WO2022045736A1 - 열가소성 수지 조성물 및 이를 이용한 성형품 - Google Patents

열가소성 수지 조성물 및 이를 이용한 성형품 Download PDF

Info

Publication number
WO2022045736A1
WO2022045736A1 PCT/KR2021/011300 KR2021011300W WO2022045736A1 WO 2022045736 A1 WO2022045736 A1 WO 2022045736A1 KR 2021011300 W KR2021011300 W KR 2021011300W WO 2022045736 A1 WO2022045736 A1 WO 2022045736A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide
weight
copolymer
thermoplastic resin
resin composition
Prior art date
Application number
PCT/KR2021/011300
Other languages
English (en)
French (fr)
Inventor
배윤석
이현제
반균하
진영섭
Original Assignee
롯데케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 롯데케미칼 주식회사 filed Critical 롯데케미칼 주식회사
Priority to US18/022,809 priority Critical patent/US20230303838A1/en
Publication of WO2022045736A1 publication Critical patent/WO2022045736A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L35/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L35/06Copolymers with vinyl aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend

Definitions

  • thermoplastic resin composition relates to a thermoplastic resin composition and a molded article using the same.
  • Polyamide resin is one of these metal-to-plastic replacement materials, and is widely used not only in automobiles but also in the industry as it has excellent rigidity, toughness, abrasion resistance, chemical resistance, oil resistance, and the effect of adding reinforcing materials.
  • polyamide resin when used in the automobile industry, electrical properties and flame retardant properties are also increasingly required with the recent expansion of electric vehicles.
  • polymer materials are insulators unlike metals, so it can cause damage to electronic products inside electric vehicles due to the accumulation of static electricity on the surface of automobile parts made of polymer materials. Therefore, electrical conductivity, which is one of electrical characteristics, is required to compensate for this point.
  • electromagnetic wave shielding is also an important characteristic, and there is a risk that electromagnetic waves may have a harmful effect on the human body along with malfunction of various electronic products inside the electric vehicle. Therefore, securing of electromagnetic wave shielding performance is also required.
  • carbon fiber may be used to impart electromagnetic wave shielding performance to the interior material used in the electric vehicle.
  • the content of the carbon fiber increases, the fluidity decreases and the moldability is poor. Problems such as cracking occur when taking out from the mold. Therefore, there is a need to develop a vehicle interior material that maintains excellent fluidity while having electromagnetic wave shielding performance.
  • An object of the present invention is to provide a thermoplastic resin composition having excellent electromagnetic wave shielding performance, impact resistance, fluidity, heat resistance, tensile strength and flexural modulus, and a molded article using the same.
  • the polyamide resin is polyamide 6, polyamide 66, polyamide 46, polyamide 11, polyamide 12, polyamide 610, polyamide 612, polyamide 6/66, polyamide 6/612, polyamide MXD6, polyamide 6/MXD6, polyamide 66/MXD6, polyamide 6T, polyamide 6I, polyamide 6/6T, polyamide 6/6I, polyamide 6/ 6T/6I, polyamide 66/6T/6I, polyamide 9T, polyamide 9I, polyamide 6/9T, polyamide 6/9I, polyamide 66/9T, polyamide 6/12/9T, polyamide 66/ 12/9T, polyamide 6/12/9I, or polyamide 66/12/6I may be used alone or two or more types may be used.
  • the (B) acrylonitrile-butadiene-styrene copolymer resin having an average particle diameter of 1,000 to 5,000 nm of the rubbery polymer includes a core made of a butadiene-based rubbery polymer and a shell formed by graft polymerization of acrylonitrile and styrene to the core.
  • a core-shell structure comprising a dispersed phase and a styrene-acrylonitrile copolymer continuous phase may be included.
  • the styrene-acrylonitrile copolymer constituting the continuous phase of the styrene-acrylonitrile copolymer may be an unbranched linear styrene-acrylonitrile copolymer.
  • the dispersed phase of the core-shell structure is included in an amount of 10 to 30% by weight
  • the styrene-acrylonitrile copolymer continuous phase may be included in an amount of 70 to 90 wt%.
  • the (C) ethylene-based copolymer including an acid anhydride group may be an ethylene-C1 to C10 alkene copolymer to which maleic anhydride is grafted.
  • the (C) ethylene-based copolymer including an acid anhydride group may be an ethylene-octene copolymer grafted with maleic anhydride.
  • the (D) maleimide-based copolymer may be an N-phenyl maleimide-styrene-maleic anhydride copolymer.
  • the (D) maleimide-based copolymer may have a glass transition temperature (Tg) of 150 to 200°C.
  • the (E) carbon fiber may have an average length of 1 to 20 mm before processing.
  • the (F) polyamide-based flow enhancer may be a dendritic polyamide-based polymer.
  • the thermoplastic resin composition further comprises at least one additive selected from a nucleating agent, a coupling agent, a filler, a plasticizer, a lubricant, a mold release agent, an antibacterial agent, a heat stabilizer, an antioxidant, a UV stabilizer, a flame retardant, an antistatic agent, an impact modifier, a dye, and a pigment can do.
  • thermoplastic resin composition according to an embodiment may be provided.
  • thermoplastic resin composition has excellent electromagnetic wave shielding performance and excellent impact resistance, fluidity, heat resistance, tensile strength and flexural modulus, so it can be widely applied to the molding of various products, and is particularly useful as an interior material for electric vehicles can be
  • 'copolymerization means block copolymerization or random copolymerization
  • 'copolymer' means block copolymer or random copolymer.
  • 'average particle diameter of the rubber polymer' is the volume average diameter, and means the Z-average particle diameter measured using a dynamic light scattering analyzer.
  • 'weight average molecular weight' is measured by dissolving a powder sample in tetrahydrofuran (THF) and then using Agilent Technologies' 1200 series Gel Permeation Chromatography (GPC). .
  • polyamide resins known in the art may be used as the polyamide resin, for example, an aromatic polyamide resin, an aliphatic polyamide resin, or a mixture thereof, but is not particularly limited.
  • the aromatic polyamide resin is a polyamide including an aromatic group in a main chain, and may be a semi-aromatic polyamide.
  • the semi-aromatic polyamide is meant to include at least one aromatic unit and a non-aromatic unit between amide bonds.
  • the semi-aromatic polyamide may be a polymer of an aromatic diamine and an aliphatic dicarboxylic acid, or a polymer of an aliphatic diamine and an aromatic dicarboxylic acid.
  • the aliphatic polyamide refers to a polymer of an aliphatic diamine and an aliphatic dicarboxylic acid.
  • aromatic diamine examples include, but are not limited to, p-xylenediamine and m-xylenediamine. In addition, these may be used alone or in mixture of two or more.
  • aromatic dicarboxylic acid examples include phthalic acid, isophthalic acid, terephthalic acid, naphthalene-2.6-dicarboxylic acid, diphenyl-4.4'-dicarboxylic acid, and 1,3-phenylenedioxydiacetic acid.
  • phthalic acid isophthalic acid
  • terephthalic acid naphthalene-2.6-dicarboxylic acid
  • diphenyl-4.4'-dicarboxylic acid examples include 1,3-phenylenedioxydiacetic acid.
  • 1,3-phenylenedioxydiacetic acid examples include phthalic acid, isophthalic acid, terephthalic acid, naphthalene-2.6-dicarboxylic acid, diphenyl-4.4'-dicarboxylic acid, and 1,3-phenylenedioxydiacetic acid.
  • the present invention is not limited thereto. In addition, these may be used alone or in mixture of two or more.
  • aliphatic diamine examples include, but are not limited to, 1,2-ethylenediamine, 1,3-propylenediamine, 1,6-hexamethylenediamine, 1,12-dodecylenediamine, piperazine, and the like. . In addition, these may be used alone or in mixture of two or more.
  • aliphatic dicarboxylic acid examples include adipic acid, sebacic acid, succinic acid, glutaric acid, azelaic acid, dodecanedioic acid, dimer acid, cyclohexanedicarboxylic acid, etc., but are limited thereto not. In addition, these may be used alone or in mixture of two or more.
  • the polyamide resin is polyamide 6, polyamide 66, polyamide 46, polyamide 11, polyamide 12, polyamide 610, polyamide 612, polyamide 6/66, polyamide 6/612, poly Amide MXD6, polyamide 6/MXD6, polyamide 66/MXD6, polyamide 6T, polyamide 6I, polyamide 6/6T, polyamide 6/6I, polyamide 66/6T, polyamide 66/6I, polyamide 6 /6T/6I, polyamide 66/6T/6I, polyamide 9T, polyamide 9I, polyamide 6/9T, polyamide 6/9I, polyamide 66/9T, polyamide 6/12/9T, polyamide 66 /12/9T, polyamide 6/12/9I, or polyamide 66/12/6I may be used alone or two or more types may be used.
  • the polyamide resin comprises from 40 to 60% by weight, for example from 45 to 60% by weight, for example from 50 to 60% by weight, for example from 55 to 60% by weight, based on 100% by weight of the basic composition, For example, 40 to 55% by weight, for example, 40 to 50% by weight, for example, 40 to 45% by weight, for example, may be included in 45 to 55% by weight.
  • the thermoplastic resin composition and a molded article using the same may exhibit excellent rigidity, toughness, abrasion resistance, chemical resistance and oil resistance, etc. due to the polyamide resin.
  • the content of the polyamide resin is less than 40 wt%, excellent physical properties due to the polyamide resin may be difficult to appear. There is a fear that the mechanical strength and/or heat resistance of a molded article using the same may be lowered.
  • an acrylonitrile-butadiene-styrene copolymer resin having an average particle diameter of 1,000 to 5,000 nm of the rubbery polymer is a core made of a butadiene-based rubbery polymer, and acrylonitrile and styrene are grafted onto the core It may include a dispersed phase having a core-shell structure including a shell formed by polymerization and a continuous phase of the styrene-acrylonitrile copolymer.
  • the acrylonitrile-butadiene-styrene copolymer resin imparts excellent impact resistance to the thermoplastic resin composition.
  • the acrylonitrile-butadiene-styrene copolymer resin may be prepared through emulsification, suspension, or bulk polymerization of a butadiene-based rubber polymer, acrylonitrile, and styrene.
  • the styrene-acrylonitrile copolymer constituting the continuous phase of the styrene-acrylonitrile copolymer may be an unbranched linear styrene-acrylonitrile copolymer.
  • the butadiene-based rubbery polymer may be selected from the group consisting of butadiene rubbery polymers, butadiene-styrene rubbery polymers, butadiene-acrylonitrile rubbery polymers, butadiene-acrylate rubbery polymers, and mixtures thereof.
  • the acrylonitrile-butadiene styrene copolymer resin may have an average particle diameter of the rubbery polymer, for example, 1,000 to 5,000 nm, for example, 1,000 to 4,000 nm, for example, 1,000 to 3,000 nm.
  • average particle diameter of the rubber polymer is less than 1,000 nm, excellent electromagnetic wave shielding performance and fluidity, which are the targeted effects of the thermoplastic resin composition according to an embodiment of the present invention, cannot be achieved.
  • the unbranched linear styrene-acrylonitrile copolymer constituting the continuous phase has a weight average molecular weight of, for example, 50,000 to 250,000 g/mol, for example, 50,000 to 200,000 g/mol, for example 100,000 to 200,000 g /mol.
  • the acrylonitrile-butadiene-styrene copolymer resin may be included in 15 wt% or more, for example, 30 wt% or less, for example 25 wt% or less, for example For example, 15 to 30% by weight, for example, 15 to 25% by weight may be included.
  • the dispersed phase of the core-shell structure may be included in an amount of 10 to 30% by weight, and the styrene-acrylonitrile copolymer (unbranched) It is a linear styrene-acrylonitrile copolymer) and the continuous phase may be included in an amount of 70 to 90% by weight.
  • the amount of the acrylonitrile-butadiene-styrene copolymer resin in the basic composition of the thermoplastic resin composition is less than 15% by weight, the impact resistance of the thermoplastic resin composition may decrease, and if it exceeds 30% by weight, the heat resistance of the thermoplastic resin composition is lowered there is a risk of becoming
  • the ethylene-based copolymer including the acid anhydride group serves to improve the impact resistance of the thermoplastic resin composition.
  • the (C) ethylene-based copolymer including an acid anhydride group may be an ethylene-C1 to C10 alkene copolymer to which maleic anhydride is grafted.
  • the C1 to C10 alkene monomer is ethylene, propylene, 1-butene, 2-butene, 1-pentene, 2-pentene, 1-hexene, 2-hexene, 3-hexene, 4-hexene, heptene, octene, nonene, de sen may be, but is not limited thereto.
  • the ethylene-based copolymer including the (C) acid anhydride group may be an ethylene-octene copolymer grafted with maleic anhydride.
  • the (C) ethylene-based copolymer including an acid anhydride group is 5 to 10% by weight, for example 6 to 10% by weight, for example 7 to 10% by weight, for example, 5 to 100% by weight of the base composition to 9% by weight, for example, 5 to 8% by weight, for example, 5 to 7% by weight.
  • the (C) ethylene-based copolymer containing an acid anhydride group is less than 5% by weight, the impact resistance of the thermoplastic resin composition is lowered, and when it exceeds 10% by weight, there is a risk that the processability during molding the thermoplastic resin composition is reduced there is
  • the maleimide-based copolymer provides excellent heat resistance to the thermoplastic resin composition.
  • the maleimide-based copolymer may be a terpolymer of N-phenyl maleimide, styrene, and maleic anhydride, and may be prepared by imidation of styrene and a maleic anhydride copolymer.
  • the N-phenyl maleimide derivative may be included in an amount of 10 to 55% by weight, for example, 15 to 55% by weight, for example, 15 to 50% by weight, based on 100% by weight of the maleimide-based copolymer. there is.
  • the styrene may be included in an amount of 40 to 80 wt%, and the maleic anhydride may be included in an amount of 1 to 10 wt%.
  • the heat resistance improvement effect by the maleimide-based copolymer is difficult to be expressed, and when it exceeds 55% by weight, the thermoplastic resin composition and the same There is a possibility that the appearance characteristics of the used molded article may be greatly reduced.
  • the glass transition temperature (Tg) of the maleimide-based copolymer may be, for example, 150 to 200 °C, for example, 160 to 200 °C, for example, 170 to 200 °C.
  • the maleimide-based copolymer is 2 to 8% by weight, for example 3 to 8% by weight, for example 4 to 8% by weight, for example 2 to 7% by weight, for example, based on 100% by weight of the basic composition 2 to 6% by weight, for example, 2 to 5% by weight may be included.
  • the carbon fiber comprises (A) the polyamide resin, (B) an acrylonitrile-butadiene-styrene copolymer resin, (C) an ethylene-based copolymer including an acid anhydride group, and (D) a maleimide-based copolymer. Electrical conductivity and electromagnetic wave shielding performance may be imparted to the thermoplastic resin composition comprising the composition.
  • the carbon fibers are dispersed at any position inside the thermoplastic resin composition, and when carbon fibers are included in a certain amount or more, the dispersed carbon fibers form a conductive network.
  • the conductive network may impart electrical properties, for example, electrical conductivity and electromagnetic wave shielding performance, to the thermoplastic resin composition according to the exemplary embodiment.
  • the carbon fiber may have an average length before processing of 1 to 20 mm, for example, 3 to 15 mm.
  • the average length of the carbon fibers before processing is short, less than 1 mm, the carbon fibers dispersed in the thermoplastic resin composition including the same are highly unlikely to be electrically connected to each other, and when the average length exceeds 20 mm, general extrusion The manufacturing method is difficult to manufacture.
  • the carbon fiber is 10 to 30% by weight, for example 15 to 30% by weight, for example 20 to 30% by weight, for example 25 to 30% by weight, for example 10 to 30% by weight, based on the total weight of the base composition 25% by weight, for example 10 to 20% by weight, for example 10 to 15% by weight, for example 10 to 25% by weight, for example 10 to 20% by weight, for example 10 to 15% by weight.
  • the base composition 25% by weight, for example 10 to 20% by weight, for example 10 to 15% by weight, for example 10 to 25% by weight, for example 10 to 20% by weight, for example 10 to 15% by weight.
  • the content of the carbon fiber is included in less than 10% by weight based on the total weight of the basic composition, it is difficult to exhibit an appropriate level of electrical conductivity and electromagnetic wave shielding performance, and when it is more than 30% by weight, the impact resistance of the thermoplastic resin composition including the same and moldability may decrease.
  • carbon fibers may be included in order to impart electromagnetic wave shielding performance to the thermoplastic resin composition including the polyamide resin.
  • the thermoplastic resin composition contains the polyamide-based flow enhancer. may include
  • the polyamide-based flow enhancer may be a dendritic polyamide-based polymer.
  • the dendritic polymer ie, a dendrimer
  • a dendrimer is a macromolecule having a regular branched structure, and refers to a polymer in which the molecular chain is regularly spread out in three dimensions from the center to the outside according to a certain rule.
  • the polyamide-based flow enhancer is, for example, 0.2 to 3 parts by weight, for example, 0.2 to 2.5 parts by weight, for example, 0.2 to 2 parts by weight, for example 0.5 to 3 parts by weight, based on 100 parts by weight of the basic composition. , for example, 0.5 to 2.5 parts by weight, for example, may be included in 0.5 to 2 parts by weight.
  • a thermoplastic resin composition having excellent fluidity and appearance characteristics while maintaining mechanical properties such as excellent impact resistance.
  • thermoplastic resin composition in addition to the components (A) to (F), is one required according to the end use of the thermoplastic resin composition or in order to balance the respective physical properties under conditions of maintaining excellent mechanical properties. It may further include more than one kind of additive.
  • a nucleating agent a coupling agent, a filler, a plasticizer, a lubricant, a mold release agent, an antibacterial agent, a heat stabilizer, an antioxidant, an ultraviolet stabilizer, a flame retardant, an antistatic agent, an impact modifier, a dye, a pigment, etc.
  • a nucleating agent a coupling agent, a filler, a plasticizer, a lubricant, a mold release agent, an antibacterial agent, a heat stabilizer, an antioxidant, an ultraviolet stabilizer, a flame retardant, an antistatic agent, an impact modifier, a dye, a pigment, etc.
  • a filler e.g., a filler, a plasticizer, a lubricant, a mold release agent, an antibacterial agent, a heat stabilizer, an antioxidant, an ultraviolet stabilizer, a flame retardant, an antistatic agent, an impact modifier, a dye, a pigment, etc.
  • a lubricant e.g.,
  • thermoplastic resin composition may be appropriately included within a range that does not impair the physical properties of the thermoplastic resin composition, and specifically, may be included in an amount of 20 parts by weight or less based on 100 parts by weight of the basic composition, but is not limited thereto.
  • thermoplastic resin composition according to the present invention may be prepared by a known method for preparing a thermoplastic resin composition.
  • thermoplastic resin composition according to the present invention may be prepared in the form of pellets by mixing the components of the present invention and other additives and then melt-kneading in an extruder.
  • the molded article according to an embodiment of the present invention may be prepared from the above-described thermoplastic resin composition.
  • thermoplastic resin composition has excellent impact resistance, fluidity, heat resistance, tensile strength and flexural modulus while having electromagnetic wave shielding performance, so it can be widely applied to various products, and in particular, useful for interior materials of electric vehicles, etc. can be applied.
  • thermoplastic resin compositions of Examples 1 to 3 and Comparative Examples 1 to 5 were prepared by adding common antioxidants and lubricants to the component content ratios shown in Table 1 below.
  • thermoplastic resin composition pelletized through a twin-screw extruder is dried at about 100° C. for about 4 hours, and then a specimen for physical property measurement and a thickness of 2 mm using a 150-ton injection molding machine with a cylinder temperature of about 260° C. and a mold temperature of about 80° C.
  • a flat specimen for measuring the electromagnetic wave shielding performance of was prepared.
  • a polyamide 6 resin having a melting point of about 224° C. and a relative viscosity of about 2.5 was used. (KP Chemtech, RV 2.5)
  • the dispersed phase of the core-shell structure including a core made of a butadiene rubber polymer having an average particle diameter of about 2,000 nm and a shell made of a styrene-acrylonitrile copolymer is about 11% by weight, and the styrene-acrylonitrile copolymer (weight average An acrylonitrile-butadiene-styrene copolymer resin having a molecular weight of about 200,000 g/mol and a dispersed phase consisting of an unbranched linear styrene-acrylonitrile copolymer of about 89% by weight was used. (Liaoning Huajin Chemical, ABS 275)
  • An acrylonitrile-butadiene-styrene graft copolymer comprising 58 wt% of a core made of butadiene rubber polymer having an average particle diameter of about 250 nm and a shell formed by graft polymerization of acrylonitrile and styrene to the core was used. . (Lotte Chemical)
  • N-phenyl maleimide-styrene-maleic anhydride copolymer having a glass transition temperature (Tg) of about 195°C was used. (Denka, Denka IP MS-NA)
  • Carbon fibers having an average length of about 6 mm were used. (SGL Carbon, SIGRAFIL ® C C6-4.0/240-T130)
  • Electromagnetic wave shielding performance (unit: dB): In accordance with the ASTM D4935-99 standard, using WR-90 waveguide and ENA vector network analyzer, in the frequency range of 8.2 GHz to 12.4 GHz, The electromagnetic wave shielding performance was measured.
  • Fluidity (unit: g/10min): Melt flow index measured at 250°C and 10 kg load condition was measured according to ASTM D1238.
  • Tensile strength (unit: kgf/cm 2 ): According to ASTM D638, the tensile strength was measured for a 1/8 inch thick specimen under the condition of 50 mm/min.
  • thermoplastic resin compositions according to Examples 1 to 3 had excellent electromagnetic wave shielding performance and excellent impact resistance, fluidity, heat resistance, and tensile strength compared to the thermoplastic resin compositions according to Comparative Examples 1 to 5. It can be confirmed that the strength and flexural modulus are maintained.
  • the present invention has been described through preferred embodiments as described above, but the present invention is not limited thereto and does not deviate from the concept and scope of the following claims. Unless otherwise noted, it will be readily understood by those skilled in the art to which the present invention pertains that various modifications and variations are possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

(A) 폴리아미드 수지 40 내지 60 중량%; (B) 고무질 중합체의 평균 입경이 1,000 내지 5,000 nm인 아크릴로니트릴-부타디엔-스티렌 공중합체 수지 15 내지 30 중량%; (C) 산무수물기를 포함하는 에틸렌계 공중합체 5 내지 10 중량%; (D) 말레이미드계 공중합체 2 내지 8 중량% 및 (E) 탄소 섬유(carbon fiber) 10 내지 30 중량%를 포함하는 기초 조성 100 중량부에 대해, (F) 폴리아미드계 유동증진제 0.2 내지 3 중량부를 포함하는 열가소성 수지 조성물 및 이를 이용한 성형품에 관한 것이다.

Description

열가소성 수지 조성물 및 이를 이용한 성형품
열가소성 수지 조성물 및 이를 이용한 성형품에 관한 것이다.
최근 자동차 및 IT 산업의 발전에 따라 경량화, 낮은 제조원가, 설계 자유도 향상, 제조공정의 단순화 측면에서 금속 등의 소재를 플라스틱으로 대체하는 연구가 활발히 진행되고 있다. 폴리아미드 수지는 이러한 금속의 플라스틱 대체화 소재 중 하나로서 강성, 인성, 내마모성, 내약품성, 내유성 및 보강재 첨가 효과 등이 우수하여 자동차는 물론 산업 전반에 광범위하게 사용되고 있다.
한편, 상기 폴리아미드 수지가 자동차 산업에 사용되는 경우, 최근에는 전기차의 확대에 따라 전기적 특성 및 난연 특성도 점차 요구되고 있다. 기본적으로 고분자 재료는 금속과는 다르게 부도체이므로, 고분자 재료로 만든 자동차 부품 표면에 정전기의 축적으로 인한 전기차 내부 전자 제품 등의 손상을 불러 일으킬 수 있다. 따라서 이러한 점을 보완할 수 있도록 전기적 특성의 하나인 전기 전도성이 요구되고 있다.
더불어 전자파 차폐 역시 중요하게 요구 되는 특성으로 전자파가 전기차 내부의 다양한 전자제품의 오작동과 더불어 인체에 유해한 영향을 줄 우려가 있으나, 일반적으로 고분자 재료는 낮은 전자파 차폐 성능을 나타낸다. 따라서 전자파 차폐 성능의 확보 역시 요구되고 있다.
아울러 전기차의 확대에 따라 난연성 또한 중요하게 요구되고 있다. 전기차의 배터리는 특수한 상황에 놓일 경우 발화할 수 있는데, 고분자 재료는 금속과는 달리 일반적으로 가연성을 나타내므로 불이 날 경우 심각한 상황을 초래 할 우려가 있다. 따라서 자동차 경량화를 목적으로 하는 전도성, 전자파 차폐 성능, 및 난연성이 확보된 고분자 재료의 개발이 필요하다.
한편, 상기 전기차 내에 사용되는 내장재에 전자파 차폐 성능을 부여하기 위해 탄소 섬유가 사용될 수 있는데, 상기 탄소 섬유의 함량이 증가할수록 유동성이 낮아지고 성형성이 좋지 못하여 내장재 사출 성형시 소재가 금형에 박히거나 금형에서 취출시 깨지는 등의 문제가 발생한다. 따라서, 전자파 차폐 성능을 가지면서도 우수한 유동성을 유지하는 자동차 내장재에 대한 개발이 필요한 실정이다.
우수한 전자파 차폐 성능, 내충격성, 유동성, 내열성, 인장강도 및 굴곡탄성률을 가지는 열가소성 수지 조성물 및 이를 이용한 성형품을 제공하고자 한다.
일 구현예에 따르면, (A) 폴리아미드 수지 40 내지 60 중량%; (B) 고무질 중합체의 평균 입경이 1,000 내지 5,000 nm인 아크릴로니트릴-부타디엔-스티렌 공중합체 수지 15 내지 30 중량%; (C) 산무수물기를 포함하는 에틸렌계 공중합체 5 내지 10 중량%; (D) 말레이미드계 공중합체 2 내지 8 중량% 및 (E) 탄소 섬유(carbon fiber) 10 내지 30 중량%를 포함하는 기초 조성 100 중량부에 대해, (F) 폴리아미드계 유동증진제 0.2 내지 3 중량부를 포함하는 열가소성 수지 조성물이 제공된다.
상기 (A) 폴리아미드 수지는 폴리아미드 6, 폴리아미드 66, 폴리아미드 46, 폴리아미드 11, 폴리아미드 12, 폴리아미드 610, 폴리아미드 612, 폴리아미드 6/66, 폴리아미드 6/612, 폴리아미드 MXD6, 폴리아미드 6/MXD6, 폴리아미드 66/MXD6, 폴리아미드 6T, 폴리아미드 6I, 폴리아미드 6/6T, 폴리아미드 6/6I, 폴리아미드 66/6T, 폴리아미드 66/6I, 폴리아미드 6/6T/6I, 폴리아미드 66/6T/6I, 폴리아미드 9T, 폴리아미드 9I, 폴리아미드 6/9T, 폴리아미드 6/9I, 폴리아미드 66/9T, 폴리아미드 6/12/9T, 폴리아미드 66/12/9T, 폴리아미드 6/12/9I 또는 폴리아미드 66/12/6I에서 선택된 단독 또는 2종 이상일 수 있다.
상기 (B) 고무질 중합체의 평균 입경이 1,000 내지 5,000 nm인 아크릴로니트릴-부타디엔-스티렌 공중합체 수지는, 부타디엔계 고무질 중합체로 이루어진 코어 및 아크릴로니트릴과 스티렌이 상기 코어에 그라프트 중합되어 형성된 쉘을 포함하는 코어-쉘 구조의 분산상과 스티렌-아크릴로니트릴 공중합체 연속상을 포함하는 것 일 수 있다.
상기 스티렌-아크릴로니트릴 공중합체 연속상을 이루는 스티렌-아크릴로니트릴 공중합체는 분지화되지 않은 선형 스티렌-아크릴로니트릴 공중합체일 수 있다.
상기 (B) 고무질 중합체의 평균 입경이 1,000 내지 5,000 nm인 아크릴로니트릴-부타디엔-스티렌 공중합체 수지 100 중량%를 기준으로, 상기 코어-쉘 구조의 분산상은 10 내지 30 중량%로 포함되고, 상기 스티렌-아크릴로니트릴 공중합체 연속상은 70 내지 90 중량%로 포함될 수 있다.
상기 (C) 산무수물기를 포함하는 에틸렌계 공중합체는 말레산무수물이 그라프트된 에틸렌-C1 내지 C10 알켄 공중합체일 수 있다.
상기 (C) 산무수물기를 포함하는 에틸렌계 공중합체는 말레산무수물이 그라프트된 에틸렌-옥텐 공중합체일 수 있다.
상기 (D) 말레이미드계 공중합체는 N-페닐 말레이미드-스티렌-말레산 무수물 공중합체일 수 있다.
상기 (D) 말레이미드계 공중합체의 유리전이온도(Tg)는 150 내지 200℃일 수 있다.
상기 (E) 탄소 섬유는 가공 전 평균 길이가 1 내지 20 mm일 수 있다.
상기 (F) 폴리아미드계 유동증진제는 덴드리틱(dendritic) 폴리아미드계 고분자일 수 있다.
상기 열가소성 수지 조성물은 핵제, 커플링제, 충전제, 가소제, 활제, 이형제, 항균제, 열 안정제, 산화 방지제, 자외선 안정제, 난연제, 대전 방지제, 충격보강제, 염료, 안료 중에서 선택되는 적어도 하나의 첨가제를 더 포함할 수 있다.
한편, 일 구현예에 따른 열가소성 수지 조성물을 이용한 성형품이 제공될 수 있다.
상기 열가소성 수지 조성물은 우수한 전자파 차폐 성능을 가지면서도, 우수한 내충격성, 유동성, 내열성, 인장강도 및 굴곡탄성률을 가지므로, 여러 가지 제품의 성형에 광범위하게 적용될 수 있으며, 특히, 전기차 내장재로서 유용하게 활용될 수 있다.
이하, 본 발명의 구현예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 첨부된 청구범위에 의해 정의될 뿐이다.
본 명세서에서, '공중합'이란 블록 공중합 내지 랜덤 공중합을 의미하고, '공중합체'란 블록 공중합체 내지 랜덤 공중합체를 의미한다.
본 발명에 있어서는 특별히 언급하지 않는 한 '고무질 중합체의 평균 입경'이란 체적평균 직경이고, 동적 광산란(Dynamic light scattering) 분석기기를 이용하여 측정한 Z-평균 입경을 의미한다.
본 발명에서 특별히 언급하지 않는 한 '중량평균분자량'은 분체 시료를 테트라하이드로퓨란(THF)에 녹인 후, Agilent Technologies社의 1200 series 겔 투과 크로마토그래피(Gel Permeation Chromatography; GPC)를 이용하여 측정한 것이다.
일 구현예에 따르면, (A) 폴리아미드 수지 40 내지 60 중량%; (B) 고무질 중합체의 평균 입경이 1,000 내지 5,000 nm인 아크릴로니트릴-부타디엔-스티렌 공중합체 수지 15 내지 30 중량%; (C) 산무수물기를 포함하는 에틸렌계 공중합체 5 내지 10 중량%; (D) 말레이미드계 공중합체 2 내지 8 중량% 및 (E) 탄소 섬유(carbon fiber) 10 내지 30 중량%를 포함하는 기초 조성 100 중량부에 대해, (F) 폴리아미드계 유동증진제 0.2 내지 3 중량부를 포함하는 열가소성 수지 조성물 이 제공된다.
이하, 상기 열가소성 수지 조성물에 포함되는 각 성분에 대하여 구체적으로 설명한다.
(A) 폴리아미드 수지
일 구현예에서, 폴리아미드 수지로는 당해 기술 분야에 알려져 있는 다양한 폴리아미드 수지들, 예를 들면 방향족 폴리아미드 수지, 지방족 폴리아미드 수지 또는 이들의 혼합물이 사용될 수 있으며, 특별히 제한되지 않는다.
상기 방향족 폴리아미드 수지는 주쇄에 방향족 기를 포함하는 폴리아미드로, 반방향족 폴리아미드일 수 있다.
상기 반방향족 폴리아미드는 아미드 결합 사이에 최소한 하나의 방향족 단위와 비방향족 단위를 포함하는 것을 의미한다. 예를 들면, 상기 반방향족 폴리아미드는 방향족 디아민과 지방족 디카르복실산의 중합체이거나, 또는 지방족 디아민과 방향족 디카르복실산의 중합체일 수 있다.
한편, 상기 지방족 폴리아미드는 지방족 디아민과 지방족 디카르복실산의 중합체를 의미한다.
상기 방향족 디아민의 예로는, p-자일렌디아민, m-자일렌디아민 등을 들 수 있으나, 이에 한정되는 것은 아니다. 또한, 이들은 단독 또는 2종 이상 혼합하여 사용될 수 있다.
상기 방향족 디카르복실산의 예로는, 프탈산, 이소프탈산, 테레프탈산, 나프탈렌-2.6-디카르복실산, 디페닐-4.4'-디카르복실산, 1,3-페닐렌디옥시디아세틱산 등을 들 수 있으나, 이에 한정되는 것은 아니다. 또한, 이들은 단독 또는 2종 이상 혼합하여 사용될 수 있다.
상기 지방족 디아민의 예로는, 1,2-에틸렌디아민, 1,3-프로필렌디아민, 1,6-헥사메틸렌디아민, 1,12-도데실렌디아민, 피페라진 등을 들 수 있으나, 이에 한정되는 것은 아니다. 또한, 이들은 단독 또는 2종 이상 혼합하여 사용될 수 있다.
상기 지방족 디카르복실산의 예로는, 아디프산, 세바식산, 숙신산, 글루타릭산, 아젤라익산, 도데칸디오익산, 다이머산, 사이클로헥산디카르복실산 등을 들 수 있으나, 이에 한정되는 것은 아니다. 또한, 이들은 단독 또는 2종 이상 혼합하여 사용될 수 있다.
일 구현예에서, 폴리아미드 수지는 폴리아미드 6, 폴리아미드 66, 폴리아미드 46, 폴리아미드 11, 폴리아미드 12, 폴리아미드 610, 폴리아미드 612, 폴리아미드 6/66, 폴리아미드 6/612, 폴리아미드 MXD6, 폴리아미드 6/MXD6, 폴리아미드 66/MXD6, 폴리아미드 6T, 폴리아미드 6I, 폴리아미드 6/6T, 폴리아미드 6/6I, 폴리아미드 66/6T, 폴리아미드 66/6I, 폴리아미드 6/6T/6I, 폴리아미드 66/6T/6I, 폴리아미드 9T, 폴리아미드 9I, 폴리아미드 6/9T, 폴리아미드 6/9I, 폴리아미드 66/9T, 폴리아미드 6/12/9T, 폴리아미드 66/12/9T, 폴리아미드 6/12/9I 또는 폴리아미드 66/12/6I에서 선택된 단독 또는 2종 이상일 수 있다.
일 구현예에서, 폴리아미드 수지는 기초 조성 100 중량%를 기준으로 40 내지 60 중량%, 예를 들어 45 내지 60 중량%, 예를 들어 50 내지 60 중량%, 예를 들어 55 내지 60 중량%, 예를 들어 40 내지 55 중량%, 예를 들어 40 내지 50 중량%, 예를 들어 40 내지 45 중량%, 예를 들어 45 내지 55 중량%로 포함될 수 있다.
폴리아미드 수지의 함량이 전술한 범위를 만족할 경우 열가소성 수지 조성물 및 이를 이용한 성형품은 폴리아미드 수지에 기인한 우수한 강성, 인성, 내마모성, 내약품성 및 내유성 등을 나타낼 수 있다.
반면, 폴리아미드 수지가 40 중량% 미만인 경우 전술한 폴리아미드 수지에 기인한 우수한 물성들이 나타나기 어려울 수 있고, 60 중량%를 초과할 경우 섬유 보강재에 의한 보강 효과가 적절히 발현되기 어려우므로 열가소성 수지 조성물 및 이를 이용한 성형품의 기계적 강도 및/또는 내열성이 저하될 우려가 있다.
(B) 아크릴로니트릴-부타디엔-스티렌 공중합체 수지
일 구현예에서, (B) 고무질 중합체의 평균 입경이 1,000 내지 5,000 nm인 아크릴로니트릴-부타디엔-스티렌 공중합체 수지는 부타디엔계 고무질 중합체로 이루어진 코어, 및 아크릴로니트릴과 스티렌이 상기 코어에 그라프트 중합되어 형성된 쉘을 포함하는 코어-쉘 구조의 분산상과 스티렌-아크릴로니트릴 공중합체 연속상을 포함할 수 있다.
일 구현예에서, 상기 아크릴로니트릴-부타디엔-스티렌 공중합체 수지는 열가소성 수지 조성물에 우수한 내충격성을 부여한다.
상기 아크릴로니트릴-부타디엔-스티렌 공중합체 수지는 부타디엔계 고무질 중합체와 아크릴로니트릴, 스티렌 3개 성분의 유화, 현탁 또는 괴상중합을 통해 제조될 수 있다.
상기 스티렌-아크릴로니트릴 공중합체 연속상을 이루는 스티렌-아크릴로니트릴 공중합체는 분지화되지 않은 선형 스티렌-아크릴로니트릴 공중합체일 수 있다.
상기 부타디엔계 고무질 중합체는 부타디엔 고무질 중합체, 부타디엔-스티렌 고무질 중합체, 부타디엔-아크릴로니트릴 고무질 중합체, 부타디엔-아크릴레이트 고무질 중합체 및 이들의 혼합물로 이루어진 군으로부터 선택될 수 있다.
상기 아크릴로니트릴-부타디엔 스티렌 공중합체 수지는, 고무질 중합체의 평균 입경이 예를 들어 1,000 내지 5,000 nm, 예를 들어 1,000 내지 4,000 nm, 예를 들어 1,000 내지 3,000 nm일 수 있다. 상기 고무질 중합체의 평균 입경이 1,000 nm 보다 작은 범위인 경우, 본 발명의 일 구현예에 따른 열가소성 수지 조성물이 목표로 하는 효과인 우수한 전자파 차폐 성능 및 유동성을 달성할 수 없다.
상기 연속상을 이루고 있는 분지화되지 않은 선형 스티렌-아크릴로니트릴 공중합체는 중량평균분자량이 예를 들어 50,000 내지 250,000 g/mol, 예를 들어 50,000 내지 200,000 g/mol, 예를 들어 100,000 내지 200,000 g/mol일 수 있다.
기초 조성 100 중량%를 기준으로, 상기 아크릴로니트릴-부타디엔-스티렌 공중합체 수지는 15 중량% 이상 포함될 수 있고, 예를 들어 30 중량% 이하, 예를 들어 25 중량% 이하 포함될 수 있으며, 예를 들어 15 내지 30 중량%, 예를 들어 15 내지 25 중량% 포함될 수 있다.
한편, 아크릴로니트릴-부타디엔-스티렌 공중합체 수지 100 중량%를 기준으로, 상기 코어-쉘 구조의 분산상은 10 내지 30 중량%로 포함될 수 있고, 상기 스티렌-아크릴로니트릴 공중합체(분지화되지 않은 선형 스티렌-아크릴로니트릴 공중합체임) 연속상은 70 내지 90 중량%로 포함될 수 있다.
열가소성 수지 조성물 기초 조성 내 상기 아크릴로니트릴-부타디엔-스티렌 공중합체 수지가 15 중량% 미만일 경우 열가소성 수지 조성물의 내충격성이 저하될 우려가 있고, 30 중량%를 초과할 경우 열가소성 수지 조성물의 내열성이 저하될 우려가 있다.
(C) 산무수물기를 포함하는 에틸렌계 공중합체
일 구현예에서 상기 산무수물기를 포함하는 에틸렌계 공중합체는 열가소성 수지 조성물의 내충격성을 향상시키는 역할을 한다.
상기 (C) 산무수물기를 포함하는 에틸렌계 공중합체는 말레산무수물이 그라프트된 에틸렌-C1 내지 C10 알켄 공중합체일 수 있다.
상기 C1 내지 C10 알켄 단량체는 에틸렌, 프로필렌, 1-부텐, 2-부텐, 1-펜텐, 2-펜텐, 1-헥센, 2-헥센, 3-헥센, 4-헥센, 헵텐, 옥텐, 노넨, 데센일 수 있으나, 이에 제한되는 것은 아니다.
상기 (C) 산무수물기를 포함하는 에틸렌계 공중합체는 구체적으로, 말레산무수물이 그라프트된 에틸렌-옥텐 공중합체일 수 있다.
상기 (C) 산무수물기를 포함하는 에틸렌계 공중합체는 상기 기초 조성 100 중량%에 대하여 5 내지 10 중량%, 예를 들어 6 내지 10 중량%, 예를 들어 7 내지 10 중량%, 예를 들어 5 내지 9 중량%, 예를 들어 5 내지 8 중량%, 예를 들어 5 내지 7 중량%로 포함될 수 있다. 상기 (C) 산무수물기를 포함하는 에틸렌계 공중합체가 5 중량% 미만일 경우, 상기 열가소성 수지 조성물의 내충격성이 저하되며, 10 중량%를 초과할 경우, 상기 열가소성 수지 조성물 성형 시 가공성이 저하될 우려가 있다.
(D) 말레이미드계 공중합체
일 구현예에서 말레이미드계 공중합체는 열가소성 수지 조성물에 우수한 내열성을 부여한다. 말레이미드계 공중합체는 N-페닐 말레이미드, 스티렌, 말레산 무수물의 삼원 공중합체일 수 있고, 스티렌과 말레산 무수물 공중합체의 이미드화 반응을 통해 제조할 수 있다.
일 구현예에서, 말레이미드계 공중합체 100 중량%를 기준으로 상기 N-페닐 말레이미드 유도체는 10 내지 55 중량%, 예를 들어 15 내지 55 중량%, 예를 들어 15 내지 50 중량%로 포함될 수 있다.
한편, 일 구현예에서 말레이미드계 공중합체 100 중량%를 기준으로 상기 스티렌은 40 내지 80 중량%로 포함될 수 있고, 상기 말레산 무수물은 1 내지 10 중량%로 포함될 수 있다.
일 구현예에 따른 말레이미드계 공중합체에서 N-페닐 말레이미드 유도체가 10 중량% 미만일 경우 말레이미드계 공중합체에 의한 내열성 향상 효과가 발현되기 어렵고, 55 중량%를 초과할 경우 열가소성 수지 조성물과 이를 이용한 성형품의 외관 특성이 크게 저하될 우려가 있다.
상기 말레이미드계 공중합체의 유리전이온도(Tg)는 예를 들어 150 내지 200℃, 예를 들어 160 내지 200℃, 예를 들어 170 내지 200℃ 일 수 있다.
상기 말레이미드계 공중합체는 기초 조성 100 중량%에 대하여 2 내지 8 중량%, 예를 들어 3 내지 8 중량%, 예를 들어 4 내지 8 중량%, 예를 들어 2 내지 7 중량%, 예를 들어 2 내지 6 중량%, 예를 들어 2 내지 5 중량%로 포함될 수 있다.
기초 조성 내 말레이미드계 공중합체의 함량이 전술한 범위를 만족할 경우, 열가소성 수지 조성물의 기계적 물성, 성형성 등 다른 물성들과의 밸런스를 유지하면서도 내열성을 크게 개선할 수 있으며, 이를 이용하여 제조되는 성형품 또한 우수한 내열성을 나타낼 수 있다.
(E) 탄소 섬유
본 발명에서 탄소 섬유는 상기 (A) 폴리아미드 수지, (B) 아크릴로니트릴-부타디엔-스티렌 공중합체 수지, (C) 산무수물기를 포함하는 에틸렌계 공중합체 및 (D) 말레이미드계 공중합체를 포함하는 열가소성 수지 조성물에 전기 전도성과 전자파 차폐 성능을 부여할 수 있다.
구체적으로, 탄소 섬유는 상기 열가소성 수지 조성물 내부 임의의 위치에 분산되되, 일정함량 이상의 탄소 섬유를 포함할 경우 분산된 탄소 섬유가 도전 네트워크(conductive network)를 형성하게 된다. 상기 도전 네트워크는 일 구현예에 따른 열가소성 수지 조성물에 전기적 특성, 예를 들어 전기 전도성과 전자파 차폐 성능을 부여할 수 있다.
상기 탄소 섬유는 가공 전 평균 길이가 1 내지 20 mm, 예를 들어 3 내지 15 mm일 수 있다. 상기 탄소 섬유의 가공 전 평균 길이가 1 mm 미만으로 짧을 경우, 이를 포함하는 열가소성 수지 조성물에 분산된 탄소 섬유들이 서로 전기적으로 연결되지 못할 가능성이 높고, 평균 길이가 20 mm를 초과할 경우, 일반적인 압출 가공 방법으로는 제작이 어렵다.
상기 탄소 섬유는 상기 기초 조성 총 중량에 대하여, 10 내지 30 중량%, 예를 들어 15 내지 30 중량%, 예를 들어 20 내지 30 중량%, 예를 들어 25 내지 30 중량%, 예를 들어 10 내지 25 중량%, 예를 들어 10 내지 20 중량%, 예를 들어 10 내지 15 중량%, 예를 들어 10 내지 25 중량%, 예를 들어 10 내지 20 중량%, 예를 들어 10 내지 15 중량%로 포함될 수 있다.
상기 탄소 섬유의 함량이 기초 조성 총 중량에 대하여 10 중량% 미만으로 포함되는 경우 적정 수준의 전기 전도성과 전자파 차폐 성능을 나타내기 어렵고, 30 중량% 초과일 경우, 이를 포함하는 열가소성 수지 조성물의 내충격성 및 성형성이 저하될 우려가 있다.
(F) 폴리아미드계 유동증진제
전술한 바와 같이, 폴리아미드 수지를 포함하는 열가소성 수지 조성물에 전자파 차폐 성능을 부여하기 위해 탄소 섬유가 포함될 수 있다.
다만, 전자파 차폐 성능을 구현하기 위해 상기 탄소 섬유가 열가소성 수지 조성물에 다량으로 포함되는 경우, 상기 열가소성 수지 조성물이 비교적 단단해지고 유동성이 나빠져 사출 성형시 소재가 금형에 박히거나 금형에서 취출시 깨지는 문제가 발생할 수 있다. 이러한 문제에 대한 해결 방법으로, 상기 열가소성 수지 조성물이 탄소 섬유를 충분히 포함하면서도 적정 수준의 유동성을 유지하고 우수한 성형성, 강성 및 치수안정성을 가지기 위해, 상기 열가소성 수지 조성물이 상기 폴리아미드계 유동증진제를 포함할 수 있다.
상기 폴리아미드계 유동증진제는 덴드리틱(dendritic) 폴리아미드계 고분자일 수 있다.
상기 덴드리틱 고분자, 즉, 덴드리머(dendrimer)는 규칙적인 가지 구조를 가지고 있는 거대 분자로서, 분자의 사슬이 일정한 규칙에 따라 중심에서 바깥 방향으로 규칙적으로 3차원으로 퍼진 형태의 고분자를 의미한다.
상기 폴리아미드계 유동증진제는 기초 조성 100 중량부에 대해, 예를 들어 0.2 내지 3 중량부, 예를 들어 0.2 내지 2.5 중량부, 예를 들어 0.2 내지 2 중량부, 예를 들어 0.5 내지 3 중량부, 예를 들어 0.5 내지 2.5 중량부, 예를 들어 0.5 내지 2 중량부로 포함될 수 있다. 폴리아미드계 유동증진제가 상기 함량 범위로 포함되는 경우, 우수한 내충격성 등의 기계적 물성을 유지하면서도 유동성 및 외관 특성이 우수한 열가소성 수지 조성물을 제공할 수 있다.
(G) 기타 첨가제
일 구현예에 따른 열가소성 수지 조성물은 상기 성분 (A) 내지 (F) 외에도, 기계적 물성을 우수하게 유지하는 조건 하에 각 물성들 간의 균형을 맞추기 위해, 혹은 상기 열가소성 수지 조성물의 최종 용도에 따라 필요한 1종 이상의 첨가제를 더 포함할 수 있다.
구체적으로, 상기 첨가제로는 핵제, 커플링제, 충전제, 가소제, 활제, 이형제, 항균제, 열 안정제, 산화 방지제, 자외선 안정제, 난연제, 대전 방지제, 충격보강제, 염료, 안료 등이 사용될 수 있고 이들은 단독으로 혹은 2종 이상의 조합으로 사용될 수 있다.
이들 첨가제는, 열가소성 수지 조성물의 물성을 저해하지 않는 범위 내에서 적절히 포함될 수 있고, 구체적으로는 기초 조성 100 중량부에 대하여 20 중량부 이하로 포함될 수 있으나, 이에 제한되는 것은 아니다.
본 발명에 따른 열가소성 수지 조성물은 열가소성 수지 조성물을 제조하는 공지의 방법에 의해서 제조될 수 있다.
예를 들어, 본 발명에 따른 열가소성 수지 조성물은 본 발명의 구성 성분과 기타 첨가제들을 혼합한 후 압출기 내에서 용융 혼련하여 펠렛(pellet) 형태로 제조할 수 있다.
본 발명의 일 구현예에 의한 성형품은 상술한 열가소성 수지 조성물로부터 제조될 수 있다.
상기 열가소성 수지 조성물은 우수한 내충격성, 유동성, 내열성, 인장강도 및 굴곡탄성률을 가지면서도 전자파 차폐 성능을 갖기 때문에, 여러 가지 제품에 광범위하게 적용될 수 있으며, 특히, 전기 자동차의 내장재 등의 용도에도 유용하게 적용될 수 있다.
이하에서 본 발명을 실시예 및 비교예를 통하여 보다 상세하게 설명하고자 하나, 하기의 실시예 및 비교예는 설명의 목적을 위한 것으로 본 발명을 제한하고자 하는 것은 아니다.
실시예 1 내지 실시예 3 및 비교예 1 내지 비교예 5
실시예 1 내지 실시예 3 및 비교예 1 내지 비교예 5의 열가소성 수지 조성물은 하기 표 1 에 기재된 성분 함량비에 통상의 산화 방지제 및 활제를 공통으로 첨가하여 제조되었다.
표 1에서, (A), (B), (C), (D) 및 (E)는 기초 조성에 포함되는 것으로 기초 조성 총 중량을 기준으로 중량%로 나타내었고, (F)는 기초 조성에 첨가되는 것으로서 기초 조성 100 중량부에 대한 중량부로 나타내었다.
표 1에 기재된 성분에 공통으로 산화 방지제 0.4 중량부 및 활제 0.2 중량부를 추가하여 건식 혼합하고 이축 압출기(L/D=36, Φ=45mm)의 공급부에 정량적으로 연속 투입하여 용융/혼련하였다. 이어서 이축 압출기를 통해 펠렛화된 열가소성 수지 조성물을 약 100℃에서 약 4 시간 동안 건조한 후, 실린더 온도 약 260℃, 금형 온도 약 80℃의 150톤 사출 성형기를 사용하여 물성측정용 시편 및 두께 2 mm의 전자파 차폐 성능 측정용 평판 시편을 제조하였다.
실시예 비교예
1 2 3 1 2 3 4 5
(A) 54 54 42 54 54 54 42 44
(B) 23 23 18 23 23 - 18 -
(B') - - - - - 23 - -
(C) 8 8 6 8 8 8 6 6
(D) 5 5 4 5 5 5 4 -
(E) 10 10 30 10 10 10 30 50
(F) 0.5 2.0 0.5 - 5.0 0.5 - 0.5
상기 표 1 에 기재된 각 구성에 대한 설명은 다음과 같다.
(A) 폴리아미드 수지
융점 약 224℃, 상대점도 약 2.5의 폴리아미드 6 수지를 사용하였다. (케이피켐텍社, RV 2.5)
(B) 아크릴로니트릴-부타디엔-스티렌 공중합체 수지
평균 입경이 약 2,000 nm인 부타디엔 고무질 중합체로 이루어진 코어 및 스티렌-아크릴로니트릴 공중합체로 이루어진 쉘을 포함하는 코어-쉘 구조의 분산상이 약 11 중량%이고, 스티렌-아크릴로니트릴 공중합체(중량평균 분자량이 약 200,000 g/mol이며, 분지화되지 않은 선형 스티렌-아크릴로니트릴 공중합체임)로 이루어진 분산상이 약 89 중량%인 아크릴로니트릴-부타디엔-스티렌 공중합체 수지를 사용하였다. (Liaoning Huajin Chemical社, ABS 275)
(B') 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체
평균 입경이 약 250 nm인 부타디엔 고무질 중합체로 이루어진 코어 58 중량%, 및 아크릴로니트릴과 스티렌이 상기 코어에 그라프트 중합되어 형성된 쉘을 포함하는 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체를 사용하였다. (롯데케미칼社)
(C) 산무수물기를 포함하는 에틸렌계 공중합체
말레산무수물이 그라프트된 에틸렌-옥텐 공중합체를 사용하였다. (DuPont社, Fusabond® MN 493D)
(D) 말레이미드계 공중합체
유리전이온도(Tg)가 약 195℃인 N-페닐 말레이미드-스티렌-말레산 무수물 공중합체를 사용하였다. (Denka社, Denka IP MS-NA)
(E) 탄소 섬유
약 6 mm의 평균 길이를 갖는 탄소 섬유를 사용하였다. (SGL Carbon社, SIGRAFIL® C C6-4.0/240-T130)
(F) 폴리아미드계 유동증진제
CYD-701(Weihai CY Dendrimer Technology社)
실험예
하기 실험 결과를 하기 표 2에 나타내었다.
(1) 전자파 차폐 성능 (단위: dB): ASTM D4935-99 standard 규격에 맞추어 WR-90 waveguide와 ENA 벡터 네트워크 분석기(ENA vector network analyzer)를 이용하여 8.2 GHz 내지 12.4 GHz 의 주파수 범위에서 각 시편의 전자파 차폐 성능을 측정하였다.
(2) 내충격성(단위: kgf·cm/cm): 두께 1/8 인치(inch) 시편에 대하여 ASTM D256 규격에 따라 상온에서 노치 아이조드(notched Izod) 충격강도를 측정하였다.
(3) 유동성(단위: g/10min): ASTM D1238에 따라 250℃, 10 kg 하중 조건에서 측정한 용융흐름지수(Melt flow index)를 측정하였다.
(4) 내열성(단위: ℃): ASTM D648에 따라 1.8MPa 하중 조건에서 열변형 온도(heat deflection temperature, HDT)를 측정하였다.
(5) 인장강도(단위: kgf/cm2): ASTM D638에 따라 1/8 인치(inch) 두께 시편에 대하여 50 mm/min 조건으로 인장강도를 측정하였다.
(6) 굴곡탄성률(단위: kgf/cm2): ASTM D790에 따라 2.8 mm/min 조건으로 두께 1/4 인치(inch) 시편에 대해 굴곡탄성률을 측정하였다.
실시예 비교예
1 2 3 1 2 3 4 5
전자파 차폐
성능
21.5 21.9 35.4 14.3 22.0 17.5 29.2 48.0
노치 아이조드충격강도 8.6 8.0 12.2 10.1 7.0 12.0 9.4 10.4
용융흐름지수 156.0 170.1 40.6 29.1 180.5 94.1 8.5 24.5
열변형 온도 201.5 201.4 207.3 201.2 200.3 192.3 207.0 215.5
인장강도 1,260 1,250 1,720 1,280 1,240 980 1,790 2,640
굴곡탄성률 68,600 68,400 105,000 68,900 68,000 55,000 107,000 218,000
상기 표 2로부터, 실시예 1 내지 실시예 3에 따른 열가소성 수지 조성물은 비교예 1 내지 비교예 5에 따른 열가소성 수지 조성물과 비교하여, 우수한 전자파 차폐 성능을 가지면서도 우수한 내충격성, 유동성, 내열성, 인장강도 및 굴곡탄성률을 유지하는 것을 확인할 수 있다.이상에서 본 발명을 앞서 기재한 바에 따라 바람직한 실시예를 통해 설명하였지만, 본 발명은 이에 한정되지 않으며 다음에 기재하는 특허청구범위의 개념과 범위를 벗어나지 않는 한, 다양한 수정 및 변형이 가능하다는 것을 본 발명이 속하는 기술 분야에 종사하는 자들은 쉽게 이해할 것이다.

Claims (13)

  1. (A) 폴리아미드 수지 40 내지 60 중량%;
    (B) 고무질 중합체의 평균 입경이 1,000 내지 5,000 nm인 아크릴로니트릴-부타디엔-스티렌 공중합체 수지 15 내지 30 중량%;
    (C) 산무수물기를 포함하는 에틸렌계 공중합체 5 내지 10 중량%;
    (D) 말레이미드계 공중합체 2 내지 8 중량% 및
    (E) 탄소 섬유(carbon fiber) 10 내지 30 중량%
    를 포함하는 기초 조성 100 중량부에 대해,
    (F) 폴리아미드계 유동증진제 0.2 내지 3 중량부를 포함하는 열가소성 수지 조성물.
  2. 제1항에서,
    상기 (A) 폴리아미드 수지는 폴리아미드 6, 폴리아미드 66, 폴리아미드 46, 폴리아미드 11, 폴리아미드 12, 폴리아미드 610, 폴리아미드 612, 폴리아미드 6/66, 폴리아미드 6/612, 폴리아미드 MXD6, 폴리아미드 6/MXD6, 폴리아미드 66/MXD6, 폴리아미드 6T, 폴리아미드 6I, 폴리아미드 6/6T, 폴리아미드 6/6I, 폴리아미드 66/6T, 폴리아미드 66/6I, 폴리아미드 6/6T/6I, 폴리아미드 66/6T/6I, 폴리아미드 9T, 폴리아미드 9I, 폴리아미드 6/9T, 폴리아미드 6/9I, 폴리아미드 66/9T, 폴리아미드 6/12/9T, 폴리아미드 66/12/9T, 폴리아미드 6/12/9I 또는 폴리아미드 66/12/6I에서 선택된 단독 또는 2종 이상인 것인 열가소성 수지 조성물.
  3. 제1항 또는 제2항에서,
    상기 (B) 고무질 중합체의 평균 입경이 1,000 내지 5,000 nm인 아크릴로니트릴-부타디엔-스티렌 공중합체 수지는,
    부타디엔계 고무질 중합체로 이루어진 코어 및
    아크릴로니트릴과 스티렌이 상기 코어에 그라프트 중합되어 형성된 쉘을 포함하는 코어-쉘 구조의 분산상과 스티렌-아크릴로니트릴 공중합체 연속상을 포함하는 열가소성 수지 조성물.
  4. 제3항에서,
    상기 스티렌-아크릴로니트릴 공중합체 연속상을 이루는 스티렌-아크릴로니트릴 공중합체는 분지화되지 않은 선형 스티렌-아크릴로니트릴 공중합체인 열가소성 수지 조성물.
  5. 제3항 또는 제4항에서,
    상기 (B) 고무질 중합체의 평균 입경이 1,000 내지 5,000 nm인 아크릴로니트릴-부타디엔-스티렌 공중합체 수지 100 중량%를 기준으로,
    상기 코어-쉘 구조의 분산상은 10 내지 30 중량%로 포함되고, 상기 스티렌-아크릴로니트릴 공중합체 연속상은 70 내지 90 중량%로 포함되는 열가소성 수지 조성물.
  6. 제1항 내지 제5항 중 어느 한 항에서,
    상기 (C) 산무수물기를 포함하는 에틸렌계 공중합체는 말레산무수물이 그라프트된 에틸렌-C1 내지 C10 알켄 공중합체인 열가소성 수지 조성물.
  7. 제1항 내지 제6항 중 어느 한 항에서,
    상기 (C) 산무수물기를 포함하는 에틸렌계 공중합체는 말레산무수물이 그라프트된 에틸렌-옥텐 공중합체인 열가소성 수지 조성물.
  8. 제1항 내지 제7항 중 어느 한 항에서,
    상기 (D) 말레이미드계 공중합체는 N-페닐 말레이미드-스티렌-말레산 무수물 공중합체인 열가소성 수지 조성물.
  9. 제1항 내지 제8항 중 어느 한 항에서,
    상기 (D) 말레이미드계 공중합체의 유리전이온도(Tg)는 150 내지 200℃인 열가소성 수지 조성물.
  10. 제1항 내지 제9항 중 어느 한 항에서,
    상기 (E) 탄소 섬유는 가공 전 평균 길이가 1 내지 20 mm인 열가소성 수지 조성물.
  11. 제1항 내지 제10항 중 어느 한 항에서,
    상기 (F) 폴리아미드계 유동증진제는 덴드리틱(dendritic) 폴리아미드계 고분자인 열가소성 수지 조성물.
  12. 제1항 내지 제11항 중 어느 한 항에서,
    상기 열가소성 수지 조성물은 핵제, 커플링제, 충전제, 가소제, 활제, 이형제, 항균제, 열 안정제, 산화 방지제, 자외선 안정제, 난연제, 대전 방지제, 충격보강제, 염료, 안료 중에서 선택되는 적어도 하나의 첨가제를 더 포함하는 열가소성 수지 조성물.
  13. 제1항 내지 제12항 중 어느 한 항에 따른 열가소성 수지 조성물로부터 제조된 성형품.
PCT/KR2021/011300 2020-08-31 2021-08-24 열가소성 수지 조성물 및 이를 이용한 성형품 WO2022045736A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/022,809 US20230303838A1 (en) 2020-08-31 2021-08-24 Thermoplastic Resin Composition and Molded Product Using Same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0110620 2020-08-31
KR1020200110620A KR102609718B1 (ko) 2020-08-31 2020-08-31 열가소성 수지 조성물 및 이를 이용한 성형품

Publications (1)

Publication Number Publication Date
WO2022045736A1 true WO2022045736A1 (ko) 2022-03-03

Family

ID=80442742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/011300 WO2022045736A1 (ko) 2020-08-31 2021-08-24 열가소성 수지 조성물 및 이를 이용한 성형품

Country Status (3)

Country Link
US (1) US20230303838A1 (ko)
KR (1) KR102609718B1 (ko)
WO (1) WO2022045736A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114716816A (zh) * 2022-05-24 2022-07-08 南音耐腐泵(浙江)有限公司 基于热塑性碳纤维树脂基超韧性高分子材料的制备方法
CN116063845A (zh) * 2022-12-23 2023-05-05 金发科技股份有限公司 一种低翘曲聚酰胺组合物及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100573558B1 (ko) * 2001-02-16 2006-04-24 로디아 엔지니어링 플라스틱 에스알엘 폴리아미드 기재 열가소성 중합체 조성물
KR100643739B1 (ko) * 2004-12-30 2006-11-10 제일모직주식회사 기계적 물성이 향상된 나일론/abs 얼로이
KR101139827B1 (ko) * 2009-03-04 2012-04-30 금호석유화학 주식회사 폴리아마이드-(아크릴로니트릴-부타디엔-스티렌) 열가소성 수지 조성물
CN106566244A (zh) * 2016-11-04 2017-04-19 上海普利特复合材料股份有限公司 一种高流动良表面碳纤维增强尼龙66复合材料及其制备方法
CN106977911A (zh) * 2017-03-16 2017-07-25 广东圆融新材料有限公司 一种高光泽耐刮擦聚酰胺组合物及其制备方法
KR20190078735A (ko) * 2017-12-27 2019-07-05 주식회사 엘지화학 전도성 폴리아미드 수지 조성물, 이의 제조방법 및 성형품
KR20200036594A (ko) * 2018-09-28 2020-04-07 롯데첨단소재(주) 열가소성 수지 조성물 및 이를 이용한 성형품

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2807761B1 (fr) * 2000-04-12 2002-06-21 Rhodia Engineering Plastics Sa C0mpositions polymeriques thermoplastiques
DE10251294B4 (de) * 2002-11-04 2007-05-16 Ems Chemie Ag Polyamidformmasse und deren Verwendung

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100573558B1 (ko) * 2001-02-16 2006-04-24 로디아 엔지니어링 플라스틱 에스알엘 폴리아미드 기재 열가소성 중합체 조성물
KR100643739B1 (ko) * 2004-12-30 2006-11-10 제일모직주식회사 기계적 물성이 향상된 나일론/abs 얼로이
KR101139827B1 (ko) * 2009-03-04 2012-04-30 금호석유화학 주식회사 폴리아마이드-(아크릴로니트릴-부타디엔-스티렌) 열가소성 수지 조성물
CN106566244A (zh) * 2016-11-04 2017-04-19 上海普利特复合材料股份有限公司 一种高流动良表面碳纤维增强尼龙66复合材料及其制备方法
CN106977911A (zh) * 2017-03-16 2017-07-25 广东圆融新材料有限公司 一种高光泽耐刮擦聚酰胺组合物及其制备方法
KR20190078735A (ko) * 2017-12-27 2019-07-05 주식회사 엘지화학 전도성 폴리아미드 수지 조성물, 이의 제조방법 및 성형품
KR20200036594A (ko) * 2018-09-28 2020-04-07 롯데첨단소재(주) 열가소성 수지 조성물 및 이를 이용한 성형품

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114716816A (zh) * 2022-05-24 2022-07-08 南音耐腐泵(浙江)有限公司 基于热塑性碳纤维树脂基超韧性高分子材料的制备方法
CN116063845A (zh) * 2022-12-23 2023-05-05 金发科技股份有限公司 一种低翘曲聚酰胺组合物及其制备方法和应用
CN116063845B (zh) * 2022-12-23 2024-05-14 金发科技股份有限公司 一种低翘曲聚酰胺组合物及其制备方法和应用

Also Published As

Publication number Publication date
KR102609718B1 (ko) 2023-12-04
KR20220028952A (ko) 2022-03-08
US20230303838A1 (en) 2023-09-28

Similar Documents

Publication Publication Date Title
WO2022045736A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2019078464A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2017188524A1 (ko) 대전방지용 탄소 복합재, 성형품 및 그 제조방법
WO2012144781A2 (ko) 생분해성 고분자 복합재
WO2015105296A1 (ko) 전도성 폴리아미드/폴리페닐렌 에테르 수지 조성물 및 이로부터 제조된 자동차용 성형품
WO2011052848A1 (ko) 폴리페닐렌에테르계 수지 조성물 및 이를 이용한 성형품
WO2018124657A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2020067681A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2017057904A1 (ko) 열가소성 수지 조성물 및 이를 포함하는 성형품
WO2010067955A2 (ko) 고무/나노클레이 마스터배치 제조 및 이를 이용한 고강성 고충격강도 폴리프로필렌/나노클레이/고무 복합재 제조
WO2011065678A2 (ko) 친환경 폴리아미드 수지 조성물 및 이를 이용한 성형품
WO2010134682A1 (ko) 전도성 폴리아미드 복합체 조성물 및 이를 이용한 연료 수송 튜브
WO2015088239A1 (ko) 할로겐계 난연 유리섬유 강화 폴리아미드 수지 조성물, 및 제조방법
WO2020145500A1 (ko) 내열성과 전자파 차폐능이 우수한 열가소성 수지 조성물, 이의 제조방법 및 이로부터 제조된 사출성형품
WO2020067673A1 (ko) 폴리아미드/폴리페닐렌 에테르 수지 조성물 및 이를 이용한 성형품
WO2022145799A1 (ko) 수소 탱크 라이너용 폴리아미드 수지 조성물 및 이로부터 제조된 성형품
WO2023085511A1 (ko) 친환경 대전방지 수지 조성물 및 이의 성형품
WO2022211458A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2016200046A1 (ko) 전도성이 향상된 전도성 복합재 및 이의 제조방법
WO2020004997A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
WO2024117612A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2022231220A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2023277501A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2023234582A1 (ko) 열가소성 수지 조성물 및 이로부터 제조되는 성형품
KR20200104502A (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21862033

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21862033

Country of ref document: EP

Kind code of ref document: A1