 70 ° C. to 300 ° C.
  • the volume resistivity was less than 1 ⁇ 10 15 ⁇ ⁇ cm at 300 ° C.
  • the aluminum oxide sintered body of Reference Example 1A showed a tendency that the volume resistivity decreased with increasing temperature, and the volume resistivity was less than 1 ⁇ 10 15 ⁇ ⁇ cm at 150 ° C.
  • Table 1 shows the results of measuring the dielectric loss tangent of the composite sintered body of Example 1A and Comparative Example 1A at the temperature at which the volume resistivity was measured in FIG.
  • the dielectric loss tangent was measured at 100 kHz, 500 kHz, and 1 MHz.
  • Example 1B (Relative permittivity / dielectric loss tangent)
  • a precision impedance analyzer (model number: 4294A, manufactured by Agilent Technologies) and a dielectric test fixture (model number: 16451B, manufactured by Agilent Technologies) were used, and the dielectric constant was determined by the parallel plate method. The rate and dielectric loss tangent were measured.
  • the surface of the composite oxide (composite sintered body) was mirror-polished with a 3 ⁇ m diamond paste, and then subjected to thermal etching at 1400 ° C. for 30 minutes in an argon atmosphere.
  • the surface of the obtained sintered body was observed with a scanning electron microscope (manufactured by Hitachi High-Technology Corporation, model number: S-4000) at an enlargement magnification of 10,000 times.
  • 150 randomly extracted silicon carbide crystal grains are defined as “all silicon carbide crystal grains”, and the ratio of silicon carbide crystal grains dispersed in the aluminum oxide crystal grains is expressed as follows. Asked. The same process was performed on electron micrographs of two fields of view, and the average value was determined as “number ratio of silicon carbide crystal grains dispersed in aluminum oxide crystal grains”.
  • Level 1 A level 1 composite sintered body was obtained by the same process as the composite sintered body of Example 1A.
  • the metal impurity content of the level 1 composite sintered body was 80 ppm.
  • the value measured by the ICP-MS method was adopted as the metal impurity content.
  • FIG. 9 is a photographed electron micrograph.
  • the relatively black portions are silicon carbide crystal grains, and the white portions are aluminum oxide crystal grains.
  • the average crystal grain size of aluminum oxide was determined from the obtained electron micrograph, it was 0.65 ⁇ m.
  • the number ratio of the silicon carbide crystal grains dispersed in the aluminum oxide crystal grains was determined to be 45%.
  • Level 2 A level 2 composite sintered body was obtained in the same manner as level 1 except that sintering was performed at a press pressure of 40 MPa and 1845 ° C. in an argon atmosphere.
  • FIG. 10 is a photographed electron micrograph.
  • the average crystal grain diameter of aluminum oxide was determined from the obtained electron micrograph, it was 1.05 ⁇ m.
  • the number ratio of silicon carbide crystal grains dispersed in the aluminum oxide crystal grains was determined to be 55%.
  • Level 3 A level 3 composite sintered body was obtained in the same manner as level 1 except that sintering was performed at 1875 ° C. under a pressure of 40 MPa in an argon atmosphere.
  • FIG. 11 is a photographed electron micrograph.
  • the average crystal grain size of aluminum oxide was determined from the obtained electron micrograph, it was 1.52 ⁇ m.
  • the number ratio of silicon carbide crystal grains dispersed in the aluminum oxide crystal grains was determined to be 65%.
  • Level 4 A level 4 composite sintered body was obtained in the same manner as level 1 except that sintering was performed at a press pressure of 40 MPa and 1750 ° C. in an argon atmosphere.
  • the average crystal grain size of aluminum oxide was determined to be 0.56 ⁇ m from the electron micrograph obtained by photographing the electron micrograph of the level 4 composite sintered body under the above-mentioned conditions.
  • the number ratio of silicon carbide crystal grains dispersed in the aluminum oxide crystal grains was determined to be 39%.
  • FIG. 12 is a graph showing the relationship of the relative dielectric constant of the composite sintered body to the average crystal grain size of aluminum oxide for the composite sintered body of this example.
  • the horizontal axis indicates the average crystal grain size (unit: ⁇ m) of aluminum oxide
  • the vertical axis indicates the relative dielectric constant (unit: dimensionless) when an AC voltage of 1 MHz is applied.
  • FIG. 12 also shows the number ratio of silicon carbide crystal grains dispersed in the aluminum oxide crystal grains.
  • the composite sintered body of the present example tends to increase in relative dielectric constant as the average crystal grain size of aluminum oxide increases.
  • FIG. 13 is a graph showing the relationship between the withstand voltage and the average crystal grain size of aluminum oxide for the composite sintered body of this example.
  • the horizontal axis represents the average crystal grain size (unit: ⁇ m) of aluminum oxide
  • the vertical axis represents the voltage (unit: kV) at which a current of 1 ⁇ A flows through the test piece under the measurement conditions described above.
  • FIG. 13 also shows the number ratio of silicon carbide crystal grains dispersed in the aluminum oxide crystal grains.
  • the withstand voltage increased with an increase in the average crystal grain size of aluminum oxide, and after showing a maximum in the vicinity of the average crystal grain size of 1 ⁇ m, the aluminum oxide It can be seen that the withstand voltage tends to decrease as the average crystal grain size increases.
  • the electrostatic chuck device in order to reduce the in-plane temperature distribution (temperature difference) of the wafer, a fine groove is provided in the sample stage, and a gaseous refrigerant (for example, helium) is provided in the groove.
  • a gaseous refrigerant for example, helium
  • a technique for cooling a wafer placed on a sample stage by flowing is known.
  • the gas pressure of the refrigerant when the gas pressure of the refrigerant is increased, the electrostatic chuck device is required to have a high adsorption force so that the wafer is not detached by the pressure received from the refrigerant.
  • the relative dielectric constant of the substrate of the electrostatic chuck device is 13 or more.
  • the applied voltage during processing tends to increase in order to reliably carry out deep processing technology. Therefore, a high withstand voltage is required for the electrostatic chuck device.
  • the withstand voltage of the substrate is preferably 16 kV or more.
  • the average crystal grain size of aluminum oxide is 0.8 ⁇ m or more and 1.2 ⁇ m or less, and the number ratio of silicon carbide crystal grains dispersed in the aluminum oxide crystal grains is the entire crystal grains of silicon carbide. It was found that a composite sintered body having a ratio of 50% or more and 60% or less satisfies both a high dielectric constant and a high withstand voltage.
  • the present invention can be suitably used in an electrostatic chuck device and can provide a composite sintered body for an electrostatic chuck that can improve productivity. Further, it is possible to provide a composite sintered body for an electrostatic chuck that has both a high relative dielectric constant and a high withstand voltage. In addition, an electrostatic chuck member and an electrostatic chuck device using such a composite sintered body for electrostatic chucks can be provided.
  • Electrostatic chuck apparatus 11 ... Mounting plate (base

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

この複合焼結体は、主相である酸化アルミニウムと、副相である炭化ケイ素と、を含むセラミックスの複合焼結体であり、粒界における酸化アルミニウムの結晶粒と、炭化ケイ素の結晶粒との界面に、酸化アルミニウムおよび炭化ケイ素以外の材料を形成材料とする界面層を有する。

Description

複合焼結体、静電チャック部材、および静電チャック装置
 本発明は、複合焼結体、静電チャック部材、および静電チャック装置に関するものである。
 本願は、2017年2月23日に、日本に出願された特願2017-032622号および特願2017-032623号に基づき優先権を主張し、その内容をここに援用する。
 近年、プラズマ工程を実施する半導体製造装置は、静電チャック装置を有している。静電チャック装置は、試料台に簡単に板状試料(例えばウエハ)を取付けて、固定することができる。また静電チャック装置は、そのウエハを所望の温度に維持することができる。静電チャック装置は、一主面がウエハを載置する載置面である基体と、載置面に載置したウエハとの間に静電気力(クーロン力)を発生させる静電吸着用電極と、を備えている(例えば、特許文献1参照)。
 例えば、上述のような静電チャック装置をプラズマ工程で使用する場合、ウエハを載置する基体は、プラズマにより高温に加熱される。そのため、基体は、耐熱性を有し且つ絶縁性を有するセラミックス材料を用いて形成されている。
 このような静電チャック装置では、ウエハと静電吸着用電極との間に発生させた静電気力を利用して、ウエハを固定している。すなわち、静電チャック装置がウエハを固定する際には、静電吸着用電極に電圧を印加し、ウエハと静電吸着用電極との間に静電気力を発生させる。一方、静電チャック装置の載置面に固定したウエハを取り外す際には、静電吸着用電極への電圧印加を停止し、ウエハと静電吸着用電極との間の静電気力を消失させる。
特許第4744855号公報
 しかしながら、従来の静電チャック装置は、例えばプラズマ工程実施後にウエハを取り外そうとする際、加熱された載置面とウエハとの間に吸着力が残存し、ウエハの取り外しが困難となることがある。このような状況が発生すると、作業効率が低下することから、改善が求められている。
 また、半導体を用いたデバイスは高集積化される傾向にある。半導体を用いたデバイスの製造時には、配線の微細化(微細加工技術ともいう)や3D化(三次元実装技術ともいう)が必要とされている。そのため、半導体製造装置および半導体製造装置で使用する静電チャック装置の使用条件が厳しくなっている。このような使用条件の変更に従い、歩留まり良くウエハを処理可能な静電チャック装置が求められている。半導体製造装置には、(i)ウエハの面内温度分布(温度差)を低減させることや、(ii)深堀加工技術を確実に実施可能であること、が求められる。
 なお、本明細書においては、「試料台に載置したウエハの面内温度分布(温度差)の度合い」のことを「均熱性」と称することがある。「均熱性が高い」とは、ウエハの面内温度分布が小さいことを意味する。
 静電チャック装置においては、(i)ウエハの面内温度分布(温度差)を低減させるため、試料台に微細な溝を設け、当該溝に気体の冷媒(例えばヘリウム)を流動させることで、試料台に載置したウエハを冷却する技術が知られている。このような静電チャック装置において均熱性を高めるためには、冷媒のガス圧を高め冷却効率を向上させることが考えられる。一方、冷媒のガス圧を高める場合、冷媒から受ける圧力によってウエハが脱離しないように、静電チャック装置には高い吸着力が求められる。高い吸着力を得るには、静電チャック装置の基体の比誘電率が高いことが好ましい。
 また、静電チャック装置を用いる半導体製造装置においては、(ii)深堀加工技術を確実に実施するため、加工時の印加電圧が増加する傾向にある。そのため、静電チャック装置には、高い耐電圧が求められる。
 しかし、比誘電率と耐電圧とは相反関係にあることが知られている。そのため、比誘電率と耐電圧とを両立するセラミックス焼結体が求められている。
 また、生産性を向上可能である静電チャック装置が求められている。
 本発明はこのような事情に鑑みてなされたものであって、静電チャック装置に好適に用いられ、生産性を向上可能であり、高い比誘電率と高い耐電圧とを両立する複合焼結体を提供することを目的とする。また、このような複合焼結体を用いた静電チャック部材および静電チャック装置を提供することを目的とする。
 基体の形成材料であるセラミックス材料は、加熱されると導電しやすくなり、絶縁破壊される電圧(耐電圧)が低下する。上述したように、静電チャック装置は、プラズマ工程において高温に加熱される。そのため、セラミックス材料を基体の形成材料として用いた静電チャック装置は、使用条件によっては、耐電圧が低下した基体が絶縁破壊し、プラズマ工程での処理対象である半導体素子や配線パターン等を破損して、歩留まりを低下させるおそれがある。
 発明者は、セラミックス材料の上記事象に着目した。すなわち、基体の形成材料として用いるセラミックス材料の耐電圧が、高温条件であっても低下しにくいものであれば、基体の絶縁破壊を防ぎ、歩留まりを改善可能であると考えた。
 また、発明者が検討したところ、静電チャック装置がプラズマや内蔵されたヒータにより加熱され高温になったとき、ウエハを載置する載置面である基体の電気抵抗値(体積固有抵抗値)が低下し、通電しやすくなることが、上記課題の要因の一つであることが分かった。基体が高温になった際に体積固有抵抗値が低下すると、静電吸着用電極への電圧印加を停止した後であっても、分極が解消しにくく、クーロン力が残存しやすいことが、ウエハの取り外しが困難となる要因の一つであると考えられる。
 発明者は、これらの考えに基づいて鋭意検討を重ねた結果、本発明を完成させた。
 本発明の一態様においては、主相である酸化アルミニウムと、副相である炭化ケイ素と、を含むセラミックスの複合焼結体であり、粒界における前記酸化アルミニウムの結晶粒と、前記炭化ケイ素の結晶粒との界面に、前記酸化アルミニウムおよび前記炭化ケイ素以外の材料を形成材料とする界面層を有する複合焼結体を提供する。
 本発明の上記態様は、前記界面層の厚みが、0.6nm以上2.5nm以下である構成としてもよい。
 本発明の上記態様は、体積固有抵抗値が、室温から300℃までの全範囲において5×1015Ω・cm以上である構成としてもよい。
 本発明の他の態様は、主相である酸化アルミニウムと、副相である炭化ケイ素と、を含むセラミックスの複合焼結体であり、前記酸化アルミニウムの平均結晶粒径は、0.8μm以上1.2μm以下であり、前記炭化ケイ素の結晶粒は、前記酸化アルミニウムの結晶粒内および前記酸化アルミニウムの結晶粒界に分散しており、前記酸化アルミニウムの結晶粒内に分散している前記炭化ケイ素の結晶粒の個数割合は、前記炭化ケイ素の結晶粒全体の個数に対して、50%以上60%以下である複合焼結体を提供する。
 本発明の上記態様においては、前記酸化アルミニウムの結晶粒内に分散している前記炭化ケイ素の結晶粒の平均結晶粒径は、前記酸化アルミニウムの結晶粒界に分散している前記炭化ケイ素の結晶粒の平均結晶粒径よりも小さい構成としてもよい。
 また、本発明の一態様は、上記の複合焼結体を形成材料とし、一主面が板状試料を載置する載置面である板状の基体と、前記基体の前記載置面とは反対側、または前記基体の内部に設けられた静電吸着用電極と、を有する静電チャック部材を提供する。
 また、本発明の一態様は、上記の静電チャック部材と、前記載置面に載置された前記板状試料を冷却する冷却手段と、を備え、前記載置面には、前記板状試料を支持する複数の突起部が設けられ、前記冷却手段は、前記複数の突起部の間に伝熱ガスを供給する静電チャック装置を提供する。
 別の側面として言い換えると、本発明は以下の態様を有する。
[1]主相である酸化アルミニウムと、副相である炭化ケイ素と、を含むセラミックスの複合焼結体であり、前記酸化アルミニウムの少なくとも2つの結晶粒の間に位置する前記炭化ケイ素の結晶粒を少なくとも1つ含み、前記酸化アルミニウムの前記結晶粒と、前記炭化ケイ素の前記結晶粒との粒界に、前記酸化アルミニウムおよび前記炭化ケイ素以外の材料を含む界面層を有する複合焼結体。
[2]前記界面層の厚みが、0.6nm以上2.5nm以下である[1]に記載の複合焼結体。
[3]体積固有抵抗値が、室温から300℃までの全範囲において5×1015Ω・cm以上である[1]または[2]に記載の複合焼結体。
[4]前記酸化アルミニウムの平均結晶粒径は、0.8μm以上1.2μm以下であり、前記炭化ケイ素の結晶粒は、前記酸化アルミニウムの結晶粒内および前記酸化アルミニウムの結晶粒同士の粒界に分散しており、前記酸化アルミニウムの結晶粒内に分散している前記炭化ケイ素の結晶粒の個数割合は、前記炭化ケイ素の結晶粒全体の個数に対して50%以上60%以下である[1]から[3]のいずれか1項に記載の複合焼結体。
[5]前記酸化アルミニウムの結晶粒内に分散している前記炭化ケイ素の結晶粒の平均結晶粒径は、前記酸化アルミニウムの結晶粒界に分散している前記炭化ケイ素の結晶粒の平均結晶粒径よりも小さい[4]に記載の複合焼結体。
[6]主相である酸化アルミニウムと、副相である炭化ケイ素と、を含むセラミックスの複合焼結体であり、前記酸化アルミニウムの平均結晶粒径は、0.8μm以上1.2μm以下であり、前記炭化ケイ素の結晶粒は、前記酸化アルミニウムの結晶粒内および前記酸化アルミニウムの結晶粒界に分散しており、前記酸化アルミニウムの結晶粒内に分散している前記炭化ケイ素の結晶粒の個数割合は、前記炭化ケイ素の結晶粒全体の個数に対して50%以上60%以下である複合焼結体。
[7]前記酸化アルミニウムの結晶粒内に分散している前記炭化ケイ素の結晶粒の平均結晶粒径は、前記酸化アルミニウムの結晶粒界に分散している前記炭化ケイ素の結晶粒の平均結晶粒径よりも小さい[6]に記載の複合焼結体。
[8][1]から[7]のいずれか1項に記載の複合焼結体を形成材料とし、一主面が板状試料を載置する載置面である基体と、前記基体の前記一主面とは反対側の主面または前記基体の内部に設けられた静電吸着用電極と、を備える静電チャック部材。
[9][8]に記載の静電チャック部材と、前記載置面に載置された前記板状試料を冷却する冷却手段と、を備え、前記載置面には、前記板状試料を支持する複数の突起部が設けられ、前記冷却手段は、前記複数の突起部の間に伝熱ガスを供給する静電チャック装置。
 本発明によれば、静電チャック装置に好適に用いられ、生産性を向上可能である静電チャック用複合焼結体を提供することができる。高い比誘電率と高い耐電圧とを両立する複合焼結体を提供することができる。このような静電チャック用複合焼結体を用いた静電チャック部材、静電チャック装置を提供することができる。
本発明の一態様における静電チャック装置を示す模式断面図である。 実施例1Aで体積固有抵抗値を測定する際の焼結体の様子を示す模式図である。 実施例1Aの複合焼結体の電子顕微鏡写真である。 比較例1Aの複合焼結体の電子顕微鏡写真である。 実施例1A、比較例1Aおよび参考例1Aにて作製した各焼結体の体積固有抵抗率について、温度依存性を確認した結果を示すグラフである。 本発明の一態様における複合焼結体の電気特性を説明する図である。 本発明の一態様における複合焼結体の電気特性を説明する図である。 本発明の一態様における複合焼結体の電気特性を説明する図である。 水準1の複合焼結体を撮像した電子顕微鏡写真である。 水準2の複合焼結体を撮像した電子顕微鏡写真である。 水準3の複合焼結体を撮像した電子顕微鏡写真である。 実施例1Bの複合焼結体について、酸化アルミニウムの平均結晶粒径に対する、複合焼結体の比誘電率の関係を示すグラフである。 実施例1Bの複合焼結体について、酸化アルミニウムの平均結晶粒径に対する、耐電圧の関係を示すグラフである。
 以下、図を参照しながら、本実施形態に係る静電チャック装置及び複合焼結体等について説明する。以下の複数の実施形態では、好ましい例や条件を共有してもよい。また、本発明の趣旨を逸脱しない範囲において、数、量、位置及び形状等について変更、省略及び置換等してもよい。なお、以下の全ての図面においては、図面を見やすくするため、各構成要素の寸法や比率などは適宜異ならせてあることがある。
[静電チャック装置]
 図1は、本実施形態の静電チャック装置を示す断面図である。本実施形態の静電チャック装置1は、静電チャック部2と、温度調節用ベース部3と、を備えている。静電チャック部2は、一主面(上面)側を載置面とした平面視円板状である。温度調節用ベース部3は、静電チャック部2の下方に設けられて、静電チャック部2を所望の温度に調整する。温度調節用ベース部3は、厚みのある平面視円板状である。また、静電チャック部2と温度調節用ベース部3とは、静電チャック部2と温度調節用ベース部3の間に設けられた接着剤層8を介して接着されている。
 以下、順に説明する。
(静電チャック部)
 静電チャック部2(静電チャック部材ともいう)は、載置板11と、支持板12と、静電吸着用電極13および絶縁材層14と、を有している。載置板11の上面は、半導体ウエハ等の板状試料Wを載置する載置面11aである。支持板12は、載置板11と一体化されている。支持板12は、載置板11の底部側を支持する。静電吸着用電極13は、載置板11と支持板12との間に設けられている。絶縁材層14は、静電吸着用電極13の周囲を絶縁している。載置板11および支持板12は、本発明における「基体」に該当する。言い換えれば、基体は、載置板11と支持板12からなる。
 別の側面として、静電チャック部材は、一主面が板状試料を載置する載置面である基体と、前記基体の前記一主面とは反対側の主面または前記基体の内部に設けられた静電吸着用電極と、を備える。
 上述したように、静電チャック装置においては、(i)ウエハの面内温度分布(温度差)を低減させるため、試料台に微細な溝を設け、当該溝に気体の冷媒(例えばヘリウム)を流動させることで、試料台に載置したウエハを冷却する技術が知られている。このような静電チャック装置において均熱性を高めるためには、冷媒のガス圧を高め冷却効率を向上させることが考えられる。一方、冷媒のガス圧を高める場合、冷媒から受ける圧力によってウエハが脱離しないように、静電チャック装置には高い吸着力が求められる。
 以上に鑑みて、本実施形態において板状試料Wに対する載置板11の高い吸着力を得るには、静電チャック装置の基体である載置板11および支持板12の比誘電率が12以上であり、13以上であることが好ましい。載置板11および支持板12の比誘電率の上限値は特に限定されないが、14程度である。
 また、静電チャック装置を用いる半導体製造装置においては、(ii)深堀加工技術を確実に実施するため、加工時の印加電圧が増加する傾向にある。そのため、静電チャック装置には、高い耐電圧が求められる。
 以上に鑑みて、深堀加工時の加工条件において静電チャック装置の基体が破損しないためには、本実施形態の基体である載置板および支持板12の耐電圧は、19kV以上であり、16kV以上であることが好ましい。載置板11および支持板12の耐電圧の上限値は特に限定されないが、25kV程度である。
