WO2015118768A1 - 負荷駆動回路 - Google Patents
負荷駆動回路 Download PDFInfo
- Publication number
- WO2015118768A1 WO2015118768A1 PCT/JP2014/082357 JP2014082357W WO2015118768A1 WO 2015118768 A1 WO2015118768 A1 WO 2015118768A1 JP 2014082357 W JP2014082357 W JP 2014082357W WO 2015118768 A1 WO2015118768 A1 WO 2015118768A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- switching element
- circuit
- low
- gate signal
- load
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/08—Modifications for protecting switching circuit against overcurrent or overvoltage
- H03K17/082—Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
- H03K17/0822—Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in field-effect transistor switches
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/06—Modifications for ensuring a fully conducting state
- H03K17/063—Modifications for ensuring a fully conducting state in field-effect transistor switches
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K2217/00—Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
- H03K2217/0027—Measuring means of, e.g. currents through or voltages across the switch
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K2217/00—Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
- H03K2217/0063—High side switches, i.e. the higher potential [DC] or life wire [AC] being directly connected to the switch and not via the load
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K2217/00—Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
- H03K2217/0072—Low side switches, i.e. the lower potential [DC] or neutral wire [AC] being directly connected to the switch and not via the load
Definitions
- the present invention relates to a load driving circuit.
- a common method for detecting a failure in a load drive circuit is to insert a current detection resistor in series between the load drive circuit to be detected and the load, and measure the voltage across the current detection resistor to drive the load.
- There is a method for detecting a short circuit state of a circuit has a problem that power loss occurs due to the current detection resistor. Therefore, by connecting in parallel a current detection circuit composed of a small current detection transistor or the like to the driver transistor that drives the electric actuator to be controlled, and detecting the current flowing through this current detection circuit, A method for realizing failure detection of a low-loss load driving circuit is known.
- a switching element by a P-channel MOS transistor (hereinafter referred to as “PMOS”) connected to a positive electrode side (hereinafter referred to as “high side”) of a DC power source and a ground side (hereinafter referred to as “low side”).
- PMOS P-channel MOS transistor
- high side positive electrode side
- low side ground side
- NMOS N channel type MOS transistor
- faults that can be detected by overcurrent of the PMOS used on the high side are faults in which the inductor that is the load and the connection terminal of the switching element that drives the load are short-circuited to the ground side (hereinafter referred to as a ground fault) Limited to.
- a fault other than a ground fault there is a fault (hereinafter referred to as a power fault) in which the connection terminal of the inductor and the switching element is short-circuited to the positive electrode side of the DC power supply.
- a power fault an overcurrent is generated in the NMOS used on the low side, but no overcurrent is generated in the PMOS used on the high side, so the failure cannot be detected.
- a main object of the present invention is to provide a failure detection circuit capable of detecting a plurality of failure states.
- a load driving circuit that receives a power supply from a power source and drives a load
- the load driving circuit includes: A high-side switching element connected to the positive side of the power supply and outputting a high-side drive current; A low-side switching element connected to the negative side of the power supply and outputting a low-side drive current; A high-side current detection circuit that is connected in parallel with the high-side switching element and detects a high-side drive current; A failure detection circuit for detecting a failure state of the load drive circuit from an output result of the high-side current detection circuit,
- the high side current detection circuit includes: The high-side sensing switching element that operates according to a gate signal different from the high-side switching element, and is configured by the same type of device as the high-side switching element, The failure detection circuit is Using the output result of the high-side current detection circuit, the gate signal of the high-side switching
- a failure detection circuit capable of detecting a plurality of failure states. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.
- 1 is a block diagram showing a load driving circuit according to a first embodiment of the present invention. It is a block diagram which shows an example of a structure of the current detection circuit by the 1st Embodiment of this invention. It is a block diagram which shows an example of a structure of the failure detection circuit by the 1st Embodiment of this invention.
- 3 is a timing chart illustrating an example of circuit operation according to the first embodiment of the present invention. It is a block diagram which shows an example of a structure of the load drive circuit by the 2nd Embodiment of this invention. It is a timing chart which shows an example of circuit operation by a 2nd embodiment of the present invention. It is a block diagram which shows the load drive circuit by the 3rd Embodiment of this invention.
- FIG. 1 is a block diagram showing a configuration of a load driving circuit 1A and an electromagnetic load 2 according to the first embodiment of the present invention.
- a load driving circuit 1A shown in FIG. 1 is connected to an electromagnetic load 2 via a terminal OUT, receives power from a positive side VH of a DC power supply, controls on / off with a gate signal INH_M, and is a high side composed of an NMOS.
- a current detection circuit 5H that outputs a sense current IsH proportional to the voltage between the drain and source of the switching element 3 and a failure detection circuit 6H that detects a failure state of the load drive circuit 1A from the sense current IsH are provided. Further, the other terminal of the electromagnetic load 2 is connected to GND (hereinafter referred to as a high-side driver configuration).
- FIG. 2 is a block diagram showing an example of the configuration of the current detection circuit 5H according to the first embodiment of the present invention.
- the current detection circuit 5H shown in FIG. 2 controls ON / OFF with INH_S, and includes a high-side sense MOS 5H1 made of NMOS of the same process as the high-side switching element 3, and a source terminal (OUT terminal) of the high-side switching element 3.
- a virtual short circuit 5H2 including an operational amplifier and a PMOS for setting the source terminal voltage of the sense MOS 5H1 to the same potential is provided.
- FIG. 3 is a block diagram showing an example of the configuration of the failure detection circuit 6H according to the first embodiment of the present invention.
- the failure detection circuit 6H shown in FIG. 3 is a circuit that detects a failure state in which the OUT terminal is short-circuited to GND (hereinafter referred to as a ground fault) and a state in which the OUT terminal is short-circuited to VH (hereinafter referred to as a power fault).
- a circuit 6H3 is provided.
- the comparison detection circuit 6H1 includes a low-pass filter LPF1 with a time constant D1 that removes the influence of noise and outputs a DET_H signal, and the generation circuit 6H2 for the detection period Td includes a low-pass filter LPF2 with a time constant D2.
- FIG. 4 is a timing chart for explaining the operation of the load driving circuit 1A according to the first embodiment of the present invention.
- the timing chart shown in FIG. 4 includes operations defined in FIGS. 1 to 3 for operations in three states: a power fault that can be detected in the present embodiment, a ground fault, and a state without a failure (hereinafter, normal). It is indicated by the operation waveform at the contact.
- the gate signal INH_M of the high-side switching element 3 and the gate signal INL_M of the low-side switching element 4 are alternately turned on and off alternately during a period other than the dead time period Tdead that is simultaneously turned off.
- the dead time period from when INH_M transitions to OFF until INL_M transitions to ON is the GND terminal due to the return current flowing through the body diode of the low-side switching element. Lower potential.
- the timing chart in this application describes each failure state such as normal, power fault, ground fault, etc. in one timing chart, but there is no temporal continuity in the failure state, each of which is independent and the previous failure Status detection results are not inherited.
- FIG. 5 is a block diagram showing the configuration of the load drive circuit 1B and the electromagnetic load 2 according to the second embodiment of the present invention.
- the pre-driver circuit 7H that outputs the gate signal INH_S of the high-side sense MOS 5H1 and the gate signal INL_M of the low-side switching element 4.
