WO2015122069A1 - 制御装置付き回転電機、電動パワーステアリング装置および制御装置付き回転電機の製造方法 - Google Patents

制御装置付き回転電機、電動パワーステアリング装置および制御装置付き回転電機の製造方法 Download PDF

Info

Publication number
WO2015122069A1
WO2015122069A1 PCT/JP2014/080456 JP2014080456W WO2015122069A1 WO 2015122069 A1 WO2015122069 A1 WO 2015122069A1 JP 2014080456 W JP2014080456 W JP 2014080456W WO 2015122069 A1 WO2015122069 A1 WO 2015122069A1
Authority
WO
WIPO (PCT)
Prior art keywords
control device
heat sink
electrical machine
rotating electrical
rear side
Prior art date
Application number
PCT/JP2014/080456
Other languages
English (en)
French (fr)
Inventor
迪 廣谷
中野 正嗣
宏之 和久
秋田 裕之
幸司 吉瀬
岩蕗 寛康
公輔 中野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201480075308.0A priority Critical patent/CN105993115B/zh
Priority to JP2015562695A priority patent/JP6184531B2/ja
Priority to US15/116,379 priority patent/US10236750B2/en
Priority to DE112014006362.2T priority patent/DE112014006362B4/de
Publication of WO2015122069A1 publication Critical patent/WO2015122069A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/02Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for suppression of electromagnetic interference
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0403Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by constructional features, e.g. common housing for motor and gear box
    • B62D5/0406Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by constructional features, e.g. common housing for motor and gear box including housing for electronic control unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/02Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for suppression of electromagnetic interference
    • H02K11/026Suppressors associated with brushes, brush holders or their supports
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/02Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for suppression of electromagnetic interference
    • H02K11/028Suppressors associated with the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • H02K9/227Heat sinks