 載置板11および支持板12は、互いに重ね合わせた面の形状を同じくする円板状の部材である。載置板11および支持板12は、機械的な強度を有する。かつ、載置板11および支持板12は、腐食性ガスおよびそのプラズマに対する耐久性を有するセラミックス焼結体からなる。載置板11および支持板12の形成材料について、詳しくは後述する。
 載置板11の載置面11aには、直径が板状試料Wの厚みより小さい突起部11bが複数所定の間隔で形成されている。これらの突起部11bは、板状試料Wを支える。
 載置板11、支持板12、静電吸着用電極13および絶縁材層14を含めた全体の厚み、即ち、静電チャック部2の厚みは、一例として0.7mm以上かつ5.0mm以下である。なお、静電チャック部2の厚みには突起部11bが含まれる。言い換えれば、静電チャック部2の厚みは、支持板12の静電吸着用電極13と接する面とは反対の面から突起部11bの上面までの最小寸法である。
 例えば、静電チャック部2の厚みが0.7mmを下回ると、静電チャック部2の機械的強度を確保することが難しくなる。言い換えれば、静電チャック部2の厚みが0.7mm以上であると、静電チャック部2の機械的強度を確保することができる。静電チャック部2の厚みが5.0mmを上回ると、静電チャック部2の熱容量が大きくなる。これにより、載置される板状試料Wの熱応答性が劣化し、静電チャック部の横方向の熱伝達が増加する。よって、板状試料Wの面内温度を所望の温度パターンに維持することが難しくなる。つまり、静電チャック部2の厚みが5.0mm以下であると、静電チャック部2の熱容量が適切な値となり、載置される板状試料Wの熱応答性の劣化や、静電チャック部の横方向の熱伝達の増加が抑制される。よって、板状試料Wの面内温度を所望の温度パターンに維持することができる。なお、ここで説明した各部の厚さは一例であって、前記範囲に限るものではない。
 静電吸着用電極13は、電荷を発生させて静電吸着力で板状試料Wを固定するための静電チャック用電極として用いられる。静電吸着用電極13は、その用途によって、その形状や、大きさが適宜調整される。
 静電吸着用電極13は、酸化アルミニウム-炭化タンタル(Al-Ta)導電性複合焼結体、酸化アルミニウム-タングステン(Al-W)導電性複合焼結体、酸化アルミニウム-炭化ケイ素(Al-SiC)導電性複合焼結体、窒化アルミニウム-タングステン(AlN-W)導電性複合焼結体、窒化アルミニウム-タンタル(AlN-Ta)導電性複合焼結体および酸化イットリウム-モリブデン(Y-Mo)導電性複合焼結体等の導電性セラミックス、あるいは、タングステン(W)、タンタル(Ta)、モリブデン(Mo)等の高融点金属により形成されることが好ましい。
 静電吸着用電極13の厚みは、特に限定されるものではないが、例えば、0.1μm以上かつ100μm以下の厚みを選択することができ、5μm以上かつ20μm以下の厚みがより好ましい。
 静電吸着用電極13の厚みが0.1μmを下回ると、充分な導電性を確保することが難しくなる。言い換えれば、静電吸着用電極13の厚みが0.1μm以上であると、充分な導電性を確保することができる。静電吸着用電極13の厚みが100μmを越えると、静電吸着用電極13と載置板11および支持板12との間の熱膨張率差に起因し、静電吸着用電極13と載置板11および支持板12との接合界面にクラックが入り易くなる。言い換えれば、静電吸着用電極13の厚みが100μm以下であれば、静電吸着用電極13と載置板11および支持板12との接合界面にクラックが入り難くなる。
 このような厚みの静電吸着用電極13は、スパッタ法や蒸着法等の成膜法、あるいはスクリーン印刷法等の塗工法により容易に形成することができる。
 絶縁材層14は、静電吸着用電極13を囲繞して腐食性ガスおよびそのプラズマから静電吸着用電極13を保護する。絶縁材層14は、載置板11と支持板12との境界部、すなわち静電吸着用電極13以外の外周部領域を接合一体化する。言い換えれば、絶縁材層14は、載置板11と支持板12とに挟まれ、かつ静電吸着用電極13の外周を取り囲む領域に位置し、載置板11と支持板12と静電吸着用電極13とを互いに接着するよう固定している。載置板11および支持板12を構成する材料と同一組成または主成分が同一の絶縁材料により構成されている。
(温度調整用ベース部)
 温度調節用ベース部3は、静電チャック部2を所望の温度に調整する。温度調節用ベース部3は、厚みのある円板状である。この温度調節用ベース部3としては、例えば、その内部に冷媒を循環させる流路3Aが形成された液冷ベース等が好適である。
 この温度調節用ベース部3を構成する材料としては、熱伝導性、導電性および加工性に優れた金属、またはこれらの金属を含む複合材であれば特に制限はない。例えば、アルミニウム(Al)、アルミニウム合金、銅(Cu)、銅合金およびステンレス鋼(SUS)等が好適に用いられる。この温度調節用ベース部3の少なくともプラズマに曝される面は、アルマイト処理が施されているか、あるいはアルミナ等の絶縁膜が成膜されていることが好ましい。
 温度調節用ベース部3の上面側には、接着層6を介して絶縁板7が接着されている。接着層6はポリイミド樹脂、シリコン樹脂およびエポキシ樹脂等の耐熱性、および、絶縁性を有するシート状またはフィルム状の接着性樹脂からなる。接着層は例えば厚み5~100μm程度に形成される。絶縁板7は、ポリイミド樹脂、エポキシ樹脂およびアクリル樹脂などの耐熱性を有する樹脂の薄板、シートあるいはフィルムからなる。
 なお、絶縁板7は、樹脂シートに代え、絶縁性のセラミック板でもよく、またアルミナ等の絶縁性を有する溶射膜でもよい。
(フォーカスリング)
 フォーカスリング10は、温度調節用ベース部3の周縁部に載置される平面視円環状の部材である。フォーカスリング10は、例えば、載置面に載置される板状試料W(ウエハ)と同等の電気伝導性を有する材料を形成材料としている。このようなフォーカスリング10を配置することにより、ウエハの周縁部においては、プラズマに対する電気的な環境をウエハと略一致させることができる。よって、ウエハの中央部と周縁部とでプラズマ処理の差や偏りを生じにくくすることができる。
(その他の部材)
 静電吸着用電極13には、静電吸着用電極13に直流電圧を印加するための給電用端子15が接続されている。給電用端子15は、温度調節用ベース部3、接着剤層8および支持板12を厚み方向に貫通する貫通孔16の内部に挿入されている。給電用端子15の外周側には、絶縁性を有する碍子15aが設けられている。この碍子15aにより金属製の温度調節用ベース部3に対し給電用端子15が絶縁されている。
 図1では、給電用端子15を一体の部材として示しているが、複数の部材が電気的に接続して給電用端子15を構成していてもよい。給電用端子15は、熱膨張係数が互いに異なる温度調節用ベース部3および支持板12に挿入されている。そのため、例えば、温度調節用ベース部3および支持板12に挿入されている部分について、それぞれ異なる材料で構成するとよい。
 給電用端子15のうち、静電吸着用電極13に接続され、支持板12に挿入されている部分(取出電極)の材料としては、耐熱性に優れた導電性材料であれば特に制限されるものではないが、熱膨張係数が静電吸着用電極13および支持板12の熱膨張係数に近似したものが好ましい。例えば、Al-TaCなどの導電性セラミック材料からなる。
 給電用端子15のうち、温度調節用ベース部3に挿入されている部分は、例えば、タングステン(W)、タンタル(Ta)、モリブデン(Mo)、ニオブ(Nb)及びコバール合金等の金属材料からなる。
 これら2つの部材は、柔軟性と耐電性を有するシリコン系の導電性接着剤で接続するとよい。
 静電チャック部2の下面側には、ヒータエレメント5が設けられている。ヒータエレメント5は、一例として、厚みが0.2mm以下、好ましくは0.1mm程度の一定の厚みを有する非磁性金属薄板である。ヒータエレメント5は、例えばチタン(Ti)薄板、タングステン(W)薄板およびモリブデン(Mo)薄板等をフォトリソグラフィー法やレーザー加工により所望のヒータ形状に加工することで得られる。ヒータ形状としては、例えば帯状の導電薄板を蛇行させた形状であり、かつ全体輪郭が円環状である形状が挙げられる。
 このようなヒータエレメント5は、静電チャック部2に非磁性金属薄板を接着した後に、静電チャック部2の表面で加工成型することで設けてもよい。ヒータエレメント5は、静電チャック部2とは異なる位置でヒータエレメント5を加工成形したものを、静電チャック部2の表面に転写印刷することで設けてもよい。
 ヒータエレメント5は、接着層4により支持板12の底面に接着および固定されている。接着層4は、厚みの均一な耐熱性および絶縁性を有するシート状またはフィルム状のシリコン樹脂またはアクリル樹脂からなる。
 ヒータエレメント5には、ヒータエレメント5に給電するための給電用端子17が接続されている。給電用端子17を構成する材料は、先の給電用端子15を構成する材料と同じの材料を用いることができる。給電用端子17は、それぞれ温度調節用ベース部3に形成された貫通孔3bを充填するように設けられている。
 また、ヒータエレメント5の下面側には温度センサー20が設けられている。本実施形態の静電チャック装置1では、温度調節用ベース部3と絶縁板7を厚さ方向に貫通するように設置孔21が形成されている。これらの設置孔21の最上部には、温度センサー20が設置されている。なお、温度センサー20はできるだけヒータエレメント5に近い位置に設置することが望ましい。そのため、図1に示す構造から更に接着剤層8側に突き出るように設置孔21を延在して形成し、温度センサー20とヒータエレメント5とを近づけてもよい。
 温度センサー20は、一例としては、蛍光発光型の温度センサーが挙げられる。蛍光発光型の温度センサーは、石英ガラス等からなる直方体形状の透光体の上面側に蛍光体層が形成されている温度センサーである。この温度センサー20が透光性および耐熱性を有するシリコン樹脂系接着剤等によりヒータエレメント5の下面に接着されている。
 蛍光体層は、ヒータエレメント5からの入熱に応じて蛍光を発生する材料からなる。蛍光体層の形成材料としては、発熱に応じて蛍光を発生する材料であれば多種多様の蛍光材料を選択できる。蛍光体層の形成材料は、一例として、発光に適したエネルギー準位を有する希土類元素が添加された蛍光材料、AlGaAs等の半導体材料、酸化マグネシウム等の金属酸化物およびルビーやサファイア等の鉱物を挙げることができ、これらの材料の中から適宜選択して用いることができる。
 ヒータエレメント5に対応する温度センサー20は、それぞれ給電用端子15、17などと干渉しない位置であってヒータエレメント5の下面周方向の任意の位置にそれぞれ設けられている。
 温度計測部22は、これらの温度センサー20の蛍光からヒータエレメント5の温度を測定する。温度計測部22は、一例として、励起部23と、蛍光検出器24と、制御部25とから構成されている。励起部23は、温度調節用ベース部3の設置孔21の外側(下側)に前記蛍光体層に対し励起光を照射する。蛍光検出器24は、蛍光体層から発せられた蛍光を検出する。制御部25は、励起部23および蛍光検出器24を制御する。さらに制御部25は、前記蛍光に基づき主ヒータの温度を算出する。
 さらに、静電チャック装置1は、温度調節用ベース部3から載置板11までをそれらの厚さ方向に貫通するように設けられたガス穴28を有している。ガス穴28の内周部には筒状の碍子29が設けられている。
 このガス穴28には、ガス供給装置(冷却手段)27が接続される。ガス供給装置27からは、ガス穴28を介して板状試料Wを冷却するための冷却ガス(伝熱ガス)が供給される。冷却ガスは、ガス穴を介して載置板11の上面において複数の突起部11bの間に形成される溝19に供給され、板状試料Wを冷却する。
 さらに、静電チャック装置1は、温度調節用ベース部3から載置板11までをそれらの厚さ方向に貫通するように設けられた不図示のピン挿通孔を有している。ピン挿通孔は、例えばガス穴28と同様の構成を採用することができる。ピン挿通孔には、板状試料離脱用のリフトピンが挿通される。
 静電チャック装置1は、以上のような構成となっている。
 以下に、第1実施形態及び第2実施形態の複合焼結体について説明する。
[第1実施形態の複合焼結体]
 まず、第1実施形態の基体(載置板11および支持板12)の材料である複合焼結体について詳述する。
 本実施形態の載置板11および支持板12は、主相である酸化アルミニウムと、副相である炭化ケイ素と、を含むセラミックスの複合焼結体により形成されている。
 本実施形態の1つの側面として、複合焼結体は、主相である酸化アルミニウムと、副相である炭化ケイ素と、を含むセラミックスの複合焼結体であり、前記酸化アルミニウムの少なくとも2つの結晶粒の間に位置する前記炭化ケイ素の結晶粒を少なくとも1つ含み、前記酸化アルミニウムの前記結晶粒のうちの1つと、前記炭化ケイ素の前記結晶粒との粒界に、前記酸化アルミニウムおよび前記炭化ケイ素以外の材料を含む界面層を有する。
 本実施形態の複合焼結体は、酸化アルミニウムと炭化ケイ素の質量比が97:3~88:12であることが好ましく、96:4~93:7であることがより好ましい。
 本実施形態の複合焼結体において、酸化アルミニウムの平均結晶粒径は、0.8μm以上1.2μm以下であることが好ましい。
 なお、本明細書において「平均結晶粒径」は、複合焼結体の一部を切り出して得られた試験片を用い、表面を走査型電気顕微鏡(SEM)で観察することにより撮影された画像から任意の200点の結晶粒についてその最大寸法を測定し、その平均値を算出することにより得られる。
 また、本実施形態の複合焼結体において、炭化ケイ素の平均結晶粒径は、0.1μm以上0.5μm以下であることが好ましい。
 また、本実施形態の複合焼結体は、粒界における酸化アルミニウムの結晶粒と、炭化ケイ素の結晶粒との界面に、酸化アルミニウムおよび炭化ケイ素以外の材料を形成材料とする界面層を有する。言い換えれば、複合焼結体は、酸化アルミニウムの少なくとも2つの結晶粒の間に位置する炭化ケイ素の結晶粒を少なくとも1つ含み、酸化アルミニウムの前記結晶粒のうちの1つと、炭化ケイ素の前記結晶粒との粒界に、酸化アルミニウムおよび炭化ケイ素以外の材料を含む界面層を有する。
 ここで、「粒界」とは、多結晶焼結体である複合焼結体において、複合焼結体を構成する結晶粒同士の境目(界面)のことを指す。多結晶焼結体においては、結晶方位の異なる結晶粒の境目は、界面として顕在化する。
 界面層は、複合焼結体の一部を切り出して得られた試験片を用い、表面を透過型電子顕微鏡(TEM)で観察することで確認することができる。
 界面層の材料は、「酸化アルミニウムおよび炭化ケイ素以外の材料」、すなわち酸化アルミニウムでもなく、炭化ケイ素でもない材料である。
