WO2011078492A2 - 다기능성 수지 복합재 및 이를 이용한 성형품 - Google Patents

다기능성 수지 복합재 및 이를 이용한 성형품 Download PDF

Info

Publication number
WO2011078492A2
WO2011078492A2 PCT/KR2010/008598 KR2010008598W WO2011078492A2 WO 2011078492 A2 WO2011078492 A2 WO 2011078492A2 KR 2010008598 W KR2010008598 W KR 2010008598W WO 2011078492 A2 WO2011078492 A2 WO 2011078492A2
Authority
WO
WIPO (PCT)
Prior art keywords
resin
multifunctional
resin composite
nickel
carbon fiber
Prior art date
Application number
PCT/KR2010/008598
Other languages
English (en)
French (fr)
Other versions
WO2011078492A3 (ko
Inventor
김성준
유영식
Original Assignee
제일모직 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제일모직 주식회사 filed Critical 제일모직 주식회사
Publication of WO2011078492A2 publication Critical patent/WO2011078492A2/ko
Publication of WO2011078492A3 publication Critical patent/WO2011078492A3/ko
Priority to US13/530,144 priority Critical patent/US8883044B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/10Reinforcing macromolecular compounds with loose or coherent fibrous material characterised by the additives used in the polymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials

Definitions

  • the present disclosure relates to a multifunctional resin composite material and a molded article using the same.
  • moduleization of internal components becomes an essential item.
  • an internal frame that requires grounding capability must have electrical conductivity and high mechanical rigidity
  • an exterior material that requires EMI / RFI shielding must have EMI / RFI shielding characteristics and excellent appearance characteristics.
  • a metal made of coating / plating technology is used as a method for shielding electromagnetic waves in the prior art.
  • a high conductivity low R value and low impedance
  • a high conductivity has a high ratio of electromagnetic shielding through surface reflection of electromagnetic waves.
  • even thin metals have the advantage of effectively blocking electromagnetic waves.
  • the painting / plating technique has a limitation in productivity due to a complicated plating process.
  • US Patent Publication No. 2007-0199738 discloses an electromagnetic wave shielding device including a polymer substrate coated on a metal surface
  • US Patent Publication No. 2007-0056769 discloses a non-conductive polymer, conductive material.
  • An electromagnetic wave shielding material including a polymer and an electrically conductive metal powder is disclosed
  • US Patent Publication No. 2002-0108699 discloses a method of manufacturing an electrically conductive impregnated fiber by coating a conductive fiber with a compatibilizer such as an organic wetting agent and then compounding the resin into a resin.
  • a compatibilizer such as an organic wetting agent
  • 6,638,448 discloses an electrically conductive thermoplastic elastomer comprising a silver plated nickel as a conductive filler in a styrene-ethylene-butadiene-styrene (SEBS) copolymer-based matrix material, which is a non-conductive resin
  • SEBS styrene-ethylene-butadiene-styrene
  • US Patent No. 6,409,942 blends two polymer resins with different polarities
  • An electroconductive composition is disclosed in which a carbon-based conductive filler is positioned at a higher polarity by impregnating a carbon-based conductive filler.
  • US Pat. No. 5,869,412 discloses a sheet material or a polymer carrier capable of forming pores during a thermoforming process.
  • a thermoformed electromagnetic shielding sheet including a low melting point metal conductive filler is disclosed.
  • neither of these technologies offers high stiffness, high conductivity and EMI / RFI shielding properties.
  • One aspect of the present invention is to provide a multifunctional resin composite having excellent stiffness, electrical conductivity, and EMI / RFI shielding properties.
  • Another aspect of the present invention is to provide a molded article using the multifunctional resin composite material.
  • thermoplastic resin thermoplastic resin
  • nickel coated carbon fiber nickel coated carbon fiber
  • carbon nanotubes carbon nanotubes
  • inorganic material having a volume resistivity of about 10 ⁇ 3 Pa ⁇ m or less and a relative permeability of about 5000 or more.
  • the multifunctional resin composite material may include about 40 wt% to about 80 wt% of the thermoplastic resin (A), about 10 wt% to about 40 wt% of the nickel coated carbon fiber (B), and about 0.1 wt% of the carbon nanotube (C). % To about 2% by weight and about 3% to about 20% by weight of the inorganic material (D).
  • the thermoplastic resin (A) is a polyamide resin, polyester resin, polyacetal resin, polycarbonate resin, polyimide resin, polyphenylene oxide resin, polysulfone resin, polyphenylene sulfide resin, polyamide-imide resin, It may include a polyether sulfone resin, a liquid crystal polymer, a polyether ketone resin, a polyetherimide resin, a polyolefin resin, a rubber modified vinyl copolymer resin, a polystyrene resin, or a combination thereof, and may also be a crystalline resin.
  • the nickel-coated carbon fiber (B) may include a carbon fiber having a diameter of about 5 ⁇ m to about 12 ⁇ m and a length of about 3 ⁇ m to about 12 mm, and nickel is about 0.1 ⁇ m to about 1 ⁇ m on the carbon fiber. It may be coated with a thickness of, and may have a volume resistivity of about 10 ⁇ 4 Pa ⁇ m or less and a tensile strength of about 200 GPa or more.
  • the carbon nanotubes (C) may have a diameter of about 1 nm to about 50 nm and a length of about 10 nm to about 20 ⁇ m.
  • the inorganic material (D) may include nickel-iron alloys, and may also include mu-metal, permalloy, or a combination thereof.
  • the multifunctional resin composite may further include about 5 parts by weight to about 20 parts by weight of (E) glass fiber based on 100 parts by weight of the multifunctional resin composite, wherein the glass fiber (E) is about 8 ⁇ m to about 15 ⁇ m And a length of about 2 mm to about 12 mm.
  • the multifunctional resin composite may be an antibacterial agent, a heat stabilizer, an antioxidant, a mold release agent, a light stabilizer, a surfactant, a coupling agent, a plasticizer, a admixture, a colorant, a stabilizer, a lubricant, an antistatic agent, a colorant, a flame retardant, a weatherproof agent, a UV absorber, a sunscreen agent.
  • the additive may further include a nucleating agent, an adhesion aid, an adhesive, or a combination thereof.
  • Another aspect of the present invention provides a molded article manufactured using the multifunctional resin composite material.
  • Multifunctional resin composite material according to an embodiment is excellent in stiffness, electrical conductivity and EMI / RFI shielding properties, it can be usefully used as a material of various electrical and electronic components that are miniaturized, integrated, lightweight and mass-produced.
  • Equation 1 Equation 1 below.
  • Equation 1 R denotes surface reflection of electromagnetic waves (electric conductivity), A denotes internal absorption of electromagnetic waves, and B denotes loss through multiple reflections.
  • the electromagnetic wave in the case of the resin composite material, the electromagnetic wave can be effectively shielded by improving the electrical conductivity and increasing the internal absorption of the electromagnetic wave.
  • the internal absorption of the electromagnetic wave is related to the permeability of the material, thereby introducing a material having a high permeability. Electromagnetic shielding of resin composites can be realized.
  • EMI electromagnetic interference
  • RFI radio frequency interference
  • the multifunctional resin composite includes (A) thermoplastic resin, (B) nickel coated carbon fiber, (C) carbon nanotube and (D) volume resistivity of about 10 ⁇ 3- ⁇ m or less and relative relative to about 5000 or more. Contains minerals with permeability.
  • thermoplastic resin (A) thermoplastic resin
  • the thermoplastic resin is polyamide resin, polyester resin, polyacetal resin, polycarbonate resin, polyimide resin, polyphenylene oxide resin, polysulfone resin, polyphenylene sulfide resin, polyamide-imide resin, polyether sulfone Resin, liquid crystal polymer, polyether ketone resin, polyetherimide resin, polyolefin resin, rubber modified vinyl copolymer resin, polystyrene resin or a combination thereof can be used.
  • a crystalline resin can be used, and the crystalline resin may be a polyamide resin, a polyester resin, a polyacetal resin, a polyphenylene sulfide resin, a liquid crystal polymer, a polyether ketone resin, a polyolefin resin, or a polystyrene resin. Or combinations thereof, and among these, polyphenylene sulfide resins are more preferable.
  • the crystalline resin has a property of rejecting fillers, ie, nickel-coated carbon fibers, carbon nanotubes, and inorganic materials, according to an embodiment during crystallization, so that a conductive pass may be easily formed, that is,
  • the fillers form a connection network, so that conductivity higher than that of the amorphous resin can be obtained.
  • the stiffness effect due to the reinforcement of the filler is also superior to the amorphous resin.
  • the polyamide resin contains an amide group in the polymer main chain, and may be polymerized using amino acids, lactams or diamines and dicarboxylic acids as main components.
  • polyamide resin examples include polycaprolactam (polyamide 6), poly (11-aminoundecanoic acid) (polyamide 11), polylauryllactam (polyamide 12), polyhexamethylene adipamide (poly Amide 66), polyhexaethylene azelamide (polyamide 69), polyhexaethylene sebacamide (polyamide 610), polyhexaethylene dodecanodiamide (polyamide 612), and the like, polyamide 6/610 , Polyamide 6/66, polyamide 6/12, or the like may be used alone, or two or more thereof may be mixed and used in an appropriate ratio.
  • polyester resin as the aromatic polyester resin, a resin polycondensed by melt polymerization from a terephthalic acid or a terephthalic acid alkyl ester and a glycol component of C2 to C10 may be used.
  • the alkyl means C1 to C10 alkyl.
  • aromatic polyester resin may include polyethylene terephthalate resin, polytrimethylene terephthalate resin, polybutylene terephthalate resin, polyhexamethylene terephthalate resin, polycyclohexane dimethylene terephthalate resin, and some others to these resins.
  • Amorphous resins or mixtures thereof may be used by mixing the monomers.
  • polyethylene terephthalate resin, polytrimethylene terephthalate resin, polybutylene terephthalate resin, amorphous polyethylene terephthalate resin, and the like may be used. Can be used.
  • the polyacetal resin is a polymer of formaldehyde or trioxane having an acetal bond in the main chain as a crystalline polymer.
  • the polyacetal resin is excellent in electrical insulation, wear resistance, heat resistance and the like.
  • the polyphenylene sulfide resin is a resin containing 70 mol% or more of the repeating unit represented by the following formula (1).
  • the repeating unit is included 70 mol% or more, the crystallinity is a characteristic of the crystalline polymer is high, it is excellent in heat resistance, chemical resistance and rigidity.
  • the polyphenylene sulfide resin may further include a repeating unit represented by at least one selected from Formulas 2 to 9 in addition to the repeating unit represented by Formula 1.
  • R is a C1 to C20 alkylene group, a C6 to C30 arylene group, a C1 to C20 alkoxylene group or a combination thereof.
  • the repeating unit represented by at least one of Formulas 2 to 9 may be included in less than 50 mol%, specifically, less than 30 mol% relative to the repeating unit represented by Formula 1.
  • the repeating unit represented by at least one selected from Formulas 2 to 9 is included in less than 50 mol%, heat resistance and mechanical properties are excellent.
  • the liquid crystal polymer is a polymer showing the properties of the liquid crystal in a solution or in a dissolved state, and has good heat resistance and strength, and can be finely processed.
  • the polyether ketone resin has excellent heat resistance, flame retardancy, hot water resistance, chemical resistance, and the like.
  • the polyolefin resin may be a high density polyethylene (HDPE) resin, a linear low density polyethylene (LLDPE) resin, a polypropylene resin, a polybutylene resin, an ethylene-propylene copolymer resin, an ethylene-vinyl alcohol copolymer Resin or a combination thereof can be used, and among these, polypropylene resin can be used preferably.
