WO2021086019A1 - 열가소성 수지 조성물 및 이를 이용한 성형품의 제조 방법 - Google Patents

열가소성 수지 조성물 및 이를 이용한 성형품의 제조 방법 Download PDF

Info

Publication number
WO2021086019A1
WO2021086019A1 PCT/KR2020/014842 KR2020014842W WO2021086019A1 WO 2021086019 A1 WO2021086019 A1 WO 2021086019A1 KR 2020014842 W KR2020014842 W KR 2020014842W WO 2021086019 A1 WO2021086019 A1 WO 2021086019A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
weight
parts
resin composition
less
Prior art date
Application number
PCT/KR2020/014842
Other languages
English (en)
French (fr)
Inventor
최기대
김영주
함명조
권오민
Original Assignee
(주) 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200139470A external-priority patent/KR102581385B1/ko
Application filed by (주) 엘지화학 filed Critical (주) 엘지화학
Priority to JP2021529298A priority Critical patent/JP7174155B2/ja
Priority to CN202080006446.9A priority patent/CN113166532B/zh
Priority to EP20883464.8A priority patent/EP3865539A4/en
Priority to US17/293,432 priority patent/US20210403682A1/en
Publication of WO2021086019A1 publication Critical patent/WO2021086019A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/10Reinforcing macromolecular compounds with loose or coherent fibrous material characterised by the additives used in the polymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment

Definitions

  • the present invention relates to a thermoplastic resin composition and a method of manufacturing a molded article using the same.
  • electromagnetic waves generated from electronic devices can damage other devices or the human body.
  • the present invention relates to a thermoplastic resin composition excellent in mechanical properties and electromagnetic shielding performance, and a method of manufacturing a molded article using the same.
  • an exemplary embodiment of the present invention provides a thermoplastic resin composition comprising a thermoplastic resin, carbon fibers, carbon nanotubes, plate-shaped graphite, and metal fibers.
  • An exemplary embodiment of the present invention comprises the steps of forming a first kneaded product by kneading a thermoplastic resin, a carbon nanotube, and a plate-shaped graphite; Adding and kneading carbon fibers to the first kneaded product to form a second kneaded product; Adding and kneading metal fibers to the second kneaded product to form a thermoplastic resin composition; And molding the thermoplastic resin composition to prepare a molded article.
  • An exemplary embodiment of the present invention provides a molded article manufactured from the thermoplastic resin composition.
  • thermoplastic resin composition according to an exemplary embodiment of the present invention may have excellent mechanical properties and electromagnetic wave shielding performance.
  • the molded article manufacturing method according to an exemplary embodiment of the present invention can easily manufacture a molded article having excellent mechanical properties and electromagnetic wave shielding performance.
  • FIG. 1 is a view showing a cross-section of an extruder used in a method for manufacturing a molded article according to an embodiment of the present invention.
  • the unit "parts by weight” may mean a ratio of weight between each component.
  • thermoplastic resin composition of the present invention and a method of manufacturing a molded article using the same will be described in more detail.
  • thermoplastic resin a thermoplastic resin
  • filler including carbon fibers, carbon nanotubes, plate-shaped graphite, and metal fibers.
  • thermoplastic resin composition according to an exemplary embodiment of the present invention may have excellent mechanical properties and electromagnetic wave shielding performance.
  • the thermoplastic resin may include at least one of a nylon resin, a polycarbonate resin, a polyalkylene terephthalate resin, and a maleic anhydride-modified polyolefin resin.
  • the thermoplastic resin composition is mechanically Molded products with excellent physical properties can be easily implemented.
  • the thermoplastic resin may include at least one of a nylon resin, a polycarbonate resin, a polybutylene terephthalate resin, a polyethylene terephthalate, and a maleic anhydride-modified polyolefin resin.
  • a thermoplastic resin composition including at least one of a nylon resin, a polycarbonate resin, a polybutylene terephthalate resin, and a maleic anhydride-modified polyolefin resin can easily implement a molded article having excellent mechanical properties.
  • the maleic anhydride-modified polyolefin resin may be a polymer in which maleic anhydride is grafted to a polyolefin resin with a grafting rate of 0.5% by weight or more and 2% by weight or less.
  • a thermoplastic resin composition comprising a polyolefin resin grafted with maleic anhydride of 0.5% by weight or more and 2% by weight or less can provide a molded article having excellent mechanical properties such as tensile strength and impact strength.
  • the graft rate can be measured from the result obtained by acid-base titration of the modified polyolefin resin.
  • 1 g of the modified polyolefin resin is added to 150 ml of xylene saturated with water and refluxed for about 2 hours, and then 1% by weight thymol blue -After adding a small amount of dimethylformamide solution and titrating slightly with 0.05N sodium hydroxide-ethyl alcohol solution to obtain an ultramarine solution, this solution was again titrated with 0.05N hydrochloric acid-isopropyl alcohol solution until yellowish color was obtained.
  • the acid value is obtained, and the content (% by weight) of the compound grafted onto the modified polyolefin resin, that is, maleic anhydride can be calculated.
  • the content of maleic anhydride contained in the modified polyolefin resin corresponds to the graft rate.
  • the polyolefin grafted with maleic anhydride may be a polymer of monomers including an olefin having 1 to 5 carbon atoms.
  • the present invention may use polyethylene grafted with maleic anhydride at a grafting ratio of 0.5% by weight or more and 2% by weight or less.
  • the carbon fiber may have a diameter of 5 ⁇ m or more and 15 ⁇ m or less.
  • the carbon fiber may have a diameter of 7 ⁇ m or more and 13 ⁇ m or less, 8.5 ⁇ m or more and 12.5 ⁇ m or less, 5 ⁇ m or more and 7.5 ⁇ m or less, 9 ⁇ m or more and 12.5 ⁇ m or less, or 12 ⁇ m or more and 15 ⁇ m or less.
  • the thermoplastic resin composition including carbon fibers whose diameter satisfies the above-described range may be excellent in processing and molding, while improving strength.
  • the thermoplastic resin composition including the carbon fiber may improve electromagnetic wave shielding properties.
  • the diameter of the carbon fiber can be measured using a scanning electron microscope (SEM). Specifically, 20 fiber strands are selected using a scanning electron microscope, and an icon bar capable of measuring the diameter is selected. Measure each diameter by using, and calculate the average diameter by arithmetic average.
  • SEM scanning electron microscope
  • the content of the carbon fiber may be 5 parts by weight or more and 60 parts by weight or less based on 100 parts by weight of the thermoplastic resin. Specifically, based on 100 parts by weight of the thermoplastic resin, the content of the carbon fiber is 10 parts by weight or more and 50 parts by weight or less, 15 parts by weight or more and 45 parts by weight or less, 17.5 parts by weight or more and 40 parts by weight or less, or 20 parts by weight or more. It may be up to 35 parts by weight.
  • the content of the carbon fiber is 5 parts by weight or more and 20 parts by weight or less, 7.5 parts by weight or more and 25 parts by weight or less, 10 parts by weight or more and 35 parts by weight or less, 20 parts by weight or more, based on 100 parts by weight of the thermoplastic resin. It may be 40 parts by weight or less, 25 parts by weight or more and 45 parts by weight or less, or 30 parts by weight or more and 60 parts by weight or less.
  • the strength of the thermoplastic resin composition may be improved, and the appearance quality of the molded article of the thermoplastic resin composition may be excellent.
  • the thermoplastic resin composition may more easily implement a molded article having excellent rigidity and improved electromagnetic shielding efficiency.
  • the BET surface area of the carbon nanotube may be 200 m 2 /g or more and 300 m 2 /g or less.
  • the BET surface area of the carbon nanotubes is 220 m 2 /g or more and 280 m 2 /g or less, 250 m 2 /g or more and 270 m 2 /g or less, 210 m 2 /g or more and 240 m 2 /g or less, It may be 245 m 2 /g or more and 265 m 2 /g or less, or 275 m 2 /g or more and 300 m 2 /g or less.
  • the thermoplastic resin composition including the carbon nanotubes having a BET surface area that satisfies the above-described range may improve conductivity and electromagnetic wave shielding efficiency.
  • the BET surface area can be measured using a nitrogen gas adsorption method, using a BET analysis equipment (Micromeritics' Surface Area and Porosity Analyzer ASAP 2020 equipment).
  • the content of the carbon nanotubes may be 1 part by weight or more and 5 parts by weight or less based on 100 parts by weight of the thermoplastic resin. Specifically, based on 100 parts by weight of the thermoplastic resin, the content of the carbon nanotubes is 1 part by weight or more and 3 parts by weight or less, 1 part by weight or more and 2 parts by weight or less, 1 part by weight or more and 2.5 parts by weight or less, or 3 parts by weight It may be more than 5 parts by weight or less.
  • thermoplastic resin and the carbon nanotubes By controlling the relative content of the thermoplastic resin and the carbon nanotubes within the above-described range, the conductivity and electronic shielding efficiency of the thermoplastic resin composition can be effectively improved. In addition, when the content of the carbon nanotube is within the above-described range, it is possible to suppress deterioration of the mechanical properties of the thermoplastic resin composition.
  • the thermoplastic resin composition may include plate-shaped graphite.
  • the electromagnetic wave shielding efficiency of the thermoplastic resin composition can be further improved.
  • the plate-shaped graphite is not particularly limited if it is a plate-shaped graphite commonly recognized in the technical field to which the present invention belongs, and such plate-shaped graphite may be described as having a high aspect ratio. It may be chemically or physically separated from the structure to have a plate shape, and as a specific example, the aspect ratio may be 2 or more, 5 or more, 7 or more, 2 to 200 or less, 5 to 200, or 7 to 200, but is not limited thereto. .
  • the aspect ratio is not particularly limited when measured by a measurement method commonly used in the technical field to which the present invention belongs.
  • the content of the plate-shaped graphite may be 1 part by weight or more and 10 parts by weight or less based on 100 parts by weight of the thermoplastic resin.
  • the content of the plate-shaped graphite is 1.5 parts by weight or more and 8 parts by weight or less, 3 parts by weight or more and 5 parts by weight or less, 1 part by weight or more and 5 parts by weight or less, 2.5 parts by weight or more and 5.5 parts by weight based on 100 parts by weight of the thermoplastic resin. It may be less than or equal to 6 parts by weight or less than or equal to 6 parts by weight and less than or equal to 10 parts by weight.
  • the electromagnetic wave shielding efficiency of the thermoplastic resin composition may be further improved.
  • the relative content of the thermoplastic resin and the plate-shaped graphite is within the above-described range, it is possible to prevent the mechanical properties of the thermoplastic resin composition from deteriorating, and to implement a molded article having excellent appearance quality.
  • the metal fiber may have a diameter of 5 ⁇ m or more and 20 ⁇ m or less.
  • the metal fiber may have a diameter of 7 ⁇ m or more and 18 ⁇ m or less, 9 ⁇ m or more and 15 ⁇ m or less, 5 ⁇ m or more and 10 ⁇ m or less, 7.5 ⁇ m or more and 14.5 ⁇ m or less, or 16 ⁇ m or more and 20 ⁇ m or less.
  • the diameter of the metal fiber is within the above-described range, the electromagnetic wave shielding performance of the thermoplastic resin composition may be more improved.
  • the diameter of the metal fiber can be measured using a scanning electron microscope (SEM), and specifically, an icon bar capable of selecting 20 metal fiber strands using a scanning electron microscope and measuring the diameter Measure each diameter using, and then calculate the average diameter by arithmetic average.
  • SEM scanning electron microscope
  • the content of the metal fiber may be 1 part by weight or more and 20 parts by weight or less based on 100 parts by weight of the thermoplastic resin. Specifically, based on 100 parts by weight of the thermoplastic resin, the content of the metal fiber is 3 parts by weight or more and 18 parts by weight or less, 5 parts by weight or more and 15 parts by weight or less, 7 parts by weight or more and 10 parts by weight or less, 1 part by weight or more 7 It may be not more than 3.5 parts by weight, not more than 17.5 parts by weight, or not less than 12 parts by weight and not more than 20 parts by weight.
  • the stiffness and electronic shielding performance of the thermoplastic resin composition may be further improved.
  • thermoplastic resin composition may provide a molded article having excellent appearance quality.
  • the thermoplastic resin composition of the present invention may have a tensile strength of preferably 150 MPa or more, more preferably 160 MPa or more, even more preferably 165 MPa or more, according to ASTM D638, and a preferred example, 150 to 200 MPa, more preferably For example, it is 160 to 190 MPa, more preferably 165 to 190 MPa, and within this range, there is an advantage of excellent tensile strength and excellent physical property balance.
  • the thermoplastic resin composition of the present invention may have an impact strength of preferably 60 J/m or more, more preferably 65 J/m or more, even more preferably 70 J/m or more, based on ISO 180A, and a preferred example is 60 To 130 J/m, more preferably 65 to 120 J/m, more preferably 70 to 120 J/m, and there is an advantage of excellent impact strength and excellent balance of properties within this range.
  • the thermoplastic resin composition of the present invention may have a flexural modulus of preferably 18,000 MPa or more, more preferably 19,000 MPa or more, even more preferably 21,000 MPa or more, and a preferred example, 18,000 to 26,000 MPa, more preferably according to ASTM D790.
  • a flexural modulus of preferably 18,000 MPa or more, more preferably 19,000 MPa or more, even more preferably 21,000 MPa or more, and a preferred example, 18,000 to 26,000 MPa, more preferably according to ASTM D790.
  • it is 19,000 to 25,000 MPa, more preferably 21,000 to 25,000 MPa, and within this range, there is an advantage in that the flexural modulus is excellent and the physical property balance is excellent.
  • the thermoplastic resin composition of the present invention may have an electromagnetic wave shielding ability of preferably 65 MHz or more, more preferably 70 MHz or more, even more preferably 73 MHz or more, using EM2107A of Electro metrics Co., Ltd. under 10 MHz conditions.
  • an electromagnetic wave shielding ability preferably 65 MHz or more, more preferably 70 MHz or more, even more preferably 73 MHz or more, using EM2107A of Electro metrics Co., Ltd. under 10 MHz conditions.
  • 65 to 90 MHz, more preferably 70 to 85 MHz, more preferably 73 to 85 MHz, and within this range there is an advantage of excellent electromagnetic wave shielding properties and excellent mechanical property balance.
  • the thermoplastic resin composition of the present invention may have an electromagnetic wave shielding capacity of preferably 65 GHz or more, more preferably 70 GHz or more, and even more preferably 73 GHz or more, using EM2107A of Electro metrics Co., Ltd.
  • it is 65 to 90 GHz, more preferably 70 to 85 GHz, more preferably 73 to 85 GHz, and there is an advantage of excellent electromagnetic wave shielding properties and excellent mechanical property balance within this range.
  • the thermoplastic resin composition of the present invention may be preferably used for automobile parts or electric and electronic parts, and more preferably used for automobile parts or electric and electronic parts requiring electromagnetic wave shielding of 50 dB or more in the MHz and GHz frequency ranges. More preferably, it is used for an automobile metal part or a substitute for an electric/electronic metal part, and even more preferably it is used for an electric vehicle part or a hybrid electric vehicle part.
  • the automobile parts or electric and electronic parts may be defined as containing the thermoplastic resin composition of the present invention or manufactured from the thermoplastic resin composition of the present invention.
  • An exemplary embodiment of the present invention comprises the steps of forming a first kneaded product by kneading a thermoplastic resin, a carbon nanotube, and a plate-shaped graphite; Adding and kneading carbon fibers to the first kneaded product to form a second kneaded product; Adding and kneading metal fibers to the second kneaded product to form a thermoplastic resin composition; And molding the thermoplastic resin composition to prepare a molded article.
  • the molded article manufacturing method according to an exemplary embodiment of the present invention can easily manufacture a molded article having excellent mechanical properties and electromagnetic wave shielding performance.
  • a method of manufacturing a molded article according to an exemplary embodiment of the present invention may be a method of manufacturing a molded article using the thermoplastic resin composition according to the exemplary embodiment described above.
  • thermoplastic resin, carbon fiber, carbon nanotube, plate-shaped graphite and metal fiber used in the method for manufacturing a molded article according to an exemplary embodiment of the present invention are thermoplastic resin, carbon fiber, carbon nanotube included in the above-described thermoplastic resin composition. It may be the same as a tube, a plate-shaped graphite, and a metal fiber, respectively.
  • the method for manufacturing a molded article according to an exemplary embodiment of the present invention is to more effectively manufacture a molded article having excellent mechanical properties and electromagnetic wave blocking performance by controlling the order of kneading a thermoplastic resin, carbon fiber, carbon nanotube, plate-shaped graphite, and metal fiber. I can.
  • the extruder 100 may include first to third inlets 11, 12 and 13, first to third kneading blocks 21, 22, and 23, and the first direction DR1 ), the material input can be kneaded and discharged. Specifically, materials injected into the first inlet 11 may be kneaded while being moved to the first kneading block 21 to form a first kneaded product in the first kneading block 21.
  • the materials injected into the second inlet 12 may be mixed with the first kneaded material and kneaded in the process of being moved to the second kneading block 22 to form a second kneaded material in the second kneading block 22.
  • the materials injected into the third inlet 13 may be mixed with the second kneaded material and kneaded in the process of being moved to the third kneading block 23 to form a final product in the third kneading block 23.
  • a first kneaded product may be formed by kneading a thermoplastic resin, a carbon nanotube, and a plate-shaped graphite.
  • a first kneaded product may be formed in the first kneading block 21 by injecting and kneading a thermoplastic resin, a carbon nanotube, and a plate-shaped graphite through the first inlet 11.
  • the amount of carbon nanotubes added may be 1 part by weight or more and 5 parts by weight or less based on 100 parts by weight of the thermoplastic resin. Specifically, based on 100 parts by weight of the thermoplastic resin, the input amount of the carbon nanotubes is 1 part by weight or more and 3 parts by weight or less, 1 part by weight or more and 2 parts by weight or less, 1 part by weight or more and 2.5 parts by weight or less, or 3 parts by weight It may be more than 5 parts by weight or less.
  • thermoplastic resin and the carbon nanotubes By adjusting the relative input amount of the thermoplastic resin and the carbon nanotubes within the above-described range, it is possible to effectively improve the conductivity and electronic shielding efficiency of the manufactured molded article. In addition, when the amount of the carbon nanotubes added is within the above-described range, it is possible to suppress deterioration of the mechanical properties of the molded article.
  • the input amount of the plate-shaped graphite may be 1 part by weight or more and 10 parts by weight or less based on 100 parts by weight of the thermoplastic resin.
  • the input amount of the plate-shaped graphite is 1.5 parts by weight or more and 8 parts by weight or less, 3 parts by weight or more and 5 parts by weight or less, 1 part by weight or more and 5 parts by weight or less, 2.5 parts by weight or more and 5.5 parts by weight based on 100 parts by weight of the thermoplastic resin. It may be less than or equal to 6 parts by weight or less than or equal to 6 parts by weight and less than or equal to 10 parts by weight.
  • the electromagnetic wave shielding efficiency of the molded article can be further improved.
  • the relative input amount of the thermoplastic resin and the plate-shaped graphite is within the above-described range, it is possible to prevent the mechanical properties of the molded article from deteriorating, and to implement a molded article having excellent appearance quality.
  • the carbon fiber may be added to the first kneaded product and kneaded to form a second kneaded product.
  • a second kneaded material may be formed in the second kneading block 22.
  • the input amount of the carbon fiber may be 5 parts by weight or more and 60 parts by weight or less based on 100 parts by weight of the thermoplastic resin. Specifically, based on 100 parts by weight of the thermoplastic resin, the input amount of the carbon fiber is 10 parts by weight or more and 50 parts by weight or less, 15 parts by weight or more and 45 parts by weight or less, 17.5 parts by weight or more and 40 parts by weight or less, or 20 parts by weight or more. It may be up to 35 parts by weight.
  • thermoplastic resin and the carbon fiber By adjusting the relative input amount of the thermoplastic resin and the carbon fiber within the above-described range, a molded article having improved strength and excellent appearance quality can be manufactured. In addition, when the amount of the carbon fiber is within the above-described range, a molded article having excellent rigidity and improved electromagnetic wave shielding efficiency may be more easily implemented.
  • the metal fiber may be added to the second kneaded product and kneaded to form a thermoplastic resin composition.
  • a thermoplastic resin composition may be formed in the third kneading block 23.
  • the input amount of the metal fiber may be 1 part by weight or more and 20 parts by weight or less based on 100 parts by weight of the thermoplastic resin. Specifically, based on 100 parts by weight of the thermoplastic resin, the input amount of the metal fiber is 3 parts by weight or more and 18 parts by weight or less, 5 parts by weight or more and 15 parts by weight or less, 7 parts by weight or more and 10 parts by weight or less, 1 part by weight or more and 7 It may be not more than 3.5 parts by weight, not more than 17.5 parts by weight, or not less than 12 parts by weight and not more than 20 parts by weight.
  • the rigidity of the molded article and the electronic shielding performance may be further improved. Furthermore, when the relative input amount of the thermoplastic resin and the metal fiber is within the above-described range, a molded article having excellent appearance quality can be provided.
  • the molded article in the molding of the thermoplastic resin composition, may be manufactured by extrusion molding or injection molding the thermoplastic resin composition. That is, the molded article may be formed by injection molding the thermoplastic resin composition, or may be formed by extrusion molding.
  • the thermoplastic resin composition may be injection-molded or extrusion-molded.
  • the molded article may be formed by kneading and extruding the thermoplastic resin composition.
  • a conventional extruder may be used, and a single screw extruder, a twin screw extruder, and the like may be used as a preferred example.
  • the molded article of the present invention may include the thermoplastic resin composition.
  • the molded article may preferably be an automobile part or an electric and electronic part, more preferably an automobile part or an electric and electronic part requiring electromagnetic wave shielding of 50 dB or more in the MHz and GHz frequency range, and more preferably an automobile metal part or It is a substitute for electric and electronic metal parts, and even more preferably, it may be an electric vehicle part or a hybrid electric vehicle part.
  • Nylon 66 resin Invista's 3602 product was used.
  • Modified polyolefin resin Polyethylene grafted with maleic anhydride at a grafting rate of about 1.5% by weight was used.
  • Nylon 6 resin TK Chemical's 2451 product was used.
  • PET resin BB8055 manufactured by SK Chemicals was used.
  • thermoplastic resin composition and a molded article an extruder as shown in FIG. 1 was prepared. At this time, the temperature of the extruder was set to about 250° C. to 320° C., and the number of rotations was set to 300 rotations/minute.
  • nylon 66 resin, carbon nanotubes, and plate-shaped graphite were introduced as thermoplastic resins into the first inlet 11 and kneaded to form a first kneaded product.
  • the amount of carbon nanotubes added was 1 part by weight, and the amount of plate-shaped graphite was 3 parts by weight.
  • carbon fibers were introduced into the second inlet 12 and kneaded to form a second kneaded product.
  • the input amount of the carbon fiber was 35 parts by weight based on 100 parts by weight of the thermoplastic resin.
  • thermoplastic resin composition Thereafter, metal fibers were introduced into the third inlet 13 and kneaded to form a thermoplastic resin composition. At this time, the input amount of the metal fiber was 5 parts by weight based on 100 parts by weight of the thermoplastic resin.
  • thermoplastic resin composition was molded into a pellet form through an extruder to manufacture a molded article.
  • thermoplastic resin composition and a molded article were prepared in the same manner as in Example 1, except that the components and contents added to the extruder were adjusted as shown in Table 1 below.
  • thermoplastic resin composition and a molded article were prepared in the same manner as in Example 1, except that the components and contents added to the extruder were adjusted as shown in Table 2 below.
  • Notched Izod impact strength was measured according to ISO 180A. At this time, the thickness of the specimen was 4 mm, and after notched in the specimen, it was measured at room temperature (23 °C).
  • Electromagnetic shielding ability Electrometrics' EM2107A was used to measure the electromagnetic wave shielding ability of the specimen at 10 MHz and 1 GHz.
  • the molded articles according to Examples 1 to 11 of the present invention had excellent mechanical properties and remarkably excellent electromagnetic shielding properties compared to Comparative Examples 1 to 4.
  • the molded articles according to Examples 1 to 11 of the present invention showed an electromagnetic wave shielding ability of 70 dB or more at 10 MHz, and an electromagnetic wave shielding ability of 70 dB or more at 1 GHz.
  • thermoplastic resin composition according to the exemplary embodiment of the present invention has excellent mechanical properties and electromagnetic wave shielding properties, and thus can be easily applied to automobiles and other electric and electronic parts requiring electromagnetic wave shielding.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 기계적 물성 및 전자파 차폐 성능이 우수한 열가소성 수지 조성물에 관한 것이다. [대표도] 도 1

Description

열가소성 수지 조성물 및 이를 이용한 성형품의 제조 방법
〔출원(들)과의 상호 인용〕
본 출원은 2019.10.31일자 한국특허출원 제 10-2019-0138161호 및 그를 토대로 2020.10.26일자로 재출원한 한국특허출원 제 10-2020-0139470호를 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 열가소성 수지 조성물 및 이를 이용한 성형품의 제조 방법에 관한 것이다.
전기 전자 기술의 발달과 더불어 각종 산업 분야의 전자화가 이루어지는 추세에 있으며, 자동차 분야, 전기 전자 제품 분야 등에 있어서도 사용자의 욕구를 충족시키고자 성능, 안정성, 편리성 향상을 위한 시스템 전자화가 진행되고 있다.
최근에는 전자기기로부터 발생하는 전자파가 다른 기기 또는 인체에
대해서 악영향을 미친다는 결과가 발표되면서 전자파 차폐 재료 개발에 대한 연구가 활발히 진행되고 있다.
전도성 소재로 대표되는 금속재료의 경우에는 중량이 많이 나가는 동시에 가격이 비싼 단점이 있음을 감안하여, 최근에는 전자기기 및 자동차 부품의 경량화, 가격, 디자인 등의 면에서 유리한 고분자 수지가 많이 이용되고 있다.
그러나, 대부분의 고분자 수지들은 전자파에 대하여 투과하는 특성을 가지고 있기 때문에, 전자파를 효과적으로 차폐하는 것이 어려운 실정이다.
이에, 전자파 차폐용 재료 개발의 필요성이 증가하고 있는 점을 감안할 때, 기계적 물성을 동시에 달성할 수 있는 소재가 요구되고 있다.
본 발명은 기계적 물성 및 전자파 차폐 성능이 우수한 열가소성 수지 조성물 및 이를 이용한 성형품 제조 방법에 관한 것이다.
다만, 본 발명이 해결하고자 하는 과제는 상기 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 하기의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기의 목적을 달성하기 위하여, 본 발명의 일 실시상태는, 열가소성 수지, 탄소섬유, 탄소나노튜브, 판상형 그라파이트 및 금속섬유를 포함하는 열가소성 수지 조성물을 제공한다.
본 발명의 일 실시상태는, 열가소성 수지, 탄소나노튜브 및 판상형 그라파이트를 혼련하여 제1 혼련물을 형성하는 단계; 상기 제1 혼련물에 탄소섬유를 투입하고 혼련하여 제2 혼련물을 형성하는 단계; 상기 제2 혼련물에 금속섬유를 투입하고 혼련하여 열가소성 수지 조성물을 형성하는 단계; 및 상기 열가소성 수지 조성물을 성형하여 성형품을 제조하는 단계;를 포함하는 성형품 제조 방법을 제공한다.
본 발명의 일 실시상태는, 상기 열가소성 수지 조성물로부터 제조된 성형품을 제공한다.
본 발명의 일 실시상태에 따른 열가소성 수지 조성물은 기계적 물성 및 전자파 차폐 성능이 우수할 수 있다.
또한, 본 발명의 일 실시상태에 따른 성형품 제조 방법은 기계적 물성 및 전자파 차폐 성능이 우수한 성형품을 용이하게 제조할 수 있다.
본 발명의 효과는 상술한 효과로 한정되는 것은 아니며, 언급되지 아니한 효과들은 본원 명세서 및 첨부된 도면으로부터 당업자에게 명확히 이해될 수 있을 것이다.
도 1은 본 발명의 일 실시예에 따른 성형품 제조 방법에 사용되는 압출기의 단면을 도시한 도면이다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다.
본원 명세서 전체에서, 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본원 명세서 전체에서, 단위 "중량부"는 각 성분간의 중량의 비율을 의미할 수 있다.
이하, 본 발명의 열가소성 수지 조성물 및 이를 이용한 성형품의 제조방법에 대하여 더욱 상세하게 설명한다.
본 발명의 일 실시상태는, 열가소성 수지; 및 탄소섬유, 탄소나노튜브, 판상형 그라파이트, 및 금속섬유를 포함하는 충진제;를 포함하는 열가소성 수지 조성물을 제공한다.
본 발명의 일 실시상태에 따른 열가소성 수지 조성물은 기계적 물성 및 전자파 차폐 성능이 우수할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 열가소성 수지는, 나일론 수지, 폴리카보네이트 수지, 폴리알킬렌테레프탈레이트 수지 및 무수말레산 변성 폴리올레핀 수지 중 적어도 하나를 포함할 수 있고, 이 경우 열가소성 수지 조성물은 기계적 물성이 우수한 성형품을 용이하게 구현할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 열가소성 수지는, 나일론 수지, 폴리카보네이트 수지, 폴리부틸렌테레프탈레이트 수지, 폴리에틸렌테레프탈레이트 및 무수말레산 변성 폴리올레핀 수지 중 적어도 하나를 포함할 수 있다. 나일론 수지, 폴리카보네이트 수지, 폴리부틸렌테레프탈레이트 수지, 및 무수말레산 변성 폴리올레핀 수지 중 적어도 하나를 포함하는 열가소성 수지 조성물은 기계적 물성이 우수한 성형품을 용이하게 구현할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 무수말레산 변성 폴리올레핀 수지는 폴리올레핀 수지에 무수말레산이 그라프트율 0.5 중량% 이상 2 중량% 이하로 그라프트된 중합체일 수 있다. 무수말레산이 0.5 중량% 이상 2 중량% 이하의 그라프트율로 그라프트된 폴리올레핀 수지를 포함하는 열가소성 수지 조성물은, 인장강도, 충격강도 등의 기계적 물성이 우수한 성형품을 제공할 수 있다.
본 기재에서 그라프트율은 변성 폴리올레핀 수지를 산-염기 적정하여 얻어진 결과로부터 측정할 수 있고, 구체적인 예로 변성 폴리올레핀 수지 1g을 물로 포화된 150㎖의 크실렌에 넣고 2시간 정도 환류한 다음, 1 중량% 티몰블루-디메틸포름아미드 용액을 소량 가하고, 0.05N 수산화나트륨-에틸알콜용액으로 약간 초과 적정하여 군청색의 용액을 얻은 후, 이러한 용액을 다시 0.05N의 염산-이소프로필알콜용액으로 노란빛을 나타낼 때까지 역적정하여 산가를 구하고, 이로부터 변성 폴리올레핀 수지에 그라프트된 화합물, 즉 무수말레산의 함량(중량%)을 산출할 수 있다. 여기에서 변성 폴리올레핀 수지에 함유된 무수말레산의 함량이 그라프트율에 해당한다.
상기 무수말레산이 그라프트된 폴리올레핀은 탄소수 1 내지 5의 올레핀을 포함하는 단량체들의 중합체일 수 있다. 구체적으로, 본 발명은 무수말레산이 0.5 중량% 이상 2 중량% 이하의 그라프트율로 그라프트된 폴리에틸렌을 사용할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 탄소섬유는 직경이 5 ㎛ 이상 15 ㎛ 이하일 수 있다. 구체적으로, 상기 탄소섬유는 직경은 7 ㎛ 이상 13 ㎛ 이하, 8.5 ㎛ 이상 12.5 ㎛ 이하, 5 ㎛ 이상 7.5 ㎛ 이하, 9 ㎛ 이상 12.5 ㎛ 이하 또는 12 ㎛ 이상 15 ㎛ 이하일 수 있다. 직경이 전술한 범위를 만족하는 탄소섬유를 포함하는 열가소성 수지 조성물은 가공 및 성형이 우수하면서도 강도가 개선될 수 있다. 또한, 상기 탄소섬유의 직경이 전술한 범위 내인 경우, 상기 탄소섬유를 포함하는 열가소성 수지 조성물은 전자파 차폐 물성이 향상될 수 있다.
본 기재에서 탄소섬유의 직경은 주사전자현미경(SEM)을 이용하여 측정할 수 있으며, 구체적으로는 주사전자현미경을 이용하여 섬유 가닥 20개를 선출하고, 직경을 잴 수 있는 아이콘 바(bar)를 이용하여 각각의 직경을 잰 다음, 이를 산술 평균하여 평균 직경으로 산출한다.
본 발명의 일 실시상태에 따르면, 상기 탄소섬유의 함량은 상기 열가소성 수지 100 중량부에 대하여 5 중량부 이상 60 중량부 이하일 수 있다. 구체적으로, 상기 열가소성 수지 100 중량부에 대하여, 상기 탄소섬유의 함량은 10 중량부 이상 50 중량부 이하, 15 중량부 이상 45 중량부 이하, 17.5 중량부 이상 40 중량부 이하, 또는 20 중량부 이상 35 중량부 이하일 수 있다. 보다 구체적으로, 상기 탄소섬유의 함량은 상기 열가소성 수지 100 중량부에 대하여, 5 중량부 이상 20 중량부 이하, 7.5 중량부 이상 25 중량부 이하, 10 중량부 이상 35 중량부 이하, 20 중량부 이상 40 중량부 이하, 25 중량부 이상 45 중량부 이하 또는 30 중량부 이상 60 중량부 이하일 수 있다.
상기 열가소성 수지와 상기 탄소섬유의 상대적인 함량을 전술한 범위로 조절함으로써, 상기 열가소성 수지 조성물의 강도가 향상되고, 상기 열가소성 수지 조성물의 성형품의 외관 품질이 우수할 수 있다. 또한, 상기 탄소섬유의 함량이 전술한 범위 내인 경우, 상기 열가소성 수지 조성물은 강성이 우수하고 전자파 차폐 효율이 향상된 성형품을 보다 용이하게 구현할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 탄소나노튜브의 BET 표면적은 200 m2/g 이상 300 m2/g 이하일 수 있다. 구체적으로, 상기 탄소나노튜브의 BET 표면적은 220 m2/g 이상 280 m2/g 이하, 250 m2/g 이상 270 m2/g 이하, 210 m2/g 이상 240 m2/g 이하, 245 m2/g 이상 265 m2/g 이하 또는 275 m2/g 이상 300 m2/g 이하일 수 있다. BET 표면적이 전술한 범위를 만족하는 상기 탄소나노튜브를 포함하는 열가소성 수지 조성물은, 전도성 및 전자파 차폐 효율이 향상될 수 있다.
본 기재에서 BET 표면적은 질소가스 흡착법을 사용하여, BET 분석 장비(Micromeritics社 Surface Area and Porosity Analyzer ASAP 2020 장비)로 측정할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 탄소나노튜브의 함량은 상기 열가소성 수지 100 중량부에 대하여 1 중량부 이상 5 중량부 이하일 수 있다. 구체적으로, 상기 열가소성 수지 100 중량부에 대하여, 상기 탄소나노튜브의 함량은 1 중량부 이상 3 중량부 이하, 1 중량부 이상 2 중량부 이하, 1 중량부 이상 2.5 중량부 이하, 또는 3 중량부 이상 5 중량부 이하일 수 있다.
상기 열가소성 수지와 상기 탄소나노튜브의 상대적인 함량을 전술한 범위로 조절함으로써, 열가소성 수지 조성물의 전도성 및 전자폐 차폐 효율을 효과적으로 향상시킬 수 있다. 또한, 상기 탄소나노튜브의 함량이 전술한 범위 내인 경우, 상기 열가소성 수지 조성물의 기계적 물성이 저하되는 것을 억제할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 열가소성 수지 조성물은 판상형 그라파이트를 포함할 수 있다. 판상형 그라파이트를 사용함으로써, 상기 열가소성 수지 조성물의 전자파 차폐 효율을 보다 향상시킬 수 있다.