 ここで、本実施形態の複合焼結体が、酸化アルミニウムと炭化ケイ素からなる複合焼結体であるとすると、界面層を構成する元素は、アルミニウム(Al)、酸素(O)、ケイ素(Si)、炭素(C)の4種に限られる。発明者が確認したところ、本実施形態の複合焼結体が有する界面層は、酸化アルミニウムおよび炭化ケイ素ではない材料が形成材料となっていることが分かった。界面層の形成材料、即ち酸化アルミニウムおよび炭化ケイ素以外の材料とは、少なくともケイ素原子を含む酸化物であると推測される。または、炭化ケイ素や酸化アルミニウムと、ケイ素を含む酸化物との混晶であることも考えられる。これらは、導電体である炭化ケイ素と比べると高抵抗である蓋然性が高い。ケイ素を含む酸化物の例としては、シリカ等が挙げられる。
 以上より、酸化アルミニウムおよび炭化ケイ素以外の材料は、少なくとも酸素とケイ素とを含み、任意にアルミニウム及び炭素の少なくとも一方を含んでいてもよい。酸化アルミニウムおよび炭化ケイ素以外の材料は、ケイ素原子を含む酸化物又は炭化ケイ素及び酸化アルミニウムの少なくとも1つと、ケイ素を含む酸化物との混晶であってもよい。より具体的には、酸化アルミニウムおよび炭化ケイ素以外の材料は、シリカ又は、炭化ケイ素及び酸化アルミニウムの少なくとも1つと、シリカとの混晶であってもよい。
 このような界面層を有する複合焼結体では、高抵抗化する傾向にある。
 まず、本実施形態の複合焼結体を構成する物質のうち、主相である酸化アルミニウムは絶縁体であり、副相である炭化ケイ素は導電体である。また、炭化ケイ素の結晶粒は、酸化アルミニウムの結晶粒界に存在する。つまり、炭化ケイ素の結晶粒は、少なくとも二つの酸化アルミニウムの結晶粒の間に存在する。そのため、複合焼結体に通電しようとすると、電子は、酸化アルミニウムの結晶粒内に侵入して移動するよりも、導電体である炭化ケイ素の結晶粒が配置された酸化アルミニウムの結晶粒界に沿って移動すると考えられる。
 このとき、本願の複合焼結体においては、結晶粒界を移動する電子に対して抵抗となりうる界面層が存在している。そのため、界面層が存在しない従来の複合焼結体と比べ、全体が高抵抗化する。
 本実施形態のように導電体と絶縁体とが混在する複合焼結体においては、温度の上昇と共に導電体(炭化ケイ素)の抵抗値が増加する一方で、絶縁体(酸化アルミニウム)の抵抗値が低下する。両者のバランスにより、複合焼結体では、温度の上昇にしたがって高温域では体積固有抵抗率が低下する傾向にある。本実施形態の複合焼結体においては、体積固有抵抗率の温度依存性の小さい界面層の存在により、体積固有抵抗率が低下しにくい。結果として高温域においても高い体積固有抵抗率を維持することができる。
 本実施形態の複合焼結体は、体積固有抵抗値が、室温(24℃)から300℃までの全範囲において5×1015Ω・cm以上であることが好ましい。
 ここで、「室温(24℃)から300℃までの範囲」は、静電チャック装置の使用環境の温度条件を考慮して定めたものである。すなわち、本実施形態の複合焼結体を構成材料として有する静電チャック装置は、室温(24℃)から、プラズマ処理工程における温度条件として想定される温度を上回る温度(300℃)までの範囲において、体積固有抵抗率が高く維持される。そのため、高温域においてウエハの取り外しが困難になることなく、また、ウエハに過度の電流が流れることが抑制され、生産性が向上する。
 界面層の厚みは、0.6nm以上2.5nm以下であると好ましい。ここで、界面層の「厚み」とは、界面層が確認できる透過型電子顕微鏡写真において、平行な2本の線分で界面層を挟んだ時の線分間の距離に該当する。同一視野において界面層の任意の複数箇所(例えば5箇所)の厚みを測定し、得られた測定値の平均値を「界面層の厚み」として採用する。
 界面層の厚みが0.6nm以上であると、導電しにくく、絶縁破壊される電圧(耐電圧)が低下しにくい。
 一方、界面層の厚みが2.5nm以下であると、分極能の小さい界面層の割合が多くなり過ぎず、比誘電率が低下しにくい。そのため、本実施形態の複合焼結体を静電チャック装置の基体に採用した場合、ウエハを固定する静電吸着力を十分な大きさとすることができる。
 なお、炭化ケイ素(SiC)には、結晶構造が多数あることが知られており、立方晶系で3C型(閃亜鉛鉱型)の結晶構造を有するもの、4H型および6H型等の六方晶系でウルツ鉱型の結晶構造を有するもの、菱面体晶系で15R型の結晶構造を有するもの、が挙げられる。このうち、3C型の結晶構造を有するものを「β-SiC」と称する。また、それ以外の結晶構造を有するもの全てを「α-SiC」と称する。
 本実施形態の載置板11および支持板12は、複合焼結体に含まれる炭化ケイ素がβ-SiCであることが好ましい。また、複合焼結体においては、β-SiCの結晶粒が、マトリックス材料である酸化アルミニウムの結晶粒に取り囲まれる状態で分散して存在していることが好ましい。複合焼結体において、β-SiCの体積比率は、焼結体全体体積に対して4体積%以上15体積%以下が好ましく、6体積%以上10体積%以下がより好ましい。
 β-SiCの体積比率が4体積%より少ないと、炭化ケイ素粒子による電子導電性の発現効果が少ない。また、β-SiCの体積比率が15体積%より多いと、炭化ケイ素粒子同士の接触を生じ炭化ケイ素粒子を介した抵抗値低下を生じるおそれがある。
 また、本実施形態の複合焼結体においては、アルミニウムおよびケイ素以外の金属不純物含有率が、複合焼結体の総質量に対し100ppm以下であることが好ましい。金属不純物含有率は、複合焼結体の総質量に対し50ppm以下であることが好ましく、25ppm以下であることがより好ましい。
 ここで、金属不純物として着目すべき元素は、カルシウム(Ca)、クロム(Cr)、鉄(Fe)、ニッケル(Ni)、銅(Cu)、ナトリウム(Na)、マグネシウム(Mg)、カリウム(K)、チタン(Ti)、マンガン(Mn)、亜鉛(Zn)、バリウム(Ba)およびイットリウム(Y)である。
 [第2実施形態の複合焼結体]
 次に、第2実施形態の基体(載置板11および支持板12)の材料である複合焼結体について、詳述する。
 本実施形態の載置板11および支持板12は、主相である酸化アルミニウムと、副相である炭化ケイ素と、を含むセラミックスの複合焼結体により形成されている。
 本実施形態の1つの側面として、複合焼結体は、主相である酸化アルミニウムと、副相である炭化ケイ素と、を含むセラミックスの複合焼結体であり、前記酸化アルミニウムの平均結晶粒径は、0.8μm以上1.2μm以下であり、前記炭化ケイ素の結晶粒は、前記酸化アルミニウムの結晶粒内および前記酸化アルミニウムの結晶粒界に分散しており、前記酸化アルミニウムの結晶粒内に分散している前記炭化ケイ素の結晶粒の個数割合は、前記炭化ケイ素の結晶粒全体の個数に対して50%以上60%以下である。
 本実施形態の複合焼結体において、酸化アルミニウムの平均結晶粒径は、0.8μm以上1.2μm以下である。
 また、本実施形態の複合焼結体において、炭化ケイ素の結晶粒は、酸化アルミニウムの結晶粒内および酸化アルミニウムの結晶粒同士の結晶粒界に分散している。
 また、本実施形態の複合焼結体において、酸化アルミニウムの結晶粒内に分散している炭化ケイ素の結晶粒の個数割合は、炭化ケイ素の結晶粒全体の個数に対して50%以上60%以下である。酸化アルミニウムの結晶粒内に分散している炭化ケイ素の結晶粒の割合は、酸化アルミニウムの平均結晶粒径が大きいほど多くなる傾向にある。
 なお、本発明において、複合焼結体における「酸化アルミニウムの結晶粒内に分散している炭化ケイ素の結晶粒の個数割合」は、複合焼結体の任意の視野の走査型電子顕微鏡写真において、炭化ケイ素の結晶粒を目視で数えた結果に基づいて算出する。すなわち、拡大倍率10000倍の電子顕微鏡写真において、無作為に抽出した炭化ケイ素の結晶粒150個を「炭化ケイ素の結晶粒全体の個数」とし、酸化アルミニウムの結晶粒内に分散している炭化ケイ素の結晶粒の割合を求める。同様の処理を2つの視野の電子顕微鏡写真において行い、平均値を「酸化アルミニウムの結晶粒内に分散している炭化ケイ素の結晶粒の個数割合」として求める。
 載置板11および支持板12の材料である複合焼結体は、上述のような構成であることにより、高い比誘電率と高い耐電圧とを両立することができる。
 本実施形態の複合焼結体においては、酸化アルミニウムの平均結晶粒径が大きくなり、酸化アルミニウムの結晶粒内に分散している炭化ケイ素の結晶粒の個数割合が増加すると、比誘電率は増加する傾向にある。
 また、本実施形態の複合焼結体においては、酸化アルミニウムの平均結晶粒径を大きくし、酸化アルミニウムの結晶粒内に分散している炭化ケイ素の結晶粒の個数割合を増加させると、ある平均結晶粒径までは耐電圧が増加し、その後、耐電圧が低下する傾向にある。
 この耐電圧の変化の傾向は、次のようなモデルで説明できると考えられる。
 図6~8は、本実施形態の複合焼結体の電気特性を説明する図であり、複合焼結体の結晶を模式的に示した図である。図6は、酸化アルミニウムの平均結晶粒径が0.8μm未満である複合焼結体A2の電気特性を説明する図である。図7は、酸化アルミニウムの平均結晶粒径が0.8μm以上1.2μm以以下である複合焼結体B2の電気特性を説明する図である。図8は、酸化アルミニウムの平均結晶粒径が1.2μmを超えている複合焼結体C2の電気特性を説明する図である。また、図6に示す複合焼結体A2の長さL1、図7に示す複合焼結体B2の長さL2、図8に示す複合焼結体C2の長さL3はそれぞれ同じであるとする。
 各図の六角形は、それぞれ主相である酸化アルミニウムの結晶粒を示している。また、各図の破線は、電圧印加時に電子が移動する経路を示す。
 本実施形態の複合焼結体を構成する物質のうち、主相である酸化アルミニウムは絶縁体であり、副相である炭化ケイ素は導電体である。また、炭化ケイ素の結晶粒は、酸化アルミニウムの結晶粒内と、酸化アルミニウムの結晶粒同士の結晶粒界との両方に存在する。そのため、複合焼結体に通電しようとすると、電子は、導電体である炭化ケイ素の結晶粒が配置された結晶粒界を移動しやすい。
 図6の複合焼結体A2において、電圧を印加し、符号A12から符号A22に電流を流そうとすると(電子を移動させようとすると)、電子は、結晶粒界に沿って移動すると考えられる。すなわち、複合焼結体A2のように酸化アルミニウムの結晶粒の平均結晶粒径が0.8μm未満と小さい場合、電子は、酸化アルミニウムの結晶粒同士の結晶粒界に沿って符号A12と符号A22とを結ぶ最短距離を移動すると考えられる。
 同様に、図7の複合焼結体B2において、電圧を印加し、符号B12から符号B22に電流を流そうとすると、電子は、酸化アルミニウムの結晶粒同士の結晶粒界に沿って移動すると考えられる。このとき、図7の複合焼結体B2は、図6の複合焼結体A2よりも酸化アルミニウムの平均結晶粒径が大きい。そのため、複合焼結体B2においては、結晶粒界に沿って符号B12と符号B22とを結ぶ最短距離が、図6に示す構成の複合焼結体A2よりも長くなり、電子の移動距離が長くなる。その結果、同じ電圧を印加したときに、図7の複合焼結体B2は、図6の複合焼結体A2よりも電流が流れにくくなり、耐電圧が高くなると考えられる。
 一方、図8の複合焼結体C2において、電圧を印加し、符号C12から符号C22に電流を流そうとした場合には傾向が異なる。すなわち、複合焼結体C2においては、酸化アルミニウムの平均結晶粒径が大きい分、酸化アルミニウムの結晶粒内に分散している炭化ケイ素の個数割合が複合焼結体A2,B2よりも多くなる。そのため、複合焼結体C2の酸化アルミニウムの結晶粒は、複合焼結体A2,B2の酸化アルミニウムの結晶粒よりも絶縁性が低下する。
 複合焼結体C2においては、酸化アルミニウムの結晶粒同士の結晶粒界に沿って符号C12と符号C22とを結ぶ最短距離が、図7に示す構成の複合焼結体B2よりも長くなる。その結果、酸化アルミニウムの結晶粒同士の結晶粒界に沿って符号C12と符号C22とを結ぶ最短距離を電子が移動した場合、複合焼結体B2の場合より電子の移動距離が長くなる。一方で、上述のように、複合焼結体C2においては、酸化アルミニウムの結晶粒の絶縁性が低下している。そのため、複合焼結体C2に電圧を印加すると、結晶粒界に沿って電子が移動するよりも、酸化アルミニウムの結晶粒内を電子が移動する方がエネルギー的に有利になる。そのため、図8の複合焼結体C2は、図7の複合焼結体B2よりも電流が流れやすくなり、耐電圧が低下すると考えられる。
 発明者らの検討により、主相である酸化アルミニウムと、副相である炭化ケイ素と、を含むセラミックスの複合焼結体であり、酸化アルミニウムの平均結晶粒径が、0.8μm以上1.2μm以下であり、炭化ケイ素の結晶粒が、酸化アルミニウムの結晶粒内および前記酸化アルミニウムの結晶粒同士の結晶粒界に分散しており、酸化アルミニウムの結晶粒内に分散している炭化ケイ素の結晶粒の個数割合が、炭化ケイ素の結晶粒全体の50%以上60%以下である複合焼結体は、上述のような性質を示し、高い比誘電率と高い耐電圧とを両立することができることが分かった。
 複合焼結体において、酸化アルミニウムの平均結晶粒径は、焼結温度を制御することにより調節可能である。焼結温度が高くなると、酸化アルミニウムの平均結晶粒径が大きくなる傾向にある。焼結温度が低くなると、酸化アルミニウムの平均結晶粒径が小さくなる傾向にある。
 また、複合焼結体において、酸化アルミニウムの結晶粒内に分散している炭化ケイ素の結晶粒の個数割合は、焼結温度を制御することにより調整可能である。焼結温度が高くなると酸化アルミニウムの粒成長が促進される。そのため、焼結温度が高くなると、粒内に存在する炭化ケイ素の結晶粒の個数割合が増加する傾向にある。一方、焼結温度が低くなると、酸化アルミニウムの粒成長が抑制される。そのため、焼結温度が低くなると、粒内に存在する炭化ケイ素の結晶粒の個数割合が低減する傾向にある。
 本実施形態の載置板11および支持板12は、複合焼結体に含まれる炭化ケイ素がβ-SiCであることが好ましい。また、複合焼結体においては、β-SiCの結晶粒が、マトリックス材料である酸化アルミニウムの結晶粒に取り囲まれる状態で分散して存在していることが好ましい。複合焼結体において、β-SiCの体積比率は、複合焼結体全体の体積に対し4体積%以上15体積%以下が好ましく、6体積%以上10体積%以下がより好ましい。
 β-SiCの体積比率が4体積%より少ないと、炭化ケイ素の結晶粒による電子導電性の発現効果が少ない。また、β-SiCの体積比率が15体積%より多いと、炭化ケイ素の結晶粒同士の接触を生じ炭化ケイ素の結晶粒を介した抵抗値低下を生じるおそれがあるためである。
 また、本実施形態の複合焼結体においては、アルミニウムおよびケイ素以外の金属不純物含有量が、複合焼結体の総質量に対し100ppm以下であることが好ましい。金属不純物含有量は、複合焼結体の総質量に対し50ppm以下であることが好ましく、25ppm以下であることがより好ましい。
 金属不純物として着目すべき元素は、カルシウム(Ca)、クロム(Cr)、鉄(Fe)、ニッケル(Ni)、銅(Cu)、ナトリウム(Na)、マグネシウム(Mg)、カリウム(K)、チタン(Ti)、マンガン(Mn)、亜鉛(Zn)、バリウム(Ba)およびイットリウム(Y)である。
[複合焼結体の製造方法]
 本実施形態に係る複合焼結体は、酸化アルミニウム粒子と炭化ケイ素粒子とを、それぞれ高速で噴射してお互いに衝突させながら混合する工程と、混合する工程で得られたスラリーから分散媒を除去した後、成形する工程と、得られる成形体を、非酸化性雰囲気下、25MPa以上の圧力で押し固めながら1600℃以上に加熱して加圧焼結する工程と、を有する製造方法により製造することができる。
 本実施形態に係る複合焼結体の製造方法では、用いる酸化アルミニウム粒子は、酸化アルミニウムの含有量が酸化アルミニウム粒子全体の総質量に対し99.99質量%以上であることが好ましい。このような高純度の酸化アルミニウム粒子は、ミョウバン法を用いることにより調製可能である。ミョウバン法を用いて調整した酸化アルミニウム粒子は、例えばバイヤー法を用いて調製した酸化アルミニウム粒子と比べると、金属不純物であるナトリウム原子の含有量を大幅に低減することが可能である。また、所望の純度の酸化アルミニウム粒子が得られるのであれば、種々の方法を採用可能である。
 本明細書において、酸化アルミニウム粒子をミョウバン法で調製する場合、以下の操作を行う。
 まず硫酸アルミニウムと硫酸アンモニウムを加熱下で純水に溶解し、続いて撹拌冷却することにより、無色透明な結晶が得られる。さらに高純度化するために、再結晶を繰り返してミョウバン中の不純物を除去する。その後、例えば1150℃に加熱することにより、三酸化硫黄が脱離し酸化アルミニウムが得られる。
 本明細書において、酸化アルミニウム粒子をバイヤー法で調製するとは、以下の操作を行うことを意味する。まず、ボーキサイトを例えば250℃の水酸化ナトリウム水溶液で洗浄する。この際、ボーキサイトに含まれる酸化アルミニウムは、水酸化アルミニウムとなり、水溶液中に溶解する。ボーキサイトに含まれる酸化アルミニウム以外の成分は、固体の不純物としてろ過により除去される。次に水溶液を冷却することにより、水酸化アルミニウムを沈殿させる。その後、例えば1050℃に加熱することにより、水酸化アルミニウムから脱水が生じ、酸化アルミニウムが得られる。
 混合する工程においては、2流粒子衝突型の粉砕混合装置を用い、分散媒に分散させた酸化アルミニウム粒子と、分散媒に分散させた炭化ケイ素粒子とをそれぞれ加圧することで高速で噴射してお互いに衝突させながら混合する。これにより、酸化アルミニウム粒子と炭化ケイ素粒子とが粉砕され、これらの粉砕粒子を含む分散液が得られる。
 酸化アルミニウム粒子と炭化ケイ素粒子とを衝突させる際、大きい粒子は、衝突時の運動エネルギーが大きく、粉砕されやすい。一方、小さい粒子は、衝突時の運動エネルギーが小さく、粉砕されにくい。そのため、上記粉砕混合装置を用いて得られる酸化アルミニウム粒子と炭化ケイ素粒子は、粗大粒子や過粉砕の粒子の少ない、粒度分布幅の狭い粒子となる。したがって、2流粒子衝突型の粉砕混合装置を用いて粉砕混合した混合粒子を用いると、焼結工程において、粗大粒子を核とする異常粒成長を抑制することができる。
 例えば、ボールミルやビーズミル等のメディアを用いて粉砕混合すると、各メディアの破損に起因した不純物の混入が生じるおそれがある。これと比較して、本実施形態のように粉砕混合装置を用いて粉砕混合することにより、純物の混入を抑制することが可能である。
 成形する工程においては、まず、粉砕混合装置で得られた分散液をスプレードライすることにより、酸化アルミニウム粒子と炭化ケイ素粒子との混合粒子からなる顆粒を得る。
 次いで、目的とする焼結体の形状に応じて、得られた顆粒を一軸成形(一軸プレス成形)する。
 次いで、得られた成形体を不活性ガス雰囲気下、常圧で(プレス圧を加えることなく)例えば500℃に加熱し、成形体に含まれる水分や分散媒等の夾雑物を除去する。不活性ガスとしては、窒素またはアルゴンを用いることができる。この操作においては、成形体を変性することなく成形体から夾雑物を除去できるならば、加熱温度は500℃に限られない。
 さらに、夾雑物を除去した成形体を、大気中、例えば400℃で加熱して成形体を構成する混合粒子を酸化処理する酸化工程を有することが好ましい。この酸化処理により、混合粒子に含まれる炭化ケイ素粒子の表面には酸化膜が形成される。酸化膜には、混合粒子に含まれる金属不純物が溶け出しやすいため、混合粒子に含まれる金属不純物が粒子表面に偏って存在することになる。すると、後述する加圧焼結する工程において、金属不純物を除去しやすいため好ましい。
 加圧焼成する工程においては、まず、上述の成形体を、真空雰囲気(第1の非酸化性雰囲気)において、1600℃よりも低い温度且つ常圧で(プレス圧を加えることなく)加熱(予備加熱)する。このような操作によれば、予備加熱時の温度を適宜設定することにより、混合粒子に含まれるアルカリ金属等の金属不純物が蒸発し、金属不純物を容易に除去できる。そのため、このような操作によれば、混合粒子の純度を向上しやすくなる。また、基体の体積抵抗値を制御しやすくなる。
 また、成形する工程において、上述したように夾雑物を除去した成形体に対し酸化処理を施すと、真空雰囲気下で予備加熱することにより、粒子表面に形成された酸化膜が揮発する。同時に、酸化膜に含まれる金属不純物が蒸発する。そのため、成形体から金属不純物を容易に除去できる。したがって、このような操作によれば、混合粒子の純度を向上しやすくなる。また、基体の体積抵抗値を制御しやすくなる。
 なお、本実施形態において「真空」とは、「大気圧より低い圧力の基体で満たされた空間内の状態」のことであり、JIS規格において工業的に利用できる圧力として定義された状態のことを指す。本実施形態においては、真空雰囲気は、低真空(100Pa以上)であってもよいが、中真空(0.1Pa~100Pa)であると好ましく、高真空(10-5Pa~0.1Pa)であるとより好ましい。
 本実施形態の複合焼結体の製造方法においては、例えば、真空雰囲気下、1200℃で4時間以上予備加熱した後、大気圧までアルゴンで気圧を戻す。
 次いで、予備加熱を施した成形体を、アルゴン雰囲気(第2の非酸化性雰囲気)において、5MPa以上の圧力で押し固めながら1600℃以上に加熱して加圧焼結する。このような操作によれば、成形体に含まれる酸化アルミニウム粒子や炭化ケイ素粒子の焼結が進行し、気孔の少ない緻密な焼結体が得られる。
 本実施形態の複合焼結体の製造方法においては、例えば、アルゴン雰囲気下、1600℃以上1850℃以下で、焼結圧力25MPa以上50MPa以下の範囲で焼結する。
 このような方法で製造して得られた焼結体は、金属不純物含有率が低減し高純度なものとなる。金属不純物含有率が目標値に達しない場合には、予備加熱の時間を長くする、または予備加熱の温度を高くするとよい。
 以上のようにして、本実施形態の複合焼結体を製造することができる。
 得られた複合焼結体を所望の形状に研削することで、静電チャック部材を構成する基体である載置板11および支持板12をそれぞれ形成することができる。載置板11の載置面11aに形成された突起部11bについては、公知の方法により適宜形成可能である。
 以上のような構成の複合焼結体によれば、静電チャック装置に好適に用いられ、生産性を向上可能である静電チャック用複合焼結体を提供することができる。
 また、以上のような構成の静電チャック装置によれば、生産性を向上可能である静電チャック装置を提供することができる。
 以上、添付図面を参照しながら本発明に係る好適な実施の形態例について説明したが、本発明は係る例に限定されないことは言うまでもない。上述した例において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
 例えば、本明細書においては、第1実施形態の複合焼結体と、第2実施形態の複合焼結体とを別々に説明したが、複合焼結体が、第1実施形態に記載の側面と、第2実施形態に記載の側面との双方を備えるものであってもよい。
 以下に本発明を実施例により説明するが、本発明はこれらの実施例に限定されるものではない。
 [実施例1A]
 本実施例においては、直流三端子法により円盤状の焼結体の体積固有抵抗値を測定した。
(使用機器)
 スクリーン印刷機:MODEL MEC-2400型、ミタニマイクロニクス株式会社製
 抵抗率測定装置:西山製作所製
 絶縁計:デジタル絶縁計(型式DSM-8103、日置電機株式会社製)
(測定条件)
 温度:室温(24℃)、50℃、100℃、150℃、200℃、250℃、300℃
 雰囲気:窒素(純度99.99995%、流量200ml/分)
 印加電圧:0.5kV、1kV
(測定方法)
 スクリーン印刷機を用いて、銀ペースト(NP-4635、株式会社ノリタケカンパニーリミテッド製)を焼結体の上面および下面に印刷し、大気中100℃で12時間乾燥させた。その後、銀ペーストを大気中450℃で1時間焼き付け、主電極、ガード電極、対極を形成した。図2は、本実施例で体積固有抵抗値を測定する際の焼結体の様子を示す模式図である。図2において、符号100は焼結体、符号110は主電極、符号120はガード電極、符号130は対極を示す。
 このとき、主電極直径は1.47cmであり、ガード電極の内径は1.60cmであった。
 上述のように各電極を形成した焼結体に対し、各測定温度において直流電圧を印加し、1分間充電後の電流を測定して、焼結体の体積抵抗を求めた。その後、焼結体の厚み、および電極面積を用いて下記式(1)より体積固有抵抗率(ρv)を算出した。
 ρv=S/t×Rv=S/t×V/I  …(1)
(S:電極の有効面積(cm)、t:焼結体の厚み(cm)、Rv:体積抵抗、V:直流電圧(V)、I:電流(A))
(誘電正接)
 本実施例においては、プレシジョン・インピーダンス・アナライザー(型番:4294A、Agilent Technologies社製)、および誘電体テスト・フィクスチャ(型番:16451B、Agilent Technologies社製)を用い、平行平板法にて誘電正接を測定した。
 (複合焼結体の組織観察)
 加圧焼結後に得られる複合焼結体から一部を切り出して得られた試験片を用い、走査型電子顕微鏡を用いて複合焼結体の組織観察を行った。
(測定条件)
 装置名:日立ハイテクノロジー株式会社製、型番:S-4000
 試料作製:サーマルエッチング(1400℃×30min, Ar雰囲気)
(複合焼結体の界面観察)
加圧焼結後に得られる複合焼結体から一部を切り出して得られた試験片を用い、透過型電子顕微鏡を用いて複合焼結体の組織観察を行った。
(測定条件)
 装置名:原子分解能分析電子顕微鏡 JEM-ARM200F Dual-X、JEOL製
 EDX検出器:JED-2300、JEOL製 
 観察条件:加速電圧200kV,ビーム径:約0.2nmφ
 試料作製:機械研磨+イオンミリング(PIPS691、Gatan製、加速電圧~4kV)
(複合焼結体の作製)
 出発原料として、平均粒子径が0.03μmであり熱プラズマCVDで合成されたβ-SiC型の炭化ケイ素(β-SiC)粒子と、平均粒子径が0.1μmであり金属不純物含有量が酸化アルミニウム(Al)粒子の総質量に対し95ppmの酸化アルミニウム(Al)粒子とを用いた。
 β-SiC粒子とAl粒子との全体の質量に対し、β-SiC粒子が8質量%となるように秤量し、分散剤が入った蒸留水に投入した。β-SiC粒子とAl粒子とを投入した分散液について、超音波分散装置にて分散処理の後、2流粒子衝突型の粉砕混合装置を用いて粉砕混合した。
 得られた混合溶液をスプレードライ装置にて噴霧乾燥させ、β-SiCとAlとの混合粒子とした。
 混合粒子をプレス圧8MPaで一軸プレス成形し、直径320mm×15mm厚の成形体とした。
 次いで、成形体を窒素雰囲気下、プレス圧を加えることなく500℃まで昇温させ、水分および分散剤(夾雑物)を除去した。その後、夾雑物を除去した成形体を大気中400℃に加熱し、成形体に含まれるβ-SiC粒子の表面を酸化した。
 得られた成形体を黒鉛製のモールドにセットし、加圧焼結を行った。まず、成形体を、真空雰囲気下、プレス圧を加えることなく1200℃まで昇温させた。その後、アルゴン雰囲気下、プレス圧40MPa、1800℃で焼結を行い、実施例1Aの複合焼結体を得た。
 実施例1Aの複合焼結体の金属不純物含有量は、複合焼結体の総質量に対し、80ppmであった。なお、本実施例において金属不純物含有量は、ICP-MS法にて測定した値を採用した。
(比較例1A)
 Al粒子として、金属不純物含有量がAl粒子と金属不純物の総質量に対し800ppm、平均粒子径が0.5μmのものを用いた。また、夾雑物を除去した成形体を、室温から焼結温度に至るまで真空雰囲気に曝すことなく、アルゴン雰囲気下で熱処理(焼結)を行ったこと以外は、実施例1Aと同様にして、比較例1Aの焼結体を得た。
 比較例1Aの焼結体の金属不純物含有量は、複合焼結体の総質量に対し、795ppmであった。なお金属不純物含有量は、実施例1Aと同様にICP-MS法にて測定した値を採用した。
(参考例1A)
 出発原料であるβ-SiC粒子を用いないこと以外は、実施例1Aと同様にして、参考例1Aの焼結体を得た。
 図3および4は、作製した複合焼結体の電子顕微鏡写真である。図3は、実施例1Aの複合焼結体、図4は比較例1Aの複合焼結体を示す。各写真において、符号A1で示す結晶は酸化アルミニウム、符号B1で示す結晶は炭化ケイ素を示す。
 図3に示すように、実施例1Aの複合焼結体においては、酸化アルミニウムの結晶と炭化ケイ素の結晶との粒界に、酸化アルミニウムの結晶とも炭化ケイ素の結晶とも異なる1nm程度の領域が観察された。すなわち、酸化アルミニウムの結晶と炭化ケイ素の結晶との粒界に、1nm程度の界面層Xが確認できた。
 一方、図4に示すように、比較例1Aの複合焼結体においては、酸化アルミニウムの結晶と炭化ケイ素の結晶との粒界に界面層は確認できなかった。
 図5は、作製した各焼結体の体積固有抵抗率について、温度依存性を確認した結果を示す片対数グラフである。図5は、横軸が測定温度(単位:℃)、縦軸が体積固有抵抗率(単位:Ω・cm)を示している。
 図5に示すように、実施例1Aの複合焼結体は、-70℃から300℃までの広範囲において、体積固有抵抗率が5×1015Ω・cm以上であることが確認できた。一方、比較例1Aの複合焼結体では、300℃において体積固有抵抗率が1×1015Ω・cmを下回っていた。なお、参考例1Aの酸化アルミニウム焼結体は、温度上昇に応じて、体積固有抵抗率が低下する傾向を見せ、150℃において体積固有抵抗率が1×1015Ω・cmを下回っていた。
 実施例1Aと比較例1Aとの複合焼結体について、図5で体積固有抵抗率を測定した温度にて誘電正接を測定した結果を表1に示す。誘電正接の測定は、100kHz、500kHz、1MHzで行った。
Figure JPOXMLDOC01-appb-T000001
 