  • the high density polyethylene resin means that it has a density range of 0.94 to 0.965
  • the linear low density polyethylene resin means that it has a density range of 0.91 to 0.94.
  • the polystyrene resin may be a polystyrene resin, a syndiotactic polystyrene resin, or a combination thereof.
  • the syndiotactic polystyrene resin with high stereoregularity can be prepared from a styrene monomer using a catalyst system consisting of a metallocene catalyst and a cocatalyst.
  • the thermoplastic resin may be included in an amount of about 40 wt% to about 80 wt%, specifically, about 60 wt% to about 75 wt%, based on the total amount of the multifunctional resin composite.
  • the resin composite may have excellent processability, and may implement excellent stiffness, electrical conductivity, and EMI / RFI shielding properties.
  • the nickel-coated carbon fiber is a form in which nickel is coated on the carbon fiber, which is effective for EMI / RFI shielding, and forms a mesh structure together with an inorganic material having high transmittance, thereby exhibiting an excellent shielding effect.
  • the carbon fiber may be a pan-based or pitch-based carbon fiber.
  • the carbon fiber may have a diameter of about 5 ⁇ m to about 12 ⁇ m, and specifically about 7 ⁇ m to about 10 ⁇ m.
  • the carbon fiber may have a length of about 3 mm to about 12 mm, specifically about 3 mm to about 8 mm.
  • the nickel coating method may be coated by an electroless method or an electrolytic method, which is a conventional method of metal coating.
  • the nickel-coated carbon fibers may be nickel coated with carbon fibers having a thickness of about 0.01 ⁇ m to about 1 ⁇ m, specifically about 0.1 ⁇ m to about 0.5 ⁇ m.
  • a sufficient coating effect, excellent rigidity, and excellent efficiency in the production process can be obtained.
  • the nickel-coated carbon fiber may have a volume resistivity of about 10 ⁇ 4 Pa ⁇ m or less, specifically about 10 ⁇ 6 Pa ⁇ m or less, and a tensile strength of about 150 GPa or more, specifically about 200 GPa or more. .
  • nickel-coated carbon fiber having a volume resistance and tensile strength in the above range it can be obtained excellent electrical conductivity and mechanical strength.
  • the nickel-coated carbon fiber may be included in about 10% by weight to about 40% by weight based on the total amount of the multifunctional resin composite, specifically, about 15% by weight to about 25% by weight.
  • the nickel-coated carbon fiber is included in the content range, it is possible to implement excellent stiffness, electrical conductivity and EMI / RFI shielding properties of the resin composite.
  • the carbon nanotubes have high mechanical strength, high Young's Modulus and high aspect ratio mechanical properties, high electrical conductivity and high thermal stability.
  • the method of synthesizing the carbon nanotubes is arc discharge, pyrolysis, laser ablation, plasma chemical vapor deposition, thermal chemical vapor deposition. vapor deposition, electrolysis, etc., but in one embodiment, all of the obtained carbon nanotubes may be used regardless of the synthesis method.
  • the carbon nanotubes may be divided into single wall carbon nanotubes, double wall carbon nanotubes, and multiwall carbon nanotubes according to the number of walls thereof.
  • the type is not limited, but it is preferable to use multi-walled carbon nanotubes.
  • the carbon nanotubes may have a diameter of about 1 nm to about 50 nm, and a length of about 10 nm to about 20 ⁇ m. When carbon nanotubes having a diameter and length within the above range are used, the electrical conductivity and processability of the resin composite are excellent.
  • the carbon nanotubes may be used having a purity of about 80% or more, and may also use an aspect ratio of about 100 to about 1,000, and when using those within the above range, the electrical conductivity may be further improved.
  • the carbon nanotubes may be included in an amount of about 0.1 wt% to about 2 wt% based on the total amount of the multifunctional resin composite, and specifically, about 0.3 wt% to about 1 wt%.
  • excellent stiffness, electrical conductivity, and EMI / RFI shielding properties of the resin composite may be realized.
  • the inorganic material may be used that has high electrical conductivity and high permeability.
  • the inorganic material may use nickel-iron alloys, and more specifically, mu-metal, permalloy, or a combination thereof may be used.
  • the volume resistance of the inorganic material may be about 10 ⁇ 1 Pa ⁇ m or less, specifically 10 ⁇ 3 Pa ⁇ m or less, and the relative permeability may be about 1000 or more, specifically 5000 or more.
  • an inorganic material having a volume resistivity and relative permeability in the above range it is possible to implement excellent electrical conductivity and EMI / RFI shielding properties of the resin composite.
  • the inorganic material may be included in an amount of about 3 wt% to about 20 wt% with respect to the total amount of the polyfunctional resin composite, specifically, about 5 wt% to about 15 wt%.
  • the inorganic material is included in the content range, it is possible to implement the excellent electrical conductivity and EMI / RFI shielding properties of the resin composite.
  • the multifunctional resin composite according to one embodiment may further include glass fibers to further improve the rigidity of the resin composite.
  • the glass fibers are conventionally used commercially, and glass fibers having a diameter of about 8 ⁇ m to about 15 ⁇ m and a length of about 2 mm to about 12 mm may be used. When using glass fibers having a diameter and length in the above range can be obtained excellent rigidity of the resin composite.
  • the glass fiber may be a circular cross-section, elliptical, rectangular or a dumbbell-shaped two connected two circles.
  • the glass fiber may be coated on the surface of the glass fiber with a predetermined glass fiber treatment agent in order to improve the degree of impregnation into the thermoplastic resin.
  • Lubricating agents, coupling agents, surfactants, compatibilizers, etc. may be used as the glass fiber treatment agent.
  • the lubricant is used to form a good strand having a constant diameter and thickness in the manufacture of glass fibers
  • the coupling agent serves to give a good adhesion between the glass fiber and the thermoplastic resin
  • the compatibilizer is a silane-based compatibilizer Can be used.
  • the glass fiber may be included in an amount of about 5 parts by weight to about 20 parts by weight based on 100 parts by weight of the polyfunctional resin composite, specifically, about 5 parts by weight to about 10 parts by weight.
  • glass fibers When glass fibers are included in the content range, it is possible to realize excellent stiffness, electrical conductivity and EMI / RFI shielding properties of the resin composite.
  • the multifunctional resin composite may be an antibacterial agent, a heat stabilizer, an antioxidant, a release agent, a light stabilizer, a surfactant, a coupling agent, a plasticizer, a admixture, a stabilizer, a lubricant, an antistatic agent, a colorant, a flame retardant, a weather agent, a colorant, and an ultraviolet ray according to each use.
  • the antioxidant a phenol type, a phosphite type, a thioether type, or an amine type antioxidant may be used.
  • the release agent may include a fluorine-containing polymer, a silicone oil, a metal salt of stearic acid, and montanic acid ( metal salts of montanic acid), montanic acid ester waxes or polyethylene waxes may be used.
  • a benzophenone type or an amine type weathering agent may be used as the weathering agent, and a dye or a pigment may be used as the coloring agent.
  • the sunscreen may be titanium dioxide (TiO 2 ) or carbon black, the nucleating agent may be used talc or clay.
  • the additive may be included in about 0.1 parts by weight to about 30 parts by weight based on 100 parts by weight of the multifunctional resin composite. When the additive is included in the above range can be obtained the effect of the additive according to each use.
  • the surface resistance of the multifunctional resin composite according to one embodiment may be about 10 2 ⁇ / ⁇ or less.
  • Multifunctional resin composite may be prepared by a known method for producing a resin composition.
  • the components and other additives according to one embodiment may be mixed simultaneously, then melt extruded in an extruder and prepared in pellet form.
  • the thermoplastic resin may form a matrix and may have a structure in which fillers, that is, nickel-coated carbon fibers, carbon nanotubes, and inorganic materials are dispersed in the matrix.
  • a molded article manufactured by molding the aforementioned multifunctional resin composite material is provided. That is, a molded article can be manufactured by various processes, such as injection molding, blow molding, extrusion molding, and thermoforming, using the said multifunctional resin composite material. In particular, it is useful to manufacture various molded products such as display devices such as TVs, PDPs, computers, mobile phones, office automation devices, internal frames, etc., which require excellent rigidity, electrical conductivity, and EMI / RFI shielding properties. Can be applied.
  • Each component used in the preparation of the multifunctional resin composite according to one embodiment is as follows.
  • thermoplastic resin (A) thermoplastic resin
  • a polyphenylene sulfide resin having a melt index of 316 ° C. and a value of 48 to 70 g / 10 min at a load of 1270 g was used.
  • Nickel-coated carbon fiber coated with a thickness of 0.25 ⁇ m on a carbon fiber having a diameter of 7 ⁇ m and a length of 4 mm was used.
  • the volume resistivity thereof was 10 ⁇ 4 ⁇ ⁇ m and the tensile strength was 238 GPa.
  • Glass fibers coated with silver having a thickness of 0.3 ⁇ m to 0.5 ⁇ m were used for the 17 ⁇ m diameter glass fibers by electroless plating.
  • Multi-walled carbon nanotubes having a diameter of 9.5 nm, a length of 1.5 ⁇ m, and a purity of 90% were used.
  • Nickel-iron alloy permalloy was used, its volume resistivity was 10 -7 ⁇ ⁇ m and relative permeability was 10,000.
  • the silver powder of Fukuda Metal Powder Co., Ltd. was used.
  • the silver powder has a volume resistivity of 10 ⁇ 10 Pa ⁇ m and a relative permeability of 1 or less.
  • glass fibers having a diameter of 10 ⁇ m and a length of 3 mm glass fibers coated with a silane compatibilizer were used.
  • polyfunctional resin composites according to Examples 1 to 6 and Comparative Examples 1 to 5 were prepared in the compositions shown in Table 1 using the above-mentioned components.
  • each component was mixed with the composition shown in Table 1 below to prepare a specimen for measuring the physical properties using a conventional twin screw extruder and an injection machine.
  • EMI shielding rate measured in accordance with ASTM D4935 at 2.1T specimen thickness.
  • Comparative Example 1 using no carbon nanotubes do not use inorganic materials Comparative Example 2, Comparative Example 3 not using nickel-coated carbon fiber, Comparative Example 4 using silver-coated glass fiber instead of nickel-coated carbon fiber, and Comparative Example 5 using an inorganic material whose relative permeability is outside the range according to one embodiment Compared to the case, it can be seen that the stiffness, the electrical conductivity and the EMI / RFI shielding properties are all excellent.
  • Comparative Example 1 which does not use an inorganic material, has reduced EMI / RFI shielding properties
  • Comparative Example 2 which does not use carbon nanotubes, has low electrical conductivity
  • Comparative Example 3 which does not use nickel-coated carbon fibers, is rigid.
  • Both electrical conductivity and EMI / RFI shielding properties are deteriorated
  • Comparative Example 4 using silver-coated glass fiber instead of nickel-coated carbon fiber and Comparative Example 5 using inorganic material whose relative permeability is out of the range according to one embodiment are EMI / RFI. It can be seen that the shielding properties are lowered.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