Definitions

  • the present invention relates to a rotating electrical machine with a control device, an electric power steering device, and a manufacturing method of the rotating electrical machine with a control device, and more particularly to downsizing of the rotating electrical machine with a control device.
  • An electric power steering device for a vehicle includes a rotating electric machine integrated with a control device (for example, Patent Documents 1 to 15).
  • the control device is disposed on the counter-output shaft side of the rotating electrical machine (for example, Patent Document 1).
  • a power module that supplies a drive current and a heat sink that absorbs heat generated by the power module are provided outside the case of the rotating electrical machine.
  • the heat sink is connected to the periphery of the case of the rotating electrical machine via an intermediate member within the range of the outer diameter.
  • the motor frame is equipped with a bearing that supports the non-output shaft side of the rotating electrical machine.
  • a control board and a heat sink are arranged in the control device (for example, Patent Document 2).
  • a rotation sensor that reads the rotation angle of the rotor is provided to face the sensor permanent magnet in the axial direction.
  • the sensor permanent magnet is held at the end of the rotating shaft of the rotating electrical machine on the side opposite to the output shaft.
  • the heat sink is in contact with the switching element of the rotating electrical machine drive circuit.
  • a bearing on the side opposite to the output shaft is arranged on the heat sink, so that the shaft length is reduced and the number of parts is reduced.
  • the bearing on the opposite side of the output shaft is arranged on the heat sink to reduce the shaft length and the number of parts. Since a noise reduction coil and a capacitor are arranged between the heat sink and the control board, the distance between the bearing on the non-output shaft side and the control board is large. When the shaft length of the rotating electrical machine is large, the size and weight of the rotating electrical machine increase. Further, since the noise reduction coil and the capacitor are arranged so as to be embedded in the heat sink, the volume of the heat sink is reduced and the heat capacity of the heat sink is reduced. Further, when heat is absorbed by bringing the switching element of the control board into contact with the heat sink, the distance between the heat sink and the control board is increased, so that the length of the protrusion is increased and the size and weight of the rotating electrical machine are increased.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to reduce the size of a rotating electrical machine with a control device.
  • the rotating electrical machine with a control device supports a rotor having a permanent magnet for a sensor attached to the rear side of the rotating shaft, a stator having a stator core and an armature winding, and a front side of the rotating shaft.
  • a front housing to which the first bearing is fixed, a motor frame that is coupled to the front housing and accommodates the rotor and the stator, and a second bearing that supports the rear side of the rotating shaft is fixed.
  • a smoothing capacitor, and a noise reduction coil connected to the plurality of switching elements.
  • the microcomputer controls the drive circuit based on a signal from the rotation sensor to drive a plurality of switching elements, and at least one of the smoothing capacitor and the noise reduction coil is rear of the control board. It is arranged on the side.
  • the heat sink also serves as the rear housing, the number of parts, the cost, and the axial size can be reduced.
  • FIG. 3 is an explanatory diagram of the rotating electrical machine according to the first embodiment.
  • Explanatory drawing FIG. 3A showing the first embodiment of the shaft holding portion
  • explanatory drawing FIG. 3B showing the second embodiment of the shaft holding portion
  • explanatory drawing FIG. 3C showing the third embodiment of the shaft holding portion. 3C).
  • It is explanatory drawing which showed the circuit diagram of the control apparatus.
  • It is sectional drawing FIG. 5A which shows a heat sink
  • FIG. 5B which shows a heat sink.
  • FIG. 6A is a cross-sectional view illustrating the configuration of the switching element
  • FIG. 6B is a plan view illustrating the first configuration of the switching element
  • FIG. 6C is a plan view illustrating the second configuration of the switching element. is there.
  • FIG. 7A is a first cross-sectional view illustrating the configuration of the power module.
  • FIG. 7B is a plan view illustrating a first configuration of the power module.
  • FIG. 7C is a plan view illustrating a second configuration of the power module.
  • FIG. 7D is a second cross-sectional view illustrating the configuration of the power module.
  • FIG. 7E is a plan view illustrating a third configuration of the power module.
  • FIG. 7F is a plan view illustrating a fourth configuration of the power module. It is sectional drawing (FIG.
  • FIG. 8A which shows a 1st circuit wiring member, and a top view (FIG. 8B) which shows a 1st circuit wiring member.
  • FIG. 9A which shows a control board
  • FIG. 9B shows a control board.
  • shaft rotating shaft
  • FIG. 21B which shows the heat sink which concerns on Embodiment 2.
  • FIG. 6 is an explanatory diagram of a rotating electrical machine according to Embodiment 3.
  • FIG. 23A which shows the 1st circuit wiring member which concerns on Embodiment 4
  • a top view (FIG. 23B) which shows the 1st circuit wiring member which concerns on Embodiment 4.
  • FIG. 10 is an explanatory diagram of a rotating electrical machine according to a fifth embodiment. It is explanatory drawing of the rotary electric machine which concerns on Embodiment 6.
  • FIG. FIG. 10 is an explanatory diagram of a rotating electrical machine according to a seventh embodiment.
  • FIG. 10 is an explanatory diagram of a rotating electrical machine according to an eighth embodiment.
  • FIG. 20 is an explanatory diagram of a rotating electrical machine according to a ninth embodiment.
  • FIG. 38 is an explanatory diagram of a rotating electrical machine according to a tenth embodiment.
  • It is sectional drawing (FIG. 30A) which shows the heat sink concerning Embodiment 11, and the top view (FIG. 30B) which shows the heat sink concerning Embodiment 11.
  • FIG. 31A which shows the rotary electric machine which concerns on Embodiment 12, and a top view (FIG. 31B) which shows the rotary electric machine which concerns on Embodiment 12.
  • FIG. 32A which shows the rotary electric machine which concerns on Embodiment 13, and a top view (FIG.
  • FIG. 32B which shows the rotary electric machine which concerns on Embodiment 13.
  • FIG. 33A which shows the rotary electric machine which concerns on Embodiment 14, and a top view (FIG. 33B) which shows the rotary electric machine which concerns on Embodiment 14.
  • FIG. 25 is an explanatory diagram of a rotating electrical machine according to a fifteenth embodiment.
  • FIG. 38 is an explanatory diagram of a rotating electrical machine according to a sixteenth embodiment. It is sectional drawing (FIG. 36A) which shows a 1st circuit wiring member, and a top view (FIG. 36B) which shows a 1st circuit wiring member. It is sectional drawing (FIG.
  • FIG. 23 is an explanatory diagram of a rotating electrical machine according to a seventeenth embodiment.
  • FIG. 38 is an explanatory diagram of a rotating electrical machine according to an eighteenth embodiment.
  • FIG. 38 is an explanatory diagram of a rotating electrical machine according to the nineteenth embodiment.
  • FIG. 38 is an explanatory diagram of a rotating electrical machine according to a twentieth embodiment.
  • FIG. 38 is an explanatory diagram of a rotating electrical machine according to a twenty-first embodiment.
  • FIG. 38 is an explanatory diagram of a rotating electrical machine according to a twenty-second embodiment.
  • FIG. 38 is an explanatory diagram of a rotating electrical machine according to a twenty-third embodiment.
  • FIG. 38 is an explanatory diagram of a rotating electrical machine according to a twenty-fourth embodiment.
  • FIG. 38 is an explanatory diagram of a rotating electrical machine according to a twenty-fifth embodiment.
  • FIG. 1 is an explanatory diagram of an electric power steering apparatus 100 for an automobile according to an embodiment of the present invention.
  • the control device 4 and the motor unit 5 are connected and integrated to form a rotating electrical machine 10.
  • Power is supplied to the control device 4 of the rotating electrical machine 10 from a battery or an alternator via a connector 3a.
  • the motor unit 5 of the rotating electrical machine 10 includes a stator 15 and a rotor 16.
  • the torque is transmitted to the shaft 1c via the steering shaft 1b.
  • the torque (torque signal) detected by the torque sensor 2 is converted into an electrical signal and transmitted to the control device 4 of the rotating electrical machine 10 via the connector 3b.
  • vehicle information such as the vehicle speed is converted into an electrical signal and transmitted to the control device 4 of the rotating electrical machine 10 via the connector 3c.
  • the rotating electrical machine 10 is arranged in a direction parallel to the moving direction of the rack shaft (see the direction of the arrow).
  • the control device 4 calculates a necessary assist torque from the torque signal and the vehicle information, and supplies a current to the motor unit 5.
  • the torque generated by the rotating electrical machine 10 is decelerated by the gear box 6 in which a belt and a ball screw are incorporated, and generates a thrust that moves the rack shaft 7a inside the rack housing 7 in the direction of the arrow. As a result, the tie rod 8 moves and the tire can be steered to turn the vehicle.
  • the tie rod is a rod that connects the steering gear box to the knuckle arm of the wheel so that the steered wheel (mainly the front wheel) can be moved to the left and right in accordance with the steering operation.
  • a driver whose steering force is assisted by the torque of the rotating electrical machine 10 can turn the vehicle with a small steering force.
  • the rack boot 9 is provided so that foreign matter does not enter the apparatus.
  • the rotating electrical machine 10 has a structure in which the control device 4 and the motor unit 5 are connected and integrated.
  • a pulley 14 and a sensor permanent magnet 23 are attached to a rotating shaft 16 b of the rotating electrical machine 10.
  • the rotating shaft 16b of the rotating electrical machine 10 the side on which the pulley 14 is attached is referred to as the front side (or the output shaft side).
  • the side to which the sensor permanent magnet 23 is attached will be referred to as the rear side (or counter-output shaft side).
  • the control device 4 is disposed on the rear side (or the opposite output shaft side) of the rotating electrical machine 10.
  • the rotating electrical machine 10 and the control device 4 are substantially circular when viewed from the axial direction.
  • the stator 15 of the rotating electrical machine 10 includes a stator core 15a formed by laminating electromagnetic steel plates and an armature winding 15b housed in the stator core 15a.
  • the stator core 15a is fixed to the motor frame 22a.
  • the front side housing 22b is provided on the front surface of the rotating electrical machine 10.
  • the motor frame 22a and the front housing 22b are fixed with bolts 17e.
  • the front housing 22b is provided with a front bearing 17a (first bearing).
  • the front bearing 17a and the rear bearing 17b (second bearing) support the rotary shaft 16b in a rotatable manner.
  • Three-phase (U-phase, V-phase, W-phase) armature windings 15b are wound around the teeth of the stator core 15a via insulators.
  • the armature windings are connected to each other to form a three-phase connection.
  • Each terminal of the three-phase connection is connected to a total of three motor terminals 21.
  • the motor terminal may be composed of a conductor electrically connected to the armature winding of the motor, or may be composed of a terminal of a connection plate electrically connected to the armature winding. is there.
  • the armature winding 15b generates heat because a current for driving the rotating electrical machine 10 flows. Therefore, the heat dissipation and cooling are performed via the motor frame 22a and the like.
  • the rotating electrical machine 10 may have a structure in which a permanent magnet is embedded in the rotor core 16a, or a reluctance motor or induction machine that does not use a permanent magnet.
  • the rotor 16 of the rotating electrical machine 10 includes a rotor core 16a, a rotating shaft 16b, a permanent magnet 16c, and the like.
  • the rotor core 16a is press-fitted into the rotating shaft 16b.
  • the permanent magnet 16c is fixed to the surface of the rotor core 16a.
  • a sensor permanent magnet 23 is directly attached to the rear end of the rotating shaft 16b.
  • the sensor permanent magnet 23 protrudes from the heat sink 20 to the rear side. Since the axial length of the rotation shaft 16b is shortened, the amount of eccentricity of the sensor permanent magnet 23 relative to the rotation sensor 24 can be reduced.
  • the sensor permanent magnet 23 generates a magnetic flux on the rear side.
  • a nonmagnetic holder may be attached between the rotating shaft 16b and the sensor permanent magnet 23.
  • the controller 4 is equipped with a rotating electrical machine drive circuit having a switching element 12 for driving the rotating electrical machine 10.
  • the switching element 12 includes a MOS-FET (Metal-Oxide Semiconductor Field Effect Transistor) and the like.
  • the control device 4 is provided with a power supply connector 3a, a connector 3b for receiving a signal (torque signal) from the torque sensor 2, and a connector 3c for receiving vehicle information such as vehicle speed.
  • the control device 4 includes a control board 13, a control device case 18, a circuit wiring member 26a (first circuit wiring member or first circuit wiring member), and a circuit wiring member 26b (second circuit wiring member or second circuit wiring member). It has.
  • the circuit wiring member 26 a is disposed on the rear side of the heat sink 20 and on the front side of the control board 13.
  • the circuit wiring member 26 b is disposed on the rear side with respect to the control board 13.
  • the arrangement of the control board 13 having the small current components is arranged along a plane perpendicular to the rotating shaft 16 b of the rotating electrical machine 10.
  • the control device 4 includes a smoothing capacitor 19, a common mode coil 11a, a normal mode coil 11b, and the like.
  • the common mode coil 11 a and the normal mode coil 11 b are installed to reduce noise and are arranged on the rear side of the control board 13.
  • the smoothing capacitor 19 provided for smoothing the current is disposed on the rear side of the control board 13.
  • the control device 4 is covered with a control device case 18.
  • the control device case 18 may be a resin, a metal such as aluminum, or a combination of a resin and a metal such as aluminum.
  • the control device case 18 is configured to dissipate and cool by contacting the smoothing capacitor 19.
  • Smoothing capacitor 19, common mode coil 11a and normal mode coil 11b are electrically connected by a bus bar.
  • the noise reduction coil 11 and the smoothing capacitor 19 are arranged on the rear side of the control board 13. Even if at least one of the noise reduction coil 11 and the smoothing capacitor 19 is arranged on the rear side of the control board 13, the same effect can be obtained.
  • the smoothing capacitor and the noise reduction coil is disposed on the rear side of the control board, at least one of the noise reduction coil 11 and the smoothing capacitor 19 is provided inside the heat sink. Placement can be avoided. In addition to securing the volume of the heat sink 20 per axial length, the heat capacity is improved while reducing the size of the heat sink 20 in the axial direction. Further, since at least one of the noise reduction coil 11 and the smoothing capacitor 19 is not disposed between the rear bearing 17b and the control board 13, the distance between the rear bearing 17b and the control board 13 is reduced. As a result, the size of the rotating electrical machine 10 can be reduced, and the rotating electrical machine 10 can be further reduced in weight.
  • the smoothing capacitor 19 radiates and cools the periphery by contacting the control device case 18 directly or indirectly through resin or the like. Therefore, the temperature rise of the smoothing capacitor 19 is suppressed, and the reliability of the smoothing capacitor 19 is improved.
  • a gap is provided between the end face of the smoothing capacitor 19 and the control device case 18. Therefore, even if the internal pressure of the smoothing capacitor 19 rises, the control device case 18 does not get in the way, the housing of the smoothing capacitor 19 can swell, and the internal pressure can be lowered. However, the smoothing capacitor 19 and the control device case 18 may not be in contact with each other. *
  • the structure of the rotating shaft 16b of the rotating electrical machine 10 will be described with reference to FIGS. 3A to 3C.
  • the rotary shaft 16b is provided with shaft holding portions 16d at both ends so that the rotary shaft 16b can be fixed from both ends.
  • the shaft holding portion 16d is a concentric recess that is concentric with the shaft provided in the central portion of the shaft.
  • the shaft holding portion is a shaft protruding portion that is concentric with the shaft provided in the central portion of the shaft.
  • the shaft holding portion is a cutout portion provided in a part of the shaft end portion. In either case, the same effect can be obtained.
  • a pulley 14 is press-fitted into one end of the rotating shaft 16b, that is, the front side. The pulley 14 transmits driving force to the belt of the electric power steering device.
  • FIG. 4 shows an example of a circuit diagram of the control device.
  • the control device 4 is provided with a connector 3a for supplying power, a connector 3b for receiving a torque signal from the torque sensor 2, and a connector 3c for receiving vehicle information such as vehicle speed.
  • the armature winding 15b of the stator 15 is Y-connected.
  • Three switching elements 12 are provided to correspond to each of the three phases. Each switching element 12 is mounted with a MOS-FET 12a, a MOS-FET 12b, a MOS-FET 12c, and a shunt resistor 12d.
  • the MOS-FET 12a constitutes the U phase + side arm
  • the MOS-FET 12b constitutes the U phase ⁇ side arm.
  • One end of the MOS-FET 12 a is connected to a smoothing capacitor 19 for smoothing current and a noise reduction coil (particularly a normal mode coil) 11.
  • One end of the MOS-FET 12b is connected to the ground potential portion of the vehicle via a shunt resistor 12d.
  • the connection point between the MOS-FET 12a and the MOS-FET 12b is the U-phase AC side terminal of the three-phase bridge circuit.
  • the MOS-FET 12c has one end connected to the U-phase AC side terminal and the other end connected to the U-phase terminal of the armature winding 15b.
  • the W-phase switching element 12 and the V-phase switching element 12 have the same configuration.
  • the MOS-FET 30a and the MOS-FET 30b mounted on the power supply relay 30 are connected to each other at one end.
  • the other end of the MOS-FET 30a is connected to the + side DC terminal of the three-phase bridge circuit via the noise reduction coil 11.
  • the other end of the MOS-FET 30b is connected to a battery 31 mounted on the vehicle via a connector 3a.
  • the FET drive circuit 13b mounted on the control board 13 has its output terminal connected to the gates of the MOS-FETs 12a to 12c.
  • the FET drive circuit 13b gives a gate drive signal to each of these gates at a predetermined timing.
  • a torque signal and vehicle information are input to the microcomputer 13a mounted on the control board 13 from the connector 3b and the connector 3c, respectively.
  • the microcomputer 13 a controls the output timing of the gate drive signal output from the FET drive circuit 13 b based on the rotation detection signal from the rotation sensor 24.
  • Various capacitors and coils are mounted on the control device.
  • the common mode coil 11a and the normal mode coil 11b are the first and second largest, respectively.
  • the smoothing capacitor is the first largest.
  • the smoothing capacitor 19 installed to smooth the current has the maximum capacity. It goes without saying that a plurality of (for example, three) smoothing capacitors may be arranged.
  • the heat sink 20 is provided with a heat sink convex portion 20a that fits with the motor frame 22a.
  • the thermal resistance between the heat sink 20 and the motor frame 22a is lowered. More heat of the heat sink 20 can be transmitted to the motor frame 22a, and the heat capacity of the heat sink 20 can be improved, so that the cooling performance of the switching element 12 is improved.
  • the thermal expansion coefficients of both are equal, and the fixing strength of the motor frame 22a and the heat sink 20 when the temperature of the motor unit 5 changes is improved.
  • the motor frame 22a and the heat sink 20 can be reduced in weight and improved in thermal conductivity.
  • the heat sink 20 is shrink-fitted, press-fitted, or screwed to the motor frame 22a using the heat sink protrusion 20a.
  • the heat sink 20 is fixed to the motor frame 22a of the rotating electrical machine 10 by shrink fitting.
  • shrink fitting By fixing the heat sink 20 to the motor frame 22a in this way, the heat of the heat sink 20 is efficiently transmitted to the motor frame 22a.
  • shrink fitting or press fitting the thermal resistance between the heat sink 20 and the motor frame 22a is greatly reduced, and a larger amount of heat generated in the heat sink 20 can be transmitted to the motor frame 22a. Since the heat capacity of the heat sink 20 is improved, the cooling performance of the switching element 12 can be improved.
  • the heat sink 20 has a substantially circular shape when viewed from the axial direction in order to increase the volume. As shown in FIG. 5B, the rear surface of the heat sink 20 is provided with three switching element arrangement portions 20c and one switching element arrangement portion 20h. Further, three electrical wiring through holes 20 d that penetrate the heat sink 20 are provided. Each of the switching element arrangement portions 20c corresponds to a three-phase switching element. The switching element placement unit 20 h corresponds to the power relay 30. The three motor terminals 21 pass through the respective electric wiring through holes 20d. At this time, since each electric wiring through-hole can be reduced, the volume of the heat sink can be increased, and the heat capacity of the heat sink can be improved, so that the cooling performance of the switching element can be improved.
  • the outer diameter of the sensor permanent magnet 23 is larger than the minimum outer diameter of the shaft through hole 20b of the heat sink 20. Therefore, the sensor through magnet 23 having a large outer diameter can be used while the shaft through hole 20b of the heat sink 20 can be reduced and the heat capacity of the heat sink 20 can be improved.
  • the magnetic field generated from the sensor permanent magnet 23 becomes uniform, and the accuracy of the rotation sensor 24 is improved.
  • the sensor permanent magnet 23 protrudes from the heat sink 20 to the rear side. It is not necessary to provide a sensor permanent magnet having a larger outer diameter than the minimum outer diameter portion of the shaft through hole 20b in the heat sink 20, and the volume of the heat sink 20 can be increased.
  • the heat capacity of the heat sink can be improved and the heat capacity of the heat sink 20 is improved, the cooling performance of the switching element 12 is improved. Further, the distance between the sensor permanent magnet 23 and the control board 13 can be reduced, the magnetic field generated from the sensor permanent magnet 23 becomes uniform, and the accuracy of the rotation sensor 24 is improved.
  • the control device is mounted with a rotating electrical machine drive circuit for driving the rotating electrical machine.
  • This rotating electrical machine drive circuit has a switching element 12 having a MOS-FET or the like.
  • the switching element 12 generates heat because a current for driving the rotating electrical machine flows. Therefore, the switching element 12 is brought into contact with the switching element arrangement portion 20c of the heat sink 20 via an adhesive, an insulating sheet, or the like to radiate and cool.
  • the switching element 12 in contact with the heat sink 20 has a structure in which a bare chip is mounted on a DBC (Direct Bonded Copper) substrate 12s.
  • DBC Direct Bonded Copper
  • the switching elements 12 are arranged so as to surround one power relay 30 and are arranged at intervals of about 90 degrees on the circumference.
  • the power relay 30 has bare chips of a MOS-FET 30a and a MOS-FET 30b.
  • the three-phase switching element 12 includes a MOS-FET 12a, a MOS-FET 12b, a MOS-FET 12c, and a shunt resistor 12d.
  • the terminal 12t of the switching element is electrically connected to the ends of three motor terminals wired from the rotating electrical machine to the control device side by welding, press-fit, solder, or the like.
  • one of the three switching elements plays a role of electrically disconnecting the rotating electrical machine when necessary, that is, a role of a motor relay.
  • the switching element has three phases, the number of phases may be different, such as two phases, five phases, and six phases, and the number of switching elements may be other than three.
  • the terminal 12t of the switching element is electrically connected to the ends of three motor terminals wired from the rotating electrical machine to the control device side by welding, press-fit, solder, or the like.
  • the terminal 12t of the switching element may be electrically connected to the circuit wiring member by welding, press fit, solder, or the like, and may further be electrically connected to the motor terminal by welding, press fit, solder, or the like.
  • FIG. 6C also shows the case where a power relay is not provided.
  • the switching elements 12 are arranged at intervals of approximately 120 degrees. A large area of the switching element can be ensured, heat generated by the switching element can be efficiently transmitted to the switching element arrangement portion, and an effect of reducing a temperature rise of the switching element can be obtained.
  • connection portions such as wire bonding for electrically connecting the bare chip and the shunt resistor 12d are omitted.
  • the three-phase switching element 12 has a common design and can be reduced in cost.
  • the switching element 12 may be configured as a power module in which the bare chip is sealed with resin.
  • the heat generated by the switching element 12m can be efficiently transmitted to the switching element arrangement portion, and the effect of reducing the temperature rise of the switching element 12m can be obtained.
  • a circuit terminal 27b may be provided in the switching element 12.
  • the circuit wiring member 26 includes a circuit wiring member 26 a disposed on the rear side of the heat sink 20 and on the front side of the control board 13, and a circuit wiring member 26 b disposed on the rear side of the control board 13. .
  • the circuit wiring member 26a includes a bus bar 26c, a frame 26d, a positioning portion 26e, a power supply terminal 27a, a circuit terminal 27b, and the like.
  • the frame 26d is made of an insulating member such as resin and holds the bus bar 26c and the like.
  • the frame 26d may be integrally formed with the bus bar 26c.
  • the bus bar 26c of the circuit wiring member 26a is connected to the power supply terminal 27a.
  • the power supply terminal 27a is connected to the power supply connector 3a.
  • Bus bar 26 c is connected to switching element 12. That is, the power supplied from the connector 3a is supplied to the switching element 12.
  • the circuit terminal 27b may be provided in the switching element without being provided in the circuit wiring member. In this case, the circuit wiring member is not provided with a circuit terminal.
  • FIG. 9A is a side view showing the control board.
  • FIG. 9B is a schematic view of the control board as viewed from the front side. In the figure, details of the circuit are omitted, and only a part of the small current component is drawn.
  • the control board 13 has a thin plate shape and has a substantially circular shape when viewed from the axial direction in order to secure an area for attaching components and wiring patterns. Based on the information received from the connector 3b and the input terminal of the connector 3c, the control board 13 sends a control signal to the switching element 12 in order to appropriately drive the rotating electrical machine. At this time, among the small current components of the control board 13, the microcomputer 13a and the FET drive circuit 13b generate a larger amount of heat than other components because current flows.
  • the plurality of circuit terminals 27b individually pass through the plurality of through holes 13e and extend to the circuit wiring member 26b, and are connected to the smoothing capacitor 19 and the noise reduction coil 11.
  • the control signal is transmitted by the control board 13 and the circuit wiring member 26a, the control board 13 and the circuit wiring member 26b, and the circuit terminal 27b that electrically connects the control board 13 and the switching element 12.
  • the circuit terminal 27b is fixed to the control board, the circuit wiring member, and the switching element by wire bonding, press fit, solder, or the like.
  • the control board 13 has a through hole 13d through which the power supply terminal 27a passes, a through hole 13e through which the circuit terminal 27b passes, and a positioning portion 13c.
  • the circuit terminal 27b passes through the through hole 13e and is connected to the control board.
  • the microcomputer 13a and the FET drive circuit 13b are arranged on the front side, but it goes without saying that they may be arranged on the rear side.
  • a rotation sensor 24 is mounted on the front side of the control board 13.
  • the rotation sensor 24 is arranged at a position coaxial with and close to the sensor permanent magnet 23.
  • the rotation sensor 24 detects the magnetism generated by the sensor permanent magnet 23 and detects the rotation angle of the rotor 16 by knowing its direction.
  • the microcomputer 13a calculates an appropriate drive current according to the rotation angle, and controls the FET drive circuit 13b. Since the rotation sensor 24 is disposed on the control board 13, the wiring between the rotation sensor 24 and the control board 13 can be shortened, and resistance to noise flowing into the rotation sensor 24 from the outside is improved. Further, since the mechanism for holding the rotation sensor 24 can be omitted, the number of parts can be reduced.
  • the control board 13 includes a positioning part 13c.
  • the control board 13 can be positioned between the heat sink 20 and the positioning part of the circuit wiring member 26. Since the relative position of the heat sink and the control board is determined, assembly is simplified, adjustment of the rotation sensor 24 is unnecessary, and the accuracy of the rotation sensor 24 can be improved.
  • the rotation sensor 24 is mounted on the control board, but the rotation sensor 24 may be mounted on a board different from the control board or held by another member.
  • FIG. 10 is a side view of the circuit wiring member 26b.
  • the circuit wiring member 26b disposed on the rear side of the control board 13 includes a bus bar 26c, a common mode coil 11a, a normal mode coil 11b, a smoothing capacitor 19, a circuit terminal (input terminal) 27b, etc., which are welded or press-fit, soldered, etc. Are electrically connected. Since the noise reduction coil 11, the smoothing capacitor 19, and the circuit wiring member 26 are arranged on the rear side of the position where the bearing 17b is inserted, the failure of the rotating electrical machine when these components fall out inside the rotating electrical machine. Can be prevented. In addition, circuit wiring members 26 a and 26 b are provided between the switching element that contacts the heat sink 20 and the noise reduction coil 11. The noise of the switching element 12 is shielded by the bus bar 26c of the circuit wiring member, and the magnetic coupling between the switching element and the noise reducing coil 11 can be reduced.
  • the electric power steering apparatus 100 is configured.
  • the torque sensor 2 detects the steering torque and transmits a torque signal to the microcomputer 13a.
  • a rotation detection signal corresponding to the steering rotation speed detected by the rotation sensor 24 is also input to the microcomputer 13a.
  • the microcomputer 13a calculates an assist torque based on the input steering torque, steering rotation speed, vehicle speed signal, and the like.
  • the assist torque is generated in the rotating electrical machine 10 by the FET drive circuit 13b controlling the rotating electrical machine drive circuit (three-phase bridge circuit), and is applied to the steering shaft 1b via the speed reduction mechanism.
  • the FET drive circuit 13b generates a gate drive signal at a predetermined timing based on an instruction from the microcomputer 13a, and controls conduction of the MOS-FET of the three-phase bridge circuit.
  • the three-phase bridge circuit generates a predetermined three-phase alternating current and supplies the three-phase alternating current to the armature winding 15b of the stator 15.
  • the rotating electrical machine 10 is driven, and the torque generated by the rotating electrical machine 10 is applied as an assist torque to the steering shaft 1b via the speed reduction mechanism. Thereby, the steering force of the steering wheel (handle) 1a by the driver is reduced.
  • the armature winding 15b is shown as being Y-connected, it goes without saying that it may be ⁇ -connected.
  • the switching element 12 has three phases, the number of phases may be different, such as two phases, five phases, and six phases.
  • At least one of a noise reduction coil and a capacitor is not arranged inside the heat sink and between the rear bearing and the control board.
  • the axial length is reduced, the volume of the heat sink can be increased to improve the heat capacity, and the distance between the rear bearing and the control board can be reduced, so that the rotating electrical machine can be reduced in size and weight.
  • the motor part of the rotating electrical machine is assembled.
  • the U-phase, V-phase, and W-phase windings are wound around the teeth of the stator core via an insulator to form a three-phase armature winding.
  • the winding start and the winding end of each U-phase winding are connected to each other to complete the U-phase armature winding.
  • V-phase and W-phase armature windings are completed.
  • the winding start and end of the U-phase armature winding, the V-phase armature winding, and the W-phase armature winding are connected to each other to complete the three-phase connection.
  • Each terminal of the three-phase connection is connected to the motor terminal 21.
  • the stator core is press-fitted into the motor frame.
  • a step of fixing the switching element 12 to the heat sink 20 is included.
  • a shaft through hole 20b that is smaller than the outer diameter of the bearing 17b and larger than the inner diameter of the bearing 17b is formed on the rear side of the bearing 17b.
  • the switching element 12 including a MOS-FET, a bare chip, a shunt resistor, and the like is bonded and fixed to the switching element arrangement portion 20c of the heat sink 20 with a highly heat conductive adhesive.
  • the power relay 30 is bonded and fixed to the switching element arrangement portion 20h of the heat sink 20 with a high thermal conductive adhesive.
  • the outer ring of the rear bearing 17b is fixed to the shaft through hole 20b of the heat sink.
  • the stator motor frame 22a is shrink-fitted into the heat sink 20, and fixed by press-fitting, screwing, or the like.
  • the motor terminal 21 to which the three-phase connection terminal is connected is inserted into the electric wiring through hole 20 d provided in the heat sink 20.
  • the motor terminal 21 protrudes to the rear side from the heat sink 20.
  • the motor terminal 21 and the switching element 12 are electrically connected by welding, press-fit, solder, or the like. However, if the motor frame and the heat sink are integrated, this step is omitted.
  • the shaft holding jig 16h is fixed to the shaft holding portions 16d at both ends of the rotating shaft 16b, and the rotating shaft 16b is fixed from both ends. Thereafter, the rotor core 16a is press-fitted into the rotating shaft 16b. Further, as shown in FIG. 14, a permanent magnet 16c is bonded and fixed to the rotor core 16a. The permanent magnet 16c may be magnetized before bonding, or may be magnetized by a magnetizer after bonding and fixing.
  • the outer ring of the front bearing 17a is fixed to the shaft through hole 22d of the front housing 22b.
  • the shaft holding jig 16h is passed through the shaft through hole 22d of the front housing 22b. Further, a bearing 17a on the front side of the housing is press-fitted into the rotary shaft 16b to a predetermined position.
  • the shaft holding jig 16 h is passed through the shaft through hole 20 b of the heat sink 20.
  • the rotation shaft 16b of the rotor 16 held by the shaft holding jig 16h is inserted into the rear bearing 17b, and the rear bearing 17b of the heat sink is press-fitted to a position where the motor frame 22a contacts the front housing 22b.
  • the sensor permanent magnet 23 magnetized from the rear side is fixed to the rear end of the rotating shaft 16b.
  • the sensor permanent magnet 23 may be magnetized by a magnetizer after being fixed to the rotating shaft 16b.
  • the circuit wiring member 26a in which the bus bar 26c, the power supply terminal 27a, the circuit terminal 27b and the like are integrally molded with the resin is fixed to the rear side of the heat sink 20 using an adhesive, a screw, or the like.
  • the switching element 12 and the bus bar 26c of the circuit wiring member 26a are electrically connected by welding, wire bonding, press fit, solder, or the like.
  • cream solder After applying cream solder to the control board 13, small current components such as the microcomputer 13a, the FET drive circuit 13b, the rotation sensor 24, and peripheral circuit elements thereof are mounted. Thereafter, the cream solder is melted using a reflow device, and these components are soldered.
  • control board 13 is attached to the rear side of the heat sink 20 and the circuit wiring member 26a.
  • the positioning part 13c of the control board 13 is fitted with the positioning part provided on the circuit wiring member 26a, so that the rotation sensor 24 provided on the control board 13 and the sensor permanent provided on the end of the rotary shaft. Positioning with the magnet 23 is performed.
  • the control board 13, the circuit wiring member 26b, and the circuit terminal 27b are electrically connected by wire bonding, press fit, solder, or the like.
  • a circuit wiring member 26b in which the bus bar is integrally molded with resin and the common mode coil 11a, the normal mode coil 11b, and the smoothing capacitor 19 are attached is arranged on the rear side of the control board 13.
  • Wiring (power supply terminal 27a and circuit terminal 27b) extending from the circuit wiring member 26a to the rear side of the control board 13 and wiring extending from the control board 13 to the rear side (circuit terminal 27b) are arranged on the rear side of the control board.
  • the circuit wiring member 26b is electrically connected by welding, press-fit, solder, or the like.
  • the control device case 18 is attached from the rear side, and fixed to the heat sink 20 with an adhesive, screws, or the like.
  • the step of fixing the motor frame to the heat sink is performed. Since the motor terminal does not protrude from the heat sink in the step of fixing the switching element, an effect that the assembling property is improved can be obtained.
  • a process of fixing the sensor permanent magnet to the shaft is performed. Since the sensor permanent magnet having a diameter larger than the minimum portion of the shaft through hole of the heat sink can be attached to the rear side, the magnetic field of the sensor permanent magnet becomes uniform, and the accuracy of the rotation sensor 24 is improved. In particular, it is useful when the outer diameter of the sensor permanent magnet is larger than the outer diameter of the rotating shaft.
  • the motor frame, heat sink and housing can be assembled while the shaft is fixed from both sides, and the rotor and the rotor are fixed when the stator and rotor are assembled. It becomes possible to prevent the contact of the child.
  • FIG. 21A and 21B are explanatory views of a rotating electrical machine according to Embodiment 2 of the present invention.
  • the basic heat sink structure is the same as in the first embodiment.
  • the three motor terminals 21 are configured to pass through one electric wiring through hole 20d.
  • the heat sink 20 is provided with a control board 13 having a small current component adjacent to the rear side.
  • the volume of the heat sink can be improved, and the heat capacity of the heat sink can be improved, so that the cooling performance of the switching element is improved.
  • the motor terminal passes through the electrical wiring through hole, it goes without saying that the same effect can be obtained even when electrical wiring such as signal wires and cables between other rotating electrical machines and the control device penetrates. Yes.
  • FIG. FIG. 22 is an explanatory diagram of a rotary electric machine according to Embodiment 3 of the present invention.
  • the basic structure is the same as in the first embodiment.
  • the three-phase connection of the armature windings is connected to the motor terminal 21 via the ring-shaped connection plate 25.
  • the armature windings of the stator core 15a are connected to each other to form a three-phase connection.
  • the connection board 25 is disposed between the motor terminal 21 and the armature winding 15b.
  • FIG. 23A and 23B are explanatory views of a rotating electrical machine according to Embodiment 4 of the present invention.
  • the basic structure is the same as in the first embodiment.
  • the switching element 12 is configured integrally with the circuit wiring member 26a.
  • the circuit wiring member 26a includes a bus bar 26c, a frame 26d, a power supply terminal 27a, a circuit terminal 27b, and the like.
  • the frame 26d is made of an insulating member such as resin and holds the bus bar 26c and the like.
  • the bus bar 26c of the circuit wiring member 26a is connected to the power supply terminal 27a.
  • FIG. FIG. 24 is an explanatory diagram of a rotary electric machine according to Embodiment 5 of the present invention. Since the basic structure is the same as that of the first embodiment, the sensor permanent magnet 23 will be supplementarily described with reference to the drawings. Although the sensor permanent magnet 23 protrudes rearward from the heat sink, the same effect can be obtained even if at least a part of the sensor permanent magnet 23 sinks and is buried in the heat sink.
  • the heat sink 20 has a rear recess 20j. The sensor permanent magnet 23 is sunk and buried in the rear recess 20j.
  • FIG. FIG. 25 is an explanatory diagram of a rotary electric machine according to Embodiment 6 of the present invention. Since the basic structure is the same as that of the first embodiment, the housing will be described supplementarily with reference to the drawings.
  • the motor frame 22a is integrated with a front housing 22b provided on the front surface of the rotating electrical machine. At this time, since the thermal resistance between the housing and the motor frame is lowered, the cooling performance of the motor frame is improved, the coaxiality of the shaft and the motor frame is improved, and the vibration of the rotating electrical machine can be reduced.
  • FIG. FIG. 26 is an explanatory diagram of a rotary electric machine according to Embodiment 7 of the present invention. Since the basic structure is the same as that of the first embodiment, the motor frame will be supplementarily described with reference to the drawings.
  • the motor frame 22 a is integrated with the heat sink 20. At this time, since the thermal resistance between the heat sink 20 and the motor frame 22a is lowered, the cooling performance of the switching element 12 is improved. Further, the coaxiality between the rotating shaft 16b and the motor frame 22a is improved, and the vibration of the rotating electrical machine 10 can be reduced.
  • FIG. 27 is an explanatory diagram of a rotary electric machine according to Embodiment 8 of the present invention.
  • the basic structure is the same as in the first embodiment.
  • a noise shielding member 33 is disposed around the noise reduction coil 11.
  • the figure shows an example in which a noise shielding member 33 is inserted between the common mode coil 11a and the normal mode coil 11b. By doing in this way, it becomes possible to reduce the magnetic coupling of the common mode coil 11a and the normal mode coil 11b which are arrange
  • the noise shielding member 33 include a metal plate.
  • the noise reducing coil 11 and the smoothing capacitor 19 are arranged on the rear side of the control board 13. It goes without saying that the same effect can be obtained even if at least one of the noise reduction coil 11 and the smoothing capacitor 19 is arranged on the rear side of the control board 13.
  • FIG. FIG. 28 is an explanatory diagram of a rotary electric machine according to Embodiment 9 of the present invention.
  • the basic structure is the same as in the first embodiment.
  • the smoothing capacitor 19 and the common mode coil 11 a are arranged on the rear side of the control board 13.
  • the normal mode coil 11b is disposed on the circuit wiring member 26a and partially overlaps the control board 13 in the axial direction. Although the normal mode coil 11b partially overlaps the control board 13 in the axial direction, it is needless to say that the smoothing capacitor 19 or the common mode coil 11a may be used.
  • the noise reducing coil 11 is composed of a common mode coil 11a and a normal mode coil 11b. It goes without saying that the same effect can be obtained even if only one of them is configured.
  • FIG. FIG. 29 is an explanatory diagram of a rotary electric machine according to Embodiment 10 of the present invention.
  • the basic structure is the same as in the first embodiment.
  • the heat sink 20 has a rear-side protruding portion 20 e protruding to the control board 13.
  • the ring-shaped or columnar rear protrusion 20e is in contact with at least one of the heat generating components (microcomputer 13a, FET drive circuit 13b, etc.) of the control board 13 through grease or the like, or is disposed close to the heat generating components. ing. Therefore, the heat dissipation and cooling performance of the heat generating component of the control board 13 can be improved.
  • the noise reduction coil 11 and the smoothing capacitor 19 are disposed on the rear side of the circuit wiring member 26b, the distance between the rear side bearing 17b and the control board 13 is reduced, and as a result, the rear side protrusion The part 20e can be shortened, and the rotating electrical machine can be reduced in size and weight.
  • the rear projection 20e of the heat sink may be used for positioning the heat sink 20 and the control board 13. Since the relative position of the heat sink and the control board is determined, assembly is simplified, adjustment is not required, and the accuracy of the rotation sensor 24 of the control board can be improved.
  • the rear side protrusion part 20e shall be in contact with the heat-emitting component of a control board via grease.
  • the rear-side protruding portion 20e is in contact with the control board via grease or the like, and the same effect can be obtained even if the heat-generating component of the control board is arranged close to the contact surface between the control board and the protrusion. Needless to say.
  • the rear-side protruding portion 20e is in contact with the control board via grease or the like, the same effect can be obtained even if the rear-side protruding portion 20e is in direct contact with or close to the heat-generating component.
  • FIG. 30A and 30B are explanatory views of a rotating electrical machine according to Embodiment 11 of the present invention.
  • the basic structure is the same as in the first embodiment.
  • a heat insulating material 20 f is inserted between the rear bearing 17 b and the heat sink 20.
  • FIG. 31A and 31B are explanatory diagrams of a rotating electrical machine according to Embodiment 12 of the present invention.
  • the basic structure is the same as in the first embodiment.
  • the heat sink 20 includes a front side protruding portion 20g that protrudes to the front side at a position overlapping the connecting plate 25 in the axial direction. Therefore, the heat capacity of the heat sink can be improved, and the cooling performance of the switching element can be improved.
  • the rear bearing is disposed on the front protruding portion 20g. Therefore, the distance between the bearings on the rear side can be reduced, and the vibration of the rotating electrical machine can be suppressed.
  • the heat sink is provided with a ring-shaped front side recess 20i for accommodating the connection plate 25 protruding to the rear side of the rotating electrical machine. Therefore, the rotating electrical machine can be reduced in size.
  • FIG. 32A and 32B are explanatory diagrams of a rotating electrical machine according to Embodiment 13 of the present invention.
  • the basic structure is the same as in the first embodiment.
  • the heat sink 20 is provided with a front side protruding portion 20g that protrudes to the front side at a position overlapping with the coil end on the rear side of the armature winding in the axial direction. Therefore, the heat capacity of the heat sink can be improved, and the cooling performance of the switching element can be improved.
  • the rear bearing is disposed on the front protruding portion 20g. Therefore, the distance between the bearings on the rear side can be reduced, and the vibration of the rotating electrical machine can be suppressed.
  • the heat sink also includes a ring-shaped front side recess 20i that houses a coil end of an armature winding that protrudes to the rear side of the rotating electrical machine. Therefore, the rotating electrical machine can be reduced in size.
  • FIG. 33A and 33B are explanatory views of a rotating electrical machine according to Embodiment 14 of the present invention.
  • the basic structure is the same as in the first embodiment.
  • the rotor 16 is provided with a protruding portion 20k protruding to the front side at a position overlapping the rotor core recess 16g in the axial direction. Therefore, the heat capacity of the heat sink 20 can be improved, and the cooling performance of the switching element 12 can be improved.
  • the rear bearing 17b is disposed on the protruding portion 20k. Therefore, the distance between the bearings on the rear side can be further reduced, and the vibration of the rotating electrical machine can be suppressed.
  • the heat sink 20 includes a ring-shaped front side recess 20 i that houses a coil end of an armature winding that protrudes to the rear side of the rotating electrical machine. Therefore, the rotating electrical machine can be reduced in size.
  • FIG. FIG. 34 is an explanatory diagram of a rotary electric machine according to Embodiment 15 of the present invention. Since the basic structure is the same as that of the first embodiment, the heat sink will be supplementarily described with reference to the drawings.
  • the switching element 12 is bonded to the heat sink 20.
  • the rear bearing 17 b is supported by the rear housing 34. As described above, since the rear side housing 34 is provided, the number of components increases, but the temperature rise of the rear side bearing 17b is suppressed, so that the life of the rotating electrical machine is extended.
  • FIG. FIG. 35 is an explanatory diagram of a rotary electric machine according to Embodiment 16 of the present invention.
  • the circuit wiring member 26 a is one member disposed on the rear side of the heat sink 20 and on the front side of the control board 13.
  • the bus bar 26c, the common mode coil 11a, the normal mode coil 11b, the smoothing capacitor 19, the circuit terminal (input terminal) 27b, and the like are electrically connected by welding, press fitting, solder, or the like. Since the noise reduction coil 11, the smoothing capacitor 19, and the circuit wiring member 26a are arranged on the rear side from the position where the bearing 17b is inserted, the failure of the rotating electrical machine when these components fall into the rotating electrical machine. Can be prevented.
  • a circuit wiring member 26 a is provided between the switching element 12 mounted on the heat sink 20 and the noise reduction coil 11.
  • the noise of the switching element 12 is shielded by the bus bar 26c of the circuit wiring member 26a, and the magnetic coupling between the switching element and the noise reduction coil 11 can be reduced.
  • FIG. 36A and FIG. 36B show an example of the circuit wiring member 26a.
  • the circuit terminal 27f is connected to the normal mode coil 11b.
  • the circuit terminal 27 g is connected to the smoothing capacitor 19.
  • the circuit terminal 27h is connected to the common mode coil 11a.
  • FIG. 37A is a side view showing the control board.
  • FIG. 37B is a schematic view of the control board as viewed from the front side.
  • a circuit terminal 27f connected to the normal mode coil 11b passes through the through hole 13f.
  • a circuit terminal 27g connected to the smoothing capacitor 19 passes through the through hole 13g.
  • a circuit terminal 27h connected to the common mode coil 11a passes through the through hole 13h.
  • the plurality of circuit terminals 27 b individually pass through the plurality of through holes 13 e and extend to the rear side of the control board 13, and are connected to the smoothing capacitor 19 and the noise reduction coil 11.
  • FIG. FIG. 38 is an explanatory diagram of a rotary electric machine according to Embodiment 17 of the present invention.
  • a circuit wiring member 26 b is disposed on the rear side of the heat sink 20 and the control board 13.
  • the bus bar 26c, the common mode coil 11a, the normal mode coil 11b, the smoothing capacitor 19, the power supply terminal 27a, the circuit terminal (input terminal) 27b, and the like are electrically connected by welding, press fitting, solder, or the like. Yes.
  • a circuit wiring member 26b on which the noise reduction coil 11 and the smoothing capacitor 19 are mounted is disposed on the rear side of the position where the bearing 17b is inserted.
  • the sensor permanent magnet 23 is directly attached to the rear end of the rotating shaft 16b.
  • the sensor permanent magnet 23 protrudes from the heat sink 20 to the rear side. Since the axial length of the rotating shaft 16b is shortened, the rotating electrical machine can be reduced in size and weight, and the eccentric amount of the sensor permanent magnet 23 relative to the rotation sensor 24 can be reduced. Further, since at least one of the noise reduction coil 11 and the smoothing capacitor 19 is not disposed between the rear bearing 17b and the control board 13, the distance between the rear bearing 17b and the control board 13 is reduced. As a result, the size of the rotating electrical machine 10 in the axial direction can be reduced, and the rotating electrical machine 10 can be reduced in weight.
  • the smoothing capacitor 19 radiates and cools the surroundings by directly contacting the control device case 18 directly or through resin or the like. Therefore, the temperature rise of the smoothing capacitor 19 is suppressed, and the reliability of the smoothing capacitor 19 is improved.
  • the control device case 18 is made of a metal such as aluminum
  • the smoothing capacitor 19 is in contact with a metal member having a high thermal conductivity, so that the heat of the smoothing capacitor 19 can be released to the periphery of the rotating electrical machine.
  • the temperature rise of the smoothing capacitor is further suppressed, and the reliability of the smoothing capacitor is improved.
  • the smoothing capacitor fails.
  • FIG. 39 is an explanatory diagram of a rotary electric machine according to Embodiment 18 of the present invention.
  • the control device case 18 is made of an insulating member having a low thermal conductivity such as resin, and is connected to the heat sink 20 (first case). Member) and a case member 18b (second case member) made of a metal such as aluminum.
  • the smoothing capacitor 19 is in contact with the case member 18b. Since the thermal conductivity between the heat sink 20 and the case member 18b can be lowered, the heat from the heat sink 20 to the control device case 18 can be reduced. Therefore, since the temperature rise of the smoothing capacitor 19 is suppressed, the reliability of the smoothing capacitor is further improved and the torque reduction of the rotating electrical machine can be further suppressed.
  • the smoothing capacitor 19 and the noise reduction coil 11 are both disposed on the rear side of the control board 13. Needless to say, at least one of the smoothing capacitor 19 and the noise reduction coil 11 may be arranged on the rear side of the control board 13. If both the smoothing capacitor 19 and the noise reduction coil 11 are disposed on the rear side of the control board 13, the arrangement of the noise reduction coil 11 and the smoothing capacitor 19 inside the heat sink 20 can be avoided. In addition to further securing the volume of the heat sink 20 per axial length, the heat capacity is improved while further reducing the size of the heat sink 20 in the axial direction.
  • the noise reduction coil 11 and the smoothing capacitor 19 are not disposed between the rear bearing 17b and the control board 13, the distance between the rear bearing 17b and the control board 13 is reduced. As a result, the size of the rotating electrical machine 10 in the axial direction can be reduced, and the rotating electrical machine 10 can be reduced in weight. Since the axial length of the rotating shaft 16b is further shortened, the rotating electrical machine can be reduced in size and weight, and the amount of eccentricity of the sensor permanent magnet 23 relative to the rotation sensor 24 can be reduced.
  • the armature winding 15b and the switching element 12 of the rotating electrical machine 10 generate heat when current is supplied.
  • the heat sink 20 is in contact with the switching element 12 and absorbs heat.
  • the armature winding 15b, the switching element 12, and the heat sink 20 are supplied to the rotating electrical machine from the viewpoint of preventing the smoothing capacitor and the noise reduction coil 11 from being damaged in order to raise the temperatures of the smoothing capacitor 19 and the noise reduction coil 11 that are close to each other. It is necessary to suppress the current.
  • the temperature increases, the torque of the rotating electrical machine decreases. Further, the reliability of the smoothing capacitor 19 is lowered.
  • the smoothing capacitor and the noise reduction coil are arranged on the rear side of the control board, the smoothing capacitor and the noise reduction coil are arranged far from the armature winding, the switching element, and the heat sink of the rotating electric machine. Therefore, the temperature rise of the smoothing capacitor and the noise reduction coil can be suppressed.
  • control board 13 and the circuit wiring member 26b are interposed between the smoothing capacitor, the noise reduction coil and the armature winding, the switching element, and the heat sink, the control board 13 and the circuit wiring member 26b are insulated from each other, and the smoothing capacitor and the noise reduction are performed.
  • the temperature rise of the coil can be suppressed.
  • This hybrid type capacitor has a small heat capacity, but is smaller than an electrolytic capacitor. Since the temperature rise of the smoothing capacitor is reduced, the size of the rotating electrical machine can be reduced by using a hybrid type capacitor.
  • FIG. 40 is an explanatory diagram of a rotary electric machine according to Embodiment 19 of the present invention.
  • the basic structure is the same as in the first embodiment, and both the smoothing capacitor 19 and the noise reduction coil 11 are arranged on the rear side of the control board 13.
  • the armature winding 15b and the switching element 12 of the rotating electrical machine 10 generate heat because current is supplied, and the heat sink 20 absorbs heat generation because the heat sink 20 is in contact with the switching element 12.
  • a flat heat insulating material 35 is provided between the control board 13 and the circuit wiring member 26 b so as to be substantially parallel to the control board 13.
  • the armature winding 15b, the switching element 12, the heat sink 20, and the like are rotated from the viewpoint of preventing the smoothing capacitor 19 and the noise reduction coil 11 from failing in order to raise the temperatures of the smoothing capacitor 19 and the noise reduction coil 11 that are close to each other. It is necessary to suppress the current supplied to the electric machine 10. When the temperature rises, the torque of the rotating electrical machine 10 decreases and the reliability of the smoothing capacitor 19 decreases.
  • the smoothing capacitor 19 and the noise reduction coil 11 are both installed on the circuit wiring member 26b disposed on the rear side of the control board 13.
  • the heat insulating material 35 is provided between the control board 13 and the circuit wiring member 26 b so as to be substantially parallel to the control board 13. Heat transmitted from the armature winding 15b, the switching element 12, the heat sink 20, and the like to the smoothing capacitor 19 and the noise reduction coil 11 is reduced. As a result, the temperature rise of the smoothing capacitor 19 and the noise reduction coil 11 can be suppressed, the torque reduction of the rotating electrical machine can be suppressed, and the reliability of the smoothing capacitor 19 can be improved. Since the heat insulating material 35 is disposed between the circuit wiring member 26b and the control board 13 so as to be substantially parallel to the control board 13, the torque is reduced without increasing the axial size of the rotating electrical machine. And the reliability of the smoothing capacitor can be improved.
  • FIG. FIG. 41 is an explanatory diagram of a rotary electric machine according to Embodiment 20 of the present invention.
  • the heat insulating material 35 is provided between the control board 13 and the circuit wiring member 26b.
  • the flat heat insulating material 35 is disposed on the rear side of the circuit wiring member 26b. Since the heat insulating material 35 is provided under the smoothing capacitor 19 and the noise reducing coil 11, the same effect as in the previous embodiment can be obtained.
  • the heat insulating material 35 may be in contact with the circuit wiring member 26b, or may be a heat insulating member provided on the control board 13 or the circuit wiring member 26b.
  • the effect that the number of parts can be reduced or the axial space of the rotating electrical machine can be reduced by reducing the axial space can be obtained. Even when the size and position of the heat insulating material are different, the same effect can be obtained if the heat insulating material is arranged so as to be substantially parallel to the control board between the control board and the smoothing capacitor and the noise reduction coil. Needless to say.
  • FIG. FIG. 42 is an explanatory diagram of a rotary electric machine according to Embodiment 21 of the present invention.
  • a flat heat insulating material 35 is provided between the control board 13, the smoothing capacitor, and the noise reduction coil, and it goes without saying that the same effect as in the previous embodiment can be obtained.
  • the circuit wiring member 26 a is one member disposed on the rear side of the heat sink 20 and on the front side of the control board 13.
  • the heat insulating material 35 may be in contact with the control board 13 or may be a heat insulating member provided on the control board 13 or the circuit wiring member 26a.
  • the effect that the number of parts can be reduced or the axial space of the rotating electrical machine can be reduced by reducing the axial space can be obtained. Even when the size and position of the heat insulating material are different, the same effect can be obtained if the heat insulating material is arranged so as to be substantially parallel to the control board between the control board, the smoothing capacitor, and the noise reduction coil. Needless to say.
  • FIG. FIG. 43 is an explanatory diagram of a rotary electric machine according to Embodiment 22 of the present invention.
  • the basic structure is the same as in the first embodiment, and both the smoothing capacitor 19 and the noise reduction coil 11 are arranged on the rear side of the control board 13.
  • a flat noise blocking member 33 is provided between the control board 13 and the circuit wiring member 26 b so as to be substantially parallel to the control board 13. Since the smoothing capacitor 19 and the noise reduction coil 11 are supplied with current, electromagnetic noise is generated in the surroundings, and magnetic flux is linked to the adjacent rotation sensor 24, so that the angle error of the rotation sensor 24 increases. Further, the control device malfunctions due to the magnetic flux interlinking with the control board 13. These effects increase the vibration and noise of the rotating electrical machine.
  • the noise shielding member 33 include a metal plate.
  • the smoothing capacitor 19 and the noise reduction coil 11 are both installed on the circuit wiring member 26 b, and the circuit wiring member 26 b is arranged on the rear side of the control board 13. Further, since the noise blocking member 33 is provided between the control board 13 and the circuit wiring member 26b so as to be substantially parallel to the control board 13, the rotation sensor 24 and the control are controlled from the smoothing capacitor 19 and the noise reduction coil 11. The amount of interlinkage that fluxes the substrate 13 is reduced. Therefore, the angle error of the rotation sensor 24 is reduced, and it is possible to prevent the malfunction of the rotating electrical machine and to reduce the vibration and noise of the rotating electrical machine.
  • the noise blocking member 33 is disposed between the control board 13 and the circuit wiring member 26b so as to be parallel to the control board, the rotation sensor angle is not increased without increasing the axial size of the rotating electrical machine. Error can be reduced. A malfunction of the control device is prevented, and vibration and noise of the rotating electrical machine are reduced.
  • FIG. FIG. 44 is an explanatory diagram of a rotary electric machine according to Embodiment 23 of the present invention.
  • the noise shielding member 33 is provided between the control board 13 and the circuit wiring member 26b. As shown in the figure, it goes without saying that the same effect can be obtained even if the noise shielding member 33 is provided on the rear side of the circuit wiring member 26b.
  • the noise blocking member 33 may be in contact with the control board 13 or the circuit wiring member 26b.
  • the noise blocking member 33 may be a noise shielding member provided on the control board 13 or the circuit wiring member 26b. The effect that the number of parts can be reduced or the axial space of the rotating electrical machine can be reduced by reducing the axial space can be obtained.
  • FIG. 45 is an illustration of a rotary electric machine according to Embodiment 24 of the present invention.
  • FIG. It goes without saying that the same effect can be obtained even when the noise blocking member 33 is provided between the control board 13 and the smoothing capacitor 19 and the noise reducing coil 11.
  • the circuit wiring member 26 a is one member disposed on the rear side of the heat sink 20 and on the front side of the control board 13. Even when the size and position of the noise blocking member are different, the same effect can be obtained if the noise blocking member is arranged so as to be substantially parallel to the control substrate between the control substrate, the smoothing capacitor, and the noise reduction coil. It is done.
  • FIG. FIG. 46 is an explanatory diagram of a rotary electric machine according to Embodiment 25 of the present invention.
  • the basic structure is the same as in the first embodiment.
  • both the smoothing capacitor 19 and the noise reduction coil 11 are arranged on the rear side of the control board 13 and the circuit wiring member 26 b, and the noise shielding member 33 is arranged around the noise reduction coil 11.
  • the smoothing capacitor 19 and the noise reduction coil 11 are both arranged on the rear side of the control board 13, magnetic coupling between the smoothing capacitor 19 and the normal mode coil 11b occurs.
  • the noise shielding member 33 is inserted between the smoothing capacitor 19 and the normal mode coil 11b, the magnetic coupling between the smoothing capacitor 19 and the normal mode coil 11b arranged in close proximity is reduced. It becomes possible. As a result, malfunction of the control device can be prevented, or the rotating electrical machine 10 can be driven smoothly, and vibration and noise of the rotating electrical machine are reduced.
  • the noise reduction coil 11 and the smoothing capacitor 19 are arranged on the rear side of the control board 13, but the noise reduction coil 11 and the smoothing capacitor 19 are arranged on the rear side of the control board 13. It goes without saying that the same effect can be obtained even if at least one of the above is arranged.
  • an example in which the noise shielding member 33 is inserted between the smoothing capacitor 19 and the normal mode coil 11b has been shown. However, even when the noise shielding member 33 is inserted between the smoothing capacitor 19 and the common mode coil 11a, they are arranged close to each other. The magnetic coupling between the smoothing capacitor 19 and the common mode coil 11a can be reduced, and the same effect can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Steering Mechanism (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

 制御装置付きの回転電機において装置を小型化することを目的とする。センサ用永久磁石が回転軸のリア側に取り付けられている回転子と、回転軸のフロント側を支持する第1ベアリングが固定されているフロント側ハウジングと、回転子と固定子を収容するモータフレームと、回転軸のリア側を支持する第2ベアリングが固定されているヒートシンクと、回転センサとマイクロコンピュータと駆動回路が実装されている制御基板と、を備えている制御装置付き回転電機。マイクロコンピュータは回転センサからの信号に基いて駆動回路を制御して複数のスイッチング素子を駆動し、スイッチング素子に接続されている平滑コンデンサとノイズ低減用コイルの少なくとも一方が制御基板よりもリア側に配設されている。

Description

制御装置付き回転電機、電動パワーステアリング装置および制御装置付き回転電機の製造方法
 この発明は、制御装置付き回転電機、電動パワーステアリング装置および制御装置付き回転電機の製造方法に関し、特に、制御装置付き回転電機の小型化に関するものである。
 車両用の電動パワーステアリング装置は制御装置と一体となった回転電機を備えている(例えば特許文献1~15)。通常、制御装置は回転電機の反出力軸側に配置されている(例えば特許文献1)。制御装置には、駆動電流を供給するパワーモジュールと、パワーモジュールの発する熱を吸収するヒートシンクが、回転電機のケースの外側に設けられている。ヒートシンクは、中間部材を介して回転電機のケースの周部に外径の範囲内で接続されている。モータフレームには回転電機の反出力軸側を支承するベアリングが搭載されている。
 制御装置と一体となった回転電機において、制御装置には制御基板とヒートシンクが配置されている(例えば特許文献2)。回転子の回転角度を読み取る回転センサはセンサ用永久磁石と軸方向に対向して設けられている。センサ用永久磁石は回転電機の回転軸の反出力軸側の端部に保持されている。ヒートシンクは回転電機駆動回路のスイッチング素子と接触している。ヒートシンクには反出力軸側のベアリングが配置され、軸長の小型化と部品点数の削減が図られている。
 この構成では、ヒートシンクに反出力軸側のベアリングが配置され、軸長の短縮と部品点数の削減が図られている。ヒートシンクと制御基板の間にはノイズ低減用コイルやコンデンサが配置されているので、反出力軸側のベアリングと制御基板との距離が大きい。回転電機のシャフト長が大きいと回転電機のサイズや重量が大きくなる。また、ノイズ低減用コイルやコンデンサがヒートシンクの内部に埋め込まれるように配置されているので、ヒートシンクの体積が減少し、ヒートシンクの熱容量が低下する。また、制御基板のスイッチング素子をヒートシンクに接触させて熱を吸収させる場合、ヒートシンクと制御基板の距離が大きくなるため、突起部の長さが大きくなり、回転電機のサイズや重量が大きくなる。
特開2011-229227号公報 特開2011-200022号公報 特開2002-345211号公報 特開2008-174097号公報 特表2004-512462号公報 国際公開2013/132584号 国際公開2013/111365号 特開2013-153580号公報 特開2008-219994号公報 特開2003-199295号公報 特開平07-312493号公報 特開2003-299317号公報 特開2003-324914号公報 特開2014-043122号公報 特開2014-075866号公報
 この発明は上記のような課題を解決するためになされたものであり、制御装置付きの回転電機において装置を小型化することを目的とする。
 本願に係る制御装置付き回転電機は、センサ用永久磁石が回転軸のリア側に取り付けられている回転子と、固定子鉄心と電機子巻線を有する固定子と、回転軸のフロント側を支持する第1ベアリングが固定されているフロント側ハウジングと、フロント側ハウジングと結合されていて、回転子と固定子を収容するモータフレームと、回転軸のリア側を支持する第2ベアリングが固定されていて、複数のスイッチング素子を搭載しているヒートシンクと、ヒートシンクよりもリア側に配設されていて、回転センサとマイクロコンピュータと駆動回路が実装されている制御基板と、複数のスイッチング素子に接続されている平滑コンデンサと、複数のスイッチング素子に接続されているノイズ低減用コイルと、を備え、回転センサはセンサ用永久磁石と対向しており、マイクロコンピュータは回転センサからの信号に基いて駆動回路を制御して複数のスイッチング素子を駆動し、平滑コンデンサとノイズ低減用コイルの少なくとも何れか一方は制御基板よりもリア側に配設されていることを特徴とする。
 この発明によれば、ヒートシンクがリア側のハウジングを兼用するため、部品点数の削減、コストの低減、軸方向のサイズの低減ができる。
電動パワーステアリング装置の説明図である。 実施の形態1に係る回転電機の説明図である。 シャフト保持部の第1実施例を示す説明図(図3A)と、シャフト保持部の第2実施例を示す説明図(図3B)と、シャフト保持部の第3実施例を示す説明図(図3C)である。 制御装置の回路図を示した説明図である。 ヒートシンクを示す断面図(図5A)と、ヒートシンクを示す平面図(図5B)である。 スイッチング素子の構成を説明する断面図(図6A)と、スイッチング素子の第1の構成を説明する平面図(図6B)と、スイッチング素子の第2の構成を説明する平面図(図6C)である。 図7Aはパワーモジュールの構成を説明する第1断面図である。図7Bは、パワーモジュールの第1の構成を説明する平面図である。図7Cは、パワーモジュールの第2の構成を説明する平面図である。図7Dは、パワーモジュールの構成を説明する第2断面図である。図7Eはパワーモジュールの第3の構成を説明する平面図である。図7Fはパワーモジュールの第4の構成を説明する平面図である。 第1の回路配線部材を示す断面図(図8A)と、第1の回路配線部材を示す平面図(図8B)である。 制御基板を示す断面図(図9A)と、制御基板を示す平面図(図9B)である。 第2の回路配線部材の説明図である。 ヒートシンクの組み立て方法の説明図である。 モータフレームとヒートシンクを固定する工程の説明図である。 回転軸(シャフト)に回転子鉄心を圧入する工程の説明図である。 回転子鉄心に永久磁石を接着固定する工程の説明図である。 フロント側のベアリングの外輪をハウジングのシャフト貫通穴に固定する工程の説明図である。 回転子へヒートシンクを挿入する工程の説明図である。 プーリを固定する工程の説明図である。 センサ用永久磁石をシャフトへ固定する工程の説明図である。 第1の回路配線部材と制御基板を実装する工程の説明図である。 第2の回路配線部材と制御装置ケースを固定する工程の説明図である。 実施の形態2に係るヒートシンクを示す断面図(図21A)と、実施の形態2に係るヒートシンクを示す平面図(図21B)である。 実施の形態3に係る回転電機の説明図である。 実施の形態4に係る第1の回路配線部材を示す断面図(図23A)と、実施の形態4に係る第1の回路配線部材を示す平面図(図23B)である。 実施の形態5に係る回転電機の説明図である。 実施の形態6に係る回転電機の説明図である。 実施の形態7に係る回転電機の説明図である。 実施の形態8に係る回転電機の説明図である。 実施の形態9に係る回転電機の説明図である。 実施の形態10に係る回転電機の説明図である。 実施の形態11に係るヒートシンクを示す断面図(図30A)と、実施の形態11に係るヒートシンクを示す平面図(図30B)である。 実施の形態12に係る回転電機を示す断面図(図31A)と、実施の形態12に係る回転電機を示す平面図(図31B)である。 実施の形態13に係る回転電機を示す断面図(図32A)と、実施の形態13に係る回転電機を示す平面図(図32B)である。 実施の形態14に係る回転電機を示す断面図(図33A)と、実施の形態14に係る回転電機を示す平面図(図33B)である。 実施の形態15に係る回転電機の説明図である。 実施の形態16に係る回転電機の説明図である。 第1の回路配線部材を示す断面図(図36A)と、第1の回路配線部材を示す平面図(図36B)である。 制御基板を示す断面図(図37A)と、制御基板を示す平面図(図37B)である。 実施の形態17に係る回転電機の説明図である。 実施の形態18に係る回転電機の説明図である。 実施の形態19に係る回転電機の説明図である。 実施の形態20に係る回転電機の説明図である。 実施の形態21に係る回転電機の説明図である。 実施の形態22に係る回転電機の説明図である。 実施の形態23に係る回転電機の説明図である。 実施の形態24に係る回転電機の説明図である。 実施の形態25に係る回転電機の説明図である。
 以下に本発明にかかる制御装置付き回転電機および電動パワーステアリング装置の実施の形態を図面に基づいて詳細に説明する。なお、本発明は以下の既述に限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。図において、同一符号が付与されている構成要素は、同一の、または、相当する構成要素を表している。
実施の形態1.
 図1はこの発明の実施の形態に係る自動車の電動パワーステアリング装置100の説明図である。制御装置4とモータ部5は連結されて一体化し、回転電機10をなしている。回転電機10の制御装置4にはバッテリーやオルタネータからコネクタ3aを介して電源が供給されている。回転電機10のモータ部5は固定子15と回転子16を備えている。運転者はステアリングホイール1aを操舵すると、そのトルクがステアリングシャフト1bを介してシャフト1cに伝達される。このときトルクセンサ2が検出したトルク(トルク信号)は電気信号に変換されコネクタ3bを介して回転電機10の制御装置4に伝達される。一方、車速などの自動車情報は電気信号に変換され、コネクタ3cを介して回転電機10の制御装置4に伝達される。
 回転電機10はラック軸の移動方向に平行な向きに配置されている(矢印の向きを参照)。制御装置4はトルク信号と自動車情報から、必要なアシストトルクを演算し、モータ部5に電流を供給する。回転電機10が発生したトルクは、ベルトとボールネジが内蔵されたギヤボックス6によって減速され、ラックハウジング7の内部にあるラック軸7aを矢印の方向に動かす推力を発生させる。これにより、タイロッド8が動き、タイヤが転舵して車両を旋回させることができる。タイロッドとは、操舵輪(主に前輪)をハンドル操作に合わせて左右に動かせるために、ステアリングギアボックスから車輪のナックルアームまでを結ぶロッド(棒)のことである。回転電機10のトルクによって操舵力をアシストされる運転者は少ない操舵力で車両を旋回させることができる。ラックブーツ9は異物が装置内に侵入しないように設けられている。
 図2に基いてこの発明の実施の形態1に係る回転電機の構造を詳しく説明する。回転電機10は制御装置4とモータ部5が連結されて一体となった構造を有している。回転電機10の回転軸16bにはプーリ14とセンサ用永久磁石23が取り付けられている。ここでは回転電機10の回転軸16bについて、プーリ14が取り付けてある方をフロント側(あるいは出力軸側)と呼ぶことにする。また、センサ用永久磁石23が取り付けてある方をリア側(あるいは反出力軸側)と呼ぶことにする。制御装置4は回転電機10のリア側(あるいは反出力軸側)に配置されている。回転電機10および制御装置4は軸方向から見たときほぼ円形状となっている。
 回転電機10の固定子15は、電磁鋼板を積層して構成される固定子鉄心15aと、固定子鉄心15aに納められた電機子巻線15bとから構成されている。固定子鉄心15aはモータフレーム22aに固定されている。フロント側ハウジング22bは回転電機10の前面部に設けられている。モータフレーム22aとフロント側ハウジング22bはボルト17eで固定されている。フロント側ハウジング22bにはフロント側のベアリング17a(第1ベアリング)が設けられている。フロント側のベアリング17aはリア側のベアリング17b(第2ベアリング)とともに回転軸16bを回転自在に支持している。
 固定子鉄心15aのティースにはインシュレータを介して3相(U相、V相、W相)の電機子巻線15bが巻回されている。各電機子巻線は互いに接続され3相結線を構成している。3相結線の各端子はそれぞれ計3本のモータ端子21に接続されている。ここで、モータ端子は、モータの電機子巻線に電気的に接続された導体で構成される場合や、電機子巻線に電気的に接続された結線板の端子で構成される場合などがある。電機子巻線15bは回転電機10を駆動するための電流が流れるので発熱する。そこで、モータフレーム22aなどを介して放熱および冷却する構造となっている。回転電機10は回転子鉄心16aの中に永久磁石が埋め込まれた構造や、永久磁石を用いないリラクタンスモータや誘導機としてもよい。
 回転電機10の回転子16は、回転子鉄心16a、回転軸16b、永久磁石16cなどから構成されている。回転子鉄心16aは回転軸16bに圧入されている。永久磁石16cは回転子鉄心16aの表面に固定されている。回転軸16bのリア側の先端部にはセンサ用永久磁石23が直接取り付けられている。センサ用永久磁石23はヒートシンク20からリア側に突出している。回転軸16bの軸方向の長さが短縮されているため回転センサ24に対するセンサ用永久磁石23の偏心量を小さくすることができる。センサ用永久磁石23はリア側に磁束を発生する。センサ用永久磁石のリア側に発生させる磁束が漏れるのを低減するためには、回転軸16bとセンサ用永久磁石23の間に非磁性のホルダが取り付けておくとよい。
 制御装置4には回転電機10を駆動するために、スイッチング素子12を有する回転電機駆動回路が搭載されている。スイッチング素子12はMOS-FET(Metal-Oxide Semiconductor Field Effect Transistor)等を備えている。制御装置4には、電源供給用のコネクタ3aと、トルクセンサ2からの信号(トルク信号)を受け取るコネクタ3bと、車速などの自動車情報を受け取るコネクタ3cとが設けられている。制御装置4は制御基板13、制御装置ケース18、回路配線部材26a(第1回路配線部材または第1の回路配線部材)および回路配線部材26b(第2回路配線部材または第2の回路配線部材)を備えている。回路配線部材26aはヒートシンク20よりもリア側かつ制御基板13よりもフロント側に配置されている。回路配線部材26bは制御基板13よりよりもリア側に配置されている。小電流用部品を有する制御基板13の配置は回転電機10の回転軸16bに垂直な面に沿う配置としている。
 制御装置4にはスイッチング素子12の他に、平滑コンデンサ19、コモンモードコイル11a、ノーマルモードコイル11bなどが配置されている。コモンモードコイル11aとノーマルモードコイル11bは、ノイズを低減するために設置されていて、制御基板13よりもリア側に配置されている。同様に、電流を平滑するために設置されている平滑コンデンサ19は、制御基板13よりもリア側に配置されている。制御装置4は制御装置ケース18によって覆われている。制御装置ケース18は樹脂であってもよいし、アルミニウムニウム等の金属であっても、樹脂とアルミニウムニウム等の金属を組み合わせた構成でもよい。制御装置ケース18は平滑コンデンサ19と接触することで放熱および冷却する構造となっている。平滑コンデンサ19、コモンモードコイル11aおよびノーマルモードコイル11bは、バスバーによって電気的に接続されている。ノイズ低減用コイル11および平滑コンデンサ19が制御基板13よりもリア側に配置されているものとしている。制御基板13よりもリア側にノイズ低減用コイル11と平滑コンデンサ19の少なくともいずれか1つが配置されていても同様の効果が得られる。
 このように、平滑コンデンサとノイズ低減用コイルの少なくともいずれか1つが制御基板よりもリア側に配設されているので、ヒートシンクの内部にノイズ低減用コイル11と平滑コンデンサ19の少なくともいずれか1つの配置を避けることが出来る。軸長あたりのヒートシンク20の体積を確保できるうえに、ヒートシンク20の軸方向のサイズを小型化しながらも熱容量が向上する。さらにリア側のベアリング17bと制御基板13の間にノイズ低減用コイル11と平滑コンデンサ19の少なくともいずれか1つが配置されないため、リア側のベアリング17bと制御基板13の間の距離が小さくなる。結果、回転電機10のサイズが小型化し、さらに回転電機10を軽量化できる。
 平滑コンデンサ19は周囲を制御装置ケース18と、直接または樹脂などを介して間接的に、接触させることで放熱および冷却している。よって、平滑コンデンサ19の温度上昇が抑制され、平滑コンデンサ19の信頼性が向上する。なお、平滑コンデンサ19の端面と制御装置ケース18の間には隙間を設けている。よって、平滑コンデンサ19の内圧が上昇しても、制御装置ケース18が邪魔にならず、平滑コンデンサ19の筐体が膨らむことができ、内圧を下げることができる効果がある。ただし、平滑コンデンサ19と制御装置ケース18は接触してなくてもよい。 
 図3Aから図3Cを用いて回転電機10の回転軸16bの構造を説明する。回転軸16bは両端にシャフト保持部16dを設けており、回転軸16bを両端から固定できる構造となっている。例えば、シャフト保持部16dは、図3Aに示すように、シャフトの中央部に設けられたシャフトと同心円状の窪み部である。このような構造とすることで、組み付け時にシャフトを両端から固定でき、固定子と回転子組付け時の回転子と固定子の当接を防ぐことが可能となる。また、シャフト保持部は、図3Bに示すように、シャフト中央部に設けられたシャフトと同心円状のシャフト突出部である。また、シャフト保持部は、図3Cに示すように、シャフト端部の一部に設けられた切欠部である。いずれの場合でも同様の効果が得られる。回転軸16bの一方の先端部すなわちフロント側にはプーリ14が圧入されている。プーリ14は電動パワーステアリング装置のベルトに駆動力を伝達する。
 図4に制御装置の回路図の一例を示す。制御装置4には、電源供給用のコネクタ3aと、トルクセンサ2からのトルク信号を受け取るコネクタ3bと、車速などの自動車情報を受け取るコネクタ3cとが設けられている。固定子15の電機子巻線15bはY結線されている。3相の各相に対応するために3個のスイッチング素子12が設けられている。それぞれのスイッチング素子12に、MOS-FET12a、MOS-FET12b、MOS-FET12cおよびシャント抵抗12dが実装されている。3相ブリッジ回路のU相において、MOS-FET12aはU相+側アームを構成し、MOS-FET12bはU相-側アームを構成している。MOS-FET12aの一端は、電流平滑用の平滑コンデンサ19とノイズ低減用コイル(特にノーマルモードコイル)11に接続されている。 
MOS-FET12bの一端は、シャント抵抗12dを介して車両の接地電位部に接続されている。MOS-FET12aとMOS-FET12bの接続点は、3相ブリッジ回路のU相交流側端子となる。MOS-FET12cは、一端がU相交流側端子に接続され、他端が電機子巻線15bのU相端子に接続されている。W相のスイッチング素子12とV相のスイッチング素子12も同様の構成となっている。
 電源リレー30に実装されているMOS-FET30aとMOS-FET30bは、一端同士が互いに接続されている。MOS-FET30aの他端は、ノイズ低減用コイル11を介して3相ブリッジ回路の+側直流端子に接続されている。MOS-FET30bの他端はコネクタ3aを介して、車両に搭載されたバッテリー31に接続されている。制御基板13に実装されているFET駆動回路13bは、その出力端がMOS-FET12a~12cのゲートに接続されている。FET駆動回路13bは、これらのゲートに夫々所定のタイミングにてゲート駆動信号を与える。制御基板13に実装されているマイクロコンピュータ13aには、トルク信号と自動車情報がそれぞれコネクタ3bとコネクタ3cから入力される。マイクロコンピュータ13aは、回転センサ24からの回転検出信号に基づいてFET駆動回路13bが出力するゲート駆動信号の出力タイミングを制御する。制御装置には様々なコンデンサとコイルが実装されている。コイルの中で、コモンモードコイル11a、ノーマルモードコイル11bはそれぞれ1番目、あるいは2番目に大きい。また、コンデンサの中で、平滑コンデンサが1番目に大きい。また、電流を平滑するために設置されている平滑コンデンサ19は最大の容量を有する。平滑コンデンサは複数個(たとえば3個)配置されていてもよいことはいうまでもない。
 図5Aと図5Bを用いてヒートシンクについて説明する。図5Aに示すようにヒートシンク20にはモータフレーム22aと嵌合するヒートシンク凸部20aが設けられている。ヒートシンク20にヒートシンク凸部20aを設けることで、ヒートシンク20とモータフレーム22aの間の熱抵抗が低下する。ヒートシンク20の熱をより多くモータフレーム22aに伝えることができ、ヒートシンク20の熱容量を向上できるためスイッチング素子12の冷却性が向上する。また、ヒートシンク20とモータフレーム22aに同じ金属材料を用いることで、両者の熱膨張係数が等しくなり、モータ部5の温度が変化したときのモータフレーム22aとヒートシンク20の固定強度が向上する。また、ヒートシンク20とモータフレーム22aにアルミニウムまたはアルミニウム合金を用いることで、モータフレーム22aとヒートシンク20の軽量化と熱伝導率の向上が実現できる。
 ヒートシンク20はヒートシンク凸部20aを用いてモータフレーム22aに焼き嵌め、圧入、あるいはネジ止めされる。ここでは、ヒートシンク20は焼き嵌めによって回転電機10のモータフレーム22aに固定されている。このようにヒートシンク20をモータフレーム22aに固定することによってヒートシンク20の熱はモータフレーム22aに効率的に伝達される。特に焼き嵌め或いは圧入を行うことでヒートシンク20とモータフレーム22aの間の熱抵抗が大幅に低下し、ヒートシンク20における発熱をより大量にモータフレーム22aに伝えることができる。ヒートシンク20の熱容量が向上するため、スイッチング素子12の冷却性を向上できる。
 ヒートシンク20は体積を増加するため軸方向から見たときほぼ円形状となっている。図5Bに示すようにヒートシンク20のリア側の面には、3個のスイッチング素子配置部20cと、1個のスイッチング素子配置部20hが設けられている。またヒートシンク20を貫通する3個の電気配線貫通穴20dが設けられている。スイッチング素子配置部20cは、3相のスイッチング素子にそれぞれが対応する。スイッチング素子配置部20hは電源リレー30に対応する。3個のモータ端子21はそれぞれの電気配線貫通穴20dを貫通している。このとき、それぞれの電気配線貫通穴を小さくできるためヒートシンクの体積を増加でき、ヒートシンクの熱容量を向上できるためスイッチング素子の冷却性を向上できる。
 センサ用永久磁石23の外径はヒートシンク20のシャフト貫通穴20bの外径の最小部よりも大きい。よって、ヒートシンク20のシャフト貫通穴20bを小さくできヒートシンク20の熱容量を向上しながらも、外径の大きなセンサ用永久磁石23を用いることができる。センサ用永久磁石23から生じる磁場は均一となり、回転センサ24の精度が向上する。センサ用永久磁石23はヒートシンク20からリア側に突出している。ヒートシンク20の内部にシャフト貫通穴20bの外径の最小部よりも外径の大きなセンサ用永久磁石を設ける必要がなくなり、ヒートシンク20の体積を大きくすることができる。ヒートシンクの熱容量を向上でき、ヒートシンク20の熱容量が向上するため、スイッチング素子12の冷却性が向上する。また、センサ用永久磁石23と制御基板13の距離を近づけることができ、センサ用永久磁石23から生じる磁場が均一となり、回転センサ24の精度が向上する。
 図6A~図6Cに基づいてスイッチング素子について補足説明する。制御装置には回転電機を駆動するための回転電機駆動回路が実装されている。この回転電機駆動回路はMOS-FET等を備えたスイッチング素子12を有する。スイッチング素子12は回転電機駆動のための電流が流れるので発熱する。そこで、スイッチング素子12を接着剤や絶縁シートなどを介してヒートシンク20のスイッチング素子配置部20cと接触させ、放熱および冷却する。図6Bではヒートシンク20と接触するスイッチング素子12は、ベアチップをDBC(Direct Bonded Copper)基板12sに実装した構成となっている。
 スイッチング素子12は、1つの電源リレー30を囲んで円周上に略90度の間隔で並ぶ配置となっている。電源リレー30は、MOS-FET30aとMOS-FET30bのベアチップを有している。3相のスイッチング素子12はMOS-FET12a、MOS-FET12b、MOS-FET12cおよびシャント抵抗12dを有している。スイッチング素子の端子12tは、回転電機から制御装置側に配線された3つのモータ端子の端部と溶接、プレスフィット、はんだなどで電気的に接続される。ここで、3つのスイッチング素子のうち1つは、必要なときに回転電機を電気的に切り離す役割、すなわちモータリレーの役割を果たす。なお、スイッチング素子を3相としたが、2相、5相、6相など相数が異なっていてもよく、スイッチング素子の数も3個以外の数でもよい。スイッチング素子の端子12tは、回転電機から制御装置側に配線された3つのモータ端子の端部と溶接、プレスフィット、はんだなどで電気的に接続されるものとしている。スイッチング素子の端子12tが回路配線部材と溶接、プレスフィット、はんだなどで電気的に接続され、さらにモータ端子と溶接、プレスフィット、はんだなどで電気的に接続されてもよい。
 図6Cは電源リレーを設けない場合も記している。電源リレーを設けない場合はスイッチング素子12を略120度の間隔で配置する。スイッチング素子の面積を大きく確保することができ、スイッチング素子の発熱をスイッチング素子配置部に効率よく伝えることができ、スイッチング素子の温度上昇を低減する効果が得られる。なお、図ではベアチップやシャント抵抗12dを電気的に接続するワイヤボンディングなどの接続部は省略している。3相のスイッチング素子12は、共通の設計となっており低コスト化が可能となっている。
 図7A、図7Bおよび図7Cに基づいてスイッチング素子についてさらに補足説明する。前図ではベアチップをDBC基板に実装した構成としたが、スイッチング素子12は、ベアチップを樹脂で封止したパワーモジュールとした構成としてもよい。ベアチップを樹脂でモールドする構成にすることによって、スイッチング素子12mの発熱をスイッチング素子配置部に効率よく伝えることができ、スイッチング素子12mの温度上昇を低減する効果が得られる。また、図7D、図7Eおよび図7Fに示すように、スイッチング素子12に回路端子27bを設ける構成としてもよい。
 図8Aと図8Bは、回路配線部材の一例を示したものである。回路配線部材26は、ヒートシンク20よりもリア側かつ制御基板13よりもフロント側に配置されている回路配線部材26aと、制御基板13よりもリア側に配置される回路配線部材26bを含んでいる。回路配線部材26aは、バスバー26c、フレーム26d、位置決め部26e、電源端子27a、回路端子27bなどから構成されている。フレーム26dは樹脂などの絶縁部材で構成され、バスバー26cなどを保持する。フレーム26dはバスバー26cと一体成型されていてもよい。回路配線部材26aのバスバー26cは電源端子27aと接続されている。電源端子27aは電源供給用のコネクタ3aと接続される。バスバー26cはスイッチング素子12と接続される。すなわち、コネクタ3aから供給される電力はスイッチング素子12に給電される構成になっている。なお、回路端子27bは回路配線部材に設けずに、スイッチング素子に設ける構成としてもよい。この場合、回路配線部材には回路端子は設けられない。
 図9Aは制御基板を表す側面図である。図9Bは制御基板をフロント側から見た模式図である。同図では、回路の詳細は省略し、小電流部品の一部のみを描画している。制御基板13は、薄板状であり、部品や配線パターンを取り付けるための面積を確保するため、軸方向から見るとほぼ円形状となっている。制御基板13はコネクタ3bとコネクタ3cの入力端子から受け取った情報に基づき、回転電機を適切に駆動するためにスイッチング素子12に制御信号を送る。このとき、制御基板13の小電流用部品のうち、マイクロコンピュータ13aやFET駆動回路13bは電流が流れるため他の部品と比較して発熱量が大きい。複数の回路端子27bは個々に複数の貫通穴13eを通過して回路配線部材26bまで延在し、平滑コンデンサ19およびノイズ低減用コイル11と接続されている。
 制御信号は、制御基板13と回路配線部材26a、制御基板13と回路配線部材26b、および制御基板13とスイッチング素子12を電気的に接続する回路端子27bによって伝達される。回路端子27bはワイヤボンディング、プレスフィット、はんだなどで制御基板、回路配線部材、スイッチング素子に固定される。制御基板13は電源端子27aを通す貫通穴13dと、回路端子27bを通す貫通穴13eと、位置決め部13cとを有している。回路端子27bは、貫通穴13eを通り、制御基板に接続される。ここではマイクロコンピュータ13aやFET駆動回路13bがフロント側に配置されているものとしたが、リア側に配置されていてもよいのはいうまでもない。
 制御基板13のフロント側には回転センサ24が実装されている。回転センサ24はセンサ用永久磁石23と同軸上でかつ近接する位置に配置されている。回転センサ24はセンサ用永久磁石23の発生する磁気を検出し、その向きを知ることで回転子16の回転角度を検出する。マイクロコンピュータ13aはこの回転角度に応じて適切な駆動電流を演算し、FET駆動回路13bを制御する。回転センサ24が制御基板13に配置されているため、回転センサ24と制御基板13の間の配線を短くすることがき、外部から回転センサ24へ流入するノイズへの耐性が向上する。さらに回転センサ24を保持する機構が省略できるので、部品点数の削減が可能となる。
 制御基板13は位置決め部13cを備えている。ヒートシンク20または回路配線部材26の位置決め部との間で制御基板13を位置決めできるような構成となっている。ヒートシンクと制御基板の相対位置が決定されるため、組み立てが単純になって回転センサ24の調整が不要かつ回転センサ24の精度が向上できる。ここでは回転センサ24が制御基板に実装されている例を示したが、制御基板と別の基板に実装されていたり、別の部材で保持する構成としてもよい。
 図10は回路配線部材26bの側面図である。制御基板13よりもリア側に配置される回路配線部材26bは、バスバー26c、コモンモードコイル11a、ノーマルモードコイル11b、平滑コンデンサ19、回路端子(入力端子)27bなどが溶接またはプレスフィット、はんだなどで電気的に接続されている。ベアリング17bが挿入される位置よりもリア側にノイズ低減用コイル11、平滑コンデンサ19、回路配線部材26が配置されているため、これらの部品が回転電機の内部に脱落した際の回転電機の故障を防ぐことが可能となる。また、ヒートシンク20と接触するスイッチング素子とノイズ低減用コイル11の間に回路配線部材26a、26bを設けている。スイッチング素子12のノイズが回路配線部材のバスバー26cにより遮蔽され、スイッチング素子とノイズ低減用コイル11の間の磁気結合を低減することが可能となる。
 以上のようにこの発明の実施の形態1による電動パワーステアリング装置100は構成されている。運転者がステアリングホイール1aを操作してステアリングシャフト1bに操舵トルクを加えると、トルクセンサ2がその操舵トルクを検出し、マイクロコンピュータ13aにトルク信号を伝送する。回転センサ24が検出した操舵回転数に対応する回転検出信号もマイクロコンピュータ13aに入力される。マイクロコンピュータ13aは入力された操舵トルク、操舵回転数、車両の速度信号等に基づいてアシストトルクを演算する。アシストトルクは、FET駆動回路13bが回転電機駆動回路(3相ブリッジ回路)を制御することによって回転電機10に発生し、減速機構を介してステアリングシャフト1bに加えられる。
 FET駆動回路13bはマイクロコンピュータ13aからの指示に基づいて所定のタイミングにてゲート駆動信号を発生し、3相ブリッジ回路のMOS-FETを導通制御する。これにより3相ブリッジ回路は所定の3相交流電流を発生し、固定子15の電機子巻線15bに3相交流電流を供給する。回転電機10は駆動し、回転電機10の発生したトルクは、減速機構を介してステアリングシャフト1bにアシストトルクとして加えられる。これにより、運転者によるステアリングホイール(ハンドル)1aの操舵力は軽減される。電機子巻線15bはY結線された例を示しているがΔ結線でもいいことはいうまでもない。また、スイッチング素子12を3相としたが、2相、5相、6相など相数が異なっていてもよい。ヒートシンクの内部、およびリア側のベアリングと制御基板の間にはノイズ低減用コイルとコンデンサの少なくともいずれか1つが配置されない。軸長を小さくしながらもヒートシンクの体積が向上して熱容量を向上でき、かつリア側のベアリングと制御基板の距離が小さくなるので回転電機を小型軽量化できる。
 次に、上記のように構成された実施の形態1に係る回転電機の組み立て手順の一例について説明する。まず、回転電機のモータ部の組み立てを行う。モータフレーム22aの組み立てを行うには、固定子鉄心のティースにインシュレータを介してU相、V相、W相の各巻線を巻回し、3相の電機子巻線を形成する。U相の各巻線の巻始めと巻終わりを互いに接続し、U相の電機子巻線を完成する。同様にV相およびW相の電機子巻線を完成する。ついでU相の電機子巻線、V相の電機子巻線およびW相の電機子巻線の巻始めと巻終わりを互いに接続して3相結線を完結する。3相結線の各端子はそれぞれモータ端子21に接続される。その後、この固定子鉄心をモータフレームに圧入する。
 次に図11に基づいてヒートシンクの組み立て方法について説明する。ここにはヒートシンク20へスイッチング素子12を固定する工程が含まれる。ヒートシンク20には、ベアリング17bの外径よりも小さく、ベアリング17bの内径よりも大きいシャフト貫通穴20bが、ベアリング17bよりもリア側に形成されている。MOS-FET、ベアチップ、シャント抵抗等を備えるスイッチング素子12を高熱伝導性の接着剤により、ヒートシンク20のスイッチング素子配置部20cに接着固定する。同様に、電源リレー30を高熱伝導性の接着剤により、ヒートシンク20のスイッチング素子配置部20hに接着固定する。次に、リア側のベアリング17bの外輪をヒートシンクのシャフト貫通穴20bに固定する。
 次に、図12に示すように固定子のモータフレーム22aをヒートシンク20に焼き嵌め、圧入、ネジ止めなどによって固定する。このとき、3相結線の端子が接続されたモータ端子21はヒートシンク20に設けられた電気配線貫通穴20dに差し込まれる。モータ端子21はヒートシンク20よりもリア側に飛び出た状態になる。次に、モータ端子21とスイッチング素子12を溶接、プレスフィット、はんだなどで電気的に接続する。ただし、モータフレームとヒートシンクが一体となっている場合であれば本工程は省かれる。
 次に、図13~図15に基いて回転子16の組み立て方法について説明する。図13に示すように回転軸16bの両端のシャフト保持部16dにシャフト保持治具16hを固定し、回転軸16bを両端から固定する。その後、回転軸16bに回転子鉄心16aを圧入する。さらに図14に示すように回転子鉄心16aに永久磁石16cを接着固定する。永久磁石16cは接着前に着磁されていてもよいし、接着固定後に着磁器で着磁してもよい。次に、図15に示すようにフロント側のベアリング17aの外輪をフロント側ハウジング22bのシャフト貫通穴22dに固定する。フロント側ハウジング22bのシャフト貫通穴22dにはシャフト保持治具16hを通す。さらに、回転軸16bにはハウジングのフロント側のベアリング17aを予め定められた位置まで圧入する。
 次に、図16を参照して回転子へのヒートシンクの挿入工程について説明する。シャフト保持治具16hをヒートシンク20のシャフト貫通穴20bにまず通す。シャフト保持治具16hで保持されている回転子16の回転軸16bをリア側のベアリング17b挿入し、ヒートシンクのリア側のベアリング17bをモータフレーム22aがフロント側ハウジング22bに接触する位置まで圧入する。
 次に、図17を参照してプーリの固定工程について説明する。圧入後、フロント側ハウジング22bとモータフレーム22aはボルト(またはネジ)17eなどで固定する。回転軸16bの両端に装着されているシャフト保持治具16hを外し、回転軸(シャフト)16bのフロント側にプーリ14を固定する。以上が回転電機10のモータ部の組み立て工程である。
 次に、制御装置4の組み立てを説明する。先ず図18を参照してセンサ用永久磁石23の回転軸16bへの固定について説明する。回転軸16bのリア側の端部にリア側から着磁されたセンサ用永久磁石23を固定する。なお、センサ用永久磁石23は回転軸16bに固定した後、着磁器で着磁してもよい。
 次に、図19を参照して、回路配線部材26aと制御基板13の取り付け方法を説明する。バスバー26c、電源端子27a、回路端子27bなどが樹脂と一体成型された回路配線部材26aをヒートシンク20のリア側に接着剤、ねじ等を用いて固定する。スイッチング素子12と回路配線部材26aのバスバー26cは、溶接、ワイヤボンディング、プレスフィット、はんだなどで電気的に接続する。制御基板13にはクリーム半田を塗布した後、マイクロコンピュータ13a、FET駆動回路13b、回転センサ24およびその周辺回路素子等の小電流部品を実装する。その後、リフロ装置を用いてクリーム半田を溶かし、これらの部品を半田付けしておく。
 さらに、この制御基板13をヒートシンク20と回路配線部材26aよりもリア側に取付ける。このとき、制御基板13の位置決め部13cを回路配線部材26aに設けられた位置決め部と嵌め合うことで、制御基板13に設けられた回転センサ24と回転軸の端部に設けられたセンサ用永久磁石23との位置決めを行う。同時に、制御基板13、回路配線部材26b、回路端子27bとをワイヤボンディング、プレスフィット、はんだなどで電気的に接続する。
 次に、図20を参照して、制御基板13よりリア側に設置される回路配線部材26bの固定方法について説明する。バスバーが樹脂と一体成型され、コモンモードコイル11a、ノーマルモードコイル11b、平滑コンデンサ19が取付けられた回路配線部材26bを制御基板13よりもリア側に配置する。回路配線部材26aから制御基板13よりもリア側に伸びた配線(電源端子27aや回路端子27b)や、制御基板13からリア側に伸びた配線(回路端子27b)は、制御基板のリア側の回路配線部材26bを溶接やプレスフィット、はんだなどで電気的に接続する。次に、制御装置ケース18をリア側から取り付け、ヒートシンク20に接着剤、ねじ等で固定する。以上で、制御装置4ならびに回転電機10の組み立てが完了する。
 以上に説明したように、ヒートシンクへスイッチング素子を固定する工程の後、ヒートシンクにモータフレームを固定する工程を行う。スイッチング素子を固定する工程でヒートシンクからモータ端子が飛び出ていないため、組付け性が向上するといった効果が得られる。回転電機の組み立て工程の後、センサ用永久磁石のシャフトへの固定工程を行う。リア側にヒートシンクのシャフト貫通穴の最小部よりも径の大きいセンサ用永久磁石を取付けられるので、センサ用永久磁石の磁場が均一となり、回転センサ24の精度が向上する。特に、センサ用永久磁石の外径が回転軸の外径よりも大きい場合に有益である。また、回転電機の組み立て工程の後、制御基板の実装工程を行うので、シャフトを両側から固定しながらモータフレームとヒートシンクやハウジングの組み付けができ、固定子と回転子組付け時の回転子と固定子の当接を防ぐことが可能となる。
実施の形態2.
 図21Aと図21Bはこの発明の実施の形態2に係る回転電機の説明図である。基本的なヒートシンクの構造は実施の形態1と同様である。図に示すように3つのモータ端子21は一つの電気配線貫通穴20dを通るように構成してある。ヒートシンク20にはリア側に小電流用部品を有する制御基板13が隣接して設けられている。このとき、ヒートシンク20の穴の数を少なくできるためヒートシンクの体積を向上でき、ヒートシンクの熱容量を向上できるためスイッチング素子の冷却性が向上する。なお、モータ端子が電気配線貫通穴を貫通するものとしたが、他の回転電機と制御装置との間の信号線やケーブル等の電気配線が貫通する場合でも同様の効果が得られることは言うまでもない。
実施の形態3.
 図22はこの発明の実施の形態3に係る回転電機の説明図である。基本的な構造は実施の形態1と同様である。図に示すように電機子巻線の3相結線をリング状の結線板25を介してモータ端子21に接続する構造としている。固定子鉄心15aの電機子巻線は互いに接続され3相結線を構成している。結線板25はモータ端子21と電機子巻線15bの間に配置されている。
実施の形態4.
 図23Aと図23Bはこの発明の実施の形態4に係る回転電機の説明図である。基本的な構造は実施の形態1と同様である。図に示すように、スイッチング素子12は回路配線部材26aと一体で構成されている。回路配線部材26aは、バスバー26c、フレーム26d、電源端子27a、回路端子27bなどから構成されている。フレーム26dは樹脂などの絶縁部材で構成され、バスバー26cなどを保持している。回路配線部材26aのバスバー26cは電源端子27aと接続されている。
実施の形態5.
 図24はこの発明の実施の形態5に係る回転電機の説明図である。基本的な構造は実施の形態1と同様であるので、図を用いてセンサ用永久磁石23について補足説明する。センサ用永久磁石23はヒートシンクからリア側に突出しているものとしたが、ヒートシンクに少なくとも一部が沈下し、埋設されているようにしても同様の効果が得られる。ここではヒートシンク20にはリア側凹部20jが形成されている。センサ用永久磁石23はリア側凹部20jに沈下し、埋設されている。
実施の形態6.
 図25はこの発明の実施の形態6に係る回転電機の説明図である。基本的な構造は実施の形態1と同様であるので、図を用いてハウジングについて補足説明する。モータフレーム22aは回転電機の前面部に設けられたフロント側ハウジング22bと一体となっている。このとき、ハウジングとモータフレームの間の熱抵抗が低下するためモータフレームの冷却性が向上し、またシャフトとモータフレームの同軸度が向上し、回転電機の振動を低減できる。
実施の形態7.
 図26はこの発明の実施の形態7に係る回転電機の説明図である。基本的な構造は実施の形態1と同様であるので、図を用いてモータフレームについて補足説明する。モータフレーム22aはヒートシンク20と一体となっている。このとき、ヒートシンク20とモータフレーム22aの間の熱抵抗が低下するためスイッチング素子12の冷却性が向上する。また回転軸16bとモータフレーム22aの同軸度が向上し、回転電機10の振動を低減できる。
実施の形態8.
 図27はこの発明の実施の形態8に係る回転電機の説明図である。基本的な構造は実施の形態1と同様である。ここではノイズ低減用コイル11の周囲にノイズ遮蔽部材33を配置している。図にはコモンモードコイル11aとノーマルモードコイル11bとの間にノイズ遮蔽部材33を挿入した例が示されている。このようにすることで、近接して配置されるコモンモードコイル11aとノーマルモードコイル11bとの磁気結合を低減することが可能となる。制御装置の誤作動を防止したり、回転電機10を滑らかに駆動することができ、回転電機の振動や騒音が低減する。ノイズ遮蔽部材33の例としては、金属板などが挙げられる。ノイズ低減用コイル11および平滑コンデンサ19は制御基板13よりもリア側に配置されているものとしている。制御基板13よりもリア側にノイズ低減用コイル11と平滑コンデンサ19の少なくともいずれか1方が配置されていても同様の効果が得られることは言うまでもない。
実施の形態9.
 図28はこの発明の実施の形態9に係る回転電機の説明図である。基本的な構造は実施の形態1と同様である。図に示すように平滑コンデンサ19とコモンモードコイル11aは制御基板13よりもリア側に配置されている。ノーマルモードコイル11bは回路配線部材26aに配設されており、制御基板13と一部軸方向に重なっている。制御基板13と一部軸方向に重なっているのはノーマルモードコイル11bとしているが、平滑コンデンサ19またはコモンモードコイル11aとしてもよいのは言うまでもない。また、ノイズ低減用コイル11はコモンモードコイル11aとノーマルモードコイル11bから構成されるものとしている。どちらか片方のみで構成されていても同様の効果が得られることは言うまでもない。
実施の形態10.
 図29はこの発明の実施の形態10に係る回転電機の説明図である。基本的な構造は実施の形態1と同様である。図に示すようにヒートシンク20は制御基板13にまで突出したリア側突出部20eを有している。リング状または柱状のリア側突出部20eは、グリス等を介して制御基板13の発熱部品(マイクロコンピュータ13a、FET駆動回路13bなど)の少なくとも1つと接触しているか、あるいは発熱部品と近接配置されている。従って、制御基板13の発熱部品の放熱と冷却性を向上することができる。また、ノイズ低減用コイル11と平滑コンデンサ19は回路配線部材26bよりもリア側に配設されているので、リア側のベアリング17bと制御基板13の間の距離が小さくなり、結果、リア側突出部20eを短くすることができ、回転電機を小型軽量化できる。
 ヒートシンクのリア側突出部20eはヒートシンク20と制御基板13の位置決めに用いてもよい。ヒートシンクと制御基板の相対位置が決定されるため、組み立てが単純になって調整が不要かつ制御基板の回転センサ24の精度が向上できる。なお、リア側突出部20eはグリスを介して制御基板の発熱部品と接触しているものとしている。リア側突出部20eがグリス等を介して制御基板と接触しており、制御基板の発熱部品を制御基板と突起部の接触面に近接した形で配置しても同様の効果が得られることはいうまでもない。また、リア側突出部20eはグリス等を介して制御基板と接触しているものとしたが、発熱部品と直接接触させたり、近接させても同様の効果が得られる。
実施の形態11.
 図30Aと図30Bはこの発明の実施の形態11に係る回転電機の説明図である。基本的な構造は実施の形態1と同様である。図に示すようにリア側のベアリング17bとヒートシンク20の間に断熱材20fが挿入されている。このようにすることで、スイッチング素子12の発熱によりヒートシンク20の温度が上昇した際に、リア側のベアリング17bの温度上昇を抑制することができる。よって、潤滑材の劣化などを防ぐことができ、ベアリングの寿命を長くすることができる。なお、断熱材20fを挿入しなくてもヒートシンク20との間の熱抵抗を高くする構造としても同等の効果が得られることは言うまでもない。
実施の形態12.
 図31Aと図31Bはここの発明の実施の形態12に係る回転電機の説明図である。基本的な構造は実施の形態1と同様である。図に示すようにヒートシンク20は結線板25と軸方向に重なる位置でフロント側に突出したフロント側突出部20gを備えている。よって、ヒートシンクの熱容量が向上でき、スイッチング素子の冷却性が向上できる。また、リア側のベアリングはフロント側突出部20gに配置されている。よって、リア側のベアリング間の距離が縮小でき、回転電機の振動を抑制できる。また、ヒートシンクは回転電機のリア側に突出する結線板25を収納するリング状フロント側凹部20iを備えている。よって、回転電機を小型化できる。
実施の形態13.
 図32Aと図32Bはここの発明の実施の形態13に係る回転電機の説明図である。基本的な構造は実施の形態1と同様である。図に示すようにヒートシンク20は電機子巻線のリア側のコイルエンドと軸方向に重なる位置でフロント側に突出したフロント側突出部20gを備えている。よって、ヒートシンクの熱容量が向上でき、スイッチング素子の冷却性が向上できる。また、リア側のベアリングはフロント側突出部20gに配置されている。よって、リア側のベアリング間の距離が縮小でき、回転電機の振動を抑制できる。また、ヒートシンクは回転電機のリア側に突出する電機子巻線のコイルエンドを収納するリング状フロント側凹部20iを備えている。よって、回転電機を小型化できる。
実施の形態14.
 図33Aと図33Bはこの発明の実施の形態14に係る回転電機の説明図である。基本的な構造は実施の形態1と同様である。図に示すように回転子16には回転子鉄心凹部16gに軸方向に重なる位置でフロント側に突出している突出部20kを設けている。よって、ヒートシンク20の熱容量が向上でき、スイッチング素子12の冷却性が向上できる。また、リア側のベアリング17bは突出部20kに配置されている。よって、リア側のベアリング間の距離がさらに縮小でき、回転電機の振動を抑制できる。また、ヒートシンク20は回転電機のリア側に突出する電機子巻線のコイルエンドを収納するリング状フロント側凹部20iを備えている。よって、回転電機を小型化できる。
実施の形態15.
 図34はこの発明の実施の形態15に係る回転電機の説明図である。基本的な構造は実施の形態1と同様であるので、図を用いてヒートシンクについて補足説明する。スイッチング素子12はヒートシンク20に接着されている。リア側のベアリング17bはリア側ハウジング34に支持されている。このように、リア側ハウジング34を設けたので部品数が増えるもののリア側のベアリング17bの温度上昇が抑制されるため、回転電機が長寿命化する。
実施の形態16.
 図35はこの発明の実施の形態16に係る回転電機の説明図である。回路配線部材26aは、ヒートシンク20よりもリア側かつ制御基板13よりもフロント側に配置されている1つの部材である。回路配線部材26aは、バスバー26c、コモンモードコイル11a、ノーマルモードコイル11b、平滑コンデンサ19、回路端子(入力端子)27bなどが溶接またはプレスフィット、はんだなどで電気的に接続されている。ベアリング17bが挿入される位置よりもリア側にノイズ低減用コイル11、平滑コンデンサ19、回路配線部材26aが配置されているため、これらの部品が回転電機の内部に脱落した際の回転電機の故障を防ぐことが可能となる。ヒートシンク20に搭載されたスイッチング素子12とノイズ低減用コイル11の間には回路配線部材26aを設けている。スイッチング素子12のノイズが回路配線部材26aのバスバー26cにより遮蔽され、スイッチング素子とノイズ低減用コイル11の間の磁気結合を低減することが可能となる。
 図36Aと図36Bは、回路配線部材26aの一例を示したものである。回路端子27fはノーマルモードコイル11bに接続される。回路端子27gは平滑コンデンサ19に接続される。回路端子27hはコモンモードコイル11aに接続される。図37Aは制御基板を表す側面図である。図37Bは制御基板をフロント側から見た模式図である。貫通穴13fはノーマルモードコイル11bに接続される回路端子27fが通過する。貫通穴13gは平滑コンデンサ19に接続される回路端子27gが通過する。貫通穴13hはコモンモードコイル11aに接続される回路端子27hが通過する。複数の回路端子27bは個々に複数の貫通穴13eを通過して制御基板13のリア側まで延在し、平滑コンデンサ19およびノイズ低減用コイル11と接続されている。
実施の形態17.
 図38はこの発明の実施の形態17に係る回転電機の説明図である。ヒートシンク20および制御基板13よりもリア側に回路配線部材26bが配置されている。回路配線部材26bは、バスバー26c、コモンモードコイル11a、ノーマルモードコイル11b、平滑コンデンサ19、電源端子27a、回路端子(入力端子)27bなどが溶接またはプレスフィット、はんだなどで電気的に接続されている。ベアリング17bが挿入される位置よりもリア側には、ノイズ低減用コイル11と平滑コンデンサ19を搭載している回路配線部材26bが配置されている。これらの部品が回転電機の内部に脱落した際に、回転電機の故障を防ぐことが可能である。スイッチング素子12と制御基板13の間に回路配線部材が設けられないため、軸長あたりのヒートシンク20の体積を確保できるうえに、ヒートシンク20の軸方向のサイズを小型化しながらも熱容量が向上する。さらにリア側のベアリング17bと制御基板13の間に回路配線部材が配置されないため、リア側のベアリング17bと制御基板13の間の距離が小さくなる。結果、回転電機10のサイズが小型化し、さらに回転電機10を軽量化できる。複数の回路端子27bは回路配線部材26bまで延在し、平滑コンデンサ19およびノイズ低減用コイル11と接続されている。
 回転軸16bのリア側の先端部にはセンサ用永久磁石23が直接取り付けられている。センサ用永久磁石23はヒートシンク20からリア側に突出している。回転軸16bの軸方向の長さが短縮されているため回転電機を小型化、軽量化できる他、回転センサ24に対するセンサ用永久磁石23の偏心量を小さくすることができる。さらにリア側のベアリング17bと制御基板13の間にノイズ低減用コイル11と平滑コンデンサ19の少なくともいずれか1つが配置されないため、リア側のベアリング17bと制御基板13の間の距離が小さくなる。結果、回転電機10の軸方向のサイズが小型化し、さらに回転電機10を軽量化できる。
 平滑コンデンサ19は、周囲を制御装置ケース18と、直接または樹脂などを介して間接的に、接触させることで放熱および冷却している。よって、平滑コンデンサ19の温度上昇が抑制され、平滑コンデンサ19の信頼性が向上する。制御装置ケース18をアルミニウムニウム等の金属で構成した場合、平滑コンデンサ19が熱伝導率の高い金属部材と接触しているため、平滑コンデンサ19の熱をさらに回転電機の周囲に逃がすことができる。平滑コンデンサの温度上昇はさらに抑制され、平滑コンデンサの信頼性が向上する。平滑コンデンサ19の温度が上昇すると、平滑コンデンサは故障する。故障を防ぐためには回転電機に供給する電流を抑制する必要があり、回転電機のトルクが低下する。制御装置ケースと平滑コンデンサが接触することで、平滑コンデンサの温度上昇が抑制されるため、回転電機のトルク低下をさらに抑制できる。なお、平滑コンデンサは複数個(たとえば3個)配置されていてもよいことはいうまでもない。ここで、平滑コンデンサが4つ以上配置されている構成としてもよい。平滑コンデンサの熱容量が向上するので、平滑コンデンサの温度上昇を抑制でき、平滑コンデンサの信頼性がさらに向上し、回転電機のトルク低下をさらに抑制できる。
 実施の形態18. 図39はこの発明の実施の形態18に係る回転電機の説明図である。平滑コンデンサ19と接触している制御装置ケースは一部のみがアルミニウムニウム等の金属で構成されていてもよい。本実施の形態では、同図に示すように、制御装置ケース18は、樹脂などの熱伝導率が低い絶縁性部材で構成されていてヒートシンク20と接続されているケース部材18a(第1のケース部材)とアルミニウムニウム等の金属で構成されているケース部材18b(第2のケース部材)と、からなるものである。平滑コンデンサ19はケース部材18bと接触している。ヒートシンク20とケース部材18bの間の熱伝導率を低下できるので、ヒートシンク20から制御装置ケース18への熱を低減することができる。よって、平滑コンデンサ19の温度上昇が抑制されるため、平滑コンデンサの信頼性がさらに向上し、回転電機のトルク低下をさらに抑制できる。
 平滑コンデンサ19とノイズ低減用コイル11は、ともに制御基板13よりもリア側に配設されている。平滑コンデンサ19とノイズ低減用コイル11は少なくともいずれか1つが制御基板13のリア側に配置される構成としてもよいのはいうまでもない。平滑コンデンサ19とノイズ低減用コイル11がともに制御基板13よりもリア側に配設されていると、ヒートシンク20の内部にノイズ低減用コイル11および平滑コンデンサ19の配置を避けることが出来る。軸長あたりのヒートシンク20の体積をさらに確保できるうえに、ヒートシンク20の軸方向のサイズをさらに小型化しながらも熱容量が向上する。
 リア側のベアリング17bと制御基板13の間にノイズ低減用コイル11および平滑コンデンサ19が配置されないため、リア側のベアリング17bと制御基板13の間の距離が小さくなる。結果、回転電機10の軸方向のサイズが小型化し、さらに回転電機10を軽量化できる。回転軸16bの軸方向の長さがさらに短縮されているため回転電機を小型化、軽量化できる他、回転センサ24に対するセンサ用永久磁石23の偏心量を小さくすることができる。
 回転電機10の電機子巻線15bやスイッチング素子12は、電流が供給されると発熱する。ヒートシンク20は、スイッチング素子12と接触しており、発熱を吸収する。電機子巻線15b、スイッチング素子12およびヒートシンク20は、近接する平滑コンデンサ19とノイズ低減用コイル11の温度を上昇させるため、平滑コンデンサやノイズ低減用コイルの故障を防ぐ観点から回転電機に供給する電流を抑制する必要がある。温度が上昇すると、回転電機のトルクが低下する。また、平滑コンデンサ19の信頼性が低下する。平滑コンデンサとノイズ低減用コイルがともに制御基板のリア側に配置される構成とすることで、平滑コンデンサおよびノイズ低減用コイルは回転電機の電機子巻線やスイッチング素子、ヒートシンクから遠くに配置されるので、平滑コンデンサとノイズ低減用コイルの温度上昇を抑制できる。
 平滑コンデンサ、ノイズ低減用コイルと電機子巻線、スイッチング素子、ヒートシンクの間に制御基板13と回路配線部材26bが介在するため、制御基板13や回路配線部材26bにより断熱され、平滑コンデンサとノイズ低減用コイルの温度上昇を抑制できる。以上より、回転電機のトルク低下を抑制できる、あるいは平滑コンデンサの信頼性が向上するといった効果が得られる。また、平滑コンデンサとして導電性高分子ハイブリッドアルミ電解コンデンサが配置されている構成としてもよい。このハイブリッドタイプのコンデンサは熱容量が小さいが電解コンデンサなどと比較して小型である。平滑コンデンサの温度上昇が低減しているので、ハイブリッドタイプのコンデンサを用いることで、回転電機のサイズを小型化できる。
実施の形態19.
 図40はこの発明の実施の形態19に係る回転電機の説明図である。基本的な構造は実施の形態1と同様であり、平滑コンデンサ19とノイズ低減用コイル11がともに制御基板13のリア側に配置されている。回転電機10の電機子巻線15bとスイッチング素子12は、電流が供給されるので発熱し、ヒートシンク20はスイッチング素子12と接触しているので発熱を吸収する。本実施の形態では、制御基板13と回路配線部材26bの間には、制御基板13とほぼ平行になるように平板状の断熱材35が設けられている。電機子巻線15b、スイッチング素子12、ヒートシンク20などは、近接する平滑コンデンサ19およびノイズ低減用コイル11の温度を上昇させるため、平滑コンデンサ19やノイズ低減用コイル11の故障を防ぐ観点から、回転電機10に供給する電流を抑制する必要がある。温度が上昇すると、回転電機10のトルクが低下し、平滑コンデンサ19の信頼性が低下する。
 本実施の形態では、平滑コンデンサ19とノイズ低減用コイル11が、ともに、制御基板13のリア側に配置されている回路配線部材26bに設置されている。断熱材35は、制御基板13と回路配線部材26bの間に、制御基板13とほぼ平行になるように設けられている。電機子巻線15b、スイッチング素子12、ヒートシンク20などから平滑コンデンサ19およびノイズ低減用コイル11へ伝わる熱は低減している。その結果、平滑コンデンサ19とノイズ低減用コイル11の温度上昇を抑制でき、回転電機のトルク低下を抑制でき、平滑コンデンサ19の信頼性を向上できる。断熱材35は、回路配線部材26bと制御基板13との間に、制御基板13とほぼ平行になるように配置されているため、回転電機の軸方向のサイズが大きくなることなく、トルク低下を抑制でき、平滑コンデンサの信頼性を向上できる。
実施の形態20.
 図41はこの発明の実施の形態20に係る回転電機の説明図である。前実施の形態では、断熱材35を制御基板13と回路配線部材26bの間に設けていた。本実施の形態では、同図に示すように、平板状の断熱材35を回路配線部材26bよりもリア側に配設している。断熱材35が平滑コンデンサ19とノイズ低減用コイル11の足下に設けられているので、前実施の形態と同様の効果が得られる。
 断熱材35は回路配線部材26bと接触していてもよく、或いは制御基板13または回路配線部材26bに設けられている断熱部材であってもよい。部品点数を削減したり、軸方向のスペースを削減して回転電機の軸方向のサイズを低減できるといった効果が得られる。断熱材のサイズや位置が異なる場合においても、制御基板と平滑コンデンサおよびノイズ低減用コイルの間に制御基板とほぼ平行となるように断熱材を配置した構成とすれば同様の効果が得られることはいうまでもない。
実施の形態21.
 図42はこの発明の実施の形態21に係る回転電機の説明図である。本実施の形態では、平板状の断熱材35を制御基板13と平滑コンデンサおよびノイズ低減用コイルの間に設けた構成としており、前実施の形態と同様の効果が得られることはいうまでもない。回路配線部材26aは、ヒートシンク20よりもリア側かつ制御基板13よりもフロント側に配置されている1つの部材である。
 断熱材35は制御基板13と接触していてもよく、或いは制御基板13または回路配線部材26aに設けられている断熱部材であってもよい。部品点数を削減したり、軸方向のスペースを削減して回転電機の軸方向のサイズを低減できるといった効果が得られる。断熱材のサイズや位置が異なる場合においても、制御基板と平滑コンデンサ、ノイズ低減用コイルの間に制御基板とほぼ平行となるように断熱材を配置した構成とすれば同様の効果が得られることはいうまでもない。
実施の形態22.
 図43はこの発明の実施の形態22に係る回転電機の説明図である。基本的な構造は実施の形態1と同様であり、平滑コンデンサ19とノイズ低減用コイル11はともに制御基板13のリア側に配置されている。本実施の形態では、制御基板13と回路配線部材26bの間に、制御基板13とほぼ平行になるように平板状のノイズ遮断部材33が設けられている。平滑コンデンサ19とノイズ低減用コイル11は電流が供給されるため周囲に電磁ノイズを発生し、近接する回転センサ24に磁束が鎖交することで、回転センサ24の角度誤差が増加する。また、制御基板13に磁束が鎖交することで、制御装置が誤作動する。これらの影響により、回転電機の振動と騒音が大きくなる。ノイズ遮蔽部材33の例としては、金属板などが挙げられる。
 平滑コンデンサ19とノイズ低減用コイル11はともに回路配線部材26bに設置され、回路配線部材26bは制御基板13のリア側に配置されている。さらに、制御基板13と回路配線部材26bの間に、制御基板13とほぼ平行になるようにノイズ遮断部材33が設けられているため、平滑コンデンサ19とノイズ低減用コイル11から回転センサ24や制御基板13に磁束する鎖交量が低下する。よって、回転センサ24の角度誤差が低減し、回転電機の誤作動を防いだり、回転電機の振動と騒音を低減できるといった効果が得られる。また、ノイズ遮断部材33は制御基板13と回路配線部材26bの間に、制御基板と平行になるように配置されているため、回転電機の軸方向のサイズが大きくなることなく、回転センサの角度誤差を低減できる。制御装置の誤作動が防止され、回転電機の振動と騒音が低減する。
実施の形態23.
 図44はこの発明の実施の形態23に係る回転電機の説明図である。前実施の形態では、ノイズ遮蔽部材33を制御基板13と回路配線部材26bの間に設けた。同図に示すように、ノイズ遮蔽部材33を回路配線部材26bのリア側に設けても同様の効果が得られることはいうまでもない。ノイズ遮断部材33は、制御基板13または回路配線部材26bと接触していてもよい。また、ノイズ遮断部材33は、制御基板13または回路配線部材26bに設けられているノイズ遮蔽部材であってもよい。部品点数を削減したり、軸方向のスペースを削減して回転電機の軸方向のサイズを低減できるといった効果が得られる。
実施の形態24.
 図45この発明の実施の形態24に係る回転電機の説明図である。ノイズ遮断部材33は制御基板13と平滑コンデンサ19およびノイズ低減用コイル11の間に設けた構成としても同様の効果が得られることはいうまでもない。同図に示すように、回路配線部材26aは、ヒートシンク20よりもリア側かつ制御基板13よりもフロント側に配置されている1つの部材である。ノイズ遮断部材のサイズや位置が異なる場合においても、制御基板と平滑コンデンサ、ノイズ低減用コイルの間に制御基板とほぼ平行となるようにノイズ遮断部材を配置した構成とすれば同様の効果が得られる。
実施の形態25.
 図46はこの発明の実施の形態25に係る回転電機の説明図である。基本的な構造は実施の形態1と同様である。ここでは平滑コンデンサ19とノイズ低減用コイル11がともに制御基板13および回路配線部材26bのリア側に配置されており、ノイズ低減用コイル11の周囲にノイズ遮蔽部材33を配置している。平滑コンデンサ19とノイズ低減用コイル11がともに制御基板13のリア側に配置されている構成では、平滑コンデンサ19とノーマルモードコイル11bとの磁気結合が発生する。本実施の形態では、平滑コンデンサ19とノーマルモードコイル11bとの間にノイズ遮蔽部材33が挿入されているため、近接して配置される平滑コンデンサ19とノーマルモードコイル11bとの磁気結合を低減することが可能となる。その結果、制御装置の誤作動を防止したり、回転電機10を滑らかに駆動することができ、回転電機の振動や騒音が低減する。
 本実施の形態では、ノイズ低減用コイル11および平滑コンデンサ19は制御基板13よりもリア側に配置されているものとしているが、制御基板13よりもリア側にノイズ低減用コイル11と平滑コンデンサ19の少なくともいずれか1方が配置されていても同様の効果が得られることは言うまでもない。また、平滑コンデンサ19とノーマルモードコイル11bとの間にノイズ遮蔽部材33が挿入されている例を示したが、平滑コンデンサ19とコモンモードコイル11aの間に挿入した場合においても、近接して配置される平滑コンデンサ19とコモンモードコイル11aとの磁気結合を低減することが可能となり、同様の効果が得られる。
 なお、本発明は、その発明の範囲内において、実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。
1a ステアリングホイール、1b ステアリングシャフト、1c シャフト、2 トルクセンサ、3a コネクタ、3b コネクタ、3c コネクタ、4 制御装置、5 モータ部、6 ギヤボックス、7 ラックハウジング、7a ラック軸、8 タイロッド、9 ラックブーツ、10 回転電機、11 ノイズ低減用コイル、11a コモンモードコイル、11b ノーマルモードコイル、12 スイッチング素子、12d シャント抵抗、12m スイッチング素子、12s DBC基板、12t 端子、13 制御基板、13a マイクロコンピュータ、13b FET駆動回路、13c 位置決め部、13d 貫通穴、13e 貫通穴、13f 貫通穴、13g 貫通穴、13h 貫通穴、14 プーリ、15 固定子、15a 固定子鉄心、15b 電機子巻線、16 回転子、16a 回転子鉄心、16b 回転軸、16c 永久磁石、16d シャフト保持部、16g 回転子鉄心凹部、16h シャフト保持治具、17a ベアリング、17b ベアリング、17e ボルト、18 制御装置ケース、19 平滑コンデンサ、20 ヒートシンク、20a ヒートシンク凸部、20b シャフト貫通穴、20c スイッチング素子配置部、20d 電気配線貫通穴、20e リア側突出部、20f 断熱材、20g フロント側突出部、20h スイッチング素子配置部、20i リング状フロント側凹部、20j リア側凹部、20k 突出部、21 モータ端子、22a モータフレーム、22b フロント側ハウジング、22d シャフト貫通穴、23 センサ用永久磁石、24 回転センサ、25 結線板、26 回路配線部材、26a 回路配線部材、26b 回路配線部材、26c バスバー、26d フレーム、26e 位置決め部、27a 電源端子、27b 回路端子、27f 回路端子、27g 回路端子、27h 回路端子、30 電源リレー、31 バッテリー、33 ノイズ遮蔽部材、34 リア側ハウジング、35 断熱材、100 電動パワーステアリング装置。 

Claims (35)

  1.  センサ用永久磁石が回転軸のリア側に取り付けられている回転子と、
    固定子鉄心と電機子巻線を有する固定子と、
    前記回転軸のフロント側を支持する第1ベアリングが固定されているフロント側ハウジングと、
    前記フロント側ハウジングと結合されていて、前記回転子と前記固定子を収容するモータフレームと、
    前記回転軸のリア側を支持する第2ベアリングが固定されていて、複数のスイッチング素子を搭載しているヒートシンクと、
    前記ヒートシンクよりもリア側に配設されていて、回転センサとマイクロコンピュータと駆動回路が実装されている制御基板と、
    前記複数のスイッチング素子に接続されている平滑コンデンサと、
    前記複数のスイッチング素子に接続されているノイズ低減用コイルと、を備え、
     前記回転センサは前記センサ用永久磁石と対向しており、前記マイクロコンピュータは前記回転センサからの信号に基いて前記駆動回路を制御して前記複数のスイッチング素子を駆動し、前記平滑コンデンサと前記ノイズ低減用コイルの少なくとも何れか一方は前記制御基板よりもリア側に配設されていることを特徴とする制御装置付き回転電機。
  2.  センサ用永久磁石が回転軸のリア側に取り付けられている回転子と、
    電機子巻線に接続された複数のモータ端子を有する固定子と、
    前記回転軸のフロント側を支持する第1ベアリングが固定されているフロント側ハウジングと、
    前記フロント側ハウジングと結合されていて、前記回転子と前記固定子を収容するモータフレームと、
    前記回転軸のリア側を支持する第2ベアリングが固定されていて、前記モータ端子が貫通する第1貫通穴が形成されかつ複数のスイッチング素子を搭載しているヒートシンクと、前記ヒートシンクよりもリア側に配設されており、複数の回路端子が実装されていて、中央に前記回転軸が貫通する第2貫通穴を有する第1回路配線部材と、
    複数の第3貫通穴を有し、前記第1回路配線部材よりもリア側に配設されていて、回転センサとマイクロコンピュータと駆動回路が実装されている制御基板と、
    前記制御基板よりもリア側に配設されており、平滑コンデンサおよびノイズ低減用コイルが実装されている第2回路配線部材と、
    前記第1回路配線部材と前記制御基板と前記第2回路配線部材を収容する制御装置ケースと、を備え、
     前記回転センサは前記センサ用永久磁石と対向しており、前記マイクロコンピュータは前記回転センサからの信号に基いて前記駆動回路を制御して前記複数のスイッチング素子を駆動し、
    前記複数の回路端子は個々に前記複数の第3貫通穴を通過して前記第2回路配線部材まで延在し、前記平滑コンデンサおよび前記ノイズ低減用コイルと接続されていることを特徴とする制御装置付き回転電機。
  3.  センサ用永久磁石が回転軸のリア側に取り付けられている回転子と、
    電機子巻線に接続された複数のモータ端子を有する固定子と、
    前記回転軸のフロント側を支持する第1ベアリングが固定されているフロント側ハウジングと、
    前記フロント側ハウジングと結合されていて、前記回転子と前記固定子を収容するモータフレームと、
    前記回転軸のリア側を支持する第2ベアリングが固定されていて、前記モータ端子が貫通する第1貫通穴が形成されかつ複数のスイッチング素子を搭載しているヒートシンクと、前記ヒートシンクよりもリア側に配設されており、複数の回路端子が実装されていて、中央に前記回転軸が貫通する第2貫通穴を有する回路配線部材と、
    複数の第3貫通穴を有し、前記回路配線部材よりもリア側に配設されており、回転センサとマイクロコンピュータと駆動回路が実装されている制御基板と、
    前記回路配線部材と前記制御基板を収容する制御装置ケースと、を備え、
     前記回転センサは前記センサ用永久磁石と対向しており、前記マイクロコンピュータは前記回転センサからの信号に基いて前記駆動回路を制御して前記複数のスイッチング素子を駆動し、
    前記複数の回路端子は個々に前記複数の第3貫通穴を通過して前記制御基板のリア側まで延在し、平滑コンデンサおよびノイズ低減用コイルと接続されていることを特徴とする制御装置付き回転電機。
  4.  前記ヒートシンクは前記モータフレームと嵌合されていることを特徴とする請求項1から3のいずれか1項に記載の制御装置付き回転電機。
  5.  前記第1貫通穴は前記ヒートシンクに複数個形成されていて、前記複数のモータ端子は個々にこの複数個の第1貫通穴を貫通していることを特徴とする請求項2または3に記載の制御装置付き回転電機。
  6.  前記第1貫通穴は前記ヒートシンクに単数個形成されていて、前記複数のモータ端子はこの単数個の第1貫通穴を貫通していることを特徴とする請求項2または3に記載の制御装置付き回転電機。
  7.  前記複数のモータ端子と前記第1回路配線部材の配線を仲介するリング状の結線板を備えていることを特徴とする請求項2に記載の制御装置付き回転電機。
  8.  前記複数のスイッチング素子は前記第1回路配線部材に密着していることを特徴とする請求項2に記載の制御装置付き回転電機。
  9.  前記ヒートシンクはリア側に凹部が形成されていることを特徴とする請求項1から3のいずれか1項に記載の制御装置付き回転電機。
  10.  前記モータフレームは前記フロント側ハウジングと一体物であることを特徴とする請求項1から3のいずれか1項に記載の制御装置付き回転電機。
  11.  前記モータフレームは前記ヒートシンクと一体物であることを特徴とする請求項1から3のいずれか1項に記載の制御装置付き回転電機。
  12.  前記ノイズ低減用コイルの周囲にノイズ遮蔽部材を備えていることを特徴とする請求項1から3のいずれか1項に記載の制御装置付き回転電機。
  13.  前記第1回路配線部材にノーマルモードコイルが実装されていることを特徴とする請求項2に記載の制御装置付き回転電機。
  14.  前記ヒートシンクはリア側に突出部を有していることを特徴とする請求項1から3のいずれか1項に記載の制御装置付き回転電機。
  15.  前記第2ベアリングは断熱材を介在して前記ヒートシンクに固定されていることを特徴とする請求項1から3のいずれか1項に記載の制御装置付き回転電機。
  16.  前記ヒートシンクはフロント側にリング状の凹部が形成されていて、前記リング状の結線板は前記リング状の凹部と対向していることを特徴とする請求項7に記載の制御装置付き回転電機。
  17.  前記ヒートシンクはフロント側にリング状の凹部が形成されていて、前記固定子の電機子巻線は前記リング状の凹部と対向していることを特徴とする請求項1から3のいずれか1項に記載の制御装置付き回転電機。
  18.  前記ヒートシンクはフロント側に突出部が形成されていることを特徴とする請求項1から3のいずれか1項に記載の制御装置付き回転電機。
  19.  前記回転子は回転子鉄心のリア側に凹部を有し、前記ヒートシンクの突出部は前記回転子の凹部に収まっていることを特徴とする請求項18に記載の制御装置付き回転電機。
  20.  前記ヒートシンクは、前記第2ベアリングの外径よりも小さく、前記第2ベアリングの内径よりも大きいシャフト貫通穴が、前記第2ベアリングよりもリア側に形成されていることを特徴とする請求項1から3のいずれか1項に記載の制御装置付き回転電機。
  21.  前記回転軸は、フロント側とリア側の先端にシャフト保持部を有することを特徴とする請求項1から3のいずれか1項に記載の制御装置付き回転電機。
  22.  前記モータフレームおよび前記ヒートシンクが同じ金属材料からなることを特徴とする請求項1から3のいずれか1項に記載の制御装置付き回転電機。
  23.  前記モータフレームおよび前記ヒートシンクがアルミニウム合金からなることを特徴とする請求項22に記載の制御装置付き回転電機。
  24.  前記センサ用永久磁石の外径は、前記回転軸の外径よりも大きいことを特徴とする請求項1から3のいずれか1項に記載の制御装置付き回転電機。
  25.  センサ用永久磁石が回転軸のリア側に取り付けられている回転子と、
    電機子巻線に接続された複数のモータ端子を有する固定子と、
    前記回転軸のフロント側を支持する第1ベアリングが固定されているフロント側ハウジングと、
    前記フロント側ハウジングと結合されていて、前記回転子と前記固定子を収容するモータフレームと、
    前記回転軸のリア側を支持する第2ベアリングが固定されていて、前記モータ端子が貫通する貫通穴が形成されかつ複数のスイッチング素子を搭載しているヒートシンクと、
    複数の回路端子が実装され、前記ヒートシンクよりもリア側に配設されていて、回転センサとマイクロコンピュータと駆動回路が実装されている制御基板と、
    前記制御基板よりもリア側に配設されており、平滑コンデンサおよびノイズ低減用コイルを搭載している回路配線部材と、
    前記制御基板と前記回路配線部材を収容する制御装置ケースと、を備え、
     前記回転センサは前記センサ用永久磁石と対向しており、前記マイクロコンピュータは前記回転センサからの信号に基いて前記駆動回路を制御して前記複数のスイッチング素子を駆動し、
    前記複数の回路端子は前記回路配線部材まで延在し、前記平滑コンデンサおよび前記ノイズ低減用コイルと接続されていることを特徴とする制御装置付き回転電機。
  26.  前記制御装置ケースは、前記ヒートシンクに接続された絶縁性の第1のケース部材と、前記第1のケース部材よりもリア側に設置された金属製の第2のケース部材を有し、前記平滑コンデンサは前記第2のケース部材と接触していることを特徴とする請求項2、3、25のいずれか1項に記載の制御装置付き回転電機。
  27.  前記制御基板よりもリア側に設置された断熱材またはノイズ遮断部材を備えていることを特徴とする請求項1、3、25のいずれか1項に記載の制御装置付き回転電機。
  28.  前記制御基板と前記第2回路配線部材の間に設置された断熱材またはノイズ遮断部材を備えていることを特徴とする請求項2に記載の制御装置付き回転電機。
  29.  前記第2回路配線部材よりもリア側に設置された断熱材またはノイズ遮断部材を備えていることを特徴とする請求項2に記載の制御装置付き回転電機。
  30.  前記平滑コンデンサと前記ノイズ低減用コイルの間に設置されたノイズ遮断部材を備えていることを特徴とする請求項1、2、3、25のいずれか1項に記載の制御装置付き回転電機。
  31.  ステアリングホイールに連結されたステアリングシャフトと、
    請求項1から30のいずれか1項に記載の制御装置付き回転電機と、
    前記制御装置付き回転電機で発生した回転トルクを減速するギヤボックスと、
    前記ステアリングシャフトに伝達されたトルクを検出するトルクセンサとを備え、
    前記トルクセンサが検出した信号は前記制御装置付き回転電機に入力されることを特徴とする電動パワーステアリング装置。
  32.  回転子鉄心に回転軸を圧入する第1工程と、
    第1ベアリングが固定されたフロント側ハウジングを回転子鉄心の回転軸に圧入する第2工程と、
    ヒートシンクに第2ベアリングおよび複数のスイッチング素子を固定する第3工程と、
    固定子を有するモータフレームとヒートシンクを固定する第4工程と、
    回転軸のリア側に第2ベアリングを挿入する第5工程と、
    モータフレームとフロント側ハウジングを固定する第6工程と、
    回転軸のリア側にセンサ用永久磁石を固定する第7工程と、
    回転センサとマイクロコンピュータと駆動回路が実装されている制御基板を固定する第8工程と、を備え、
    前記第1工程から前記第6工程を実施した後に前記第7工程または前記第8工程を実施することを特徴とする制御装置付き回転電機の製造方法。
  33.  前記第7工程を実施してから前記第8工程を実施することを特徴とする請求項32に記載の制御装置付き回転電機の製造方法。
  34.  前記第8工程を実施してから前記第7工程を実施することを特徴とする請求項32に記載の制御装置付き回転電機の製造方法。
  35.  前記第3工程を実施してから前記第4工程を実施することを特徴とする請求項32に記載の制御装置付き回転電機の製造方法。
PCT/JP2014/080456 2014-02-14 2014-11-18 制御装置付き回転電機、電動パワーステアリング装置および制御装置付き回転電機の製造方法 WO2015122069A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480075308.0A CN105993115B (zh) 2014-02-14 2014-11-18 带有控制装置的旋转电机和电动动力转向装置
JP2015562695A JP6184531B2 (ja) 2014-02-14 2014-11-18 制御装置付き回転電機および電動パワーステアリング装置
US15/116,379 US10236750B2 (en) 2014-02-14 2014-11-18 Rotating electric machine with a built-in control device and electric power assist steering system
DE112014006362.2T DE112014006362B4 (de) 2014-02-14 2014-11-18 Rotierende elektrische maschine mit einer eingebauten steuerungseinrichtung und elektrisches servounterstützungs-lenksystem mit einer solchen rotierenden elektrischen maschine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-026072 2014-02-14
JP2014026072 2014-02-14

Publications (1)

Publication Number Publication Date
WO2015122069A1 true WO2015122069A1 (ja) 2015-08-20

Family

ID=53799825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080456 WO2015122069A1 (ja) 2014-02-14 2014-11-18 制御装置付き回転電機、電動パワーステアリング装置および制御装置付き回転電機の製造方法

Country Status (5)

Country Link
US (1) US10236750B2 (ja)
JP (1) JP6184531B2 (ja)
CN (1) CN105993115B (ja)
DE (1) DE112014006362B4 (ja)
WO (1) WO2015122069A1 (ja)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017046940A1 (ja) * 2015-09-18 2017-03-23 三菱電機株式会社 一体型電動パワーステアリング装置
WO2017085872A1 (ja) * 2015-11-20 2017-05-26 株式会社安川電機 モータ及びモータの製造方法
WO2018047342A1 (ja) * 2016-09-12 2018-03-15 三菱電機株式会社 モータ制御装置及び電動パワーステアリング制御装置
WO2018055913A1 (ja) * 2016-09-26 2018-03-29 日立オートモティブシステムズ株式会社 電動駆動装置及び電動パワーステアリング装置
WO2018062005A1 (ja) * 2016-09-30 2018-04-05 日本電産株式会社 モータ、および電動パワーステアリング装置
WO2018062007A1 (ja) * 2016-09-30 2018-04-05 日本電産株式会社 モータ、および電動パワーステアリング装置
WO2018074549A1 (ja) * 2016-10-19 2018-04-26 日本精工株式会社 センサの組付け構造体、電動モータ、及び電動パワーステアリング装置
WO2018096596A1 (ja) * 2016-11-22 2018-05-31 三菱電機株式会社 回転電動機
JP2018164341A (ja) * 2017-03-24 2018-10-18 三菱電機株式会社 コンデンサー搭載電動機
KR20180122369A (ko) * 2016-03-11 2018-11-12 아이티티 매뉴팩츄어링 엔터프라이즈, 엘엘씨 다층의 전력 및 제어 인쇄 회로 기판 조립체를 구비한 전력 평면을 갖는, 펌프 또는 회전 디바이스를 구동하기 위한 모터 조립체
JP2019004582A (ja) * 2017-06-14 2019-01-10 三菱電機株式会社 開閉モジュール用のコンデンサ基板ユニット、開閉モジュール、およびモータ駆動装置
KR20190034330A (ko) * 2016-09-02 2019-04-01 히다치 오토모티브 시스템즈 가부시키가이샤 전동 구동 장치 및 전동 파워 스티어링 장치
KR20190038879A (ko) * 2016-09-02 2019-04-09 히다치 오토모티브 시스템즈 가부시키가이샤 전동 구동 장치 및 전동 파워 스티어링 장치
EP3474425A1 (en) * 2017-10-19 2019-04-24 Jtekt Corporation Motor device
JP2019075872A (ja) * 2017-10-13 2019-05-16 株式会社ジェイテクト 制御機能付きアクチュエータ及び電動ポンプ
US10300609B2 (en) 2016-12-15 2019-05-28 Boston Dynamics, Inc. Motor and controller integration for a legged robot
JP2019151188A (ja) * 2018-03-02 2019-09-12 日立オートモティブシステムズ株式会社 電動駆動装置、及び操舵装置
EP3232546B1 (de) * 2016-04-15 2020-01-08 Bühler Motor GmbH Kreiselpumpenmotor
WO2020095705A1 (ja) * 2018-11-06 2020-05-14 クノールブレムゼステアリングシステムジャパン株式会社 ステアリング装置
JP2020535779A (ja) * 2017-09-29 2020-12-03 エルジー イノテック カンパニー リミテッド 制御器およびこれを含むモータ組立体
KR20210150204A (ko) * 2020-06-03 2021-12-10 주식회사 현대케피코 Bldc 모터 구조
US11239725B2 (en) 2018-12-12 2022-02-01 Denso Corporation Drive apparatus
WO2023188570A1 (ja) * 2022-03-29 2023-10-05 株式会社リケン モータシステム

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3260352B1 (en) * 2015-02-18 2020-12-09 Mitsubishi Electric Corporation Integrated electric power steering apparatus
WO2016174704A1 (ja) * 2015-04-27 2016-11-03 三菱電機株式会社 制御装置
DE102015222266A1 (de) * 2015-11-11 2017-05-11 Robert Bosch Automotive Steering Gmbh Elektromechanischer Stellantrieb mit redundantem elektronischen Teilsystem
JP6610225B2 (ja) * 2015-12-08 2019-11-27 株式会社デンソー 駆動装置
US10873244B2 (en) 2016-09-19 2020-12-22 Black & Decker Inc. Control and power module for brushless motor
JP6981006B2 (ja) * 2017-02-03 2021-12-15 日本電産株式会社 モータ
KR102466610B1 (ko) * 2017-09-29 2022-11-14 엘지이노텍 주식회사 제어기 및 이를 포함하는 모터 조립체
JP2019118244A (ja) * 2017-12-27 2019-07-18 日本電産トーソク株式会社 モータ
DE102018200480A1 (de) * 2018-01-12 2019-07-18 Mahle International Gmbh Steuereinrichtung zum Ansteuern eines E-Motors
US20190326790A1 (en) * 2018-04-24 2019-10-24 GM Global Technology Operations LLC Brushless starter rotor assembly
DE102018004358A1 (de) * 2018-06-02 2019-12-05 Franka Emika Gmbh Antriebsvorrichtung für einen Manipulator
KR102554431B1 (ko) 2018-09-05 2023-07-13 삼성전자주식회사 반도체 장치 및 반도체 장치 제조 방법
JP2020056335A (ja) * 2018-09-28 2020-04-09 日本電産トーソク株式会社 電動ポンプ装置
JP7083298B2 (ja) * 2018-09-28 2022-06-10 本田技研工業株式会社 モータの構造及び車両
KR102637909B1 (ko) * 2019-01-23 2024-02-19 에이치엘만도 주식회사 전동식 파워 스티어링 시스템의 리던던시 회로
CN110535294A (zh) * 2019-09-23 2019-12-03 义乌市驭马机电设备有限公司 一种一体式电机
DE102020205151A1 (de) * 2020-04-23 2021-10-28 Robert Bosch Gesellschaft mit beschränkter Haftung Antriebsvorrichtung für ein Fahrzeug und Fahrzeug
EP4218122A2 (en) * 2020-09-24 2023-08-02 Electric Torque Machines, Inc. Marine propeller system with high torque drive
US20230327524A1 (en) * 2020-09-24 2023-10-12 Hanon Systems Air compressor
DE102021205108A1 (de) 2021-05-19 2022-11-24 Zf Friedrichshafen Ag Aktuator einer Steer-by-wire-Lenkung sowie Steer-by-wire-Lenkung
CN113647848B (zh) * 2021-07-28 2022-07-22 深圳市三利达电器科技有限公司 电容式低噪音无极变速厨师机
DE102021123971A1 (de) * 2021-09-16 2023-03-16 Synapticon GmbH Motorvorrichtung mit thermisch integrierter Servoantriebseinheit
DE102021127034A1 (de) 2021-10-19 2023-04-20 Bayerische Motoren Werke Aktiengesellschaft Stator für eine elektrische Maschine eines Kraftfahrzeugs sowie elektrische Maschine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011019356A (ja) * 2009-07-09 2011-01-27 Nippon Densan Corp ブラシレスモータ
JP2011229229A (ja) * 2010-04-16 2011-11-10 Denso Corp 電動機の駆動装置及びこれを用いた電動装置
WO2013132584A1 (ja) * 2012-03-06 2013-09-12 三菱電機株式会社 電動パワーステアリング駆動装置
JP5414869B1 (ja) * 2012-10-03 2014-02-12 三菱電機株式会社 電動パワーステアリング装置

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5414869B2 (ja) 1974-04-16 1979-06-11
JP3017396B2 (ja) 1994-05-18 2000-03-06 株式会社ピーエフユー ファン付きヒートシンク装置
DE10052797A1 (de) 2000-10-25 2002-05-08 Bosch Gmbh Robert Elektromotorisch angetriebene Pumpe und Verfahren zur Herstellung einer solchen Pumpe
JP3614380B2 (ja) 2001-05-17 2005-01-26 三菱電機株式会社 電動式パワーステアリング装置
FR2830069B1 (fr) * 2001-09-27 2005-06-24 Cit Alcatel Dispositif de fixation d'un element tubulaire dans une cavite inaccessible
JP2003199295A (ja) 2001-12-26 2003-07-11 Hitachi Ltd 水中機器用モータ
JP4106951B2 (ja) 2002-04-03 2008-06-25 トヨタ自動車株式会社 車両駆動用電動装置
JP2003324914A (ja) 2002-04-30 2003-11-14 Sankyo Seiki Mfg Co Ltd モータの製造方法
DE102006032780A1 (de) 2006-07-14 2008-01-17 Siemens Ag Elektromotorischer Antrieb mit einem rotorseitig angeordneten Drehgeber
JP5001662B2 (ja) 2007-01-18 2012-08-15 三菱電機株式会社 電動式パワーステアリング装置
JP4941007B2 (ja) 2007-03-01 2012-05-30 日本電産株式会社 モータ
JP5435284B2 (ja) 2009-06-24 2014-03-05 株式会社デンソー 駆動装置
JP5516066B2 (ja) * 2009-06-24 2014-06-11 株式会社デンソー 駆動装置
JP5365872B2 (ja) * 2009-06-24 2013-12-11 株式会社デンソー 駆動装置
JP5435286B2 (ja) 2009-06-24 2014-03-05 株式会社デンソー 駆動装置
JP5435285B2 (ja) 2009-06-24 2014-03-05 株式会社デンソー 駆動装置
EP2351682B1 (en) * 2009-10-30 2018-08-08 NSK Ltd. Electric power steering device
JP5063722B2 (ja) 2010-03-19 2012-10-31 三菱電機株式会社 電動式駆動装置およびそれを搭載した電動式パワーステアリング装置
JP5719524B2 (ja) 2010-04-16 2015-05-20 株式会社デンソー 電動装置
CN103153754B (zh) * 2010-10-27 2016-11-16 三菱电机株式会社 电动助力转向用电动机驱动控制装置
JP5642262B2 (ja) 2011-03-04 2014-12-17 三菱電機株式会社 モータ駆動装置
CN103987611B (zh) 2012-01-25 2017-03-08 三菱电机株式会社 电动动力转向装置
JP5566410B2 (ja) 2012-01-25 2014-08-06 三菱電機株式会社 電動パワーステアリング装置
JP5373949B1 (ja) 2012-08-24 2013-12-18 三菱電機株式会社 電動パワーステアリング装置
JP5769033B2 (ja) * 2012-11-30 2015-08-26 株式会社デンソー 駆動装置
JP6160575B2 (ja) * 2014-07-31 2017-07-12 株式会社デンソー 駆動装置、および、これを用いた電動パワーステアリング装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011019356A (ja) * 2009-07-09 2011-01-27 Nippon Densan Corp ブラシレスモータ
JP2011229229A (ja) * 2010-04-16 2011-11-10 Denso Corp 電動機の駆動装置及びこれを用いた電動装置
WO2013132584A1 (ja) * 2012-03-06 2013-09-12 三菱電機株式会社 電動パワーステアリング駆動装置
JP5414869B1 (ja) * 2012-10-03 2014-02-12 三菱電機株式会社 電動パワーステアリング装置

Cited By (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108093671B (zh) * 2015-09-18 2021-07-06 三菱电机株式会社 一体型电动助力转向装置
CN108093671A (zh) * 2015-09-18 2018-05-29 三菱电机株式会社 一体型电动助力转向装置
WO2017046940A1 (ja) * 2015-09-18 2017-03-23 三菱電機株式会社 一体型電動パワーステアリング装置
JPWO2017046940A1 (ja) * 2015-09-18 2017-11-09 三菱電機株式会社 一体型電動パワーステアリング装置
US10759467B2 (en) 2015-09-18 2020-09-01 Mitsubishi Electric Corporation Integrated electric power steering apparatus
JPWO2017085872A1 (ja) * 2015-11-20 2017-11-24 株式会社安川電機 モータ及びモータの製造方法
US10389214B2 (en) 2015-11-20 2019-08-20 Kabushiki Kaisha Yaskawa Denki Motor and producing method for motor
CN107112864A (zh) * 2015-11-20 2017-08-29 株式会社安川电机 马达以及马达的制造方法
WO2017085872A1 (ja) * 2015-11-20 2017-05-26 株式会社安川電機 モータ及びモータの製造方法
US11489418B2 (en) 2016-03-11 2022-11-01 Itt Manufacturing Enterprises Llc Motor drive unit
KR102358278B1 (ko) 2016-03-11 2022-02-04 아이티티 매뉴팩츄어링 엔터프라이즈, 엘엘씨 다층의 전력 및 제어 인쇄 회로 기판 조립체를 구비한 전력 평면을 갖는, 펌프 또는 회전 디바이스를 구동하기 위한 모터 조립체
US11777379B2 (en) 2016-03-11 2023-10-03 Itt Manufacturing Enterprises Llc Motor drive unit
US11777380B2 (en) 2016-03-11 2023-10-03 Itt Manufacturing Enterprises Llc Motor drive unit
US11855495B2 (en) 2016-03-11 2023-12-26 Itt Manufacturing Enterprises Llc Motor drive unit
KR20180122369A (ko) * 2016-03-11 2018-11-12 아이티티 매뉴팩츄어링 엔터프라이즈, 엘엘씨 다층의 전력 및 제어 인쇄 회로 기판 조립체를 구비한 전력 평면을 갖는, 펌프 또는 회전 디바이스를 구동하기 위한 모터 조립체
US11824406B2 (en) 2016-03-11 2023-11-21 Itt Manufacturing Enterprises Llc Motor drive unit
JP2019509711A (ja) * 2016-03-11 2019-04-04 アイティーティー マニュファクチャリング エンタープライジーズ エルエルシー 多層電力及び制御用プリント回路基板アセンブリを伴う電力プレーンを有するポンプ又は回転デバイスを駆動するためのモーターアセンブリ
EP3232546B1 (de) * 2016-04-15 2020-01-08 Bühler Motor GmbH Kreiselpumpenmotor
KR20190034330A (ko) * 2016-09-02 2019-04-01 히다치 오토모티브 시스템즈 가부시키가이샤 전동 구동 장치 및 전동 파워 스티어링 장치
KR20190038879A (ko) * 2016-09-02 2019-04-09 히다치 오토모티브 시스템즈 가부시키가이샤 전동 구동 장치 및 전동 파워 스티어링 장치
CN109643938A (zh) * 2016-09-02 2019-04-16 日立汽车系统株式会社 电动驱动装置以及电动动力转向装置
KR102154942B1 (ko) * 2016-09-02 2020-09-10 히다치 오토모티브 시스템즈 가부시키가이샤 전동 구동 장치 및 전동 파워 스티어링 장치
US10797566B2 (en) 2016-09-02 2020-10-06 Hitachi Automotive Systems, Ltd. Electric drive device and electric power steering device
US10826355B2 (en) 2016-09-02 2020-11-03 Hitachi Automotive Systems, Ltd. Electric drive device and electric power steering device
KR102143728B1 (ko) * 2016-09-02 2020-08-11 히다치 오토모티브 시스템즈 가부시키가이샤 전동 구동 장치 및 전동 파워 스티어링 장치
EP3512078A4 (en) * 2016-09-12 2019-08-21 Mitsubishi Electric Corporation MOTOR CONTROL DEVICE AND CONTROL DEVICE FOR ELECTRIC POWER STEERING
US11831209B2 (en) 2016-09-12 2023-11-28 Mitsubishi Electric Corporation Motor control device including a shield plate, and electric power steering control device
JPWO2018047342A1 (ja) * 2016-09-12 2018-12-27 三菱電機株式会社 モータ制御装置及び電動パワーステアリング制御装置
CN109690921A (zh) * 2016-09-12 2019-04-26 三菱电机株式会社 电动机控制装置及电动助力转向控制装置
WO2018047342A1 (ja) * 2016-09-12 2018-03-15 三菱電機株式会社 モータ制御装置及び電動パワーステアリング制御装置
KR102144239B1 (ko) * 2016-09-26 2020-08-12 히다치 오토모티브 시스템즈 가부시키가이샤 전동 구동 장치 및 전동 파워 스티어링 장치
CN109964392A (zh) * 2016-09-26 2019-07-02 日立汽车系统株式会社 电动驱动装置以及电动动力转向装置
US11407443B2 (en) 2016-09-26 2022-08-09 Hitachi Astemo, Ltd. Electric drive device and electric power steering device
KR20190034650A (ko) * 2016-09-26 2019-04-02 히다치 오토모티브 시스템즈 가부시키가이샤 전동 구동 장치 및 전동 파워 스티어링 장치
JP2018057055A (ja) * 2016-09-26 2018-04-05 日立オートモティブシステムズ株式会社 電動駆動装置及び電動パワーステアリング装置
WO2018055913A1 (ja) * 2016-09-26 2018-03-29 日立オートモティブシステムズ株式会社 電動駆動装置及び電動パワーステアリング装置
WO2018062007A1 (ja) * 2016-09-30 2018-04-05 日本電産株式会社 モータ、および電動パワーステアリング装置
WO2018062005A1 (ja) * 2016-09-30 2018-04-05 日本電産株式会社 モータ、および電動パワーステアリング装置
WO2018074549A1 (ja) * 2016-10-19 2018-04-26 日本精工株式会社 センサの組付け構造体、電動モータ、及び電動パワーステアリング装置
JPWO2018074549A1 (ja) * 2016-10-19 2019-06-24 日本精工株式会社 センサの組付け構造体、電動モータ、及び電動パワーステアリング装置
JP7210283B2 (ja) 2016-11-22 2023-01-23 三菱電機株式会社 回転電動機
JPWO2018096596A1 (ja) * 2016-11-22 2019-03-22 三菱電機株式会社 回転電動機
WO2018096596A1 (ja) * 2016-11-22 2018-05-31 三菱電機株式会社 回転電動機
US10525601B2 (en) 2016-12-15 2020-01-07 Boston Dynamics, Inc. Motor and controller integration for a legged robot
EP3555997B1 (en) * 2016-12-15 2020-11-25 Boston Dynamics, Inc. Motor and controller integration for a legged robot
EP3761489A1 (en) * 2016-12-15 2021-01-06 Boston Dynamics, Inc. Motor and controller integration for a legged robot
JP2020502964A (ja) * 2016-12-15 2020-01-23 ボストン ダイナミクス,インコーポレイテッド 脚付きロボット用のモーターおよびコントローラ一体化
JP2021182862A (ja) * 2016-12-15 2021-11-25 ボストン ダイナミクス,インコーポレイテッド 脚付きロボット用のモーターおよびコントローラ一体化
US10300609B2 (en) 2016-12-15 2019-05-28 Boston Dynamics, Inc. Motor and controller integration for a legged robot
JP2018164341A (ja) * 2017-03-24 2018-10-18 三菱電機株式会社 コンデンサー搭載電動機
US10305389B2 (en) 2017-06-14 2019-05-28 Mitsubishi Electric Corporation Capacitor substrate unit for opening/closing module
JP2019004582A (ja) * 2017-06-14 2019-01-10 三菱電機株式会社 開閉モジュール用のコンデンサ基板ユニット、開閉モジュール、およびモータ駆動装置
JP2020535779A (ja) * 2017-09-29 2020-12-03 エルジー イノテック カンパニー リミテッド 制御器およびこれを含むモータ組立体
JP7148603B2 (ja) 2017-09-29 2022-10-05 エルジー イノテック カンパニー リミテッド 制御器およびこれを含むモータ組立体
JP2019075872A (ja) * 2017-10-13 2019-05-16 株式会社ジェイテクト 制御機能付きアクチュエータ及び電動ポンプ
EP3474425A1 (en) * 2017-10-19 2019-04-24 Jtekt Corporation Motor device
JP7027795B2 (ja) 2017-10-19 2022-03-02 株式会社ジェイテクト モータ装置
JP2019075960A (ja) * 2017-10-19 2019-05-16 株式会社ジェイテクト モータ装置
US10811940B2 (en) 2017-10-19 2020-10-20 Jtekt Corporation Motor device
US20190123621A1 (en) * 2017-10-19 2019-04-25 Jtekt Corporation Motor device
JP2019151188A (ja) * 2018-03-02 2019-09-12 日立オートモティブシステムズ株式会社 電動駆動装置、及び操舵装置
WO2020095705A1 (ja) * 2018-11-06 2020-05-14 クノールブレムゼステアリングシステムジャパン株式会社 ステアリング装置
JP6990325B2 (ja) 2018-11-06 2022-01-12 クノールブレムゼステアリングシステムジャパン株式会社 ステアリング装置
JPWO2020095705A1 (ja) * 2018-11-06 2021-06-10 クノールブレムゼステアリングシステムジャパン株式会社 ステアリング装置
US11239725B2 (en) 2018-12-12 2022-02-01 Denso Corporation Drive apparatus
KR20210150204A (ko) * 2020-06-03 2021-12-10 주식회사 현대케피코 Bldc 모터 구조
KR102382311B1 (ko) * 2020-06-03 2022-04-05 주식회사 현대케피코 Bldc 모터 구조
JP2023147096A (ja) * 2022-03-29 2023-10-12 株式会社リケン モータシステム
JP7375083B2 (ja) 2022-03-29 2023-11-07 株式会社リケン モータシステム
WO2023188570A1 (ja) * 2022-03-29 2023-10-05 株式会社リケン モータシステム

Also Published As

Publication number Publication date
JP6184531B2 (ja) 2017-08-23
DE112014006362B4 (de) 2022-08-18
JPWO2015122069A1 (ja) 2017-03-30
US20170008554A1 (en) 2017-01-12
CN105993115B (zh) 2018-06-19
CN105993115A (zh) 2016-10-05
DE112014006362T5 (de) 2016-11-17
US10236750B2 (en) 2019-03-19

Similar Documents

Publication Publication Date Title
JP6184531B2 (ja) 制御装置付き回転電機および電動パワーステアリング装置
JP5496357B2 (ja) 電動パワーステアリング用モータ駆動制御装置
US9392732B2 (en) Electronic control unit and rotating electric machine
JP5414944B2 (ja) 電動パワーステアリング装置用モータ駆動装置
JP5063722B2 (ja) 電動式駆動装置およびそれを搭載した電動式パワーステアリング装置
KR101727392B1 (ko) 전력 변환 장치
JP5619279B2 (ja) 電動パワーステアリング装置
JP5039171B2 (ja) 電動式駆動装置およびその電動式駆動装置を搭載した電動式パワーステアリング装置
WO2017068636A1 (ja) 一体型電動パワーステアリング装置、及びその製造方法
JP5705306B2 (ja) 電動パワーステアリング装置のパワー部として用いるモールドモジュール、及び電動パワーステアリング装置
JP6485824B2 (ja) 電動駆動装置
JP6038383B2 (ja) モータ駆動装置
US20120307476A1 (en) Control unit and driving apparatus using the same
JP2017189033A (ja) 駆動装置、および、これを用いた電動パワーステアリング装置
JP6157652B2 (ja) 永久磁石型モータ
JP6922435B2 (ja) 電動駆動装置、及び電動パワーステアリング装置
JP4824067B2 (ja) 回転電機装置
JP2014161174A (ja) モータ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14882349

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015562695

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15116379

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014006362

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14882349

Country of ref document: EP

Kind code of ref document: A1