 測定の結果、実施例1Aの複合焼結体は、比較例1Aの複合焼結体と比べ、誘電正接が低下していることが確認できた。
[実施例1B]
(比誘電率・誘電正接)
 実施例1Aと同様に、プレシジョン・インピーダンス・アナライザー(型番:4294A、Agilent Technologies社製)、および誘電体テスト・フィクスチャ(型番:16451B、Agilent Technologies社製)を用い、平行平板法にて比誘電率・誘電正接を測定した。
(耐電圧)
 本実施例においては、高圧電源(型番HGR10-20P、松定プレシジョン社製)を用い、複合焼結体を直径20mmの円柱状電極で挟んだ後、室温のシリコーン油中にて昇温速度1kV/秒で電圧を印加したとき、試験片に1μAの電流が流れる電圧(耐電圧)を測定した。
(酸化アルミニウムの結晶粒内に分散している炭化ケイ素の結晶粒の個数割合)
 本実施例においては、複合酸化物(複合焼結体)の表面を3μmのダイヤモンドペーストで鏡面研磨した後、アルゴン雰囲気下、1400℃で30分サーマルエッチングを施した。
 得られた焼結体の表面を、走査型電子顕微鏡(日立ハイテクノロジー株式会社製、型番:S-4000)を用いて、拡大倍率10000倍で組織観察を行った。
 得られた電子顕微鏡写真において、無作為に抽出した炭化ケイ素の結晶粒150個を「炭化ケイ素の結晶粒全体」とし、酸化アルミニウムの結晶粒内に分散している炭化ケイ素の結晶粒の割合を求めた。同様の処理を2つの視野の電子顕微鏡写真において行い、平均値を「酸化アルミニウムの結晶粒内に分散している炭化ケイ素の結晶粒の個数割合」として求めた。
(水準1)
 実施例1Aの複合焼結体と同じ工程により、水準1の複合焼結体を得た。
 水準1の複合焼結体の金属不純物含有量は、80ppmであった。なお、水準1において金属不純物含有量は、ICP-MS法にて測定した値を採用した。
 また、水準1の複合焼結体について、上述の条件にて電子顕微鏡写真を撮影した。図9は、撮像した電子顕微鏡写真である。相対的に黒く写っている部分が炭化ケイ素の結晶粒、白く写っている部分が酸化アルミニウムの結晶粒である。
 得られた電子顕微鏡写真から酸化アルミニウムの平均結晶粒径を求めたところ、0.65μmであった。また、酸化アルミニウムの結晶粒内に分散している炭化ケイ素の結晶粒の個数割合を求めたところ、45%であった。
(水準2)
 アルゴン雰囲気下、プレス圧40MPa、1845℃で焼結を行ったこと以外は、水準1と同様にして、水準2の複合焼結体を得た。
 また、水準2の複合焼結体について、上述の条件にて電子顕微鏡写真を撮影した。図10は、撮像した電子顕微鏡写真である。得られた電子顕微鏡写真から酸化アルミニウムの平均結晶粒径を求めたところ、1.05μmであった。また、酸化アルミニウムの結晶粒内に分散している炭化ケイ素の結晶粒の個数割合を求めたところ、55%であった。
(水準3)
 アルゴン雰囲気下、プレス圧40MPa、1875℃で焼結を行ったこと以外は、水準1と同様にして、水準3の複合焼結体を得た。
 また、水準3の複合焼結体について、上述の条件にて電子顕微鏡写真を撮影した。図11は、撮像した電子顕微鏡写真である。得られた電子顕微鏡写真から酸化アルミニウムの平均結晶粒径を求めたところ、1.52μmであった。また、酸化アルミニウムの結晶粒内に分散している炭化ケイ素の結晶粒の個数割合を求めたところ、65%であった。
(水準4)
 アルゴン雰囲気下、プレス圧40MPa、1750℃で焼結を行ったこと以外は、水準1と同様にして、水準4の複合焼結体を得た。
 また、水準4の複合焼結体について、上述の条件にて電子顕微鏡写真を撮影した得られた電子顕微鏡写真から酸化アルミニウムの平均結晶粒径を求めたところ、0.56μmであった。また、酸化アルミニウムの結晶粒内に分散している炭化ケイ素の結晶粒の個数割合を求めたところ、39%であった。
 図12は、本実施例の複合焼結体について、酸化アルミニウムの平均結晶粒径に対する、複合焼結体の比誘電率の関係を示すグラフである。図12においては、横軸が酸化アルミニウムの平均結晶粒径(単位:μm)、縦軸が1MHzの交流電圧印加時の比誘電率(単位:無次元)を示している。また、図12には、酸化アルミニウムの結晶粒内に分散する炭化ケイ素の結晶粒の個数割合を併記している。
 図12に示すように、本実施例の複合焼結体は、酸化アルミニウムの平均結晶粒径の増加に伴い、比誘電率が増加する傾向にあることが分かる。
 図13は、本実施例の複合焼結体について、酸化アルミニウムの平均結晶粒径に対する、耐電圧の関係を示すグラフである。図13においては、横軸が酸化アルミニウムの平均結晶粒径(単位:μm)、縦軸が上述した測定条件において試験片に1μAの電流が流れる電圧(単位:kV)を示している。また、図13には、酸化アルミニウムの結晶粒内に分散する炭化ケイ素の結晶粒の個数割合を併記している。
 図13に示すように、本実施例の複合焼結体は、酸化アルミニウムの平均結晶粒径の増加に伴って耐電圧が増加し、平均結晶粒径1μm付近に極大を示した後、酸化アルミニウムの平均結晶粒径の増加に伴って耐電圧が低下する傾向にあることが分かる。
 上述したように、静電チャック装置においては、(i)ウエハの面内温度分布(温度差)を低減させるため、試料台に微細な溝を設け、当該溝に気体の冷媒(例えばヘリウム)を流動させることで、試料台に載置したウエハを冷却する技術が知られている。このような静電チャック装置において均熱性を高めるためには、冷媒のガス圧を高め冷却効率を向上させることが考えられる。一方、冷媒のガス圧を高める場合、冷媒から受ける圧力によってウエハが脱離しないように、静電チャック装置には高い吸着力が求められる。高い吸着力を得るには、静電チャック装置の基体の比誘電率が13以上であることが好ましい。
 また、静電チャック装置を用いる半導体製造装置においては、(ii)深堀加工技術を確実に実施するため、加工時の印加電圧が増加する傾向にある。そのため、静電チャック装置には、高い耐電圧が求められる。深堀加工時の加工条件において静電チャック装置の基体が破損しないためには、基体の耐電圧は、16kV以上であることが好ましい。
 本実施形態の結果から、酸化アルミニウムの平均結晶粒径が0.8μm以上1.2μm以下、酸化アルミニウムの結晶粒内に分散している炭化ケイ素の結晶粒の個数割合が炭化ケイ素の結晶粒全体の50%以上60%以下である複合焼結体は、高い比誘電率および高い耐電圧を両立することが分かった。
 以上の結果より、本発明が有用であることが分かった。
 本発明は、静電チャック装置に好適に用いられ、生産性を向上可能である静電チャック用複合焼結体を提供することができる。また、高い比誘電率と高い耐電圧とを両立する静電チャック用複合焼結体を提供することができる。また、このような静電チャック用複合焼結体を用いた静電チャック部材、静電チャック装置を提供することができる。
 1…静電チャック装置、11…載置板(基体)、11a…載置面、12…支持板(基体)、13…静電吸着用電極、W…板状試料、A1…酸化アルミニウム、B1…炭化ケイ素、X…界面層

Claims (9)

  1.  主相である酸化アルミニウムと、副相である炭化ケイ素と、を含むセラミックスの複合焼結体であり、
     前記酸化アルミニウムの少なくとも2つの結晶粒の間に位置する前記炭化ケイ素の結晶粒を少なくとも1つ含み、
     前記酸化アルミニウムの前記結晶粒と、前記炭化ケイ素の前記結晶粒との粒界に、前記酸化アルミニウムおよび前記炭化ケイ素以外の材料を形成材料とする界面層を有する複合焼結体。
  2.  前記界面層の厚みが、0.6nm以上2.5nm以下である請求項1に記載の複合焼結体。
  3.  体積固有抵抗値が、室温から300℃までの全範囲において5×1015Ω・cm以上である請求項1または2に記載の複合焼結体。
  4.  前記酸化アルミニウムの平均結晶粒径は、0.8μm以上1.2μm以下であり、
     前記炭化ケイ素の結晶粒は、前記酸化アルミニウムの結晶粒内および前記酸化アルミニウムの結晶粒同士の粒界に分散しており、
     前記酸化アルミニウムの結晶粒内に分散している前記炭化ケイ素の結晶粒の個数割合は、前記炭化ケイ素の結晶粒全体の個数に対して50%以上60%以下である請求項1から3のいずれか1項に記載の複合焼結体。
  5.  前記酸化アルミニウムの結晶粒内に分散している前記炭化ケイ素の結晶粒の平均結晶粒径は、前記酸化アルミニウムの結晶粒界に分散している前記炭化ケイ素の結晶粒の平均結晶粒径よりも小さい請求項4に記載の複合焼結体。
  6.  主相である酸化アルミニウムと、副相である炭化ケイ素と、を含むセラミックスの複合焼結体であり、
     前記酸化アルミニウムの平均結晶粒径は、0.8μm以上1.2μm以下であり、
     前記炭化ケイ素の結晶粒は、前記酸化アルミニウムの結晶粒内および前記酸化アルミニウムの結晶粒同士の粒界に分散しており、
     前記酸化アルミニウムの結晶粒内に分散している前記炭化ケイ素の結晶粒の個数割合は、前記炭化ケイ素の結晶粒全体の個数に対して50%以上60%以下である複合焼結体。
  7.  前記酸化アルミニウムの結晶粒内に分散している前記炭化ケイ素の結晶粒の平均結晶粒径は、前記酸化アルミニウムの結晶粒界に分散している前記炭化ケイ素の結晶粒の平均結晶粒径よりも小さい請求項6に記載の複合焼結体。
  8.  請求項1から7のいずれか1項に記載の複合焼結体を形成材料とし、一主面が板状試料を載置する載置面である基体と、
     前記基体の前記一主面とは反対側の主面または前記基体の内部に設けられた静電吸着用電極と、を備える静電チャック部材。
  9.  請求項8に記載の静電チャック部材と、
     前記載置面に載置された前記板状試料を冷却する冷却手段と、を備え、
     前記載置面には、前記板状試料を支持する複数の突起部が設けられ、
     前記冷却手段は、前記複数の突起部の間に伝熱ガスを供給する静電チャック装置。
PCT/JP2018/005719 2017-02-23 2018-02-19 複合焼結体、静電チャック部材、および静電チャック装置 WO2018155374A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020197018799A KR102543049B1 (ko) 2017-02-23 2018-02-19 복합 소결체, 정전 척 부재, 및 정전 척 장치
JP2018540079A JP6781261B2 (ja) 2017-02-23 2018-02-19 複合焼結体、静電チャック部材、および静電チャック装置
CN201880008846.6A CN110248910B (zh) 2017-02-23 2018-02-19 复合烧结体、静电卡盘部件及静电卡盘装置
US16/480,264 US11842914B2 (en) 2017-02-23 2018-02-19 Composite sintered body, electrostatic chuck member, and electrostatic chuck device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-032623 2017-02-23
JP2017032622 2017-02-23
JP2017032623 2017-02-23
JP2017-032622 2017-02-23

Publications (1)

Publication Number Publication Date
WO2018155374A1 true WO2018155374A1 (ja) 2018-08-30

Family

ID=63253941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005719 WO2018155374A1 (ja) 2017-02-23 2018-02-19 複合焼結体、静電チャック部材、および静電チャック装置

Country Status (5)

Country Link
US (1) US11842914B2 (ja)
JP (1) JP6781261B2 (ja)
KR (1) KR102543049B1 (ja)
CN (1) CN110248910B (ja)
WO (1) WO2018155374A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019182107A1 (ja) * 2018-03-22 2019-09-26 住友大阪セメント株式会社 複合焼結体、静電チャック部材、静電チャック装置および複合焼結体の製造方法
WO2020235651A1 (ja) * 2019-05-22 2020-11-26 住友大阪セメント株式会社 複合焼結体、静電チャック部材、静電チャック装置および複合焼結体の製造方法
JP7100778B1 (ja) 2022-04-18 2022-07-13 黒崎播磨株式会社 静電チャック用給電部及び静電チャック

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7259765B2 (ja) * 2017-12-28 2023-04-18 住友大阪セメント株式会社 静電チャック装置
WO2020045432A1 (ja) * 2018-08-29 2020-03-05 京セラ株式会社 静電チャックおよび静電チャックの製造方法
CN110788326B (zh) * 2019-12-02 2021-06-25 南昌航空大学 一种制备多孔Fe基非晶合金-Al基复合材料的方法
US20230178406A1 (en) * 2020-03-20 2023-06-08 Asml Netherlands B.V. Method, apparatus, and system for dynamically controlling an electrostatic chuck during an inspection of wafer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05178657A (ja) * 1991-12-03 1993-07-20 Sumitomo Cement Co Ltd アルミナ基複合焼結体とその製造方法
JPH05295352A (ja) * 1992-04-20 1993-11-09 Noritake Co Ltd Al2O3複合セラミック研摩材料、工具材料及びその製法
JPH08267305A (ja) * 1995-03-31 1996-10-15 Ngk Spark Plug Co Ltd 複合セラミックス工具、皮膜付き複合セラミックス工具及びそれらの製造方法
JPH09283606A (ja) * 1996-04-08 1997-10-31 Sumitomo Osaka Cement Co Ltd 静電チャック
JP2006206376A (ja) * 2005-01-28 2006-08-10 Ngk Spark Plug Co Ltd セラミック焼結体、切削インサート及び切削工具
WO2015137270A1 (ja) * 2014-03-10 2015-09-17 住友大阪セメント株式会社 誘電体材料及び静電チャック装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0777986B2 (ja) * 1985-01-31 1995-08-23 京セラ株式会社 炭化珪素質焼結体の製法
JPH01201067A (ja) * 1988-02-05 1989-08-14 Toyota Central Res & Dev Lab Inc 耐摩耗性複合体
JP3093897B2 (ja) * 1992-11-13 2000-10-03 東芝セラミックス株式会社 高純度アルミナセラミックス及びその製造方法
JPH0797256A (ja) * 1993-09-24 1995-04-11 Ngk Spark Plug Co Ltd 酸化アルミニウム基焼結体及びその製造方法
JPH10279349A (ja) 1997-02-05 1998-10-20 Kobe Steel Ltd 耐プラズマ性に優れたアルミナセラミックス
JPH11171647A (ja) 1997-12-05 1999-06-29 Bridgestone Corp 炭化ケイ素粉体及びその製造方法
JP4744855B2 (ja) 2003-12-26 2011-08-10 日本碍子株式会社 静電チャック
WO2008026641A1 (fr) * 2006-08-30 2008-03-06 Ngk Spark Plug Co., Ltd. Matériau fritté composite à base d'oxyde d'aluminium et insert de découpage
CN101511748A (zh) * 2006-08-30 2009-08-19 日本特殊陶业株式会社 氧化铝基复合烧结体和切削刀片
JP5020334B2 (ja) * 2007-11-29 2012-09-05 京セラ株式会社 摺動部材、メカニカルシールリング、メカニカルシールおよびフォーセットバルブ
CN101665352A (zh) * 2008-09-01 2010-03-10 日本碍子株式会社 氧化铝烧结体及其制造方法
JP5185773B2 (ja) * 2008-10-28 2013-04-17 オリンパスメディカルシステムズ株式会社 形状測定装置
JP5423632B2 (ja) * 2010-01-29 2014-02-19 住友大阪セメント株式会社 静電チャック装置
US9440887B2 (en) * 2012-10-30 2016-09-13 Kabushiki Kaisha Toshiba Silicon nitride sintered body and wear resistant member using the same
US9951952B2 (en) * 2014-10-15 2018-04-24 Specialized Component Parts Limited, Inc. Hot surface igniters and methods of making same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05178657A (ja) * 1991-12-03 1993-07-20 Sumitomo Cement Co Ltd アルミナ基複合焼結体とその製造方法
JPH05295352A (ja) * 1992-04-20 1993-11-09 Noritake Co Ltd Al2O3複合セラミック研摩材料、工具材料及びその製法
JPH08267305A (ja) * 1995-03-31 1996-10-15 Ngk Spark Plug Co Ltd 複合セラミックス工具、皮膜付き複合セラミックス工具及びそれらの製造方法
JPH09283606A (ja) * 1996-04-08 1997-10-31 Sumitomo Osaka Cement Co Ltd 静電チャック
JP2006206376A (ja) * 2005-01-28 2006-08-10 Ngk Spark Plug Co Ltd セラミック焼結体、切削インサート及び切削工具
WO2015137270A1 (ja) * 2014-03-10 2015-09-17 住友大阪セメント株式会社 誘電体材料及び静電チャック装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SCHMID, H. K. ET AL.: "Microstructural characterization of Al2O3-SiC nanocomposites", JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, vol. 18, 1998, pages 39 - 49, XP004101512 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019182107A1 (ja) * 2018-03-22 2019-09-26 住友大阪セメント株式会社 複合焼結体、静電チャック部材、静電チャック装置および複合焼結体の製造方法
US11345639B2 (en) 2018-03-22 2022-05-31 Sumitomo Osaka Cement Co., Ltd. Composite sintered body, electrostatic chuck member, electrostatic chuck device, and method for producing composite sintered body
WO2020235651A1 (ja) * 2019-05-22 2020-11-26 住友大阪セメント株式会社 複合焼結体、静電チャック部材、静電チャック装置および複合焼結体の製造方法
CN113874336A (zh) * 2019-05-22 2021-12-31 住友大阪水泥股份有限公司 复合烧结体、静电卡盘部件、静电卡盘装置及复合烧结体的制造方法
CN113874336B (zh) * 2019-05-22 2023-03-28 住友大阪水泥股份有限公司 复合烧结体、静电卡盘部件、静电卡盘装置及复合烧结体的制造方法
JP7100778B1 (ja) 2022-04-18 2022-07-13 黒崎播磨株式会社 静電チャック用給電部及び静電チャック
JP2023158548A (ja) * 2022-04-18 2023-10-30 黒崎播磨株式会社 静電チャック用給電部及び静電チャック

Also Published As

Publication number Publication date
JPWO2018155374A1 (ja) 2019-02-28
US20190385884A1 (en) 2019-12-19
KR20190135990A (ko) 2019-12-09
CN110248910A (zh) 2019-09-17
CN110248910B (zh) 2022-09-09
KR102543049B1 (ko) 2023-06-14
US11842914B2 (en) 2023-12-12
JP6781261B2 (ja) 2020-11-04

Similar Documents

Publication Publication Date Title
WO2018155374A1 (ja) 複合焼結体、静電チャック部材、および静電チャック装置
JP6432649B2 (ja) セラミックス材料、静電チャック装置
JP6863352B2 (ja) 静電チャック装置の製造方法
JP7063326B2 (ja) 複合焼結体、静電チャック部材、静電チャック装置および複合焼結体の製造方法
JP6693600B2 (ja) 複合焼結体、静電チャック部材および静電チャック装置
WO2019189141A1 (ja) 静電チャック装置およびその製造方法
WO2020235651A1 (ja) 複合焼結体、静電チャック部材、静電チャック装置および複合焼結体の製造方法
JP6860117B2 (ja) 複合焼結体、静電チャック部材、静電チャック装置および複合焼結体の製造方法
WO2019182104A1 (ja) 静電チャック装置および静電チャック装置の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018540079

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18757057

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197018799

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18757057

Country of ref document: EP

Kind code of ref document: A1