(A) 열가소성 수지, (B) 니켈코팅 탄소섬유, (C) 탄소나노튜브 및 (D) 약 10-3 Ω·m 이하의 체적저항 및 약 5000 이상의 상대투자율을 갖는 무기물을 포함하는 다기능성 수지 복합재 및 이를 이용한 성형품이 제공된다.

Description

다기능성 수지 복합재 및 이를 이용한 성형품
본 기재는 다기능성 수지 복합재 및 이를 이용한 성형품에 관한 것이다.
전기/전자제품의 소형화, 집적화, 경량화에 따라 내부 부품의 모듈(module)화는 필수적인 항목이 되고 있다.  예를 들어, 접지능력이 필요한 내부 프레임의 경우 전기전도성과 높은 기계적 강성이 있어야 하며, EMI/RFI 차폐성이 필요한 외장제의 경우 EMI/RFI 차폐특성과 우수한 외관특성이 있어야 한다.  
이러한 기능들은 종래 각각의 특성을 보유한 소재들의 조합을 통해 구현되었으나, 소형화, 집적화, 경량화의 요구에 부흥하기 위해서는 고강성, 전자기파 차폐 특성 등을 가진 다기능성의 소재 개발이 요구되고 있다.
종래 전자기파를 차폐하기 위한 방법으로 도장/도금 기술을 응용한 금속제를 이용하였는데, 이러한 금속제의 경우는 전도성이 높아(R값, 임피던스가 낮아) 전자기파의 표면반사를 통한 전자기파 차폐의 비율이 높고, 이런 이유로 얇은 두께의 금속도 전자기파를 효과적으로 차단할 수 있는 장점이 있다.  그러나 상기 도장/도금 기술은 도금 공정이 복잡하여 생산성에 제약이 있다.
EMI/RFI 차폐와 관련하여, 미국공개특허 제2007-0199738호에서는 금속이 표면에 코팅된 고분자 기재를 포함하는 전자기파 차폐 장치가 개시되어 있으며, 미국공개특허 제2007-0056769호에서는 비전도성 고분자, 전도성 고분자 및 전기전도성 금속 분말을 포함하는 전자파 차폐 물질이 개시되어 있으며, 미국공개특허 제2002-0108699호에서는 전도성 파이버를 유기 습윤제와 같은 상용화제로 코팅한 후 수지에 복합화하여 전기전도성 함침 섬유를 제조하는 방법이 개시되어 있으며, 미국특허 제6,638,448호에서는 비전도성 수지인 스티렌-에틸렌-부타디엔-스티렌(SEBS) 공중합체 계열 매트릭스 물질에 은 도금된 니켈을 전도성 필러로 포함하는 전기전도성 열가소성 엘라스토머가 개시되어 있으며, 미국특허 제6,409,942호에서는 극성의 차이가 있는 두 고분자 수지 블렌드에 카본계의 전도성 필러를 함침하여 극성이 높은 쪽에 카본계의 전도성 필러가 위치하게 한 전기전도성 조성물이 개시되어 있으며, 미국특허 제5,869,412호에서는 열성형 공정 중 기공을 형성할 수 있는 시트 물질 또는 고분자 담체를 포함하고 저융점 금속 전도성 필러를 포함하는 열성형 전자파 차폐 시트가 개시되어 있다.  그러나 이러한 기술들 모두 고강성, 고전기전도성 및 EMI/RFI 차폐 특성을 부여하지 못한다.
본 발명의 일 측면은 강성, 전기전도성 및 EMI/RFI 차폐 특성이 모두 우수한 다기능성 수지 복합재를 제공하기 위한 것이다.
본 발명의 다른 일 측면은 상기 다기능성 수지 복합재를 이용한 성형품을 제공하기 위한 것이다.
본 발명의 일 측면은 (A) 열가소성 수지; (B) 니켈코팅 탄소섬유; (C) 탄소나노튜브; 및 (D) 약 10-3 Ω·m 이하의 체적저항 및 약 5000 이상의 상대투자율을 갖는 무기물을 포함하는 다기능성 수지 복합재를 제공한다.
상기 다기능성 수지 복합재는 상기 열가소성 수지(A) 약 40 중량% 내지 약 80 중량%, 상기 니켈코팅 탄소섬유(B) 약 10 중량% 내지 약 40 중량%, 상기 탄소나노튜브(C) 약 0.1 중량% 내지 약 2 중량% 및 상기 무기물(D) 약 3 중량% 내지 약 20 중량%를 포함할 수 있다.
상기 열가소성 수지(A)는 폴리아미드 수지, 폴리에스테르 수지, 폴리아세탈 수지, 폴리카보네이트 수지, 폴리이미드 수지, 폴리페닐렌옥사이드 수지, 폴리술폰 수지, 폴리페닐렌설파이드 수지, 폴리아미드-이미드 수지, 폴리에테르술폰 수지, 액정 고분자, 폴리에테르케톤 수지, 폴리에테르이미드 수지, 폴리올레핀 수지, 고무 변성 비닐계 공중합체 수지, 폴리스티렌계 수지 또는 이들의 조합을 포함할 수 있으며, 또한 결정성 수지일 수 있다.
상기 니켈코팅 탄소섬유(B)는 약 5 ㎛ 내지 약 12 ㎛의 직경과 약 3 ㎛ 내지 약 12 ㎜의 길이를 가진 탄소섬유를 포함할 수 있고, 니켈이 탄소섬유에 약 0.1 ㎛ 내지 약 1 ㎛의 두께로 코팅된 것일 수 있으며, 약 10-4 Ω·m 이하의 체적저항 및 약 200 GPa 이상의 인장강도를 가질 수 있다.
상기 탄소나노튜브(C)는 약 1 ㎚ 내지 약 50 ㎚의 직경 및 약 10 ㎚ 내지 약 20 ㎛의 길이를 가질 수 있다.
상기 무기물(D)은 니켈-철 합금류를 포함할 수 있고, 또한 뮤메탈(Mu-metal), 펌얼로이(Permalloy) 또는 이들의 조합을 포함할 수 있다.
상기 다기능성 수지 복합재는 상기 다기능성 수지 복합재 100 중량부에 대하여 (E) 유리섬유 약 5 중량부 내지 약 20 중량부를 더 포함할 수 있으며, 상기 유리섬유(E)는 약 8 ㎛ 내지 약 15 ㎛의 직경 및 약 2 mm 내지 약 12 mm의 길이를 가질 수 있다.
상기 다기능성 수지 복합재는 항균제, 열안정제, 산화방지제, 이형제, 광안정제, 계면활성제, 커플링제, 가소제, 혼화제, 착색제, 안정제, 활제, 정전기방지제, 조색제, 방염제, 내후제, 자외선 흡수제, 자외선 차단제, 핵 형성제, 접착 조제, 점착제 또는 이들의 조합의 첨가제를 더 포함할 수 있다.
본 발명의 다른 일 측면은 상기 다기능성 수지 복합재를 이용하여 제조된 성형품을 제공한다.
기타 본 발명의 측면들의 구체적인 사항은 이하의 상세한 설명에 포함되어 있다.
일 구현예에 따른 다기능성 수지 복합재는 강성, 전기전도성 및 EMI/RFI 차폐 특성이 모두 우수함에 따라, 소형화, 집적화, 경량화 및 대량 생산화되고 있는 각종 전기전자 부품의 소재로 유용하게 사용될 수 있다.
이하, 본 발명의 구현예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구항의 범주에 의해 정의될 뿐이다.
전자기파 차폐 효율(EMI shielding effectiveness)은 아래 식 1로 나타낼 수 있다.
[식 1]
S.B.(shielding effectiveness) = R + A + B
상기 식 1에서, R은 전자기파의 표면 반사(전기전도도), A는 전자기파의 내부 흡수, 그리고 B는 다반사를 통한 손실을 의미한다.
수지 복합재의 경우 금속제보다 전기전도도가 낮으므로, 상기 식 1에 나타낸 항목 중 표면 반사뿐 아니라 내부 흡수를 향상시키는 것이 중요하다.  따라서 수지 복합재의 전자기파 차폐 효율을 높이기 위해서는, 표면 임피던스를 낮추어, 즉, 전기전도성을 높게 하여 R 값을 증가시키는 것을 바탕으로, 전자기파의 내부 흡수에 해당하는 A 값을 증가시켜야 높은 전자기파 차폐 효율을 가진 수지 복합재를 얻을 수 있다.
즉, 수지 복합재의 경우 전기전도도의 개선과 전자기파의 내부 흡수를 증가시킴으로써 전자기파를 효율적으로 차폐할 수 있는데, 이때 전자기파의 내부 흡수는 물질의 투자율(permeability)과 관련이 있어 투자율이 높은 물질을 도입함으로써 수지 복합재의 전자기파 차폐를 구현화할 수 있다.  
이에 있어서, 투자율만 높은 소재, 예를 들어, 센더스트(sendust), 페라이트(ferrite) 등의 비전도성 물질을 사용할 경우에는 수지 복합재의 전자기파 간섭(electromagnetic interference, EMI)/무선주파 간섭(radio frequency interference, RFI) 차폐의 효과가 미비하다.  이에 따라, 일 구현예에서는 전기전도성과 투자율이 모두 높은 특정 무기물을 사용하여 수지 복합재의 EMI/RFI 차폐 효율을 개선시킨다.  또한 상기 무기물 외에도 니켈을 탄소섬유에 코팅한 형태로 사용함과 동시에 탄소나노튜브를 함께 사용하여, 우수한 EMI/RFI 차폐 특성 뿐만 아니라 우수한 강성 및 전기전도성을 얻을 수 있다.
일 구현예에 따른 다기능성 수지 복합재는 (A) 열가소성 수지, (B) 니켈코팅 탄소섬유, (C) 탄소나노튜브 및 (D) 약 10-3 Ω·m 이하의 체적저항 및 약 5000 이상의 상대투자율을 갖는 무기물을 포함한다.
 
이하 일 구현예에 따른 다기능성 수지 복합재에 포함되는 각 성분에 대하여 구체적으로 살펴본다.
(A) 열가소성 수지
상기 열가소성 수지는 폴리아미드 수지, 폴리에스테르 수지, 폴리아세탈 수지, 폴리카보네이트 수지, 폴리이미드 수지, 폴리페닐렌옥사이드 수지, 폴리술폰 수지, 폴리페닐렌설파이드 수지, 폴리아미드-이미드 수지, 폴리에테르술폰 수지, 액정 고분자, 폴리에테르케톤 수지, 폴리에테르이미드 수지, 폴리올레핀 수지, 고무 변성 비닐계 공중합체 수지, 폴리스티렌계 수지 또는 이들의 조합을 사용할 수 있다.  
이들 중에서 좋게는 결정성 수지를 사용할 수 있는데, 상기 결정성 수지로는 폴리아미드 수지, 폴리에스테르 수지, 폴리아세탈 수지, 폴리페닐렌설파이드 수지, 액정 고분자, 폴리에테르케톤 수지, 폴리올레핀 수지, 폴리스티렌계 수지 또는 이들의 조합을 들 수 있으며, 이들 중에서 더 좋게는 폴리페닐렌설파이드 수지를 들 수 있다.
상기 결정성 수지는 결정화 시 결정 영역 밖으로 필러들, 즉, 일 구현예에 따른 니켈코팅 탄소섬유, 탄소나노튜브 및 무기물을 배척하는 특성을 가짐에 따라, 전도성 패스(pass) 형성이 용이하여, 즉, 필러끼리 연결망을 구축하게 되어, 비결정성 수지보다 우수한 전도성을 얻을 수 있다.  또한 상기 필러들의 보강으로 인한 강성 효과도 비결정성 수지보다 우수하다.
상기 폴리아미드 수지는 고분자 주쇄에 아미드기를 함유한 것으로서, 아미노산, 락탐 또는 디아민과 디카르복실산을 주된 구성성분으로 하여 중합될 수 있다.
상기 폴리아미드 수지의 구체적인 예로는, 폴리카프로락탐(폴리아미드 6), 폴리(11-아미노운데칸산)(폴리아미드 11), 폴리라우릴락탐(폴리아미드 12), 폴리헥사메틸렌 아디프아미드(폴리아미드 66), 폴리헥사에틸렌 아젤아미드(폴리아미드 69), 폴리헥사에틸렌 세바카미드(폴리아미드 610), 폴리헥사에틸렌 도데카노디아미드(폴리아미드 612) 등과, 이들의 공중합체인 폴리아미드 6/610, 폴리아미드 6/66, 폴리아미드 6/12 등을 단독으로 사용하거나 2종 이상을 적정 비율로 혼합하여 사용할 수 있다.
상기 폴리에스테르 수지는 방향족 폴리에스테르 수지로서, 테레프탈산 또는 테레프탈산 알킬 에스테르와 C2 내지 C10의 글리콜 성분으로부터 용융 중합에 의하여 축중합된 수지를 사용할 수 있다.  이때 상기 알킬은 C1 내지 C10의 알킬을 의미한다.  
상기 방향족 폴리에스테르 수지의 구체적인 예로는, 폴리에틸렌 테레프탈레이트 수지, 폴리트리메틸렌 테레프탈레이트 수지, 폴리부틸렌 테레프탈레이트 수지, 폴리헥사메틸렌 테레프탈레이트 수지, 폴리시클로헥산 디메틸렌 테레프탈레이트 수지, 이들 수지에 일부 다른 단량체를 혼합하여 비결정성으로 개질한 수지 또는 이들의 조합을 사용할 수 있으며, 이들 중에서 좋게는 폴리에틸렌 테레프탈레이트 수지, 폴리트리메틸렌 테레프탈레이트 수지, 폴리부틸렌 테레프탈레이트 수지, 비결정성 폴리에틸렌 테레프탈레이트 수지 등을 사용할 수 있다.
상기 폴리아세탈 수지는 결정성 고분자로서 주사슬에 아세탈 결합을 가지는 포름알데히드 또는 트리옥세인의 중합체이다.  상기 폴리아세탈 수지는 전기절연성, 내마모성, 내열성 등이 우수하다.
상기 폴리페닐렌설파이드 수지는 하기 화학식 1로 표시되는 반복 단위를 70 몰% 이상 포함하는 수지이다.  상기 반복 단위가 70 몰% 이상 포함되는 경우 결정성 폴리머의 특징인 결정화도가 높고, 내열성, 내약품성 및 강성이 우수하다.
[화학식 1]
Figure PCTKR2010008598-appb-I000001
상기 폴리페닐렌설파이드 수지는 상기 화학식 1로 표시되는 반복단위 외에, 화학식 2 내지 9 중 선택되는 적어도 하나로 표시되는 반복단위를 더 포함하는 것을 사용할 수 있다.
[화학식 2]
Figure PCTKR2010008598-appb-I000002
[화학식 3]
Figure PCTKR2010008598-appb-I000003
[화학식 4]
Figure PCTKR2010008598-appb-I000004
[화학식 5]
Figure PCTKR2010008598-appb-I000005
[화학식 6]
Figure PCTKR2010008598-appb-I000006
[화학식 7]
Figure PCTKR2010008598-appb-I000007
(상기 화학식 7에서,
R은 C1 내지 C20의 알킬렌기, C6 내지 C30의 아릴렌기, C1 내지 C20의 알콕실렌기 또는 이들의 조합이다.)
[화학식 8]
Figure PCTKR2010008598-appb-I000008
[화학식 9]
Figure PCTKR2010008598-appb-I000009
상기 화학식 2 내지 9 중에서 적어도 하나로 표시되는 반복단위는 상기 화학식 1로 표시되는 반복 단위에 대하여 50 몰% 미만으로 포함될 수 있으며, 구체적으로는 30 몰% 미만으로 포함될 수 있다.  상기 화학식 2 내지 9 중에서 선택되는 적어도 하나로 표시되는 반복단위가 50 몰% 미만으로 포함되는 경우 내열도 및 기계적 물성이 우수하다.
상기 액정 고분자는 용액 또는 녹아 있는 상태에서 액정의 성질을 나타내는 고분자로, 내열성 및 강도가 좋고, 미세 가공이 가능하다.
상기 폴리에테르케톤 수지는 우수한 내열성, 난연성, 내열수성, 내약품성 등을 가진다.  
상기 폴리올레핀 수지는 고밀도 폴리에틸렌(high density polyethylene, HDPE) 수지, 선형 저밀도 폴리에틸렌(linear low density polyethylene, LLDPE) 수지, 폴리프로필렌 수지, 폴리부티렌 수지, 에틸렌-프로필렌 공중합체 수지, 에틸렌-비닐알코올 공중합체 수지 또는 이들의 조합을 사용할 수 있으며, 이들 중에서 좋게는 폴리프로필렌 수지를 사용할 수 있다.  이때 상기 고밀도 폴리에틸렌 수지는 0.94 내지 0.965의 밀도 범위를 가지는 것을 의미하며, 상기 선형 저밀도 폴리에틸렌 수지는 0.91 내지 0.94의 밀도 범위를 가지는 것을 의미한다.
상기 폴리스티렌계 수지는 폴리스티렌 수지, 신디오택틱 폴리스티렌 수지 또는 이들의 조합을 사용할 수 있다.  높은 입체 규칙성을 가진 상기 신디오택틱 폴리스티렌 수지는 스티렌 단량체로부터 메탈로센 촉매 및 공촉매로 이루어진 촉매 시스템을 이용하여 제조될 수 있다.
상기 열가소성 수지는 다기능성 수지 복합재 총량에 대하여 약 40 중량% 내지 약 80 중량%로 포함될 수 있으며, 구체적으로는 약 60 중량% 내지 약 75 중량%로 포함될 수 있다.  열가소성 수지가 상기 함량 범위 내로 포함되는 경우 수지 복합재의 가공성이 우수하며, 우수한 강성, 전기전도성 및 EMI/RFI 차폐 특성을 구현할 수 있다.
 
(B) 니켈코팅 탄소섬유
상기 니켈코팅 탄소섬유는 EMI/RFI 차폐에 효과적인 니켈이 탄소섬유에 코팅된 형태로서, 투과율이 높은 무기물과 함께 망목 구조를 형성하여 우수한 차폐 효과를 나타낼 수 있다.
상기 탄소섬유는 팬(pan) 계열 또는 피치(pitch) 계열의 탄소섬유를 사용할 수 있다.
상기 탄소섬유의 직경은 약 5 ㎛ 내지 약 12 ㎛ 일 수 있으며, 구체적으로는 약 7 ㎛ 내지 약 10 ㎛ 일 수 있다.  또한 상기 탄소섬유의 길이는 약 3 ㎜ 내지 약 12 ㎜, 구체적으로는 약 3 ㎜ 내지 약 8 ㎜ 일 수 있다.  탄소섬유의 직경 및 길이가 각각 상기 범위 내인 경우 전도성 패스(pass) 형성이 용이하며 동시에 우수한 가공성을 얻을 수 있다.
상기 니켈의 코팅 방법은 금속 코팅의 통상적인 방법인, 무전해법 또는 전해법으로 코팅될 수 있다.
상기 니켈코팅 탄소섬유는 니켈이 탄소섬유에 약 0.01 ㎛ 내지 약 1 ㎛의 두께로, 구체적으로는 약 0.1 ㎛ 내지 약 0.5 ㎛의 두께로 코팅된 것일 수 있다.  상기 범위의 두께로 코팅되는 경우 충분한 코팅 효과를 얻을 수 있으며, 강성이 우수하며, 생산 공정상의 효율이 우수하다.
상기 니켈코팅 탄소섬유의 체적저항은 약 10-4 Ω·m 이하, 구체적으로는 약 10-6 Ω·m 이하 일 수 있고, 인장강도는 약 150 GPa 이상, 구체적으로는 약 200 GPa 이상일 수 있다.  상기 범위의 체적저항 및 인장강도를 가진 니켈코팅 탄소섬유를 사용할 경우 우수한 전기전도성 및 기계적 강도를 얻을 수 있다.
상기 니켈코팅 탄소섬유는 다기능성 수지 복합재 총량에 대하여 약 10 중량% 내지 약 40 중량%로 포함될 수 있으며, 구체적으로는 약 15 중량% 내지 약 25 중량%로 포함될 수 있다.  니켈코팅 탄소섬유가 상기 함량 범위 내로 포함되는 경우 수지 복합재의 우수한 강성, 전기전도성 및 EMI/RFI 차폐 특성을 구현할 수 있다.
 
(C) 탄소나노튜브
상기 탄소나노튜브는 높은 기계적 강도, 높은 영스모듈러스(Young's Modulus) 및 높은 종횡비(aspect ratio)의 기계적 특성, 높은 전기전도성 및 높은 열안정성을 가진다.
상기 탄소나노튜브를 합성하는 방법은 전기방전법(arc-discharge), 열분해법(pyrolysis), 레이저 어블레이션법(laser ablation), 플라즈마 화학기상증착법(plasma chemical vapor deposition), 열화학 기상증착법(thermal chemical vapor deposition), 전기분해법 등이 있으나, 일 구현예에서는 합성 방법에 관계없이 얻어진 탄소나노튜브 모두를 사용할 수 있다.
상기 탄소나노튜브는 그 벽의 개수에 따라 단일벽 탄소나노튜브(single wall carbon nanotube), 이중벽 탄소나노튜브(double wall carbon nanotube) 및 다중벽 탄소나노튜브(multi wall carbon nanotube)로 나눌 수 있으며, 일 구현예에서는 그 종류에 제한을 두지 않으나 다중벽 탄소나노튜브를 사용하는 것이 좋다.
상기 탄소나노튜브의 직경은 약 1 ㎚ 내지 약 50 ㎚ 일 수 있고, 길이는 약 10 ㎚ 내지 약 20 ㎛ 일 수 있다.  상기 범위 내의 직경 및 길이를 가진 탄소나노튜브를 사용할 경우 수지 복합재의 전기전도성 및 가공성이 우수하다.
상기 탄소나노튜브는 순도가 약 80% 이상인 것을 사용할 수 있으며, 또한 종횡비(aspect ratio)가 약 100 내지 약 1,000 인 것을 사용할 수 있으며, 상기 범위 내의 것을 사용할 경우 전기전도성이 더욱 개선될 수 있다.
상기 탄소나노튜브는 다기능성 수지 복합재 총량에 대하여 약 0.1 중량% 내지 약 2 중량%로 포함될 수 있으며, 구체적으로는 약 0.3 중량% 내지 약 1 중량%로 포함될 수 있다.  탄소나노튜브가 상기 함량 범위 내로 포함되는 경우 수지 복합재의 우수한 강성, 전기전도성 및 EMI/RFI 차폐 특성을 구현할 수 있다.
 
(D) 무기물
상기 무기물은 전기전도성이 높고 투자율이 높은 것을 사용할 수 있다.  
상기 무기물은 구체적으로 니켈-철 합금류를 사용할 수 있으며, 더 구체적으로는 뮤메탈(Mu-metal), 펌얼로이(Permalloy) 또는 이들의 조합을 사용할 수 있다.
상기 무기물의 체적저항은 약 10-1 Ω·m 이하, 구체적으로는 10-3 Ω·m 이하일 수 있으며, 또한 상대투자율은 약 1000 이상, 구체적으로는 5000 이상일 수 있다.  상기 범위의 체적저항 및 상대투자율을 갖는 무기물을 사용할 경우 수지 복합재의 우수한 전기전도성 및 EMI/RFI 차폐 특성을 구현할 수 있다.
상기 무기물은 다기능성 수지 복합재 총량에 대하여 약 3 중량% 내지 약 20 중량%로 포함될 수 있으며, 구체적으로는 약 5 중량% 내지 약 15 중량%로 포함될 수 있다.  무기물이 상기 함량 범위 내로 포함되는 경우 수지 복합재의 우수한 전기전도성 및 EMI/RFI 차폐 특성을 구현할 수 있다.
 
(E) 유리섬유
일 구현예에 따른 다기능성 수지 복합재는 수지 복합재의 강성을 더욱 개선시키기 위해 유리섬유를 더 포함할 수 있다.
상기 유리섬유는 상업적으로 사용되는 통상적인 것으로서, 직경이 약 8 ㎛ 내지 약 15 ㎛ 이고 길이가 약 2 ㎜ 내지 약 12 ㎜ 인 유리섬유를 사용할 수 있다.  상기 범위의 직경 및 길이를 가진 유리섬유를 사용할 경우 수지 복합재의 우수한 강성을 얻을 수 있다.
상기 유리섬유는 단면이 원형, 타원형, 직사각형 또는 두 개의 원형이 연결된 아령 모양의 것을 사용할 수 있다.
상기 유리섬유는 열가소성 수지에의 함침도를 향상시키기 위하여, 소정의 유리섬유 처리제로 유리섬유 표면을 코팅 처리할 수 있다.  상기 유리섬유 처리제로는 윤활제(lubricant), 커플링제, 계면활성제, 상용화제 등이 사용될 수 있다.  상기 윤활제는 유리섬유 제조시 일정한 직경 및 두께를 갖는 양호한 스트랜드를 형성하기 위해 사용되며, 상기 커플링제는 유리섬유와 열가소성 수지와의 양호한 접착을 부여하는 역할을 하며, 상기 상용화제로는 실란계 상용화제를 사용할 수 있다.
상기 유리섬유는 다기능성 수지 복합재 100 중량부에 대하여 약 5 중량부 내지 약 20 중량부로 포함될 수 있으며, 구체적으로는 약 5 중량부 내지 약 10 중량부로 포함될 수 있다.  유리섬유가 상기 함량 범위 내로 포함되는 경우 수지 복합재의 우수한 강성, 전기전도성 및 EMI/RFI 차폐 특성을 구현할 수 있다.
 
(F) 기타 첨가제
상기 다기능성 수지 복합재는 각 용도에 따라 항균제, 열안정제, 산화방지제, 이형제, 광안정제, 계면활성제, 커플링제, 가소제, 혼화제, 안정제, 활제, 정전기방지제, 조색제, 방염제, 내후제, 착색제, 자외선 흡수제, 자외선 차단제, 핵 형성제, 접착 조제, 점착제 또는 이들의 조합의 첨가제를 더 포함할 수 있다.
상기 산화방지제로는 페놀형, 포스파이트(phosphite)형, 티오에테르형 또는 아민형 산화방지제를 사용할 수 있으며, 상기 이형제로는 불소 함유 중합체, 실리콘 오일, 스테아린산(stearic acid)의 금속염, 몬탄산(montanic acid)의 금속염, 몬탄산 에스테르 왁스 또는 폴리에틸렌 왁스를 사용할 수 있다.  또한 상기 내후제로는 벤조페논형 또는 아민형 내후제를 사용할 수 있고, 상기 착색제로는 염료 또는 안료를 사용할 수 있다.  또한 상기 자외선 차단제로는 이산화티타늄(TiO2) 또는 카본블랙을 사용할 수 있고, 상기 핵 형성제로는 탈크 또는 클레이를 사용할 수 있다. 
상기 첨가제는 다기능성 수지 복합재 100 중량부에 대하여 약 0.1 중량부 내지 약 30 중량부로 포함될 수 있다.  첨가제가 상기 범위 내로 포함되는 경우 각 용도에 따른 첨가제의 효과를 얻을 수 있다.
일 구현예에 따른 다기능성 수지 복합재의 표면저항은 약 102 Ω/□ 이하일 수 있다.
일 구현예에 따른 다기능성 수지 복합재는 수지 조성물을 제조하는 공지의 방법으로 제조할 수 있다.  예를 들면, 일 구현예에 따른 구성 성분과 기타 첨가제들을 동시에 혼합한 후에, 압출기 내에서 용융 압출하고 펠렛 형태로 제조할 수 있다.  이와 같이 다기능성 수지 복합재의 제조 시, 열가소성 수지가 매트릭스를 이루고, 상기 매트릭스 내에 필러들, 즉, 니켈코팅 탄소섬유, 탄소나노튜브 및 무기물이 분산되어 있는 구조를 가질 수 있다.
다른 일 구현예에 따르면, 전술한 다기능성 수지 복합재를 성형하여 제조한 성형품을 제공한다.  즉, 상기 다기능성 수지 복합재를 이용하여 사출 성형, 블로우 성형, 압출 성형, 열 성형 등의 여러 가지 공정에 의해 성형품을 제조할 수 있다.  특히 우수한 강성, 전기전도성 및 EMI/RFI 차폐 특성이 요구되는 각종 전기전자 부품, 예를 들어 TV, PDP 등과 같은 디스플레이 장치, 컴퓨터, 휴대폰, 사무자동화 기기, 내부 프레임류 등의 다양한 성형품 제조에 유용하게 적용될 수 있다.
이하, 본 발명의 바람직한 실시예를 기재한다.  다만, 하기의 실시예는 본 발명의 바람직한 일 실시예일뿐, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.
[실시예]
일 구현예에 따른 다기능성 수지 복합재의 제조에 사용되는 각 구성 성분은 다음과 같다.  
(A) 열가소성 수지
용융지수가 316℃, 1270g의 하중에서 48 내지 70 g/10min의 값을 가지는 폴리페닐렌설파이드 수지를 사용하였다.
(B) 니켈코팅 탄소섬유
직경이 7 ㎛이고 길이가 4 ㎜인 탄소섬유에 니켈이 0.25 ㎛의 두께로 코팅된 니켈코팅 탄소섬유를 사용하였으며, 이의 체적저항은 10-4 Ω·m 이고 인장강도는 238 GPa 이다.
(B') 은코팅 유리섬유
17 ㎛ 직경의 유리섬유에 무전해도금법으로 0.3 내지 0.5 ㎛ 두께의 은이 코팅된 유리섬유를 사용하였다.
(C) 탄소나노튜브
직경이 9.5 ㎚이고 길이가 1.5 ㎛이고 순도가 90%인 다중벽 탄소나노튜브를 사용하였다.
(D) 무기물
(D-1) 니켈-철 합금류인 펌얼로이(permalloy)를 사용하였으며, 이의 체적저항은 10-7 Ω·m 이며 상대투자율은 10,000 이다.
(D-2) 후쿠다금속박분공업사의 은 파우더를 사용하였다.  상기 은 파우더는 체적저항이 10-10 Ω·m 이고 상대투자율은 1 이하이다.
(E) 유리섬유
직경이 10 ㎛이고 길이가 3 mm인 유리섬유로서, 실란계 상용화제로 표면이 코팅된 유리섬유를 사용하였다.
 
실시예 1 내지 6 및 비교예 1 내지 5
상기에서 언급된 구성 성분들을 이용하여 하기 표 1에 나타낸 조성으로 각 실시예 1 내지 6 및 비교예 1 내지 5에 따른 다기능성 수지 복합재를 제조하였다.
그 제조 방법으로는, 하기 표 1에 나타낸 조성으로 각 성분을 혼합하여 통상의 이축 압출기와 사출기를 이용하여 물성 측정을 위한 시편을 제조하였다.
상기 제조된 시편을 이용하여 하기의 방법으로 물성을 측정한 후, 그 결과를 하기 표 1에 나타내었다.
(1) EMI 차폐율: 시편 두께 2.1T에서 ASTM D4935에 준하여 측정하였다.
(2) 표면저항: ASTM D4496에 준하여 측정하였다.
(3) 굴곡강도: 1/4" 시편 두께에서 ASTM D790에 준하여 측정하였다.
(4) IZOD 충격강도: 1/8" 시편 두께에서 ASTM D256에 준하여 측정하였다.
표 1
항목 실시예 비교예
1 2 3 4 5 6 1 2 3 4 5
(A) 열가소성 수지(중량%) 70 51.5 69 65 64 76 75 70.5 54.5 70 70
(B) 니켈코팅 탄소섬유(중량%) 18.5 37 18.5 18.5 18.5 18.5 18.5 18.5 -   - 18.5
(B') 은코팅 유리섬유(중량%) - - - - - - - - - 18.5   -
(C) 탄소나노튜브(중량%) 0.5 0.5 1.5 0.5 0.5 0.5 0.5 - 0.5 0.5 0.5
(D) 무기물 (D-1)(중량%) 5.0 5.0 5.0 10.0 5.0 5 - 5 5 5.0   -
(D-2)(중량%) - - - - - - - - -   - 5
(E) 유리섬유(중량%) 6.0 6.0 6.0 6.0 12.0 - 6.0 6.0 40 6.0 6.0
EMI 차폐율(dB) 32 40 36 32 30 34 22 30 15 25 20
표면저항(Ω/□) 5.6×101 2.9×100 2.1×100 1.3×101 4.1×102 5.3×101 7.4×101 9.2×102 9.0×107 8.5×100 7.0×101
굴곡강도(GPa) 17 19 16 17 16 15 15 16 11 19 17
충격강도(J/m) 37 48 36 40 55 31 35 32 69 45 38
상기 표 1을 통하여, 일 구현예에 따라 열가소성 수지, 니켈코팅 탄소섬유, 탄소나노튜브 및 무기물을 모두 사용한 실시예 1 내지 6의 경우, 무기물을 사용하지 않은 비교예 1, 탄소나노튜브를 사용하지 않은 비교예 2, 니켈코팅 탄소섬유를 사용하지 않은 비교예 3, 니켈코팅 탄소섬유 대신 은코팅 유리섬유를 사용한 비교예 4, 그리고 상대투자율이 일 구현예에 따른 범위를 벗어난 무기물을 사용한 비교예 5의 경우와 비교하여, 강성, 전기전도성 및 EMI/RFI 차폐 특성이 모두 우수하게 나타남을 알 수 있다.
특히, 무기물을 사용하지 않은 비교예 1은 EMI/RFI 차폐 특성이 저하되며, 탄소나노튜브를 사용하지 않은 비교예 2는 전기전도성이 저하되며, 니켈코팅 탄소섬유를 사용하지 않은 비교예 3은 강성, 전기전도성 및 EMI/RFI 차폐 특성이 모두 저하되며, 니켈코팅 탄소섬유 대신 은코팅 유리섬유를 사용한 비교예 4와 상대투자율이 일 구현예에 따른 범위를 벗어난 무기물을 사용한 비교예 5는 EMI/RFI 차폐 특성이 저하됨을 확인할 수 있다.
본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다.  그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims (14)

  1. (A) 열가소성 수지;
    (B) 니켈코팅 탄소섬유;
    (C) 탄소나노튜브; 및
    (D) 10-3 Ω·m 이하의 체적저항 및 5000 이상의 상대투자율을 갖는 무기물
    을 포함하는 다기능성 수지 복합재.
     
  2. 제1항에 있어서,
    상기 다기능성 수지 복합재는 상기 열가소성 수지(A) 40 내지 80 중량%, 상기 니켈코팅 탄소섬유(B) 10 내지 40 중량%, 상기 탄소나노튜브(C) 0.1 내지 2 중량% 및 상기 무기물(D) 3 내지 20 중량%를 포함하는 것인 다기능성 수지 복합재.
     
  3. 제1항에 있어서,
    상기 열가소성 수지(A)는 폴리아미드 수지, 폴리에스테르 수지, 폴리아세탈 수지, 폴리카보네이트 수지, 폴리이미드 수지, 폴리페닐렌옥사이드 수지, 폴리술폰 수지, 폴리페닐렌설파이드 수지, 폴리아미드-이미드 수지, 폴리에테르술폰 수지, 액정 고분자, 폴리에테르케톤 수지, 폴리에테르이미드 수지, 폴리올레핀 수지, 고무 변성 비닐계 공중합체 수지, 폴리스티렌계 수지 또는 이들의 조합을 포함하는 것인 다기능성 수지 복합재.
     
  4. 제1항에 있어서,
    상기 열가소성 수지(A)는 결정성 수지인 것인 다기능성 수지 복합재.
     
  5. 제1항에 있어서,
    상기 니켈코팅 탄소섬유(B)는 5 내지 12 ㎛의 직경과 3 내지 12 ㎜의 길이를 가진 탄소섬유를 포함하는 것인 다기능성 수지 복합재.
     
  6. 제1항에 있어서,
    상기 니켈코팅 탄소섬유(B)는 니켈이 탄소섬유에 0.01 내지 1 ㎛의 두께로 코팅된 것인 다기능성 수지 복합재.
     
  7. 제1항에 있어서,
    상기 니켈코팅 탄소섬유(B)는 10-4 Ω·m 이하의 체적저항 및 200 GPa 이상의 인장강도를 갖는 것인 다기능성 수지 복합재.
     
  8. 제1항에 있어서,
    상기 탄소나노튜브(C)는 1 내지 50 ㎚의 직경 및 10 ㎚ 내지 20 ㎛의 길이를 갖는 것인 다기능성 수지 복합재.
     
  9. 제1항에 있어서,
    상기 무기물(D)은 니켈-철 합금류를 포함하는 것인 다기능성 수지 복합재.
     
  10. 제1항에 있어서,
    상기 무기물(D)은 뮤메탈(Mu-metal), 펌얼로이(Permalloy) 또는 이들의 조합을 포함하는 것인 다기능성 수지 복합재.
     
  11. 제1항에 있어서,
    상기 다기능성 수지 복합재는 상기 다기능성 수지 복합재 100 중량부에 대하여 (E) 유리섬유 5 내지 20 중량부를 더 포함하는 것인 다기능성 수지 복합재.
     
  12. 제1항에 있어서,
    상기 유리섬유(E)는 8 내지 15 ㎛의 직경 및 2 내지 12 mm의 길이를 갖는 것은 다기능성 수지 복합재.
     
  13. 제1항에 있어서,
    상기 다기능성 수지 복합재는 항균제, 열안정제, 산화방지제, 이형제, 광안정제, 계면활성제, 커플링제, 가소제, 혼화제, 안정제, 활제, 정전기방지제, 조색제, 방염제, 내후제, 착색제, 자외선 흡수제, 자외선 차단제, 핵 형성제, 접착 조제, 점착제 또는 이들의 조합의 첨가제를 더 포함하는 것인 다기능성 수지 복합재.
     
  14. 제1항 내지 제13항 중 어느 한 항의 다기능성 수지 복합재를 이용하여 제조된 성형품.
PCT/KR2010/008598 2009-12-23 2010-12-02 다기능성 수지 복합재 및 이를 이용한 성형품 WO2011078492A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/530,144 US8883044B2 (en) 2009-12-23 2012-06-22 Multi-functional resin composite material and molded product using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020090130067A KR101288565B1 (ko) 2009-12-23 2009-12-23 다기능성 수지 복합재 및 이를 이용한 성형품
KR10-2009-0130067 2009-12-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/530,144 Continuation-In-Part US8883044B2 (en) 2009-12-23 2012-06-22 Multi-functional resin composite material and molded product using the same

Publications (2)

Publication Number Publication Date
WO2011078492A2 true WO2011078492A2 (ko) 2011-06-30
WO2011078492A3 WO2011078492A3 (ko) 2011-11-03

Family

ID=44196245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/008598 WO2011078492A2 (ko) 2009-12-23 2010-12-02 다기능성 수지 복합재 및 이를 이용한 성형품

Country Status (3)

Country Link
US (1) US8883044B2 (ko)
KR (1) KR101288565B1 (ko)
WO (1) WO2011078492A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8883044B2 (en) 2009-12-23 2014-11-11 Cheil Industries Inc. Multi-functional resin composite material and molded product using the same
US9381588B2 (en) 2013-03-08 2016-07-05 Lotus BioEFx, LLC Multi-metal particle generator and method

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101338199B1 (ko) * 2011-12-13 2013-12-06 고려대학교 산학협력단 고분자-전도성 필러 복합체와 그 제조방법
KR101593752B1 (ko) * 2013-10-01 2016-02-12 제일모직주식회사 전도성 열가소성 수지 조성물
CN103642191A (zh) * 2013-11-25 2014-03-19 常熟市蓝天新材料科技有限公司 抗菌的增韧改性聚苯醚合金材料
CN103642193A (zh) * 2013-11-25 2014-03-19 常熟市蓝天新材料科技有限公司 抗菌的聚苯醚复合材料的制备方法
ES2694802T3 (es) * 2014-06-26 2018-12-27 Nexans Dispositivo para el blindaje electromagnético
KR20160116599A (ko) 2015-03-30 2016-10-10 삼성전자주식회사 도전성 복합체 제조용 조성물, 이로부터 제조된 복합체, 및 이를 포함한 전자 소자
KR101745088B1 (ko) * 2015-05-15 2017-06-08 현대자동차주식회사 전도성이 우수한 탄소섬유 복합재 및 이의 제조방법
KR20170136064A (ko) * 2016-05-30 2017-12-11 주식회사 아모그린텍 플렉시블 전자파 차폐시트 및 그를 구비한 전자기기
KR20170136063A (ko) * 2016-05-30 2017-12-11 주식회사 아모그린텍 초박형 전자파 차폐시트 및 그를 구비한 전자기기
KR101856870B1 (ko) * 2016-11-08 2018-06-19 연세대학교 산학협력단 접착력이 개선된 고분자 복합체 및 그 제조 방법
US10945358B2 (en) 2016-12-12 2021-03-09 Amogreentech Co., Ltd. Flexible electromagnetic wave shielding material, electromagnetic wave shielding type circuit module comprising same and electronic device furnished with same
KR102347760B1 (ko) 2017-09-25 2022-01-05 현대자동차주식회사 전자파 차폐용 열가소성 복합수지 조성물
KR102356637B1 (ko) * 2017-09-29 2022-01-26 코오롱플라스틱 주식회사 Emi 차폐용 폴리부틸렌 테레프탈레이트 수지 조성물 및 이로부터 제조된 성형품
WO2019245892A1 (en) 2018-06-20 2019-12-26 Carbon, Inc. Method of treating additive manufacturing objects with a compound of interest
US10669436B1 (en) * 2018-11-16 2020-06-02 Conductive Composites Company Ip, Llc Multifunctional paints and caulks with controllable electromagnetic properties
SG11202107471VA (en) * 2019-03-06 2021-08-30 Agency Science Tech & Res Conductive carbon fiber reinforced composite and method of forming thereof
RU2755476C1 (ru) * 2020-11-02 2021-09-16 Федеральное государственное бюджетное учреждение науки Институт высокомолекулярных соединений Российской академии наук Кристаллизуемый плавкий полиэфиримидный композит
CN112521743A (zh) * 2020-11-12 2021-03-19 国网山西省电力公司电力科学研究院 工频电场探头电磁屏蔽层复合材料
CN112795185A (zh) * 2020-12-22 2021-05-14 长沙新材料产业研究院有限公司 一种导电聚酰亚胺复合材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4596670A (en) * 1983-10-25 1986-06-24 General Electric Company EMI shielding effectiveness of thermoplastics
KR19990020144A (ko) * 1997-08-30 1999-03-25 오용탁 전자파 흡수 차폐체
JP2002538581A (ja) * 1999-02-23 2002-11-12 ユーロコプター・ドイッチェランド・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 繊維複合材料で形成されたケーブル用シールド
JP2005514797A (ja) * 2002-01-08 2005-05-19 エレクタ ネウロマグ オイ 磁気シールドルーム用壁部材及び、磁気シールドルーム
KR20050050720A (ko) * 2003-11-26 2005-06-01 주식회사 코오롱 전자파 차폐용 복합소재 도료 조성물
KR20080011686A (ko) * 2005-06-02 2008-02-05 엔.브이. 베카에르트 에스.에이. 도전성 섬유를 포함하는 중합체 이엠아이 하우징

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5476426A (en) 1977-12-01 1979-06-19 Toshiba Corp Wear resistant, high permeability alloy
NL8204288A (nl) * 1982-11-05 1984-06-01 Gen Electric Polymeermengsel, werkwijze voor het bereiden van het polymeermengsel, voorwerpen gevormd uit het polymeermengsel.
US4952448A (en) * 1989-05-03 1990-08-28 General Electric Company Fiber reinforced polymeric structure for EMI shielding and process for making same
US5869412A (en) 1991-08-22 1999-02-09 Minnesota Mining & Manufacturing Co. Metal fibermat/polymer composite
US5366664A (en) * 1992-05-04 1994-11-22 The Penn State Research Foundation Electromagnetic shielding materials
US5811050A (en) 1994-06-06 1998-09-22 Gabower; John F. Electromagnetic interference shield for electronic devices
US20020108699A1 (en) 1996-08-12 2002-08-15 Cofer Cameron G. Method for forming electrically conductive impregnated fibers and fiber pellets
US6409942B1 (en) 1996-11-07 2002-06-25 Carmel Olefins Ltd. Electrically conductive compositions and methods for producing same
FI118127B (fi) 1999-03-04 2007-07-13 Valtion Teknillinen Sähköä johtava termoplastinen elastomeeri ja siitä valmistettu tuote
US6225565B1 (en) * 1999-06-07 2001-05-01 The Untied States Of America As Represented By The Secretary Of The Navy Flexible cable providing EMI shielding
KR100334434B1 (ko) 1999-10-08 2002-05-03 박호군 고투자율의 금속섬유를 사용하여 형성되는 전자파 차폐재 및 그 제조방법
KR100347014B1 (ko) 1999-11-10 2002-08-03 한국과학기술원 코어리스 교류 유도전동기
JP2003272453A (ja) 2002-03-13 2003-09-26 Kanegafuchi Chem Ind Co Ltd 半導電性無機フィラー及びその製造方法ならびに半導電性樹脂組成物
JP2003306553A (ja) 2002-04-15 2003-10-31 Kanegafuchi Chem Ind Co Ltd ポリイミド成形体
US7935415B1 (en) * 2002-04-17 2011-05-03 Conductive Composites Company, L.L.C. Electrically conductive composite material
US7589284B2 (en) 2005-09-12 2009-09-15 Parker Hannifin Corporation Composite polymeric material for EMI shielding
KR100856137B1 (ko) 2007-08-08 2008-09-02 제일모직주식회사 전기전도성 열가소성 수지 조성물 및 그 성형품
US20100311866A1 (en) * 2009-06-05 2010-12-09 University Of Massachusetts Heirarchial polymer-based nanocomposites for emi shielding
KR101288565B1 (ko) 2009-12-23 2013-07-22 제일모직주식회사 다기능성 수지 복합재 및 이를 이용한 성형품
US9169395B2 (en) * 2012-05-16 2015-10-27 Sabic Global Technologies B.V. Polycarbonate composition and articles formed therefrom

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4596670A (en) * 1983-10-25 1986-06-24 General Electric Company EMI shielding effectiveness of thermoplastics
KR19990020144A (ko) * 1997-08-30 1999-03-25 오용탁 전자파 흡수 차폐체
JP2002538581A (ja) * 1999-02-23 2002-11-12 ユーロコプター・ドイッチェランド・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 繊維複合材料で形成されたケーブル用シールド
JP2005514797A (ja) * 2002-01-08 2005-05-19 エレクタ ネウロマグ オイ 磁気シールドルーム用壁部材及び、磁気シールドルーム
KR20050050720A (ko) * 2003-11-26 2005-06-01 주식회사 코오롱 전자파 차폐용 복합소재 도료 조성물
KR20080011686A (ko) * 2005-06-02 2008-02-05 엔.브이. 베카에르트 에스.에이. 도전성 섬유를 포함하는 중합체 이엠아이 하우징

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8883044B2 (en) 2009-12-23 2014-11-11 Cheil Industries Inc. Multi-functional resin composite material and molded product using the same
US9381588B2 (en) 2013-03-08 2016-07-05 Lotus BioEFx, LLC Multi-metal particle generator and method

Also Published As

Publication number Publication date
KR20110072946A (ko) 2011-06-29
US20120319055A1 (en) 2012-12-20
US8883044B2 (en) 2014-11-11
KR101288565B1 (ko) 2013-07-22
WO2011078492A3 (ko) 2011-11-03

Similar Documents

Publication Publication Date Title
WO2011078492A2 (ko) 다기능성 수지 복합재 및 이를 이용한 성형품
WO2020130365A1 (ko) 폴리페닐렌 설파이드 수지 조성물, 이의 제조방법 및 이로부터 제조된 사출성형품
US7939167B2 (en) Resin composition
TWI404758B (zh) 樹脂組成物
KR102276640B1 (ko) 전기 전도성 폴리아미드 성형 재료
WO2015084065A1 (ko) 기계적 물성이 개선된 복합재 및 이를 함유하는 성형품
WO2013115538A1 (ko) 비할로겐 난연 고강성 폴리카보네이트 수지 조성물
WO2017188524A1 (ko) 대전방지용 탄소 복합재, 성형품 및 그 제조방법
WO2010059008A2 (ko) 복합탄소소재를 포함하는 전도성 수지조성물
WO2016175572A1 (ko) 폴리카보네이트 수지 조성물 및 이를 이용한 성형품
WO2011052848A1 (ko) 폴리페닐렌에테르계 수지 조성물 및 이를 이용한 성형품
WO2012023672A1 (ko) 고강성 전자파 차폐 복합재
CN104968727B (zh) 移动电子装置
WO2011065678A2 (ko) 친환경 폴리아미드 수지 조성물 및 이를 이용한 성형품
US20080161453A1 (en) Polyphenylene Sulfide Resin Composition and Plastic Mold Produced Using the Same
KR20020077988A (ko) 유해 전자파 차단 및 전도성 부여를 위한 이온 빔 또는 이온 플라즈마 또는 이온주입법 처리에 적합한 고분자 수지
WO2015088239A1 (ko) 할로겐계 난연 유리섬유 강화 폴리아미드 수지 조성물, 및 제조방법
WO2017116043A1 (ko) 열가소성 수지 조성물 및 이를 포함하는 성형품
WO2020145500A1 (ko) 내열성과 전자파 차폐능이 우수한 열가소성 수지 조성물, 이의 제조방법 및 이로부터 제조된 사출성형품
WO2017111441A1 (ko) 섬유 강화 복합재용 조성물, 섬유 강화 복합재 및 섬유 강화 복합재의 제조방법
WO2018124482A2 (ko) 수지 조성물 및 이로부터 제조된 성형품
WO2012091204A1 (ko) 휴대용 디스플레이 제품의 lcd 보호용 브라켓
WO2017131317A1 (ko) 대전방지 트레이 및 그 제조방법
WO2017146340A1 (ko) 탄소복합소재 및 그 제조방법
WO2019132580A1 (ko) 폴리아미드 수지 조성물 및 이를 포함하는 성형품

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10839689

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10839689

Country of ref document: EP

Kind code of ref document: A2