본 기재에서 판상형 그라파이트는 본 발명이 속한 기술분야에서 통상적으로 인식되는 판(plate) 형태의 그라파이트인 경우 특별히 제한되지 않고, 이러한 판상형 그라파이트는 높은 종횡비를 가지는 것으로 설명될 수 있는데, 자연적으로 판상이거나 층 구조로부터 화학적 또는 물리적으로 분리되어 판상을 갖는 것일 수 있으며, 구체적인 예로 종횡비가 2 이상, 5 이상, 7 이상, 2 내지 200 이하, 5 내지 200, 또는 7 내지 200일 수 있으나, 이에 제한되는 것은 아니다.
본 기재에서 종횡비는 본 발명이 속한 기술분야에서 통상적으로 이용하는 측정방법에 의하여 측정하는 경우 특별히 제한되지 않는다.
본 발명의 일 실시상태에 따르면, 상기 판상형 그라파이트의 함량은 상기 열가소성 수지 100 중량부에 대하여 1 중량부 이상 10 중량부 이하일 수 있다. 구체적으로, 상기 판상형 그라파이트의 함량은 상기 열가소성 수지 100 중량부에 대하여, 1.5 중량부 이상 8 중량부 이하, 3 중량부 이상 5 중량부 이하, 1 중량부 이상 5 중량부 이하, 2.5 중량부 이상 5.5 중량부 이하, 또는 6 중량부 이상 10 중량부 이하일 수 있다.
상기 열가소성 수지 조성물에 포함되는 상기 판상형 그라파이트의 함량을 전술한 범위로 조절함으로써, 상기 열가소성 수지 조성물의 전자파 차폐 효율을 보다 향상시킬 수 있다. 또한, 상기 열가소성 수지와 상기 판상형 그라파이트의 상대적인 함량이 전술한 범위 내인 경우, 상기 열가소성 수지 조성물의 기계적 물성이 저하되는 것을 방지할 수 있고, 외관 품질이 우수한 성형품을 구현할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 금속섬유는 직경이 5 ㎛ 이상 20 ㎛ 이하일 수 있다. 구체적으로, 상기 금속섬유는 직경이 7 ㎛ 이상 18 ㎛ 이하, 9 ㎛ 이상 15 ㎛ 이하, 5 ㎛ 이상 10 ㎛ 이하, 7.5 ㎛ 이상 14.5 ㎛ 이하, 또는 16 ㎛ 이상 20 ㎛ 이하일 수 있다. 상기 금속섬유의 직경이 전술한 범위 내인 경우, 상기 열가소성 수지 조성물의 전자파 차폐 성능이 보다 향상될 수 있다.
본 기재에서 금속섬유의 직경은 주사전자현미경(SEM)을 이용하여 측정할 수 있으며, 구체적으로는 주사전자현미경을 이용하여 금속섬유 가닥 20개를 선출하고, 직경을 잴 수 있는 아이콘 바(bar)를 이용하여 각각의 직경을 잰 다음, 이를 산술 평균하여 평균 직경으로 산출한다.
본 발명의 일 실시상태에 따르면, 상기 금속섬유의 함량은 상기 열가소성 수지 100 중량부에 대하여 1 중량부 이상 20 중량부 이하일 수 있다. 구체적으로, 상기 열가소성 수지 100 중량부에 대하여, 상기 금속섬유의 함량은 3 중량부 이상 18 중량부 이하, 5 중량부 이상 15 중량부 이하, 7 중량부 이상 10 중량부 이하, 1 중량부 이상 7 중량부 이하, 3.5 중량부 이상 17.5 중량부 이하, 또는 12 중량부 이상 20 중량부 이하일 수 있다.
상기 금속섬유의 함량을 전술한 범위 내로 조절함으로써, 상기 열가소성 수지 조성물의 강성 및 전자폐 차폐 성능을 보다 향상시킬 수 있다.
나아가, 상기 열가소성 수지와 상기 금속섬유의 상대적인 함량이 전술한 범위 내인 경우, 상기 열가소성 수지 조성물은 외관 품질이 우수한 성형품을 제공할 수 있다.
본 발명의 열가소성 수지 조성물은 ASTM D638에 의거한 인장강도가 바람직하게는 150 MPa 이상, 보다 바람직하게는 160 MPa 이상, 더욱 바람직하게는 165 MPa 이상일 수 있고, 바람직한 예로, 150 내지 200 MPa, 보다 바람직한 예로 160 내지 190 MPa, 더욱 바람직하게는 165 내지 190 MPa이며, 이 범위 내에서 인장강도가 우수하면서도 물성 밸런스가 뛰어난 이점이 있다.
본 발명의 열가소성 수지 조성물은 ISO 180A에 의거한 충격강도가 바람직하게는 60 J/m 이상, 보다 바람직하게는 65 J/m 이상, 더욱 바람직하게는 70 J/m 이상일 수 있고, 바람직한 예로, 60 내지 130 J/m, 보다 바람직한 예로 65 내지 120 J/m, 더욱 바람직하게는 70 내지 120 J/m이며, 이 범위 내에서 충격강도가 우수하면서도 물성 밸런스가 뛰어난 이점이 있다.
본 발명의 열가소성 수지 조성물은 ASTM D790에 의거한 굴곡탄성률이 바람직하게는 18,000 MPa 이상, 보다 바람직하게는 19,000 MPa 이상, 더욱 바람직하게는 21,000 MPa 이상일 수 있고, 바람직한 예로, 18,000 내지 26,000 MPa, 보다 바람직한 예로 19,000 내지 25,000 MPa, 더욱 바람직하게는 21,000 내지 25,000 MPa이며, 이 범위 내에서 굴곡탄성률이 우수하면서도 물성 밸런스가 뛰어난 이점이 있다.
본 발명의 열가소성 수지 조성물은 Electro metrics社의 EM2107A를 사용하여 10 MHz 조건에서의 전자파 차폐 능력이 바람직하게는 65 MHz 이상, 보다 바람직하게는 70 MHz 이상, 더욱 바람직하게는 73 MHz 이상일 수 있고, 바람직한 예로, 65 내지 90 MHz, 보다 바람직한 예로 70 내지 85 MHz, 더욱 바람직하게는 73 내지 85 MHz이며, 이 범위 내에서 전자파 차폐 물성이 우수하면서도 기계적 물성 밸런스가 뛰어난 이점이 있다.
본 발명의 열가소성 수지 조성물은 Electro metrics社의 EM2107A를 사용하여 1 GHz 조건에서의 전자파 차폐 능력이 바람직하게는 65 GHz 이상, 보다 바람직하게는 70 GHz 이상, 더욱 바람직하게는 73 GHz 이상일 수 있고, 바람직한 예로, 65 내지 90 GHz, 보다 바람직한 예로 70 내지 85 GHz, 더욱 바람직하게는 73 내지 85 GHz이며, 이 범위 내에서 전자파 차폐 물성이 우수하면서도 기계적 물성 밸런스가 뛰어난 이점이 있다.
본 발명의 열가소성 수지 조성물은 바람직하게는 자동차 부품 또는 전기전자 부품에 사용되는 것일 수 있고, 보다 바람직하게는 MHz과 GHz 주파수 영역에서 50 dB 이상의 전자파 차폐가 요구되는 자동차 부품 또는 전기전자 부품에 사용되는 것이며, 더욱 바람직하게는 자동차 금속 부품 또는 전기전자 금속 부품의 대체품에 사용되는 것이고, 보다 더 바람직하게는 전기자동차 부품 또는 하이브리드 전기자동차 부품에 사용되는 것이다. 이때 상기 자동차 부품 또는 전기전자 부품은 본 발명의 열가소성 수지 조성물을 포함하는 것 또는 본 발명의 열가소성 수지 조성물로부터 제조되는 것으로 정의될 수 있다.
본 발명의 일 실시상태는, 열가소성 수지, 탄소나노튜브 및 판상형 그라파이트를 혼련하여 제1 혼련물을 형성하는 단계; 상기 제1 혼련물에 탄소섬유를 투입하고 혼련하여 제2 혼련물을 형성하는 단계; 상기 제2 혼련물에 금속섬유를 투입하고 혼련하여 열가소성 수지 조성물을 형성하는 단계; 및 상기 열가소성 수지 조성물을 성형하여 성형품을 제조하는 단계;를 포함하는 성형품 제조 방법을 제공한다.
본 발명의 일 실시상태에 따른 성형품 제조 방법은 기계적 물성 및 전자파 차폐 성능이 우수한 성형품을 용이하게 제조할 수 있다.
본 발명의 일 실시상태에 따른 성형품 제조 방법은 전술한 일 실시상태에 따른 열가소성 수지 조성물을 이용하여 성형품을 제조하는 방법일 수 있다.
구체적으로, 본 발명의 일 실시상태에 따른 성형품 제조 방법에 사용되는 열가소성 수지, 탄소섬유, 탄소나노튜브, 판상형 그라파이트 및 금속섬유는, 전술한 열가소성 수지 조성물에 포함되는 열가소성 수지, 탄소섬유, 탄소나노튜브, 판상형 그라파이트 및 금속섬유와 각각 동일할 수 있다.
본 발명의 일 실시상태에 따른 성형품 제조 방법은, 열가소성 수지, 탄소섬유, 탄소나노튜브, 판상형 그라파이트 및 금속섬유를 혼련하는 순서를 조절함으로써, 기계적 물성 및 전자파 차단 성능이 우수한 성형품을 보다 효과적으로 제조할 수 있다.
하기 도 1은 본 발명의 일 실시예에 따른 성형품 제조 방법에 사용되는 압출기의 단면을 도시한 도면이다. 도 1을 참고하면, 압출기(100)는 제1 내지 제3 투입구(11, 12, 13), 제1 내지 제3 혼련 블록(21, 22, 23)을 포함할 수 있으며, 제1 방향(DR1)을 따라 투입되는 물질이 혼련되어 토출될 수 있다. 구체적으로, 제1 투입구(11)에 주입된 재료들은 제1 혼련 블록(21)으로 이동되는 과정에서 혼련되어 제1 혼련물이 제1 혼련 블록(21)에 형성될 수 있다. 제2 투입구(12)에 주입된 재료들은 제1 혼련물과 혼합되고 제2 혼련 블록(22)으로 이동되는 과정에서 혼련되어 제2 혼련물이 제2 혼련 블록(22)에 형성될 수 있다. 또한, 제3 투입구(13)에 주입된 재료들은 제2 혼련물과 혼합되고 제3 혼련 블록(23)으로 이동되는 과정에서 혼련되어 제3 혼련 블록(23)에 최종 제품이 형성될 수 있다.
본 발명의 일 실시상태에 따르면, 열가소성 수지, 탄소나노튜브 및 판상형 그라파이트를 혼련하여 제1 혼련물을 형성할 수 있다. 도 1을 참고하면, 열가소성 수지, 탄소나노튜브, 및 판상형 그라파이트를 제1 투입구(11)로 주입하고 혼련함으로써, 제1 혼련 블록(21)에는 제1 혼련물이 형성될 수 있다.
본 발명의 일 실시상태에 따르면, 탄소나노튜브의 투입량은, 상기 열가소성 수지 100 중량부에 대하여 1 중량부 이상 5 중량부 이하일 수 있다. 구체적으로, 상기 열가소성 수지 100 중량부에 대하여, 상기 탄소나노튜브의 투입량은 1 중량부 이상 3 중량부 이하, 1 중량부 이상 2 중량부 이하, 1 중량부 이상 2.5 중량부 이하, 또는 3 중량부 이상 5 중량부 이하일 수 있다.
상기 열가소성 수지와 상기 탄소나노튜브의 상대적인 투입량을 전술한 범위로 조절함으로써, 제조되는 성형품의 전도성 및 전자폐 차폐 효율을 효과적으로 향상시킬 수 있다. 또한, 상기 탄소나노튜브의 투입량이 전술한 범위 내인 경우, 상기 성형품의 기계적 물성이 저하되는 것을 억제할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 판상형 그라파이트의 투입량은 상기 열가소성 수지 100 중량부에 대하여 1 중량부 이상 10 중량부 이하일 수 있다. 구체적으로, 상기 판상형 그라파이트의 투입량은 상기 열가소성 수지 100 중량부에 대하여, 1.5 중량부 이상 8 중량부 이하, 3 중량부 이상 5 중량부 이하, 1 중량부 이상 5 중량부 이하, 2.5 중량부 이상 5.5 중량부 이하, 또는 6 중량부 이상 10 중량부 이하일 수 있다.
상기 판상형 그라파이트의 투입량을 전술한 범위로 조절함으로써, 상기 성형품의 전자파 차폐 효율을 보다 향상시킬 수 있다. 또한, 상기 열가소성 수지와 상기 판상형 그라파이트의 상대적인 투입량이 전술한 범위 내인 경우, 상기 성형품의 기계적 물성이 저하되는 것을 방지할 수 있고, 외관 품질이 우수한 성형품을 구현할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 제1 혼련물에 상기 탄소섬유를 투입하고 혼련하여 제2 혼련물을 형성할 수 있다. 도 1을 참고하면, 상기 탄소섬유를 제2 투입구(12)로 주입하고 제1 혼련물과 혼련함으로써, 제2 혼련 블록(22)에는 제2 혼련물이 형성될 수 있다.
본 발명의 일 실시상태에 따르면, 상기 탄소섬유의 투입량은 상기 열가소성 수지 100 중량부에 대하여 5 중량부 이상 60 중량부 이하일 수 있다. 구체적으로, 상기 열가소성 수지 100 중량부에 대하여, 상기 탄소섬유의 투입량은 10 중량부 이상 50 중량부 이하, 15 중량부 이상 45 중량부 이하, 17.5 중량부 이상 40 중량부 이하, 또는 20 중량부 이상 35 중량부 이하일 수 있다.
상기 열가소성 수지와 상기 탄소섬유의 상대적인 투입량을 전술한 범위로 조절함으로써, 강도가 향상되고 외관 품질이 우수한 성형품을 제조할 수 있다. 또한, 상기 탄소섬유의 투입량이 전술한 범위 내인 경우, 강성이 우수하고 전자파 차폐 효율이 향상된 성형품을 보다 용이하게 구현할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 제2 혼련물에 상기 금속섬유를 투입하고 혼련하여 열가소성 수지 조성물을 형성할 수 있다. 도 1을 참고하면, 상기 금속섬유를 제3 투입구(13)로 주입하고 제2 혼련물과 혼련함으로써, 제3 혼련블록(23)에는 열가소성 수지 조성물이 형성될 수 있다.
본 발명의 일 실시상태에 따르면, 상기 금속섬유의 투입량은 상기 열가소성 수지 100 중량부에 대하여 1 중량부 이상 20 중량부 이하일 수 있다. 구체적으로, 상기 열가소성 수지 100 중량부에 대하여, 상기 금속섬유의 투입량은 3 중량부 이상 18 중량부 이하, 5 중량부 이상 15 중량부 이하, 7 중량부 이상 10 중량부 이하, 1 중량부 이상 7 중량부 이하, 3.5 중량부 이상 17.5 중량부 이하, 또는 12 중량부 이상 20 중량부 이하일 수 있다.
상기 금속섬유의 투입량을 전술한 범위 내로 조절함으로써, 상기 성형품의 강성 및 전자폐 차폐 성능을 보다 향상시킬 수 있다. 나아가, 상기 열가소성 수지와 상기 금속섬유의 상대적인 투입량이 전술한 범위 내인 경우, 외관 품질이 우수한 성형품을 제공할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 열가소성 수지 조성물을 성형하는 단계는, 상기 열가소성 수지 조성물을 압출 성형 또는 사출 성형하여 상기 성형품을 제조할 수 있다. 즉, 상기 성형품은 상기 열가소성 수지 조성물을 사출성형하여 형성되거나, 또는 압출 성형하여 형성된 것일 수 있다. 당업계에서 사용되는 방법을 제한 없이 채택하여, 상기 열가소성 수지 조성물을 사출 성형하거나 또는 압출 성형할 수 있다.
예를 들면, 상기 성형품은 상기 열가소성 수지 조성물을 혼련 및 압출하여 형성된 것일 수 있다. 상기 혼련 및 압출은 통상적인 압출기를 사용할 수 있으며, 바람직한 일례로 일축 압출기, 이축 압출기 등을 사용할 수 있다.
본 발명의 성형품은 상기 열가소성 수지 조성물을 포함하여 이루어질 수 있다.
상기 성형품은 바람직하게는 자동차 부품 또는 전기전자 부품일 수 있고, 보다 바람직하게는 MHz과 GHz 주파수 영역에서 50 dB 이상의 전자파 차폐가 요구되는 자동차 부품 또는 전기전자 부품이며, 더욱 바람직하게는 자동차 금속 부품 또는 전기전자 금속 부품의 대체품이고, 보다 더 바람직하게는 전기자동차 부품 또는 하이브리드 전기자동차 부품일 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 기술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 명세서의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다.
[성형품의 제조]
하기 실시예 및 비교예에서 사용한 재료는 하기와 같다.
A) 열가소성 수지:
a1) 폴리카보네이트 수지: LG 화학社의 1330 제품을 사용하였다.
a2) 나일론66 수지: Invista社의 3602 제품을 사용하였다.
a3) 폴리부틸렌테레프탈레이트 수지: LG 화학社의 GP2000 제품을 사용하였다.
a4) 변성 폴리올레핀 수지: 무수말레산이 약 1.5 중량%의 그라프트율로 그라프트된 폴리에틸렌을 사용하였다.
a5) 나일론6 수지: TK케미컬社의 2451 제품을 사용하였다.
a6) 폴리에틸테레프탈레이트(PET) 수지: SK케미컬社의 BB8055 제품을 사용하였다.
B) 탄소섬유:
졸텍社의 Pyrofil 제품을 사용하였다.
C) 탄소나노튜브:
c1) BET 표면적이 약 250 m2/g인 LG 화학社의 CP1002M 제품을 사용하였다.
c2) BET 표면적이 약 150 m2/g인 대직경 제품을 사용하였다.
C3) BET 표면적이 약 400 m2/g인 소직경 제품을 사용하였다.
D) 판상형 그라파이트:
일본흑연社 DML 판상형 그라파이트 제품인 CB-100을 사용하였다.
E) 금속섬유:
평균 직경이 9 ㎛인 BEKAERT社 스테인레스 섬유를 사용하였다.
실시예 1
열가소성 수지 조성물 및 성형품을 제조하기 위하여, 하기 도 1과 같은 압출기를 준비하였다. 이때, 압출기의 온도를 약 250 ℃ 내지 320 ℃로 설정하고, 회전수를 300 회전/분으로 설정하였다.
압출기(100)에 대하여, 제1 투입구(11)에 열가소성 수지로 나일론66 수지, 탄소나노튜브, 및 판상형 그라파이트를 투입하고 혼련하여, 제1 혼련물을 형성하였다. 이때, 열가소성 수지 100 중량부에 대하여, 탄소나노튜브의 투입량은 1 중량부, 판상형 그라파이트의 투입량은 3 중량부이었다.
이후, 제2 투입구(12)에 탄소섬유를 투입하고 혼련하여, 제2 혼련물을 형성하였다. 이때, 열가소성 수지 100 중량부에 대하여, 탄소섬유의 투입량은 35 중량부이었다.
이후, 제3 투입구(13)에 금속섬유를 투입하고 혼련하여, 열가소성 수지 조성물을 형성하였다. 이때, 열가소성 수지 100 중량부에 대하여, 금속섬유의 투입량은 5 중량부이었다.
이후, 압출기를 통해 열가소성 수지 조성물을 펠렛 형태로 성형하여, 성형품을 제조하였다.
실시예 2 내지 실시예 11
하기 표 1과 같이 압출기에 투입되는 성분 및 함량을 조절한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 열가소성 수지 조성물 및 성형품을 제조하였다.
구분 실시예
1 2 3 4 5 6 7 8 9 10 11
A a1 100 100 90 100 100 100 100
a2 100
a3 100
a4 10
a5 100
a6 100
B 35 30 30 20 30 50 65 20 30 35 35
C c1 1 2 2 1 1 1 1 1 1
c2 1
c3 1
D 3 3 3 5 5 3 3 5 5 3 3
E 5 10 5 10 15 5 5 10 15 5 5
비교예 1 내지 비교예 4
하기 표 2와 같이 압출기에 투입되는 성분 및 함량을 조절한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 열가소성 수지 조성물 및 성형품을 제조하였다.
구분 비교예 1 비교예 2 비교예 3 비교예 4
A a1 100 100
a2 100
a3 100
a4
B 30 30 20 30
C 1 1 7 -
D - 5 - 2
E 5 - - 5
[성형품의 물성 측정 실험]
상기 실시예 1 내지 실시예 11, 및 비교예 1 내지 비교예 4에서 제조된 성형품을 사출기(엥겔社, 80 톤)를 이용하여, 물성 측정 시편으로 성형하였다.
시편의 물성은 하기와 같은 방법으로 측정하였고, 그 결과를 하기 표 3 및 표 4에 기재하였다.
* 인장강도: ASTM D638에 의거하여 측정하였으며, 시편 두께는 3.2 mm이고, 측정 속도는 5 mm/min으로 설정하였다.
* 충격강도: ISO 180A에 의거하여 노치 아이조드(Notched Izod) 충격 강도를 측정하였다. 이때, 시편 두께는 4 mm이고, 시편에 노치 후에 상온(23 ℃)에서 측정하였다.
* 굴곡탄성률: ASTM D790에 의거하여 측정하였으며, 시편 두께는 3.2 mm이고, 측정 속도는 1.3 mm/min으로 설정하였다.
* 전자파 차폐 능력: Electro metrics社의 EM2107A를 사용하여, 시편의 10 MHz와 1 GHz에서의 전자파 차폐 능력을 측정하였다.
* 외관 품질: 사출 성형된 시편의 외관을 육안으로 평가하였으며, 성형성 및 외관이 매우 우수한 경우에는 "◎"로 평가하고, 성형성 및 외관이 우수한 경우에는 "○"로 평가하고, 외관이 우수한 경우에는 "△"로 평가하고, 외관이 저하된 경우에는 "X"로 평가하고, 외관 품질이 매우 열등한 경우에는 "XX"로 평가하였다.
평가 실시예
1 2 3 4 5 6 7 8 9 10 11
인장강도(MPa) 185 175 165 155 162 190 191 150 162 181 183
충격강도(J/m) 91 72 115 69 87 93 90 70 87 92 90
굴곡탄성률(MPa) 24,500 23,000 21,000 19,000 22,500 28,000 29,500 19,000 22,000 24,200 24,300
전자파 차폐(dB) 10 MHz 75 79 73 74 82 80 74 77 75 74 77
1 MHz 80 78 75 73 76 84 73 81 80 79 83
외관 품질
평가 비교예 1 비교예 2 비교예 3 비교예 4
인장강도(MPa) 175 168 134 155
충격강도(J/m) 70 73 60 72
굴곡탄성률(MPa) 20,000 21,500 15,000 19,500
전자파 차폐(dB) 10 MHz 54 45 40 49
1 MHz 48 43 39 41
외관 품질 X XX
상기 표 1 내지 표 4를 참고하면, 본 발명의 실시예 1 내지 실시예 11에 따른 성형품은 비교예 1 내지 비교예 4 대비하여 기계적 물성이 우수함과 동시에, 전자파 차폐 물성이 현저히 우수한 것을 확인하였다. 특히, 본 발명의 실시예 1 내지 실시예 11에 따른 성형품은 10 MHz에서 70 dB 이상의 전자파 차폐 능력을 보여주었고, 1 GHz에서 70 dB 이상의 전자파 차폐 능력을 보여주었다.
따라서, 본 발명의 일 실시상태에 따른 열가소성 수지 조성물은 기계적 물성 및 전자파 차폐 물성이 우수하여, 전자파 차폐가 요구되는 자동차 및 기타 전기전자 부품에 용이하게 적용될 수 있음을 알 수 있다.
[부호의 설명]
100: 압출기
11: 제1 투입구
12: 제2 투입구
13: 제3 투입구
21: 제1 혼련 블록
22: 제2 혼련 블록
23: 제3 혼련 블록
DR1: 제1 방향

Claims (14)

  1. 열가소성 수지, 탄소섬유, 탄소나노튜브, 판상형 그라파이트 및 금속섬유를 포함하는 것을 특징으로 하는 열가소성 수지 조성물.
  2. 청구항 1에 있어서,
    상기 열가소성 수지는,
    나일론 수지, 폴리카보네이트 수지, 폴리 알킬렌테레프탈레이트 수지 및 무수말레산 변성 폴리올레핀 수지 중 적어도 하나를 포함하는 것을 특징으로 하는 열가소성 수지 조성물.
  3. 청구항 2에 있어서,
    상기 무수말레산 변성 폴리올레핀 수지는 폴리올레핀 수지에 무수말레산이 그라프트율 0.5 중량% 이상 2 중량% 이하로 그라프트된 중합체인 것을 특징으로 하는 열가소성 수지 조성물.
  4. 청구항 1에 있어서,
    상기 탄소섬유는 직경이 5 ㎛ 이상 15 ㎛ 이하인 것을 특징으로 하는 열가소성 수지 조성물.
  5. 청구항 1에 있어서,
    상기 탄소섬유의 함량은 상기 열가소성 수지 100 중량부에 대하여 5 중량부 이상 60 중량부 이하인 것을 특징으로 하는 열가소성 수지 조성물.
  6. 청구항 1에 있어서,
    상기 탄소나노튜브의 BET 표면적은 200 m2/g 이상 300 m2/g 이하인 것을 특징으로 하는 열가소성 수지 조성물.
  7. 청구항 1에 있어서,
    상기 탄소나노튜브의 함량은 상기 열가소성 수지 100 중량부에 대하여 1 중량부 이상 5 중량부 이하인 것을 특징으로 하는 열가소성 수지 조성물.
  8. 청구항 1에 있어서,
    상기 판상형 그라파이트의 함량은 상기 열가소성 수지 100 중량부에 대하여 1 중량부 이상 10 중량부 이하인 것을 특징으로 하는 열가소성 수지 조성물.
  9. 청구항 1에 있어서,
    상기 금속섬유는 직경이 5 ㎛ 이상 20 ㎛ 이하인 것을 특징으로 하는 열가소성 수지 조성물.
  10. 청구항 1에 있어서,
    상기 열가소성 수지 조성물은 Electro metrics社의 EM2107A를 사용하여 10 MHz 조건에서의 전자파 차폐 능력(dB)이 65 MHz 이상 또는 1 GHz 조건에서의 전자파 차폐 능력(dB)이 65 GHz 이상인 것을 특징으로 하는 열가소성 수지 조성물.
  11. 청구항 10에 있어서,
    상기 열가소성 수지 조성물은 MHz과 GHz 주파수 영역에서 50 dB 이상의 전자파 차폐가 요구되는 자동차 부품 또는 전기전자 부품에 사용되는 것을 특징으로 하는 열가소성 수지 조성물.
  12. 청구항 1에 있어서,
    상기 금속 섬유의 함량은 상기 열가소성 수지 100 중량부에 대하여 1 중량부 이상 20 중량부 이하인 것을 특징으로 하는 열가소성 수지 조성물.
  13. 열가소성 수지, 탄소나노튜브 및 판상형 그라파이트를 혼련하여 제1 혼련물을 형성하는 단계;
    상기 제1 혼련물에 탄소섬유를 투입하고 혼련하여 제2 혼련물을 형성하는 단계;
    상기 제2 혼련물에 금속섬유를 투입하고 혼련하여 열가소성 수지 조성물을 형성하는 단계; 및
    상기 열가소성 수지 조성물을 성형하여 성형품을 제조하는 단계;를 포함하는 것을 특징으로 하는
    성형품 제조 방법.
  14. 청구항 1 내지 12 중 어느 한 항의 열가소성 수지 조성물을 포함하여 이루어진 것을 특징으로 하는
    성형품.
PCT/KR2020/014842 2019-10-31 2020-10-28 열가소성 수지 조성물 및 이를 이용한 성형품의 제조 방법 WO2021086019A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021529298A JP7174155B2 (ja) 2019-10-31 2020-10-28 熱可塑性樹脂組成物及びそれを用いた成形品の製造方法
CN202080006446.9A CN113166532B (zh) 2019-10-31 2020-10-28 热塑性树脂组合物和使用该热塑性树脂组合物制造模制品的方法
EP20883464.8A EP3865539A4 (en) 2019-10-31 2020-10-28 Thermoplastic resin composition and molded product manufacturing method using same
US17/293,432 US20210403682A1 (en) 2019-10-31 2020-10-28 Thermoplastic resin composition and method of manufacturing molded article using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2019-0138161 2019-10-31
KR20190138161 2019-10-31
KR1020200139470A KR102581385B1 (ko) 2019-10-31 2020-10-26 열가소성 수지 조성물 및 이를 이용한 성형품의 제조 방법
KR10-2020-0139470 2020-10-26

Publications (1)

Publication Number Publication Date
WO2021086019A1 true WO2021086019A1 (ko) 2021-05-06

Family

ID=75715406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/014842 WO2021086019A1 (ko) 2019-10-31 2020-10-28 열가소성 수지 조성물 및 이를 이용한 성형품의 제조 방법

Country Status (1)

Country Link
WO (1) WO2021086019A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120023490A (ko) * 2010-08-20 2012-03-13 제일모직주식회사 고강성 전자파 차폐 복합재
KR20130075417A (ko) * 2011-12-27 2013-07-05 제일모직주식회사 고충격 및 고강성 전자파 차폐 복합재
KR20160083520A (ko) * 2014-12-31 2016-07-12 주식회사 삼양사 방열 및 전자파 차폐 특성이 우수한 장섬유 강화 열가소성 수지 조성물 및 그로부터 제조된 성형품
KR20160147776A (ko) * 2014-04-14 2016-12-23 미츠비시 가스 가가쿠 가부시키가이샤 강화 방향족 폴리카보네이트 수지 시트 또는 필름
US20190062552A1 (en) * 2015-01-29 2019-02-28 Sabic Global Technologies B.V. Preparation of high thermally conductive polymer compositions and uses thereof
KR20190035031A (ko) * 2017-09-25 2019-04-03 현대자동차주식회사 전자파 차폐용 열가소성 복합수지 조성물

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120023490A (ko) * 2010-08-20 2012-03-13 제일모직주식회사 고강성 전자파 차폐 복합재
KR20130075417A (ko) * 2011-12-27 2013-07-05 제일모직주식회사 고충격 및 고강성 전자파 차폐 복합재
KR20160147776A (ko) * 2014-04-14 2016-12-23 미츠비시 가스 가가쿠 가부시키가이샤 강화 방향족 폴리카보네이트 수지 시트 또는 필름
KR20160083520A (ko) * 2014-12-31 2016-07-12 주식회사 삼양사 방열 및 전자파 차폐 특성이 우수한 장섬유 강화 열가소성 수지 조성물 및 그로부터 제조된 성형품
US20190062552A1 (en) * 2015-01-29 2019-02-28 Sabic Global Technologies B.V. Preparation of high thermally conductive polymer compositions and uses thereof
KR20190035031A (ko) * 2017-09-25 2019-04-03 현대자동차주식회사 전자파 차폐용 열가소성 복합수지 조성물

Similar Documents

Publication Publication Date Title
WO2020130365A1 (ko) 폴리페닐렌 설파이드 수지 조성물, 이의 제조방법 및 이로부터 제조된 사출성형품
WO2020116769A1 (ko) 레이저직접구조화 수지 조성물, 이의 제조방법 및 이로부터 제조된 사출성형품
WO2011078492A2 (ko) 다기능성 수지 복합재 및 이를 이용한 성형품
WO2013115538A1 (ko) 비할로겐 난연 고강성 폴리카보네이트 수지 조성물
WO2019083153A1 (ko) 그라프트 공중합체, 이를 포함하는 열가소성 수지 조성물 및 이의 제조방법
WO2012023672A1 (ko) 고강성 전자파 차폐 복합재
WO2017082661A1 (ko) 열가소성 수지 조성물 및 이를 포함하는 성형품
WO2021086019A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품의 제조 방법
WO2021020741A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2015129962A1 (ko) 도장 성형품
WO2022045736A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2016108539A1 (ko) 폴리카보네이트 수지 조성물 및 이를 포함하는 성형품
WO2020197132A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2023018031A1 (ko) 고분자 복합체 및 이를 포함하는 성형품
WO2023018030A1 (ko) 고분자 복합체 및 이를 포함하는 성형품
WO2020145500A1 (ko) 내열성과 전자파 차폐능이 우수한 열가소성 수지 조성물, 이의 제조방법 및 이로부터 제조된 사출성형품
KR20210052289A (ko) 열가소성 수지 조성물 및 이를 이용한 성형품의 제조 방법
WO2016182215A1 (ko) 금속과의 접착성이 우수한 폴리아릴렌 설파이드 조성물
WO2016129833A1 (ko) 금속과의 접착성이 우수한 폴리아릴렌 설파이드 조성물
WO2022124566A1 (ko) 폴리에테르케톤케톤을 포함하는 모바일 기기용 하우징 소재 및 이로 이루어진 모바일 기기용 하우징
WO2020138772A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2022164136A1 (ko) 경량 복합체 조성물 및 경량 복합체의 제조방법
WO2024096286A1 (ko) 폴리프로필렌 수지 조성물 및 이로부터 제조된 성형품
WO2018080250A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이로부터 형성된 성형품
WO2020091371A1 (ko) 열가소성 수지 조성물

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 20883464.8

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2020883464

Country of ref document: EP

Effective date: 20210514

ENP Entry into the national phase

Ref document number: 2021529298

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20883464

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE