WO2020235651A1 - 複合焼結体、静電チャック部材、静電チャック装置および複合焼結体の製造方法 - Google Patents

複合焼結体、静電チャック部材、静電チャック装置および複合焼結体の製造方法 Download PDF

Info

Publication number
WO2020235651A1
WO2020235651A1 PCT/JP2020/020174 JP2020020174W WO2020235651A1 WO 2020235651 A1 WO2020235651 A1 WO 2020235651A1 JP 2020020174 W JP2020020174 W JP 2020020174W WO 2020235651 A1 WO2020235651 A1 WO 2020235651A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintered body
composite sintered
silicon carbide
metal oxide
electrostatic chuck
Prior art date
Application number
PCT/JP2020/020174
Other languages
English (en)
French (fr)
Inventor
宣浩 日▲高▼
恵 大友
純 有川
Original Assignee
住友大阪セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友大阪セメント株式会社 filed Critical 住友大阪セメント株式会社
Priority to KR1020217036490A priority Critical patent/KR20220011122A/ko
Priority to US17/612,173 priority patent/US11990362B2/en
Priority to JP2021520859A priority patent/JP7111257B2/ja
Priority to CN202080037179.1A priority patent/CN113874336B/zh
Publication of WO2020235651A1 publication Critical patent/WO2020235651A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • H01J37/32724Temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • C04B35/505Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds based on yttrium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62807Silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68757Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a coating or a hardness or a material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • C04B2235/3834Beta silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/549Particle size related information the particle size being expressed by crystallite size or primary particle size
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6265Thermal treatment of powders or mixtures thereof other than sintering involving reduction or oxidation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching

Definitions

  • the present invention relates to a composite sintered body, an electrostatic chuck member, an electrostatic chuck device, and a method for manufacturing a composite sintered body.
  • This application claims priority based on Japanese Patent Application No. 2019-096053 filed in Japan on May 22, 2019, and Japanese Patent Application No. 2019-096046 filed in Japan on May 22, 2019. And the contents are used here.
  • an electrostatic chuck device that can easily attach and fix a plate-shaped sample (wafer) to a sample table and maintain the wafer at a desired temperature is used.
  • the electrostatic chuck device has an electrode for electrostatic adsorption that generates an electrostatic force (Coulomb force) between a substrate whose main surface is a mounting surface on which a wafer is mounted and a wafer mounted on the mounting surface.
  • the substrate is usually formed of a ceramic sintered body as a forming material.
  • the wafer is fixed by utilizing the electrostatic force generated between the wafer and the electrode for electrostatic adsorption.
  • a voltage is applied to the electrostatic adsorption electrode to generate an electrostatic force between the wafer and the electrostatic adsorption electrode.
  • the voltage application to the electrostatic adsorption electrode is stopped, and the electrostatic force between the wafer and the electrostatic adsorption electrode is eliminated.
  • the substrate In the electrostatic chuck device exposed to the plasma process, the substrate is inevitably damaged by plasma (plasma erosion). In this case, if a part of the substrate is particularly susceptible to plasma erosion, the portion susceptible to plasma erosion may be damaged before the surroundings, shortening the life of the substrate. Therefore, improvement was required.
  • the electrostatic chuck device in order to reduce the in-plane temperature distribution (temperature difference) of the wafer, a fine groove is provided in the sample table, and a gaseous refrigerant (for example, helium) is allowed to flow in the groove to flow the sample.
  • a gaseous refrigerant for example, helium
  • a technique for cooling a wafer placed on a table is known.
  • the electrostatic chuck device is required to have a high adsorption force so that the wafer does not come off due to the pressure received from the refrigerant.
  • the substrate of the electrostatic chuck device has a high dielectric constant.
  • the electrical characteristics of the ceramic sintered substrate in the electrostatic chuck device change as compared with the case where the bias voltage has a high frequency.
  • the electrical characteristics of the substrate are strongly influenced by the volume specific resistance value (unit: ⁇ ⁇ cm). The smaller the volume specific resistance value, the larger the dielectric loss tangent that depends on the volume specific resistance value.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a composite sintered body that is less susceptible to local plasma erosion. That is, it is an object of the present invention to provide a composite sintered body in which damage is uniform and mild even if it is subjected to plasma erosion. Another object of the present invention is to provide a composite sintered body for an electrostatic chuck that has both a high dielectric constant and a low dielectric loss tangent in a wide temperature range. Another object of the present invention is to provide an electrostatic chuck member using the composite sintered body as described above and an electrostatic chuck device. Another object of the present invention is to provide a method for producing a composite sintered body, which makes it possible to easily manufacture such a composite sintered body.
  • the first aspect of the present invention is to use a metal oxide as a main phase, silicon carbide as a subphase, and a silicate as a metal element contained in the metal oxide.
  • a composite sintered body containing the silicate having an average aggregation diameter of 5 ⁇ m or less in a field of view of 600 ⁇ m 2 at a magnification of 1000 times.
  • the composite sintered body of the first aspect of the present invention preferably has the following characteristics. The following features are also preferably combined with each other.
  • the ratio of the area occupied by the silicate to the total area occupied by the metal oxide and the silicon carbide is 30% or less. You may.
  • the composite sintered body has an average hardness of 2 ⁇ 10 4 N / mm 2 or more and an average Young's modulus of 3.5 ⁇ 10 5 N / mm 2 or more. Good.
  • the silicon carbide crystal grains are dispersed in the crystal grains of the metal oxide and in the grain boundaries of the metal oxide, and are dispersed in the crystal grains of the metal oxide.
  • the ratio of the area of the crystal grains of the silicon carbide to be dispersed may be 25% or more as an area ratio with respect to the total area of the crystal grains of the silicon carbide.
  • the metal oxide may be aluminum oxide or yttrium oxide.
  • the average crystal grain size of the metal oxide may be 1.2 ⁇ m or more and 10 ⁇ m or less.
  • a second aspect of the present invention comprises a plate-shaped substrate formed by using the composite sintered body of the first aspect as a forming material, one of which is a mounting surface on which a plate-shaped sample is placed.
  • an electrostatic chuck member having an electrostatic adsorption electrode provided on the side opposite to the previously described mounting surface of the substrate or inside the substrate.
  • a second aspect of the present invention provides an electrostatic chuck device including the above electrostatic chuck member.
  • the preoxidation step of oxidizing the surface of the silicon carbide particles, the silicon carbide particles treated in the preoxidation step, and the metal oxide particles are jetted and collided with each other.
  • the surface charge of the metal oxide particles in the slurry becomes positive
  • the surface charge of the silicon carbide particles in the slurry becomes positive.
  • a step of obtaining the granules, a step of heating the granules at 300 ° C. or higher and 600 ° C. or lower in a non-oxidizing atmosphere, and then heating in an oxidizing atmosphere to oxidize the surface of the granules, and an oxidation treatment were performed.
  • a composite including a step of molding the granules to obtain a molded body and a step of heating the molded body to 1600 ° C. or higher while compacting the molded body at a pressure of 25 MPa or higher and pressure sintering.
  • a method for producing a sintered body is provided.
  • a fourth aspect of the present invention is a composite sintered body containing a metal oxide as a main phase and silicon carbide as a sub-phase, and has a relative permittivity of 200 Hz and 1 MHz.
  • the relative permittivity of is 10 or more in the entire range of 24 ° C. or higher and 400 ° C. or lower, and the dielectric loss tangent of 200 Hz and the dielectric loss tangent of 1 MHz are 0.04 or less in the entire range of 24 ° C. or higher and 400 ° C. or lower.
  • the composite sintered body is provided.
  • the composite sintered body of the fourth aspect of the present invention preferably has the following characteristics. The following features are also preferably combined with each other.
  • the difference between the maximum value and the minimum value in the range of 24 ° C. or higher and 400 ° C. or lower may be 6 or less for the relative permittivity of 200 Hz.
  • the volume resistivity (volume resistivity) may be 1 ⁇ 10 -13 ⁇ ⁇ cm or more in the entire range of 24 ° C. or higher and 400 ° C. or lower.
  • the metal oxide may be composed of aluminum oxide or yttrium oxide.
  • the average crystal grain size of the metal oxide may be 1.2 ⁇ m or more and 10 ⁇ m or less.
  • a fifth aspect of the present invention is a plate-shaped substrate on which the above-mentioned composite sintered body is used as a forming material and one main surface on which a plate-shaped sample is placed, and a previously described surface of the substrate.
  • a sixth aspect of the present invention provides an electrostatic chuck device including the above electrostatic chuck member.
  • a composite sintered body that is partially large, that is, less susceptible to local plasma erosion.
  • FIG. 1 is a schematic cross-sectional view showing a preferred example of the electrostatic chuck device of the first and second embodiments.
  • FIG. 2 is a graph showing the relationship between the slurry pH and the ⁇ potential of each particle, which describes the aluminum oxide particles and the silicon carbide particles in the slurry.
  • FIG. 3 is an explanatory schematic view illustrating a method for producing the composite sintered body of the first and second embodiments.
  • FIG. 4 is an explanatory schematic diagram illustrating a method for producing the composite sintered body of the first and second embodiments.
  • FIG. 5 is an explanatory schematic view illustrating a method for producing the composite sintered body of the first embodiment.
  • FIG. 6 is an explanatory schematic view illustrating a method for producing the composite sintered body of the first embodiment.
  • FIG. 1 is a schematic cross-sectional view showing a preferred example of the electrostatic chuck device of the first and second embodiments.
  • FIG. 2 is a graph showing the relationship between the slurry pH and the
  • FIG. 7 is an explanatory schematic view illustrating a method for producing the composite sintered body of the first and second embodiments.
  • FIG. 8 is an explanatory schematic view illustrating a method for producing the composite sintered body of the first embodiment.
  • FIG. 9 is an SEM image of the composite sintered body of Example 1 and an EPMA image of the same field of view.
  • FIG. 10 is an SEM image of the composite sintered body of Comparative Example 1 and an EPMA image of the same field of view.
  • FIG. 11 is an explanatory diagram illustrating a method for producing the composite sintered body of the second embodiment.
  • FIG. 12 is a schematic view showing the state of the sintered body when the volume specific resistance value is measured in the examples.
  • FIG. 13 is a scatter diagram showing the measurement results of the dielectric constant and the dielectric loss tangent of Example 1 and Comparative Example 1.
  • FIG. 14 is a scatter diagram showing the constant results of the volume resistivity (volume resistivity) of Example 1 and Comparative Example 1.
  • the composite sintered body of the first aspect and the fourth aspect is preferably used as a material for a substrate of an electrostatic chuck device.
  • FIG. 1 is a schematic cross-sectional view showing the electrostatic chuck device of this embodiment.
  • the electrostatic chuck device 1 of the present embodiment is provided with a disk-shaped electrostatic chuck portion 2 in a plan view having one main surface (upper surface) side as a mounting surface, and an electrostatic chuck portion 2 below the electrostatic chuck portion 2.
  • the electrostatic chuck portion 2 is provided with a plate-shaped temperature adjusting base portion 3 having a predetermined thickness and which adjusts the electrostatic chuck portion 2 to a desired temperature. Further, the electrostatic chuck portion 2 and the temperature control base portion 3 are adhered to each other via an adhesive layer 8 provided between the electrostatic chuck portion 2 and the temperature control base portion 3.
  • an adhesive layer 8 provided between the electrostatic chuck portion 2 and the temperature control base portion 3.
  • the electrostatic chuck portion 2 has a mounting plate 11 whose upper surface is a mounting surface 11a on which a plate-shaped sample W such as a semiconductor wafer is mounted, and the bottom side of the mounting plate 11 described above, which is integrated with the mounting plate 11.
  • a support plate 12 that supports the above, an electrostatic adsorption electrode 13 provided between the mounting plate 11 and the support plate 12, and an insulating material layer 14 that insulates the periphery of the electrostatic adsorption electrode 13 are provided. doing.
  • the mounting plate 11 and the support plate 12 correspond to the "base” in the present invention.
  • the electrostatic chuck portion 2 includes the substrate and corresponds to the "electrostatic chuck member" in the present invention.
  • the mounting plate 11 and the support plate 12 are disc-shaped members having the same shape of the overlapped surfaces.
  • the mounting plate 11 and the support plate 12 are made of a composite sintered body having excellent mechanical strength and durability against corrosive gas and its plasma.
  • the composite sintered body which is a material for forming the mounting plate 11 and the support plate 12, will be described in detail later.
  • a plurality of protrusions 11b having a diameter smaller than the thickness of the plate-shaped sample are formed at predetermined intervals on the mounting surface 11a of the mounting plate 11. These protrusions 11b support the plate-shaped sample W.
  • the total thickness including the mounting plate 11, the support plate 12, the electrostatic adsorption electrode 13 and the insulating material layer 14, that is, the thickness of the electrostatic chuck portion 2 can be arbitrarily selected, but is, for example, 0.7 mm or more. It is preferably 5.0 mm or less.
  • the thickness of the electrostatic chuck portion 2 when the thickness of the electrostatic chuck portion 2 is 0.7 mm or more, it becomes easy to secure the mechanical strength of the electrostatic chuck portion 2.
  • the thickness of the electrostatic chuck portion 2 When the thickness of the electrostatic chuck portion 2 is 5.0 mm or less, the heat capacity of the electrostatic chuck portion 2 does not become too large, the thermal responsiveness of the plate-shaped sample W to be placed does not deteriorate, and the electrostatic chuck portion 2 is electrostatically charged. Since the increase in heat transfer in the lateral direction of the chuck portion is suppressed, it becomes easy to maintain the in-plane temperature of the plate-shaped sample W at a desired temperature pattern.
  • the thickness of each part described here is an example, and is not limited to the above range.
  • the electrostatic adsorption electrode 13 is used as an electrode for an electrostatic chuck for generating an electric charge and fixing the plate-shaped sample W by an electrostatic attraction force.
  • the shape and size are appropriately adjusted depending on the application.
  • the electrostatic adsorption electrode 13 is made of an arbitrarily selected material.
  • the thickness of the electrostatic adsorption electrode 13 can be arbitrarily selected and is not particularly limited. For example, a thickness of 0.1 ⁇ m or more and 100 ⁇ m or less can be selected, and a thickness of 5 ⁇ m or more and 20 ⁇ m or less is more preferable.
  • the thickness of the electrostatic adsorption electrode 13 is 0.1 ⁇ m or more, sufficient conductivity can be ensured.
  • the thickness of the electrostatic adsorption electrode 13 is 100 ⁇ m or less, cracks due to the difference in thermal expansion rate between the electrostatic adsorption electrode 13 and the mounting plate 11 and the support plate 12 are generated by the electrostatic adsorption electrode 13. Is not formed at the joint interface between the mounting plate 11 and the support plate 12.
  • the electrostatic adsorption electrode 13 having such a thickness can be easily formed by a film forming method such as a sputtering method or a vapor deposition method, or a coating method such as a screen printing method.
  • the insulating material layer 14 surrounds the electrostatic adsorption electrode 13 and protects the electrostatic adsorption electrode 13 from corrosive gas and its plasma. Further, the insulating material layer 14 is a layer for joining and integrating the boundary portion between the mounting plate 11 and the support plate 12, that is, the outer peripheral region region other than the electrostatic adsorption electrode 13, and the mounting plate 11 and the support plate 12 are joined together. It is composed of an insulating material having the same composition or main component as the constituent material.
  • the temperature control base portion 3 is a member for adjusting the electrostatic chuck portion 2 to a desired temperature, and is a thick disk-shaped member.
  • a liquid-cooled base in which a flow path 3A for circulating a refrigerant is formed is suitable.
  • the material constituting the temperature control base portion 3 is not particularly limited as long as it is a metal having excellent thermal conductivity, conductivity, and workability, or a composite material containing these metals.
  • a metal having excellent thermal conductivity, conductivity, and workability or a composite material containing these metals.
  • aluminum (Al), aluminum alloy, copper (Cu), copper alloy, stainless steel (SUS) and the like are preferably used. It is preferable that at least the surface of the temperature control base portion 3 exposed to plasma is anodized or has an insulating film such as alumina formed on it.
  • the adhesive layer 6 is formed of an arbitrarily selected material, for example, a sheet-like or film-like adhesive resin having heat resistance and insulating properties such as a polyimide resin, a silicon resin, and an epoxy resin.
  • the adhesive layer is formed, for example, to have a thickness of about 5 to 100 ⁇ m.
  • the insulating plate 7 is made of an arbitrarily selected material, for example, a thin plate, a sheet or a film of a heat-resistant resin such as a polyimide resin, an epoxy resin, or an acrylic resin.
  • the insulating plate 7 is not limited to a resin sheet or the like, and may be, for example, an insulating ceramic plate or a sprayed film having an insulating property such as alumina.
  • the focus ring 10 is an annular member in a plan view mounted on the peripheral edge of the temperature control base portion 3.
  • the focus ring 10 can be made of, for example, a material having electrical conductivity equivalent to that of a wafer mounted on a mounting surface. By arranging such a focus ring 10, the electrical environment for plasma can be substantially matched with that of the wafer at the peripheral portion of the wafer, and the difference or bias of plasma processing between the central portion and the peripheral portion of the wafer can be made. It can be made less likely to occur.
  • a power supply terminal 15 for applying a DC voltage to the electrostatic adsorption electrode 13 is connected to the electrostatic adsorption electrode 13.
  • the power supply terminal 15 is inserted inside a through hole 16 that penetrates the temperature control base portion 3, the adhesive layer 8, and the support plate 12 in the thickness direction.
  • An insulator 15a having an insulating property is provided on the outer peripheral side of the power supply terminal 15, and the power supply terminal 15 is insulated from the metal temperature control base portion 3 by the insulator 15a.
  • the power supply terminal 15 is shown as an integral member. However, a plurality of members may be electrically connected to form the power supply terminal 15.
  • the power supply terminal 15 is inserted into the temperature control base portion 3 and the support plate 12 having different coefficients of thermal expansion. For this reason, for example, the portion inserted into the temperature control base portion 3 and the portion inserted into the support plate 12 may be made of different materials.
  • the material of the portion (take-out electrode) connected to the electrostatic adsorption electrode 13 and inserted into the support plate 12 is particularly limited as long as it is a conductive material having excellent heat resistance. It's not a thing.
  • a material whose thermal expansion coefficient is close to the thermal expansion coefficient of the electrostatic adsorption electrode 13 and the support plate 12 is preferable.
  • it is preferably made of a conductive ceramic material such as Al 2 O 3- TaC.
  • the portion of the power supply terminal 15 inserted into the temperature control base portion 3 is made of a metal material such as tungsten (W), tantalum (Ta), molybdenum (Mo), niobium (Nb), or Kovar alloy. Is preferable.
  • a heater element 5 is provided on the lower surface side of the electrostatic chuck portion 2.
  • the heater element 5 can be arbitrarily selected, but for example, a non-magnetic metal thin plate having a thickness of 0.2 mm or less, preferably about 0.1 mm is preferably processed.
  • a titanium (Ti) thin plate, a tungsten (W) thin plate, a molybdenum (Mo) thin plate, or the like is formed into a desired heater shape by a photolithography method or laser processing, for example, a strip-shaped conductive thin plate is meandered. It is obtained by processing into a shape in which the entire outline is annular.
  • Such a heater element 5 may be provided by adhering a non-magnetic metal thin plate to the electrostatic chuck portion 2 and then processing and molding the thin plate on the surface of the electrostatic chuck portion 2.
  • the heater element 5 may be provided by preparing a product processed and molded at a position different from that of the electrostatic chuck portion 2 and transferring and printing this on the surface of the electrostatic chuck portion 2.
  • the heater element 5 is adhered and fixed to the bottom surface of the support plate 12 by an adhesive layer 4 made of a sheet-like or film-like silicone resin or acrylic resin having uniform thickness of heat resistance and insulation.
  • a power supply terminal 17 for supplying power to the heater element 5 is connected to the heater element 5.
  • the material constituting the power feeding terminal 17 a material equivalent to the material constituting the power feeding terminal 15 can be used.
  • Each of the power supply terminals 17 is provided so as to penetrate through the through holes 3b formed in the temperature control base portion 3.
  • the tubular insulator 18 is provided between the power feeding terminal 17 and the through hole 3b, and is made of an insulating material.
  • a temperature sensor 20 is provided on the lower surface side of the heater element 5.
  • an installation hole 21 is formed so as to penetrate the temperature control base portion 3 in the thickness direction.
  • a temperature sensor 20 is installed at the top of the installation hole 21. It is desirable that the temperature sensor 20 be installed as close to the heater element 5 as possible. For this reason, the installation hole 21 may be formed so as to extend toward the adhesive layer 8 side from the structure shown in the figure, and the temperature sensor 20 and the heater element 5 may be brought close to each other.
  • the temperature sensor 20 can be arbitrarily selected. For example, it may be a fluorescence emission type temperature sensor in which a phosphor layer is formed on the upper surface side of a rectangular parallelepiped-shaped translucent body made of quartz glass or the like. The temperature sensor 20 is adhered to the lower surface of the heater element 5 with a silicone resin-based adhesive or the like having translucency and heat resistance.
  • the phosphor layer is made of a material that generates fluorescence in response to heat input from the heater element 5.
  • the material for forming the phosphor layer may be any material that generates fluorescence in response to heat generation, and a wide variety of fluorescent materials can be selected.
  • the material for forming the phosphor layer can be arbitrarily selected, and for example, a fluorescent material to which a rare earth element having an energy rank suitable for light emission is added, a semiconductor material such as AlGaAs, a metal oxide such as magnesium oxide, ruby or sapphire. And other minerals can be mentioned. It can be appropriately selected and used from these materials.
  • One or more temperature sensors 20 corresponding to the heater element 5 can be provided as needed. Each temperature sensor is provided at an arbitrary position in the circumferential direction of the lower surface of the heater element 5 at a position that does not interfere with the power feeding terminal or the like.
  • the temperature measuring unit 22 that measures the temperature of the heater element 5 from the fluorescence of these temperature sensors 20 can be arbitrarily selected. For example, it is located on the outside (lower side) of the installation hole 21 of the temperature control base portion 3, and detects the excitation portion 23 that irradiates the phosphor layer with excitation light and the fluorescence emitted from the phosphor layer. It may be composed of a fluorescence detector 24 and a control unit 25 that controls the excitation unit 23 and the fluorescence detector 24 and calculates the temperature of the main heater based on the fluorescence.
  • the electrostatic chuck device 1 has a gas hole 28 provided so as to penetrate from the temperature control base portion 3 to the mounting plate 11 in the thickness direction thereof.
  • a tubular insulator 29 is provided on the inner peripheral portion of the gas hole 28.
  • a gas supply device (cooling means) is connected to the gas hole 28.
  • a cooling gas heat transfer gas
  • the cooling gas is supplied to the grooves 19 formed between the plurality of protrusions 11b on the upper surface of the mounting plate 11 through the gas holes to cool the plate-shaped sample W.
  • the electrostatic chuck device 1 has a pin insertion hole (not shown) provided so as to penetrate from the temperature control base portion 3 to the mounting plate 11 in the thickness direction thereof.
  • the pin insertion hole for example, the same configuration as the gas hole 28 can be adopted. A lift pin for releasing the plate-shaped sample is inserted into the pin insertion hole.
  • the electrostatic chuck device 1 has the above configuration.
  • the composite sintered body of the present invention contains a metal oxide as a main phase and silicon carbide as a sub-phase.
  • the composite sintered body of the first embodiment further contains a silicate of a metal element contained in a metal oxide, and the average aggregation diameter of the silicate in a field of view of 600 ⁇ m 2 at a magnification of 1000 times is 5 ⁇ m or less.
  • the composite sintered body of the second embodiment may or may not further contain the silicate of the metal element contained in the metal oxide, and the relative permittivity of 200 Hz and the relative permittivity of 1 MHz are both 24. It is 10 or more in the entire range of ° C. or higher and 400 ° C.
  • the composite sintered body of the first embodiment and the second embodiment may share favorable examples and conditions with each other.
  • the composite sintered body of the first embodiment contains a metal oxide as a main phase, silicon carbide as a subphase, and a silicate of a metal element contained in the metal oxide of the main phase.
  • the substrate is made of a composite sintered body, which is a ceramic containing the metal oxide, the silicon carbide, and the silicate.
  • the silicate is generated by the reaction between the metal oxide particles and the oxide film (SiO 2 film) on the surface of the silicon carbide particles.
  • the average aggregation diameter of the silicate in the field of view of 600 ⁇ m 2 at a magnification of 1000 times is 5 ⁇ m or less.
  • the value of the average agglomeration diameter obtained as follows is adopted as the "average agglomeration diameter of the silicate in the field of view of 600 ⁇ m 2 at a magnification of 1000 times".
  • the surface of the composite oxide (sintered body) is mirror-polished with a diamond paste having an average particle size of 3 ⁇ m (particle size display: # 8000).
  • the surface of the sintered body subjected to thermal etching is imaged with an electron beam probe microanalyzer, to give a specific example, an electron beam probe microanalyzer (manufactured by JEOL Ltd., model number JXA-8530F). ..
  • the magnification at the time of imaging is 1000 times.
  • the imaging range is a rectangle with an area of 600 ⁇ m 2 .
  • the obtained electron micrograph is taken into image analysis type particle size distribution measurement software, for example, image analysis type particle size distribution measurement software (Mac-View Version 4, manufactured by Mountec Co., Ltd.), and the aggregation diameter of silicate is calculated. Let me.
  • the above measurement is performed at any 5 points of the composite sintered body.
  • the arithmetic mean value of the aggregate diameter of the silicate obtained in each case is defined as the average aggregate diameter of the silicate.
  • examples of the "silicate” include mullites such as Al 8 O 12 Si 2 and Al 7 O 14 Si 2 .
  • examples of "silicates” Y 2 O 3 ⁇ SiO 2 , Y 2 O 3 ⁇ 2SiO 2, 2Y 2 O 3 ⁇ 3SiO 2 , and the like.
  • the metal oxides, silicon carbide, and silicates that make up the composite sintered body are dispersed throughout the composite sintered body macroscopically, that is, when observed under a microscope with a small magnification. Microscopically, that is, in microscopic observation at a large magnification, each of the metal oxide, silicon carbide, and silicate is agglomerated at various points in the composite sintered body. When the metal oxides, silicon carbide, and silicates constituting the composite sintered body are compared, the silicate has the lowest durability against plasma. Therefore, when the composite sintered body containing the metal oxide, silicon carbide, and the silicate is exposed to plasma, the portion where the silicate agglomerates is easily damaged.
  • the average agglomeration diameter of the silicate is 5 ⁇ m or less. For this reason, it is less susceptible to large local plasma erosion as compared with a composite sintered body containing a silicate having an average agglomeration diameter of more than 5 ⁇ m. Therefore, in an electrostatic chuck device using such a composite sintered body as a substrate, the life of the device can be extended.
  • the average agglomeration diameter of the silicate is preferably 4 ⁇ m or less, and more preferably 3 ⁇ m or less.
  • the average aggregation diameter may be 2.0 ⁇ m or less, 1.0 ⁇ m or less, or 0.5 ⁇ m or less.
  • the composite sintered body of the present embodiment has a ratio of the area occupied by the silicate to the total area occupied by the metal oxide and the silicon carbide when observed in a field of view of 600 ⁇ m 2 at a magnification of 1000 times. , 30% or less is preferable.
  • silicates Compared to metal oxides or silicon carbide, silicates have lower plasma resistance. Therefore, when exposed to plasma, it is susceptible to plasma erosion. Therefore, the lower the ratio of the area occupied by the silicate, the better.
  • the area ratio is more preferably 25% or less, further preferably 15% or less, and particularly preferably 10% or less. It is also preferable that it is 5% or less or 3% or less.
  • the composite sintered body as shown in FIG. 11 is formed. However, a sintered body containing 0% silicate is not preferable from that viewpoint because the withstand voltage is lowered.
  • the composite sintered body of the present embodiment preferably has an average hardness of 2 ⁇ 10 4 N / mm 2 or more and an average Young's modulus of 3.5 ⁇ 10 5 N / mm 2 or more. It is more preferable that the average hardness is 22423 N / mm 2 or more and the average Young's modulus is 383594 N / mm 2 or more.
  • the composite sintered body of the present embodiment is a portion where the silicate is aggregated, that is, a portion containing the silicate, but it is preferably formed only from the silicate.
  • the silicate is preferably a fine silicate, more preferably a microcrystal.
  • the partial average hardness in which the silicate is aggregated is 2 ⁇ 10 4 N / mm 2 or more, and the average Young's modulus is 3.5 ⁇ 10 5 N / mm 2 or more. It is more preferable that the average hardness is 22423 N / mm 2 or more and the average Young's modulus is 383594 N / mm 2 or more.
  • the average hardness and the average Young's modulus can be calculated by a method according to ISO14577-1.
  • the composite sintered body of the first embodiment has a relative permittivity of 200 Hz and a relative permittivity of 1 MHz, both of which are 10 or more in the entire range of 24 ° C. or higher and 400 ° C. or lower, and has a dielectric loss tangent of 200 Hz and a dielectric constant of 1 MHz. It is also preferable that the normal contact is 0.04 or less in the entire range of 24 ° C. or higher and 400 ° C. or lower. In the composite sintered body of the first embodiment, it is also preferable that the difference between the maximum value and the minimum value in the range of 24 ° C. or higher and 400 ° C. or lower is 6 or less for the relative permittivity of 200 Hz. It is also preferable that the composite sintered body of the first embodiment has a volume resistance value of 1 ⁇ 10 -13 ⁇ ⁇ cm or more in the entire range of 24 ° C. or higher and 400 ° C. or lower.
  • the composite sintered body of the second embodiment uses a ceramic composite sintered body containing a metal oxide as a main phase and silicon carbide as a sub-phase as a forming material.
  • the composite sintered body of the second embodiment has a relative permittivity of 200 Hz and a relative permittivity of 1 MHz, both of which are 10 or more in the entire range of 24 ° C. or higher and 400 ° C. or lower.
  • a high adsorption force can be obtained in a wide temperature range.
  • the relative permittivity is preferably 11 or more or 12 or more in the entire range.
  • the upper limit of the relative permittivity can be arbitrarily selected, but may be, for example, 18 or less, 16 or less, 15 or less, or 14 or less.
  • the dielectric loss tangent of 200 Hz and the dielectric loss tangent of 1 MHz are both 0.04 or less in the entire range of 24 ° C. or higher and 400 ° C. or lower.
  • the dielectric loss tangent is preferably 0.03 or less.
  • An electrostatic chuck device using such a composite sintered body as a substrate can transmit high frequencies that generate plasma in a wide temperature range.
  • the lower limit of the dielectric loss tangent can be arbitrarily selected, but may be, for example, 0.000 or more or 0.001 or more.
  • the difference (absolute value) between the maximum value and the minimum value in the range of 24 ° C. or higher and 400 ° C. or lower is preferably 6 or less for the relative permittivity of 200 Hz. It is more preferably 4 or less, and further preferably 2 or less.
  • a stable adsorption force can be obtained in a wide temperature range.
  • the composite sintered body of the second embodiment preferably has a volume resistivity (volume resistivity) of 1 ⁇ 10 13 ⁇ ⁇ cm or more in the entire range of 24 ° C. or higher and 400 ° C. or lower. It is also preferable that it is 1 ⁇ 10 15 ⁇ ⁇ cm or more and 1 ⁇ 10 16 ⁇ ⁇ cm or more. When it is 1 ⁇ 10 13 ⁇ ⁇ cm or more, excellent characteristics can be obtained. In an electrostatic chuck device using such a composite sintered body as a substrate, the wafer can be easily detached after electrostatic adsorption is completed in a wide temperature range.
  • the electric charge accumulated on the surface of the electrostatic chuck portion 2 (base) can be gradually released. As a result, it is possible to suppress creepage fracture and dielectric breakdown of the electrostatic chuck portion 2.
  • the silicon carbide crystal grains are preferably dispersed in the crystal grains of the metal oxide and at the grain boundaries of the metal oxide in the composite sintered body of the first and second embodiments.
  • the ratio of the crystal grains of silicon carbide dispersed in the crystal grains of the metal oxide is the crystal grains of silicon carbide existing in the crystal grains of the metal oxide and at the grain boundaries, that is, the crystals of silicon carbide.
  • the area ratio is preferably 25% or more with respect to the entire grain.
  • the ratio is more preferably 30% or more, still more preferably 50% or more, and may be 100%.
  • the remaining silicon carbide crystal grains, which are not contained in the crystal grains, are present at the grain boundaries of the metal oxide.
  • the ratio of "silicon carbide crystal grains dispersed in metal oxide crystal grains” to "whole silicon carbide crystal grains” is 25% in terms of area ratio when observed under a microscope.
  • the insulating property can be sufficiently improved.
  • the larger the ratio is, the more preferable. It is particularly preferable that all the crystal grains of silicon carbide are dispersed in the crystal grains of aluminum oxide.
  • the dielectric constant of the composite sintered body becomes high. Further, when the above ratio is 25% or more, the dielectric loss tangent at a low frequency becomes small.
  • the "ratio of silicon carbide crystal grains dispersed in the crystal grains of the metal oxide" in the composite sintered body is calculated from a scanning electron micrograph of an arbitrary field of view of the composite sintered body. can do.
  • an electron micrograph of the composite sintered body is taken at a magnification of 10000 times in a randomly selected field of view.
  • the total area of all the silicon carbide crystal grains shown in this electron micrograph is taken as the area of the "whole silicon carbide crystal grains".
  • the area of the "crystal grains of silicon carbide dispersed in the crystal grains of the metal oxide" in the electron micrograph is determined. From the area obtained in this way, the ratio of "silicon carbide crystal grains dispersed in the metal oxide crystal grains" to "whole silicon carbide crystal grains” is obtained by an area ratio.
  • the same process is performed on electron micrographs in two different fields of view to obtain the respective proportions.
  • the average value of the obtained three ratios is obtained as an area ratio indicating "the ratio of the crystal grains of silicon carbide dispersed in the crystal grains of the metal oxide".
  • the average crystal grain size of the silicon carbide crystal grains dispersed in the crystal grains of the metal oxide can be arbitrarily selected, but is 0.03 ⁇ m or more. It is preferably 7 ⁇ m or less.
  • the particle size is more preferably 0.05 ⁇ m or more and 0.3 ⁇ m or less, and further preferably 0.1 ⁇ m or more and 0.2 ⁇ m or less.
  • the ratio of silicon carbide in the entire composite sintered body is preferably 8% by mass or less. It is more preferably 6% by mass or less, and further preferably 3% by mass or less.
  • the lower limit can be arbitrarily selected, but may be, for example, 1.5% by mass or more.
  • the metal oxide contained in the composite sintered body of the first and second embodiments can be arbitrarily selected, but aluminum oxide and yttrium oxide can be preferably used.
  • zirconium oxide, silicon oxide, mullite, yttrium aluminum garnet, hafnium oxide, ReAl 2 O 3 (Re is a rare earth element) and the like can also be used.
  • the average crystal grain size of the metal oxide can be arbitrarily selected, but is preferably 1.2 ⁇ m or more and 10 ⁇ m or less. It is more preferably 1.5 ⁇ m or more and 5 ⁇ m or less, and further preferably 1.7 ⁇ m or more and 3 ⁇ m or less.
  • the average crystal grain size of the metal oxide is 1.2 ⁇ m or more in the composite sintered body, a sufficient insulating effect can be exhibited without excessively reducing the resistance of the metal oxide particles themselves. .. Further, when the average crystal grain size of the metal oxide is 10 ⁇ m or less, the mechanical strength of the obtained sintered body becomes sufficiently high, and chipping is less likely to occur.
  • the average crystal grain size of the metal oxide can be adjusted by controlling the sintering temperature.
  • the sintering temperature is high, the average crystal grain size of the metal oxide tends to be large, and when the sintering temperature is low, the average crystal grain size of the metal oxide tends to be small.
  • the composite sintered body which is the material for forming the mounting plate 11 and the support plate 12, has a high dielectric constant and a high volume specific resistance value, that is, a high dielectric constant and a low dielectric loss tangent, because of the above-described configuration. It can be compatible.
  • the metal oxide as the main phase is an insulator.
  • Silicon carbide which is a secondary phase, is a conductor. Therefore, when an attempt is made to energize the composite sintered body, the electrons easily move around the grain boundaries where the conductor is arranged.
  • a conventionally known composite sintered body having the same composition that is, a composite sintered body obtained from a metal oxide and silicon carbide
  • the crystal grains of silicon carbide at the grain boundaries of the metal oxide are relative to the entire silicon carbide. It is known that 80% or more of them are present.
  • the ratio of the silicon carbide crystal grains dispersed in the crystal grains of the metal oxide is the ratio of the silicon carbide crystals contained in the composite sintered body.
  • the area ratio is 25% or more with respect to the entire grain. That is, silicon carbide crystal grains are present at the grain boundaries of the metal oxide in an amount of 75% or less of the total crystal grains of silicon carbide contained in the composite sintered body.
  • the amount of the conductor (silicon carbide) present at the crystal grain boundaries where electrons easily move is smaller than that of the conventional composite sintered body. Therefore, it is considered that electrons are difficult to move and the volume specific resistance value becomes high.
  • the amount of silicon carbide dispersed in the crystal grains of the metal oxide is 25% or more, which is larger than that of the conventional composite sintered body.
  • the proportion of silicon carbide dispersed in the crystal grains of the metal oxide increases in this way, the distance between the silicon carbide particles which are conductors in the crystal grains becomes short, and the electric capacity increases. Therefore, the dielectric constant of the composite sintered body as in the first and second embodiments tends to be high.
  • SiC has many crystal structures. Specifically, a cubic system having a 3C type (sphalerite type) crystal structure, a hexagonal system such as 4H type and 6H type having a wurtzite type crystal structure, and a rhombic crystal system. Those having a 15R type crystal structure can be mentioned. Of these, those having a 3C type crystal structure are referred to as " ⁇ -SiC”. In addition, all other crystals having a crystal structure are referred to as " ⁇ -SiC”.
  • the SiC contained in the composite sintered body is preferably ⁇ -SiC.
  • ⁇ -SiC crystal grains are dispersed and exist in a state of being surrounded by metal oxide crystal grains which are matrix materials, that is, in the metal oxide crystal grains. Is preferable.
  • the volume ratio of ⁇ -SiC is preferably 4% by volume or more and 15% by volume or less, and more preferably 6% by volume or more and 10% by volume or less with respect to the entire composite sintered body.
  • volume ratio of ⁇ -SiC When the volume ratio of ⁇ -SiC is 4% by volume or more, the effect of developing electron conductivity by the SiC particles is large. Further, when the volume ratio of ⁇ -SiC is 15% by volume or less, contact between SiC particles is unlikely to occur, and a decrease in resistance value via the SiC particles is unlikely to occur.
  • the content of metal impurities other than aluminum and silicon is preferably 100 ppm or less.
  • the metal impurity content is preferably 50 ppm or less, more preferably 25 ppm or less.
  • the method for producing the composite sintered body according to the first and second embodiments is (A) A pre-oxidation step of oxidizing the surface of silicon carbide particles, (B) A step of injecting silicon carbide particles treated in the preoxidation step and metal oxide particles and mixing them while colliding with each other to obtain a slurry containing a dispersion medium. (C) After adding the dispersant to the slurry, the pH of the slurry is included in a range in which the surface charge of the metal oxide particles in the slurry becomes positive and the surface charge of the silicon carbide particles in the slurry becomes negative.
  • non-oxidizing atmosphere can be arbitrarily selected, but preferred examples include an inert gas atmosphere and a vacuum atmosphere.
  • the inert gas can be arbitrarily selected, and for example, nitrogen and / or argon can be preferably used.
  • vacuum means "a state in a space filled with a gas having a pressure lower than atmospheric pressure".
  • Vacuum refers to a state defined in the JIS standard as an industrially usable pressure.
  • the vacuum atmosphere may be a low vacuum (100 Pa or more), but is preferably a medium vacuum (0.1 Pa to 100 Pa), and a high vacuum ( 10-5 Pa to 0.1 Pa). It is more preferable to have it.
  • Oxidizing atmosphere may mean that the atmosphere gas contains oxygen.
  • examples of the oxidizing atmosphere include an atmospheric atmosphere as well as a mixed gas atmosphere of an inert gas and oxygen.
  • the aluminum oxide particles used preferably have an aluminum oxide content of 99.99% or more.
  • Such high-purity aluminum oxide particles can be adjusted by using the alum method.
  • the aluminum oxide particles prepared by using the alum method can significantly reduce the content of sodium atoms, which are metal impurities, as compared with, for example, the aluminum oxide particles prepared by using the Bayer process. Further, various other methods can be adopted as long as aluminum oxide particles having a desired purity can be obtained.
  • the silicon carbide particles used as a raw material are heat-treated in an oxidizing atmosphere. That is, it has a pre-oxidation step in which the surface of the silicon carbide particles is oxidized in advance by the heat treatment.
  • pre-oxidation the above oxidation treatment may be referred to as "pre-oxidation”.
  • the temperature and time of preoxidation can be arbitrarily selected.
  • the temperature is, for example, preferably 250 to 600 ° C, more preferably 300 to 500 ° C.
  • the time of the preoxidation step is preferably 1 to 24 hours, more preferably 6 to 12 hours, for example. However, it is not limited to these examples.
  • preheating can be preferably performed by heating at 500 ° C. for 12 hours.
  • the average particle size of the silicon carbide particles can be arbitrarily selected, but is preferably, for example, 20 to 100 nm, and more preferably 35 to 80 nm. However, it is not limited to these examples.
  • the average particle diameter may be the average particle length diameter.
  • a film of silicon oxide SiO 2
  • the hydrophilicity of the silicon carbide particles is increased. This improves the dispersibility of the silicon carbide particles in the slurry.
  • a pulverizing and mixing apparatus for example, a second-stream particle collision type pulverizing and mixing apparatus.
  • a dispersion medium is prepared, and the aluminum oxide particles and the pre-oxidized silicon carbide particles are dispersed.
  • the dispersions are pressurized at high speed to inject them at high speed to mix the aluminum oxide particles and the silicon carbide particles while colliding with each other.
  • the aluminum oxide particles and the silicon carbide particles are pulverized, and a dispersion liquid (slurry) containing the pulverized particles of these particles is obtained.
  • the injection speed can be arbitrarily selected, but is preferably 300 ml / min to 550 ml / min, for example.
  • the average particle size of the metal oxide particles such as aluminum oxide used as a raw material can be arbitrarily selected, but is preferably 0.05 to 0.3 ⁇ m, preferably 0.1 to 0.25 ⁇ m, for example. More preferred.
  • the ratio of the silicon carbide particles to the total of the metal oxide oxidation and the silicon carbide particles is preferably 3 to 15% by mass, and more preferably 5 to 10% by mass. However, it is not limited to these examples.
  • the ratio of the total amount of metal oxide oxidation and silicon carbide particles in the slurry can be arbitrarily selected, and may be, for example, 3 to 15% by mass or 5 to 10% by mass.
  • the dispersion medium can be arbitrarily selected, and for example, water and alcohols such as methanol and ethanol can be used. Only one kind of these dispersion media may be used, or two or more kinds thereof may be used in combination.
  • the crushed aluminum oxide particles and silicon carbide particles obtained by using the above pulverization and mixing apparatus are particles having a narrow particle size distribution width with few coarse particles and over-pulverized particles. Therefore, when the mixed particles pulverized and mixed by using the second-flow particle collision type pulverizing and mixing apparatus are used, it is possible to suppress the growth of abnormal particles centered on the coarse particles in the sintering step.
  • (C) Step of adjusting pH In the step of adjusting the pH, the pH of the slurry is adjusted in consideration of the surface charges of the aluminum oxide particles and the silicon carbide particles in the slurry.
  • the slurry (slurry before pH adjustment) obtained in the above mixing step usually exhibits a basicity of about pH 11.
  • FIG. 2 is a graph showing the relationship between the pH of the system and the ⁇ potential of each particle.
  • the horizontal axis represents the pH of the system
  • the vertical axis represents the zeta potential (unit: mV) of each particle.
  • the aluminum oxide particles and the silicon carbide particles in the figure were evaluated separately.
  • the behavior of the ⁇ potential of silicon carbide particles is different.
  • the silicon carbide particles have a zeta potential of 0 near pH 2 to 3, and have a negative zeta potential in a wide range from an acidic region near pH 3 to a basic region.
  • the pH of the system becomes "the surface charge of the aluminum oxide particles in the slurry is positive" and "the surface charge of the silicon carbide particles in the slurry is negative". In the range of "”, so-called heteroaggregation occurs in which both particles aggregate. In FIG. 2, the pH of the system is in the above range, which is about 2.6 to 7.5.
  • a dispersant it is preferable to appropriately add a dispersant to the slurry so that the aluminum oxide particles and the silicon carbide particles do not precipitate.
  • a known dispersant for example, a polycarboxylic acid-based dispersant can be used.
  • a commercially available product can be preferably used as the dispersant, and for example, Aron A6114 (manufactured by Toagosei Co., Ltd.) can be used.
  • the pH of the system is preferably 3 or more and 7 or less, more preferably 5 or more and 7 or less, and further preferably 6 or more and 7 or less.
  • the pH can be adjusted by adding an acid to the slurry.
  • an inorganic acid such as nitric acid, phosphoric acid, hydrochloric acid and sulfuric acid, and an organic acid such as acetic acid can be preferably mentioned.
  • hydrochloric acid, sulfuric acid, etc. generate chlorine and sulfur in the apparatus in the sintering step described later, which may cause deterioration of the apparatus. Therefore, it is preferable to use nitric acid, phosphoric acid, organic acid or the like for adjusting the pH.
  • the dispersion medium is removed from the pH-adjusted slurry to obtain granules containing aluminum oxide particles and silicon carbide particles.
  • the method for removing the dispersion medium can be arbitrarily selected, and for example, a known spray-drying method can be preferably used.
  • the size of the granules can be arbitrarily selected, but in general, it may be, for example, 30 to 100 ⁇ m or 50 to 85 ⁇ m.
  • fine droplets of the slurry are sprayed to increase the surface area per unit volume of the slurry, and hot air is continuously brought into contact with the fine droplets to instantaneously dry and granulate. it can.
  • Granules granulated by the spray-drying method tend to be spherical, reflecting the shape of microdroplets.
  • (E) Oxidation treatment step In the step of oxidation treatment, the treatment is sequentially performed in two atmospheres. First, the obtained granules are heated to 300 ° C. or higher and 600 ° C. or lower (for example, 500 ° C.) under normal pressure (without pressing) in a non-oxidizing atmosphere, and the water content, the dispersion medium, and the granules contained in the granules are heated. Remove impurities such as dispersants.
  • the temperature may be 300 to 400 ° C, 400 to 500 ° C, or 500 to 600 ° C, if necessary.
  • the heating time can be arbitrarily selected, but may be, for example, 3 to 8 hours, 8 to 10 hours, or 10 to 15 hours.
  • an inert gas atmosphere using nitrogen or argon is preferable. Further, when the heating is performed in an inert gas atmosphere, the heat treatment by a so-called gas flow, in which the atmospheric gas is flowed, is preferable in order to efficiently discharge the generated impurities to the outside of the system.
  • the granules from which the contaminants have been removed are heated and oxidized in an oxidizing atmosphere at an arbitrarily selected temperature, for example, 400 ° C.
  • the atmosphere to be oxidized can be arbitrarily selected, but an atmospheric atmosphere is preferable.
  • the temperature can be selected as needed, and may be 250 to 370 ° C, 300 to 500 ° C, 400 to 600 ° C, or the like.
  • the heating time can be arbitrarily selected, but may be, for example, 1 to 5 hours, 5 to 12 hours, or 12 to 24 hours.
  • an oxide film is formed on the surface of the silicon carbide particles contained in the granules in the oxidation treatment. Metal impurities contained in the granules are easily dissolved in the oxide film. Therefore, the metal impurities contained in the granules are unevenly present on the particle surface. In that case, it is preferable because metal impurities can be easily removed in the pressure sintering step described later.
  • the surface of the silicon carbide particles constituting the granules is more easily oxidized than when the molded product after molding the granules is subjected to the oxidation treatment. Therefore, as a result of the oxidation treatment, an oxide film is likely to be formed evenly on the surface of the silicon carbide particles, which is preferable.
  • the obtained granules are molded, preferably uniaxially molded (uniaxially press-molded), according to the shape of the desired sintered body to obtain a molded product.
  • the step of pressure firing it is preferable to first perform preheating.
  • the above-mentioned molded product is heated (preheated) in a vacuum atmosphere at a temperature lower than 1600 ° C. and at normal pressure (without pressing).
  • metal impurities such as alkali metal contained in the granules evaporate, and the metal impurities can be easily removed. Therefore, according to such an operation, it becomes easy to improve the purity of the granules, and it becomes easy to control the volume resistivity value (volume resistivity) of the obtained composite sintered body.
  • the above temperature can be selected as needed, and may be 800 to 1000 ° C, 1000 to 1500 ° C, or the like.
  • the heating time can be arbitrarily selected, and may be, for example, 1 to 5 hours, 3 to 8 hours, or 6 to 12 hours.
  • the oxide film formed on the particle surface is volatilized by preheating in a vacuum atmosphere.
  • metal impurities contained in the oxide film evaporate. Therefore, metal impurities can be easily removed from the molded product. Therefore, according to such an operation, it becomes easy to improve the purity of the granules, and it becomes easy to control the volume resistance value of the obtained composite sintered body.
  • an inert gas such as argon is used up to atmospheric pressure. It is preferable to return the air pressure.
  • the preheated molded product is heated to 1600 ° C. or higher while being compacted at a pressure of 5 MPa or higher in a non-oxidizing atmosphere, for example, an argon atmosphere, and pressure-sintered.
  • a non-oxidizing atmosphere for example, an argon atmosphere
  • pressure-sintered By such an operation, the sintering of the aluminum oxide particles and the silicon carbide particles contained in the molded product proceeds, and a dense sintered body having few pores can be obtained.
  • the temperature can be selected as needed, and may be 1700 to 1800 ° C, 1800 to 1900 ° C, or the like.
  • the heating time can be arbitrarily selected, and may be, for example, 1 to 5 hours, 3 to 8 hours, or 6 to 12 hours.
  • pressure sintering is performed under an argon atmosphere at 1600 ° C. or higher and 1850 ° C. or lower and a sintering pressure of 25 MPa or higher and 50 MPa or lower. Is preferable.
  • the sintered body produced by such a method has a reduced metal impurity content and becomes a high-purity sintered body.
  • the preheating time may be lengthened or the preheating temperature may be raised.
  • 3 to 9 are schematic explanatory views for explaining the method for producing the composite sintered body of the first and second embodiments.
  • FIG. 3 is a schematic view showing the state of each particle in a slurry having a pH of about 6.5 containing, for example, aluminum oxide particles and silicon carbide particles.
  • reference numeral A indicates aluminum oxide particles
  • reference numeral B indicates silicon carbide particles.
  • FIG. 4 is a schematic view showing the state of the particles when the dispersion medium is removed from the slurry shown in FIG. 6 and 8 and 11 are schematic views showing a composite sintered body prepared by using the particles shown in FIGS. 4, 5 and 7 and the like.
  • the hexagonal portion shows crystal grains of aluminum oxide as the main phase. Black circles indicate crystal grains of silicon carbide, which is a subphase. Gray circles indicate silicate aggregates.
  • the silicon carbide particles aggregate with each other ( The possibility of homoaggregation) also increases.
  • the silicon carbide particles to be used are pre-oxidized, the dispersibility of the silicon carbide particles is improved. Therefore, when the pre-oxidized silicon carbide particles are used, homo-aggregation of the silicon carbide particles can be suppressed and the hetero-aggregation can be promoted predominantly. This makes it easier to obtain the desired agglutination state (heteroaggregation).
  • the granules obtained in the step of obtaining the granules are heated to 300 ° C. or higher and 600 ° C. or lower in a non-oxidizing atmosphere in the step (e). After that, the surface of the granules is oxidized. As a result, the dispersant covering the surface of the metal oxide particles and the surface of the silicon carbide particles contained in the granules is removed, and the surface of the silicon carbide particles is oxidized. Further, by this step, the surface of the silicon carbide particles is evenly oxidized, and a homogeneous composite sintered body is likely to be obtained. Therefore, the electrical characteristics of the obtained composite sintered body are less dependent on the temperature, and stable physical properties can be easily obtained in a wide temperature range.
  • the silicon carbide particles B are shown as a core-shell structure consisting of a core B1 made of silicon carbide and a shell B2 made of silicon oxide.
  • the surface of the aluminum oxide particles A and the surface of the silicon carbide particles B are covered with the dispersant C and sintered in the step of (g) pressure sintering, the surface of each particle is dispersed.
  • the agent C inhibits the contact between the aluminum oxide particles A and the shell B2. Therefore, in the heating process for sintering, the contact between the aluminum oxide particles A and the shell B2, that is, the sintering of the aluminum oxide particles A and the shell B2 occurs only after the dispersant C is first removed. It will be.
  • the aluminum oxide particles A and the shell B2 come into direct contact with each other to start the reaction, and by that time, the dispersant C is removed in advance. It is considered that the temperature is relatively high as compared with the manufacturing method of the form. Therefore, it is considered that the generated silicate is relatively easy to grow grains.
  • the dispersant C has already been removed from the particle surface of the granules obtained in the step (e) oxidation treatment of the present embodiment.
  • the aluminum oxide particles A and the shell B2 made of silicon oxide of the silicon carbide particles B come into good contact with each other.
  • next step (g) pressure sintering when the molded body is raised to a temperature set as the sintering temperature at a predetermined temperature rise rate, the aluminum oxide particles A and the silicon carbide particles B are used.
  • the reaction of the shell B2 (SiO 2 film) on the surface of the surface starts as soon as the sinterable temperature is reached.
  • the metal oxide particles and the shell B2 (SiO 2 film) start the reaction under relatively low temperature conditions.
  • the generated silicate is difficult to grow and fine silicate is likely to be generated.
  • the aggregate of silicate is indicated by reference numeral D.
  • Aluminum oxide grows in the composite sintered body while incorporating many silicon carbide crystal grains into the crystals. Therefore, the abundance of silicon carbide B crystal grains at the grain boundaries of aluminum oxide A is small. Further, in the composite sintered body of the present embodiment, the crystal grains of silicon carbide tend to be small and the number of particles tends to be large even in the crystal grains of aluminum oxide.
  • the composite sintered body of the present embodiment can be manufactured.
  • the obtained composite sintered body can be obtained as a desired substrate by grinding in a subsequent step.
  • the protrusions formed on the mounting surface of the substrate can be appropriately formed by a known method.
  • both a high dielectric constant and a low dielectric loss tangent can be achieved in a wide temperature range.
  • the electrostatic chuck portion and the electrostatic chuck device using such a composite sintered body it can be suitably used in a low frequency region.
  • the above-mentioned composite sintered body can be easily manufactured.
  • the electrostatic chuck unit and the electrostatic chuck device as described above it becomes a high-performance one having a high wafer adsorption force and a high withstand voltage.
  • the surface of the obtained sintered body was observed with a scanning electron microscope (manufactured by Hitachi High-Technology Co., Ltd., model number: S-4000) at a magnification of 10000 times.
  • the obtained electron micrographs were incorporated into image analysis type particle size distribution measurement software (Mac-View Version 4, manufactured by Mountech Co., Ltd.), and the major axis diameters of crystal grains of 200 or more metal oxides were calculated.
  • the arithmetic mean value of the major axis diameter of each of the obtained crystal grains was defined as the "average crystal grain size" to be obtained.
  • the electron micrograph obtained by measuring the average crystal grain size of the above metal oxide crystal grains was incorporated into image analysis type particle size distribution measurement software (Mac-View Version4, manufactured by Mountec Co., Ltd.), and more than 200 silicon carbides were taken. The area of the particles was calculated. Whether or not each silicon carbide particle is present in the crystal grain of the metal oxide is determined from the electron micrograph, and the area of the silicon carbide particle is determined. The ratio of silicon crystal grains was determined.
  • the obtained electron micrograph was taken into image analysis type particle size distribution measurement software (Mac-View Version 4, manufactured by Mountech Co., Ltd.), and the agglutination diameter of silicate was calculated.
  • the above measurement was performed at any 5 points of the composite sintered body, and the arithmetic mean value of these was obtained from the aggregate diameter of the silicate obtained at each site, and used as the "average aggregate diameter" of the silicate. ..
  • test piece was then placed in the chamber of the plasma etching apparatus.
  • SF 6 gas (10 sccm / min), Ar (80 sccm / min), O 2 (10 sccm / min) and microwave (100 W) were introduced into the chamber to generate SF 6 plasma, and the test surface of each test piece was generated.
  • Plasma resistance was evaluated from the change in surface roughness before and after plasma exposure. It can be evaluated that the smaller the change in surface roughness before and after plasma exposure, the higher the plasma resistance.
  • volume specific resistance value In this example, the volume specific resistance value of the disk-shaped sintered body was measured by the DC three-terminal method.
  • Measurement temperature Room temperature (24 ° C), 50 ° C, 100 ° C, 150 ° C, 200 ° C, 250 ° C, 300 ° C
  • Measurement atmosphere Atmosphere (flow rate 200 ml / min)
  • Applied voltage 1kV
  • FIG. 12 is a schematic view showing the state of the sintered body when measuring the volume specific resistance value in this embodiment.
  • reference numeral 100 is a sintered body
  • reference numeral 110 is a main electrode
  • reference numeral 120 is a guard electrode
  • reference numeral 130 is a counter electrode.
  • the diameter of the main electrode was 1.47 cm
  • the inner diameter of the guard electrode was 1.60 cm.
  • Equipment used Impedance analyzer, model number E4990A, manufactured by Keysight Technology Co., Ltd. (Measurement range from 100 kHz to 1 MHz) LCR meter, model number 4274A, manufactured by Keysight Technology (measurement range from 100Hz to 100kHz)
  • Measurement condition Measurement atmosphere: Atmosphere Measurement temperature: 25 ° C, 100 ° C, 150 ° C, 200 ° C, 300 ° C, 400 ° C
  • Example 1 As starting materials, ⁇ -SiC type silicon carbide ( ⁇ -SiC) particles having an average particle size of 0.03 ⁇ m and synthesized by thermal plasma CVD, and ⁇ -SiC type silicon carbide ( ⁇ -SiC) particles having an average particle size of 0.1 ⁇ m and a metal impurity content of 95 ppm.
  • Aluminum oxide (Al 2 O 3 ) particles of the above were used.
  • the ⁇ -SiC particles were heat-treated at 500 ° C. for 12 hours in an air atmosphere to oxidize the particle surface. This operation corresponds to the "pre-oxidation step" in the present invention. In the following steps, ⁇ -SiC subjected to pre-oxidation treatment was used.
  • the ⁇ -SiC particles and the Al 2 O 3 particles are weighed so that the ⁇ -SiC particles account for 7% by mass with respect to the total amount of the ⁇ -SiC particles and the Al 2 O 3 particles, and the polycarboxylic acid-based dispersant is used. It was put into distilled water containing.
  • the dispersion liquid containing the ⁇ -SiC particles and the Al 2 O 3 particles was subjected to a dispersion treatment with an ultrasonic disperser. After that, pulverization and mixing were performed using a second-flow particle collision type pulverization and mixing apparatus. This operation corresponds to the "step of obtaining a slurry" in the present invention.
  • nitric acid was added to the slurry to adjust the pH of the slurry to 6.5. This operation corresponds to the "step of adjusting pH" in the present invention.
  • the pH-adjusted slurry was spray-dried with a spray-drying device to obtain granules containing ⁇ -SiC and Al 2 O 3 .
  • This operation corresponds to the "step of obtaining granules" in the present invention.
  • the granules were heated to 370 ° C. under a nitrogen atmosphere to remove water and dispersants (contaminants). Then, the granules were heated at 300 ° C. for 12 hours in an air atmosphere. This operation corresponds to the "oxidation treatment step" in the present invention.
  • the granules were uniaxially press-molded at a press pressure of 8 MPa to obtain a molded product having a diameter of 320 mm ⁇ 15 mm. This operation corresponds to the "molding step" in the present invention.
  • the obtained molded product was set in a graphite mold and subjected to pressure sintering.
  • the molded product was heated to 1200 ° C. in a vacuum atmosphere without applying press pressure.
  • sintering was performed at a press pressure of 40 MPa and 1800 ° C. to obtain a composite sintered body of Example 1. This operation corresponds to the "step of pressure sintering" in the present invention.
  • Example 2 An electron micrograph was taken of the composite sintered body of Example 1 under the above-mentioned conditions.
  • the average crystal grain size of Al 2 O 3 was determined from the obtained electron micrographs and found to be 1.61 ⁇ m. Moreover, when the average crystal grain size of SiC was determined, it was 0.18 ⁇ m.
  • the proportion of SiC crystal grains dispersed in the crystal grains of Al 2 O 3 was 50%.
  • Comparative Example 1 instead of heating the granules at 300 ° C. for 12 hours in an air atmosphere, the molded product obtained by uniaxial press molding is heated at 300 ° C. for 12 hours in an air atmosphere, and then set in a graphite mold. Then, pressure sintering was performed. A composite sintered body of Comparative Example 1 was obtained in the same manner as in Example 1 except for this.
  • the proportion of SiC crystal grains dispersed in the crystal grains of Al 2 O 3 was 18%.
  • FIG. 9 is an SEM image of the composite sintered body of Example 1 and an EPMA image of the same field of view
  • FIG. 10 is an SEM image of the composite sintered body of Comparative Example 1 and an EPMA image of the same field of view.
  • any of the composite sintered bodies a region in which Al and Si coexist can be confirmed.
  • Such a region where Al and Si coexist is an aggregate of silicate in the present invention.
  • the aggregate diameter of the silicate aggregate is larger than that of the composite sintered body of Comparative Example 1 shown in FIG. Is small.
  • the average agglomeration diameter obtained by the above method is shown in Table 1 below.
  • the composition of the silicate in the composite sintered body of Example 1 was Al 7 O 14 Si 2
  • the composition of the silicate in the composite sintered body of Comparative Example 1 was Al 8 O 12 Si. It was 2 .
  • the surface roughness of the test piece of Example 1 obtained by the above method was 10.2 nm before plasma exposure and 349 nm after plasma exposure.
  • the surface roughness determined by the above method was 10.3 nm before plasma exposure and 383 nm after plasma exposure.
  • Example 1 As a result of the evaluation, it was found that the composite sintered body of Example 1 was superior in plasma resistance to the composite sintered body of Comparative Example 1.
  • FIG. 13 is a scatter diagram showing the measurement results of the dielectric constant and the dielectric loss tangent of Example 1 and Comparative Example 1.
  • the horizontal axis of the figure shows the measurement temperature (unit: ° C.), and the vertical axis shows the relative permittivity ( ⁇ r ) and the dielectric loss tangent (tan ⁇ ).
  • FIG. 14 is a scatter diagram showing the measurement results of the volume resistivity values (volume low efficiency) of Example 1 and Comparative Example 1.
  • the horizontal axis of FIG. 14 indicates the reciprocal of the measured temperature (unit: K -1 ).
  • the vertical axis indicates the volume resistivity (volume resistivity) (unit: ⁇ ⁇ cm), that is, the logometric log ⁇ of the volume resistivity ⁇ ( ⁇ ⁇ cm).
  • the composite sintered body of Example 1 had a relative permittivity of 1 MHz and a relative permittivity of 200 Hz of 10 or more in the entire range of 24 ° C. or higher and 400 ° C. or lower.
  • the composite sintered body of Example 1 was stable in both the relative permittivity of 1 MHz and the relative permittivity of 200 Hz in the entire range of 24 ° C. or higher and 400 ° C. or lower.
  • the difference between the maximum value and the minimum value in the range of 24 ° C. or higher and 400 ° C. or lower was 2 or less.
  • both the dielectric loss tangent of 1 MHz and the dielectric loss tangent of 200 Hz were 0.04 or less in the entire range of 24 ° C. or higher and 400 ° C. or lower.
  • the composite sintered body of Example 1 had a volume resistivity (volume resistivity) of 1 ⁇ 10 -13 ⁇ ⁇ cm or more in the entire range of 24 ° C. or higher and 400 ° C. or lower.
  • the composite sintered body of Comparative Example 1 since the molded body obtained by uniaxial press molding is oxidized, the oxidation state of the silicon carbide particles, which is the raw material of the composite sintered body, becomes uneven and temperature-dependent. Is considered to have been expressed.
  • the present invention is useful. From the results of the present embodiment, it was found that the composite sintered body of the present invention has both a high dielectric constant and a low dielectric loss tangent in a wide temperature range, and it was found that the present invention is useful.
  • the present invention provides a composite sintered body that is less susceptible to local plasma erosion. Further, an electrostatic chuck member and an electrostatic chuck device using such a composite sintered body are provided. Further, the present invention provides a method for producing a composite sintered body, which makes it possible to easily manufacture such a composite sintered body.
  • Electrostatic chuck device 1 Electrostatic chuck device 2 Electrostatic chuck 3 Temperature control base 3A Flow path 3b Through hole 4 Adhesive layer 5 Heater element 6 Adhesive layer 7 Insulation plate 8 Adhesive layer 10 Focus ring 11 Mounting plate (base) 11a Mounting surface 11b Projection 12 Support plate (base) 13 Electrode for electrostatic adsorption 14 Insulation layer 15 Power supply terminal 15a Insulator 16 Through hole 17 Power supply terminal 18 Cylindrical insulator 19 Groove 20 Temperature sensor 21 Installation hole 22 Temperature measurement unit 23 Excitation unit 24 Fluorescence detector 25 Control unit 28 Gas hole 29 Cylindrical insulator A Aluminum oxide particles B Silicon carbide particles B1 Core B2 Shell C Dispersant D Quate W Plate-shaped sample

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Composite Materials (AREA)
  • Thermal Sciences (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

主相である金属酸化物と、副相である炭化ケイ素と、金属酸化物に含まれる金属元素のケイ酸塩と、を含み、拡大倍率1000倍での600μmの視野におけるケイ酸塩の平均凝集径が5μm以下である複合焼結体。

Description

複合焼結体、静電チャック部材、静電チャック装置および複合焼結体の製造方法
 本発明は、複合焼結体、静電チャック部材、静電チャック装置および複合焼結体の製造方法に関するものである。
  本願は、2019年5月22日に、日本に出願された特願2019-096053号、及び、2019年5月22日に、日本に出願された特願2019-096046号に基づき優先権を主張し、その内容をここに援用する。
 プラズマ工程を実施する半導体製造装置では、試料台に板状試料(ウエハ)を容易に取付けて、固定することができるとともに、そのウエハを所望の温度に維持することができる静電チャック装置が用いられている。静電チャック装置は、一主面がウエハを載置する載置面である基体、及び載置面に載置したウエハとの間に静電気力(クーロン力)を発生させる静電吸着用電極を備えている(例えば、特許文献1参照)。基体は、通常、セラミックス焼結体を形成材料として形成されている。
 このような静電チャック装置は、ウエハと静電吸着用電極との間に発生させた静電気力を利用して、ウエハを固定している。具体的には、静電チャック装置において、ウエハを固定する際には、静電吸着用電極に電圧を印加し、ウエハと静電吸着用電極との間に静電気力を発生させる。一方、載置面に固定したウエハを取り外す際には、静電吸着用電極への電圧印加を停止し、ウエハと静電吸着用電極との間の静電気力を消失させる。
特許第4744855号公報
 プラズマ工程にさらされる静電チャック装置では、不可避的に、基体がプラズマで損傷(プラズマエロージョン)する。この場合、基体の一部分がプラズマによる浸食を特に受けやすい構成であると、プラズマに浸食を受けやすい部分が周囲よりも先に損傷し、基体の寿命を短くしてしまう可能性がある。よって改善が求められていた。
 また、静電チャック装置においては、ウエハの面内温度分布(温度差)を低減させるため、試料台に微細な溝を設け、当該溝に気体の冷媒(例えばヘリウム)を流動させることで、試料台に載置したウエハを冷却する技術が知られている。このような静電チャック装置において均熱性を高めるためには、冷媒のガス圧を高め冷却効率を向上させることが考えられる。一方、冷媒のガス圧を高める場合、冷媒から受ける圧力によってウエハが脱離しないように、静電チャック装置には高い吸着力が求められる。高い吸着力を得るには、静電チャック装置の基体の誘電率が高いことが好ましい。
 さらに、近年では、半導体を用いたデバイスは高集積化される傾向にあり、デバイス製造時には配線や絶縁層など種々の材料に対する微細加工技術が必要とされる。その際、絶縁層に用いられるような誘電体をドライエッチングする場合と、配線に用いられるような金属をドライエッチングする場合とでは、ウエハの管理温度が異なる。そのため、広い温度範囲で好適にウエハを保持し、ドライエッチング可能とする静電チャック装置が求められている。
 ドライエッチングによる微細加工を確実に実施可能とするためには、エッチングする際の入射イオンの散乱を抑制し、入射イオンを所望の位置に入射することが求められる。そのため、近年では、静電チャック装置を用いる半導体製造装置において、バイアス(RF)電圧の低周波化が進められている。
 しかし、バイアス電圧が低周波化すると、静電チャック装置におけるセラミックス焼結体製の基体の電気特性が、バイアス電圧が高周波である場合と比べ変化する。具体的には、低周波の交流電圧を印加すると、基体の電気特性は、体積固有抵抗値(単位:Ω・cm)の影響を強く受けるようになる。体積固有抵抗値が小さいほど、体積固有抵抗値に依存する誘電正接は大きくなるという関係にある。
 基体の誘電正接が大きくなると、交流電圧の印加時に基体が発熱しやすくなるため、改善が求められていた。
 本発明はこのような事情に鑑みてなされたものであって、局所的なプラズマ浸食を受けにくい、複合焼結体を提供することを目的とする。すなわちプラズマ浸食を受けたとしても、損傷が均一で軽度である複合焼結体を提供することを目的とする。また、広い温度範囲で高い誘電率と低い誘電正接とを両立する静電チャック用の複合焼結体を提供することを目的とする。
さらに、上記のような複合焼結体を用いた静電チャック部材、及び静電チャック装置を提供することを目的とする。さらに、このような複合焼結体を容易に製造可能とする複合焼結体の製造方法を提供することを目的とする。
 上記の課題を解決するため、本発明の第一の態様は、主相である金属酸化物と、副相である炭化ケイ素と、前記金属酸化物に含まれる金属元素のケイ酸塩と、を含み、拡大倍率1000倍での600μmの視野における、前記ケイ酸塩の平均凝集径が5μm以下である、複合焼結体を提供する。
 本発明の第一の態様の複合焼結体は、以下の特徴を好ましく有する。以下の特徴は互いに組み合わせることも好ましい。
 本発明の第一の態様においては、前記視野において、前記金属酸化物が占める領域と前記炭化ケイ素が占める領域の合計面積に対する、前記ケイ酸塩が占める領域の面積の比が30%以下であってもよい。
 本発明の第一の態様においては、複合焼結体は、平均硬度が2×10N/mm以上であり、平均ヤング率が3.5×10N/mm以上であってもよい。
 本発明の第一の態様においては、前記炭化ケイ素の結晶粒は、前記金属酸化物の結晶粒内および前記金属酸化物の結晶粒界に分散しており、前記金属酸化物の結晶粒内に分散する前記炭化ケイ素の結晶粒の面積の割合は、前記炭化ケイ素の結晶粒の全面積に対し、面積比で、25%以上であってもよい。
 本発明の第一の態様においては、前記金属酸化物は、酸化アルミニウムまたは酸化イットリウムであってもよい。
 本発明の第一の態様においては、前記金属酸化物の平均結晶粒径は、1.2μm以上10μm以下であってもよい。
 本発明の第二の態様は、第一の態様の複合焼結体を形成材料として用いて形成された、一主面が板状試料を載置する載置面である板状の基体と、前記基体の前記載置面とは反対側、または前記基体の内部に設けられた静電吸着用電極と、を有する静電チャック部材を提供する。
 本発明の第二の態様は、上記の静電チャック部材を備える静電チャック装置を提供する。
 本発明の第三の態様は、炭化ケイ素粒子の表面を酸化処理するプレ酸化工程と、前記プレ酸化工程で処理した前記炭化ケイ素粒子と、金属酸化物粒子とを、それぞれ噴射し互いに衝突させながら混合し、分散媒を含むスラリーを得る工程と、前記スラリーに分散剤を添加した後、前記スラリー中の前記金属酸化物粒子の表面電荷が正となり、前記スラリー中の前記炭化ケイ素粒子の表面電荷が負となるpH範囲に含まれるように、前記スラリーのpHを調整する工程と、pHを調整した前記スラリーから分散媒を除去し、前記金属酸化物粒子と前記炭化ケイ素粒子とを含む顆粒を得る工程と、前記顆粒を、非酸化性雰囲気下で、300℃以上600℃以下で加熱した後、酸化性雰囲気下で加熱して前記顆粒の表面を酸化処理する工程と、酸化処理を施した前記顆粒を成形し成形体を得る工程と、前記成形体を、非酸化性雰囲気下、25MPa以上の圧力で押し固めながら、1600℃以上に加熱して加圧焼結する工程と、を有する複合焼結体の製造方法を提供する。
 上記の課題を解決するため、本発明の第四の態様は、主相である金属酸化物と、副相である炭化ケイ素と、を含む複合焼結体であり、200Hzの比誘電率および1MHzの比誘電率は、いずれも24℃以上400℃以下の全範囲で10以上であり、200Hzの誘電正接および1MHzの誘電正接は、いずれも24℃以上400℃以下の全範囲で0.04以下である複合焼結体を提供する。
 本発明の第四の態様の複合焼結体は、以下の特徴を好ましく有する。以下の特徴は互いに組み合わせることも好ましい。
 本発明の第四の態様においては、200Hzの比誘電率について、24℃以上400℃以下の範囲における最大値と最小値との差が6以下である構成としてもよい。
 本発明の第四の態様においては、体積抵抗値(体積抵抗率)が、24℃以上400℃以下の全範囲で1×10-13Ω・cm以上である構成としてもよい。
 本発明の第四の態様においては、前記金属酸化物は、酸化アルミニウムまたは酸化イットリウムである構成としてもよい。
 本発明の第四の態様においては、前記金属酸化物の平均結晶粒径は、1.2μm以上10μm以下である構成としてもよい。
 本発明の第五の態様は、上記の複合焼結体を形成材料とし、一主面が板状試料を載置する載置面である板状の基体と、前記基体の前記載置面とは反対側、または前記基体の内部に設けられた静電吸着用電極と、を有する静電チャック部材を提供する。
 本発明の第六の態様は、上記の静電チャック部材を備える静電チャック装置を提供する。
 本発明によれば、部分的に大きな、すなわち局所的なプラズマ浸食を受けにくい、複合焼結体を提供することができる。本発明によれば、広い温度範囲で高い誘電率と低い誘電正接とを両立する静電チャック用の複合焼結体を提供することができる。また、このような複合焼結体を用いた静電チャック部材、静電チャック装置を提供することができる。さらに、このような複合焼結体を容易に製造可能とする複合焼結体の製造方法を提供することができる。
図1は、第一及び第二の実施形態の静電チャック装置の好ましい例を示す概略断面図である。 図2は、スラリー中の酸化アルミニウム粒子と炭化ケイ素粒子とについて説明する、スラリーpHとそれぞれの粒子のζ電位との関係を示す、グラフである。 図3は、第一及び第二の実施形態の複合焼結体の製造方法を説明する説明概略図である。 図4は、第一及び第二の実施形態の複合焼結体の製造方法を説明する説明概略図である。 図5は、第一の実施形態の複合焼結体の製造方法を説明する説明概略図である。 図6は、第一の実施形態の複合焼結体の製造方法を説明する説明概略図である。 図7は、第一及び第二の実施形態の複合焼結体の製造方法を説明する説明概略図である。 図8は、第一の実施形態の複合焼結体の製造方法を説明する説明概略図である。 図9は、実施例1の複合焼結体のSEM像および同視野のEPMA像である。 図10は、比較例1の複合焼結体のSEM像および同視野のEPMA像である。 図11は、第二の実施形態の複合焼結体の製造方法について説明する説明図である。 図12は、実施例で体積固有抵抗値を測定した際の焼結体の様子を示す模式図である。 図13は、実施例1、比較例1の誘電率および誘電正接の測定結果を示す散布図である。 図14は、実施例1、比較例1の体積抵抗値(体積抵抗率)の定結果を示す散布図である。
 以下、本発明の複合焼結体、静電チャック装置、複合焼結体の製造方法の好ましい例について説明する。なお以下の説明は、発明の趣旨をより良く理解させるために説明するものであり、特に指定のない限り、本発明を限定するものではない。発明を逸脱しない範囲で、数、量、位置、大きさ、数値、比率、順番、種類などの変更や省略や追加をする事ができる。また以下の説明で用いる図面は、特徴部分を強調する目的で、便宜上特徴となる部分を拡大して示している場合がある。それぞれの態様は、互いの好ましい例や条件を、互いに共有してもよい。 第一の態様及び第四の態様の複合焼結体は、静電チャック装置の基体の材料として好適に用いられる。
 以下の説明では、第一及び第四の態様の複合焼結体の主たる使用目的である静電チャック装置の好ましい構成の例について説明する。その後、複合焼結体の詳細について説明する。
 以下の説明において、第一の態様の複合焼結体の好ましい例を第一の実施態様として、第四の態様の複合焼結体の好ましい例を第二の実施態様として、説明することがある。また第一の態様の複合焼結体、及び第四の態様の複合焼結体は、互いの条件や好ましい例を、好ましく共有することができる。
[静電チャック装置]
 以下、図1を参照しながら、本実施形態に係る静電チャック装置について説明する。なお、以下の全ての図面においては、図面を見やすくするため、各構成要素の寸法や比率などは適宜異ならせてあってもよい。
 図1は、本実施形態の静電チャック装置を示す概略断面図である。本実施形態の静電チャック装置1は、一主面(上面)側を載置面とする、平面視円板状の静電チャック部2と、この静電チャック部2の下方に設けられて静電チャック部2を所望の温度に調整する、所定の厚みのある、平面視円板状の温度調節用ベース部3と、を備えている。また、静電チャック部2と温度調節用ベース部3とは、静電チャック部2と温度調節用ベース部3の間に設けられた接着剤層8を介して、接着されている。
 以下、それぞれの部分について順に説明する。
(静電チャック部)
 静電チャック部2は、上面が半導体ウエハ等の板状試料Wを載置する載置面11aである載置板11と、この載置板11と一体化され前記載置板11の底部側を支持する支持板12と、これら載置板11と支持板12との間に設けられた静電吸着用電極13および静電吸着用電極13の周囲を絶縁する絶縁材層14と、を有している。
 載置板11および支持板12は、本発明における「基体」に該当する。
 静電チャック部2は、前記基体を含んでおり、本発明における「静電チャック部材」に該当する。
 載置板11および支持板12は、重ね合わせた面の形状を同じくする、円板状の部材である。載置板11および支持板12は、機械的な優れた強度を有し、かつ腐食性ガスおよびそのプラズマに対する耐久性を有する、複合焼結体からなる。載置板11および支持板12の形成材料である複合焼結体については、詳しく後述する。
 載置板11の載置面11aには、直径が板状試料の厚みより小さい突起部11bが複数所定の間隔で形成される。これらの突起部11bが板状試料Wを支える。
 載置板11、支持板12、静電吸着用電極13および絶縁材層14を含めた全体の厚み、即ち、静電チャック部2の厚みは、任意に選択できるが、例えば0.7mm以上かつ5.0mm以下であることが好ましい。
 例えば、静電チャック部2の厚みが0.7mm以上であると、静電チャック部2の機械的強度を確保することが容易になる。静電チャック部2の厚みが5.0mm以下であると、静電チャック部2の熱容量が大きくなりすぎることがなく、載置される板状試料Wの熱応答性が劣化せず、静電チャック部の横方向の熱伝達の増加が抑えられるので、板状試料Wの面内温度を所望の温度パターンに維持することが容易になる。なお、ここで説明した各部の厚さは一例であって、前記範囲に限るものではない。
 静電吸着用電極13は、電荷を発生させて静電吸着力で板状試料Wを固定するための静電チャック用電極として用いられるものである。その用途によって、その形状や、大きさが適宜調整される。
 静電吸着用電極13は任意に選択される材料で形成される。例えば、酸化アルミニウム-炭化タンタル(Al-Ta)導電性複合焼結体、酸化アルミニウム-タングステン(Al-W)導電性複合焼結体、酸化アルミニウム-炭化ケイ素(Al-SiC)導電性複合焼結体、窒化アルミニウム-タングステン(AlN-W)導電性複合焼結体、窒化アルミニウム-タンタル(AlN-Ta)導電性複合焼結体、酸化イットリウム-モリブデン(Y-Mo)導電性複合焼結体等の導電性セラミックス、あるいは、タングステン(W)、タンタル(Ta)、モリブデン(Mo)等の高融点金属により形成されることが好ましい。
 静電吸着用電極13の厚みは任意に選択でき、特に限定されるものではない。例えば、0.1μm以上かつ100μm以下の厚みを選択することができ、5μm以上かつ20μm以下の厚みがより好ましい。
 静電吸着用電極13の厚みが0.1μm以上であると、充分な導電性を確保することができる。静電吸着用電極13の厚みが100μm以下であると、静電吸着用電極13と載置板11および支持板12との間の熱膨張率差に起因するクラックが、静電吸着用電極13と載置板11および支持板12との接合界面に形成されない。
 このような厚みの静電吸着用電極13は、スパッタ法や蒸着法等の成膜法、あるいはスクリーン印刷法等の塗工法により、容易に形成することができる。
 絶縁材層14は、静電吸着用電極13を囲繞して、腐食性ガスおよびそのプラズマから静電吸着用電極13を保護する。また絶縁材層14は、載置板11と支持板12との境界部、すなわち静電吸着用電極13以外の外周部領域を接合一体化する層であり、載置板11および支持板12を構成する材料と同一組成または主成分が同一の絶縁材料により構成されている。
(温度調整用ベース部)
 温度調節用ベース部3は、静電チャック部2を所望の温度に調整するための部材であり、厚い円板状の部材である。この温度調節用ベース部3としては、例えば、その内部に冷媒を循環させる流路3Aが形成された液冷ベース等が好適である。
 この温度調節用ベース部3を構成する材料としては、熱伝導性、導電性、加工性に優れた、金属、またはこれらの金属を含む複合材であれば特に制限はない。例えば、アルミニウム(Al)、アルミニウム合金、銅(Cu)、銅合金、ステンレス鋼(SUS)等が好適に用いられる。この温度調節用ベース部3の少なくともプラズマに曝される面は、アルマイト処理が施されているか、あるいはアルミナ等の絶縁膜が成膜されていることが好ましい。
 温度調節用ベース部3の上面側には、接着層6を介して絶縁板7が接着されている。接着層6は、任意に選択される材料、例えば、シート状またはフィルム状の、ポリイミド樹脂、シリコン樹脂、エポキシ樹脂等の、耐熱性、および、絶縁性を有する接着性樹脂から形成される。接着層は、例えば厚みが5~100μm程度に形成される。絶縁板7は、任意に選択される材料、例えば、ポリイミド樹脂、エポキシ樹脂、アクリル樹脂などの耐熱性を有する樹脂の薄板、シートあるいはフィルムからなる。
 なお、絶縁板7は、樹脂シート等に限定されず、例えば、絶縁性のセラミック板でもよく、またアルミナ等の絶縁性を有する溶射膜でもよい。
(フォーカスリング)
 フォーカスリング10は、温度調節用ベース部3の周縁部に載置される、平面視円環状の部材である。フォーカスリング10は、例えば、載置面に載置されるウエハと同等の電気伝導性を有する材料を形成材料とすることができる。このようなフォーカスリング10を配置することにより、ウエハの周縁部において、プラズマに対する電気的な環境をウエハと略一致させることができ、ウエハの中央部と周縁部とでプラズマ処理の差や偏りを生じにくくすることができる。
(その他の部材)
 静電吸着用電極13には、静電吸着用電極13に直流電圧を印加するための給電用端子15が接続されている。給電用端子15は、温度調節用ベース部3、接着剤層8、支持板12を厚み方向に貫通する貫通孔16の内部に挿入されている。給電用端子15の外周側には、絶縁性を有する碍子15aが設けられ、この碍子15aにより金属製の温度調節用ベース部3に対し給電用端子15が絶縁されている。
 図に示す例では、給電用端子15を一体の部材として示している。しかしながら、複数の部材を電気的に接続して、給電用端子15を構成していてもよい。給電用端子15は、熱膨張係数が互いに異なる温度調節用ベース部3および支持板12に挿入されている。このめ、例えば、温度調節用ベース部3に挿入されている部分および支持板12に挿入されている部分について、それぞれ互いに異なる材料で構成してもよい。
 給電用端子15のうち、静電吸着用電極13に接続され、支持板12に挿入されている部分(取出電極)の材料としては、耐熱性に優れた導電性材料であれば特に制限されるものではない。しかしながら、その熱膨張係数が静電吸着用電極13および支持板12の熱膨張係数に近似する材料が好ましい。例えば、Al-TaCなどの導電性セラミック材料からなることが好ましい。
 給電用端子15のうち、温度調節用ベース部3に挿入されている部分は、例えば、タングステン(W)、タンタル(Ta)、モリブデン(Mo)、ニオブ(Nb)、コバール合金等の金属材料からなることが好ましい。
 これら2つの部材は、その間を任意に選択される材料、例えば柔軟性と耐電性を有するシリコン系の導電性接着剤で接続するとよい。
 静電チャック部2の下面側には、ヒータエレメント5が設けられている。ヒータエレメント5は、任意に選択できるが、例えば、厚みが0.2mm以下、好ましくは0.1mm程度の一定の厚みを有する非磁性金属薄板を加工したものが好ましい。例えば、チタン(Ti)薄板、タングステン(W)薄板、および、モリブデン(Mo)薄板等を、フォトリソグラフィー法やレーザー加工により、所望のヒータ形状に、例えば帯状の導電薄板を蛇行させた形状であって全体輪郭が円環状である形状に、加工することで得られる。
 このようなヒータエレメント5は、静電チャック部2に非磁性金属薄板を接着した後に、静電チャック部2の表面で前記薄板を加工成型することで設けてもよい。あるいは、静電チャック部2とは異なる位置で加工成形したものを用意し、これを静電チャック部2の表面に転写印刷することで、ヒータエレメント5を設けてもよい。
 ヒータエレメント5は、厚みの均一な耐熱性および絶縁性を有するシート状またはフィルム状のシリコン樹脂またはアクリル樹脂からなる接着層4により、支持板12の底面に接着・固定されている。
 ヒータエレメント5には、ヒータエレメント5に給電するための給電用端子17が接続されている。給電用端子17を構成する材料としては、前記給電用端子15を構成する材料と同等の材料を用いることができる。給電用端子17は、それぞれが温度調節用ベース部3に形成された貫通孔3bを貫通するように設けられている。筒状の碍子18は、給電端子17と貫通孔3bの間に設けられ、絶縁性材料からなる。
 また、ヒータエレメント5の下面側には温度センサー20が設けられている。本実施形態の静電チャック装置1では、温度調節用ベース部3を厚さ方向に貫通するように設置孔21が形成されている。設置孔21の最上部に温度センサー20が設置されている。なお、温度センサー20はできるだけヒータエレメント5に近い位置に設置することが望ましい。このため、図に示す構造から更に接着剤層8側に突き出るように設置孔21を延在して形成し、温度センサー20とヒータエレメント5とを近づける構成としてもよい。
 温度センサー20は、任意に選択できる。例えば、石英ガラス等からなる直方体形状の透光体の上面側に蛍光体層が形成された、蛍光発光型の温度センサーであってもよい。この温度センサー20が、透光性および耐熱性を有するシリコン樹脂系接着剤等により、ヒータエレメント5の下面に接着されている。
 蛍光体層は、ヒータエレメント5からの入熱に応じて蛍光を発生する材料からなる。蛍光体層の形成材料としては、発熱に応じて蛍光を発生する材料であればよく、多種多様の蛍光材料を選択できる。蛍光体層の形成材料は、任意に選択できるが、例えば、発光に適したエネルギー順位を有する希土類元素が添加された蛍光材料、AlGaAs等の半導体材料、酸化マグネシウム等の金属酸化物、ルビーやサファイア等の鉱物を挙げることができる。これらの材料の中から適宜選択して用いることができる。
 ヒータエレメント5に対応する温度センサー20は、必要に応じて1つ以上を備えられることができる。それぞれの温度センサーは、給電用端子などと干渉しない位置であって、かつヒータエレメント5の下面周方向の任意の位置に、それぞれ設けられている。
 これらの温度センサー20の蛍光からヒータエレメント5の温度を測定する温度計測部22は、任意に選択できる。例えば、温度調節用ベース部3の設置孔21の外側(下側)に位置して、前記蛍光体層に対し励起光を照射する励起部23と、蛍光体層から発せられた蛍光を検出する蛍光検出器24と、励起部23および蛍光検出器24を制御するとともに前記蛍光に基づき主ヒータの温度を算出する制御部25とから構成されていてもよい。
 さらに、静電チャック装置1は、温度調節用ベース部3から載置板11までをそれらの厚さ方向に貫通するように設けられた、ガス穴28を有している。ガス穴28の内周部には筒状の碍子29が設けられている。
 このガス穴28には、ガス供給装置(冷却手段)が接続される。ガス供給装置からは、ガス穴28を介して板状試料Wを冷却するための冷却ガス(伝熱ガス)が供給される。冷却ガスは、ガス穴を介して、載置板11の上面において複数の突起部11bの間に形成されている溝19に供給され、板状試料Wを冷却する。
 さらに、静電チャック装置1は、温度調節用ベース部3から載置板11までをそれらの厚さ方向に貫通するように設けられた、ピン挿通孔(図示略)を有している。ピン挿通孔としては、例えばガス穴28と同様の構成を採用することができる。ピン挿通孔には、板状試料の離脱用のリフトピンが挿通される。
 静電チャック装置1は、以上のような構成となっている。
[複合焼結体]
 本発明の複合焼結体は、主相である金属酸化物と、副相である炭化ケイ素とを含む。
 第一の実施形態の複合焼結体は、金属酸化物に含まれる金属元素のケイ酸塩をさらに含み、拡大倍率1000倍での600μmの視野における前記ケイ酸塩の平均凝集径が5μm以下である。
 第二の実施形態の複合焼結体は、金属酸化物に含まれる金属元素のケイ酸塩をさらに含んでも含まなくても良く、200Hzの比誘電率および1MHzの比誘電率は、いずれも24℃以上400℃以下の全範囲で10以上であり、200Hzの誘電正接および1MHzの誘電正接は、いずれも24℃以上400℃以下の全範囲で0.04以下である。
 第一の実施形態と、第二の実施形態の複合焼結体は、互いの好ましい例や条件を共有してよい。
(第一の実施形態の複合焼結体)
 次に、第一の実施形態の基体(載置板11および支持板12)を好ましく構成する、第一の態様の複合焼結体の好ましい例について、詳述する。
 第一の実施形態の複合焼結体は、主相である金属酸化物と、副相である炭化ケイ素と、主相の金属酸化物に含まれる金属元素のケイ酸塩と、を含む。前記基体は、前記金属酸化物と、前記炭化ケイ素と、前記ケイ酸塩を含むセラミックスである複合焼結体を形成材料としている。
 詳しくは後述するが、上記ケイ酸塩は、金属酸化物粒子と、炭化ケイ素粒子の表面にある酸化膜(SiO膜)とが、反応することによって生じる。
 また、本実施形態の複合焼結体では、拡大倍率1000倍での600μmの視野における前記ケイ酸塩の平均凝集径が5μm以下である。
 本実施形態において、「拡大倍率1000倍での600μmの視野における前記ケイ酸塩の平均凝集径」は、以下のようにして求める平均凝集径の値を採用する。
 まず最初に、複合酸化物(焼結体)の表面を、砥粒の平均粒径3μm(粒度表示:#8000)のダイヤモンドペーストで鏡面研磨する。
次いで、サーマルエッチングを行った焼結体表面について、電子線プローブマイクロアナライザー、具体例を挙げれば電子線プローブマイクロアナライザー(日本電子株式会社製、型番JXA-8530F)、を用いて電子像を撮像する。撮像時の拡大倍率は1000倍である。また、撮像範囲は面積600μmの矩形である。
 得られた電子顕微鏡写真を、画像解析式粒度分布測定ソフトウェア、具体例を挙げれば画像解析式粒度分布測定ソフトウェア(Mac-View Version4、株式会社マウンテック製)に取り込み、ケイ酸塩の凝集径を算出させる。
 上記測定を複合焼結体の任意の5箇所について行う。それぞれで求められたケイ酸塩の凝集径の算術平均値を、ケイ酸塩の平均凝集径とする。
 例えば、金属酸化物が酸化アルミニウムである場合、「ケイ酸塩」の例としては、Al12Siや、Al14Siなどのムライトを挙げることができる。金属酸化物が酸化イットリウムである場合、「ケイ酸塩」の例としては、Y・SiO2、Y23・2SiO2、2Y23・3SiO2などを挙げることができる。
 複合焼結体を構成する金属酸化物、炭化ケイ素、ケイ酸塩は、巨視的には、すなわち拡大倍率が小さい顕微鏡観察では、それぞれが複合焼結体の全体に分散している。微視的には、すなわち拡大倍率が大きい顕微鏡観察では、金属酸化物、炭化ケイ素、ケイ酸塩のそれぞれが、複合焼結体の各所で凝集している。なお、複合焼結体を構成する金属酸化物、炭化ケイ素、及びケイ酸塩を比べた場合、ケイ酸塩が最もプラズマに対する耐久性が低い。そのため、金属酸化物、炭化ケイ素、及びケイ酸塩を含む複合焼結体が、プラズマにさらされた場合、ケイ酸塩が凝集する部分が損傷しやすい。
 本実施形態の複合焼結体においては、ケイ酸塩の平均凝集径が5μm以下である。このため、平均凝集径が5μmを超えるほどに大きいケイ酸塩を含む複合焼結体と比べると、局所的な大きなプラズマ浸食を受けにくい。そのため、このような複合焼結体を基体に用いた静電チャック装置では、装置寿命を長寿命化することができる。
 本実施形態の複合焼結体においては、前記ケイ酸塩の平均凝集径は4μm以下であることが好ましく、3μm以下であることがより好ましい。平均凝集径は、2.0μm以下や、1.0μm以下や、0.5μm以下であってもよい。
 本実施形態の複合焼結体は、拡大倍率1000倍での600μmの視野において観察した時、金属酸化物と炭化ケイ素が占める領域の合計面積に対する、ケイ酸塩が占める領域の面積の比が、30%以下であることが好ましい。金属酸化物または炭化ケイ素と比べると、ケイ酸塩は耐プラズマ性が低い。このため、プラズマに曝露された際にプラズマによる侵食を受けやすい。そのため、上記ケイ酸塩が占める領域の面積の比は、低いほどよい。前記面積比は、25%以下であることがとより好ましく、15%以下であることがとさらに好ましく、10%以下であることがと特に好ましい。5%以下や3%以下であることも好ましい。ケイ酸塩が占める領域の面積が0%である場合、例えば、図11のような複合焼結体が形成される。ただし、ケイ酸塩が0%の焼結体は、耐電圧が低下するので、その観点からは、好ましくない。
 本実施形態の複合焼結体は、平均硬度が2×10N/mm以上であり、平均ヤング率が3.5×10N/mm以上であると好ましい。
前記平均硬度は22423N/mm以上であり、前記平均ヤング率が383594N/mm以上であると、より好ましい。また本実施形態の複合焼結体は、ケイ酸塩が凝集した部分、すなわちケイ酸塩を含む部分であるが、ケイ酸塩のみから形成されていることが好ましい。ケイ酸塩は、微細なケイ酸塩であることが好ましく、微結晶であることがさらに好ましい。ケイ酸塩が凝集した部分平均硬度は2×10N/mm以上であり、平均ヤング率が3.5×10N/mm以上であることが好ましい。前記平均硬度は22423N/mm以上であり、前記平均ヤング率が383594N/mm以上であると、より好ましい。ケイ酸塩が凝集した部分の硬度およびヤング率が大きいと、ウエハレスドライクリーニング時の静電チャックへのイオン衝撃の際に、ケイ酸塩部分からの脱粒が抑制され、パーティクル向上が期待できる。平均硬度及び平均ヤング率は、ISO14577-1に準ずる方法にて算出できる。
 第一の実施態様の複合焼結体は、200Hzの比誘電率および1MHzの比誘電率は、いずれも24℃以上400℃以下の全範囲で10以上であり、200Hzの誘電正接および1MHzの誘電正接は、いずれも24℃以上400℃以下の全範囲で0.04以下であることも好ましい。
 第一の実施態様の複合焼結体は、200Hzの比誘電率について、24℃以上400℃以下の範囲における最大値と最小値との差が6以下であることも好ましい。
 第一の実施態様の複合焼結体は、体積抵抗値が、24℃以上400℃以下の全範囲で1×10-13Ω・cm以上であることも好ましい。
(第二の実施形態の複合焼結体)
 次に、第二の実施形態の基体(載置板11および支持板12)を構成する複合焼結体について、詳述する。
 第二の実施形態の複合焼結体は、主相である金属酸化物と、副相である炭化ケイ素と、を含むセラミックスの複合焼結体を形成材料としている。
 また、第二の実施形態の複合焼結体は、200Hzの比誘電率および1MHzの比誘電率が、いずれも24℃以上400℃以下の全範囲で10以上である。このような複合焼結体を基体に用いた静電チャック装置では、広い温度範囲で高い吸着力が得られる。
 前記比誘電率は、前記全範囲で、11以上や、12以上であることも好ましい。前記比誘電率の上限値は任意に選択できるが、例えば、18以下であっても良く、16以下や、15以下や、14以下であってもよい。
 さらに、第二の実施形態の複合焼結体は、200Hzの誘電正接および1MHzの誘電正接が、いずれも24℃以上400℃以下の全範囲で0.04以下である。前記誘電正接は、0.03以下であることも好ましい。このような複合焼結体を基体に用いた静電チャック装置では、広い温度範囲でプラズマを発生させる高周波を透過させることができる。前記誘電正接の下限は任意に選択できるが、例えば、0.000以上であったり、0.001以上であってもよい。
 さらに、第二の実施形態の複合焼結体は、200Hzの比誘電率について、24℃以上400℃以下の範囲における最大値と最小値との差(絶対値)が6以下であることが好ましく、4以下であることがより好ましく、2以下であることがさらに好ましい。このような複合焼結体を基体に用いた静電チャック装置では、広い温度範囲で安定した吸着力が得られる。
 さらに、第二の実施形態の複合焼結体は、体積抵抗値(体積抵抗率)が、24℃以上400℃以下の全範囲で1×1013Ω・cm以上であることが好ましい。1×1015Ω・cm以上や、1×1016Ω・cm以上であることも好ましい。
1×1013Ω・cm以上である場合、優れた特性を得ることができる。
 このような複合焼結体を基体に用いた静電チャック装置では、広い温度範囲において静電吸着終了後のウエハの脱離が容易となる。また、このような複合焼結体を基体に用いた静電チャック装置では、静電チャック部2(基体)の表面に溜まった電荷を徐々に逃がすことができる。これにより静電チャック部2の沿面破壊や、絶縁破壊を抑制することができる。
(第一及び第二の実施形態の複合焼結体の特徴)
 炭化ケイ素の結晶粒は、第一及び第二の実施形態の複合焼結体において、金属酸化物の結晶粒内、および金属酸化物の結晶粒界に、分散していることが好ましい。この場合、金属酸化物の結晶粒内に分散している炭化ケイ素の結晶粒の割合は、金属酸化物の結晶粒内と結晶粒界に存在する炭化ケイ素の結晶粒、すなわち、炭化ケイ素の結晶粒全体に対し、面積比で、25%以上であると好ましい。前記割合は、より好ましくは30%以上であり、さらに好ましくは50%以上であり、100%であってもよい。結晶粒内に含まれない、残りの炭化ケイ素の結晶粒は、金属酸化物の結晶粒界に存在している。
 複合焼結体において、「炭化ケイ素の結晶粒全体」に対する「金属酸化物の結晶粒内に分散している炭化ケイ素の結晶粒」の割合が、顕微鏡で観察したとき、面積比で、25%以上であることにより、十分に絶縁性を向上させることができる。絶縁性を向上させるためには、上記割合は大きいほど好ましい。全ての炭化ケイ素の結晶粒が酸化アルミニウムの結晶粒内に分散している状態が特に好ましい。
 上記割合が25%以上であることにより、複合焼結体の誘電率が高くなる。また、上記割合が25%以上であることにより、低周波での誘電正接が小さくなる。
 なお、本発明において、複合焼結体における「金属酸化物の結晶粒内に分散している炭化ケイ素の結晶粒の割合」は、複合焼結体の任意の視野の走査型電子顕微鏡写真から算出することができる。
 具体的には、複合焼結体について、無作為に選ばれた視野にて、拡大倍率10000倍の電子顕微鏡写真を撮影する。この電子顕微鏡写真に写された全ての炭化ケイ素の結晶粒の総面積を「炭化ケイ素の結晶粒全体」の面積とする。一方で、上記電子顕微鏡写真における「金属酸化物の結晶粒内に分散している炭化ケイ素の結晶粒」の面積を求める。このようにして求められた面積から、「炭化ケイ素の結晶粒全体」に対する「金属酸化物の結晶粒内に分散している炭化ケイ素の結晶粒」の割合を、面積比で求める。
 同様の処理を、別の2つの視野における電子顕微鏡写真において行い、それぞれの割合を得る。得られた3つの割合の平均値を、「金属酸化物の結晶粒内に分散している炭化ケイ素の結晶粒の割合」を示す面積比として求める。
 第一及び第二の実施形態の複合焼結体において、金属酸化物の結晶粒内に分散している炭化ケイ素の結晶粒の平均結晶粒径は任意に選択できるが、0.03μm以上0.7μm以下であると好ましい。前記粒径はより好ましくは0.05μm以上0.3μm以下であり、さらに好ましくは0.1μm以上0.2μm以下である。
 複合焼結体全体における炭化ケイ素の割合は、8質量%以下であると好ましい。より好ましくは6質量%以下であり、さらに好ましは3質量%以下である。下限は任意に選択できるが、例えば1.5質量%以上であってもよい。
 第一及び第二の実施形態の複合焼結体が有する金属酸化物としては任意に選択できるが、酸化アルミニウム、酸化イットリウムを好ましく使用可能である。その他、酸化ジルコニウム、酸化ケイ素、ムライト、イットリウム・アルミニウム・ガーネット、酸化ハフ二ウム、ReAl23(Reは希土類元素)なども使用可能である。
 第一及び第二の実施形態の複合焼結体において、金属酸化物の平均結晶粒径は任意に選択できるが、1.2μm以上10μm以下であると好ましい。より好ましくは、1.5μm以上5μm以下であり、さらに好ましくは1.7μm以上3μm以下である。
 複合焼結体において、金属酸化物の平均結晶粒径が1.2μm以上であることにより、金属酸化物の粒子自体の抵抗率が低下し過ぎることなく、十分な絶縁効果を発現させることができる。また、金属酸化物の平均結晶粒径が10μm以下であることにより、得られる焼結体の機械的強度が十分高いものとなり、欠け(チッピング)が生じ難くなる。
 複合焼結体において、金属酸化物の平均結晶粒径は、焼結温度を制御することにより調節可能である。焼結温度が高くなると、金属酸化物の平均結晶粒径が大きくなる傾向にあり、焼結温度が低くなると、金属酸化物の平均結晶粒径が小さくなる傾向にある。
 載置板11および支持板12の形成材料である複合焼結体は、上述のような構成であることにより、高い誘電率と高い体積固有抵抗値、すなわち、高い誘電率と低い誘電正接とを両立することができる。
 第一及び第二の実施形態の複合焼結体を構成する物質のうち、主相である金属酸化物は絶縁体である。副相である炭化ケイ素は導電体である。そのため、複合焼結体に通電しようとすると、電子は、導電体が配置された結晶粒界を移動しやすい。
 従来知られた同組成の複合焼結体、すなわち金属酸化物と炭化ケイ素から得られる複合焼結体においては、金属酸化物の結晶粒界にある炭化ケイ素の結晶粒が、炭化ケイ素全体に対して、80%以上存在しているものが知られている。
 一方、第一及び第二の実施形態の複合焼結体においては、金属酸化物の結晶粒内に分散している炭化ケイ素の結晶粒の割合は、複合焼結体に含まれる炭化ケイ素の結晶粒全体に対し、面積比で、25%以上である。すなわち、金属酸化物の結晶粒界には、炭化ケイ素の結晶粒が、複合焼結体に含まれる炭化ケイ素の結晶粒全体に対して、75%以下の量で存在している。
 そのため、第一及び第二の実施形態の複合焼結体は、電子が移動しやすい結晶粒界に存在する導電体(炭化ケイ素)の量が、従来の複合焼結体と比べて少ない。このため、電子が移動し難く、体積固有抵抗値が高くなると考えられる。
 また、第一及び第二の実施形態の複合焼結体では、金属酸化物の結晶粒内に分散する炭化ケイ素の量が25%以上と、従来の複合焼結体より多い。このように金属酸化物の結晶粒内に分散する炭化ケイ素の割合が増加すると、結晶粒内において導電体である炭化ケイ素粒子間の距離が短くなり、電気容量が増加する。そのため、第一及び第二の実施形態のような複合焼結体では、誘電率が高くなる傾向がある。
 なお、SiCには、結晶構造が多数あることが知られている。具体的には、立方晶系で3C型(閃亜鉛鉱型)の結晶構造を有するもの、4H型、6H型等の六方晶系でウルツ鉱型の結晶構造を有するもの、菱面体晶系で15R型の結晶構造を有するもの、が挙げられる。このうち、3C型の結晶構造を有するものを「β-SiC」と称する。また、それ以外の結晶構造を有するもの全てを「α-SiC」と称する。
 第一及び第二の実施形態の載置板11および支持板12は、複合焼結体に含まれるSiCが、β-SiCであることが好ましい。また、複合焼結体においては、β-SiCの結晶粒が、マトリックス材料である金属酸化物の結晶粒に取り囲まれる状態で、すなわち金属酸化物の結晶粒内に、分散して存在していることが好ましい。複合焼結体において、β-SiCの体積比率は、複合焼結体全体に対して、4体積%以上15体積%以下が好ましく、6体積%以上10体積%以下がより好ましい。
 β-SiCの体積比率が4体積%以上であると、SiC粒子による電子導電性の発現効果が大きい。また、β-SiCの体積比率が15体積%以下であると、SiC粒子同士の接触が生じにくく、SiC粒子を介した抵抗値低下を生じにくい。
 また、第一及び第二の実施形態の複合焼結体においては、アルミニウム及びケイ素以外の金属不純物の含有量が、100ppm以下であることが好ましい。金属不純物含有量は、50ppm以下であることが好ましく、25ppm以下であることがより好ましい。
[複合焼結体の製造方法]
 第一及び第二の実施形態に係る複合焼結体の製造方法は、
(a)炭化ケイ素粒子の表面を酸化処理するプレ酸化工程と、
(b)プレ酸化工程で処理した炭化ケイ素粒子と、金属酸化物粒子とを、それぞれ噴射し互いに衝突させながら混合し、分散媒を含むスラリーを得る工程と、
(c)スラリーに分散剤を添加した後、スラリー中の金属酸化物粒子の表面電荷が正となり、スラリー中の前記炭化ケイ素粒子の表面電荷が負となる範囲に含まれるように、スラリーのpHを調整する工程と、
(d)pHを調整した前記スラリーから分散媒を除去し、金属酸化物粒子と炭化ケイ素粒子とを含む顆粒を得る工程と、
(e)得られた顆粒を非酸化性雰囲気下で、300℃以上600℃以下で加熱した後、酸化性雰囲気下で加熱して顆粒の表面を酸化処理する工程と、
(f)酸化処理を施した顆粒を成形し、成形体を得る工程と、
(g)得られた成形体を、非酸化性雰囲気下で、25MPa以上の圧力で押し固めながら1600℃以上に加熱して、加圧焼結する工程と、を有する。
 「非酸化性雰囲気」は任意に選択できるが、好ましい例として、不活性ガス雰囲気や真空雰囲気を含む。
 不活性ガスとしては、任意に選択をすることができ、例えば、窒素及び/またはアルゴンを好ましく用いることができる。
 第一及び第二の実施形態において「真空」とは、「大気圧より低い圧力の気体で満たされた空間内の状態」のことである。「真空」とは、JIS規格において工業的に利用できる圧力として定義された状態のことを指す。本実施形態においては、真空雰囲気は、低真空(100Pa以上)であってもよいが、中真空(0.1Pa~100Pa)であると好ましく、高真空(10-5Pa~0.1Pa)であるとより好ましい。
 「酸化性雰囲気」とは、雰囲気ガスが酸素を含むことを意味してよい。酸化性雰囲気の例には、大気雰囲気のほか、不活性ガスと酸素との混合ガス雰囲気も含む。
 第一及び第二の実施形態においては、金属酸化物として、酸化アルミニウムを用いた例を以下に説明する。
 第一及び第二の実施形態に係る複合焼結体の製造方法では、用いる酸化アルミニウム粒子は、酸化アルミニウムの含有量が99.99%以上であることが好ましい。このような高純度の酸化アルミニウム粒子は、ミョウバン法を用いることにより調整可能である。ミョウバン法を用いて調整した酸化アルミニウム粒子は、例えばバイヤー法を用いて調整した酸化アルミニウム粒子と比べると、金属不純物であるナトリウム原子の含有量を大幅に低減することが可能である。また、所望の純度の酸化アルミニウム粒子が得られるのであれば、その他の種々の方法を採用可能である。
((a)プレ酸化工程)
 第一及び第二の実施形態に係る複合焼結体の製造方法では、まず、原料として用いる炭化ケイ素粒子について、酸化性雰囲気下で加熱処理を施す。すなわち前記加熱処理によって、予め炭化ケイ素粒子の表面を酸化処理する、プレ酸化工程を有する。以下、上記酸化処理のことを「プレ酸化」と称する場合がある。プレ酸化の温度と時間は任意に選択できる。温度は、例えば250~600℃が好ましく、300~500℃がより好ましい。プレ酸化工程の時間は、例えば1~24時間が好ましく、6~12時間がより好ましい。ただしこれらの例のみに限定されない。例えば、500℃で12時間加熱することにより、プレ加熱を好ましく行うことができる。炭化ケイ素粒子の平均粒子径は、任意に選択できるが、例えば20~100nmであることが好ましく、35~80nmであることがより好ましい。ただしこれらの例のみに限定されない。前記平均粒子径は、粒子の長さ平均径であってよい。
 炭化ケイ素粒子をプレ酸化処理することにより、炭化ケイ素粒子の表面に酸化ケイ素(SiO)の膜が生じる。その結果、炭化ケイ素粒子の親水性が高まる。これにより、スラリー中での炭化ケイ素粒子の分散性が向上する。
((b)スラリーを得る工程)
 スラリーを得るために混合をする工程においては、粉砕混合装置を、例えば2流粒子衝突型の粉砕混合装置を用いる。分散媒を用意し、これ酸化アルミニウム粒子とプレ酸化後の炭化ケイ素粒子を分散させる。前記装置を用いて、この分散液をそれぞれ加圧することで高速で噴射して、酸化アルミニウム粒子と炭化ケイ素粒子をお互いに衝突させながら、混合する。この混合により、酸化アルミニウム粒子と炭化ケイ素粒子とが粉砕され、これら粒子の粉砕粒子を含む、分散液(スラリー)が得られる。噴射速度は任意に選択できるが、例えば300ml/min~550ml/minであることが好ましい。
原料として使用される酸化アルミニウムなどの金属酸化物粒子の平均粒子径は、任意に選択できるが、例えば0.05~0.3μmであることが好ましく、0.1~0.25μmであることがより好ましい。
金属酸化物酸化と炭化ケイ素粒子の合計に対する、炭化ケイ素粒子の割合は、3~15質量%であることが好ましく、5~10質量%であることがより好ましい。ただしこれらの例のみに限定されない。
スラリー中の金属酸化物酸化と炭化ケイ素粒子の合計量の割合は任意に選択でき、例えば、3~15質量%であってもよく、5~10質量%であってもよい。
 分散媒は任意に選択でき、例えば水、及び、メタノール、エタノールなどのアルコール類を用いることができる。これらの分散媒は、1種のみ用いてもよく、2種以上を併用してもよい。
 酸化アルミニウム粒子と炭化ケイ素粒子とを衝突させる際、大きい粒子は、衝突時の運動エネルギーが大きく、粉砕されやすい。一方、小さい粒子は、衝突時の運動エネルギーが小さく、粉砕されにくい。そのため、上記粉砕混合装置を用いて得られる、粉砕された酸化アルミニウム粒子と炭化ケイ素粒子は、粗大粒子や過粉砕の粒子の少ない、粒度分布幅の狭い粒子となる。したがって、2流粒子衝突型の粉砕混合装置を用いて粉砕混合した混合粒子を用いると、焼結工程において、粗大粒子を核とする異常粒成長を抑制することができる。
 また、このような粉砕混合装置を用いて粉砕混合する場合、例えば、ボールミルやビーズミル等のメディアを用いて粉砕混合する方法と比べると、各メディアの破損に起因した不純物の混入を抑制することが可能である。
((c)pHを調整する工程)
 pHを調整する工程においては、スラリー中の酸化アルミニウム粒子と炭化ケイ素粒子との表面電荷を考慮して、スラリーのpH調整を行う。上記混合する工程で得られるスラリー(pH調整前のスラリー)は、通常、pH11程度の塩基性を示す。
 図2は、系のpHと各粒子のζ電位との関係を示すグラフである。図中、横軸は系のpHを示し、縦軸は、各粒子のζ電位(単位:mV)を示す。なお図中の酸化アルミニウム粒子と炭化ケイ素粒子は、別々に評価された。
 図2に示すように、系のpHが酸性側(pH<7)の場合、酸化アルミニウム粒子のような金属酸化物粒子は、ζ電位が正となる。これは、系のpHが酸性側の場合、金属酸化物粒子の表面の水酸基がプロトン(H)化され、表面が正電荷を帯びることによる。
 一方、系のpHが塩基性側(pH>7)の場合、酸化アルミニウム粒子のような金属酸化物粒子は、ζ電位が負となる。これは、系のpHが塩基性側の場合、金属酸化物粒子の表面の水酸基からプロトンが解離し、表面が負電荷を帯びることによる。
 これに対し、炭化ケイ素粒子のζ電位の挙動は異なる。図に示すように炭化ケイ素粒子は、pH2~3付近でζ電位が0となり、pH3付近の酸性領域から、塩基性領域までの広い範囲でζ電位が負となる。
 このような関係のある2つの粒子が同じスラリーに共存している場合、系のpHが「スラリー中の酸化アルミニウム粒子の表面電荷が正」となり、「スラリー中の炭化ケイ素粒子の表面電荷が負」となる範囲では、両粒子が凝集する、所謂ヘテロ凝集が生じる。なお図2においては、系のpHが上記範囲となる範囲は、pH約2.6~7.5である。
 酸化アルミニウム粒子と炭化ケイ素粒子とが沈殿しないように、スラリー中には、適宜分散剤を添加しておくことが好ましい。分散剤としては、公知の分散剤、例えばポリカルボン酸系の分散剤を用いることができる。分散剤は市販品を好ましく用いることができ、例えば、アロンA6114(東亜合成株式会社製)を用いることができる。
 系のpHは、3以上7以下が好ましく、5以上7以下がより好ましく、6以上7以下がさらに好ましい。pH調整後の両粒子のζ電位同士を比べた場合、ζ電位の絶対値が近いほどヘテロ凝集しやすく、所望の凝集状態となる。
 pHの調整は、スラリーに酸を加えることにより行うことができる。使用可能な酸としては、硝酸、リン酸、塩酸、硫酸等の無機酸、酢酸等の有機酸を好ましく挙げることができる。このうち、塩酸、硫酸等は、後述の焼結する工程において装置内で塩素や硫黄を生じ、装置劣化の原因となり得る可能性がある。そのため、pHの調整には、硝酸、リン酸、及び有機酸等を用いることが好ましい。
((d)顆粒を得る工程)
 顆粒を得る工程においては、pH調整後のスラリーから分散媒を除去し、酸化アルミニウム粒子と炭化ケイ素粒子とを含む顆粒を得る。分散媒を除去する方法としては任意に選択でき、例えば公知のスプレードライ法を好適に用いることができる。顆粒の大きさは任意に選択できるが、一般的には、例えば30~100μmや、50~85μmなどであっても良い。
 スプレードライ法では、スラリーの微小液滴を噴霧してスラリーの単位体積あたりの表面積を増大させ、微小液滴に連続して熱風を接触させることにより、瞬間的に乾燥・造粒を行うことができる。スプレードライ法にて造粒された顆粒は、微小液滴の形状を反映した球状になりやすい。
((e)酸化処理する工程)
 酸化処理する工程においては、2つの雰囲気下において、順次処理を行う。
 まず、得られた顆粒を、非酸化性雰囲気下において、常圧で(プレスすることなく)、300℃以上600℃以下(例えば500℃)に加熱し、顆粒に含まれる水分、分散媒、及び分散剤等の夾雑物を除去する。上記温度は、必要に応じて、300~400℃や、400~500℃や、500~600℃であってもよい。加熱時間は任意に選択できるが、例えば、3~8時間や、8~10時間や、10~15時間であってもよい。
 非酸化性雰囲気としては、窒素やアルゴンを用いた不活性ガス雰囲気が好ましい。また、不活性ガス雰囲気下で上記加熱を行う場合、発生する夾雑物を系外に効率的に排出するため、雰囲気ガスを流動させる、いわゆるガスフローでの加熱処理が好ましい。
 次に、夾雑物を除去した顆粒を、酸化性雰囲気下で、任意に選択される温度で、例えば400℃で、加熱して酸化処理する。酸化処理する雰囲気は任意に選択できるが、大気雰囲気であることが好ましい。上記温度は、必要に応じて選択でき、250~370℃や、300~500℃や、400~600℃などであってもよい。加熱時間は任意に選択できるが、例えば1~5時間や、5~12時間や、12~24時間であってもよい。
このような操作によれば、酸化処理において顆粒に含まれる炭化ケイ素粒子の表面には酸化膜が形成される。酸化膜には、顆粒に含まれる金属不純物が溶け出しやすい。このため、顆粒に含まれる金属不純物が粒子表面に偏って存在することになる。その場合、後述する加圧焼結する工程において、金属不純物を除去しやすいため好ましい。
 また、顆粒に対して酸化処理を施すと、例えば、顆粒を成形した後の成形体に酸化処理を施す場合と比べ、顆粒を構成する炭化ケイ素粒子の表面を酸化しやすい。そのため、酸化処理の結果、炭化ケイ素粒子の表面にムラなく酸化膜が形成されやすく好ましい。
((f)成形体を得る工程)
 次いで、目的とする焼結体の形状に応じて、得られた顆粒を成形、好ましくは一軸成形(一軸プレス成形)し、成形体を得る。
((g)加圧焼結する工程)
 加圧焼成する工程においては、最初に予備加熱を行うことが好ましい。まず、上述の成形体を、真空雰囲気において、1600℃よりも低い温度且つ常圧で(プレスすることなく)、加熱(予備加熱)する。このような操作によれば、予備加熱時の温度を適宜設定することにより、顆粒に含まれるアルカリ金属等の金属不純物が蒸発し、金属不純物を容易に除去できる。そのため、このような操作によれば、顆粒の純度を向上しやすくなり、得られる複合焼結体の体積抵抗値(体積抵抗率)を制御しやすくなる。上記温度は、必要に応じて選択でき、800~1000℃や、1000~1500℃などであってもよい。加熱時間は任意に選択でき、例えば1~5時間や、3~8時間や、6~12時間であってもよい。
 また、成形する工程において、上述したように夾雑物が除去されている成形体に対し処理を施すと、真空雰囲気下で予備加熱することにより、粒子表面に形成された酸化膜が揮発する。同時に、酸化膜に含まれる金属不純物が蒸発する。そのため、成形体から金属不純物を容易に除去できる。したがって、このような操作によれば、顆粒の純度を向上しやすくなり、得られる複合焼結体の体積抵抗値を制御しやすくなる。
 第一及び第二の実施形態の複合焼結体の製造方法においては、例えば、真空雰囲気下、1200℃で4時間以上予備加熱した後、大気圧まで、不活性ガス、例えばアルゴンを用いて、気圧を戻すことが好ましい。
 次いで、予備加熱を施した成形体を、非酸化性雰囲気、例えばアルゴン雰囲気において、5MPa以上の圧力で押し固めながら、1600℃以上に加熱して、加圧焼結する。このような操作によれば、成形体に含まれる酸化アルミニウム粒子や炭化ケイ素粒子の焼結が進行し、気孔の少ない緻密な焼結体が得られる。上記温度は、必要に応じて選択でき、1700~1800℃や、1800~1900℃などであってもよい。加熱時間は任意に選択でき、例えば1~5時間や、3~8時間や、6~12時間であってもよい。
 第一及び第二の実施形態の複合焼結体の製造方法においては、例えば、アルゴン雰囲気下、1600℃以上1850℃以下で、焼結圧力25MPa以上50MPa以下の範囲で、加圧焼結することが好ましい。
 このような方法で製造して得られた焼結体は、金属不純物含有量が低減し高純度な焼結体となる。金属不純物含有量が目標値に達しない場合には、予備加熱の時間を長くする、または予備加熱の温度を高くするとよい。
 以下、図を用いて、上述した複合焼結体の製造方法についてさらに説明する。図3~9は、第一及び第二の実施形態の複合焼結体の製造方法について説明する説明概略図である。
 図3は、例えば、酸化アルミニウム粒子と炭化ケイ素粒子を含むpH6.5程度のスラリーにおける、各粒子の状態を示す模式図である。図3において、符号Aは酸化アルミニウム粒子、符号Bは炭化ケイ素粒子を示す。図4は、図3で示したスラリーから分散媒を除去した時の粒子の状態を示す模式図である。
図6や図8や図11は、図4や図5や図7などで示した粒子を用いて、作成した複合焼結体を示す模式図である。図6や図8や図11において、六角形部分は、主相である酸化アルミニウムの結晶粒を示している。黒丸は、副相である炭化ケイ素の結晶粒を示す。灰色の丸はケイ酸塩の凝集体を示している。
 上述の図2で示したように、pH6.5程度のスラリーにおいては、酸化アルミニウム粒子の表面が正に帯電し(ζ電位が正)、炭化ケイ素粒子の表面は負に帯電する(ζ電位が負)。そのため、上記pHのスラリー系中では、種類の異なる粒子同士である酸化アルミニウム粒子と炭化ケイ素粒子とが凝集する、所謂ヘテロ凝集が生じる。その結果、相対的に大きい粒子である酸化アルミニウム粒子の表面に、相対的に小さい粒子である炭化ケイ素粒子が付着する。
 なお、第一及び第二の実施形態の複合焼結体の製造方法において、スラリーのpHを6.5程度に調整した結果、炭化ケイ素粒子のζ電位が低下すると、炭化ケイ素粒子同士で凝集(ホモ凝集)する可能性も高まる。
 上述のように、用いる炭化ケイ素粒子をプレ酸化しておく場合、炭化ケイ素粒子の分散性が向上する。そのため、プレ酸化処理を施した炭化ケイ素粒子を用いる場合、炭化ケイ素粒子のホモ凝集を抑制し、上記ヘテロ凝集を優位に進めることができる。このことにより、所望の凝集状態(ヘテロ凝集)を得やすくなる。
 図4に示すように、(d)顆粒を得る工程において分散媒を除去する際には、すでに表面に炭化ケイ素が付着した酸化アルミニウムが凝集する。このことにより、異種粒子同士が均一に混ざり合いやすい状況が生まれる。その結果、(g)加圧焼結する工程において、炭化ケイ素粒子を取り込みながら、酸化アルミニウム粒子同士が焼結しやすくなる。
 さらに、本実施形態の複合焼結体の製造方法においては、(d)顆粒を得る工程において得られる顆粒を、(e)工程において、非酸化性雰囲気下で300℃以上600℃以下に加熱し、この後、顆粒の表面を酸化処理している。これにより、顆粒に含まれる金属酸化物粒子の表面および炭化ケイ素粒子の表面を覆う分散剤が除去され、炭化ケイ素粒子の表面が酸化される。またこの工程によって、炭化ケイ素粒子の表面がムラなく酸化され、均質な複合焼結体となりやすい。そのため、得られる複合焼結体の電気特性が、温度に依存しにくく、広い温度範囲で安定した物性が得られやすい。
 図5においては、炭化ケイ素粒子Bを、炭化ケイ素からなるコアB1と、酸化ケイ素からなるシェルB2との、コア-シェル構造体として示している。図5に示すように、酸化アルミニウム粒子Aの表面および炭化ケイ素粒子Bの表面が分散剤Cで覆われたまま、(g)加圧焼結する工程において焼結させる場合、各粒子表面の分散剤Cが酸化アルミニウム粒子AとシェルB2との接触を阻害する。そのため、焼結のための昇温過程において、まず分散剤Cが除去された後に、初めて、酸化アルミニウム粒子AとシェルB2との接触、すなわち、酸化アルミニウム粒子AとシェルB2との焼結が生じることとなる。
 このような反応では、まず分散剤が除去された後に、酸化アルミニウム粒子AとシェルB2とが直接接触し反応を開始することになり、その頃には、予め分散剤Cを除去している本実施形態の製造方法と比べて、相対的に高温の温度となっていると考えられる。そのため、生じるケイ酸塩が相対的に粒成長しやすい、と考えられる。
 その結果、図6に示すように、生じるケイ酸塩が粒成長しやすく、粗大化しやすい、と考えられる。このような複合焼結体がプラズマにさらされる場合、粗大化したケイ酸塩Cが浸食されやすい。その結果、局所的な破損が生じ、短寿命化する。
 図7に示すように、本実施形態の(e)酸化処理する工程で得られた顆粒は、粒子表面から分散剤Cが既に除去されている。このような顆粒を用い、(f)成形体を得る工程で得られる成形体においては、酸化アルミニウム粒子Aと、炭化ケイ素粒子Bの酸化ケイ素からなるシェルB2とが良好に接触する。
 そのため、次に行われる(g)加圧焼結する工程において、成形体を焼結温度として設定した温度にまで所定の昇温レートで昇温させた場合、酸化アルミニウム粒子Aと炭化ケイ素粒子Bの表面のシェルB2(SiO膜)の反応が、焼結可能な温度に達するとすぐに始まる。このような反応では、金属酸化物粒子とシェルB2(SiO膜)とが、比較的低温の温度条件で反応を開始する。
 その結果、図8に示すように、得られた複合焼結体においては、生じるケイ酸塩が粒成長しにくく、微細なケイ酸塩が生じやすいと考えられる。図6においては、ケイ酸塩の凝集体を符号Dで示している。このような複合焼結体がプラズマにさらされる場合には、ケイ酸塩Dから浸食されるが、ケイ酸塩Dが微細化され分散していることから、局所的な大きな破損が生じず、長寿命化することができる。
 複合焼結体は、酸化アルミニウムが、多くの炭化ケイ素の結晶粒を、結晶内部に取り込みながら成長する。このため、酸化アルミニウムAの結晶粒界における、炭化ケイ素Bの結晶粒は、存在量が少なくなる。また、本実施形態の複合焼結体は、酸化アルミニウムの結晶粒内においても、炭化ケイ素の結晶粒は、小さくなりやすく、粒子数も多くなりやすい。
 以上のようにして、本実施形態の複合焼結体を製造することができる。
 得られた複合焼結体は、続く工程において研削することにより、所望の基体とすることができる。基体の載置面に形成された突起については、公知の方法により適宜形成可能である。
 以上のような複合焼結体によれば、広い温度範囲で高い誘電率と低い誘電正接とを両立することができる。
 また、このような複合焼結体を用いた静電チャック部、静電チャック装置によれば、低周波領域において好適に用いることができるものとなる。
 また、以上のような複合焼結体の製造方法によれば、上述の複合焼結体を容易に製造可能となる。
 また、以上のような静電チャック部、静電チャック装置によれば、高いウエハ吸着力と高い耐電圧とを備えた高性能なものとなる。
 以上、添付図面を参照しながら本発明に係る好適な実施の形態例について説明したが、本発明は係る例に限定されないことは言うまでもない。上述した例において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
 以下に本発明を実施例により説明するが、本発明はこれらの実施例に限定されるものではない。
 以下に、評価で用いた方法を記載する。
(金属酸化物の結晶粒の平均結晶粒径の測定)
 複合酸化物(焼結体)の表面を、砥粒の平均粒径3μm(粒度表示:#8000)のダイヤモンドペーストで鏡面研磨した。その後、アルゴン雰囲気下、1400℃で30分サーマルエッチングを施した。
 得られた焼結体の表面を、走査型電子顕微鏡(日立ハイテクノロジー株式会社製、型番:S-4000)を用いて、拡大倍率10000倍で、組織観察を行った。
 得られた電子顕微鏡写真を画像解析式粒度分布測定ソフトウェア(Mac-View Version4、株式会社マウンテック製)に取り込み、200個以上の金属酸化物の結晶粒の長軸径を算出させた。得られた各結晶粒の長軸径の算術平均値を、求める「平均結晶粒径」とした。
(金属酸化物の結晶粒内に分散している炭化ケイ素の結晶粒の割合)
 上記の金属酸化物の結晶粒の平均結晶粒径の測定で得られた電子顕微鏡写真を画像解析式粒度分布測定ソフトウェア(Mac-View Version4、株式会社マウンテック製)に取り込み、200個以上の炭化ケイ素粒子の面積を算出させた。電子顕微鏡写真から各炭化ケイ素粒子について金属酸化物の結晶粒内に存在しているか否かを判断し、面積を求めた炭化ケイ素粒子全体に対する、金属酸化物の結晶粒内に分散している炭化ケイ素の結晶粒の割合を求めた。
(ケイ酸塩の平均凝集径の測定)
 複合酸化物(焼結体)の表面を、砥粒の平均粒径3μm(粒度表示:#8000)のダイヤモンドペーストで鏡面研磨した。次いで、鏡面研磨を行った焼結体表面について、電子線プローブマイクロアナライザー(日本電子株式会社製、型番JXA-8530F)を用いて電子像を撮像した。撮像時の拡大倍率は1000倍、撮像範囲は面積600μmの矩形であった。
 得られた電子顕微鏡写真を、画像解析式粒度分布測定ソフトウェア(Mac-View Version4、株式会社マウンテック製)に取り込み、ケイ酸塩の凝集径を算出させた。
 上記測定を複合焼結体の任意の5箇所について行い、それぞれの箇所で求められたケイ酸塩の凝集径から、これらの算術平均値を得て、ケイ酸塩の「平均凝集径」とした。
(ケイ酸塩の面積比)
 上述のようにして得られた電子顕微鏡写真を、画像解析式粒度分布測定ソフトウェア(Mac-View Version4、株式会社マウンテック製)に取り込んだ。そして、金属酸化物と炭化ケイ素が占める領域の合計面積に対する、ケイ酸塩が占める領域の面積の比を算出させた。
(平均硬度、平均ヤング率)
 ISO14577-1に準ずる方法にて算出した。
 複合焼結体の表面をRa0.02μmになるように研磨した。その後、前記表面について、微小硬度計(株式会社エリオニクス製、ENT-2100)を用い、試験荷重100mNにて押し込み硬さとヤング率とを測定した。測定を5回行い、求めた測定値の算術平均値を、それぞれ求める「平均硬度」と「平均ヤング率」とした。
(耐プラズマ性)
 後述の方法で作製した複合酸化物から、20mm×20mm×2mmの板状体を切り出し、一方の面を鏡面研磨して、得られた鏡面を試験面とする試験片を作製した。得られた試験片について、アセトン洗浄した後に、質量を測定した。また、試験面の表面粗さを、下記測定条件で測定した。
(測定条件)
 表面粗さ評価装置:ブルカー社製Dimension Icon
 測定範囲:80μm×80μm
 Scan Rate:0.2Hz
 解像度:256×256
 次いで、試験片を、プラズマエッチング装置のチャンバー内に設置した。チャンバー内にSFガス(10sccm/分)、Ar(80sccm/分)、O(10sccm/分)及びマイクロ波(100W)を導入して、SFプラズマを発生させ、各試験片の試験面をSFプラズマに曝露した。プラズマ曝露時間は3時間、曝露中の雰囲気圧は20mTorrであった。なお、1Torr=133.322Paである。
 プラズマ曝露試験の後、上述の測定条件にて試験面の表面粗さを測定した。プラズマ曝露前後の表面粗さの変化から、耐プラズマ性を評価した。プラズマ曝露前後の表面粗さの変化が小さいほど、耐プラズマ性が高いと評価することができる。
(体積固有抵抗値)
 本実施例においては、直流三端子法により円盤状の焼結体の体積固有抵抗値を測定した。
(使用機器)
 スクリーン印刷機:MODEL MEC-2400型、ミタニマイクロニクス株式会社製
 抵抗率測定装置:西山製作所製
 絶縁計:デジタル絶縁計(型式DSM-8103、日置電機株式会社)
(測定条件)
 測定温度:室温(24℃)、50℃、100℃、150℃、200℃、250℃、300℃
 測定雰囲気:大気(流量200ml/分)
 印加電圧:1kV
(測定方法)
 スクリーン印刷機を用いて、銀ペースト(NP-4635、株式会社ノリタケカンパニーリミテッド製)を焼結体の上面及び下面に印刷し、大気中100℃で12時間乾燥させた後、大気中450℃で1時間焼き付け、主電極、ガード電極、対極を形成した。図12は、本実施例で体積固有抵抗値を測定する際の焼結体の様子を示す模式図である。図において、符号100は焼結体、符号110は主電極、符号120はガード電極、符号130は対極を示す。
 このとき、主電極直径は1.47cmであり、ガード電極の内径は1.60cmであった。
 上述のように電極を形成した焼結体に対し、各測定温度において直流電圧を印加し、1分間充電後の電流を測定して、焼結体の体積抵抗を求めた。その後、焼結体の厚み、および電極面積を用いて下記式(1)より体積固有抵抗値(ρv)を算出した。
 ρv=S/t×Rv=S/t×V/I  …(1)
(S:電極の有効面積(cm)、t:焼結体の厚み(cm)、Rv:体積抵抗、V:直流電圧(V)、I:電流(A))
(比誘電率・誘電正接)
 本実施例においては、平行平板法にて比誘電率・誘電正接を測定した。
(使用機器)
 使用機器:インピーダンスアナライザー、型番E4990A、キーサイトテクノロジー社製(100kHz~1MHzの測定範囲)
 LCRメーター、型番4274A、キーサイトテクノロジー社製(100Hz~100kHzの測定範囲)
(測定条件)
 測定雰囲気:大気
 測定温度:25℃、100℃、150℃、200℃、300℃、400℃
(実施例1)
 出発原料として、平均粒子径が0.03μmであり熱プラズマCVDで合成されたβ-SiC型の炭化ケイ素(β-SiC)粒子と、平均粒子径が0.1μmであり金属不純物含有量が95ppmの酸化アルミニウム(Al)粒子とを用いた。
 β-SiC粒子については、大気雰囲気下、500℃で12時間加熱処理し、粒子表面を酸化させた。本操作は、本発明における「プレ酸化工程」に該当する。
 以下の工程においては、プレ酸化処理を施したβ-SiCを用いた。
 β-SiC粒子とAl粒子を、β-SiC粒子とAl粒子との全体量に対し、β-SiC粒子が7質量%となるように秤量し、ポリカルボン酸系分散剤が入った蒸留水に投入した。β-SiC粒子とAl粒子とを投入した分散液について、超音波分散装置にて分散処理をした。この後、2流粒子衝突型の粉砕混合装置を用いて、粉砕混合した。本操作は、本発明における「スラリーを得る工程」に該当する。
 得られた混合溶液について、スラリーに硝酸を添加し、スラリーのpHを6.5に調整した。
 本操作は、本発明における「pHを調整する工程」に該当する。
 pHを調整したスラリーをスプレードライ装置にて噴霧乾燥させ、β-SiCとAlとを含む顆粒とした。
 本操作は、本発明における「顆粒を得る工程」に該当する。
 次いで、顆粒を窒素雰囲気下、370℃まで昇温させ、水分および分散剤(夾雑物)を除去した。その後、顆粒を大気雰囲気下、300℃で12時間加熱した。
 本操作は、本発明における「酸化処理する工程」に該当する。
 次いで、顆粒をプレス圧8MPaで一軸プレス成形し、直径320mm×15mm厚の成形体とした。
 本操作は、本発明における「成形する工程」に該当する。
 得られた成形体を黒鉛製のモールドにセットし、加圧焼結を行った。まず、成形体を、真空雰囲気下、プレス圧を加えることなく1200℃まで昇温させた。その後、アルゴン雰囲気下、プレス圧40MPa、1800℃で焼結を行い、実施例1の複合焼結体を得た。
 本操作は、本発明における「加圧焼結する工程」に該当する。
 また、実施例1の複合焼結体について、上述の条件にて電子顕微鏡写真を撮影した。得られた電子顕微鏡写真からAlの平均結晶粒径を求めたところ、1.61μmであった。また、SiCの平均結晶粒径を求めたところ、0.18μmであった。
 Alの結晶粒内に分散しているSiCの結晶粒の割合は、50%であった。
(比較例1)
 顆粒を、大気雰囲気下、300℃で12時間加熱する代わりに、一軸プレス成形して得られた成形体を、大気雰囲気下、300℃で12時間加熱し、その後、黒鉛製のモールドにセットして、加圧焼結を行った。これ以外は、実施例1と同様にして、比較例1の複合焼結体を得た。
 比較例1の複合焼結体について、上述の条件にて電子顕微鏡写真を撮影した。得られた電子顕微鏡写真からAlの平均結晶粒径を求めたところ、0.94μmであった。また、SiCの平均結晶粒径を求めたところ、0.26μmであった。
 Alの結晶粒内に分散しているSiCの結晶粒の割合は、18%であった。
 図9は、実施例1の複合焼結体のSEM像および同視野のEPMA像、図10は、比較例1の複合焼結体のSEM像および同視野のEPMA像である。
 図に示すように、いずれの複合焼結体においても、AlとSiとが同時に存在している領域が確認できる。このようにAlとSiとが同時に存在している領域は、本発明におけるケイ酸塩の凝集体である。
 また、図9,10からも明らかなように、図9に示す実施例1の複合焼結体では、図10に示す比較例1の複合焼結体よりもケイ酸塩の凝集体の凝集径が小さい。上述の方法で求めた平均凝集径については、後述の表1に示す。
 また、分析したところ、実施例1の複合焼結体におけるケイ酸塩の組成は、Al14Si、比較例1の複合焼結体におけるケイ酸塩の組成は、Al12Siであった。
 以下、評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 上述の方法で求めた実施例1の試験片の表面粗さは、プラズマ曝露前は10.2nm、プラズマ曝露後は349nmであった。
 また、上述の方法で求めた表面粗さは、プラズマ曝露前は10.3nm、プラズマ曝露後は383nmであった。
 評価の結果、実施例1の複合焼結体は、比較例1の複合焼結体と比べ、耐プラズマ性に優れていることが分かった。
 図13は、実施例1、比較例1の誘電率および誘電正接の測定結果を示す散布図である。図の横軸は測定温度(単位:℃)、縦軸は、比誘電率(ε)および誘電正接(tanδ)を示す。
 図14は、実施例1、比較例1の体積抵抗値(体積低効率)の測定結果を示す散布図である。図14の横軸は測定温度の逆数(単位:K-1)を示す。縦軸は、体積抵抗値(体積抵抗率)(単位:Ω・cm)、すなわち、体積抵抗率ρ(Ω・cm)の対数logρ、を示す。
 評価の結果、実施例1の複合焼結体は、1MHzの比誘電率、200Hzの比誘電率ともに、24℃以上400℃以下の全範囲において10以上であった。
 また、実施例1の複合焼結体は、1MHzの比誘電率、200Hzの比誘電率ともに、24℃以上400℃以下の全範囲において安定していた。200Hzの比誘電率は、24℃以上400℃以下の範囲における最大値と最小値との差が2以下であった。
 また、実施例1の複合焼結体は、1MHzの誘電正接、200Hzの誘電正接ともに、24℃以上400℃以下の全範囲において0.04以下であった。
 さらに、実施例1の複合焼結体は、24℃以上400℃以下の全範囲において体積抵抗値(体積抵抗率)が1×10-13Ω・cm以上であった。
 対して、比較例1の複合焼結体は、200Hzの誘電体および200Hzの誘電正接において、温度変化とともに大きく値が変化した。比較例1の複合焼結体は、一軸プレス成形して得られた成形体を酸化処理しているため、複合焼結体の原料である炭化ケイ素粒子の酸化状態にムラが生じ、温度依存性が発現したものと考えられる。
 本実施形態の結果から、本発明が有用であることが分かった。本実施形態の結果から、本発明の複合焼結体は、広い温度範囲において高い誘電率と低い誘電正接とを両立することが分かり、本発明が有用であることが分かった。
 本発明は、局所的なプラズマ浸食を受けにくい複合焼結体を提供する。また、このような複合焼結体を用いた静電チャック部材、静電チャック装置を提供する。さらに、このような複合焼結体を容易に製造可能とする複合焼結体の製造方法を提供する。
 1 静電チャック装置
 2 静電チャック部
 3 温度調節用ベース部
 3A 流路
 3b 貫通孔
 4 接着層
 5 ヒータエレメント
 6 接着層
 7 絶縁板
 8 接着剤層
 10 フォーカスリング
 11 載置板(基体)
 11a 載置面
 11b 突起部
 12 支持板(基体)
 13 静電吸着用電極
 14 絶縁材層
 15 給電用端子
 15a 碍子
 16 貫通孔
 17 給電用端子
 18 筒状の碍子
 19 溝
 20 温度センサー
 21 設置孔
 22 温度計測部
 23 励起部
 24 蛍光検出器
 25 制御部
 28 ガス穴
 29 筒状の碍子
 A 酸化アルミニウム粒子
 B 炭化ケイ素粒子
 B1 コア
 B2 シェル
 C 分散剤
 D ケイ酸塩
 W 板状試料

Claims (19)

  1.  主相である金属酸化物と、
     副相である炭化ケイ素と、
     前記金属酸化物に含まれる金属元素のケイ酸塩と、を含み、
     拡大倍率1000倍での600μmの視野における前記ケイ酸塩の平均凝集径が5μm以下である複合焼結体。
  2.  前記視野において、前記金属酸化物が占める領域と前記炭化ケイ素が占める領域の合計面積に対する、前記ケイ酸塩が占める領域の面積の比が30%以下である請求項1に記載の複合焼結体。
  3.  ケイ酸塩が凝集した部分は、平均硬度が2×10N/mm以上であり、平均ヤング率が3.5×10N/mm以上である請求項1または2に記載の複合焼結体。 ⇒確認しました。
  4.  前記炭化ケイ素の結晶粒は、前記金属酸化物の結晶粒内および前記金属酸化物の結晶粒界に分散しており、
     前記金属酸化物の結晶粒内に分散している前記炭化ケイ素の結晶粒の面積の割合は、前記炭化ケイ素の結晶粒の全面積に対し、面積比で、25%以上である請求項1から3のいずれか1項に記載の複合焼結体。
  5.  前記金属酸化物は、酸化アルミニウムまたは酸化イットリウムである請求項1から4のいずれか1項に記載の複合焼結体。
  6.  前記金属酸化物の平均結晶粒径は、1.2μm以上10μm以下である請求項1から5のいずれか1項に記載の複合焼結体。
  7.  請求項1から6のいずれか1項に記載の複合焼結体を形成材料として用いて形成された、一主面が板状試料を載置する載置面である板状の基体と、
     前記基体の前記載置面とは反対側、または前記基体の内部に設けられた静電吸着用電極と、を有する静電チャック部材。
  8.  請求項7に記載の静電チャック部材を備える静電チャック装置。
  9.  炭化ケイ素粒子の表面を酸化処理するプレ酸化工程と、
     前記プレ酸化工程で処理した前記炭化ケイ素粒子と、金属酸化物粒子とを、それぞれ高速で噴射してお互いに衝突させながら混合し、分散媒を含むスラリーを得る工程と、
     前記スラリーに分散剤を添加した後、前記スラリー中の前記金属酸化物粒子の表面電荷が正となり、前記スラリー中の前記炭化ケイ素粒子の表面電荷が負となるpH範囲に含まれるように、前記スラリーのpHを調整する工程と、
     pHを調整した前記スラリーから分散媒を除去し、前記金属酸化物粒子と前記炭化ケイ素粒子とを含む顆粒を得る工程と、
     前記顆粒を、非酸化性雰囲気下で、300℃以上600℃以下でに加熱した後、酸化性雰囲気下で加熱して前記顆粒の表面を酸化処理する工程と、
     酸化処理を施した前記顆粒を成形し成形体を得る工程と、
     前記成形体を、非酸化性雰囲気下、25MPa以上の圧力で押し固めながら1600℃以上に加熱して加圧焼結する工程と、を有する複合焼結体の製造方法。
  10.  200Hzの比誘電率および1MHzの比誘電率は、いずれも24℃以上400℃以下の全範囲で10以上であり、
     200Hzの誘電正接および1MHzの誘電正接は、いずれも24℃以上400℃以下の全範囲で0.04以下である、請求項1から6のいずれか1項に記載の複合焼結体。
  11.  主相である金属酸化物と、副相である炭化ケイ素とを含む複合焼結体であり、
     200Hzの比誘電率および1MHzの比誘電率は、いずれも24℃以上400℃以下の全範囲で10以上であり、
     200Hzの誘電正接および1MHzの誘電正接は、いずれも24℃以上400℃以下の全範囲で0.04以下である複合焼結体。
  12.  200Hzの比誘電率について、24℃以上400℃以下の範囲における最大値と最小値との差が6以下である請求項11に記載の複合焼結体。
  13.  体積抵抗値が、24℃以上400℃以下の全範囲で1×1013Ω・cm以上である請求項11または12に記載の複合焼結体。
  14.  前記炭化ケイ素の結晶粒は、前記金属酸化物の結晶粒内および前記金属酸化物の結晶粒界に分散しており、
     前記金属酸化物の結晶粒内に分散している前記炭化ケイ素の結晶粒の割合は、前記炭化ケイ素の結晶粒全体に対し面積比で25%以上である請求項11から13のいずれか1項に記載の複合焼結体。
  15.  前記金属酸化物は、酸化アルミニウムまたは酸化イットリウムである請求項11から14のいずれか1項に記載の複合焼結体。
  16.  前記金属酸化物の平均結晶粒径は、1.2μm以上10μm以下である請求項11から15のいずれか1項に記載の複合焼結体。
  17.  請求項11から16のいずれか1項に記載の複合焼結体を形成材料とし、一主面が板状試料を載置する載置面である板状の基体と、
     前記基体の前記載置面とは反対側、または前記基体の内部に設けられた静電吸着用電極と、を有する静電チャック部材。
  18.  請求項17に記載の静電チャック部材を備える静電チャック装置。
  19.  前記金属酸化物に含まれる金属元素のケイ酸塩をさらに含み、
     拡大倍率1000倍での600μmの視野における前記ケイ酸塩の平均凝集径が5μm以下である、請求項11から15のいずれか1項に記載の複合焼結体。
PCT/JP2020/020174 2019-05-22 2020-05-21 複合焼結体、静電チャック部材、静電チャック装置および複合焼結体の製造方法 WO2020235651A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020217036490A KR20220011122A (ko) 2019-05-22 2020-05-21 복합 소결체, 정전 척 부재, 정전 척 장치 및 복합 소결체의 제조 방법
US17/612,173 US11990362B2 (en) 2019-05-22 2020-05-21 Composite sintered body, electrostatic chuck member, electrostatic chuck device, and method for manufacturing composite sintered body
JP2021520859A JP7111257B2 (ja) 2019-05-22 2020-05-21 複合焼結体、静電チャック部材、静電チャック装置および複合焼結体の製造方法
CN202080037179.1A CN113874336B (zh) 2019-05-22 2020-05-21 复合烧结体、静电卡盘部件、静电卡盘装置及复合烧结体的制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019096046 2019-05-22
JP2019096053 2019-05-22
JP2019-096053 2019-05-22
JP2019-096046 2019-05-22

Publications (1)

Publication Number Publication Date
WO2020235651A1 true WO2020235651A1 (ja) 2020-11-26

Family

ID=73458803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/020174 WO2020235651A1 (ja) 2019-05-22 2020-05-21 複合焼結体、静電チャック部材、静電チャック装置および複合焼結体の製造方法

Country Status (5)

Country Link
US (1) US11990362B2 (ja)
JP (1) JP7111257B2 (ja)
KR (1) KR20220011122A (ja)
CN (1) CN113874336B (ja)
WO (1) WO2020235651A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023276522A1 (ja) * 2021-06-29 2023-01-05 株式会社フジミインコーポレーテッド 炭化珪素粒子

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6798640B2 (ja) * 2018-03-23 2020-12-09 住友大阪セメント株式会社 静電チャック装置および静電チャック装置の製造方法
WO2020045432A1 (ja) * 2018-08-29 2020-03-05 京セラ株式会社 静電チャックおよび静電チャックの製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0462908A (ja) * 1990-07-02 1992-02-27 Tokin Corp 低損失酸化物磁性材料の製造方法
JP2003152065A (ja) * 2001-11-14 2003-05-23 Sumitomo Osaka Cement Co Ltd 静電チャック及びその製造方法
WO2018155374A1 (ja) * 2017-02-23 2018-08-30 住友大阪セメント株式会社 複合焼結体、静電チャック部材、および静電チャック装置
WO2019004402A1 (ja) * 2017-06-29 2019-01-03 住友大阪セメント株式会社 複合焼結体、静電チャック部材および静電チャック装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0777986B2 (ja) * 1985-01-31 1995-08-23 京セラ株式会社 炭化珪素質焼結体の製法
JP4744855B2 (ja) 2003-12-26 2011-08-10 日本碍子株式会社 静電チャック
JP4855177B2 (ja) * 2006-08-10 2012-01-18 住友大阪セメント株式会社 静電チャック装置
WO2008026641A1 (fr) * 2006-08-30 2008-03-06 Ngk Spark Plug Co., Ltd. Matériau fritté composite à base d'oxyde d'aluminium et insert de découpage
JP5020334B2 (ja) * 2007-11-29 2012-09-05 京セラ株式会社 摺動部材、メカニカルシールリング、メカニカルシールおよびフォーセットバルブ
CN102197440B (zh) * 2008-10-21 2013-06-05 国立大学法人名古屋工业大学 陶瓷电极材及其制造方法
CN102762519B (zh) * 2010-02-09 2016-08-24 住友大阪水泥股份有限公司 烧结体及其制造方法
JP6052976B2 (ja) * 2012-10-15 2016-12-27 日本タングステン株式会社 静電チャック誘電体層および静電チャック
US9440887B2 (en) * 2012-10-30 2016-09-13 Kabushiki Kaisha Toshiba Silicon nitride sintered body and wear resistant member using the same
KR101757793B1 (ko) * 2014-03-10 2017-07-14 스미토모 오사카 세멘토 가부시키가이샤 유전체 재료 및 정전 척 장치
US9951952B2 (en) * 2014-10-15 2018-04-24 Specialized Component Parts Limited, Inc. Hot surface igniters and methods of making same
US11107719B2 (en) * 2016-01-12 2021-08-31 Sumitomo Osaka Cement Co., Ltd. Electrostatic chuck device and method for manufacturing electrostatic chuck device
KR20180108637A (ko) * 2016-01-27 2018-10-04 스미토모 오사카 세멘토 가부시키가이샤 세라믹스 재료, 정전 척 장치
JP7063326B2 (ja) * 2017-03-30 2022-05-09 住友大阪セメント株式会社 複合焼結体、静電チャック部材、静電チャック装置および複合焼結体の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0462908A (ja) * 1990-07-02 1992-02-27 Tokin Corp 低損失酸化物磁性材料の製造方法
JP2003152065A (ja) * 2001-11-14 2003-05-23 Sumitomo Osaka Cement Co Ltd 静電チャック及びその製造方法
WO2018155374A1 (ja) * 2017-02-23 2018-08-30 住友大阪セメント株式会社 複合焼結体、静電チャック部材、および静電チャック装置
WO2019004402A1 (ja) * 2017-06-29 2019-01-03 住友大阪セメント株式会社 複合焼結体、静電チャック部材および静電チャック装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023276522A1 (ja) * 2021-06-29 2023-01-05 株式会社フジミインコーポレーテッド 炭化珪素粒子

Also Published As

Publication number Publication date
CN113874336B (zh) 2023-03-28
US20220223455A1 (en) 2022-07-14
JPWO2020235651A1 (ja) 2020-11-26
KR20220011122A (ko) 2022-01-27
JP7111257B2 (ja) 2022-08-02
CN113874336A (zh) 2021-12-31
US11990362B2 (en) 2024-05-21

Similar Documents

Publication Publication Date Title
JP7063326B2 (ja) 複合焼結体、静電チャック部材、静電チャック装置および複合焼結体の製造方法
JP6863352B2 (ja) 静電チャック装置の製造方法
WO2020235651A1 (ja) 複合焼結体、静電チャック部材、静電チャック装置および複合焼結体の製造方法
JP6781261B2 (ja) 複合焼結体、静電チャック部材、および静電チャック装置
JP6693600B2 (ja) 複合焼結体、静電チャック部材および静電チャック装置
JP6881676B2 (ja) 静電チャック装置およびその製造方法
JP6860117B2 (ja) 複合焼結体、静電チャック部材、静電チャック装置および複合焼結体の製造方法
JP6798640B2 (ja) 静電チャック装置および静電チャック装置の製造方法
JP2017183467A (ja) 静電チャック装置、静電チャック装置の製造方法
JP2017178663A (ja) 静電チャック装置
JP2018104224A (ja) 静電チャック部材、静電チャック装置および高周波透過材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20809545

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021520859

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20809545

Country of ref document: EP

Kind code of ref document: A1