WO2015125887A1 - メッキ鋼材 - Google Patents

メッキ鋼材 Download PDF

Info

Publication number
WO2015125887A1
WO2015125887A1 PCT/JP2015/054667 JP2015054667W WO2015125887A1 WO 2015125887 A1 WO2015125887 A1 WO 2015125887A1 JP 2015054667 W JP2015054667 W JP 2015054667W WO 2015125887 A1 WO2015125887 A1 WO 2015125887A1
Authority
WO
WIPO (PCT)
Prior art keywords
plating layer
steel material
phase
plating
plated steel
Prior art date
Application number
PCT/JP2015/054667
Other languages
English (en)
French (fr)
Inventor
後藤 靖人
敬士 二葉
亜暢 小林
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to MX2016010812A priority Critical patent/MX353652B/es
Priority to CN201580002345.3A priority patent/CN105683422B/zh
Priority to JP2015531378A priority patent/JP5861806B1/ja
Publication of WO2015125887A1 publication Critical patent/WO2015125887A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/565Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of zinc
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/36Pretreatment of metallic surfaces to be electroplated of iron or steel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • C25D5/611Smooth layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/615Microstructure of the layers, e.g. mixed structure
    • C25D5/617Crystalline layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/627Electroplating characterised by the visual appearance of the layers, e.g. colour, brightness or mat appearance

Definitions

  • the present invention relates to a plated steel material having excellent corrosion resistance, achromatic color and excellent gloss.
  • Zinc is widely used as a plating for steel because it has good corrosion resistance (sacrificial anti-corrosion ability, etc.) in the atmospheric environment and suppresses corrosion of steel.
  • corrosion resistance sacrificial anti-corrosion ability, etc.
  • electrogalvanized steel is widely used.
  • JP-A-63-14890 a zinc plating or zinc alloy plating film is formed on a steel material with a specific basis weight, and a bright zinc or bright zinc alloy plating film is formed on the surface with a specific basis weight.
  • a decorative galvanized steel material is disclosed.
  • the above-mentioned decorative galvanized steel material is colored due to the fact that the plated layer contains a large amount of ⁇ phase (Zn).
  • ⁇ phase Zn
  • the plated steel material is tinged, that is, has a chromatic color, there is a drawback in that the cleanness and high-quality feeling of the used industrial product are impaired when the coated steel material is used in a clear coating.
  • the above-mentioned decorative galvanized steel material has a surface glossiness of 60 ° specular gloss because the average crystal grain size and surface roughness of the plating layer are not appropriately controlled.
  • the degree Gs60 ° is about 60.
  • the color of an object changes with a light source (sunlight, a fluorescent lamp, LED, etc.). If the light source is the standard illuminant D65 for colorimetry and a viewing angle of 10 ° is used, the object color illuminated by daylight can be reproduced. Under this measurement condition, when the surface of a plated steel material coated with zinc-containing plating is measured by the SCI method described later, the CIELAB color system uses ⁇ (2a *) 2 + (b *) 2 ⁇ 0.5 If it is ⁇ 5.0, it can be felt as an achromatic color.
  • the light source is described in JIS Z8720 “Colorimetric standard illuminite (standard light) and standard light source” (corresponding foreign standard ISO / CIE 10526).
  • CIE is an abbreviation for “Commission Internationale de l'Eclairage (France), International Lighting Commission”.
  • CIE is the standard and measurement for all matters related to science, technology and craft in the field of light and lighting. This method is developed, guidelines are provided for the creation of international standards and industrial standards in each country, and cooperation and exchanges with other international organizations are planned.
  • the standard illuminant D65 for colorimetry is used when displaying an object color illuminated by daylight.
  • the viewing angle (viewing angle 10 °) is defined in JIS Z8723 “Visual comparison method of surface colors” (corresponding foreign standard ISO / DIS 3668).
  • the method of measuring the color by removing the specular reflection light is called the SCE (regular reflection light removal) method
  • the method of measuring the color without removing the specular reflection light without the light trap is SCI (regular reflection).
  • SCI regular reflection
  • the light-in method since measurement is performed including specularly reflected light, the color of the material itself is evaluated regardless of the surface state. This is in accordance with JIS Z8722 “Color Measurement Method-Reflection / Transmission Object Color”.
  • the three coordinates of CIELAB are the lightness of the color (labeled L *, where the value is 0 for black and 100 for white diffused), and the position between red and green (labeled a * If the value is negative, it is green, and if it is positive, it is red.) And the position between yellow and blue (labeled b *, if the value is negative, blue) If it is positive, it means yellowish).
  • glossiness evaluation method Next, glossiness can be evaluated by the surface glossiness measured by the specular gloss method.
  • the surface gloss Gs60 ° of plated steel suitable for use in household appliances to be subjected to clear coating is 80 or more, and if it has such a surface glossiness, it is excellent in design. Can be evaluated.
  • the present invention has been made in view of the above circumstances, and has excellent corrosion resistance (sacrificial anticorrosive ability) and achromatic color ( ⁇ (2a *) 2 + (b *) 2 ⁇ 0.5 ⁇ 5.
  • An object of the present invention is to provide a plated steel material that satisfies 0 (preferably ⁇ 3.5) and has excellent gloss (surface gloss Gs60 ° is 80 or more (preferably 85 or more)). To do.
  • the present inventors exhibit a superior corrosion resistance (sacrificial anti-corrosion ability) by forming a layer whose base is zinc. Based on the above, intensive research was conducted to further improve the design of the appearance of the plated layer. As a result, the present inventors limited the ratio of elements other than zinc to be included in the first plating layer, and in particular, by including a specific intermetallic compound phase in the plating layer, The present invention was completed by obtaining the knowledge that the surface appearance could be achromatic and had excellent gloss. The summary is as follows.
  • a plated steel material comprising a steel material and a first plated layer formed directly or indirectly on the surface of the steel material
  • the first plating layer includes at least one element of Fe, Ni, and Co having a total content of 5.0 to 20% by mass, 0.1 to 20% by mass of carbon, and Zn
  • the total amount of ⁇ phase (FeZn 10 ), ⁇ phase (Fe 3 Zn 7 ) and ⁇ 1 phase (FeZn 4 ) is 50% or more
  • the surface of the first plating layer satisfies ⁇ (2a *) 2 + (b *) 2 ⁇ 0.5 ⁇ 5.0 in the SCI method in the light source D65 light and the 10 ° visual field spectrophotometric color measurement.
  • the total amount of ⁇ phase (Ni 3 Zn 22 ), ⁇ phase (Ni 5 Zn 21 ) and ⁇ phase (Co 5 Zn 21 ) is 30% or more.
  • the surface of the plated layer further satisfies ⁇ (a *) 2 + (b *) 2 ⁇ 0.5 ⁇ 3.5 in the SCI method in the light source D65 light and the 10 ° visual field spectrophotometric measurement [1 ].
  • a second plating layer is provided between the steel material and the first plating layer,
  • the second plating layer includes at least one element of Mg, Al, Si, Ti, V, Cr, Mn, Co, Ni, Cu, Sn, and Fe having a content of 0 to 20% by mass;
  • the first plating layer has a high Fe content next to Zn.
  • the ⁇ phase (FeZn 10 ), the ⁇ phase (Fe 3 Zn 7 ), and the ⁇ 1 phase (FeZn) 4 ) The plated steel material according to the above [1] or [2], wherein any one of the layers is a main layer.
  • an excellent corrosion resistance (sacrificial anticorrosive ability) is imparted to the plated layer by using a layer whose base is zinc as the outermost plated layer (first plated layer) of the plated steel material.
  • the ratio of elements other than zinc contained in the plating layer and, in particular, the type of intermetallic compound phase contained in the plating layer are improved.
  • the plated steel material according to the present invention it is possible to realize an appearance that is achromatic and has excellent glossiness as well as excellent corrosion resistance.
  • the plated steel material (and the manufacturing method thereof) according to the present invention will be described in detail. Note that these embodiments do not limit the present invention.
  • the constituent elements of the above embodiment include those that can be easily replaced by those skilled in the art or those that are substantially the same. Furthermore, various forms included in the above-described embodiment can be arbitrarily combined within a range obvious to those skilled in the art.
  • the plated steel material according to the present invention includes a steel material and a first plated layer formed directly or indirectly on the surface of the steel material.
  • the steel material is not particularly limited, and for example, a hot rolled steel plate or a cold rolled steel plate can be used.
  • the type of steel is not particularly limited.
  • the first plating layer includes at least one element of Fe, Ni, and Co having a total content of 5.0 to 20% by mass, 0.1 to 20% by mass of carbon, and Zn.
  • the said total content rate means what totaled the content rate of Fe, Ni, and Co.
  • the total amount of the ⁇ phase (FeZn 10 ), the ⁇ phase (Fe 3 Zn 7 ), and the ⁇ 1 phase (FeZn 4 ) is 50% or more.
  • the said total amount shall mean an area ratio.
  • the carbon here means at least one kind of diallylamine polymer and diallyldialkylammonium salt polymer (hereinafter simply referred to as “additive”) added to the plating bath when the first plating layer is formed by electroplating. It is presumed that the carbon originates from
  • the component of the first plating layer may contain impurities in addition to at least one element of Fe, Ni, and Co, carbon, and Zn.
  • the impurity is not intentionally added as a component of the first plating layer, but is mixed into the raw material or in the manufacturing process. Al, Mg, Si, Ti, V, Cr , Mn, Cu, Sn, Nb, Pb, Cd, Ca, Pb, Y, La, Ce, Sr, Sb, oxygen, phosphorus and the like. Even if these elements are contained as impurities in a total amount of about 1%, the effects of the present invention are not impaired.
  • the plating layer By using zinc as the base of the first plating layer, the plating layer can exhibit excellent corrosion resistance (sacrificial corrosion resistance).
  • the first plating layer, Fe, Ni, the total content of Co is 20% by mass or less, inequality ⁇ (2a *) 2 + ( b *) 2 ⁇ 0.5 ⁇ 5.0 is It can be evaluated that the plating layer is filled and exhibits an achromatic color.
  • the said effect can be show
  • played by a higher level by making the said total content rate into 17 mass% or less (the left side ⁇ 4.5 of the said inequality), and the said effect is very high by setting it as 15 mass% or less. Can be played by level (left side of the above inequality ⁇ 3.5).
  • the first plating layer has a total content of Fe, Ni, and Co of 5.0% by mass or more and a carbon content of 0.1 to 20% by mass, The crystal grain size of the layer can be reduced and miniaturization can be achieved.
  • the surface of the first plating layer becomes smoother.
  • the said effect can be show
  • the carbon in the first plating layer is less than 0.1% by mass, there is a problem that the smoothness is insufficient and gloss cannot be obtained.
  • the carbon exceeds 20% by mass, the additive This causes a problem that a portion where excessive adsorption occurs is formed, fine irregularities are formed, the glossiness is impaired, and further, the color is not achromatic.
  • the carbon content in the first plating layer is 0.5 to 10% by mass, the above effect is achieved at a higher level, and when it is 0.2 to 5% by mass, the above effect is achieved. Is achieved at a higher level, and when it is 0.3 to 3% by mass, the above-described effect is achieved at a still higher level.
  • the carbon content in the first plating layer can be measured by glow discharge emission analysis (GDS: Grow Discharge m emission atomic Spectrometry) capable of high-frequency analysis of the plating layer ⁇ ⁇ .
  • the total amount of the ⁇ phase (FeZn 10 ), the ⁇ phase (Fe 3 Zn 7 ), and the ⁇ 1 phase (FeZn 4 ) is set to 50% or more.
  • the crystal grains of the plating layer can be made fine. That is, the above-mentioned various intermetallic compound phases can increase the crystallization overvoltage as compared with zinc simple substance ( ⁇ phase), so that the formation of crystal nuclei precedes the crystal growth.
  • the first plating layer is effectively refined at a high level. With respect to the surface of the first plating layer, Excellent gloss is achieved.
  • the outermost plating layer is made zinc-based, and is further included in the plating layer on the assumption that excellent corrosion resistance (sacrificial anticorrosive ability) is realized. Improvements are made in the ratio of elements other than zinc, and in particular, the types of intermetallic compound phases included in the plating layer. As a result, according to the plated steel material according to the present invention, it is possible to realize an appearance that is achromatic and has excellent glossiness as well as excellent corrosion resistance.
  • the total amount of the ⁇ phase (Ni 3 Zn 22 ), the ⁇ phase (Ni 5 Zn 21 ), and the ⁇ phase (Co 5 Zn 21 ) in the first plated layer is 30% or more.
  • the surface of the first plating layer further satisfies ⁇ (a *) 2 + (b *) 2 ⁇ 0.5 ⁇ 3.5 in the SCI method in the light source D65 light and the spectrophotometric measurement of the 10 ° field of view. It is preferable to satisfy.
  • the said total amount shall mean an area ratio.
  • the above effect can be achieved at a higher level by setting the total amount of the ⁇ phase (Ni 3 Zn 22 ), ⁇ phase (Ni 5 Zn 21 ) and ⁇ phase (Co 5 Zn 21 ) to 35% or more. (The left side of the inequality ⁇ 2.5), and by setting it to 40% or more, the above effect can be achieved at a very high level (the left side of the inequality ⁇ 2.0).
  • a second plating layer is provided between the steel material and the first plating layer, and the second plating layer includes Mg having a content of 0 to 20% by mass, It is preferable that at least one element selected from Al, Si, Ti, V, Cr, Mn, Co, Ni, Cu, Sn, and Fe and Zn are included.
  • the said content rate means each content rate of Mg, Al, Si, Ti, V, Cr, Mn, Co, Ni, Cu, Sn, and Fe.
  • the second plating layer has a lower natural immersion potential than the first plating layer except for the influence of the surface oxide film layer in a corrosive environment (for example, in a 5 mass% NaCl solution at 35 ° C.).
  • a corrosive environment for example, in a 5 mass% NaCl solution at 35 ° C.
  • the anticorrosive ability can be further enhanced.
  • the second plating layer may contain impurities mixed in the raw material or in the manufacturing process as a metal element.
  • the first plated layer preferably further contains at least one of 0.01 to 3% by mass of nitrogen and 0.01 to 3% by mass of sulfur, More preferably, it contains at least one of 0.03-1 mass% nitrogen and 0.03-1 mass% sulfur.
  • Nitrogen and sulfur are also presumed to be elements derived from additives added to the plating bath when the first plating layer is formed by electroplating.
  • the first plating layer formed on the steel material using the zinc plating bath containing the additive contains at least one of 0.01 to 3% by mass of nitrogen and 0.01 to 3% by mass of sulfur.
  • these nitrogen and sulfur can be measured by GDS similarly to carbon.
  • the amount of the first plated layer attached to the steel material is preferably 5 to 50 g / m 2 per side.
  • this form is a form about the plated steel plate in the case of not including a 2nd plating layer.
  • the adhesion amount of the first plating layer to the second plating layer is preferably 2 to 10 g / m 2 per side.
  • this form is a form about the plated steel plate in the case of including a 2nd plating layer.
  • the above adhesion amount is set to 2 g / m 2 or more per side, so that the pattern and color tone resulting from the plating of the second layer are concealed to become achromatic and exhibit excellent gloss. can do.
  • even if the adhesion amount is more than 10 g / m 2 per side, further achromatic color and improvement in gloss cannot be expected.
  • the plating material can be saved.
  • the more preferable range of the upper limit value of the adhesion amount is 6 g / m 2 per one side, whereby the above effect can be achieved at a higher level.
  • the average crystal grain size of the first plated layer is preferably 5 to 80 nm.
  • the average crystal grain size of the first plated layer also affects the optical properties of the plated steel sheet surface layer. Generally, when the average crystal grain size of the first plating layer is excessively large, sufficient glossiness is not realized. For this reason, it is preferable that the average crystal grain diameter of a plating layer is 80 nm or less, and it is more preferable that it is 30 nm or less. On the other hand, the lower limit of the average crystal grain size does not need to be specified, but industrial production is easy if it is 5 nm or more.
  • the average crystal grain size of the first plating layer may be obtained directly from the average value of the crystal grain size from the transmission microscope image, or may be obtained by shape analysis of the X-ray diffraction peak.
  • is a measurement X-ray wavelength
  • is a half-value width (rad)
  • is a Bragg angle of a diffraction line.
  • the surface roughness of the first plating layer is preferably 80 nm or less in terms of Ra (arithmetic mean roughness) when measured by SPM (scanning probe microscope).
  • the surface roughness of the first plated layer of the plated steel plate affects the optical properties of the plated steel plate. That is, generally, the lower the surface roughness of the plating layer, the higher the glossiness of the plated steel material. For this reason, when the roughness of the surface of the first plating layer is excessively high, the surface does not become a mirror surface, and the outermost surface of the plated steel sheet does not have excellent gloss.
  • the surface roughness of the first plating layer is closely related to the wavelength (380 nm to 810 nm) in the human visible light region. That is, when the roughness is about one-tenth of the wavelength in the visible light region, light of all wavelengths in the visible light region is regularly reflected, and as a result, the color tone of the plated steel sheet becomes an object color, and gloss It will exhibit a high degree of appearance. Furthermore, the surface roughness of the first plating layer is the steel hairline before plating (long lines applied by polishing for the purpose of product aesthetics), embossing (processing to emboss characters and patterns on the steel), etc.
  • the roughness measurement portion may be a convex portion of the pattern because the macro pattern does not affect the gloss perception.
  • the lower limit value of the roughness of the first plating layer is not particularly required to be set. However, if the surface of the plating layer is excessively smooth, it causes scuffing and loading, so Ra (arithmetic mean roughness) Is preferably 5 nm or more.
  • the glossiness of the first plating layer depends not only on the average crystal grain size and surface roughness of the plating layer itself but also on the roughness of the plating raw material. Generally, the lower the roughness of the plating raw material, the higher the glossiness of the plated steel material. The roughness of the plating raw material needs to be controlled from a viewpoint other than the glossiness of the plated steel material (for example, lubricity during press forming). Further, if the first plating layer has a sufficient thickness, the influence on the glossiness due to the roughness of the plating raw material is reduced. As described above, the roughness of the plating raw material is not limited in the present invention.
  • the roughness of the plating raw material of the first plating layer can be adjusted by various methods. Specific adjustment methods include transfer by roll rolling, shot blasting, polishing, and the like, but are not limited to these, and other known means can be applied.
  • the first plating layer has a high Fe content after Zn
  • the intermetallic compound phase includes a ⁇ phase (FeZn 10 ) and a ⁇ phase (Fe 3 Zn 7 ).
  • ⁇ 1 phase (FeZn 4 ) is preferably the main layer (phase with the largest area ratio). That is, by increasing the Fe content next to Zn, the formation of ⁇ phase (Zn phase) is suppressed, and the intermetallic compound phase having a larger crystallization overvoltage than the ⁇ phase (Zn phase) becomes the main phase.
  • the plating surface glossiness by the 60 ° specular gloss method Gs60 ° becomes 80 or more, and the surface of the plating layer has further excellent gloss.
  • Such a configuration of the plating phase may be obtained directly from a diffraction image of a transmission electron microscope, or may be obtained from an X-ray diffraction intensity.
  • the plating layer formed by electroplating is often distorted and is often affected by the orientation of the substrate, and therefore often differs from normal literature values.
  • the presence or absence of the ⁇ phase in the present invention indicates that the maximum value of the peak intensity of 45.1 ° to 46.1 ° is 48.0 ° to 52.0 ° by the 2 ⁇ / ⁇ method using Co as the target. This can be determined by comparing with the maximum value.
  • the maximum value of the peak intensity of 45.1 ° to 46.1 ° is 20% or less of the maximum value of the peak intensity of 48.0 ° to 52.0 °, an amount of ⁇ that adversely affects the glossiness There is no phase (Zn), and if it is 10% or less, no substantial effect is observed. Further, when the second plating layer is present, the influence of the second plating layer may be removed by changing the incident angle of the X-ray.
  • the plated steel material according to the present invention contains zinc sulfate, sodium sulfate, and sulfuric acid when forming the first plating layer (outermost plating layer), and further includes at least a diallylamine polymer and a diallyldialkylammonium salt polymer. It manufactures by carrying out electrogalvanization to steel materials (or the 2nd plating layer mentioned later) using the galvanization bath which added one sort. In addition, in addition to Zn, at least one element of Fe, Co, and Ni is added to the electrogalvanizing bath to form a zinc alloy plating layer containing at least one element of Fe, Co, and Ni and Zn. Form directly or indirectly on steel.
  • At least one element (element X) of Fe, Co, and Ni is added to the electrogalvanizing bath.
  • the molar concentration ratio and molar concentration of the elements X and Zn in the plating bath are adjusted so as to satisfy both of the following two expressions.
  • the composition of the plating bath and the like the coarsening of the crystal grains is suppressed, and the first anticorrosive (sacrificial anticorrosive ability) is achromatic and excellent in glossiness.
  • the plating layer can be formed.
  • nickel sulfate or nickel chloride is added to the plating solution to form a Zn—Ni plating layer, and the plating solution is used to form a Zn—Fe plating layer.
  • cobalt sulfate or cobalt chloride may be added to the plating solution.
  • the current density in the case of a 7 kA / m 2 or more 12 kA / m 2 or less, since the respective effects are achieved even higher levels, preferable.
  • the relative liquid flow rate between the plating bath and the material to be plated (steel material or second plating layer) during electroplating is preferably 0.5 m / sec or more.
  • the material to be plated is a steel plate
  • the upper limit of the relative liquid flow rate is not particularly specified, but if it is 5 m / sec or more, problems such as taking out of the plating liquid and the pumping capacity for generating a counter flow are not preferable.
  • the pH of the plating bath is preferably in the range of 1 to 3.
  • the pH of the plating bath is preferably in the range of 1 to 3.
  • hydrogen generation that is a competitive reaction during electroplating can be suppressed, and a significant reduction in current efficiency can be suppressed.
  • the pH of the plating bath is set to 3 or less, the metal elements (Zn, Fe, Co, Ni) in the plating bath can be stably maintained in a dissolved state.
  • the pH is in the range of 1.5 to 2.5, each of the above effects is exhibited at a higher level.
  • the plating bath temperature is preferably 40 to 60 ° C. from the viewpoint of current efficiency and plating solution evaporation. That is, by setting the plating bath temperature to 40 ° C. or higher, excellent current efficiency can be realized, and by setting it to 60 ° C. or lower, plating solution evaporation can be suppressed.
  • a gloss additive containing at least one of a diallylamine polymer and a diallyldialkylammonium salt polymer (hereinafter sometimes simply referred to as “additive”) is added in an amount of 0.1 g / l to 10 g / l. It is preferable to contain.
  • ⁇ phase (Zn phase) do not cause the ⁇ phase (Zn phase) to precipitate in the first plating layer, but are specific intermetallic compound phases ( ⁇ phase (FeZn 10 ), ⁇ phase (Fe 3 Zn 7 ), ⁇
  • ⁇ phase (FeZn 4 ) In order to deposit and grow only one phase (FeZn 4 ), ⁇ phase (Ni 3 Zn 22 ), ⁇ phase (Ni 5 Zn 21 ), and ⁇ phase (Co 5 Zn 21 ), the first plating is further performed. Used to refine the crystal grain size of the layer.
  • diallylamine polymers include diallylamine hydrochloride polymer, diallylamine polymer, methyldiallylamine hydrochloride polymer, methyldiallylamineamide sulfate polymer, methyldiallylamine acetate polymer, diallylamine hydrochloride / sulfur dioxide copolymer.
  • diallylamine polymer examples include a polymer, diallylamine acetate / sulfur dioxide copolymer, and methyldiallylamine hydrochloride / sulfur dioxide copolymer.
  • diallylamine polymer these may be used alone or a mixture of at least two of them may be used.
  • diallyldialkylammonium salt polymers examples include diallyldimethylammonium chloride polymer, diallylmethylethylammonium ethylsulfate polymer, diallylmethylethylammonium ethylsulfate / sulfur dioxide copolymer, diallyldimethylammonium chloride / sulfur dioxide.
  • diallyldialkylammonium salt polymer examples include a copolymer, a diallyldimethylammonium chloride / acrylamide copolymer, and a partially 3-chloro-2-hydroxypropylated diallylamine hydrochloride / diallyldimethylammonium chloride copolymer.
  • diallyldialkylammonium salt polymer these may be used alone, or a mixture of at least two of these may be used.
  • a mixture of a diallylamine polymer and a diallyldialkylammonium salt polymer can be used as an additive.
  • the mixing mode is not limited to two types, and three or more types of polymers may be mixed.
  • polymers having a 5-membered ring structure are preferred. Since the polymer has a five-membered ring structure, specific intermetallic compound phases ( ⁇ phase (FeZn 10 ), ⁇ phase (Fe 3 Zn 7 ), ⁇ 1 phase (FeZn 4 ) are included in the first plating layer. ), ⁇ phase (Ni 3 Zn 22 ), ⁇ phase (Ni 5 Zn 21 ), and ⁇ phase (Co 5 Zn 21 )) can be efficiently precipitated and grown, and the crystal of the first plating layer The particle size can be refined at a high level. Although it is not certain what mechanism these phenomena are caused by, the phenomenon has been empirically found by the present inventors.
  • the evaluation method of whether or not the above polymer contains a 5-membered ring structure can be performed as follows. That is, the first plating layer is dissolved to remove metal ions so as not to co-precipitate organic substances, and purification is performed so as not to break the structure, thereby specifying a five-membered ring structure. Specifically, a five-membered ring structure can be specified by various nuclear magnetic resonance (NMR) spectroscopy.
  • NMR nuclear magnetic resonance
  • the amount of the additive is in the range of 0.1 g / l to 10 g / l in the plating bath.
  • the additive is coordinated to a portion where the current is concentrated when the first plating layer is formed, and the plating growth in the portion is inhibited.
  • the portion where the additive is not coordinated the growth of the first plating layer is promoted, the surface of the plating layer to be formed becomes smooth, and high gloss can be realized.
  • the amount of the additive is less than 0.1 g / l in the plating bath, the above effect cannot be obtained because the amount of the additive to be coordinated is insufficient.
  • the amount of the additive when the amount of the additive is more than 10 g / l in the plating bath, the amount of additive coordinated is too large, and on the contrary, the effect is not obtained.
  • the amount of the additive is 0.2 g / l to 4 g / l, the above effects can be achieved at higher levels.
  • the average molecular weight of the additive according to the present invention is preferably in the range of 1000 to 10,000.
  • the average molecular weight of the additive 1000 or more it is possible to suppress the first plating layer from growing excessively.
  • the average molecular weight is 10,000 or less, it can be avoided that the additive is hardly dissolved in the plating bath.
  • the average molecular weight of the additive is in the range of 2000 to 6000, the above effects are achieved at a high level.
  • the above description relates to the method of forming the first plating layer, but these descriptions are not limited to the case where the plating layer is directly formed on the steel material, but the first plating layer relative to the second plating layer described later.
  • the present invention can be equally applied to the case of forming.
  • a second plating layer may be interposed between the steel material and the first plating layer.
  • the second plating layer can be formed by electrogalvanizing a steel material using a zinc plating bath containing zinc sulfate, sodium sulfate, and sulfuric acid.
  • zinc sulfate zinc sulfate
  • sodium sulfate sodium sulfate
  • sulfuric acid sulfuric acid.
  • at least one element of Mg, Al, Si, Ti, V, Cr, Mn, Co, Ni, Cu, Sn, and Fe may be added to the electrogalvanizing bath.
  • a desired plating adhesion amount can be realized by setting the current density to 1 to 20 kA / m 2 (more preferably 5 to 15 kA / m 2 ). Further, when the relative liquid flow rate between the plating bath and the material to be plated (steel material) is 0.5 m / sec or more during electroplating, the supply of metal ions can be facilitated. Furthermore, by setting the pH of the plating bath to 1 or more, it is possible to suppress hydrogen generation that is a competitive reaction during electroplating, and to suppress a significant decrease in current efficiency, while the pH is set to 3 or less.
  • the elements (Zn, Mg, Al, Si, Ti, V, Cr, Mn, Co, Ni, Cu, Sn, Fe) in the plating bath can be stably maintained in a dissolved state.
  • pH is made into the range of 2 or less, said each effect is show
  • the plating bath temperature may be set to 40 to 60 ° C. from the viewpoint of current efficiency and evaporation of the plating solution, and additives may be appropriately added to the plating bath.
  • the second plating layer can be formed by performing hot dipping on a steel material using a hot dipping bath containing zinc.
  • a hot dipping bath containing zinc In addition to Zn, at least one element of Mg, Al, Si, Ti, V, Cr, Mn, Co, Ni, Cu and Sn may be added to the hot dip galvanizing bath.
  • the second plating layer is formed by immersing a steel material subjected to reduction annealing in a plating bath heated to 400 ° C. to 650 ° C. and pulling it up after a predetermined time. Can control the amount of plating. Further, when Fe is contained in the plating film, it is lifted from the plating bath and heated to 450 ° C. or higher to be alloyed.
  • the plated steel material according to the present invention can be further subjected to various treatments on the surface of the first plating layer which is the outermost plating layer for the purpose of improving various characteristics.
  • a rust preventive coating layer is formed on the first plating layer by chromate treatment or chromate-free treatment (non-chromate treatment).
  • the primary rust prevention process to form can be performed.
  • chromate treatment for example, a chromate treatment liquid mainly composed of chromic acid and a reaction accelerator can be used, and the amount of chromate attached is set to 1 to 200 mg / m 2 . If the amount of chrome adhesion is less than 1 mg / m 2 , a sufficient rust prevention effect cannot be obtained, and if it exceeds 200 mg / m 2 , the rust prevention effect will be saturated.
  • a treatment solution containing Zr or Ti salt or a treatment solution containing a silane coupling agent can be used without containing harmful hexavalent chromium in the treatment solution.
  • a chromate-free treatment layer not containing chromium containing Ti, Zr, P, Ce, Si, Al, Li or the like as a main component is formed.
  • the adhesion amount of the chromate-free treatment layer is preferably 1 to 1000 mg / m 2 . When the adhesion amount of the chromate-free treatment layer is less than 1 mg / m 2 , a sufficient rust prevention effect cannot be obtained, while when it exceeds 1000 mg / m 2 , the rust prevention effect is saturated.
  • the coating film in order to exhibit the anti-discoloring property and the scratch resistance of the plated steel material at a higher level, it is preferable to form the coating film with a thickness of 0.5 to 100 ⁇ m after the chromate treatment or the like.
  • the coating film can be formed by a known coating method.
  • the coating material include acrylic baking paints, urethane paints, epoxy paints, polyester paints, polyethersulfone paints, and melamine alkyd paints. In forming the coating film, these paints may be used alone or a mixture of these paints may be used.
  • the coating method include a roll coater method, a curtain coater method, a spray gun method, and an electrostatic method.
  • the roll coater method and the curtain coater method are preferable in terms of productivity and uniformity.
  • a specific amount of diallylamine polymer and diallyldialkylammonium are used when forming the first plating layer (first plating layer) which is the outermost plating layer.
  • Annealed and pressure-adjusted steel sheet having a thickness of 0.6 mm (component composition: C: 0.001%, Si: 0.01%, Mn: 0.1%, P: 0.008%, S : Each containing 0.004%) using a Na 4 SiO 4 treatment solution with a concentration of 30 g / L, electrolytic degreasing under conditions of treatment solution 60 ° C., current density 20 A / dm 2 , treatment time 10 seconds, and washing with water did. Subsequently, the electrolytically degreased steel material was immersed in a 60 ° C. H 2 SO 4 aqueous solution having a concentration of 50 g / L for 10 seconds, and further washed with water, thereby performing plating pretreatment. In addition, Ra (arithmetic mean roughness) of the L direction (direction parallel to a rolling direction) of a steel plate was 0.6 micrometer.
  • the steel plate and the first plating layer were the same as the specific test examples shown in Table 4 (Test Examples 1, 3, 8, 9, 12, and 19), and Table 6-1 was provided between them.
  • Test examples 75 to 125 having the second plating layer having the composition shown in Table 6-2 were obtained.
  • the second plating layer was formed in a manner similar to that of the first plating layer.
  • any of ⁇ phase (FeZn 10 ), ⁇ phase (Fe 3 Zn 7 ), and ⁇ 1 phase (FeZn 4 ) is defined as the main phase.
  • "A” ⁇ phase (FeZn 10 ), ⁇ phase (Fe 3 Zn 7 ), ⁇ 1 phase (FeZn 4 ), ⁇ phase (Ni 3 Zn 22 ), ⁇ phase (Ni 5 Zn 21 ), and Among the ⁇ phases (Co 5 Zn 21 ), those containing at least one intermetallic compound phase are indicated as “B”, and cases not corresponding to the above A and B are indicated as “C”.
  • the amount of adhesion of the first plating layer is as shown in Table 4, Table 5-1, and Table 5-2, or the amount of adhesion of the first and second plating layers is Table 6-1.
  • Plated steel sheets as shown in Table 6-2 were washed with water and dried.
  • CM-2500d manufactured by Konica Minolta was used as a measuring instrument, and “a *” and “b *” were measured by the SCI method with a light source D65 and a 10 ° field of view. Further, Gs60 ° was measured with a gloss meter based on Ra (arithmetic mean roughness) in the L direction (rolling direction) and the C direction (direction perpendicular to the rolling direction).
  • “Gs60 °” shown in Tables 4 to 6-2 is an average value of values measured based on Ra in the L direction and the C direction. Furthermore, the average crystal grain size (nm) of the plating layer was determined by analyzing the shape of the X-ray diffraction peak using the HORIBA high frequency glow discharge luminescence surface analyzer using the carbon content (mass%) contained in the first plating layer. It calculated by calculating
  • requiring. In determining the average crystal grain size, the Sherre equation ⁇ (D (0.9 ⁇ ) / ( ⁇ cos ⁇ )) ⁇ was used.
  • the analysis method of the first and second plating layers was as follows. That is, the content of each element was analyzed by performing glow discharge emission analysis (GDS: “Grow”, “Discharge”, “Emission”, “Atomic”, and Spectrometry) in the depth direction from the surface.
  • GDS glow discharge emission analysis
  • the interface of the plating layer / steel substrate at this time was determined as follows. That is, when analyzing from the surface, the place where the total of the metal elements exceeds 70% by mass is determined as the outermost surface of the first plating layer, the total of Fe, Ni, Co is 5 to 20% by mass, and the carbon is A region of 0.1 to 20% by mass was determined as the first plating layer, and a region from which the Fe derived from the steel substrate exceeded 50% by mass was determined as the second plating layer. Moreover, when there was no 2nd plating layer, from the place where the sum total of a metal element exceeded 70 mass% to the depth which Fe derived from a steel base material exceeds 50 mass% was determined as the 1st plating layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

 本発明は、優れた耐食性を有するとともに、無彩色であってしかも優れた光沢性を有する、メッキ鋼材に関する。鋼材と、上記鋼材の表面に直接的又は間接的に形成された第1のメッキ層と、を備える。上記第1のメッキ層は、合計含有率が5.0~20質量%であるFe、Ni、Coのうちの少なくとも1つの元素と、0.1~20質量%の炭素と、Znとを含む。上記第1のメッキ層について、δ相(FeZn10)、Γ相(FeZn)及びΓ相(FeZn)の含有量が50%以上である。上記第1のメッキ層の表面が、光源D65光、10°視野の分光測色において、SCI方式で{(2a*)+(b*)0.5≦5.0を満たし、60°鏡面光沢法Gs60°によるメッキ表面光沢度が80以上である。

Description

メッキ鋼材
 本発明は、優れた耐食性を有するとともに、無彩色であってしかも優れた光沢性を有する、メッキ鋼材に関する。
 亜鉛は大気環境での耐食性(犠牲防食能等)が良好であり、鋼材の腐食を抑制することから、鋼材のメッキとして広く用いられている。例えば、屋内家電製品の分野では、電気亜鉛メッキ鋼材が広く用いられている。
 このような亜鉛を含むメッキ鋼材は、多数知られている(例えば、特開昭63-14890号公報参照)。特開昭63-14890号公報には、鋼材上に特定の目付量で亜鉛メッキ又は亜鉛合金メッキ被膜を形成し、さらにその表面に特定の目付量で光沢亜鉛又は光沢亜鉛合金メッキ被膜を形成した、装飾亜鉛メッキ鋼材が開示されている。
 上記の装飾亜鉛メッキ鋼材は、そのメッキ層中η相(Zn)を多く含むことに起因して、色味を帯びている。メッキ鋼材が色味を帯びている場合、即ち有彩色を呈している場合には、クリア塗装されて使用された際、使用された工業製品の清潔感や高級感を損なうといった欠点がある。
 また、上記の装飾亜鉛メッキ鋼材は、そのメッキ層の平均結晶粒径や表面粗度が適切に制御されていないことに起因して、その表面の光沢性は、60°鏡面光沢法による表面光沢度Gs60°が60程度である。
 近年では、特に、クリア塗装を施す家電製品用途において、清潔感や高級感を具備するという理由により、色味を帯びていない、換言すれば無彩色であって、しかも優れた光沢性を有する表面外観の亜鉛メッキ鋼材の需要が高まっている。
(無彩色であるか否かの評価法)
 ところで、メッキ鋼材の表面を無彩色であると評価するためには、後述するCIELAB表色系で、{(2a*)+(b*)0.5≦5.0を満たす必要がある。
 通常、物体の色は光源(太陽光、蛍光灯、LED等)によって変化する。光源を測色用標準イルミナントD65とし、視野角度10°を用いると、昼光で照らされている物体色を再現することができる。この測定条件下で、後述するSCI方式で亜鉛を含むメッキで被覆されたメッキ鋼材表面を測色したとき、CIELAB表色系で、{(2a*)+(b*)0.5≦5.0であれば無彩色であると感じることができる。
 光源については、JIS Z8720「測色標準イルミナイト(標準の光)及び標準光源」(対応外国規格ISO/CIE 10526)に記載されている。ここで、CIEとは、「Commission Internationale de l’Eclairage(仏)、国際照明委員会」の略であり、CIEは光と照明の分野での科学・技術及び工芸に関するあらゆる事項について、標準と測定の手法を開発し、国際規格及び各国の工業規格の作成に指針を与え、他の国際団体との連携・交流を図っている。
 測色用標準イルミナントD65は、昼光で照明される物体色を表示する場合に使用される。視野角度(視角10°)はJIS Z8723「表面色の視覚比較方法」(対応外国規格ISO/DIS 3668)で定義されている。
 色を測定するとき、正反射光を除去して色を測る方法をSCE(正反射光除去)方式といい、光トラップがなく正反射光を除去せずに色を測る方法をSCI(正反射光込み)方式という。SCI方式では、正反射光を含んで測定するので、表面状態に関係なく素材そのものの色の評価となる。これはJIS Z8722「色の測定方法-反射・透過物体色」に準拠する。
 CIELAB表示色は、知覚と装置の違いによる色差を測定するために1976年に勧告され、日本ではJIS Z8729「色の表示方法-L*a*b*表色系およびL*u*v*表色系」に規定されている均等色空間である。
 CIELABの3つの座標は、色の明度(L*と標記し、その値が0では黒、100では白の拡散色を意味する)、赤と緑の間の位置(a*と標記し、その値が負であれば緑寄りであって、正であれば赤寄りであることを意味する)、及び黄色と青の間の位置(b*と標記し、その値が負であれば青寄りであって、正であれば黄色寄りであることを意味する)に対応している。
(光沢性の評価法)
 次に、光沢性は、鏡面光沢法にて測定した表面光沢度により評価することができる。この表面光沢度は、規定された入射角(本明細書においては60°)に対して、メッキ鋼材の表面からの鏡面反射光束αを測定し、同一条件における屈折率n=1.567のガラス表面の鏡面反射光束βを基準とした比α/βで算出され、Gs60°と標記される。
 近年において、クリア塗装を施す家電製品で使用するのに適したメッキ鋼の表面光沢度Gs60°は80以上であり、このような値の表面光沢度を有すれば、意匠性にも優れるものと評価することができる。
 以上に示す、無彩色の定義、及び光沢性の定義から、メッキ鋼材の表面に関しては、{(2a*)+(b*)0.5≦5.0(好ましくは≦3.5)を満たすとともに、表面光沢度Gs60°が80以上(好ましくは85以上)であることが望まれる。
 本発明は、上記事情に鑑みてなされたものであって、優れた耐食性(犠牲防食能)を有するとともに、無彩色({(2a*)+(b*)0.5≦5.0(好ましくは≦3.5)を満たす)であってしかも優れた光沢性(表面光沢度Gs60°が80以上(好ましくは85以上)である)を有する、メッキ鋼材を提供することを目的とする。
 本発明者らは、メッキ鋼材の最表メッキ層である第1のメッキ層として、ベースが亜鉛である層を形成することで、当該メッキ層に優れた耐食性(犠牲防食能)を発揮させることを前提に、さらに、当該メッキ層の外観の意匠性を高めるべく、鋭意研究を重ねた。その結果、本発明者らは、第1のメッキ層に含ませる亜鉛以外の元素の割合を限定するとともに、特に、当該メッキ層に特定の金属間化合物相を含ませることで、当該メッキ層の表面外観を、無彩色であり、かつ、優れた光沢性を有するものとすることができる、との知見を得、本発明を完成した。その要旨は以下のとおりである。
 [1]鋼材と、上記鋼材の表面に直接的又は間接的に形成された第1のメッキ層と、を備えるメッキ鋼材において、
 上記第1のメッキ層は、合計含有率5.0~20質量%であるFe、Ni、Coのうちの少なくとも1つの元素と、0.1~20質量%の炭素と、Znとを含み、
 上記第1のメッキ層について、δ相(FeZn10)、Γ相(FeZn)及びΓ相(FeZn)の合計量が50%以上であり、
 上記第1のメッキ層の表面が、光源D65光、10°視野の分光測色において、SCI方式で{(2a*)+(b*)0.5≦5.0を満たし、
 60°鏡面光沢法Gs60°によるメッキ表面光沢度が80以上である、ことを特徴とするメッキ鋼材。
 [2]上記第1のメッキ層について、δ相(NiZn22)、γ相(NiZn21)及びγ相(CoZn21)の合計量が30%以上であり、上記第1のメッキ層の表面が、光源D65光、10°視野の分光測色において、SCI方式で{(a*)+(b*)0.5≦3.5をさらに満たす、上記[1]に記載のメッキ鋼板。
 [3]上記鋼材と上記第1のメッキ層との間に、第2のメッキ層を備え、
 上記第2のメッキ層が、含有率が0~20質量%であるMg、Al、Si、Ti、V、Cr、Mn、Co、Ni、Cu、Sn、Feのうちの少なくとも1つの元素と、Znとを含む、上記[1]又は[2]に記載のメッキ鋼材。
 [4]上記第1のメッキ層が、さらに、0.01~3質量%の窒素と、0.01~3質量%の硫黄とを含む、上記[1]に記載のメッキ鋼材。
 [5]上記鋼材に対する上記第1のメッキ層の付着量が、片面あたり5~50g/mである、上記[1]に記載のメッキ鋼材。
 [6] 上記第2のメッキ層に対する上記第1のメッキ層の付着量が、片面あたり2~10g/mである、上記[3]に記載のメッキ鋼材。
 [7]上記鋼材に対する上記第2のメッキ層の付着量が、片面あたり5~50g/mである、上記[3]に記載のメッキ鋼材。
 [8]上記第1のメッキ層の平均結晶粒径が5~80nmである、上記[1]又は[2]に記載のメッキ鋼材。
 [9]上記第1のメッキ層の表面粗度がRa80nm以下である、上記[1]又は[2]に記載のメッキ鋼材。
 [10]上記第1のメッキ層は、Znに次いでFeの含有量が多く、上記金属間化合物相については、δ相(FeZn10)、Γ相(FeZn)及びΓ相(FeZn)のいずれかがが主層である、上記[1]又は[2]に記載のメッキ鋼材。
 本発明に係るメッキ鋼材では、メッキ鋼材の最表メッキ層(第1のメッキ層)に、ベースが亜鉛である層を用いることで、当該メッキ層に優れた耐食性(犠牲防食能)を付与することを前提に、さらに、当該メッキ層に含ませる亜鉛以外の元素の割合と、特に、当該メッキ層に含ませる金属間化合物相の種類について改良を行っている。その結果、本発明に係るメッキ鋼材によれば、優れた耐食性とともに、無彩色であってしかも優れた光沢性を示す外観を実現することができる。
 以下に、本発明に係るメッキ鋼材(及びその製造方法)について、詳細に説明する。なお、これらの実施形態は、本発明を限定するものではない。また、上記実施形態の構成要素には、当業者が置換可能かつ容易なもの、或いは実質的に同一のものが含まれる。さらに、上記実施形態に含まれる各種形態は、当業者が自明の範囲で任意に組み合わせることができる。
<メッキ鋼材>
 本発明に係るメッキ鋼材は、鋼材と、上記鋼材の表面に直接的又は間接的に形成された第1のメッキ層と、を備える。鋼材は、特に限定されるものではなく、例えば、熱延鋼板や冷延鋼板を用いることができる。なお、鋼の種類も特に制限されない。
 第1のメッキ層は、合計含有率5.0~20質量%であるFe、Ni、Coのうちの少なくとも1つの元素と、0.1~20質量%の炭素と、Znとを含む。ここで、上記合計含有率とは、Fe、Ni、Coの含有率を合計したものを意味する。また、第1のメッキ層は、δ相(FeZn10)、Γ相(FeZn)及びΓ相(FeZn)の合計量が50%以上である。ここで、上記合計量とは、面積率をいうものとする。
 ここでいう炭素は、第1のメッキ層を電気メッキ法によって形成する際に、メッキ浴に添加されたジアリルアミン重合体及びジアリルジアルキルアンモニウム塩重合体の少なくとも1種(以下、単に「添加剤」と称する場合がある)に由来する炭素であると推定される。
 なお、第1のメッキ層の成分は、Fe、Ni、Coのうちの少なくとも一つの元素、炭素及びZn以外に不純物を含有してもよい。ここで、不純物とは、第1のメッキ層の成分として意識的に添加したものではなく、原料中に、或いは製造工程において混入されるものであり、Al、Mg、Si、Ti、V、Cr、Mn、Cu、Sn、Nb、Pb、Cd、Ca、Pb、Y、La、Ce、Sr、Sb、酸素、燐等を意味する。これらの元素が不純物として、合計して1%程度含有しても、本発明の効果は損なわれない。
(作用等)
 第1のメッキ層は、ベースを亜鉛とすることで、当該メッキ層に優れた耐食性(犠牲防食能)を発揮させることができる。
 そして、第1のメッキ層は、Fe、Ni、Coの合計含有率を20質量%以下とすることで、不等式{(2a*)+(b*)0.5≦5.0が満たされ、メッキ層が無彩色を呈する、と評価することができる。なお、上記合計含有率を17質量%以下とすることで上記効果をさらに高いレベルで奏することができ(上記不等式の左辺≦4.5)、15質量%以下とすることで上記効果を極めて高いレベルで奏することができる(上記不等式の左辺≦3.5)。
 一方、第1のメッキ層は、Fe、Ni、Coの合計含有率を5.0質量%以上とするとともに、炭素の含有量を0.1~20質量%とすることで、第1のメッキ層の結晶粒径を小さくして微細化を図ることができる。また、第1のメッキ層に0.1~20質量%の炭素を含ませることで、第1のメッキ層の表面がさらに平滑となる。これらの作用により、60°鏡面光沢法Gs60°によるメッキ表面光沢度が80以上となり、第1のメッキ層の表面が優れた光沢性を有するものとなる。
 なお、Fe、Ni、Coの合計含有率を6.0質量%以上とすることで上記効果をさらに高いレベルで奏することができ(上記メッキ表面光沢度が85以上)、7.0質量%以上とすることで上記効果を極めて高いレベルで奏することができる(上記メッキ表面光沢度が90以上)。
 また、第1のメッキ層中の炭素が0.1質量%未満であると、平滑性が不十分となり光沢性が得られないという不具合が生じ、当該炭素が20質量%を超えると、添加剤の吸着が過多となる部分ができ、微細な凹凸を形成して光沢性を損ない、さらに無彩色ではなくなるという不具合が生じる。第1のメッキ層中の炭素の含有率を0.5~10質量%とした場合には、上記効果がより高いレベルで奏され、0.2~5質量%とした場合には、上記効果がさらに高いレベルで奏され、0.3~3質量%とした場合には、上記効果がなおさらに高いレベルで奏される。なお、第1のメッキ層中の炭素の含有率は、当該メッキ層 を高周波分析可能なグロー放電発光分析(GDS: Grow Discharge emission atomic Spectrometry)で測定することができる。
 また、第1のメッキ層の相形態として、δ相(FeZn10)、Γ相(FeZn)及びΓ相(FeZn)の合計量を50%以上とすることで、第1のメッキ層の結晶粒を細かくすることができる。即ち、上記の各種金属間化合物相は、亜鉛単体(η相)に比べて結晶化過電圧を大きくすることができるため、結晶核の生成が結晶成長より先行する。これにより、上記のFe、Ni、Coの合計含有率及び炭素含有率の上記下限値と相まって、第1のメッキ層の微細化が高いレベルで実効あるものとなり、第1のメッキ層の表面に関して優れた光沢性が実現される。
 以上に示すように、本発明に係るメッキ鋼材では、最外メッキ層を亜鉛ベースとすることで、優れた耐食性(犠牲防食能)を実現することを前提に、さらに、当該メッキ層に含ませる亜鉛以外の元素の割合と、特に、当該メッキ層に含ませる金属間化合物相の種類について改良を行っている。その結果、本発明に係るメッキ鋼材によれば、優れた耐食性とともに、無彩色であってしかも優れた光沢性を示す外観を実現することができる。
(好適例)
 以上に示すメッキ鋼板においては、上記第1のメッキ層について、δ相(NiZn22)、γ相(NiZn21)及びγ相(CoZn21)の合計量が30%以上であり、上記第1のメッキ層の表面が、光源D65光、10°視野の分光測色において、SCI方式で{(a*)+(b*)0.5≦3.5をさらに満たすことが好ましい。ここで、上記合計量とは、面積率をいうものとする。上記不等式をさらに満たすことで、メッキ層がさらに高いレベルで無彩色を呈する、と評価することができる。なお、上記のδ相(NiZn22)、γ相(NiZn21)及びγ相(CoZn21)の合計量を35%以上とすることで上記効果をさらに高いレベルで奏することができ(上記不等式の左辺≦2.5)、40%以上とすることで上記効果を極めて高いレベルで奏することができる(上記不等式の左辺≦2.0)。
 また、上記メッキ鋼板においては、上記鋼材と上記第1のメッキ層との間に、第2のメッキ層を備え、上記第2のメッキ層が、含有率が0~20質量%であるMg、Al、Si、Ti、V、Cr、Mn、Co、Ni、Cu、Sn、Feのうちの少なくとも1つの元素と、Znとを含む、ことが好ましい。ここで、上記含有率とは、Mg、Al、Si、Ti、V、Cr、Mn、Co、Ni、Cu、Sn、Feのそれぞれの含有率を意味する。
 第2のメッキ層は、腐食環境(例えば35℃の5mass%NaCl溶液中)における表面酸化膜層の影響を除いたその自然浸漬電位が第1のめっき層よりも卑であり、これにより、犠牲防食能をさらに高めることができる。
 なお、第2のメッキ層に含ませる亜鉛以外の元素としては、上記のとおりMg、Al、Si、Ti、V、Cr、Mn、Co、Ni、Cu、Sn、Feが挙げられるが、耐食性の観点からはMg、Al、Si、Mn、Ni、Coが好ましい。また第2のメッキ層が、金属元素として、上記以外に、原料中に、或いは製造工程において混入する不純物を含有してもよい。
 また、上記メッキ鋼板においては、上記第1のメッキ層が、さらに、0.01~3質量%の窒素と、0.01~3質量%の硫黄と、の少なくとも1つを含むことが好ましく、0.03~1質量%の窒素と、0.03~1質量%の硫黄と、の少なくとも1つを含むことがさらに好ましい。窒素及び硫黄も、第1のメッキ層を電気メッキ法によって形成する際に、メッキ浴に加えられた添加剤に由来する元素であると推定される。添加剤を含む亜鉛メッキ浴を用いて鋼材に形成した第1のメッキ層に0.01~3質量%の窒素と、0.01~3質量%の硫黄と、の少なくとも1つを含ませることで、第1のメッキ層の表面がさらに一層平滑となり、極めて高い光沢性を示すこととなる。また、これら窒素、硫黄についても炭素と同様にGDSで測定することができる。
 さらにまた、上記メッキ鋼板においては、上記鋼材に対する上記第1のメッキ層の付着量が、片面あたり5~50g/mであることが好ましい。なお、本形態は、第2のメッキ層を含まない場合のメッキ鋼板についての形態である。上記の付着量を片面あたり5g/m以上とすることで、さらに優れた耐食性(犠牲防食能)を発揮することができる。一方、上記の付着量を片面あたり50g/m超としても、当該耐食性の更なる向上は見込めないので、50g/m以下とすることで、メッキ材料の節約を図ることができる。なお、上記付着量のさらに好ましい範囲は、片面あたり10~20g/mであり、これにより、上記効果をそれぞれさらに高いレベルで奏することができる。
 これに対し、上記メッキ鋼板においては、上記第2のメッキ層に対する上記第1のメッキ層の付着量が、片面あたり2~10g/mであることが好ましい。なお、本形態は、第2のメッキ層を含む場合のメッキ鋼板についての形態である。第2のめっき層を設ける場合、上記の付着量を片面あたり2g/m以上とすることで、第2層のめっきに起因する模様や色調を隠蔽して無彩色となり、優れた光沢を発揮することができる。一方、上記の付着量を片面あたり10g/m超としても、更なる無彩色化や光沢の向上は見込めないので、10g/m以下とすることで、メッキ材料の節約を図ることができる。なお、上記付着量の上限値のさらに好ましい範囲は、片面あたり6g/mであり、これにより、上記効果をさらに高いレベルで奏することができる。
 次に、上記メッキ鋼板においては、上記第1のメッキ層の平均結晶粒径が5~80nmであることが好ましい。第1のメッキ層の平均結晶粒径もメッキ鋼板表層の光学特性に影響を及ぼす。一般に、第1のメッキ層の平均結晶粒径が過度に大きい場合には、十分な光沢性が実現されない。このため、メッキ層の平均結晶粒径は80nm以下であることが好ましく、30nm以下であることがより好ましい。これに対し、上記平均結晶粒径の下限値は特に規定する必要はないが、5nm以上であれば工業生産が容易である。
 第1のメッキ層の平均結晶粒径は、透過顕微鏡像から結晶粒径の平均値を直接的に求めてもよいが、X線回折ピークの形状分析によって求めてもよい。或いはまた、下記式(Sherreの式)を用いて結晶粒径(D)を簡便に求めることもできる。
    D=(0.9λ)/(βcosθ)
 なお、上記式中、λは測定X線波長、βは半価幅(rad)、θは回折線のブラッグ角度である。
 さらに、上記メッキ鋼板においては、上記第1のメッキ層の表面粗度が、SPM(走査型プローブ顕微鏡)で測定した場合に、Ra(算術平均粗さ)で80nm以下であることが好ましい。メッキ鋼板の第1のメッキ層の表面の粗さは、メッキ鋼板の光学特性に影響を及ぼす。即ち、一般に、メッキ層の表面粗度が低いほど、メッキ鋼材の光沢度は高くなる。このため、第1のメッキ層の表面の粗度が過度に高い場合には、当該表面が鏡面とならず、メッキ鋼板の最表面が優れた光沢性を有するには至らない。
 このことは、上述した第1のメッキ層の平均結晶粒径と、第1のメッキ層の表面粗度との相関関係によっても容易に理解される。即ち、第1のメッキ層の組織を微細化させること(平均結晶粒径を小さくすること)により、当該メッキ層の粗度を低くすること(平滑化すること)ができ、ひいては、第1のメッキ層の表面の光沢度を増大させることが可能となる。
 また、第1のメッキ層の表面粗度は、人間の可視光領域における波長(380nm~810nm)とも密接に関連している。即ち、当該可視光領域における波長の約10分の1の粗度であれば、ほぼ可視光領域の全波長の光を正反射し、その結果、メッキ鋼板の色調が物体色となり、かつ、光沢度の高い外観を呈するものとなる。さらに、第1のメッキ層の表面の粗度はメッキ前の鋼材ヘアライン(製品の美観を目的として研磨により付けられた長い筋目)や、エンボス(鋼材に文字や絵柄等を浮き彫りにする加工)等のパターニングにも依存するが、粗度を測定する箇所は、マクロなパターンは光沢感の認識には影響しないという理由から、パターンの凸部でよい。なお、第1のメッキ層の粗度の下限値は特に設定する必要はないが、当該メッキ層表面が過度に平滑であると、擦り疵や、荷づれの原因となるので、Ra(算術平均粗さ)を5nm以上とすることが好ましい。
 なお、第1のメッキ層の光沢度は、上述した当該メッキ層自体の平均結晶粒径や表面粗度のみならず、メッキ原材の粗度にも依存する。一般に、メッキ原材の粗度が低いほど、メッキ鋼材の光沢度は高くなる。メッキ原材の粗度は、メッキ鋼材の光沢度以外の観点(例えば、プレス成時の潤滑性)からも制御する必要がある。また、第1のメッキ層を十分な厚みとすれば、メッキ原材の粗度に起因する上記光沢度への影響は小さくなる。以上により、本発明ではメッキ原材の粗度はあえて限定しない。
 第1のメッキ層のメッキ原材の粗度は、様々な方法で調整することができる。具体的な調整方法としては、ロール圧延による転写、ショットブラスト、研磨などが挙げられるが、これらに限らず他の公知の手段を適用することもできる。
 加えて、上記メッキ鋼板においては、上記第1のメッキ層は、Znに次いでFeの含有量が多く、上記金属間化合物相については、δ相(FeZn10)、Γ相(FeZn)、Γ相(FeZn)のいずれかが主層(面積率が最大の相)であることが好ましい。即ち、Znに次いでFeの含有量を多くすることで、η相(Zn相)の生成が抑制され、η相(Zn相)と比べて結晶化過電圧の大きい上記金属間化合物相が主相となり微細析出することにより、60°鏡面光沢法Gs60°によるメッキ表面光沢度が80以上となり、メッキ層の表面がさらに優れた光沢性を有するものとなる。
 このようなめっき相の構成は透過電子顕微鏡の回折像から直接的に求めてもよいが、X線回折強度から求めてもよい。電気めっきで形成されるめっき層は歪みが多く、基板の配向性などの影響を受けるために通常の文献値などと異なる場合が多い。しかし、本発明におけるη相の有無はターゲットにCoを用いて2θ/θ法で45.1°~46.1°のピーク強度の最大値を48.0°~52.0°のピーク強度の最大値と比較することにより判定できる。45.1°~46.1°のピーク強度の最大値が48.0°~52.0°のピーク強度の最大値の20%以下であれば、光沢性に悪影響を及ぼすような量のη相(Zn)は存在せず、10%以下であれば実質的な影響は見られない。また第2のめっき層が存在する場合にはX線の入射角を変えて第2のめっき層の影響を除去すればよい。
<メッキ鋼材の製造方法>
 以下、本発明に係るメッキ鋼板の製造方法について、詳細に説明する。
(第1のメッキ層の形成方法)
 本発明に係るメッキ鋼材は、上記の第1のメッキ層(最表メッキ層)を形成するに際して、硫酸亜鉛、硫酸ナトリウム、及び硫酸を含み、さらにジアリルアミン重合体及びジアリルジアルキルアンモニウム塩重合体の少なくとも1種を添加した亜鉛メッキ浴を用いて、鋼材(或いは後述する第2のメッキ層)に電気亜鉛メッキを行うことによって、製造する。また、電気亜鉛メッキ浴には、Znの他に、Fe、Co、Niの少なくとも1つの元素を添加することで、Fe、Co、Niの少なくとも1つの元素とZnとを含む亜鉛合金メッキ層を鋼材に直接的又は間接的に形成する。
 電気亜鉛メッキ浴には、上述のとおり、Znの他に、Fe、Co、Niの少なくとも1つの元素(元素X)を添加する。メッキ浴中における元素XとZnとのモル濃度比率及びモル濃度は、下記2つの式をともに満たすよう調整する。このように、メッキ浴の組成等を調整することにより、結晶粒の粗大化が抑制されるとともに、優れた耐食性(犠牲防食能)を有するとともに、無彩色でかつ優れた光沢性を有する第1のメッキ層を形成することができる。
 0.70≧X2+/(Zn2++X2+)≧0.50
 Zn2++X2+≧0.7mol/l
 メッキ浴中のモル濃度比率及びモル濃度が、上記2つの式の少なくとも1つの範囲外である場合には、第1のメッキ層の光沢性が低下するほか、当該メッキ層の色調が無彩色でなくなり、{(2a*)+(b*)0.5≦5.0を満たさなくなるおそれがある。また、上記2つの式をともに満足するメッキ浴を用いることで、得られる第1のメッキ層の結晶粒の微細化を促進させることができる。なお、電気亜鉛メッキ浴には、その他に、メッキ浴中の金属イオン(Zn2+、Fe2+、Co2+、Ni2+)の対イオンとなるSO42-、Clが不可避的に浴中に混入される。
 また、第1のメッキ層を合金メッキ化するにあたり、Zn-Ni系メッキ層を形成するにはメッキ液に硫酸ニッケル又は塩化ニッケルを添加し、Zn-Fe系メッキ層を形成するにはメッキ液に硫酸鉄又は塩化鉄を添加し、Zn-Co系メッキ層を形成するにはメッキ液に硫酸コバルト又は塩化コバルトを添加すればよい。
 上記の電気メッキにおいては、電流密度を5~15kA/mとすることで、電流密度と通電時間との積であるク-ロン数を制御して目的のメッキ付着量を実現することができる。電流密度を5kA/m以上とすることで、製膜速度が十分となり、また、粗大な結晶粒が形成され難くなって第1のメッキ表面がより平滑な状態となる。また、電流密度を5kA/m以上とすることで、η相の生成を抑制でき、無彩色となる。一方、電流密度を15kA/m以下とすることで、鋼材表面(或いは第2のメッキ層表面)へのZn、Fe、Co、Ni等の金属元素の供給が円滑に行われ、均一で密着性の良好な第1のメッキ層が得られる。当該電流密度を7kA/m以上12kA/m以下とした場合には、上記各効果がさらに高いレベルで奏されるため、好ましい。
 また、浴温や、被メッキ材である鋼材(或いは第2のメッキ層)とメッキ液との間の相対流速の制御等については、公知の技術を用いることができる。具体的には、電気メッキ時の、メッキ浴と被メッキ材(鋼材或いは第2のメッキ層)との間の相対液流速は0.5m/sec以上とすることが好ましい。相対液流速が大きいほど、被メッキ材とメッキ液間の拡散層が薄くなり、金属イオンの供給が容易となる。これは、特に、高電流密度でのメッキ処理の場合に有効である。相対液流速の与え方は種々存在するが、被メッキ材が鋼板である場合は、高速で通板する方法や、対向流を付与する方法がある。なお、相対液流速の上限は特に規定するものではないが、5m/sec以上になると、メッキ液の持ち出しや、対向流を生むポンプ能力といった課題が発生するので好ましくない。
 メッキ浴のpHは、1~3の範囲であることが好ましい。メッキ浴のpHを1以上とすることで、電気メッキ時の競争反応となる水素発生を抑制し、電流効率の著しい低下を抑制することができる。また、メッキ浴のpHを3以下とすることで、メッキ浴中の金属元素(Zn、Fe、Co、Ni)を安定して溶解させた状態に維持することができる。なお、pHを1.5~2.5の範囲とした場合には、上記各効果がさらに高いレベルで奏される。
 メッキ浴温度は、電流効率とメッキ液蒸発の観点から、40~60℃にすることが好ましい。即ち、メッキ浴温度を40℃以上とすることで、優れた電流効率を実現できる一方、60°以下とすることで、メッキ液蒸発を抑制することができる。
 メッキ浴には、ジアリルアミン重合体及びジアリルジアルキルアンモニウム塩重合体の少なくとも1種を含む光沢添加剤(以下、単に「添加剤」と称する場合がある。)を、0.1g/l~10g/l含有させることが好ましい。これらの添加剤は、第1のメッキ層中に、η相(Zn相)を析出させずに、特定の金属間化合物相(δ相(FeZn10)、Γ相(FeZn)、Γ相(FeZn)、δ相(NiZn22)、γ相(NiZn21)、及びγ相(CoZn21))のみを析出、成長させるために、さらには第1のメッキ層の結晶粒径を微細化するために、用いられる。
 具体的に、ジアリルアミン重合体の例として、ジアリルアミン塩酸塩重合体、ジアリルアミン重合体、メチルジアリルアミン塩酸塩重合体、メチルジアリルアミンアミド硫酸塩重合体、メチルジアリルアミン酢酸塩重合体、ジアリルアミン塩酸塩・二酸化硫黄共重合体、ジアリルアミン酢酸塩・二酸化硫黄共重合体、メチルジアリルアミン塩酸塩・二酸化硫黄共重合体が挙げられる。ジアリルアミン重合体は、これらを単独で用いてもよいし、これらの少なくとも2種を混合したものを用いてもよい。
 また、ジアリルジアルキルアンモニウム塩重合体の例として、ジアリルジメチルアンモニウムクロリド重合体、ジアリルメチルエチルアンモニウムエチルサルフェイト重合体、ジアリルメチルエチルアンモニウムエチルサルフェイト・二酸化硫黄共重合体、ジアリルジメチルアンモニウムクロリド・二酸化硫黄共重合体、ジアリルジメチルアンモニウムクロリド・アクリルアミド共重合体、部分3-クロロ-2-ヒドロキシプロピル化ジアリルアミン塩酸塩・ジアリルジメチルアンモニウムクロリド共重合体が挙げられる。ジアリルジアルキルアンモニウム塩重合体としては、これらを単独で用いてもよいし、これらの少なくとも2種を混合したものを用いてもよい。
 さらに、ジアリルアミン重合体とジアリルジアルキルアンモニウム塩重合体を混合したものを添加剤として用いることもできる。混合態様は2種類に限られず、3種類以上の重合体を混合してもよい。
 特に、ジアリルアミン重合体及びジアリルジアルキルアンモニウム塩重合体のうち、5員環構造を有する重合体が好ましい。上記重合体が5員環構造を有することで、第1のメッキ層中に、特定の金属間化合物相(δ相(FeZn10)、Γ相(FeZn)、Γ相(FeZn)、δ相(NiZn22)、γ相(NiZn21)、及びγ相(CoZn21))を効率的に析出、成長させることができるとともに、第1のメッキ層の結晶粒径を高いレベルで微細化することができる。なお、これらの現象がいかなるメカニズムによるものかについては定かではないが、当該現象は本発明者らによって経験的に判明した。
 上記重合体に5員環構造が含まれるか否かの評価方法は、以下のように行うことができる。即ち、第1のメッキ層を溶解して有機物を共沈させないように金属イオンを除去し、構造を壊さないように精製し、5員環構造を特定する。具体的には、各種核磁気共鳴(NMR:Nuclear Magnetic Resonance)分光法により5員環構造を特定することができる。
 添加剤の量は、メッキ浴中、0.1g/l~10g/lの範囲とする。メッキ浴中に上述した添加剤を含有させて電気メッキを行うと、第1のメッキ層の形成時に、電流が集中する部位に添加剤が配位し、当該部分におけるメッキ成長が阻害されるが、添加剤が配位していない部分では第1のメッキ層の成長が促進され、形成される当該メッキ層の表面が平滑となり、高い光沢性を実現することができる。添加剤の量を、メッキ浴中、0.1g/l未満とすると、上記の添加剤の配位する量が不十分であるため、上記効果が得られない。一方、添加剤の量を、メッキ浴中、10g/l超とすると、添加剤の配位する量が多すぎて逆に不均一となるため、上記効果が得られない。なお、添加剤の量を0.2g/l~4g/lとすると、上記効果がそれぞれさらに高いレベルで奏される。
 また、本発明に係る添加剤の平均分子量は、1000~10000の範囲とすることが好ましい。添加剤の平均分子量を1000以上とすることで、第1のメッキ層が過度に成長することを抑制することができる。一方、当該平均分子量を10000以下とすることで、メッキ浴中に添加剤が溶解し難くなることを回避することができる。添加剤の平均分子量を、2000~6000の範囲とした場合には、上記効果がそれぞれ高いレベルで奏される。
 以上は第1のメッキ層の形成方法に関する記載であるが、これらの記載は、鋼材に直接メッキ層を形成する場合は勿論のこと、後述する第2のメッキ層に対して第1のメッキ層を形成する場合にも同等に適用することができる。
(第2のメッキ層の形成方法)
 次に、本発明に係るメッキ鋼板においては、鋼材と第1のメッキ層との間に、第2のメッキ層を介在させてもよい。これにより、メッキ鋼材の耐食性(犠牲防食能)がさらに高められる。第2のメッキ層は、硫酸亜鉛、硫酸ナトリウム、及び硫酸を含む亜鉛メッキ浴を用いて、鋼材に電気亜鉛メッキを行うことによって形成することができる。また、電気亜鉛メッキ浴には、Znの他に、Mg、Al、Si、Ti、V、Cr、Mn、Co、Ni、Cu、Sn、Feの少なくとも1つの元素を添加してもよい。
 第2のメッキ層の形成条件としては、電流密度を1~20kA/m(より好ましくは5~15kA/m)とすることで、所望のメッキ付着量を実現することができる。また、電気メッキ時の、メッキ浴と被メッキ材(鋼材)間の相対液流速を0.5m/sec以上とすることで、金属イオンの供給を容易とすることができる。さらに、メッキ浴のpHを1以上とすることで、電気メッキ時の競争反応となる水素発生を抑制し、電流効率を著しく低下させることを抑制することができる一方、当該pHを3以下とすることで、メッキ浴中の元素(Zn、Mg、Al、Si、Ti、V、Cr、Mn、Co、Ni、Cu、Sn、Fe)を安定して溶解させた状態に維持することができる。なお、pHを2以下の範囲とした場合には、上記各効果がさらに高いレベルで奏される。
 加えて、第2のメッキ層の形成に際しては、メッキ浴温度を電流効率とメッキ液蒸発の観点から、40~60℃とし、メッキ浴に添加剤を適宜添加してもよい。
 また、第2のメッキ層は、亜鉛を含む溶融メッキ浴を用いて、鋼材に溶融メッキを行うことによって形成することもできる。また、溶融亜鉛メッキ浴には、Znの他に、Mg、Al、Si、Ti、V、Cr、Mn、Co、Ni、Cu、Snの少なくとも1つの元素を添加してもよい。
 溶融メッキ浴を用いる場合の第2のメッキ層の形成条件としては400℃~650℃に加熱したメッキ浴に還元焼鈍を施した鋼材を浸漬し、所定時間後に引き上げればよく、ワイピングを行うことでメッキ付着量を制御できる。また、めっき皮膜にFeを含ませる場合にはメッキ浴から引き上げ後450℃以上に加熱し、合金化すればよい。
(第1のメッキ層の表面処理方法)
 さらに、本発明に係るメッキ鋼材は、各種特性の向上を目的として、最表メッキ層である第1のメッキ層の表面に対し、さらに各種の処理を行うことが可能である。
 第1のメッキ層の変色防止と、後述する塗料の密着性改善と、を図るため、第1のメッキ層上に、クロメート処理又はクロメートフリー処理(ノンクロメ-ト処理)により、防錆被膜層を形成する一次防錆処理を行うことができる。クロメート処理の場合には、例えば、クロム酸と反応促進剤とを主成分とするクロメート処理液を用いることができ、クロメ-ト付着量を1~200mg/mとする。クロメ-ト付着量が1mg/m未満であると十分な防錆効果が得られず、また200mg/mを超えると防錆効果が飽和してしまう。
 一方、クロメートフリー処理の場合には、有害な六価クロムを処理液中に含有せずにZr、Tiの塩などを含む処理液、或いはシランカップリング剤を含む処理液などを用いることができる。クロメートフリー処理では、Ti、Zr、P、Ce、Si、Al、Li等を主成分とするクロムを含有しないクロメートフリー処理層が形成される。クロメートフリー処理層の付着量は、1~1000mg/mとすることが好ましい。クロメートフリー処理層の付着量が1mg/m未満であると、十分な防錆効果が得られない一方、1000mg/mを超えると、防錆効果が飽和する。
 また、メッキ鋼材の変色防止性、及び耐疵付き性をより高いレベルで発揮させるために、クロメート処理等の後に、塗膜を0.5~100μmの厚さで形成することが好ましい。塗膜は公知の塗装方法で形成することができる。塗膜材料としては、アクリル系焼付け塗料、ウレタン系塗料、エポキシ系塗料、ポリエステル系塗料、ポリエ-テルサルホン系塗料、メラミンアルキッド系塗料などが挙げられる。塗膜形成には、これらの塗料を単独で使用してもよいし、これら塗料の混合物を用いてもよい。塗装方法としては、ロールコーター法、カーテンコーター法、スプレーガン法、静電法などが挙げられる。これらの塗装方法の中では、ロールコーター法、カーテンコーター法が生産性と均一性の点で好ましい。なお、本発明に係るメッキ鋼板の高い光沢度を活かすためには、光の散乱や吸収を避けるため、着色顔料を添加していないクリヤ塗料を用いることが好適である。
 以上に示す、本発明に係るメッキ鋼材の製造方法によれば、最表メッキ層である第1のメッキ層(第1のメッキ層)を形成するに際し、特定量のジアリルアミン重合体及びジアリルジアルキルアンモニウム塩重合体の少なくとも1種を亜鉛メッキ浴に添加し、かつ、メッキ浴の組成を調整して電気亜鉛メッキを行うことで、優れた耐食性(犠牲防食能)を有するとともに、無彩色であってしかも優れた光沢性を有する、メッキ鋼材を得ることができる。
 以下、本発明の効果を発明例により具体的に説明する。なお、本発明は、以下の発明例で用いた条件に限定されるものではない。また、表1~6-2中の下線部は、本発明の範囲から逸脱していることを意味する。
 厚さが0.6mmである、焼鈍・調圧済みの鋼板(成分組成として、C:0.001%、Si:0.01%、Mn:0.1%、P:0.008%、S:0.004%を、それぞれ含む)を、濃度30g/LのNaSiO処理液を用い、処理液60℃、電流密度20A/dm、処理時間10秒の条件で電解脱脂し、水洗した。次いで、電解脱脂した鋼材を、濃度50g/Lの60℃HSO水溶液に10秒間浸漬し、さらに水洗することで、メッキ前処理を行った。なお、鋼板のL方向(圧延方向に平行な方向)のRa(算術平均粗さ)は0.6μmであった。
 次いで、表1に示す組成を有し、かつ、表2、表3-1、及び表3-2に示す添加剤を含有させたメッキ浴を用いて、表2、表3-1、及び表3-2に示す諸条件で電気メッキを行い、鋼板上に第1のメッキ層を形成し、表4、表5-1及び表5-2に示す各特性を示す試験例1~74を得た。
 続いて、表4に示す特定の試験例(試験例1、3、8、9、12、19)と同一の鋼板及び第1のメッキ層を有し、かつ、これらの間に表6-1及び表6-2に示す組成の第2のメッキ層を備える試験例75~125を得た。第2のメッキ層の形成態様は、第1のメッキ層の形成態様に準ずる態様とした。
 なお、表4~表6-2中、金属間化合物相の存在形態について、δ相(FeZn10)、Γ相(FeZn)、Γ相(FeZn)のいずれかを主相とするものを「A」、δ相(FeZn10)、Γ相(FeZn)、Γ相(FeZn)、δ相(NiZn22)、γ相(NiZn21)、及びγ相(CoZn21)のうちの少なくとも1つの金属間化合物相を含むものを「B」、上記A、Bに該当しない場合を「C」と標記した。また、これらの表中、X線回折強度について、45.1°~46.1°のピーク強度の最大値が48.0°~52.0°のピーク強度の最大値の10%以下の場合を「A」、10%超~20%以下の場合を「B」、20%超の場合を「C」と標記した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 メッキ後、第1のメッキ層の付着量が表4、表5-1及び表5-2に示すような各メッキ鋼板、或いは第1及び第2のメッキ層の付着量が表6-1及び表6-2に示すようなメッキ鋼板を水洗・乾燥した。次いで、測定機器としてコニカミノルタ製CM-2500dを用い、光源D65、10°視野で、SCI方式にて、「a*」及び「b*」を測定した。また、光沢度計でGs60°を、L方向(圧延方向)及びC方向(圧延方向に直角な方向)の各Ra(算術平均粗さ)に基づいて、測定した。表4~表6-2に示す「Gs60°」とは、L方向、C方向の各Raに基づいて測定した値の平均値である。さらに、第1のメッキ層に含まれる炭素含有率(質量%)を、HORIBA製高周波グロー放電発光表面分析装置を用いて、X線回折ピークの形状分析によりメッキ層の平均結晶粒径(nm)を求めることで算出した。なお、平均結晶粒径を求めるに際して、Sherreの式{(D=(0.9λ)/(βcosθ))}を用いた。X線回折測定は、ターゲットにCoを用い、加速電圧30kV、電流100mA、スキャンスピード:1°/min、走査軸:2θで測定した。以上の評価結果を表4~表6-2に併記する。
 第1及び第2のメッキ層の分析方法については、以下のとおりとした。即ち、各元素の含有率については、表面から深さ方向にグロー放電発光分析(GDS: Grow Discharge emission atomic Spectrometry)を行って分析した。
 また、この際のめっき層/鋼基材等の界面は以下のようにして決定した。即ち、表面から分析するに際し、金属元素の合計が70質量%を越えたところを第1のメッキ層の最表面と判別し、Fe、Ni、Coの合計が5~20質量%、かつ炭素が0.1~20質量%である領域を第1のメッキ層と判定し、そこから鋼基材に由来するFeが50質量%を越える深さまでを第2のメッキ層と判定した。また、第2のメッキ層が無い場合には金属元素の合計が70質量%を越えたところから鋼基材に由来するFeが50質量%を越える深さまでを第1のめっき層と判定した。
 表4~表6-2によれば、(メッキ層に含ませる亜鉛以外の元素の割合と、特に、当該メッキ層に含ませる金属間化合物相の種類と、について改良を行った)発明例はいずれも、{(2a*)+(b*)0.5が5.0以下であり、Gs60°が80以上であった。このため、発明例のメッキ鋼材については、いずれも、優れた耐食性を有するとともに、無彩色であってしかも優れた光沢性を有する、といえる。
 これに対し、(メッキ層に含ませる亜鉛以外の元素の割合と、特に、当該メッキ層に含ませる金属間化合物相の種類と、の少なくとも1つについて改良を行っていない)比較例はいずれも、{(2a*)+(b*)0.5≦5.0、及びGs60°≧80の少なくとも1つを満たさなかった。このため、比較例のメッキ鋼材については、いずれも、優れた耐食性を有するとともに、無彩色であってしかも優れた光沢性を有する、とはいえない。

Claims (10)

  1.  鋼材と、前記鋼材の表面に直接的又は間接的に形成された第1のメッキ層と、を備えるメッキ鋼材において、
     前記第1のメッキ層は、合計含有率5.0~20質量%であるFe、Ni、Coのうちの少なくとも1つの元素と、0.1~20質量%の炭素と、Znとを含み、
     前記第1のメッキ層について、δ相(FeZn10)、Γ相(FeZn)及びΓ相(FeZn)の合計量が50%以上であり、
     前記第1のメッキ層の表面が、光源D65光、10°視野の分光測色において、SCI方式で{(2a*)+(b*)0.5≦5.0を満たし、
     60°鏡面光沢法Gs60°によるメッキ表面光沢度が80以上である、ことを特徴とするメッキ鋼材。
  2.  前記第1のメッキ層について、δ相(NiZn22)、γ相(NiZn21)及びγ相(CoZn21)の合計量が30%以上であり、前記第1のメッキ層の表面が、光源D65光、10°視野の分光測色において、SCI方式で{(a*)+(b*)0.5≦3.0をさらに満たす、請求項1に記載のメッキ鋼板。
  3.  前記鋼材と前記第1のメッキ層との間に、第2のメッキ層を備え、
     前記第2のメッキ層が、含有率が0~20質量%であるMg、Al、Si、Ti、V、Cr、Mn、Co、Ni、Cu、Sn、Feのうちの少なくとも1つの元素と、Znとを含む、請求項1又は2に記載のメッキ鋼材。
  4.  前記第1のメッキ層が、さらに、0.01~3質量%の窒素と、0.01~3質量%の硫黄と、の少なくとも1つを含む、請求項1又は2に記載のメッキ鋼材。
  5.  前記鋼材に対する前記第1のメッキ層の付着量が、片面あたり5~50g/mである、請求項1又は2に記載のメッキ鋼材。
  6.  前記第2のメッキ層に対する前記第1のメッキ層の付着量が、片面あたり2~10g/mである、請求項3に記載のメッキ鋼材。
  7.  前記鋼材に対する前記第2のメッキ層の付着量が、片面あたり5~50g/mである、請求項3に記載のメッキ鋼材。
  8.  前記第1のメッキ層の平均結晶粒径が5~80nmである、請求項1又は2に記載のメッキ鋼材。
  9.  前記第1のメッキ層の表面粗度がRa80nm以下である、請求項1又は2に記載のメッキ鋼材。
  10.  前記第1のメッキ層は、Znに次いでFeの含有量が多く、前記金属間化合物については、δ相(FeZn10)、Γ相(FeZn)及びΓ相(FeZn)のいずれかが主層である、請求項1又は2に記載のメッキ鋼材。
PCT/JP2015/054667 2014-02-20 2015-02-19 メッキ鋼材 WO2015125887A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
MX2016010812A MX353652B (es) 2014-02-20 2015-02-19 Acero chapado.
CN201580002345.3A CN105683422B (zh) 2014-02-20 2015-02-19 镀敷钢材
JP2015531378A JP5861806B1 (ja) 2014-02-20 2015-02-19 メッキ鋼材

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-030822 2014-02-20
JP2014030822 2014-02-20

Publications (1)

Publication Number Publication Date
WO2015125887A1 true WO2015125887A1 (ja) 2015-08-27

Family

ID=53878384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054667 WO2015125887A1 (ja) 2014-02-20 2015-02-19 メッキ鋼材

Country Status (5)

Country Link
JP (1) JP5861806B1 (ja)
CN (1) CN105683422B (ja)
MX (1) MX353652B (ja)
TW (1) TWI541387B (ja)
WO (1) WO2015125887A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017211217A (ja) * 2016-05-24 2017-11-30 国立大学法人広島大学 耐食性の評価方法およびめっき製品の修復方法
KR20190099536A (ko) 2017-10-12 2019-08-27 닛폰세이테츠 가부시키가이샤 아연계 전기 도금 강판
JP2020053437A (ja) * 2018-09-21 2020-04-02 トヨタ自動車株式会社 希土類磁石及びその製造方法
JPWO2019194229A1 (ja) * 2018-04-03 2020-04-30 日本製鉄株式会社 亜鉛系電気めっき鋼板
WO2020213690A1 (ja) * 2019-04-17 2020-10-22 日本製鉄株式会社 亜鉛系めっき鋼板
JPWO2020241866A1 (ja) * 2019-05-31 2020-12-03
JPWO2020241861A1 (ja) * 2019-05-31 2020-12-03
US20220081795A1 (en) * 2018-12-19 2022-03-17 Posco Electroplated steel sheet having excellent surface appearance, and manufacturing method therefor
JP7333401B2 (ja) 2018-12-19 2023-08-24 ポスコ カンパニー リミテッド 光沢度及び表面特性に優れためっき鋼板、その製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018143267A1 (ja) * 2017-01-31 2018-08-09 アベル株式会社 発色ステンレス鋼板、発色ステンレス鋼コイル及びその製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6314890A (ja) * 1986-07-05 1988-01-22 Nippon Steel Corp 装飾亜鉛メツキ鋼板およびその製造方法
JPS63162895A (ja) * 1986-12-25 1988-07-06 Kawasaki Steel Corp 灰色表面処理鋼材の製造法
JPH0331496A (ja) * 1989-06-28 1991-02-12 Kawasaki Steel Corp Zn―Ni合金電気めっき鋼板の製造方法
JP2004346364A (ja) * 2003-05-21 2004-12-09 Nippon Steel Corp ゴールドメタリック調意匠性めっき鋼板及びその製造方法
JP2011252182A (ja) * 2010-05-31 2011-12-15 Nippon Steel Corp 表面処理鋼板及びその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000050669A2 (en) * 1999-02-25 2000-08-31 Macdermid Canninc Plc Zinc and zinc alloy electroplating additives and electroplating methods
US20060283715A1 (en) * 2005-06-20 2006-12-21 Pavco, Inc. Zinc-nickel alloy electroplating system
CA2775668C (en) * 2009-10-26 2013-09-17 Nippon Steel Corporation Galvannealed steel sheet and producing method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6314890A (ja) * 1986-07-05 1988-01-22 Nippon Steel Corp 装飾亜鉛メツキ鋼板およびその製造方法
JPS63162895A (ja) * 1986-12-25 1988-07-06 Kawasaki Steel Corp 灰色表面処理鋼材の製造法
JPH0331496A (ja) * 1989-06-28 1991-02-12 Kawasaki Steel Corp Zn―Ni合金電気めっき鋼板の製造方法
JP2004346364A (ja) * 2003-05-21 2004-12-09 Nippon Steel Corp ゴールドメタリック調意匠性めっき鋼板及びその製造方法
JP2011252182A (ja) * 2010-05-31 2011-12-15 Nippon Steel Corp 表面処理鋼板及びその製造方法

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017211217A (ja) * 2016-05-24 2017-11-30 国立大学法人広島大学 耐食性の評価方法およびめっき製品の修復方法
KR20190099536A (ko) 2017-10-12 2019-08-27 닛폰세이테츠 가부시키가이샤 아연계 전기 도금 강판
JPWO2019194229A1 (ja) * 2018-04-03 2020-04-30 日本製鉄株式会社 亜鉛系電気めっき鋼板
KR20200105697A (ko) 2018-04-03 2020-09-08 닛폰세이테츠 가부시키가이샤 아연계 전기 도금 강판
JP2020053437A (ja) * 2018-09-21 2020-04-02 トヨタ自動車株式会社 希土類磁石及びその製造方法
JP7168394B2 (ja) 2018-09-21 2022-11-09 トヨタ自動車株式会社 希土類磁石及びその製造方法
JP7333401B2 (ja) 2018-12-19 2023-08-24 ポスコ カンパニー リミテッド 光沢度及び表面特性に優れためっき鋼板、その製造方法
US20220081795A1 (en) * 2018-12-19 2022-03-17 Posco Electroplated steel sheet having excellent surface appearance, and manufacturing method therefor
KR102566779B1 (ko) * 2019-04-17 2023-08-16 닛폰세이테츠 가부시키가이샤 아연계 도금 강판
JP7207472B2 (ja) 2019-04-17 2023-01-18 日本製鉄株式会社 亜鉛系めっき鋼板
KR20210103512A (ko) 2019-04-17 2021-08-23 닛폰세이테츠 가부시키가이샤 아연계 도금 강판
CN113383111A (zh) * 2019-04-17 2021-09-10 日本制铁株式会社 锌系镀层钢板
JPWO2020213690A1 (ja) * 2019-04-17 2021-09-13 日本製鉄株式会社 亜鉛系めっき鋼板
JP2021181630A (ja) * 2019-04-17 2021-11-25 日本製鉄株式会社 亜鉛系めっき鋼板
WO2020213690A1 (ja) * 2019-04-17 2020-10-22 日本製鉄株式会社 亜鉛系めっき鋼板
CN113631744A (zh) * 2019-05-31 2021-11-09 日本制铁株式会社 热冲压用镀覆钢板
CN113631744B (zh) * 2019-05-31 2022-07-19 日本制铁株式会社 热冲压用镀覆钢板
KR20210143840A (ko) * 2019-05-31 2021-11-29 닛폰세이테츠 가부시키가이샤 핫 스탬프용 도금 강판
JP7207533B2 (ja) 2019-05-31 2023-01-18 日本製鉄株式会社 ホットスタンプ用めっき鋼板
WO2020241866A1 (ja) * 2019-05-31 2020-12-03 日本製鉄株式会社 ホットスタンプ用めっき鋼板
JP7284430B2 (ja) 2019-05-31 2023-05-31 日本製鉄株式会社 ホットスタンプ用めっき鋼板
KR102550953B1 (ko) * 2019-05-31 2023-07-05 닛폰세이테츠 가부시키가이샤 핫 스탬프용 도금 강판
JPWO2020241861A1 (ja) * 2019-05-31 2020-12-03
JPWO2020241866A1 (ja) * 2019-05-31 2020-12-03

Also Published As

Publication number Publication date
TW201536965A (zh) 2015-10-01
MX353652B (es) 2018-01-23
JP5861806B1 (ja) 2016-02-16
CN105683422A (zh) 2016-06-15
JPWO2015125887A1 (ja) 2017-03-30
CN105683422B (zh) 2017-04-12
TWI541387B (zh) 2016-07-11
MX2016010812A (es) 2016-10-26

Similar Documents

Publication Publication Date Title
JP5861806B1 (ja) メッキ鋼材
TW200837219A (en) Hot dip Zn-A1 alloy coated steel sheet and producing method therefor
WO2018230716A1 (ja) めっき鋼材
JPWO2019074102A1 (ja) 亜鉛系電気めっき鋼板
JP5858198B2 (ja) めっき鋼材、塗装鋼材及びめっき鋼材の製造方法
CN113383111B (zh) 锌系镀层钢板
US8956734B2 (en) Black resin steel plate having improved drawing ability and good manufacturing the same
JP3183630B2 (ja) 電気亜鉛めっき鋼板
KR102592017B1 (ko) 도금 강판
JP7339519B2 (ja) めっき鋼板
JP2001040494A (ja) 表面外観の優れた電気Znめっき鋼板及びその製造方法
JP3700186B2 (ja) 亜鉛表面の着色処理方法及び着色溶融亜鉛めっき鋼材
JP2019206179A (ja) 表面処理鋼板
JP2001049483A (ja) 色調の優れた電気亜鉛めっき鋼板及びその製造方法
JPH08188899A (ja) 電気亜鉛めっき鋼板およびその製法
JP7401735B2 (ja) めっき鋼板
JP7260772B2 (ja) 意匠性亜鉛めっき鋼板
JP2009209419A (ja) 色調に優れた電気Znめっき鋼板およびその製造方法
JPH09195063A (ja) 耐食性および外観に優れた白色クロメート処理鋼板
JP5930210B2 (ja) 錫めっき系表面処理鋼板とその製造方法
JP7046317B2 (ja) ヘッドレストステー
JPH0849091A (ja) 電気亜鉛めっき鋼板の製造方法
CN1124907C (zh) 涂有彩色树脂的金属板及其制造方法
JPH09111471A (ja) 色調安定性に優れたクロメート処理亜鉛めっき鋼板
JP3212842B2 (ja) 表面外観の均一性に優れた電気亜鉛めっき鋼板および表面処理電気亜鉛めっき鋼板

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015531378

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15751837

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/010812

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201606203

Country of ref document: ID

122 Ep: pct application non-entry in european phase

Ref document number: 15751837

Country of ref document: EP

Kind code of ref document: A1