- the pre-driver circuit 7H changes INH_M from on to off when the IN signal changes from H to L, and changes INH_S from on to off after the delay time DH.
- INL_M is changed from OFF to ON after the dead time period Tdead.
- FIG. 6 is a timing chart for explaining the operation of the load driving circuit 1B according to the second embodiment of the present invention.
- the timing chart shown in FIG. 6 is the same as the timing chart of FIG. 4 because the operation of the output signals (DET_H, VH_SHH, GND_SHH) of the fault detection circuit 6 in normal, power fault, and ground fault is the load by the pre-driver 7.
- the operation and effect of the drive circuit 1B will be described.
- the pre-driver 7H fixes INL_M to OFF regardless of the IN signal. Thereby, an overcurrent generated when the low-side switching element is turned on can be prevented, which is advantageous in improving the safety of the load driving circuit 1B.
- FIG. 7 is a block diagram showing the configuration of the load drive circuit 1C and the electromagnetic load 2 according to the third embodiment of the present invention.
- the terminal OUT receives power from the ground side GND of the DC power supply, controls on / off with the gate signal INL_M, and is low-side switching composed of NMOS.
- the power is supplied from the element 4 and the positive side VH of the DC power supply, and is controlled to be turned on / off by the gate signal INH_M, and connected in parallel with the high-side switching element 3 and the low-side switching element 4 made of NMOS.
- 4 includes a current detection circuit 5L that outputs a sense current IsL proportional to the voltage between the drain and the source 4 and a failure detection circuit 6L that detects a failure state of the load drive circuit 1C from the sense current IsL.
- the other terminal of the electromagnetic load 2 has a configuration connected to VH (hereinafter, a low-side driver configuration).
- FIG. 8 is a block diagram showing an example of the configuration of the current detection circuit 5L according to the third embodiment of the present invention.
- the current detection circuit 5L shown in FIG. 8 controls ON / OFF with INL_S, and includes a low-side sense MOS 5L1 made of NMOS of the same process as the low-side switching element 4, a drain terminal (OUT terminal) of the low-side switching element 4, and a low-side sense MOS 5L1.
- a virtual short circuit 5L2 composed of an operational amplifier and NMOS for setting the drain terminal voltage to the same potential, and a current mirror circuit 5L3 for turning back the current flowing through the low-side sense MOS 5L1 and outputting IsL.
- FIG. 9 is a block diagram showing an example of the configuration of the failure detection circuit 6L according to the third embodiment of the present invention.
- the failure detection circuit 6L shown in FIG. 9 is a circuit that detects a failure state in which the OUT terminal is short-circuited to GND (hereinafter referred to as a ground fault) and a state in which the OUT terminal is short-circuited to VH (hereinafter referred to as a power fault).
- a circuit 6L3 is provided.
- the comparison detection circuit 6L1 includes a low-pass filter LPF1 with a time constant D1 that removes the influence of noise and outputs a DET_L signal, and the generation circuit 6L2 for the detection period Td includes a low-pass filter LPF2 with a time constant D2.
- FIG. 10 is a timing chart for explaining the operation of the load driving circuit 1C according to the third embodiment of the present invention.
- the timing chart shown in FIG. 10 shows each operation defined in FIGS. 7 to 9 with respect to operations in three states: a power fault that can be detected in the present embodiment, a ground fault, and a state that does not have a failure (hereinafter, normal). It is indicated by the operation waveform at the contact.
- the gate signal INL_M of the low-side switching element 4 and the gate signal INH_M of the high-side switching element 3 are alternately turned on and off alternately during periods other than the dead time period Tdead at which they are simultaneously turned off.
- the OUT terminal When the load drive circuit 1C is in a power supply fault state, the OUT terminal is at a potential near VH even when INL_M is on, and at the moment when INL_M and INL_S transition from off to on, a sense current IsL greater than the threshold IrefL is generated.
- Td the detection period
- FIG. 11 is a block diagram showing the configuration of the load drive circuit 1D and the electromagnetic load 2 according to the fourth embodiment of the present invention.
- the load drive circuit 1D shown in FIG. 11 receives the output of the failure detection circuit 6L and the control signal IN of the load drive circuit 1D as inputs in addition to the load drive circuit 1C shown in FIG.
- a pre-driver circuit 7L that outputs the gate signal INL_S of the low-side sense MOS 5L1 and the gate signal INH_M of the high-side switching element 3. If there is no input signal from the failure detection circuit 6L, the pre-driver circuit 7L transitions INL_M from on to off when the IN signal transitions from H to L, and transitions INL_S from on to off after the delay time DL. , INH_M is changed from OFF to ON after the dead time period Tdead. When the IN signal transitions from L to H, INH_M is transitioned from on to off, and INL_M and INL_S are transitioned from off to on after the dead time period Tdead.
- FIG. 12 is a timing chart for explaining the operation of the load driving circuit 1D according to the fourth embodiment of the present invention.
- the operation of the output signals (DET_L, VH_SHL, GND_SHL) of the fault detection circuit 6L in normal, power fault, and ground fault is the same as the timing chart in FIG. The operation and effect of the drive circuit 1D will be described.
- the pre-driver 7L fixes INH_M and INH_S off regardless of the IN signal. Thus, it is possible to prevent overcurrent that occurs when the high-side switching element is turned on. This is advantageous in improving the safety of the load driving circuit 1D.
- FIG. 13 is a block diagram showing the configuration of the load drive circuit 1E and the electromagnetic load 2 according to the fifth embodiment of the present invention. A load driving circuit 1E shown in FIG.
- 13 is connected to the electromagnetic load 2 via a terminal OUT, receives power supply from the positive side VH of the DC power supply, controls on / off with a gate signal INH_M, and is composed of an NMOS high side. Power supply is received from the switching element 3 and the ground side GND of the DC power supply, and on / off is controlled by the gate signal INL_M, and the low side switching element 4 made of NMOS and the high side switching element 3 are connected in parallel.
- a current detection circuit 5H that outputs a sense current IsH proportional to the voltage between the drain and the source of the switching element 3 and a low-side switching element 4 connected in parallel, and a sense proportional to the voltage between the drain and the source of the low-side switching element 4
- a current detection circuit 5L that outputs a current IsL, and a high-side sense current IsH
- a failure detection circuit 6 that detects a failure state of the load drive circuit 1E from the low-side sense current IsL is provided.
- the other terminal of the electromagnetic load 2 has a configuration in which a low side driver configuration connected to VH and a high side driver configuration connected to GND can be selected by a CONFIG signal.
- the high-side current detection circuit 5H and the low-side current detection circuit 5L in FIG. 13 have the same configurations and operations as the high-side current detection circuit 5H in FIG. 2 and the low-side current detection circuit 5L in FIG.
- FIG. 14 is a block diagram showing an example of the configuration of the failure detection circuit 6 according to the fifth embodiment of the present invention.
- the failure detection circuit 6 shown in FIG. 14 includes the high-side failure detection circuit 6H in FIG. 3, the low-side failure detection circuit 6L in FIG. 9, and the input of the detection period Td generation circuit 6H2 of the high-side failure detection circuit 6H by the CONFIG signal. And a selector 62 for switching the input of the detection period Td generation circuit 6L2 of the low-side failure detection circuit 6L.
- the load driving circuit 1E is in a normal state with no failure, in the high side driver configuration, after INL_M transitions from on to off, INH_M and INH_S transition from off to on in the dead time period Tdead, and the delay time DL Later, INL_S transitions from on to off.
- the load driving circuit 1E is in a normal state with no failure, in the low-side driver configuration, after INH_M transitions from on to off, INL_M and INL_S transition from off to on in the dead time period Tdead, and the delay time DH , INH_S transitions from on to off.
- the OUT terminal is at a potential near GND, so that the low-side sense current IsL is less than or equal to the threshold current IrefL when INL_S is on.
- FIG. 1E shows a power fault and a ground fault using the high side fault detection circuit 6H and the low side fault detection circuit 6L, respectively. Therefore, by comparing the mutual fault detection results, it is possible to detect an abnormality in the fault detection circuit, which is advantageous for further increasing the reliability of the load driving circuit 1E. Further, by switching between the high-side driver configuration and the low-side driver configuration with the CONFIG signal, failure detection that does not depend on the power source to which the electromagnetic load 2 is connected becomes possible, which is advantageous in making the load drive circuit 1E flexible. . (Sixth embodiment) FIG.
- FIG. 17 is a block diagram showing configurations of a load driving circuit 1F and an electromagnetic load 2 according to the sixth embodiment of the present invention.
- the load drive circuit 1F shown in FIG. 17 receives the output of the failure detection circuit 6, the control signal IN of the load drive circuit 1F, and the driver configuration signal CONFIG in addition to the load drive circuit 1E shown in FIG.
- a pre-driver circuit 7 is provided that outputs the gate signal INH_M of the element 3, the gate signal INH_S of the high side sense MOS 5H1, the gate signal INL_M of the low side switching element 4, and the gate signal INL_S of the low side sense MOS 5L1.
- the pre-driver circuit 7 When the pre-driver circuit 7 is configured as a high-side driver and there is no input signal from the failure detection circuit 6, when the IN signal transitions from H to L, INH_M is transitioned from on to off, and INH_S is set after delay DH. Transition from ON to OFF is performed, and INL_M and INL_S are transitioned from OFF to ON after the dead time period Tdead. Further, when the IN signal transits from L to H, INL_M is transited from on to off, INH_M and INH_S are transited from off to on after the dead time period Tdead, and INL_S is transited from on to off after the delay DL.
- FIG. 18 shows an example of a timing chart for explaining the operation of the load driving circuit 1F in the high-side driver configuration according to the sixth embodiment of the present invention. Since the operation of the failure detection circuit 6 in the timing chart shown in FIG. 18 is normal, a power fault, and a ground fault is the same as the timing chart of FIG. 15, the operation and effect of the load driving circuit 1F by the pre-driver 7 will be described. .
- the conventional dead time period Tdead can be shortened by changing INH_S from ON to OFF and INL_M and INL_S from OFF to ON.
- the dead time period heat is increased due to the current flowing through the body diode of the low-side switching element 4, so shortening the dead time period is advantageous for reducing the amount of heat generated in the load drive circuit.
- the pre-driver 7 fixes INL_M and INL_S to OFF regardless of the IN signal. Since the overcurrent generated when the low-side switching element is turned on can be prevented, it is advantageous in improving the safety of the load driving circuit 1F.
- the pre-driver 7 changes INH_M and INH_S to OFF regardless of the IN signal. Since the overcurrent that occurs when the high-side switching element is kept on can be prevented, it is advantageous in improving the safety of the load driving circuit 1F.
- FIG. 19 shows an example of a timing chart in the low-side driver configuration according to the sixth embodiment of the present invention. Since the operation of the failure detection circuit 6 in the timing chart shown in FIG. 19 in normal, power fault, and ground fault is the same as that in FIG. 16, the operation and effect of the load driving circuit 1F by the pre-driver 7 will be described. .
- the conventional dead time period Tdead can be shortened by changing INL_S from on to off and INH_M and INH_S from off to on.
- heat is increased due to the current flowing through the body diode of the high-side switching element 3, so that shortening the dead time period is advantageous for reducing the amount of heat generated in the load drive circuit.
- the pre-driver 7 fixes INH_M and INH_S to OFF regardless of the IN signal. Since the overcurrent generated when the high-side switching element is turned on can be prevented, it is advantageous in improving the safety of the load driving circuit 1F.
- FIG. 20 is a block diagram showing configurations of a load driving circuit 1G and an electromagnetic load 2 according to the seventh embodiment of the present invention.
- a load driving circuit 1G shown in FIG. 20 is connected to the electromagnetic load 2 via a terminal OUT, receives power supply from the positive side VH of the DC power supply, controls on / off with a gate signal INH_M, and is a high side composed of NMOS. Power supply is received from the switching element 3 and the ground side GND of the DC power supply, and on / off is controlled by the gate signal INL_M, and the low side switching element 4 made of NMOS and the high side switching element 3 are connected in parallel.
- a current detection circuit 10H that outputs a sense current IsH proportional to the voltage between the drain and source of the switching element 3 is connected in parallel with the low-side switching element 4, and is proportional to the voltage between the drain and source of the high-side switching element 4.
- a current detection circuit 10L that outputs a sense current IsL, and a high-side sense current
- a failure detection circuit 6A that detects a failure state of the load driving circuit 1G from IsH and the low-side sense current IsL, and a period during which the load driving circuit 1G is not driving the load outputs H during a diagnosis period set at an arbitrary timing.
- the logic circuit 9 is provided to fix the gate signal INH_M of the high-side switching element 3 and the gate signal INL_M of the low-side switching element 4 to OFF.
- the other terminal of the electromagnetic load 2 has a configuration in which a low-side driver configuration connected to VH and a high-side driver configuration connected to GND can be selected by a CONFIG signal.
- FIG. 21 is a block diagram showing an example of the configuration of the high-side current detection circuit 10H according to the seventh embodiment of the present invention.
- the high-side current detection circuit 10H shown in FIG. 21 is always on and is connected in series between the first high-side sense MOS 10H1 made of NMOS and the same process as the high-side switching element 3, and between the first high-side sense MOS 10H1 and the terminal OUT. Are connected in parallel with the second high-side sense MOS 10H2 made of NMOS of the same process as the high-side switching element 3 controlled on / off by the gate signal INH_S, and the first high-side sense MOS 10H1.
- the third high-side sense MOS 10H3 which is always on and made of NMOS in the same process as the high-side switching element 3, the middle point of the first high-side sense MOS 10H1 and the second high-side sense MOS 10H2, and the third high-side sense MOS To the same potential It has a virtual short circuit 10H4 consisting because of the op amp and PMOS.
- FIG. 22 is a block diagram showing an example of the configuration of a low-side current detection circuit 10L according to the seventh embodiment of the present invention.
- a high-side current detection circuit 10L shown in FIG. 22 is always on and inserted in series between the first low-side sense MOS 10L1 made of NMOS of the same process as the low-side switching element 4, and the first low-side sense MOS 10L1 and the terminal OUT.
- the second low-side sense MOS 10L2 made of NMOS of the same process as the low-side switching element 4 controlled to be turned on / off by the gate signal INL_S is connected in parallel with the first low-side sense MOS 10L1, and the low-side switching element is always on.
- the middle point of the third low-side sense MOS 10 ⁇ / b> L ⁇ b> 3 the middle point of the first low-side sense MOS 10 ⁇ / b> L ⁇ b> 1, the second low-side sense MOS 10 ⁇ / b> L ⁇ b> 2, and the drain terminal of the third low-side sense MOS have the same potential.
- an operational amplifier and a virtual short circuit 10L4 consisting NMOS for.
- FIG. 23 is a block diagram showing an example of the configuration of a failure detection circuit 6A according to the seventh embodiment of the present invention.
- the failure detection circuit 6A shown in FIG. 23 is requested by the system in a period when the load driving circuit 1G is not driving a load, with the failure detection circuit 6 shown in FIG. 14 which is a failure detection circuit during normal load driving.
- An OFF-time failure detection circuit 6A1 that operates during the diagnosis period is provided.
- the off-time failure detection circuit 6A1 compares the high-side sense current IsH and the threshold current IrefH with the logic circuit 6A2 that fixes the output (VH_SHH, VH_SHL, GND_SHH, GND_SHL) of the failure detection circuit 6 to L during the diagnosis period.
- a determination circuit 6A5 for determining a failure is provided.
- FIG. 24 shows an example of a timing chart in the high-side driver configuration according to the seventh embodiment of the present invention.
- the timing chart shown in FIG. 24 explains the operation and effect in normal, power fault, and disconnection fault.
- the gate signal INH_M of the high-side switching element 3 and the gate signal INL_M of the low-side switching element 4 are off.
- the gate signal INH_S of the high side sense MOS 10H3 and the gate signal INL_S of the low side sense MOS 10L3 are alternately turned on / off.
- the determination circuit 6A5 determines that the load driving circuit 1G is in a normal state from the outputs of the latch circuit 6A3 and the latch circuit 6A4.
- the OUT terminal When the load driving circuit 1G is in a disconnected state, the OUT terminal is in a high impedance state, so that the potential is near VH when INH_S is on, and is near GND when INL_S is on.
- the OUT terminal transitions from a potential near VH to a potential near GND, so a current of IrefL or more is instantaneously generated in INL_S, and the latch circuit 6A4 H is output.
- INL_S transitions from on to off and INH_S transitions from off to on the OUT terminal transitions from a potential near GND to a potential near VH.
- FIG. 25 shows an example of a timing chart in the low-side driver configuration according to the seventh embodiment of the present invention.
- the timing chart shown in FIG. 25 explains the operation and effect in normal, ground fault, and disconnection fault.
- the gate signal INH_M of the high-side switching element 3 and the gate signal INL_M of the low-side switching element 4 are output. Is fixed off, and the gate signal INH_S of the high-side sense MOS 10H3 and the gate signal INL_S of the low-side sense MOS 10L3 are turned on / off mutually.
- the OUT terminal is at a potential near VH. Therefore, when INL_S is on, the low-side sense current IsL becomes equal to or higher than the threshold current IrefL, and the latch circuit 6A4 outputs H and INH_S is on. In this case, the high-side sense current IsH becomes equal to or less than the threshold current IrefH, and the latch circuit 6A3 outputs L. At this time, the determination circuit 6A5 determines that the load driving circuit 1G is in a normal state from the outputs of the latch circuit 6A3 and the latch circuit 6A4.
- the OUT terminal is at a potential near GND. Therefore, when INL_S is ON, the low-side sense current IsL becomes equal to or lower than the threshold current IrefL, and the latch circuit 6A4 outputs L, and INH_ Is on, the high-side sense current IsH becomes equal to or higher than the threshold current IrefH, and the latch circuit 6A3 outputs H.
- the OUT terminal When the load drive circuit 1G is in a disconnected state, the OUT terminal has a high impedance, so that the potential is near VH when INH_S is on, and near GND when INL_S is on.
- the OUT terminal transitions from a potential near VH to a potential near GND, so a current of IrefL or more is instantaneously generated in INL_S, and the latch circuit 6A4 H is output.
- INL_S transitions from on to off and INH_S transitions from off to on the OUT terminal transitions from a potential near GND to a potential near VH.
- the load driving circuit 1G it is possible to detect a failure before the load driving operation in addition to the failure detection during the normal load driving operation. Since it is possible to detect a failure without causing it to occur, it is advantageous in further improving reliability and improving safety.
- FIG. 26 is a block diagram showing a configuration of the failure detection circuit 6B in the load driving circuit 1G according to the eighth embodiment of the present invention.
- the failure detection circuit 6B shown in FIG. 26 is requested from the failure detection circuit 6 shown in FIG. 14 which is a failure detection circuit during normal load driving operation by the load drive circuit 1G during the period when the load is not driven.
- An OFF-time failure detection circuit 6B1 that operates during the diagnosis period is provided.
- the off-time failure detection circuit 6B1 compares the high-side sense current IsH and the threshold current IrefH with the logic circuit 6B2 that fixes the output of the failure detection circuit 6 to L during the diagnosis period.
- a latch circuit 6B3 that outputs H with respect to the rising edge that has detected that IrefH is equal to or greater than IrefH, and a result of detecting that IsH is equal to or greater than IrefH, with respect to the rising edge of the output that is multiplied by the low-pass filter,
- the latch circuit 6B6 that outputs H, the latch circuit 6B4 that outputs H at the rising edge that detects that the low-side sense current IsL is equal to or greater than the threshold current IrefL, and the detection that IsL is equal to or greater than IrefL Latch circuit that outputs H to the rising edge of the output multiplied by the low-pass filter Comprising a B7, a latch circuit 6B3, a latch circuit 6B4, a latch circuit 6
- FIG. 27 shows an example of a timing chart in the high-side driver configuration according to the eighth embodiment of the present invention.
- the timing chart shown in FIG. 27 explains the actions and effects in normal, power fault, ground fault, and disconnection fault.
- the CONFIG signal outputs H. Since the DIAG signal is H during the diagnosis period, the gate signal INH_M of the high-side switching element 3 and the gate signal INL_M of the low-side switching element 4 are fixed to OFF, the gate signal INH_S of the high-side sense MOS 10H3, and the low-side sense The gate signal INL_S of the MOS 10L3 is simultaneously turned on / off.
- the OUT terminal becomes a potential near GND, so that IsH generates a current higher than IrefH, and IsL becomes a current lower than IrefL. Therefore, the latch circuit 6B6 outputs H, and the latch circuit 6B7 L is output. At this time, the determination circuit 6B5 determines the normal state from the outputs of the latch circuit 6B3, the latch circuit 6B4, the latch circuit 6B6, and the latch circuit 6B7.
- the OUT terminal is at a potential near VH. Therefore, at the moment when INH_S and INL_S are simultaneously turned on, IsL generates a current equal to or higher than IrefL, so that the latch circuit 6B4 sets H. Since IsH becomes a current equal to or lower than IrefH, the latch circuit 6B3 outputs L. Even after the filter time has elapsed, IsL generates a current equal to or higher than IrefL, so that the latch circuit 6B7 outputs H, and IsH becomes a current equal to or lower than IrefH, so that the latch circuit 6B6 outputs L. At this time, the determination circuit 6B5 determines VH_SHD from the outputs of the latch circuit 6B3, the latch circuit 6B4, the latch circuit 6B6, and the latch circuit 6B7, and determines that there is a power fault state.
- FIG. 28 shows an example of a timing chart in the low-side driver configuration according to the eighth embodiment of the present invention.
- the timing chart shown in FIG. 28 explains the actions and effects in normal, power fault, ground fault, and disconnection fault.
- the gate signal INH_M of the high-side switching element 3 and the gate signal INL_M of the low-side switching element 4 are turned off.
- the gate signal INH_S of the high side sense MOS 10H3 and the gate signal INL_S of the low side sense MOS 10L3 are simultaneously turned on / off.
- the OUT terminal becomes a potential near VH, so that IsL generates a current greater than or equal to IrefL, so that the latch circuit 6B7 outputs H, IsH becomes a current equal to or lower than IrefH, and the latch circuit 6B6 decreases L. Output.
- the determination circuit 6B5 determines the normal state from the outputs of the latch circuit 6B3, the latch circuit 6B4, the latch circuit 6B6, and the latch circuit 6B7.
- the failure detection is performed by distinguishing the power fault, the ground fault, and the disconnection failure before the load drive operation. Since it is possible to detect a fault without generating a large current, it is advantageous in further improving reliability and improving safety.
- failure detection during the load driving operation is not an essential element. It is also possible to carry out the failure detection before the load driving operation only with the components necessary for detecting the failure before the load driving operation.
- the present invention is not limited to the above-described embodiments, and includes various modifications.
- the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
- a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
- the control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown.
- the example in which the high-side switching element 3, the low-side switching element 4, the high-side sense MOS 5H, and the low-side sense MOS 5L are configured by NMOS is shown, but even when configured by PMOS, on / off If the polarity of the high level and low level of the gate signal for controlling the signal is inverted, the same effect as in the case of the NMOS can be obtained.
- the high-side current detection circuit 5H and the low-side current detection circuit 6L described in the first to sixth embodiments are replaced with the high-side current detection circuit 10H and the high-side current detection circuit 10L described in the seventh to eighth embodiments. It is also possible to apply.
- the high-side current detection circuit 10H and the low-side current detection circuit 10L described in the seventh to eighth embodiments are replaced with the high-side current detection circuit 5H and the low-side current detection circuit 10L described in the first to sixth embodiments.
Landscapes
- Electronic Switches (AREA)
- Power Conversion In General (AREA)
Abstract
Description
電源からの電力供給を受けて負荷を駆動する負荷駆動回路であって、前記負荷駆動回路は、
前記電源の正極側に接続され、ハイサイド駆動電流を出力するハイサイドスイッチング素子と、
前記電源の負極側に接続され、ローサイド駆動電流を出力するローサイドスイッチング素子と、
前記ハイサイドスイッチング素子と並列に接続され、ハイサイド駆動電流を検出するハイサイド電流検出回路と、
前記ハイサイド電流検出回路の出力結果から、前記負荷駆動回路の故障状態を検出する故障検出回路と、を備え、
前記ハイサイド電流検出回路は、
前記ハイサイドスイッチング素子と異なるゲート信号に応じて動作し、前記ハイサイドスイッチング素子と同種類のデバイスで構成されたハイサイドセンス用スイッチング素子と、を備え、
前記故障検出回路は、
前記ハイサイド電流検出回路の出力結果と、前記ハイサイドスイッチング素子のゲート信号と、前記ハイサイドセンス用スイッチング素子のゲート信号と、を入力として、前記負荷駆動回路と前記負荷の接続端子が、前記電源の正極側と短絡状態、又は、前記電源の負極側と短絡状態であった場合に、それぞれの故障状態を区別して検出すること、
を、特徴とする。
(第1の実施形態)
図1は、本発明の第1の実施形態による負荷駆動回路1Aと電磁負荷2の構成を示すブロック図である。図1に示す負荷駆動回路1Aは、電磁負荷2と端子OUTで接続しており、直流電源の正極側VHから電力供給を受け、ゲート信号INH_Mでオン/オフを制御し、NMOSからなるハイサイドスイッチング素子3と、直流電源のグランド側GNDから電力供給を受け、ゲート信号INL_Mでオン/オフを制御し、NMOSからなるローサイドスイッチング素子4と、ハイサイドスイッチング素子3と並列に接続し、ハイサイドスイッチング素子3のドレインとソース間の電圧に比例したセンス電流IsHを出力する電流検出回路5Hと、センス電流IsHから負荷駆動回路1Aの故障状態を検出する故障検出回路6Hを備えている。また、電磁負荷2のもう一方の端子はGNDと接続した構成(以下、ハイサイドドライバ構成)となっている。
(第2の実施形態)
図5は、本発明の第2の実施形態による負荷駆動回路1Bと電磁負荷2の構成を示すブロック図である。図5に示す負荷駆動回路1Bは、図1に示す負荷駆動回路1Aに加え、故障検出回路6Hの出力と、負荷駆動回路1Bの制御信号INを入力として、ハイサイドスイッチング素子3のゲート信号INH_Mと、ハイサイドセンスMOS5H1のゲート信号INH_Sと、ローサイドスイッチング素子4のゲート信号INL_Mを出力するプリドライバ回路7Hを備えている。プリドライバ回路7Hは、故障検出回路6Hからの入力信号が無ければ、IN信号がHからLに遷移するとき、INH_Mをオンからオフに遷移させ、遅延時間DH後にINH_Sをオンからオフに遷移させ、デッドタイム期間Tdead後にINL_Mをオフからオンに遷移させる。また、IN信号がLからHに遷移するとき、INL_Mをオンからオフに遷移させ、デッドタイム期間Tdead後にINH_MとINH_Sをオフからオンに遷移させる。
(第3の実施形態)
図7は、本発明の第3の実施形態による負荷駆動回路1Cと電磁負荷2の構成を示すブロック図である。図7に示す負荷駆動回路1Cは、電磁負荷2と端子OUTで接続しており、直流電源のグランド側GNDから電力供給を受け、ゲート信号INL_Mでオン/オフを制御し、NMOSからなるローサイドスイッチング素子4と、直流電源の正極側VHから電力供給を受け、ゲート信号INH_Mでオン/オフを制御し、NMOSからなるハイサイドスイッチング素子3と、ローサイドスイッチング素子4と並列に接続し、ローサイドスイッチング素子4のドレインとソース間の電圧に比例したセンス電流IsLを出力する電流検出回路5Lと、センス電流IsLから負荷駆動回路1Cの故障状態を検出する故障検出回路6Lを備えている。また、電磁負荷2のもう一方の端子はVHと接続した構成(以下、ローサイドドライバ構成)となっている。
(第4の実施形態)
図11は、本発明の第4の実施形態による負荷駆動回路1Dと電磁負荷2の構成を示すブロック図である。図11に示す負荷駆動回路1Dは、図7に示す負荷駆動回路1Cに加え、故障検出回路6Lの出力と、負荷駆動回路1Dの制御信号INを入力として、ローサイドスイッチング素子4のゲート信号INL_Mと、ローサイドセンスMOS5L1のゲート信号INL_Sと、ハイサイドスイッチング素子3のゲート信号INH_Mを出力するプリドライバ回路7Lを備えている。プリドライバ回路7Lは、故障検出回路6Lからの入力信号が無ければ、IN信号がHからLに遷移するとき、INL_Mをオンからオフに遷移させ、遅延時間DL後にINL_Sをオンからオフに遷移させ、デッドタイム期間Tdead後にINH_Mをオフからオンに遷移させる。また、IN信号がLからHに遷移するとき、INH_Mをオンからオフに遷移させ、デッドタイム期間Tdead後にINL_MとINL_Sをオフからオンに遷移させる。
(第5の実施形態)
図13は本発明の第5の実施形態による負荷駆動回路1Eと電磁負荷2の構成を示すブロック図である。図13に示す負荷駆動回路1Eは、電磁負荷2と端子OUTで接続しており、直流電源の正極側VHから電力供給を受け、ゲート信号INH_Mでオン/オフを制御し、NMOSからなるハイサイドスイッチング素子3と、直流電源のグランド側GNDから電力供給を受け、ゲート信号INL_Mでオン/オフを制御し、NMOSからなるローサイドスイッチング素子4と、ハイサイドスイッチング素子3と並列に接続し、ハイサイドスイッチング素子3のドレインとソース間の電圧に比例したセンス電流IsHを出力する電流検出回路5Hと、ローサイドスイッチング素子4と並列に接続し、ローサイドスイッチング素子4のドレインとソース間の電圧に比例したセンス電流IsLを出力する電流検出回路5Lと、ハイサイドセンス電流IsHとローサイドセンス電流IsLから負荷駆動回路1Eの故障状態を検出する故障検出回路6を備えている。
(第6の実施形態)
図17に本発明の第6の実施形態による負荷駆動回路1Fと電磁負荷2の構成を示すブロック図である。図17に示す負荷駆動回路1Fは、図13に示す負荷駆動回路1Eに加え、故障検出回路6の出力と、負荷駆動回路1Fの制御信号INと、ドライバ構成信号CONFIGを入力として、ハイサイドスイッチング素子3のゲート信号INH_Mと、ハイサイドセンスMOS5H1のゲート信号INH_Sと、ローサイドスイッチング素子4のゲート信号INL_Mと、ローサイドセンスMOS5L1のゲート信号INL_Sを出力するプリドライバ回路7を備えている。
(第7の実施形態)
図20に本発明の第7の実施形態による負荷駆動回路1Gと電磁負荷2の構成を示すブロック図である。
(第8の実施形態)
図26に本発明の第8の実施形態による負荷駆動回路1Gにおける故障検出回路6Bの構成を示すブロック図である。
2 電磁負荷
3 ハイサイドスイッチング素子
4 ローサイドスイッチング素子
5H ハイサイド電流検出回路
5L ローサイド電流検出回路
6 故障検出回路
6H ハイサイド故障検出回路
6L ローサイド故障検出回路
7 プリドライバ
8 検出結果比較回路
10H ハイサイド電流検出回路
10L ローサイド電流検出回路
Claims (15)
- 電源からの電力供給を受けて負荷を駆動する負荷駆動回路であって、前記負荷駆動回路は、
前記電源の正極側に接続され、ハイサイド駆動電流を出力するハイサイドスイッチング素子と、
前記電源の負極側に接続され、ローサイド駆動電流を出力するローサイドスイッチング素子と、
前記ハイサイドスイッチング素子と並列に接続され、ハイサイド駆動電流を検出するハイサイド電流検出回路と、
前記ハイサイド電流検出回路の出力結果から、前記負荷駆動回路の故障状態を検出する故障検出回路と、を備え、
前記ハイサイド電流検出回路は、
前記ハイサイドスイッチング素子と異なるゲート信号に応じて動作し、前記ハイサイドスイッチング素子と同種類のデバイスで構成されたハイサイドセンス用スイッチング素子と、を備え、
前記故障検出回路は、
前記ハイサイド電流検出回路の出力結果と、前記ハイサイドスイッチング素子のゲート信号と、前記ハイサイドセンス用スイッチング素子のゲート信号と、を入力として、前記負荷駆動回路と前記負荷の接続端子が、前記電源の正極側と短絡状態、又は、前記電源の負極側と短絡状態であった場合に、それぞれの故障状態を区別して検出すること、
を、特徴とする負荷駆動回路。 - 請求項1に記載の負荷駆動回路において、
前記ハイサイドスイッチング素子のゲート信号のオン状態にある期間に比べて、前記ハイサイドセンス用スイッチング素子のゲート信号がオン状態にある期間の方が長いこと
を、特徴とする負荷駆動回路。 - 請求項1に記載の負荷駆動回路において、
前記負荷駆動回路の制御信号と、前記故障検出回路の出力結果と、を元に、前記ハイサイドスイッチング素子のゲート信号と、前記ローサイドスイッチング素子のゲート信号と、前記ハイサイドセンス用スイッチング素子のゲート信号を出力するプリドライバ回路、
を、備えることを特徴とする負荷駆動回路。 - 電源からの電力供給を受けて負荷を駆動する負荷駆動回路であって、前記負荷駆動回路は、
前記電源の正極側に接続され、ハイサイド駆動電流を出力するハイサイドスイッチング素子と、
前記電源の負極側に接続され、ローサイド駆動電流を出力するローサイドスイッチング素子と、
前記ローサイドスイッチング素子と並列に接続され、ローサイド駆動電流を検出するローサイド電流検出回路と、
前記ローサイド電流検出回路の出力結果から、前記負荷駆動回路の故障状態を検出する故障検出回路と、を備え、
前記ローサイド電流検出回路は、
前記ローサイドスイッチング素子と異なるゲート信号に応じて動作し、前記ローサイドスイッチング素子と同種類のデバイスで構成されたローサイドセンス用スイッチング素子と、を備え、
前記故障検出回路は、
前記ローサイド電流検出回路の出力結果を入力として、前記ローサイドスイッチング素子のゲート信号と、前記ローサイドセンス用スイッチング素子のゲート信号から、前記負荷駆動回路と前記負荷の接続端子が、前記電源の正極側と短絡状態、又は、前記電源の負極側と短絡状態であった場合に、それぞれの故障状態を区別して検出すること、
を、特徴とする負荷駆動回路。 - 請求項4に記載の負荷駆動回路において、
前記ローサイドスイッチング素子のゲート信号のオン状態にある期間に比べて、前記ローサイドセンス用スイッチング素子のゲート信号がオン状態にある期間の方が長いこと
を、特徴とする負荷駆動回路。 - 請求項4に記載の負荷駆動回路において、
前記負荷駆動回路の制御信号と、前記故障検出回路の出力結果と、を元に、前記ローサイドスイッチング素子のゲート信号と、前記ハイサイドスイッチング素子のゲート信号と、前記ローサイドセンス用スイッチング素子のゲート信号を出力するプリドライバ回路、 を、備えることを特徴とする負荷駆動回路。 - 電源からの電力供給を受けて負荷を駆動する負荷駆動回路であって、前記負荷駆動回路は、
前記電源の正極側に接続され、ハイサイド駆動電流を出力するハイサイドスイッチング素子と、
前記電源の負極側に接続され、ローサイド駆動電流を出力するローサイドスイッチング素子と、
前記ハイサイドスイッチング素子と並列に接続され、ハイサイド駆動電流を検出するハイサイド電流検出回路と、
前記ローサイドスイッチング素子と並列に接続され、ローサイド駆動電流を検出するローサイド電流検出回路と、を備え、
前記ハイサイド電流検出回路は、
前記ハイサイドスイッチング素子と異なるゲート信号に応じて動作し、前記ハイサイドスイッチング素子と同種類のデバイスで構成されたハイサイドセンス用スイッチング素子と、を備え、
前記ローサイド電流検出回路は、
前記ローサイドスイッチング素子と異なるゲート信号に応じて動作し、前記ローサイドスイッチング素子と同種類のデバイスで構成されたローサイドセンス用スイッチング素子と、を備え、
前記故障検出回路は、
前記ハイサイド電流検出回路の出力結果と、前記ローサイド電流検出回路の出力結果を入力として、前記ハイサイドスイッチング素子のゲート信号と、前記ハイサイドセンス用スイッチング素子のゲート信号と、前記ローサイドスイッチング素子のゲート信号と、前記ローサイドセンス用スイッチング素子のゲート信号から、前記負荷駆動回路と前記負荷の接続端子が、前記電源の正極側と短絡状態、又は、前記電源の負極側と短絡状態であった場合に、それぞれの故障状態を区別して検出すること、
を、特徴とする負荷駆動回路。 - 請求項7に記載の負荷駆動回路において、
前記ハイサイドスイッチング素子のゲート信号のオン状態にある期間に比べて、前記ハイサイドセンス用スイッチング素子のゲート信号がオン状態にある期間の方が長いことと、
前記ローサイドスイッチング素子のゲート信号のオン状態にある期間に比べて、前記ローサイドセンス用スイッチング素子のゲート信号がオン状態にある期間の方が長いことと、
を、特徴とする負荷駆動回路。 - 請求項7に記載の負荷駆動回路において、
前記負荷駆動回路の制御信号と、前記故障検出回路の出力結果と、を元に、前記ローサイドスイッチング素子のゲート信号と、前記ハイサイドスイッチング素子のゲート信号と、前記ローサイドセンス用スイッチング素子のゲート信号と、前記ハイサイドセンス用スイッチング素子のゲート信号と、を出力するプリドライバ回路、
を、備えることを特徴とする負荷駆動回路。 - 請求項7に記載の負荷駆動回路において、
前記ハイサイド電流検出回路の出力結果に基づく、前記故障検出回路の出力結果と、前記ローサイドの電流検出回路の出力結果に基づく、前記故障検出回路の出力結果が、
前記負荷駆動回路の制御周期ごとに一致するか比較することで、前記ハイサイド電流検出回路と、前記ローサイド電流検出回路と、
が、出力結果が正常であることを、相互に診断する検出結果比較回路
を、備えることを特徴とする負荷駆動回路。 - 請求項7に記載の負荷駆動回路において、
前記負荷駆動回路が、前記負荷を駆動していない待機状態において、前記負荷駆動回路の故障検出期間を設定し、
前記故障検出期間中に、前記ハイサイドスイッチング素子のゲート信号と、前記ローサイドスイッチング素子のゲート信号と、をオフに固定するための論理回路と、を備え、
前記ハイサイドセンス用スイッチング素子のゲート信号と、前記ローサイドセンス用スイッチング素子のゲート信号をオン、オフすることで、前記負荷駆動回路の故障状態を検出する、
ことを特徴とする負荷駆動回路。 - 請求項11に記載の負荷駆動回路において、
前記ハイサイドセンス用スイッチング素子のゲート信号と、前記ローサイドセンス用スイッチング素子のゲート信号と、
を、交互にオン、オフさせ、故障状態を検出する、
ことを特徴とする負荷駆動回路。 - 請求項11に記載の負荷駆動回路において、
前記ハイサイドセンス用スイッチング素子のゲート信号と、前記ローサイドセンス用スイッチング素子のゲート信号と、
を、同時にオン、オフさせ、故障状態を検出する、
ことを特徴とする負荷駆動回路。 - 請求項13に記載の負荷駆動回路において、
前記ハイサイドセンス用スイッチング素子のゲート信号と、前記ローサイドセンス用スイッチング素子のゲート信号がオンした瞬間の、前記ハイサイド電流検出回路の出力結果と、前記ローサイド電流検出回路の出力結果と、オンして一定時間が経過後の、前記ハイサイド電流検出回路の出力結果と、前記ローサイド電流検出回路の出力結果と、
から、前記負荷駆動回路の故障状態を検出をする
ことを特徴とする負荷駆動回路。 - 請求項7に記載の負荷駆動回路において、
前記負荷の、前記負荷駆動回路と接続する端子と、逆側の端子の接続先が、前記電源の正極側である構成と、前記電源の負極側である構成と、
に対して、それぞれの構成に対する、前記負荷駆動回路の故障検出を切り替えるための制御端子を有する故障検出回路を備えたことを特徴とする負荷駆動回路。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14881471.8A EP3104525B1 (en) | 2014-02-06 | 2014-12-08 | Load-driving circuit |
US15/116,093 US9906215B2 (en) | 2014-02-06 | 2014-12-08 | Load-driving circuit |
JP2015561171A JP6212139B2 (ja) | 2014-02-06 | 2014-12-08 | 負荷駆動回路 |
CN201480073974.0A CN105934885B (zh) | 2014-02-06 | 2014-12-08 | 负载驱动电路 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014020903 | 2014-02-06 | ||
JP2014-020903 | 2014-02-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015118768A1 true WO2015118768A1 (ja) | 2015-08-13 |
Family
ID=53777584
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/082357 WO2015118768A1 (ja) | 2014-02-06 | 2014-12-08 | 負荷駆動回路 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9906215B2 (ja) |
EP (1) | EP3104525B1 (ja) |
JP (1) | JP6212139B2 (ja) |
CN (1) | CN105934885B (ja) |
WO (1) | WO2015118768A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017006996A1 (ja) * | 2015-07-08 | 2017-01-12 | アイシン・エィ・ダブリュ株式会社 | 駆動装置 |
JP2017069801A (ja) * | 2015-09-30 | 2017-04-06 | ルネサスエレクトロニクス株式会社 | 半導体装置およびシステム |
JP2017112559A (ja) * | 2015-12-18 | 2017-06-22 | 株式会社デンソー | 負荷駆動装置 |
JP2019004535A (ja) * | 2017-06-12 | 2019-01-10 | 三菱電機株式会社 | 半導体装置 |
CN114167164A (zh) * | 2021-11-11 | 2022-03-11 | 潍柴动力股份有限公司 | 高边供电检测方法、装置、电子设备和存储介质 |
JP7161432B2 (ja) | 2019-03-25 | 2022-10-26 | ルネサスエレクトロニクス株式会社 | 電流検出回路、半導体装置、及び、半導体システム |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107064804B (zh) * | 2016-12-21 | 2023-11-28 | 山东大学 | 一种兼具高低端电流检测的bms数据采集系统 |
JP6922263B2 (ja) * | 2017-03-06 | 2021-08-18 | セイコーエプソン株式会社 | 液体吐出装置および容量性負荷の駆動回路 |
JP6770986B2 (ja) * | 2018-03-06 | 2020-10-21 | 日本電産モビリティ株式会社 | 誘導性負荷制御装置 |
CN112912738B (zh) * | 2018-11-06 | 2023-11-17 | 日立安斯泰莫株式会社 | 负载驱动装置和变速机的驱动系统 |
KR102432037B1 (ko) * | 2020-09-11 | 2022-08-11 | 창원대학교 산학협력단 | 결점 검출기능을 갖는 이오나이저모듈용 게이트구동칩 |
IT202200009986A1 (it) * | 2022-05-13 | 2023-11-13 | St Microelectronics Srl | Protezione per dispositivi elettronici switched |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010062737A (ja) * | 2008-09-02 | 2010-03-18 | Panasonic Corp | 出力バッファ回路及び出力バッファシステム |
JP2010178019A (ja) * | 2009-01-29 | 2010-08-12 | Yamaha Corp | 短絡検査装置、および負荷駆動装置 |
JP2011114739A (ja) * | 2009-11-30 | 2011-06-09 | Hitachi Automotive Systems Ltd | モータ制御装置 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3852447B2 (ja) * | 2003-06-03 | 2006-11-29 | セイコーエプソン株式会社 | 出力回路及びそれを内蔵する半導体集積回路 |
US7214985B2 (en) | 2004-08-23 | 2007-05-08 | Enpirion, Inc. | Integrated circuit incorporating higher voltage devices and low voltage devices therein |
JP4542972B2 (ja) | 2005-09-12 | 2010-09-15 | セイコーNpc株式会社 | 過電流検出回路及びそれを用いた電源装置 |
JP2007274831A (ja) * | 2006-03-31 | 2007-10-18 | Hitachi Ltd | 電力変換装置 |
JP5044448B2 (ja) * | 2008-03-03 | 2012-10-10 | ルネサスエレクトロニクス株式会社 | 電源スイッチ回路 |
DE102008044634B4 (de) * | 2008-08-27 | 2017-12-21 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Vorrichtung und Verfahren zum Erfassen eines Durchschnittswerts eines geschalteten Stromes in einer Spule |
US8018213B2 (en) * | 2008-09-29 | 2011-09-13 | Infineon Technologies Ag | Measuring the current through a load transistor |
US8183892B2 (en) * | 2009-06-05 | 2012-05-22 | Fairchild Semiconductor Corporation | Monolithic low impedance dual gate current sense MOSFET |
JP2011023802A (ja) * | 2009-07-13 | 2011-02-03 | Denso Corp | 誘導性負荷制御装置 |
JP2012073131A (ja) | 2010-09-29 | 2012-04-12 | Sanken Electric Co Ltd | 電流検出回路 |
JP5776607B2 (ja) * | 2012-03-30 | 2015-09-09 | 株式会社デンソー | 誘導性負荷駆動装置 |
JP2016001822A (ja) * | 2014-06-12 | 2016-01-07 | 富士電機株式会社 | 負荷駆動回路 |
JP6492672B2 (ja) * | 2015-01-14 | 2019-04-03 | 株式会社デンソー | 負荷駆動装置 |
-
2014
- 2014-12-08 WO PCT/JP2014/082357 patent/WO2015118768A1/ja active Application Filing
- 2014-12-08 JP JP2015561171A patent/JP6212139B2/ja active Active
- 2014-12-08 US US15/116,093 patent/US9906215B2/en active Active
- 2014-12-08 CN CN201480073974.0A patent/CN105934885B/zh active Active
- 2014-12-08 EP EP14881471.8A patent/EP3104525B1/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010062737A (ja) * | 2008-09-02 | 2010-03-18 | Panasonic Corp | 出力バッファ回路及び出力バッファシステム |
JP2010178019A (ja) * | 2009-01-29 | 2010-08-12 | Yamaha Corp | 短絡検査装置、および負荷駆動装置 |
JP2011114739A (ja) * | 2009-11-30 | 2011-06-09 | Hitachi Automotive Systems Ltd | モータ制御装置 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017006996A1 (ja) * | 2015-07-08 | 2017-01-12 | アイシン・エィ・ダブリュ株式会社 | 駆動装置 |
JPWO2017006996A1 (ja) * | 2015-07-08 | 2018-04-12 | アイシン・エィ・ダブリュ株式会社 | 駆動装置 |
US10640059B2 (en) | 2015-07-08 | 2020-05-05 | Aisin Aw Co., Ltd. | Drive device |
JP2017069801A (ja) * | 2015-09-30 | 2017-04-06 | ルネサスエレクトロニクス株式会社 | 半導体装置およびシステム |
JP2017112559A (ja) * | 2015-12-18 | 2017-06-22 | 株式会社デンソー | 負荷駆動装置 |
JP2019004535A (ja) * | 2017-06-12 | 2019-01-10 | 三菱電機株式会社 | 半導体装置 |
JP7161432B2 (ja) | 2019-03-25 | 2022-10-26 | ルネサスエレクトロニクス株式会社 | 電流検出回路、半導体装置、及び、半導体システム |
CN114167164A (zh) * | 2021-11-11 | 2022-03-11 | 潍柴动力股份有限公司 | 高边供电检测方法、装置、电子设备和存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN105934885A (zh) | 2016-09-07 |
EP3104525B1 (en) | 2022-02-09 |
JP6212139B2 (ja) | 2017-10-11 |
US20170179939A1 (en) | 2017-06-22 |
CN105934885B (zh) | 2019-03-29 |
EP3104525A1 (en) | 2016-12-14 |
US9906215B2 (en) | 2018-02-27 |
EP3104525A4 (en) | 2018-01-17 |
JPWO2015118768A1 (ja) | 2017-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6212139B2 (ja) | 負荷駆動回路 | |
US8134400B2 (en) | Semiconductor circuit | |
JP6237952B2 (ja) | 内部電源回路および半導体装置 | |
JP5543402B2 (ja) | リンギング抑制回路 | |
US20160036441A1 (en) | Output Signal Generation Circuitry for Converting an Input Signal From a Source Voltage Domain Into an Output Signal for a Destination Voltage Domain | |
CN106788382B (zh) | 电平移位器电路、对应的装置和方法 | |
JP2010524303A5 (ja) | ||
CN105680675A (zh) | 为多开关电路提供电压的电路和方法 | |
US10601418B2 (en) | Power supply control device | |
WO2016163142A1 (ja) | 駆動回路 | |
US20140211363A1 (en) | Methods and apparatus for improved latching relay driver | |
JP2019198031A (ja) | トーテムポール回路用駆動装置 | |
US6211709B1 (en) | Pulse generating apparatus | |
CN107040253B (zh) | 具有短路保护的栅极驱动器 | |
CN105553236A (zh) | 驱动电路 | |
JPWO2018150789A1 (ja) | スイッチ回路 | |
US8988844B2 (en) | Drive circuit for an electromagnetic relay | |
JP5149704B2 (ja) | スイッチング駆動回路 | |
JP2012175816A (ja) | 減電圧保護回路及びこれを用いたスイッチ駆動装置 | |
JP2015107757A (ja) | 車載機器制御装置 | |
JP6550882B2 (ja) | スイッチ駆動回路 | |
US6212051B1 (en) | Pulse-width modulator current limiter | |
JP2021039076A (ja) | 短絡検出回路 | |
EP0995997A1 (en) | Apparatus for detecting trouble with solenoid-operated device | |
JP2009100541A (ja) | 過電流保護回路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14881471 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015561171 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15116093 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2014881471 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014881471 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |