WO2015084110A1 - 레이더 커버용 열가소성 수지 조성물 - Google Patents

레이더 커버용 열가소성 수지 조성물 Download PDF

Info

Publication number
WO2015084110A1
WO2015084110A1 PCT/KR2014/011963 KR2014011963W WO2015084110A1 WO 2015084110 A1 WO2015084110 A1 WO 2015084110A1 KR 2014011963 W KR2014011963 W KR 2014011963W WO 2015084110 A1 WO2015084110 A1 WO 2015084110A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
resin
carbon nanotubes
radar cover
radar
Prior art date
Application number
PCT/KR2014/011963
Other languages
English (en)
French (fr)
Inventor
이수민
최연식
최기대
윤창훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201480002743.0A priority Critical patent/CN104837926B/zh
Priority to US14/430,817 priority patent/US9840609B2/en
Priority to JP2015551637A priority patent/JP5941231B2/ja
Priority to EP14844997.8A priority patent/EP2902443B1/en
Publication of WO2015084110A1 publication Critical patent/WO2015084110A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/005Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • H01Q17/002Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems using short elongated elements as dissipative material, e.g. metallic threads or flake-like particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • H01Q17/004Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems using non-directional dissipative particles, e.g. ferrite powders
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/009Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising electro-conductive fibres, e.g. metal fibres, carbon fibres, metallised textile fibres, electro-conductive mesh, woven, non-woven mat, fleece, cross-linked
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation

Definitions

  • the present invention relates to a thermoplastic resin composition for a radar cover that protects the radar from the environment and does not inhibit the transmission of the radar.
  • Radar is an abbreviation of radio detecting and ranging.
  • the radar emits electromagnetic waves of high frequency (wavelength below 100 cm) to the object and receives the electromagnetic waves reflected from the object. It is a wireless monitoring device that finds altitude.
  • Radars were initially used for military purposes such as target navigation, positioning, navigation, guidance, and bombing.In addition to the advances in technology, radar has become more versatile, providing information about aircraft's altitude, speed, and position in the aerospace industry. It is used to detect or search the position of ships and objects in the marine industry.
  • ACC technology that detects the vehicle ahead and controls the vehicle speed according to the speed of the vehicle ahead and CDM technology that operates the auto brake along with the warning when the collision between the vehicle and the vehicle is predicted Radar is also used in the industry.
  • a radar cover is mounted on the front surface of the radar to protect the radar from the surrounding environment and moisture.
  • the radar cover mounted on the front surface of the radar has a loss of electromagnetic waves due to the cover itself, and in particular, there is a problem that the electromagnetic wave reflection loss on the surface of the radar cover is very large.
  • the radar cover should be a material having a performance capable of shielding only a certain level of transmitted electromagnetic waves with low loss due to electromagnetic wave reflection. That is, the radar cover can be used only when the electromagnetic wave shielding material having an appropriate electromagnetic shielding function and having low reflection loss due to reflection.
  • electromagnetic shielding materials which are generally used for fabricating antennas and measuring reflectivity, preventing radar tracking of aircraft and ships, and absorbing electromagnetic waves from electronic devices, absorb and convert incident electromagnetic energy into heat by using conduction, dielectric, and magnetic losses. It is a material that can effectively attenuate the intensity of electromagnetic waves, that is, a large transmission loss.
  • thermoplastic resin composition added in the present invention had electromagnetic wave reflection loss and transmission loss characteristics of a degree not to impair the radar signal while maintaining excellent mechanical properties.
  • a radar cover including a resin prepared from the thermoplastic resin composition and a radar including the same are provided.
  • thermoplastic resin composition for radar cover With the thermoplastic resin composition for radar cover according to the present invention, it is possible to produce a radar cover which does not inhibit the radar signal by showing a good balance of electromagnetic reflection loss and transmission loss required for radar protection with excellent mechanical properties.
  • the present invention provides a thermoplastic resin composition useful for radar covers having electromagnetic reflection loss and transmission loss characteristics that do not inhibit radar electromagnetic wave signal transmission with excellent mechanical properties.
  • thermoplastic resin composition for a radar cover a) a thermoplastic resin of 85% by weight to 95% by weight; b) 1% to 5% by weight of carbon nanotubes; And c) 3 wt% to 10 wt% of carbon black, wherein the carbon nanotubes and the carbon black have a weight ratio of 3: 7 to 1: 7.
  • the thermoplastic resin may be used without particular limitation as long as the thermoplastic resin has thermoplasticity.
  • the thermoplastic resin may be a polyamide resin, a polyimide resin, a polyamideimide resin, a polyacetal resin, a polycarbonate resin, a polyether sulfone resin, a polyether ketone resin, a polyetherimide resin, a polyalkylene terephthalate resin ( For example, polyethylene terephthalate, polybutylene terephthalate, etc.), acrylic resin, polysulfone resin, polyphenylene sulfide, polyolefin (for example, polyethylene, polypropylene, etc.), polystyrene resin, syndiotactic polystyrene resin, Acrylonitrile butadiene styrene resin, polyphenylene oxide resin, liquid crystal polymer resin, etc. are mentioned, Any one of these, or 2 or more
  • thermoplastic resin may more specifically be a polyamide resin having excellent mechanical strength, wear resistance, heat resistance, and chemical resistance.
  • the polyamide resin may more specifically have a melt index (MI) of 50 g / min to 65 g / min at 300 °C temperature and 10 kg load conditions. If the polyamide resin has a melt index within the above range, the moldability of the thermoplastic resin composition including the polyamide resin may be excellent.
  • MI melt index
  • thermoplastic resin is not particularly limited and may be prepared and used by a conventional method known in the art, or a commercially available material may be purchased and used.
  • the polyamide resin when the polyamide resin is manufactured and used as the thermoplastic resin, the polyamide resin is not limited thereto.
  • the monomer may be monocondensed with a lactam or an ⁇ -amino acid having three or more rings, or condensed with two or more species. It may be prepared, or may be prepared by adding diacids and diamine.
  • the polyamide resin may be homopolyamide (homopolyamide), copolyamide (copolyimide) or a mixture thereof, and may be crystalline, semi-crystalline, amorphous or a mixture thereof.
  • the polyamide resin is polyamide 3, polyamide 4, polyamide 6, polyamide 7, polyamide 8, polyamide 9, polyamide 11, polyamide 12, polyamide 6,6, polyamide 6, Crystalline aliphatic polyamides such as 10; Amorphous copolyamides such as terephthalic acid and copolymers of isophthalic acid with hexamethylenediamine; Or an aromatic polyamide such as polymethyyleneadipamide, but is not limited thereto.
  • the thermoplastic resin may be included in 85 to 95% by weight of the thermoplastic resin composition for the radar cover. If the thermoplastic resin is included in less than 85% by weight, the moldability and mechanical properties of the thermoplastic resin composition including the same may be reduced, and when included in excess of 95% by weight, the carbon nanotubes and carbon described later will be described later. The amount of black may be reduced and the desired electromagnetic shielding effect may not be obtained. More specifically, the thermoplastic resin may be included in 90% by weight to 95% by weight.
  • the carbon nanotubes serves to improve the impact strength and tensile strength of the thermoplastic resin and at the same time lower the reflection loss.
  • the carbon nanotubes since the carbon nanotubes have improved dielectric loss (or energy conversion loss) when electromagnetic waves are applied, the carbon nanotubes may exhibit excellent multiple absorption performances for electromagnetic waves.
  • the carbon nanotubes refer to a fine molecule in which carbons form a round circle and grow in a long shape, and have a hollow hollow tube structure in which one carbon atom is bonded to three other carbon atoms.
  • the carbon nanotubes may be one having an average inner diameter of 0.5 nm to 10 nm, preferably may have an average inner diameter of 1 nm to 5 nm.
  • the carbon nanotubes may be one or more selected from the group consisting of single-walled carbon nanotubes, double-walled carbon nanotubes, and multi-walled carbon nanotubes, but is not limited thereto.
  • the content of the carbon nanotubes is preferably controlled in consideration of the reflection loss and the loss of transmission of the thermoplastic resin composition.
  • the thermoplastic resin composition for the radar cover may be included in 1% by weight to 5% by weight, more specifically may be included in 1% by weight to 3% by weight. If the carbon nanotubes are included in less than 1% by weight, the effect of reducing the reflection loss of the thermoplastic resin composition including the same may be insignificant. If the carbon nanotubes are included in an amount of more than 5% by weight, the transmission loss of electromagnetic waves is excessive. The amount of carbon black to be increased or the amount of carbon black to be described later may be reduced to obtain an electromagnetic wave transmission loss of a desired degree.
  • the carbon black may serve to improve the impact strength and the tensile strength of the thermoplastic resin and at the same time lower the electromagnetic wave transmission loss.
  • the carbon black means a fine carbon powder, and may be a spherical carbon powder having an average particle size (D 50 ) of 10 ⁇ m to 200 ⁇ m.
  • the average particle size (D 50 ) of the carbon black may be defined as the particle size at 50% of the particle size distribution.
  • the average particle size (D 50 ) of the carbon black can be measured using, for example, a laser diffraction method, and more specifically, after dispersing the carbon black in a solvent, commercially available Introduced into a laser diffraction particle size measuring device (e.g. Microtrac MT 3000) and irradiated with an ultrasonic wave of about 28 kHz at an output of 60 W, then the average particle size (D 50 ) based on 50% of the particle size distribution in the measuring device. Can be calculated.
  • a laser diffraction particle size measuring device e.g. Microtrac MT 3000
  • the carbon black may be included in the radar cover thermoplastic resin composition 3% by weight to 10% by weight. If the carbon black is included in less than 3% by weight, the effect of reducing electromagnetic wave transmission loss of the thermoplastic resin composition including the same may be insignificant, and when the carbon black is included in an amount of more than 10% by weight, the reflection loss may be excessively increased or Relatively, the amount of carbon nanotubes may be reduced, and thus, the effect of reducing the loss of reflection may not be obtained. More specifically, the carbon black may be included in 5% by weight to 7% by weight.
  • thermoplastic resin composition for the radar cover includes each of the above constituents in the optimum content range, and at the same time, b) carbon nanotubes and c) carbon black 3: 7 to 1: It is included in the mixed weight ratio of 7. If the mixed weight ratio of b) the carbon nanotubes and c) the carbon black is out of the above range, the carbon nanotube content is too high. In addition, when the mixed weight ratio of carbon nanotubes and carbon black is out of the above range and the carbon black content is too high, the reflection loss may increase. As such, when the above mixed weight ratio is not satisfied, the reflection loss and the transmission loss may not be properly balanced, and may be biased to any one, and as a result, signal transmission of the radar may be inhibited. More specifically, b) the carbon nanotubes and c) carbon black may have a weight ratio of 1: 3 to 1: 7, more specifically 1: 7.
  • thermoplastic resin composition for a radar cover is b) 1 to 5 parts by weight of carbon nanotubes and c) 5 to 8 parts by weight of carbon black based on 100 parts by weight of the a) polyamide resin It may be to include. More specifically, the polyamide resin: carbon nanotube: carbon black may be included in a weight ratio of 0.92: 0.01: 0.07.
  • Resin prepared using the thermoplastic resin composition according to an embodiment of the present invention and the radar cover comprising the same has a reflection loss in the range of 2 dB to 9 ⁇ and electromagnetic wave transmission loss (EMI SE) in the range of 3 dB to 12 dB It may be.
  • EMI SE electromagnetic wave transmission loss
  • the electromagnetic wave reflection loss and transmission loss required for radar protection can be represented with good balance so that the signal transmission of the radar can not be impaired.
  • the resin and the radar cover may have a reflection loss characteristic in the range of 3 Hz to 6 Hz and an electromagnetic wave transmission loss of 3 Hz to 5 Hz.
  • Polyamide Resin Crystalline polyamide with a melt index (MI) of 60 g / min under a temperature of 300 ° C and a load of 10 kg
  • Carbon nanotubes Double-walled carbon nanotubes with an average inner diameter of 2nm
  • thermoplastic resin specimen for a radar cover was manufactured in the same manner as in Example 1, except that 92 g of polyamide resin, 1 g of carbon nanotubes, and 7 g of carbon black were used.
  • thermoplastic resin specimen for a radar cover was manufactured in the same manner as in Example 1, except that 90 g of polyamide resin, 3 g of carbon nanotubes, and 7 g of carbon black were used.
  • thermoplastic resin specimen for a radar cover was prepared in the same manner as in Example 1 except that 94 g of polyamide resin and 6 g of carbon nanotubes were used, and carbon black was not used.
  • thermoplastic resin specimen for a radar cover was prepared in the same manner as in Example 1, except that 90 g of polyamide resin and 10 g of carbon nanotubes were used, and carbon black was not used.
  • thermoplastic resin specimen for a radar cover was prepared in the same manner as in Example 1, except that 94 g of polyamide resin and 6 g of carbon black were used, and carbon nanotubes were not used.
  • thermoplastic resin specimen for a radar cover was prepared in the same manner as in Example 1 except that 90 g of polyamide resin and 10 g of carbon black were used, and carbon nanotubes were not used.
  • thermoplastic resin specimen for a radar cover was manufactured in the same manner as in Example 1, except that 91 g of polyamide resin, 3 g of carbon nanotubes (multi-walled carbon nanotubes), and 6 g of carbon black were used.
  • thermoplastic resin specimen for a radar cover was manufactured in the same manner as in Example 1 except that 1 g of polyamide resin 90 g carbon nanotubes (multi-walled carbon nanotubes) and 9 g of carbon black were used.
  • thermoplastic resin specimen for a radar cover was manufactured in the same manner as in Example 1, except that 86 g of polyamide resin, 2 g of carbon nanotubes (multi-walled carbon nanotubes), and 12 g of carbon black were used.
  • thermoplastic resin specimen for a radar cover was prepared in the same manner as in Example 1 except that 96 g of polyamide resin, 0.5 g of carbon nanotubes (multi-walled carbon nanotubes), and 3.5 g of carbon black were used.
  • thermoplastic resin specimen for a radar cover was manufactured in the same manner as in Example 1, except that 87 g of polyamide resin, 1 g of carbon nanotubes (multi-walled carbon nanotubes), and 12 g of carbon black were used.
  • thermoplastic resin specimen for a radar cover was manufactured in the same manner as in Example 1, except that 87.5 g of polyamide resin, 0.5 g of carbon nanotubes (multi-walled carbon nanotubes), and 12 g of carbon black were used.
  • thermoplastic resin specimen for a radar cover was manufactured in the same manner as in Example 1, except that 92 g of polyamide resin, 7 g of carbon nanotubes (multi-walled carbon nanotubes), and 1 g of carbon black were used.
  • thermoplastic resin specimen for a radar cover was prepared in the same manner as in Example 1 except that 95 g of polyamide resin and 5 g of carbon nanofibers were used, and carbon nanotubes and carbon black were not used.
  • thermoplastic resin specimen for a radar cover was manufactured in the same manner as in Example 1, except that 92 g of polyamide resin, 1 g of carbon nanotubes, and 7 g of carbon nanofibers were used.
  • thermoplastic resin specimen for a radar cover was manufactured in the same manner as in Example 1, except that 92 g of polyamide resin, 7 g of carbon black, and 1 g of carbon nanofiber were used.
  • Example 1 Table 1 division Polyamide (g) Carbon Nano Tube (g) Carbon black (g) Carbon Nano Fiber (g)
  • the reflection loss is irradiated with the electromagnetic wave of 30 MHz to 1500 MHz for each specimen (3 mm thick) prepared in the above Examples and Comparative Examples, and then the signal loss reflected from the surface of the specimen and the signal strength upon irradiation. Obtained from the difference.
  • the transmission loss was obtained from the difference between the signal intensity emitted through the specimen and the signal strength upon irradiation after irradiating electromagnetic waves of 30 MHz to 1500 MHz for each specimen (3 mm thick) prepared in Examples and Comparative Examples. .
  • thermoplastic resins of Examples 1 to 3 prepared from the thermoplastic resin composition according to the present invention have the same level of mechanical properties and surfaces as compared to the thermoplastic resin specimens prepared in Comparative Examples 1 to 14. While maintaining the resistance characteristics, the electromagnetic wave reflection loss and transmission loss required for radar protection are well balanced.
  • thermoplastic resin composition according to the present invention the thermoplastic resin specimens of Examples 1 to 3 simultaneously containing carbon nanotubes and carbon black together with the thermoplastic resin, are thermoplastics containing only one of carbon nanotubes and carbon black. Compared with the resin specimens (Comparative Examples 1 to 4), it was confirmed that exhibiting a proper balance without biasing any of the reflection loss or transmission loss characteristics of the electromagnetic wave.
  • thermoplastic resin composition according to the present invention in the case of containing carbon nanotubes and carbon black together with the thermoplastic resin and satisfying their respective content conditions, the mixed weight ratio condition of carbon nanotubes and carbon black is not satisfied.
  • Comparative Examples 5 and 6 showed an effect of biasing to either of electromagnetic wave reflection loss or transmission loss characteristic.
  • thermoplastic resin composition according to the present invention, carbon nanotubes and carbon black are included together with the thermoplastic resin, and the respective content conditions are satisfied even if the carbon nanotubes and carbon black are included in a mixing ratio that satisfies the mixing weight ratio. If not (Comparative Examples 7 and 8), the effect of biasing toward either the electromagnetic return loss or the transmission loss characteristic was shown, and it did not satisfy both the content range condition of each component and the mixed weight ratio condition of carbon nanotubes and carbon black. The case (Comparative Examples 9, 10, 11) also showed an effect of biasing to either the electromagnetic return loss or transmission loss characteristics.
  • thermoplastic resin composition according to the present invention in the case of using only carbon nanofibers alone instead of carbon nanotubes or carbon black (Comparative Example 12), the mixed weight ratio of carbon nanotubes to carbon nanotubes and 7: 1 (Comparative Example 13), and carbon nanofibers mixed with carbon black at a weight ratio of 1: 7 (Comparative Example 14). Indicated.
  • thermoplastic resin prepared from the thermoplastic resin composition comprising the thermoplastic resin, the carbon nanotubes and the carbon black according to the present invention in an optimum content and mixed weight ratio, is an electromagnetic wave required for radar cover while maintaining excellent mechanical properties.
  • it is applied for radar cover to not only protect radar from the surrounding environment, but also easily receive reflected electromagnetic wave signal, and shield the transmitted electromagnetic wave only to a certain level. It can be seen that it does not interfere with the signal transmission of the radar.
  • thermoplastic resin specimen was prepared in the same manner as in Example 2 except for using the thermoplastic resins listed in Table 3 below.
  • thermoplastic resins listed in Table 3 below For the prepared thermoplastic resin specimens, mechanical properties, electromagnetic wave reflection loss, and transmission loss were measured in the same manner as in Experimental Example 1. The results are shown in Table 3 below, and the measurement results of the thermoplastic resin specimens prepared in Example 2 were described together for the effect comparison.
  • thermoplastic resin composition for a radar cover according to the present invention exhibits good balance of electromagnetic wave reflection loss and transmission loss required for radar protection along with excellent mechanical properties, and thus is useful for the manufacture of a radar cover that does not inhibit the radar signal.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Textile Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Details Of Aerials (AREA)

Abstract

본 발명에서는 열가소성 수지 85 중량% 내지 95 중량%, 카본나노튜브 1 중량% 내지 5 중량% 및 카본블랙 3 중량% 내지 10 중량%를 포함하고, 그리고 상기 카본나노튜브 및 카본블랙을 3:7 내지 1:7의 중량비를 포함함으로써, 우수한 기계적 물성과 함께 레이더 보호용으로 요구되는 전자기파 반사손실 및 투과손실을 발란스 좋게 나타내는 레이더 커버용 열가소성 수지 조성물이 제공된다.

Description

레이더 커버용 열가소성 수지 조성물
본 발명은 주변환경으로부터 레이더를 보호함과 동시에 레이더의 신호 전달을 저해하지 않는 레이더 커버용 열가소성 수지 조성물에 관한 것이다.
레이더(radar)는 무선탐지와 거리측정(radio detecting and ranging)의 약어로 고주파(100 cm 이하 파장) 정도의 전자기파를 물체에 발사시켜 그 물체에서 반사되는 전자기파를 수신하여 물체와의 거리, 방향, 고도 등을 알아내는 무선감시장치이다.
레이더는 초기에 표적의 탐색, 위치결정, 항해, 유도, 폭격 등의 군사용 목적으로 사용되었으며, 기술의 발달과 함께 활용성이 확대되어 항공우주공학 산업에서 항공기의 고도, 속도 및 위치에 관한 정보를 탐지하거나, 해양산업에서 선박의 위치와 물체의 위치를 탐색하는 용도로 사용되고 있다.
또한, 최근 전방의 차량을 감지하여 전방차량의 속도에 맞추어 차량 속도를 제어하는 ACC 기술과 전방차량과 자차량의 충돌이 예측되면 운전자에게 경보와 더불어 자동 브레이크를 동작시키는 CDM 기술이 보급됨에 따라 자동차 산업에도 레이더가 사용되고 있다.
상기와 같이 레이더 적용 산업이 발달함에 따라, 레이더를 장기간 효과적으로 사용하기 위해서 레이더 전면에 레이더 커버를 장착하여 주위 환경 및 수분으로부터 레이더를 보호하고 있다. 그러나, 레이더 전면에 장착하고 있는 레이더 커버는 커버 자체에 의한 전자기파의 손실이 있으며, 특히 레이더 커버 표면에서의 전자기파 반사 손실(reflection loss)이 매우 크다는 문제가 있다.
따라서, 레이더 커버는 전자기파 반사에 의한 손실이 낮으면서 투과되는 전자기파를 일정 수준으로만 차폐할 수 있는 성능을 갖춘 소재여야 한다. 즉, 적절한 전자기파 차폐 기능을 갖는 동시에 반사에 의한 반사 손실이 적은 전자기파 차폐 소재이어야만 레이더 커버로 사용할 수 있다.
그러나, 일반적으로 안테나 제작 및 반사도 측정, 항공기 및 선박의 레이더 추적 방지, 전자 장치의 전자기파 흡수 등에 사용되는 전자기파 차폐소재는, 도전, 유전 및 자성 손실을 이용하여 입사된 전자기파 에너지를 흡수하여 열로 변환함으로써 전자기파의 세기를 효과적으로 감쇄시킬 수 있는, 즉 투과 손실(penetration loss)이 큰 재료이다.
따라서, 전자기파가 반사되어 소실되는 것을 감소시키는 동시에 발사(투과)되는 전자기파의 차폐율을 적정 수준으로 제어하여 레이더의 신호 전달을 저해하지 않는 레이더 커버용 소재의 개발이 필요한 실정이다.
상기와 같은 배경 하에, 본 발명자들은 외부 환경으로부터 레이더를 보호하면서도 레이더의 신호 전달을 저해하지 않는 레이더 커버용 소재를 연구하던 중, 열가소성 수지에 카본나노튜브와 카본블랙을 최적의 함량 및 최적 혼합중량비로 첨가한 열가소성 수지 조성물이, 우수한 기계적 물성을 유지하면서도 레이더 신호를 저해하지 않는 정도의 전자기파 반사손실 및 투과 손실 특성을 갖는 것을 확인함으로써 본 발명을 완성하였다.
본 발명의 목적은 주변환경으로부터 레이더를 보호함과 동시에 레이더의 신호 전달을 저해하지 않는 레이더 커버용 열가소성 수지 조성물을 제공하는 것이다.
본 발명의 다른 목적은 상기의 열가소성 수지 조성물로부터 제조되어 우수한 기계적 물성과 함께, 레이더 보호용으로 요구되는 전자기파 반사손실 및 투과손실을 발란스 좋게 나타내는 레이더 커버 및 이를 포함하는 레이더를 제공하는 것이다.
상기의 과제를 해결하기 위하여, 본 발명의 일 실시예에 따르면 a) 열가소성 수지 85 중량% 내지 95 중량%; b) 카본나노튜브 1 중량% 내지 5 중량%; 및 c) 카본블랙 3 중량% 내지 10 중량%를 포함하고, 상기 카본나노튜브 및 카본블랙이 3:7 내지 1:7의 중량비를 갖는 것을 특징으로 하는 레이더 커버용 열가소성 수지 조성물을 제공한다.
본 발명의 또 다른 일 실시예에 따르면, 상기의 열가소성 수지 조성물로부터 제조된 수지를 포함하는 레이더 커버 및 이를 포함하는 레이더를 제공한다.
본 발명에 따른 레이더 커버용 열가소성 수지 조성물에 의해 우수한 기계적 물성과 함께, 레이더 보호용으로 요구되는 전자기파 반사손실 및 투과손실을 발란스 좋게 나타내어 레이더 신호를 저해하지 않는 레이더 커버를 제조할 수 있다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명은 우수한 기계적 물성과 함께 레이더의 전자기파 신호 전달을 저해하지 않는 전자기파 반사손실 및 투과손실 특성을 가져 레이더 커버용으로 유용한 열가소성 수지 조성물을 제공한다.
구체적으로, 본 발명의 일 실시예에 따른 상기 레이더 커버용 열가소성 수지 조성물은, a) 열가소성 수지 85 중량% 내지 95 중량%; b) 카본나노튜브 1 중량% 내지 5 중량%; 및 c) 카본블랙 3 중량% 내지 10 중량%를 포함하고, 상기 카본나노튜브 및 카본블랙이 3:7 내지 1:7의 중량비를 갖는 것을 특징으로 한다.
이하, 본 발명을 보다 더 상세하게 설명한다.
a) 열가소성 수지
본 발명의 일 실시예에 따른 상기 레이더 커버용 열가소성 수지 조성물에 있어서, 상기 열가소성 수지는 열가소성(thermoplasticity)을 갖는 것이라면 특별한 제한없이 사용가능하다. 구체적으로 상기 열가소성 수지로는 폴리아마이드 수지, 폴리이미드 수지, 폴리아마이드이미드 수지, 폴리아세탈 수지, 폴리카보네이트 수지, 폴리에테르술폰 수지, 폴리에테르케톤 수지, 폴리에테르이미드 수지, 폴리알킬렌테레프탈레이트 수지(예를 들면, 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트 등), 아크릴계 수지, 폴리술폰 수지, 폴리페닐렌설파이드, 폴리올레핀(예를 들면, 폴리에틸렌, 폴리프로필렌 등), 폴리스티렌 수지, 신디오택틱 폴리스티렌 수지, 아크릴로니트릴부타디엔스티렌 수지, 폴리페닐렌옥사이드 수지, 액정 중합체 수지 등을 들 수 있으며, 이들 중 어느 하나이거나, 또는 2종 이상의 공중합체 또는 혼합물이 사용될 수 있다.
이중에서도, 상기 열가소성 수지는 보다 구체적으로 기계적 강도, 내마모, 내열성 및 내약품성이 우수한 폴리아마이드 수지(polyamide resin)일 수 있다.
또한, 상기 폴리아마이드 수지는 보다 구체적으로 300℃ 온도 및 10 kg 하중 조건 하에서 50 g/min 내지 65 g/min의 용융지수(MI)를 갖는 것일 수 있다. 만약, 상기 폴리아마이드 수지가 상기 범위 내의 용융지수를 가질 경우 이를 포함하는 열가소성 수지 조성물의 성형성이 우수할 수 있다.
또, 상기 열가소성 수지는 특별히 한정되지 않고 당업계에 공지된 통상적인 방법에 의하여 제조하여 사용하거나, 시판되는 물질을 구입하여 사용할 수 있다.
일례로, 상기의 열가소성 수지로서 폴리아마이드 수지를 제조하여 사용할 경우에는 이에 한정되는 것은 아니나, 예컨대 단량체로 3원환 이상의 고리 구조의 락탐 또는 ω-아미노산을 각각 단독 축중합하거나, 2종 이상을 축중합하여 제조한 것일 수 있으며, 2가산(diacids) 및 디아민을 첨가하여 제조한 것일 수도 있다.
또한, 상기 폴리아마이드 수지는 호모폴리아마이드(homopolyamide), 코폴리아마이드(copolyimide) 또는 이들의 혼합물일 수 있으며, 결정성, 반결정성, 비결정성 또는 이들 혼합일 수 있다.
구체적으로, 상기 폴리아마이드 수지는 폴리아마이드 3, 폴리아마이드 4, 폴리아마이드 6, 폴리아마이드 7, 폴리아마이드 8, 폴리아마이드 9, 폴리아마이드 11, 폴리아마이드 12, 폴리아마이드 6,6, 폴리아마이드 6,10과 같은 결정성 지방족 폴리아마이드; 테레프탈산 및 이소프탈산과 헥사메틸렌디아민과의 공중합체와 같은 비결정성 코폴리아마이드; 또는 폴리메타자일렌아디프아마이드와 같은 방향족 폴리아마이드 등일 수 있으나, 이에 한정되는 것은 아니다.
한편, 상기 열가소성 수지는 상기 레이더 커버용 열가소성 수지 조성물 내에 85 중량% 내지 95 중량%로 포함될 수 있다. 만약, 상기 열가소성 수지가 85 중량% 미만으로 포함될 경우 이를 포함하는 열가소성 수지 조성물의 성형성 및 기계적 물성이 저하될 수 있고, 또 95 중량%를 초과하여 포함될 경우에는 상대적으로 후술하는 카본나노튜브 및 카본블랙의 양이 줄어 목적하는 전자기파 차폐 효과를 얻을 수 없을 수 있다. 보다 구체적으로는 상기 열가소성 수지는 90 중량% 내지 95 중량%로 포함될 수 있다.
b) 카본나노튜브
본 발명의 일 실시예에 따른 상기 레이더 커버용 열가소성 수지 조성물에 있어서, 상기 카본나노튜브(carbon nanotube)는 상기 열가소성 수지의 충격강도 및 인장강도를 개선시킴과 동시에 반사손실을 낮추는 역할을 한다. 또, 상기 카본나노튜브는 전자기파가 가해졌을 때 유전손실(또는 에너지 변환 손실)이 향상되기 때문에, 전자기파에 대해 우수한 다중 흡수 성능을 나타낼 수 있다.
상기 카본나노튜브는 탄소들이 둥근 원을 이루며 긴 대롱 형태로 길게 성장한 미세한 분자를 의미하는 것으로, 1개의 탄소 원자가 3개의 다른 탄소 원자와 결합한 6각형 벌집 모양의 속이 비어있는 튜브형 구조이다.
또, 상기 카본나노튜브는 0.5 nm 내지 10 nm의 평균 내경을 갖는 것일 수 있으며, 바람직하게는 1 nm 내지 5 nm의 평균 내경을 갖는 것일 수 있다.
또한, 상기 카본나노튜브는 단일벽 카본나노튜브, 이중벽 카본나노튜브 및 다중벽 카본나노튜브로 이루어진 군으로부터 선택되는 1종 이상의 것일 수 있으나, 이에 한정되는 것은 아니다.
한편, 상기 카본나노튜브는 열가소성 수지 조성물의 반사손실을 낮추는 반면, 그 함량이 지나치게 높을 경우 투과손실을 증가시킬 우려가 있다. 이에 따라 상기 카본나노튜브의 함량은 열가소성 수지 조성물의 반사손실 및 투과 소실을 고려하여 적절히 제어되는 것이 바람직하다. 구체적으로, 상기 레이더 커버용 열가소성 수지 조성물 내에 1 중량% 내지 5 중량%로 포함될 수 있으며, 보다 구체적으로는 1 중량% 내지 3 중량%로 포함되는 것일 수 있다. 만약, 상기 카본나노튜브가 1 중량% 미만으로 포함될 경우 이를 포함하는 상기 열가소성 수지 조성물의 반사손실 감소 효과가 미미할 수 있으며, 카본나노튜브가 5 중량%를 초과하여 포함될 경우에는 전자기파 투과손실이 과도하게 상승하거나, 상대적으로 후술하는 카본블랙의 양이 줄어 목적하는 정도의 전자기파 투과손실을 얻지 못할 수 있다.
c) 카본블랙
본 발명의 일 실시예에 따른 상기 레이더 커버용 열가소성 수지 조성물에 있어서, 상기 카본블랙(carbon black)은 상기 열가소성 수지의 충격강도 및 인장강도를 개선시킴과 동시에 전자기파 투과손실을 낮추는 역할을 할 수 있다.
상기 카본블랙은 미세한 탄소 분말을 의미하는 것으로, 10 ㎛ 내지 200 ㎛ 평균 입자크기(D50)를 갖는 구형의 탄소 분말일 수 있다.
본 발명에 있어서, 카본블랙의 평균 입자크기(D50)는 입자크기 분포의 50% 기준에서의 입자크기로 정의할 수 있다. 또 상기 카본블랙의 평균 입자크기(D50)은 예를 들어, 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있으며, 보다 구체적으로는, 상기 카본블랙을 용매에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치(예를 들어 Microtrac MT 3000)에 도입하여 약 28 kHz의 초음파를 출력 60 W로 조사한 후, 측정 장치에 있어서의 입자크기 분포의 50% 기준에서의 평균 입자크기(D50)를 산출할 수 있다.
한편, 상기 카본블랙은 상기 레이더 커버용 열가소성 수지 조성물 내에 3 중량% 내지 10 중량%로 포함될 수 있다. 만약, 상기 카본블랙이 3 중량% 미만으로 포함될 경우 이를 포함하는 상기 열가소성 수지 조성물의 전자기파 투과손실 감소 효과가 미미할 수 있으며, 카본블랙이 10 중량%를 초과하여 포함될 경우에는 반사손실이 과도하게 상승하거나, 상대적으로 상기 카본나노튜브의 양이 줄어 목적하는 정도의 반사손실 저하 효과를 얻지 못할 수 있다. 보다 구체적으로는 상기 카본블랙은 5 중량% 내지 7 중량%로 포함될 수 있다.
본 발명의 일 실시예에 따른 상기 레이더 커버용 열가소성 수지 조성물은 상기한 각 구성성분을 각각의 최적 함량 범위로 포함하는 동시에, 상기 b) 카본나노튜브와 c) 카본블랙을 3:7 내지 1:7의 혼합중량비로 포함한다. 만약 상기 b) 카본나노튜브와 c) 카본블랙의 혼합중량비가 상기한 범위를 벗어나 카본나노튜브의 함량이 지나치게 많을 경우, 투과손실이 증가할 우려가 있다. 또 카본나노튜브와 카본블랙의 혼합중량비가 상기한 범위를 벗어나 카본블랙의 함량이 지나치게 높을 경우 반사손실이 증가할 우려가 있다. 이와 같이 상기한 혼합중량비를 충족하지 못할 경우 반사손실과 투과손실이 적절한 균형을 유지하지 못하고, 어느 하나에 치우치게 되고, 그 결과 레이더의 신호 전달을 저해할 수 있다. 보다 구체적으로, 상기 b) 카본나노튜브와 c) 카본블랙은 1:3 내지 1:7의 중량비를, 보다 더 구체적으로는 1:7의 중량비를 갖는 것일 수 있다.
또한, 본 발명의 일 실시예에 따른 상기 레이더 커버용 열가소성 수지 조성물은 상기 a) 폴리아마이드 수지 100중량부에 대하여, b) 카본나노튜브 1 내지 5중량부 및 c) 카본블랙 5 내지 8중량부를 포함하는 것일 수 있다. 보다 구체적으로는, 상기 폴리아마이드 수지:카본나노튜브:카본블랙을 0.92: 0.01: 0.07의 중량비로 포함하는 것일 수 있다.
본 발명의 또 다른 일 실시예에 따르면, 상기한 열가소성 수지 조성물을 이용하여 제조된 수지, 그리고 이를 포함하는 성형품으로서 레이더 커버, 더 나아가 상기 레이더 커버를 포함하는 레이더를 각각 제공한다.
본 발명의 일 실시예에 따른 열가소성 수지 조성물을 이용하여 제조된 수지 및 이를 포함하는 레이더 커버는 2 ㏈ 내지 9 ㏈ 범위의 반사손실 및 3 ㏈ 내지 12 ㏈ 범위의 전자기파 투과손실(EMI SE)을 갖는 것일 수 있다. 이와 같이, 레이더 보호용으로 요구되는 전자기파 반사손실 및 투과손실을 발란스 좋게 나타냄으로써 레이더의 신호 전달을 저해하지 않을 수 있다. 보다 구체적으로는 상기 수지 및 레이더 커버는 3 ㏈ 내지 6 ㏈ 범위의 반사손실 특성 및 3 ㏈ 내지 5 ㏈의 전자기파 투과손실을 갖는 것일 수 있다.
이하, 하기 실시예 및 실험예에 의하여 본 발명을 보다 상세하게 설명하고 한다. 그러나, 하기 실시예 및 실험예는 본 발명을 예시하기 위한 것으로 이들 만으로 본 발명의 범위가 한정되는 것은 아니다.
이하 실시예 및 비교예에서 사용한 물질은 다음과 같다:
1) 폴리아마이드 수지: 300℃ 온도 및 10 kg 하중 조건 하에서 용융지수(MI)가 60g/min인 결정성 폴리아마이드
2) 폴리카보네이트: 중량평균분자량(Mw)=21,000g/mol, 유리전이온도(Tg)= 150℃
3) 폴리부틸렌테레프탈레이트 : Mw= 24,000g/mol, Tg= 65℃
4) 폴리페닐렌 설페이트: Mw= 21,000g/mol, Tg= 90℃
5) 카본나노튜브: 평균내경 2nm인 이중벽 카본나노튜브
6) 카본블랙: 평균 입자크기(D50) 50㎛
실시예 1
폴리아마이드 수지 94 g, 카본나노튜브(다중벽 카본나노튜브) 1 g 및 카본블랙 5 g을 균일하게 혼합한 후 이축압출기와 사출기를 이용하여 평판형의 레이더 커버용 열가소성 수지 시편(두께: 3mm)을 제조하였다.
실시예 2
폴리아마이드 수지 92 g, 카본나노튜브 1 g 및 카본블랙 7 g을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 레이더 커버용 열가소성 수지 시편을 제조하였다.
실시예 3
폴리아마이드 수지 90 g, 카본나노튜브 3 g 및 카본블랙 7 g을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 레이더 커버용 열가소성 수지 시편을 제조하였다.
비교예 1
폴리아마이드 수지 94 g 및 카본나노튜브 6 g을 사용하고, 카본블랙을 사용하지 않은 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 레이더 커버용 열가소성 수지 시편을 제조하였다.
비교예 2
폴리아마이드 수지 90 g 및 카본나노튜브 10 g을 사용하고, 카본블랙을 사용하지 않은 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 레이더 커버용 열가소성 수지 시편을 제조하였다.
비교예 3
폴리아마이드 수지 94 g 및 카본블랙 6 g을 사용하고, 카본나노튜브를 사용하지 않은 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 레이더 커버용 열가소성 수지 시편을 제조하였다.
비교예 4
폴리아마이드 수지 90 g 및 카본블랙 10 g을 사용하고, 카본나노튜브를 사용하지 않은 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 레이더 커버용 열가소성 수지 시편을 제조하였다.
비교예 5
폴리아마이드 수지 91 g, 카본나노튜브(다중벽 카본나노튜브) 3 g 및 카본블랙 6 g을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 레이더 커버용 열가소성 수지 시편을 제조하였다.
비교예 6
폴리아마이드 수지 90 g 카본나노튜브(다중벽 카본나노튜브) 1 g 및 카본블랙 9 g을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 레이더 커버용 열가소성 수지 시편을 제조하였다.
비교예 7
폴리아마이드 수지 86 g, 카본나노튜브(다중벽 카본나노튜브) 2 g 및 카본블랙 12 g을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 레이더 커버용 열가소성 수지 시편을 제조하였다.
비교예 8
폴리아마이드 수지 96 g, 카본나노튜브(다중벽 카본나노튜브) 0.5 g 및 카본블랙 3.5 g을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 레이더 커버용 열가소성 수지 시편을 제조하였다.
비교예 9
폴리아마이드 수지 87 g, 카본나노튜브(다중벽 카본나노튜브) 1 g 및 카본블랙 12 g을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 레이더 커버용 열가소성 수지 시편을 제조하였다.
비교예 10
폴리아마이드 수지 87.5 g, 카본나노튜브(다중벽 카본나노튜브) 0.5 g 및 카본블랙 12 g을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 레이더 커버용 열가소성 수지 시편을 제조하였다.
비교예 11
폴리아마이드 수지 92 g, 카본나노튜브(다중벽 카본나노튜브) 7 g 및 카본블랙 1 g을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 레이더 커버용 열가소성 수지 시편을 제조하였다.
비교예 12
폴리아마이드 수지 95 g 및 카본나노파이버 5 g을 사용하고, 카본나노튜브 및 카본블랙을 사용하지 않은 것을 제외하고는, 상기 실시예 1과 동일한 방법을 통하여 레이더 커버용 열가소성 수지 시편을 제조하였다.
비교예 13
폴리아마이드 수지 92 g, 카본나노튜브 1 g 및 카본나노파이버 7 g을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 레이더 커버용 열가소성 수지 시편을 제조하였다.
비교예 14
폴리아마이드 수지 92 g, 카본블랙 7 g 및 카본나노파이버 1 g을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 레이더 커버용 열가소성 수지 시편을 제조하였다.
하기 표 1에, 상기 실시예 및 비교예의 각 시편을 제조하기 위하여 사용된 물질 및 함량을 나타내었다.
표 1
구분 폴리아마이드(g) 카본나노튜브(g) 카본블랙(g) 카본나노파이버(g)
실시예 1 94 1 5 -
실시예 2 92 1 7 -
실시예 3 90 3 7 -
비교예 1 94 6 - -
비교예 2 90 10 -
비교예 3 94 - 6 -
비교예 4 90 - 10 -
비교예 5 91 3 6 -
비교예 6 90 1 9
비교예 7 86 2 12
비교예 8 96 0.5 3.5
비교예 9 87 1 12 -
비교예 10 87.5 0.5 12
비교예 11 92 7 1 -
비교예 12 95 - - 5
비교예 13 92 1 - 7
비교예 14 92 - 7 1
실험예 1
상기 실시예 및 비교예에서 제조한 각 시편의 기계적 물성, 전자기파 반사손실 및 투과손실을 비교 분석하기 위하여, 하기의 방법에 따라 각 특성을 측정하였다. 결과를 하기 표 2에 나타내었다.
(1) 반사손실 및 투과손실: 각 시편을 ASTM D4935에 의거하여 전자기파 반사손실 및 투과손실을 측정하였다.
상세하게는, 반사손실은 상기 실시예 및 비교예에서 제조한 각 시편(두께 3 mm)에 대해 30MHz 내지 1500MHz의 전자기파를 조사한 후, 시편의 표면에서 반사되어 나오는 신호세기와 조사시 신호세기와의 차이로부터 구하였다.
또, 투과손실은 상기 실시예 및 비교예에서 제조한 각 시편(두께 3 mm)에 대해 30MHz 내지 1500MHz의 전자기파를 조사한 후, 시편을 통과하여 나오는 신호세기와 조사시 신호세기와의 차이로부터 구하였다.
(2) 인장강도 : 각 시편을 ASTM D638에 의거하여 인장강도를 측정하였다.
(3) 충격강도 : 각 시편을 ASTM D256에 의거하여 충격강도를 측정하였다.
(4) 표면저항 : 각 시편을 ASTM D257에 의거하여 표면저항을 측정하였다.
표 2
구분 반사손실 (㏈) 투과손실 (㏈) 인장강도(MPa) 충격강도(kg·cm/cm2) 표면저항(Ω/sq)
실시예 1 6 3 75 3.4 14.0
실시예 2 5 3 75 3.6 12.9
실시예 3 3 5 67 3.3 10.7
비교예 1 0.2 9.5 72 3.3 10.7
비교예 2 1 8 72 4.0 8.9
비교예 3 9 0.5 71 3.5 12.7
비교예 4 6 2 70 3.2 8.6
비교예 5 10 4 73 2.8 11.8
비교예 6 1.5 7 74 3.5 10.4
비교예 7 1 15 68 3.1 9.1
비교예 8 15 0.5 65 5.7 23.9
비교예 9 11 4 73 3.5 9.7
비교예 10 12 2 73 3.5 9.8
비교예 11 1 9 72 3.2 12.0
비교예 12 1 11 90 5.1 23.6
비교예 13 0.5 13 91 4.6 13.7
비교예 14 13 2.5 76 3.9 16.3
상기 표 2에 나타난 바와 같이, 본 발명에 따른 열가소성 수지 조성물로부터 제조된 실시예 1 내지 3의 열가소성 수지는, 비교예 1 내지 14에서 제조한 열가소성 수지 시편과 비교하여, 동등 수준의 기계적 특성 및 표면저항 특성을 유지하면서도, 레이더 보호용으로 요구되는 전자기파 반사손실 및 투과손실을 발란스 좋게 나타내었다.
구체적으로, 본 발명에 따른 열가소성 수지 조성물에 있어서 열가소성 수지와 함께 카본나노튜브 및 카본블랙을 동시에 포함하는 실시예 1 내지 3의 열가소성 수지 시편은, 카본나노튜브와 카본블랙 중 어느 하나만을 포함하는 열가소성 수지 시편(비교예 1 내지 4)과 비교하여, 전자기파의 반사손실 또는 투과손실 특성 중 어느 하나에 치우치지 않고 적절한 균형을 유지하는 특성을 나타내는 것을 확인하였다.
또, 본 발명에 따른 열가소성 수지 조성물에 있어서 열가소성 수지와 함께 카본나노튜브 및 카본블랙을 포함하고, 또 그 각각의 함량 조건을 충족하더라도, 카본나노튜브와 카본블랙의 혼합중량비 조건을 충족하지 않는 경우(비교예 5 및 6)에는 전자기파 반사손실 또는 투과손실 특성 중 한쪽으로 치우치는 효과를 나타내었다.
또, 본 발명에 따른 열가소성 수지 조성물에 있어서 열가소성 수지와 함께 카본나노튜브 및 카본블랙을 포함하고, 상기 카본나노튜브와 카본블랙을 혼합중량비의 조건을 충족하는 혼합비로 포함하더라도 각각의 함량 조건을 충족하지 않을 경우(비교예 7 및 8)에도 전자기파 반사손실 또는 투과손실 특성 중 한쪽으로 치우치는 효과를 나타내었으며, 각 구성성분의 함량범위 조건 및 카본나노튜브와 카본블랙의 혼합중량비 조건을 모두 충족하지 않는 경우(비교예 9, 10, 11) 역시 전자기파 반사손실 또는 투과손실 특성 중 한쪽으로 치우치는 효과를 나타내었다.
한편, 본 발명에 따른 열가소성 수지 조성물에 있어서, 카본나노튜브 또는 카본블랙을 대신하여, 카본나노파이버만을 단독 사용하는 경우(비교예 12), 카본나노파이버를 카본나노튜브와 7:1의 혼합중량비로 혼합하여 사용하는 경우(비교예 13), 그리고 카본나노파이버를 카본블랙과 1:7의 혼합중량비로 혼합하여 사용하는 경우(비교예 14) 모두 전자기파 반사손실 또는 투과손실 특성 중 한쪽으로 치우치는 효과를 나타내었다.
이 같은 결과로부터, 본 발명에 따른 열가소성 수지, 카본나노튜브 및 카본블랙을 최적 함량 및 혼합중량비로 포함하는 열가소성 수지 조성물로부터 제조된 열가소성 수지는, 우수한 기계적 물성을 유지하면서도 레이더 커버용으로 요구되는 전자기파 반사손실 및 투과손실 조건을 발란스 좋게 나타냄으로써 레이더 커버용으로 적용되어 주변환경으로부터 레이더를 보호할 수 있을 뿐 아니라 반사되어 들어오는 전자기파 신호를 용이하게 받아들일 수 있으며, 투과되는 전자기파를 일정 수준만 차폐하여 레이더의 신호 전달을 저해 않음을 알 수 있다.
실험예 2
다양한 열가소성 수지에서의 개선 효과를 관찰하기 위하여, 하기 표 3에 기재된 열가소성 수지를 사용하는 것을 제외하고는 상기 실시예 2에서와 동일한 방법으로 실시하여 열가소성 수지 시편을 제조하였다. 제조한 열가소성 수지 시편에 대해 상기 실험예 1에서와 동일한 방법으로 기계적 물성, 전자기파 반사손실 및 투과손실을 측정하였다. 그 결과를 하기 표 3에 나타내었으며, 효과 비교를 위해 상기 실시예 2에서 제조한 열가소성 수지 시편의 측정 결과를 함께 기재하였다.
표 3
구분 열가소성 수지 종류 반사손실 (㏈) 투과손실 (㏈) 인장강도(MPa) 충격강도 (kg·cm/cm2) 표면저항 (Ω/sq)
실시예 2 폴리아마이드 수지 5 3 75 3.6 12.9
실시예 4 폴리카보네이트 4 5 60 4.9 8.6
실시예 5 폴리부틸렌테레프탈레이트 5 3 53 3.1 8.7
실시예 6 폴리페닐렌 설파이드 3 5 55 2.1 5.8
상기 표 3에 나타난 바와 같이, 다양한 열가소성 수지를 사용한 경우에도 우수한 기계적 물성과 함께 레이더 보호용으로 요구되는 전자기파 반사손실 및 투과손실을 발란스 좋게 나타냄을 확인하였다.
본 발명에 따른 레이더 커버용 열가소성 수지 조성물은 우수한 기계적 물성과 함께, 레이더 보호용으로 요구되는 전자기파 반사손실 및 투과손실을 발란스 좋게 나타내어 레이더 신호를 저해하지 않는 레이더 커버의 제조에 유용하다.

Claims (12)

  1. a) 열가소성 수지 85 중량% 내지 95 중량%;
    b) 카본나노튜브 1 중량% 내지 5 중량%; 및
    c) 카본블랙 3 중량% 내지 10 중량%를 포함하고;
    상기 카본나노튜브 및 카본블랙이 3:7 내지 1:7의 중량비를 갖는 것을 특징으로 하는 레이더 커버용 열가소성 수지 조성물.
  2. 제1항에 있어서,
    상기 a) 열가소성 수지는 폴리아마이드 수지, 폴리이미드 수지, 폴리아마이드이미드 수지, 폴리아세탈 수지, 폴리카보네이트 수지, 폴리에테르술폰 수지, 폴리에테르케톤 수지, 폴리에테르이미드 수지, 폴리알킬렌테레프탈레이트 수지, 아크릴계 수지, 폴리술폰 수지, 폴리페닐렌설파이드, 폴리올레핀, 폴리스티렌 수지, 신디오택틱 폴리스티렌 수지, 아크릴로니트릴부타디엔스티렌 수지, 폴리페닐렌옥사이드 수지, 액정 중합체 수지 및 이들의 공중합체로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물을 포함하는 것을 특징으로 하는 레이더 커버용 열가소성 수지 조성물.
  3. 제1항에 있어서,
    상기 a) 열가소성 수지는 300℃ 온도 및 10 kg 하중 조건 하에서 50 g/min 내지 65 g/min의 용융지수를 갖는 폴리아마이드 수지인 것을 특징으로 하는 레이더 커버용 열가소성 수지 조성물.
  4. 제1항에 있어서,
    상기 a) 열가소성 수지는 결정성 폴리아마이드, 반결정성 폴리아마이드, 및 비결정성 폴리아마이드로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상을 포함하는 것을 특징으로 하는 레이더 커버용 열가소성 수지 조성물.
  5. 제1항에 있어서,
    상기 b) 카본나노튜브는 단일벽 카본나노튜브, 이중벽 카본나노튜브 및 다중벽 카본나노튜브로 이루어진 군으로부터 선택되는 어느 하나 또는 둘 이상을 포함하는 것을 특징으로 하는 레이더 커버용 열가소성 수지 조성물.
  6. 제1항에 있어서,
    상기 b) 카본나노튜브는 0.5 nm 내지 10 nm의 평균 내경을 갖는 것을 특징으로 하는 레이더 커버용 열가소성 수지 조성물.
  7. 제1항에 있어서,
    상기 c) 카본블랙은 10 ㎛ 내지 200 ㎛ 평균 입자크기(D50)를 갖는 구형의 탄소입자인 것을 특징으로 하는 레이더 커버용 열가소성 수지 조성물.
  8. 제1항에 있어서,
    상기 b) 카본나노튜브와 c) 카본블랙은 1:3 내지 1:7의 중량비를 갖는 것을 특징으로 하는 레이더 커버용 열가소성 수지 조성물.
  9. 제1항에 있어서,
    상기 열가소성 수지 조성물은 a) 열가소성 수지 100중량부에 대하여 b) 카본나노튜브 1 내지 5중량부 및 c) 카본블랙을 5 내지 8중량부로 포함하는 것을 특징으로 하는 레이더 커버용 열가소성 수지 조성물.
  10. 제1항 내지 제9항 중 어느 한 항에 따른 열가소성 수지 조성물로부터 제조된 수지를 포함하는 레이더 커버.
  11. 제10항에 있어서,
    상기 수지는 2 ㏈ 내지 9 ㏈ 범위의 전자기파 반사손실 및 3 ㏈ 내지 12 ㏈ 범위의 전자기파 투과손실을 갖는 것을 특징으로 하는 레이더 커버.
  12. 제10항에 따른 레이더 커버를 포함하는 레이더.
PCT/KR2014/011963 2013-12-06 2014-12-05 레이더 커버용 열가소성 수지 조성물 WO2015084110A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480002743.0A CN104837926B (zh) 2013-12-06 2014-12-05 用于雷达罩的热塑性树脂组合物
US14/430,817 US9840609B2 (en) 2013-12-06 2014-12-05 Thermoplastic resin composition for radar cover
JP2015551637A JP5941231B2 (ja) 2013-12-06 2014-12-05 レーダーカバー用熱可塑性樹脂組成物
EP14844997.8A EP2902443B1 (en) 2013-12-06 2014-12-05 Thermoplastic resin composition for radar cover

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20130151848 2013-12-06
KR10-2013-0151848 2013-12-06

Publications (1)

Publication Number Publication Date
WO2015084110A1 true WO2015084110A1 (ko) 2015-06-11

Family

ID=53273781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/011963 WO2015084110A1 (ko) 2013-12-06 2014-12-05 레이더 커버용 열가소성 수지 조성물

Country Status (6)

Country Link
US (1) US9840609B2 (ko)
EP (1) EP2902443B1 (ko)
JP (1) JP5941231B2 (ko)
KR (1) KR101629790B1 (ko)
CN (1) CN104837926B (ko)
WO (1) WO2015084110A1 (ko)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101776437B1 (ko) * 2014-12-26 2017-09-07 주식회사 엘지화학 레이더 커버용 수지 조성물, 이로부터 얻어진 레이더커버 및 레이더장치
US11352480B2 (en) 2016-03-18 2022-06-07 Ticona Llc Polyaryletherketone composition
KR101800845B1 (ko) * 2016-03-30 2017-11-23 금호석유화학 주식회사 전기전도성 수지 조성물 및 그 성형품
KR102046880B1 (ko) * 2016-04-25 2019-11-20 주식회사 엘지화학 대전방지용 탄소 복합재, 성형품 및 그 제조방법
CN106752490A (zh) * 2016-11-10 2017-05-31 无锡市明盛强力风机有限公司 一种宽频电磁屏蔽材料
CN107057338B (zh) * 2017-04-01 2019-03-26 广州科苑新型材料有限公司 新能源汽车电池箱体用电磁屏蔽高导热尼龙复合材料
DE102017108768A1 (de) * 2017-04-25 2018-10-25 Amazonen-Werke H. Dreyer Gmbh & Co. Kg Abschirmvorrichtung für einen landwirtschaftlichen Schleuderstreuer
US11118053B2 (en) 2018-03-09 2021-09-14 Ticona Llc Polyaryletherketone/polyarylene sulfide composition
JP7478374B2 (ja) * 2018-06-06 2024-05-07 株式会社新日本電波吸収体 電磁波シールド材及びこれを備える信号処理ユニット
CN108753153A (zh) * 2018-06-28 2018-11-06 安徽尼古拉电子科技有限公司 一种雷达罩用耐温涂层材料及其制备方法
BR112021021221A2 (pt) * 2019-04-23 2021-12-21 Birla Carbon U S A Inc Composição de masterglobina, e, método para preparar uma composição de masterglobina
KR20220152562A (ko) * 2020-03-13 2022-11-16 인비스타 텍스타일스 (유.케이.) 리미티드 네트워크 응용분야용 열가소성 수지
EP3943535A1 (en) * 2020-07-20 2022-01-26 SHPP Global Technologies B.V. Composites having improved microwave shielding properties
EP4317264A1 (en) * 2021-04-02 2024-02-07 Mitsubishi Chemical Corporation Resin composition and molded body
JP6927448B1 (ja) * 2021-04-27 2021-09-01 東洋インキScホールディングス株式会社 電磁波吸収体用熱可塑性樹脂組成物及び成形体
KR20240005054A (ko) * 2021-05-07 2024-01-11 바스프 에스이 폴리부틸렌 테레프탈레이트 조성물 및 물품
JP7310996B1 (ja) * 2022-08-03 2023-07-19 東洋インキScホールディングス株式会社 電磁波吸収体用熱可塑性樹脂組成物および成形体

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6762237B2 (en) * 2001-06-08 2004-07-13 Eikos, Inc. Nanocomposite dielectrics
KR20060052657A (ko) * 2002-12-19 2006-05-19 란세스 도이치란트 게엠베하 카본 블랙 및 탄소 나노섬유를 함유하는 전도성 열가소성수지
EP1777262A1 (en) * 2005-10-24 2007-04-25 Basf Aktiengesellschaft Carbon nanotubes reinforced thermoplastic molding compositions and production process therefor
US7504052B2 (en) * 2006-08-11 2009-03-17 Bayer Material Science Ag Antistatic and electrically conductive polyurethanes
KR20100058342A (ko) * 2008-11-24 2010-06-03 한화케미칼 주식회사 복합탄소소재를 포함하는 전도성 수지조성물

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6673872B2 (en) * 2000-05-17 2004-01-06 General Electric Company High performance thermoplastic compositions with improved melt flow properties
JP2002234950A (ja) 2001-02-09 2002-08-23 Toray Ind Inc 電磁波シールド成形品および電磁波シールド成形品用熱可塑性樹脂組成物
US6528572B1 (en) * 2001-09-14 2003-03-04 General Electric Company Conductive polymer compositions and methods of manufacture thereof
JP2004312696A (ja) 2003-03-24 2004-11-04 Hitachi Ltd ミリ波レーダおよびその製造方法
JP2005298545A (ja) * 2004-04-06 2005-10-27 Asahi Kasei Chemicals Corp 導電性樹脂組成物の製造方法
US9136036B2 (en) 2008-07-02 2015-09-15 Miller Waster Mills Injection moldable, thermoplastic composite materials
KR101267272B1 (ko) 2008-12-30 2013-05-23 제일모직주식회사 수지 조성물
US20100327234A1 (en) 2009-06-24 2010-12-30 Cheil Industries Inc. Polyphenylene Ether Thermoplastic Resin Composition, Method of Preparing the Same, and Molded Product Using the Same
KR101173048B1 (ko) * 2009-07-30 2012-08-13 제일모직주식회사 전도성 폴리아미드 복합체 조성물 및 이를 이용하여 제조된 연료 수송 튜브
EP2504155B1 (en) 2009-11-24 2020-10-07 The Director General, Defence Research & Development Organisation (DRDO) Fiber reinforced polymeric composites with tailorable electrical resistivities and process for preparing the same
KR101269422B1 (ko) 2009-12-30 2013-06-04 제일모직주식회사 내마모성 및 전기전도성이 우수한 폴리카보네이트계 수지 조성물 및 그 제조방법
CN103328574B (zh) 2011-01-17 2015-11-25 可乐丽股份有限公司 树脂组合物及包含其的成型品
JPWO2012153772A1 (ja) * 2011-05-09 2014-07-31 クラレリビング株式会社 放射線遮蔽材
GB201122296D0 (en) 2011-12-23 2012-02-01 Cytec Tech Corp Composite materials
KR101329974B1 (ko) * 2012-01-12 2013-11-13 한화케미칼 주식회사 복합탄소소재를 포함하는 전자파 차폐용 수지 조성물
CN102863787B (zh) * 2012-09-14 2015-08-12 毛澄宇 一种导电-抗静电复合材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6762237B2 (en) * 2001-06-08 2004-07-13 Eikos, Inc. Nanocomposite dielectrics
KR20060052657A (ko) * 2002-12-19 2006-05-19 란세스 도이치란트 게엠베하 카본 블랙 및 탄소 나노섬유를 함유하는 전도성 열가소성수지
EP1777262A1 (en) * 2005-10-24 2007-04-25 Basf Aktiengesellschaft Carbon nanotubes reinforced thermoplastic molding compositions and production process therefor
US7504052B2 (en) * 2006-08-11 2009-03-17 Bayer Material Science Ag Antistatic and electrically conductive polyurethanes
KR20100058342A (ko) * 2008-11-24 2010-06-03 한화케미칼 주식회사 복합탄소소재를 포함하는 전도성 수지조성물

Also Published As

Publication number Publication date
US20160355670A1 (en) 2016-12-08
US9840609B2 (en) 2017-12-12
EP2902443B1 (en) 2018-10-10
KR20150066480A (ko) 2015-06-16
JP2016504471A (ja) 2016-02-12
CN104837926B (zh) 2017-10-13
CN104837926A (zh) 2015-08-12
KR101629790B1 (ko) 2016-06-14
EP2902443A4 (en) 2016-03-23
JP5941231B2 (ja) 2016-06-29
EP2902443A1 (en) 2015-08-05

Similar Documents

Publication Publication Date Title
WO2015084110A1 (ko) 레이더 커버용 열가소성 수지 조성물
WO2016105178A1 (ko) 레이더 커버용 수지 조성물, 이로부터 얻어진 레이더커버 및 레이더장치
WO2017179877A1 (ko) 무색 투명한 폴리아마이드-이미드 필름 및 이의 제조방법
WO2020130365A1 (ko) 폴리페닐렌 설파이드 수지 조성물, 이의 제조방법 및 이로부터 제조된 사출성형품
WO2017209413A1 (ko) 고강도 투명 폴리아미드이미드 및 이의 제조방법
WO2011078492A2 (ko) 다기능성 수지 복합재 및 이를 이용한 성형품
KR20080056177A (ko) 열경화성 수지 조성물 및 그 용도
WO2015099478A1 (ko) 투명 폴리아마이드-이미드 수지 및 이를 이용한 필름
WO2019103545A1 (ko) 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자
WO2021095975A1 (ko) 저유전 폴리이미드 필름 및 이의 제조방법
WO2018182111A1 (ko) 탄소나노튜브 분산액 및 이의 제조방법
KR20020077988A (ko) 유해 전자파 차단 및 전도성 부여를 위한 이온 빔 또는 이온 플라즈마 또는 이온주입법 처리에 적합한 고분자 수지
WO2019147099A1 (ko) 대전방지용 도포액 조성물 및 이를 이용한 대전방지 폴리에스테르 필름
WO2020067695A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2020262980A1 (ko) 접착 조성물 및 이를 포함하는 커버레이 필름 및 인쇄회로기판
WO2020111551A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2020071588A1 (ko) 폴리아미드이미드 필름의 제조방법 및 이로부터 제조되는 폴리아미드이미드 필름
WO2017159914A9 (ko) 저광택 블랙 폴리이미드 전사 필름 및 그 제조방법
JP2003306553A (ja) ポリイミド成形体
WO2023068481A1 (ko) 폴리에스테르 수지 조성물, 이의 제조방법 및 이로부터 제조된 성형품
WO2019168325A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2018012775A1 (ko) 열경화성 수지 조성물, 이를 이용한 프리프레그, 적층 시트 및 인쇄회로기판
WO2021125673A1 (ko) 경통 부재
WO2021086019A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품의 제조 방법
WO2022255659A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14430817

Country of ref document: US

Ref document number: 2014844997

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015551637

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14844997

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE