WO2012144781A2 - 생분해성 고분자 복합재 - Google Patents

생분해성 고분자 복합재 Download PDF

Info

Publication number
WO2012144781A2
WO2012144781A2 PCT/KR2012/002905 KR2012002905W WO2012144781A2 WO 2012144781 A2 WO2012144781 A2 WO 2012144781A2 KR 2012002905 W KR2012002905 W KR 2012002905W WO 2012144781 A2 WO2012144781 A2 WO 2012144781A2
Authority
WO
WIPO (PCT)
Prior art keywords
resin
abs
biodegradable
polymer composite
biodegradable polymer
Prior art date
Application number
PCT/KR2012/002905
Other languages
English (en)
French (fr)
Other versions
WO2012144781A3 (ko
Inventor
김지문
이응기
이민희
김명희
김정근
Original Assignee
(주)엘지하우시스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)엘지하우시스 filed Critical (주)엘지하우시스
Priority to US13/981,523 priority Critical patent/US9096757B2/en
Priority to EP12774022.3A priority patent/EP2700678B1/en
Priority to JP2013551924A priority patent/JP2014503678A/ja
Priority to CN201280009662.4A priority patent/CN103384704B/zh
Publication of WO2012144781A2 publication Critical patent/WO2012144781A2/ko
Publication of WO2012144781A3 publication Critical patent/WO2012144781A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1515Three-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1535Five-membered rings
    • C08K5/1539Cyclic anhydrides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/06Biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Definitions

  • the present invention relates to a biodegradable polymer composite, and more particularly, to a technology for providing a polymer composite having excellent impact strength, including an acrylonitrile-butadiene-styrene (ABS) resin and a biodegradable resin.
  • ABS acrylonitrile-butadiene-styrene
  • Biopolymers are found in living organisms, are naturally occurring polymers, and are derived from renewable resources and are biodegradable. Biopolymers can be used in a variety of fields, including medicine, coatings, food and packaging materials.
  • Polylactic acid is the most representative biodegradable resin, which has good transparency and excellent heat resistance among biodegradable resins, and is economical since it can be mass produced from vegetable raw materials such as corn and sweet potato. In addition, it is a very useful polymer in that it can contribute to the reduction of the use of petroleum raw materials.
  • the incineration of a conventional petroleum resource as a raw material increases the concentration of carbon dioxide in the atmosphere after incineration, but polylactic acid does not increase the concentration of carbon dioxide in the atmosphere even if carbon dioxide is released by incineration or biodegradation. This is because the emitted carbon dioxide concentration is similar to the carbon dioxide concentration in the atmosphere.
  • polylactic acid is currently used in disposables, disposables and trash bags, and is being actively researched for practical application in various areas of real life such as exteriors of electronic products such as air cleaners, mobile phones, chairs, and furniture and automobile parts.
  • acrylonitrile-butadiene-styrene (Arylonitrile-Butadiene-Styrene: ABS) resin is a thermoplastic polymer and is used for weight reduction of products because of its low specific gravity.
  • ABS resin has excellent molding processability, excellent mechanical properties such as tensile strength, impact strength, and the like, and its thermal expansion coefficient and heat deformation temperature are high, so it is excellent in thermal properties.
  • ABS resin is a thermoplastic polymer and is used for weight reduction of products because of its low specific gravity.
  • ABS resin is a thermoplastic polymer and is used for weight reduction of products because of its low specific gravity.
  • ABS resin has excellent molding processability, excellent mechanical properties such as tensile strength, impact strength, and the like, and its thermal expansion coefficient and heat deformation temperature are high, so it is excellent in thermal properties.
  • since it is widely used as a vehicle material its usage is steadily increasing, and efforts have been made to reduce the costs incurred in disposal and incineration after use.
  • ABS acrylonitrile-butadiene-styrene
  • ABS acrylonitrile-butadiene-styrene
  • An object of the present invention is to provide a biodegradable polymer composite having biodegradability, flexibility, chemical resistance and heat resistance, and excellent mechanical properties by solving the above compatibility problem.
  • Biodegradable polymer composite according to an embodiment of the present invention for achieving the above object is characterized in that it comprises a biodegradable resin, acrylonitrile-butadiene-styrene (ABS) resin and reactive compatibilizer.
  • ABS acrylonitrile-butadiene-styrene
  • the resin particles are characterized in that the phase separation structure in which a dispersed phase is formed in the acrylonitrile-butadiene-styrene (ABS) resin matrix.
  • the biodegradable resin may be at least one selected from polylactic acid, polyhydroxybutylate, polycaprolactone.
  • the reactive compatibilizer is an epoxy group, may be one or more selected from glycidyl methacrylate or maleic anhydride.
  • the biodegradable resin may be 10 to 40% by weight of the total weight of the composite material.
  • the compatibilizer may be 1 to 20% by weight of the total weight of the composite material.
  • the composite material may be in the form of powdery phase with a diameter of 0.1 ⁇ 5 ⁇ m.
  • the composite material may further include an additive, wherein the additive may be at least one selected from fillers, softeners, anti-aging agents, anti-aging agents, antioxidants, dyes, pigments, catalysts and dispersants.
  • the additive may be at least one selected from fillers, softeners, anti-aging agents, anti-aging agents, antioxidants, dyes, pigments, catalysts and dispersants.
  • the biodegradable polymer composite according to the present invention has a biodegradability, flexibility, chemical resistance and heat resistance because it solves the physical property degradation caused by the compatibility problem between the biodegradable resin and acrylonitrile-butadiene-styrene (ABS) resin Excellent mechanical properties.
  • ABS polylactic acid / acrylonitrile-butadiene-styrene
  • FIG. 2 is a SEM photograph of a molded article prepared using the polylactic acid / acrylonitrile-butadiene-styrene (ABS) composite prepared in Comparative Example 3.
  • ABS polylactic acid / acrylonitrile-butadiene-styrene
  • biodegradable polymer composite according to the present invention will be described in detail.
  • Biodegradable polymer composite includes (A) biodegradable resin, (B) acrylonitrile-butadiene-styrene (ABS) resin and (C) reactive compatibilizer.
  • Each component included in the biodegradable polymer composite material according to the embodiment of the present invention is specifically as follows.
  • Biodegradable resin refers to a resin that is completely decomposed into water, carbon dioxide and trace inorganic salts by microorganisms existing in nature.
  • Biodegradable resin used in the present invention is preferably used in the range of 10 to 40% by weight of the total weight of the composite depending on the target biomass (biomass) content and physical properties.
  • the content of the biodegradable resin is less than 10% by weight, the biodegradability is lowered, and when the content of the biodegradable resin exceeds 40% by weight, the content of acrylonitrile-butadiene-styrene (ABS) resin and the reactive compatibilizer is limited so that the desired mechanical properties It is difficult to achieve, and there is a problem that a drop in physical properties is particularly large in impact strength.
  • ABS acrylonitrile-butadiene-styrene
  • the biodegradable resin of the present invention may be any one or more selected from the group consisting of polylactic acid, polyhydroxybutylate, and polycaprolactone, as long as it satisfies the above conditions.
  • polylactic acid is preferred because of its excellent mechanical strength and excellent manufacturability compared to other biodegradable resins.
  • Polylactic acid is a polyester resin produced by ester reaction using lactic acid as a monomer, and has a structure as shown in [Formula 1].
  • the polylactic acid used in the present invention comprises a repeating unit derived from L-isomer lactic acid, a repeating unit derived from D-isomer lactic acid, or a repeating unit derived from L, D-isomer lactic acid. It can be used alone or in combination.
  • the repeating unit derived from L-isomer lactic acid is preferably included at least 95% by weight, and more preferably from 95 to 100 wt% of repeating units derived from L-isomer lactic acid in view of hydrolysis resistance. It is preferred to use polylactic acid consisting of% and 0-5% by weight of repeating units derived from D-isomer lactic acid.
  • ABS resin is a ternary copolymer resin composed of three monomers of AN (acrylonitrile), BD (butadiene), and SM (styrene monomer), and has a structure as shown in [Formula 2] Has
  • the acrylonitrile-butadiene-styrene (ABS) resin may be variously developed by adjusting the composition ratio of three main monomers, or by reinforcing various pigments and additives, adding a heat resistant agent, adding a flame retardant, and controlling molecular weight.
  • the acrylonitrile-butadiene-styrene (ABS) resin is generally prepared by mixing a copolymer of acrylonitrile and butadiene and a copolymer of styrene and butadiene. In this case, each of the interpolymers will have it at the same time. Different component combinations of the interpolymers change the performance of the product. Therefore, in the present invention, acrylonitrile-butadiene-styrene (ABS) resins are used in which the combinations are varied depending on the application.
  • ABS resin used in the present invention is preferably used in the range of 40 to 89% by weight of the total weight of the composite material.
  • ABS acrylonitrile-butadiene-styrene
  • the compatibilizer allows the polymers to be well mixed (blended) through chemical reaction between the compositional polymer and functional groups introduced into the compatibilizer during melt mixing of the polymers.
  • compatibilizers There are two types of compatibilizers: non-reactive compatibilizers that use only physical properties and reactive compatibilizers that accompany the reaction during extrusion.
  • non-reactive compatibilizer a random copolymer, a graft copolymer, a block copolymer, and the like are most frequently used, and a reactive group is often attached to the reactive compatibilizer.
  • Examples of the reactive group include maleic anhydride, epoxy, and carbonyl groups, and most of these reactive groups are attached to terminals or sides of the compatibilizer.
  • the compatibilizer included in the composite of the present invention is a reactive compatibilizer, particularly preferably having an epoxy group as a reactor.
  • compatibilizer having the epoxy group as a reactor
  • Glycidyl methacrylate has the structure of formula (3)
  • maleic anhydride has the structure of formula (4).
  • the glycidyl methacrylate or maleic anhydride increases mechanical compatibility such as tensile strength and impact strength by increasing the compatibility of the biodegradable resin and acrylonitrile-butadiene-styrene (ABS) resin.
  • the glycidyl methacrylate or maleic anhydride mitigates the property difference between the biodegradable resin and the acrylonitrile-butadiene-styrene (ABS) resin to stabilize the micro phase separation structure.
  • ABS acrylonitrile-butadiene-styrene
  • the compatibilizer of the present invention is preferably 1 to 20% by weight of the total weight of the composite material, more preferably 1 to 7% by weight.
  • the compatibilizer is used at less than 1% by weight, the effect of increasing compatibility decreases, so that the mechanical properties of the product are not good. If the compatibilizer is used at more than 20% by weight, the interface between the polymers is formed so thick that biodegradable resin and Mechanical properties may be reduced by lowering the interfacial bond between the acrylonitrile-butadiene-styrene (ABS) resins.
  • ABS acrylonitrile-butadiene-styrene
  • Biodegradable polymer composite material comprises a biodegradable resin, acrylonitrile-butadiene-styrene (ABS) resin and a reactive compatibilizer, the composite is the biodegradable resin particles are the acrylic It is characterized by a phase-separated structure in which a dispersed phase is formed in a ronitrile-butadiene-styrene (ABS) resin matrix.
  • ABS acrylonitrile-butadiene-styrene
  • phase separation structure is formed by acrylonitrile-butadiene-styrene (ABS) resin forming a matrix, and biodegradable resin particles forming a dispersed phase in the matrix.
  • ABS acrylonitrile-butadiene-styrene
  • the glycidyl methacrylate or maleic anhydride which is a compatibilizer, strengthens the adhesion between the acrylonitrile-butadiene-styrene (ABS) resin matrix and the biodegradable resin particles, and blocks the coalescence of the biodegradable resin particles.
  • the disperse phase of finely sized biodegradable resin particles is evenly dispersed on the acrylonitrile-butadiene-styrene (ABS) resin matrix.
  • the size of the dispersed phase of the biodegradable resin particles is 0.1-20 ⁇ in diameter, more preferably 0.1-5 ⁇ .
  • the composite material may further include an additive, wherein the additive may be at least one selected from fillers, softeners, anti-aging agents, anti-aging agents, antioxidants, dyes, pigments, catalysts and dispersants.
  • the additive may be at least one selected from fillers, softeners, anti-aging agents, anti-aging agents, antioxidants, dyes, pigments, catalysts and dispersants.
  • the biodegradable resin composite material according to the present invention can be completed by the above process, and the preparation examples (examples and comparative examples) of the biodegradable resin composite material of the present invention formed as described above and evaluation results thereof are as follows.
  • ABS resin, PLA resin and EOR-MAH (Ethylene-Octene-Rubber-maleic anhydride) compatibilizer were each dried for 24 hours in a vacuum oven at 70 ° C., and then 90 g of dried ABS resin and 10 g of dried PLA resin were mixed. A polymer mixed resin was prepared. Next, 1 g of the EOR-MAH compatibilizer dried on the polymer mixed resin was mixed, injected into a corotating twin screw extruder, and melt-extruded at a temperature of 120 rpm at a temperature of 220 ° C. to form an ABS / PLA composite material. Was prepared.
  • Example 2 In the same manner as in Example 1, but using a 1g ethylene ethylene ethylene ethylene compatibilizer (ABMA) to prepare an ABS / PLA composite.
  • ABMA ethylene ethylene ethylene ethylene compatibilizer
  • ABS resin After drying the ABS resin, PCL resin and Glycidyl Methacrylate (GMA) compatibilizers in a vacuum oven at 70 ° C. for 24 hours, 60 g of dried ABS resin and 40 g of dried PCL resin were mixed to prepare a polymer. A mixed resin was prepared. Next, 2 g of the GMA compatibilizer dried on the polymer mixed resin was mixed, and then injected into a corotating twin screw extruder, followed by melt extrusion at a temperature of 120 rpm at 220 ° C. to produce an ABS / PCL composite material. It was.
  • GMA Glycidyl Methacrylate
  • Example 1 90 PLA 10 One 0 0 0 20.0
  • Example 2 90 PLA 10 2 0 0 0 20.2
  • Example 3 60 PLA 40 One 0 0 0 14.5
  • Example 4 60 PLA 40 5 0 0 0 10.1
  • Example 5 90 PLA 10 0 One 0 0 18.0
  • Example 6 60 PLA 40 0 7 0 0 7.8
  • Example 7 90 PHB 10 0 0 2 0 22
  • Example 8 90 PHB 10 0 0 5 0 11
  • Example 9 60 PCL 40 0 0 0 2 16.5
  • Example 10 60 PCL 40 0 0 0 5 19.8 Comparative Example 1 100 0 0 0 0 0 21.0 Comparative Example 2 90 10 0 0 0 0 0 0 0 0 5.2
  • the composite materials according to Examples 1 to 10 and Comparative Examples 1 to 3 were prepared into specimens having a width of 75 mm ⁇ length of 12.5 mm ⁇ height of 3 mm using an injection machine. Subsequently, after the specimen was immersed in liquid nitrogen, the resulting fracture surface was etched using an ethylene amide solution, and then the morphological characteristics of the composite were observed with an electron scanning microscope.
  • the composite of the present invention can be confirmed that the compatibility between the ABS resin and PLA resin increased by including a specific reactive compatibilizer, impact due to the increase in compatibility The strength was also excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

본 발명은 생분해성 고분자 복합재에 관한 것으로, 상세하게는 아크릴로니트릴-부타디엔-스티렌(ABS) 수지와 생분해성 수지를 포함하는, 내충격강도가 우수한 고분자 복합재를 제공하는 기술에 관한 것이다.

Description

생분해성 고분자 복합재
본 발명은 생분해성 고분자 복합재에 관한 것으로, 상세하게는 아크릴로니트릴-부타디엔-스티렌(ABS) 수지와 생분해성 수지를 포함하는, 내충격강도가 우수한 고분자 복합재를 제공하는 기술에 관한 것이다.
최근 바이오 고분자(biopolymer)에 대한 관심이 증가하고 있다. 바이오 고분자는 생물체에서 발견되며, 천연적으로 발생하는 고분자로서, 재생자원으로부터 유래되면서 생분해가 되는 특징이 있다. 바이오 고분자는 의학, 코팅, 식품 및 포장재료 등 다양한 분야에 사용될 수 있다.
폴리락트산(Polylactic acid: PLA)은 가장 대표적인 생분해성 수지로, 투명성이 양호하며, 생분해성 수지 중에서 내열성이 우수하면서도, 옥수수나 고구마 등의 식물성 원료로부터 대량 생산 가능하기 때문에 경제성이 높다. 또한 석유 원료 사용 절감에도 공헌할 수 있다는 점에서 유용성이 매우 높은 고분자이다.
또한 기존의 석유자원을 원료로 하는 고분자 소재는 사용 후 소각처리하면 대기 중의 이산화탄소 농도를 증가시키지만, 폴리락트산의 경우 소각이나 생분해되어 이산화탄소가 배출되어도 대기 중의 이산화탄소 농도를 증가시키지 않는다. 배출되는 이산화탄소농도가 대기 중의 이산화탄소 농도와 비슷하기 때문이다.
따라서 폴리락트산은 현재 일회용품과 일회용품과 쓰레기봉투 등에 사용되고 있으며, 공기청정기, 핸드폰, 의자 등 전자 제품의 외장과 가구 및 자동차용 부품 등 실생활의 다양한 분야에 대한 활용가능성 여부가 활발히 연구되고 있다.
한편, 아크릴로니트릴-부타디엔-스티렌(Acrylonitrile-Butadiene-Styrene: ABS) 수지는 열가소성 고분자로서, 비중이 작기 때문에 제품의 경량화를 위해 사용된다. 또한, 성형 가공성이 우수하며, 인장강도, 충격강도 등과 같은 기계적 특성이 우수하고, 열팽창계수 및 열변형 온도 등이 높아 열적 특성이 우수하다. 특히 자동차 재료로 많이 사용되고 있는바, 그 사용량이 꾸준히 증가되고 있어, 사용 후 폐기 및 소각처리시 발생하는 비용을 줄이기 위한 노력이 필요하게 되었다.
이를 위하여 폴리락트산과 같은 생분해성 수지를 아크릴로니트릴-부타디엔-스티렌(ABS) 수지에 소량 첨가함으로써, 완성된 복합재에 생분해성을 부여하는 연구가 활발히 진행되고 있다.
그러나, 폴리락트산과 아크릴로니트릴-부타디엔-스티렌(ABS) 수지는 상용성이 현저히 떨어지기 때문에, 상용성을 개선하여 충격강도 저하 현상을 해결해야 할 필요가 있었다.
본 발명의 목적은 상기와 같은 상용성의 문제를 해결함으로써, 생분해성은 물론, 유연성, 내화학성 및 내열성을 갖고, 기계적 물성이 우수한 생분해성 고분자 복합재를 제공하는데 있다.
상기 목적을 달성하기 위한 본 발명의 일 실시예에 따른 생분해성 고분자 복합재는 생분해성 수지, 아크릴로니트릴-부타디엔-스티렌(ABS) 수지 및 반응형 상용화제를 포함하는 것을 특징으로 한다.
상기 목적을 달성하기 위한 본 발명의 또 다른 일 실시예에 따른 생분해성 고분자 복합재는 생분해성 수지, 아크릴로니트릴-부타디엔-스티렌(ABS) 수지 및 반응형 상용화제를 포함하고, 상기 복합재는 상기 생분해성 수지 입자가 상기 아크릴로니트릴-부타디엔-스티렌(ABS) 수지 매트릭스 안에 분산상을 형성한 상분리 구조인 것을 특징으로 한다.
여기에서, 상기 생분해성 수지는 폴리락트산, 폴리하이드록시부틸레이트, 폴리카프로락톤 중에서 선택되는 하나 이상일 수 있다.
또한, 상기 반응형 상용화제는 에폭시기를 갖는 것으로서, 글리시딜메타크릴레이트 또는 무수말레인산 중에서 선택되는 하나 이상일 수 있다.
또한, 상기 생분해성 수지는 상기 복합재 전체 중량 중 10~40중량%일 수 있다.
또한, 상기 상용화제는 상기 복합재 전체 중량 중 1~20중량%일 수 있다.
또한, 상기 복합재는 직경 0.1~5μm의 분상상일 수 있다.
또한, 상기 복합재는 첨가제를 더 포함할 수 있으며, 여기에서 상기 첨가제는 충전제, 유연제, 노화방지제, 내열노화방지제, 산화방지제, 염료, 안료, 촉매 및 분산제 중에서 선택되는 1종 이상일 수 있다.
본 발명에 의한 생분해성 고분자 복합재는 생분해성 수지와 아크릴로니트릴-부타디엔-스티렌(ABS) 수지 간의 상용성 문제로 인하여 발생하는 물성 저하를 해결하였기 때문에, 생분해성, 유연성, 내화학성 및 내열성을 가지며, 기계적 물성이 우수하다.
따라서, 생분해성 수지의 활용도를 넓힐 수 있을 뿐만 아니라, 각종 환경규제에도 능동적으로 대처할 수 있으며, 차후 재료 처리 비용을 현저히 감소시킬 수 있는 부가적 효과도 있다.
도 1은 실시예 3에 의해 제조된 본 발명의 폴리락트산 / 아크릴로니트릴-부타디엔-스티렌(ABS) 복합재를 이용하여 제조한 성형품의 SEM 사진.
도 2는 비교예 3에 의해 제조된 폴리락트산 / 아크릴로니트릴-부타디엔-스티렌(ABS) 복합재를 이용하여 제조한 성형품의 SEM 사진.
기타 실시예들의 구체적인 사항들은 이하의 상세한 설명 및 첨부 도면들에 포함되어 있다.
본 발명의 이점 및/또는 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이어서, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭한다.
이하에서는 본 발명에 따른 생분해성 고분자 복합재에 대하여 상세히 설명하기로 한다.
본 발명의 일 실시예에 따른 생분해성 고분자 복합재는 (A) 생분해성 수지, (B) 아크릴로니트릴-부타디엔-스티렌(ABS) 수지 및 (C) 반응형 상용화제를 포함한다.
본 발명의 일 실시예에 따른 생분해성 고분자 복합재에 포함되는 각 성분은 구체적으로 다음과 같다.
(A) 생분해성 수지
생분해성 수지는 자연계에 존재하는 미생물에 의하여 물과 이산화탄소 및 미량의 무기염류로 완전히 분해되는 수지를 의미한다.
본 발명에서 사용되는 생분해성 수지는 목표로 하는 바이오매스(biomass) 함량과 물성치에 따라 복합재 전체 중량 중 10~40중량% 범위로 사용하는 것이 바람직하다.
상기 생분해성 수지의 함량이 10중량% 미만일 경우, 생분해성이 떨어지고, 40중량%를 초과할 경우 아크릴로니트릴-부타디엔-스티렌(ABS) 수지 및 반응형 상용화제의 함량이 제한되어 원하는 기계적 물성을 달성하기 어렵고, 특히 충격강도에 있어서 물성의 하락폭이 크다는 문제가 있다.
본 발명의 생분해성 수지는 상기의 조건을 만족하는 것이라면 어느 것이어도 무관하지만, 그 중에서도 폴리락트산, 폴리하이드록시부틸레이트, 폴리카프로락톤으로 이루어진 군에서 선택되는 하나 이상일 수 있다.
특히, 이중에서도 폴리락트산은 기계적 강도가 우수하고, 다른 생분해성 수지에 비하여 제조성이 우수하여 바람직하다.
폴리락트산은 락트산을 모노머로 하여 에스테르 반응에 의해 제조되는 폴리에스테르계 수지로서, 하기 [화학식 1]과 같은 구조를 갖는다.
[화학식 1]
Figure PCTKR2012002905-appb-I000001
본 발명에서 사용되는 폴리락트산은 L-이성질체 락트산으로부터 유도된 반복단위, D-이성질체 락트산으로부터 유도된 반복단위, 또는 L,D-이성질체 락트산으로부터 유도된 반복단위를 포함하여 구성되는데, 이들 폴리락트산은 단독 또는 복합으로 사용될 수 있다.
내열성 및 성형성의 균형면에서, L-이성질체 락트산으로부터 유도된 반복단위가 95중량% 이상 포함되는 것이 좋고, 보다 바람직하게는 내가수분해성을 고려할 때 L-이성질체 락트산으로부터 유도된 반복단위 95~100중량% 및 D-이성질체 락트산으로부터 유도된 반복단위 0~5중량%로 이루어진 폴리락트산을 사용하는 것이 좋다.
(B) 아크릴로니트릴-부타디엔-스티렌(ABS) 수지
아크릴로니트릴-부타디엔-스티렌(ABS) 수지는 AN(아크릴로니트릴), BD(부타디엔), SM(스티렌 단량체) 3종의 단량체로 구성된 3원 공중합체 수지로, 하기 [화학식 2]와 같은 구조를 갖는다.
[화학식 2]
Figure PCTKR2012002905-appb-I000002
상기 아크릴로니트릴-부타디엔-스티렌(ABS) 수지는 3종의 주요 모노머의 조성비를 조정하거나, 각종 안료 및 첨가제 보강, 내열제 첨가, 난연제 첨가, 분자량 조절 등을 통해서 다양한 개발이 가능하다.
상기 아크릴로니트릴-부타디엔-스티렌(ABS) 수지는 아크릴로니트릴과 부타디엔의 혼성중합체 및 스티렌과 부타디엔의 혼성중합체를 혼합하여 제조하는 것이 일반적이다. 이 경우 각각의 혼성중합체를 동시에 갖게 된다. 혼성중합체의 성분 조합이 다르면 제품의 성능도 변화하므로, 본 발명에서는 용도에 따라 조합에 변화를 준 아크릴로니트릴-부타디엔-스티렌(ABS) 수지를 사용한다.
본 발명에서 사용되는 아크릴로니트릴-부타디엔-스티렌(ABS) 수지는 복합재 전체 중량 중 40~89중량% 범위로 사용하는 것이 바람직하다.
상기 아크릴로니트릴-부타디엔-스티렌(ABS) 수지의 함량이 40중량% 미만일 경우, 의도한 정도의 내충격성 및 내열성을 얻기 어렵고, 89중량%를 초과하는 경우 생분해성이 떨어진다는 문제가 있다.
(C) 반응형 상용화제
상용화제는 고분자들의 용융 혼합시 조성고분자 및 상용화제에 도입된 관능기들 사이의 화학반응을 통하여 고분자들이 잘 혼합(블렌드)되도록 한다.
상용화제는 물리적인 성질만을 이용하는 비반응형 상용화제와 압출시 반응을 수반하게 되는 반응형 상용화제의 2가지가 있다.
비반응형 상용화제는 랜덤(random) 공중합체, 그라프트(graft) 공중합체, 블록(block) 공중합체 등이 가장 많이 사용되고 있으며, 여기에 반응성기가 부착되어 반응형 상용화제가 되는 경우가 많다.
상기 반응성기로는 무수말레인산, 에폭시, 카르보닐기 등이 있으며, 이들 반응성기는 상용화제의 말단 또는 측면에 부착되어 있는 경우가 대부분이다.
본 발명의 복합재에 포함되는 상용화제는 반응형 상용화제로서, 특히 에폭시기를 반응기로 갖는 것이 바람직하다.
상기 에폭시기를 반응기로 갖는 상용화제라면 제한이 없지만, 특히 글리시딜메타크릴레이트 또는 무수말레인산 중에서 선택되는 하나 이상을 사용하는 것이, 제조된 복합재의 물성을 고려할 때 바람직하다.
글리시딜메타크릴레이트는 하기 화학식 3의 구조를, 무수말레인산은 하기 화학식 4의 구조를 갖는다.
[화학식 3]
Figure PCTKR2012002905-appb-I000003
[화학식 4]
Figure PCTKR2012002905-appb-I000004
상기 글리시딜메타크릴레이트 또는 무수말레인산은 생분해성 수지와 아크릴로니트릴-부타디엔-스티렌(ABS) 수지의 상용성을 증대시킴으로써 인장강도, 충격강도 등의 기계적 강도를 향상시킨다.
상기 글리시딜메타크릴레이트 또는 무수말레인산은 생분해성 수지와 아크릴로니트릴-부타디엔-스티렌(ABS) 수지의 성질 차이를 완화시켜 마이크로 상분리 구조로 안정화되도록 한다.
즉, 생분해성 수지와 아크릴로니트릴-부타디엔-스티렌(ABS) 수지 사이의 다리역할을 하여, 이들간의 계면장력을 낮추어서 상용성을 향상시키는 역할을 한다.
이 때, 글리시딜메타크릴레이트는 에폭시기의 링 구조가 파괴되면서 반응하게 되고, 무수말레인산은 링구조를 유지하면서 링구조에 있는 산소원자가 치환 반응을 하게 된다.
본 발명의 상용화제는 복합재 전체 중량 중 1~20중량%인 것이 바람직하며, 더욱 바람직하게는 1~7중량%인 것이 좋다.
상용화제를 1중량% 미만으로 사용하는 경우에는 상용성 증대 효과가 떨어지게 되어 제품의 기계적 물성이 좋지 않고, 20중량%를 초과하여 사용하는 경우에는 고분자들간의 계면이 너무 두껍게 형성되어 생분해성 수지와 아크릴로니트릴-부타디엔-스티렌(ABS) 수지 사이의 계면결합력을 낮춰주어 기계적 물성이 하락할 수 있다.
본 발명의 또 다른 일 실시예에 따른 생분해성 고분자 복합재는 생분해성 수지, 아크릴로니트릴-부타디엔-스티렌(ABS) 수지 및 반응형 상용화제를 포함하고, 상기 복합재는 상기 생분해성 수지 입자가 상기 아크릴로니트릴-부타디엔-스티렌(ABS) 수지 매트릭스 안에 분산상을 형성한 상분리 구조인 것을 특징으로 한다.
여기에서 상분리 구조는 아크릴로니트릴-부타디엔-스티렌(ABS) 수지가 매트릭스를 형성하고, 생분해성 수지 입자가 상기 매트릭스 내에 분산상을 형성하며 분산되어 이루어진다.
이 때, 상용화제인 글리시딜메타크릴레이트 또는 무수말레인산은 아크릴로니트릴-부타디엔-스티렌(ABS) 수지 매트릭스상과 생분해성 수지 입자의 접착을 견고히 하고, 생분해성 수지 입자들끼리의 합체를 차단함으로써, 미세한 크기의 생분해성 수지 입자들의 분산상이 아크릴로니트릴-부타디엔-스티렌(ABS) 수지 매트릭스상에 골고루 분산되도록 작용한다.
이 때, 생분해성 수지 입자의 분산상 크기는 직경 0.1~20μm, 더욱 바람직하게는 0.1~5μm이다. 상기와 같이 미세하고 균일한 크기의 분산상을 가짐으로써 생분해성 수지와 아크릴로니트릴-부타디엔-스티렌(ABS) 수지의 상용성이 향상되고, 결과적으로 본 발명의 복합재의 결합력이 증대되어 기계적 물성, 특히 충격강도가 향상된다.
또한, 상기 복합재는 첨가제를 더 포함할 수 있으며, 여기에서 상기 첨가제는 충전제, 유연제, 노화방지제, 내열노화방지제, 산화방지제, 염료, 안료, 촉매 및 분산제 중에서 선택되는 1종 이상일 수 있다.
이상의 과정으로 본 발명에 따른 생분해성 수지 복합재를 완성할 수 있으며, 상기와 같이 형성된 본 발명의 생분해성 수지 복합재의 제조예(실시예 및 비교예) 및 그에 대한 평가결과는 다음과 같다.
제조예(실시예 및 비교예)
실시예 1
70℃의 진공 오븐에서 ABS 수지, PLA 수지 및 EOR-MAH(Ethylene-Octene-Rubber-maleic anhydride) 상용화제 각각을 24시간 동안 건조한 후, 건조된 ABS 수지 90g 및 건조된 PLA 수지 10g을 혼합하여, 고분자 혼합수지를 제조하였다. 다음으로 상기 고분자 혼합 수지에 건조된 EOR-MAH 상용화제를 1g을 혼합한 다음, 동방향 이축 압출기(corotating twin screw extruder)에 주입하여, 220℃ 온도에서 120rpm의 속도로 용융 압출함으로써 ABS/PLA 복합재를 제조하였다.
실시예 2
상기 실시예 1과 동일하게 실시하되, 상기 EOR-MAH 상용화제를 2g 사용하여 ABS/PLA 복합재를 제조하였다.
실시예 3
상기 실시예 1과 동일하게 실시하되, 상기 ABS 수지 60g 및 건조된 PLA 수지 40g을 혼합하여 고분자 혼합수지를 제조하고, 상기 고분자 혼합 수지에 건조된 EOR-MAH 상용화제 1g을 혼합하여 ABS/PLA 복합재를 제조하였다.
실시예 4
상기 실시예 3과 동일하게 실시하되, 상기 EOR-MAH 상용화제 5g을 사용하여 ABS/PLA 복합재를 제조하였다.
실시예 5
상기 실시예 1과 동일하게 실시하되, EGMA(Ethylene glycidyl methacrylate) 상용화제 1g을 사용하여 ABS/PLA 복합재를 제조하였다.
실시예 6
상기 실시예 3과 동일하게 실시하되, EGMA 상용화제 7g을 사용하여 ABS/PLA 복합재를 제조하였다.
실시예7
70℃의 진공 오븐에서 ABS 수지, PHB 수지 및 Styrene-MAH (Styrene-maleic anhydride) 상용화제 각각을 24시간 동안 건조한 후, 건조된 ABS 수지 90g 및 건조된 PHB 수지 10g을 혼합하여, 고분자 혼합수지를 제조하였다. 다음으로 상기 고분자 혼합 수지에 건조된 Styrene-MAH 상용화제를 2g을 혼합한 다음, 동방향 이축 압출기(corotating twin screw extruder)에 주입하여, 220℃ 온도에서 120rpm의 속도로 용융 압출함으로써 ABS/PHB 복합재를 제조하였다.
실시예 8
상기 실시예 7과 동일하게 실시하되, Styrene-MAH 상용화제 5g을 사용하여 ABS/PHB 복합재를 제조하였다.
실시예9
70℃의 진공 오븐에서 ABS 수지, PCL 수지 및 글리시딜메타크릴레이트 (Glycidyl Methacrylate, GMA) 상용화제 각각을 24시간 동안 건조한 후, 건조된 ABS 수지 60g 및 건조된 PCL 수지 40g을 혼합하여, 고분자 혼합수지를 제조하였다. 다음으로 상기 고분자 혼합 수지에 건조된 GMA 상용화제를 2g을 혼합한 다음, 동방향 이축 압출기(corotating twin screw extruder)에 주입하여, 220℃ 온도에서 120rpm의 속도로 용융 압출함으로써 ABS/ PCL 복합재를 제조하였다.
실시예 10
상기 실시예 9와 동일하게 실시하되, GMA 상용화제 5g을 사용하여 ABS/ PCL 복합재를 제조하였다.
비교예 1
상기 실시예 1과 동일하게 실시하되, ABS 수지 자체만을 사용하여 ABS 수지를 제조하였다.
비교예 2
상기 실시예 1과 동일하게 실시하되, 상용화제를 전혀 사용하지 않고 ABS/PLA 복합재를 제조하였다.
비교예 3
상기 실시예 3과 동일하게 실시하되, 상용화제를 전혀 사용하지 않고 ABS/PLA 복합재를 제조하였다.
평가
실험예 1: 충격강도 측정실험
상기 실시예 1 내지 10, 비교예 1 내지 3에서 제조된 생분해성 복합재를 각각 사출성형하여, 가로 75mm × 세로 12.5mm × 높이 3mm로 잘라서 시편을 제조한 후, ASTM D-256에 의거하여 상온 조건에서 Izod 방식으로 충격강도를 측정하고, 그 결과를 하기 표 1에 나타내었다.
표 1
구분 고분자 복합재(중량%) 상용화제 함량(중량%) 충격강도(Kgf·cm/cm)
ABS수지 생분해성 수지 EOR-MAH EGMA Styrene-MAH GMA
실시예1 90 PLA 10 1 0 0 0 20.0
실시예2 90 PLA 10 2 0 0 0 20.2
실시예3 60 PLA 40 1 0 0 0 14.5
실시예4 60 PLA 40 5 0 0 0 10.1
실시예5 90 PLA 10 0 1 0 0 18.0
실시예6 60 PLA 40 0 7 0 0 7.8
실시예7 90 PHB 10 0 0 2 0 22
실시예8 90 PHB 10 0 0 5 0 11
실시예9 60 PCL 40 0 0 0 2 16.5
실시예10 60 PCL 40 0 0 0 5 19.8
비교예1 100 0 0 0 0 0 21.0
비교예2 90 10 0 0 0 0 7.8
비교예3 60 40 0 0 0 0 5.2
상기 표 1에서 알 수 있듯, 상용화제를 첨가하지 않은 비교예 2 및 3의 경우 충격강도가 매우 낮다는 사실을 확인할 수 있었다. 이는 ABS 수지와 PLA 수지 간의 상용성이 없었기 때문이다.
또한, ABS/PLA 복합재에 있어서 EOR-MAH를 상용화제로 사용한 실시예 1 내지 4의 경우와 EGMA를 상용화제로 사용한 실시예 5,6을 비교예 2, 3과 대비한 결과, 상용화제를 사용하지 않은 비교예 2,3의 충격강도에 비해 실시예 1 내지 10의 충격강도가 상승한 것을 확인할 수 있었다.
실험예 2: 전자주사현미경 관찰실험
상기 실시예 1 내지 10 및 비교예 1 내지 3에 따른 복합재를 사출기를 이용하여 가로 75mm × 세로 12.5mm × 높이 3mm의 시편으로 제조하였다. 이 후, 상기 시편을 액체 질소에 넣어서 생성된 파단면을 에틸렌아마이드 용액을 이용하여 에칭한 후, 전자주사현미경으로 복합재의 형구학적 특성을 관찰하였다.
이 중 특히 실시예 3 및 비교예 3의 전자주사현미경 사진을 각각 도 1, 도 2에 나타내었다.
도 1, 2를 참조하면, 상용화제를 첨가하지 않은 비교예 3(도 2)의 ABS/PLA 복합재의 분산상 크기가 상용화제를 첨가한 실시예 1(도 1)에 비하여 크게 나타난 것을 확인할 수 있다.
상기와 같은 실험예 1, 2를 통하여, 본 발명의 복합재가 특정의 반응형 상용화제를 포함함으로써 ABS 수지와 PLA 수지 상호 간에 상용성이 증가되었다는 사실을 확인할 수 있으며, 이러한 상용성의 증가로 인해 충격강도도 우수해졌음을 알 수 있었다.
지금까지 본 발명에 따른 구체적인 실시예에 관하여 설명하였으나, 본 발명의 범위에서 벗어나지 않는 한도 내에서는 여러 가지 변형이 가능함은 물론이다. 그러므로, 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 안되며, 후술하는 특허청구의 범위뿐만 아니라, 이 특허청구의 범위와 균등한 것들에 의해 정해져야 한다.
이상과 같이 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 이는 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. 따라서, 본 발명 사상은 아래에 기재된 특허청구범위에 의해서만 파악되어야 하고, 이의 균등 또는 등가적 변형 모두는 본 발명 사상의 범주에 속한다고 할 것이다.

Claims (10)

  1. 생분해성 수지;
    아크릴로니트릴-부타디엔-스티렌(ABS) 수지; 및
    반응형 상용화제; 를 포함하는 생분해성 고분자 복합재.
  2. 생분해성 수지;
    아크릴로니트릴-부타디엔-스티렌(ABS) 수지; 및
    반응형 상용화제를 포함하는 생분해성 고분자 복합재로서,
    상기 복합재는 상기 생분해성 수지 입자가 상기 아크릴로니트릴-부타디엔-스티렌(ABS) 수지 매트릭스 안에 분산상을 형성한 상분리 구조인 것을 특징으로 하는 생분해성 고분자 복합재.
  3. 제 1항 또는 제 2항에 있어서,
    상기 생분해성 수지는 폴리락트산, 폴리하이드록시부틸레이트, 폴리카프로락톤으로 이루어진 군에서 선택되는 1종 이상인 것을 특징으로 하는 생분해성 고분자 복합재.
  4. 제 1항 또는 제 2항에 있어서,
    상기 반응형 상용화제는 에폭시기를 갖는 것을 특징으로 하는 생분해성 고분자 복합재.
  5. 제 1항 또는 제 2항에 있어서,
    상기 반응형 상용화제는 글리시딜메타크릴레이트 또는 무수말레인산 중에서 선택되는 1종 이상인 것을 특징으로 하는 생분해성 고분자 복합재.
  6. 제 1항 또는 제 2항에 있어서,
    상기 생분해성 수지는 상기 복합재 전체 중량 중 10~40중량%인 것을 특징으로 하는 생분해성 고분자 복합재.
  7. 제 1항 또는 제 2항에 있어서,
    상기 상용화제는 상기 복합재 전체 중량 중 1~20중량%인 것을 특징으로 하는 생분해성 고분자 복합재.
  8. 제 1항 또는 제 2항에 있어서,
    상기 복합재 내에서 생분해성 수지 입자는 직경 0.1~20μm의 분산상인 것을 특징으로 하는 생분해성 고분자 복합재.
  9. 제 1항 또는 제 2항에 있어서,
    상기 복합재는 첨가제를 더 포함하는 것을 특징으로 하는 생분해성 고분자 복합재.
  10. 제 9항에 있어서,
    상기 첨가제는 충전제, 유연제, 노화방지제, 내열노화방지제, 산화방지제, 염료, 안료, 촉매 및 분산제 중에서 선택되는 1종 이상인 것을 특징으로 하는 생분해성 고분자 복합재.
PCT/KR2012/002905 2011-04-18 2012-04-17 생분해성 고분자 복합재 WO2012144781A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/981,523 US9096757B2 (en) 2011-04-18 2012-04-17 Biodegradable polymer composite material
EP12774022.3A EP2700678B1 (en) 2011-04-18 2012-04-17 Biodegradable polymer composite material
JP2013551924A JP2014503678A (ja) 2011-04-18 2012-04-17 生分解性高分子複合材
CN201280009662.4A CN103384704B (zh) 2011-04-18 2012-04-17 可生物降解的聚合物复合材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0035911 2011-04-18
KR1020110035911A KR101281834B1 (ko) 2011-04-18 2011-04-18 생분해성 고분자 복합재

Publications (2)

Publication Number Publication Date
WO2012144781A2 true WO2012144781A2 (ko) 2012-10-26
WO2012144781A3 WO2012144781A3 (ko) 2013-01-17

Family

ID=47042032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/002905 WO2012144781A2 (ko) 2011-04-18 2012-04-17 생분해성 고분자 복합재

Country Status (6)

Country Link
US (1) US9096757B2 (ko)
EP (1) EP2700678B1 (ko)
JP (1) JP2014503678A (ko)
KR (1) KR101281834B1 (ko)
CN (1) CN103384704B (ko)
WO (1) WO2012144781A2 (ko)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3105290B1 (en) * 2014-02-10 2019-10-23 INEOS Styrolution Group GmbH Styrene methyl methacrylate copolymers (smma) as compatibilizing agents
US9562156B2 (en) 2014-07-11 2017-02-07 University Of Guelph Bio-based acrylonitrile butadiene styrene (ABS) polymer compositions and methods of making and using thereof
KR102208792B1 (ko) * 2014-10-16 2021-01-27 에스케이케미칼 주식회사 고분자 수지 조성물
CN105733214A (zh) * 2014-12-10 2016-07-06 黑龙江鑫达企业集团有限公司 一种抗冲击、耐形变的改性聚乳酸材料的制备方法
CN105985618B (zh) * 2015-03-05 2018-07-06 江苏华信新材料股份有限公司 一种用于一次层压成形的可降解双界面卡白色片材及其制备方法
TWI628227B (zh) * 2015-06-10 2018-07-01 喬福泡綿股份有限公司 Cross-linking composite high-performance ABS/PLA environmentally friendly green material preparation method
CN105348722A (zh) * 2015-11-13 2016-02-24 安徽广源科技发展有限公司 一种可降解环保塑料及其制备方法
CN105504656A (zh) * 2016-01-04 2016-04-20 王文广 一种生物质塑料合金材料
WO2018008969A1 (ko) * 2016-07-05 2018-01-11 롯데케미칼 주식회사 출력 속도가 향상된 3차원 프린터 필라멘트용 폴리유산 조성물
CN111892795B (zh) * 2020-06-15 2022-08-05 杭州思创磁性器件有限公司 一种磁力片玩具用abs材料及其制备方法
CN112063099A (zh) * 2020-09-18 2020-12-11 深圳市百奥降解材料科技有限公司 一种可降解的abs塑料及其制备方法
KR20220076235A (ko) 2020-11-30 2022-06-08 롯데케미칼 주식회사 블록 공중합체의 제조 방법
CN116606538B (zh) * 2023-06-26 2024-01-19 苏州优矿塑新材料股份有限公司 基于反应增容的可降解复合材料、环保吸管及其制备方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19781825T1 (de) 1996-09-09 1999-07-15 Asahi Chemical Ind Thermoplastische Harzzusammensetzung
US6605681B1 (en) * 2000-07-12 2003-08-12 Johnson Polymer, Inc. Process for the continuous production of epoxylated addition polymers, and powder and liquid coating applications containing epoxylated addition polymers
JP2002210886A (ja) * 2001-01-19 2002-07-31 Toray Ind Inc 柔軟化生分解性樹脂延伸フィルム
CA2474251C (en) * 2002-02-01 2009-05-12 Johnson Polymer, Llc Oligomeric chain extenders for processing, post-processing and recycling of condensation polymers, synthesis, compositions and applications
CN101023133B (zh) * 2004-09-17 2011-11-02 东丽株式会社 树脂组合物和由其形成的成型品
KR20080039890A (ko) * 2005-08-04 2008-05-07 도레이 가부시끼가이샤 수지조성물 및 이것으로 이루어진 성형품
JP5132312B2 (ja) * 2005-09-08 2013-01-30 ユニチカ株式会社 生分解性樹脂組成物及びそれより得られる成形体
KR101236026B1 (ko) * 2005-11-25 2013-02-21 가부시키가이샤 구라레 폴리락트산 조성물
CN1793227A (zh) * 2005-12-28 2006-06-28 中国科学院长春应用化学研究所 一种耐热易加工型聚乳酸树脂的制备方法
JP5388410B2 (ja) * 2006-06-08 2014-01-15 大阪瓦斯株式会社 耐熱性を向上させた植物由来プラスチック材料及び成形体
JP2008106091A (ja) * 2006-10-23 2008-05-08 Sumitomo Bakelite Co Ltd ポリ乳酸含有樹脂組成物
JP5068095B2 (ja) * 2007-03-28 2012-11-07 シャープ株式会社 熱可塑性樹脂組成物、熱可塑性樹脂成形体ならびに熱可塑性樹脂成形体の製造方法
US20100105822A1 (en) * 2008-05-02 2010-04-29 Sabic Innovative Plastics Ip B.V. Biodegradable thermoplastic compositions
KR100962387B1 (ko) * 2008-06-05 2010-06-10 제일모직주식회사 폴리유산 수지 조성물
KR20080071109A (ko) * 2008-07-14 2008-08-01 유영선 고분자 상용성을 개선시키는 상용화 첨가제 및 그 제조방법
KR20100009028A (ko) * 2008-07-17 2010-01-27 기아자동차주식회사 폴리락틱산과 아크릴로나이트릴 부타디엔 스타이렌 블렌드및 제조방법
JP2010070628A (ja) * 2008-09-18 2010-04-02 Toagosei Co Ltd 相溶化剤
KR101233373B1 (ko) * 2008-12-30 2013-02-18 제일모직주식회사 폴리유산 수지 조성물
JP5365421B2 (ja) * 2009-02-26 2013-12-11 東レ株式会社 熱可塑性樹脂組成物ならびにそれらからなる成形品
US8512852B2 (en) * 2009-05-22 2013-08-20 Toyo Boseki Kabushiki Kaisha Polylactic acid resin composition and film
CN102597108B (zh) * 2009-10-30 2014-01-08 普立万公司 耐热性pla-abs组合物

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2700678A4

Also Published As

Publication number Publication date
US9096757B2 (en) 2015-08-04
US20130310506A1 (en) 2013-11-21
JP2014503678A (ja) 2014-02-13
CN103384704B (zh) 2017-03-15
CN103384704A (zh) 2013-11-06
WO2012144781A3 (ko) 2013-01-17
EP2700678B1 (en) 2017-05-31
KR20120118384A (ko) 2012-10-26
EP2700678A4 (en) 2014-08-27
KR101281834B1 (ko) 2013-07-03
EP2700678A2 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
WO2012144781A2 (ko) 생분해성 고분자 복합재
KR900006032B1 (ko) 폴리프로필렌 수지 조성물
CN106883603B (zh) 一种抗静电增强阻燃聚酰胺复合材料及其制备方法
CN101280095A (zh) 玻璃纤维增强聚对苯二甲酸乙二醇酯复合材料及其制备方法
WO2013100473A1 (ko) 바이오 플라스틱 조성물
US20070117908A1 (en) Blend for improving the brittleness and cold flowability of a carbon dioxide-propylene oxide copolymer and method for producing the same
WO2017057904A1 (ko) 열가소성 수지 조성물 및 이를 포함하는 성형품
CN1580126A (zh) 一种pc/abs合金的制备
KR101023650B1 (ko) 재생 폴리에스테르 수지를 이용한 친환경 열가소성 수지 조성물
WO2020111552A1 (ko) 열가소성 수지 조성물 및 이로부터 형성된 성형품
KR101772259B1 (ko) 폴리카보네이트­폴리에스테르 공중합체 얼로이 조성물 및 성형품
WO2018124657A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2011065678A2 (ko) 친환경 폴리아미드 수지 조성물 및 이를 이용한 성형품
JPH0479381B2 (ko)
WO2021085797A1 (ko) 결정화 속도가 향상된 고분자 조성물 및 그의 제조방법
CN113185821A (zh) 一种用于餐具的高韧耐热可生物降解复合材料及其制备方法
WO2021054721A1 (ko) 바이오폴리머 조성물, 이의 제조방법 및 이를 이용한 바이오플라스틱
KR20110056037A (ko) 생분해성 abs 복합재 및 이를 포함하는 충격강도가 우수한 자동차 내장재
EP1144510B1 (en) Polyester molding composition
CN103965599B (zh) 一种聚乳酸/abs合金材料及其制备方法
WO2019132253A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
KR20120021630A (ko) 내충격성이 향상된 재활용 폴리프로필렌 고분자 복합체 및 이를 포함하는 열가소성 성형품
WO2020141819A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2014163255A1 (ko) 대전방지성이 우수한 열가소성 수지 조성물 및 성형품
WO2018080250A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이로부터 형성된 성형품

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12774022

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13981523

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013551924

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012774022

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012774022

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE