WO2015072210A1 - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
WO2015072210A1
WO2015072210A1 PCT/JP2014/073058 JP2014073058W WO2015072210A1 WO 2015072210 A1 WO2015072210 A1 WO 2015072210A1 JP 2014073058 W JP2014073058 W JP 2014073058W WO 2015072210 A1 WO2015072210 A1 WO 2015072210A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
semiconductor device
ion implantation
drift layer
forming
Prior art date
Application number
PCT/JP2014/073058
Other languages
English (en)
French (fr)
Inventor
憲治 濱田
昌之 今泉
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2015547672A priority Critical patent/JP6113298B2/ja
Priority to CN201480062114.7A priority patent/CN105723499B/zh
Priority to DE112014005188.8T priority patent/DE112014005188T5/de
Priority to US15/030,763 priority patent/US10304939B2/en
Publication of WO2015072210A1 publication Critical patent/WO2015072210A1/ja
Priority to US16/374,226 priority patent/US20190237558A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/6606Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/0455Making n or p doped regions or layers, e.g. using diffusion
    • H01L21/046Making n or p doped regions or layers, e.g. using diffusion using ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/30Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface
    • H01L29/32Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface the imperfections being within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8611Planar PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/868PIN diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/74Thyristor-type devices, e.g. having four-zone regenerative action
    • H01L29/744Gate-turn-off devices

Definitions

  • the present invention improves the electrical characteristics of a semiconductor device.
  • SiC silicon carbide
  • bipolar devices are often used to reduce on-resistance.
  • the bipolar device include a pn diode or IGBT.
  • both electron and hole carriers contribute to conduction, so that the low-concentration drift layer appears to be doped at high concentration (conductivity modulation effect), and the on-resistance is significantly reduced. .
  • the time constant (carrier lifetime) at which excess carriers disappear due to recombination is an important indicator.
  • the conductivity modulation effect in the bipolar device increases, and as a result, the on-resistance can be reduced.
  • the lifetime is too long, the switching characteristics of the bipolar device deteriorate due to the accumulation of carriers, and the switching loss increases. Therefore, it is necessary to optimally control the lifetime according to the purpose of use of the device.
  • the recombination rate between electrons and holes between bands is slow, and thus the lifetime is increased.
  • crystal defects such as impurities, intrinsic defects, dislocations, or stacking faults
  • energy levels damage levels
  • An electron and a hole may recombine through this defect level, and this defect is called a recombination center.
  • the lifetime of the semiconductor material is represented by the reciprocal of the sum of the reciprocals of the lifetimes of the respective recombination processes. For this reason, the lifetime of a semiconductor material is rate-limited by the process with the shortest lifetime among several recombination processes.
  • the lifetime is determined by the recombination center rather than the lifetime of the interband transition inherent in the semiconductor material.
  • the recombination center that is the main cause of reducing the lifetime is called a lifetime killer.
  • Zhang et al. Describe electrically active defects (called recombination centers or carrier traps) in an as-grown SiC layer by using deep level transient spectroscopy (DLTS) and minority carrier transient spectroscopy (minority carrier transient).
  • the defect which becomes a lifetime killer was specified using Spectroscopy (MCTS) (nonpatent literature 1).
  • MCTS Spectroscopy
  • Non-Patent Literature 1 electron traps due to intrinsic defects at Z1 / Z2 centers and EH6 / 7 centers and hole traps due to boron impurities were measured.
  • the density of Z1 / Z2 traps or EH6 / 7 traps shows an inverse correlation with lifetime, suggesting that they are lifetime killer.
  • Hioshi et al. Proposed a model in which interstitial carbon atoms released into the SiC layer in the thermal oxidation process are diffused by thermally oxidizing the as-grown SiC epitaxial layer to fill the carbon vacancies existing in the as-grown SiC epitaxial layer, It was shown that the density of the Z1 / Z2 trap or the EH6 / 7 trap can be reduced by thermal oxidation (Non-patent Document 2).
  • Tsuchida et al Introduces interstitial carbon atoms into the shallow surface layer by ion implantation into the SiC crystal layer, and further heats the SiC crystal to further introduce interstitial carbon atoms introduced into the surface layer into the deep part. While diffusing, interstitial carbon atoms are combined with carbon vacancies present in the SiC crystal layer. In this way, a method of electrically inactivating the trap has been proposed (Patent Document 1).
  • Non-Patent Document 3 shows that, particularly by ion implantation, Z1 / Z2 traps or EH6 / 7 traps are generated at a high concentration, and these traps are distributed while decreasing from the surface to the deep part of the SiC layer. .
  • JP 2008-53667 A Japanese Patent No. 4141505
  • the conductivity modulation effect is actively used to reduce the on-resistance. What is important here is that minority carrier injection into the conductivity modulation layer (drift layer), which is the key to conductivity modulation, occurs through the pn junction interface.
  • drift layer the conductivity modulation layer
  • the drift layer is an n-type semiconductor
  • holes become minority carriers.
  • the more minority carriers injected through the pn junction interface the greater the conductivity modulation effect and consequently the on-resistance.
  • the conductivity modulation effect is reduced, and as a result, it approaches a unipolar operation (only one of the carriers of electrons or holes contributes to conduction), and the on-resistance cannot be reduced.
  • carrier traps are formed not only on the surface of the SiC layer but also in the vicinity of the pn junction interface, so that the conductivity modulation effect is suppressed and the on-resistance is reduced. There was a problem that it could not be reduced.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a semiconductor device manufacturing method capable of reducing the on-resistance in a bipolar device.
  • a manufacturing method of a semiconductor device includes a drift layer forming step of forming a first conductivity type drift layer on a silicon carbide semiconductor substrate, and an impurity that is a second conductivity type impurity on the surface of the drift layer.
  • the surplus carbon region forming step implants the interstitial carbon-induced ions into a region deeper than the interface between the ion implantation layer and the drift layer, and the surplus carbon region Forming the second conductivity type activation layer by activating the impurity ions implanted into the ion implantation layer by heating the drift layer, and forming the second conductivity type activation layer. It is a step of diffusing the interstitial carbon atoms to the activated layer side.
  • a method of manufacturing a semiconductor device includes a drift layer forming step of forming a first conductivity type drift layer on a silicon carbide semiconductor substrate, and a second conductivity type impurity on the drift layer surface.
  • the step of releasing interstitial carbon atoms into the drift layer by forming the thermal oxide film, and the step of heating the impurity implanted into the ion implantation layer by heating the drift layer This is a step of activating ions to form a second conductivity type activation layer.
  • the surplus carbon region is formed in a region deeper than the interface between the ion implantation layer and the drift layer, and further, the interstitial carbon atoms are diffused to the activation layer side by heating the drift layer.
  • ⁇ First Embodiment> ⁇ Manufacturing method> 1 to 4 show a process of manufacturing a semiconductor device in which carrier traps in the vicinity of the pn junction interface (for example, within 500 nm from the pn junction interface) are reduced or removed by using the semiconductor device manufacturing method according to this embodiment. It is sectional drawing shown roughly.
  • n-type SiC epitaxial layer 12 (also referred to as an epi layer) is formed on the first main surface on n-type SiC substrate 11.
  • the above silicon carbide (SiC) is a kind of wide gap semiconductor.
  • the wide gap semiconductor generally refers to a semiconductor having a forbidden band width of about 2 eV or more, and includes a group III nitride represented by gallium nitride (GaN), a group 2 nitride represented by zinc oxide (ZnO), and selenium.
  • Group 2 chalcogenides, silicon carbide and the like typified by zinc halide (ZnSe) are known. In this embodiment, the case where silicon carbide is used will be described, but other semiconductors and wide gap semiconductors can be similarly applied.
  • a predetermined region (partial region) of the first main surface of SiC epitaxial layer 12 is subjected to ion implantation of p-type dopant atoms through implantation mask 30.
  • the dopant atom include aluminum, boron, phosphorus, and nitrogen.
  • the implantation mask 30 for example, a photoengraving photoresist or an oxide film is used. Thereby, as shown in FIG. 2, an ion-implanted layer 13 in which dopant ions (impurity ions) are implanted is formed in the surface of the first main surface of SiC epitaxial layer 12.
  • the ion implantation process may be performed with a single implantation energy, or may be performed while changing the implantation energy stepwise, for example, from high to low.
  • the implantation surface density during the ion implantation treatment is preferably in the range of 1 ⁇ 10 13 cm ⁇ 2 to 1 ⁇ 10 16 cm ⁇ 2 , and the implantation energy is in the range of 10 keV to 10 MeV. desirable.
  • the temperature of the SiC layer in the ion implantation process is desirably in the range of 10 ° C. to 1000 ° C., more preferably in the range of 200 ° C. to 800 ° C.
  • an interstitial carbon-induced ion implantation process for inducing carbon between lattices is further performed on a predetermined region of the first main surface of SiC epitaxial layer 12.
  • interstitial carbon-induced ions include carbon, silicon, hydrogen, and helium.
  • a surplus carbon region 31 in which surplus interstitial carbon atoms exist is formed.
  • the surplus carbon region 31 where the surplus interstitial carbon atoms are present is a region deeper than the interface between the ion implantation layer 13 and the SiC epitaxial layer 12 (away from the first main surface in the SiC epitaxial layer 12). The direction is the depth direction).
  • surplus carbon region 31 is formed on the deep region side near the interface between ion implantation layer 13 and SiC epitaxial layer 12. Desirably, the surplus carbon region 31 is formed on a deep region side within 500 nm from the interface between the ion implantation layer 13 and the SiC epitaxial layer 12.
  • the ion implantation process may be performed with a single implantation energy, or may be performed while changing the implantation energy stepwise, for example, from high to low.
  • the implantation surface density during the ion implantation treatment is preferably in the range of 1 ⁇ 10 13 cm ⁇ 2 to 1 ⁇ 10 16 cm ⁇ 2 , and the implantation energy is in the range of 10 keV to 10 MeV. desirable.
  • the temperature of the SiC layer in the ion implantation process is desirably in the range of 10 ° C. to 1000 ° C., more preferably in the range of 200 ° C. to 800 ° C.
  • the implantation energy in the ion implantation process is larger than the implantation energy used in the previous ion implantation of the dopant atoms.
  • the surplus carbon region 31 in which surplus interstitial carbon atoms exist can be formed in a region deeper than the interface between the ion implantation layer 13 and the SiC epitaxial layer 12.
  • the implantation surface density in the ion implantation process exceeds the density of carrier traps that can be generated near the pn junction interface (interface between the ion implantation layer 13 and the SiC epitaxial layer 12) (for example, within 500 nm from the pn junction interface). (For example, 1 ⁇ 10 13 cm ⁇ 2 or more).
  • interstitial carbon-induced ions are implanted after implanting dopant ions, but this order may be changed.
  • SiC epitaxial layer 12 dopant atoms in ion implantation layer 13 are activated, and interstitial carbon atoms are diffused toward ion implantation layer 13 to bond with point defects near the pn junction interface. Is done. As a result, as shown in FIG. 4, a p-type activation layer 113 is formed, and carrier traps particularly near the pn junction interface are reduced or eliminated.
  • the heating temperature of SiC epitaxial layer 12 is preferably in the range of 1000 ° C. to 2000 ° C., more preferably in the range of 1400 ° C. to 1800 ° C.
  • FIG. 5 is a cross-sectional view schematically showing an element structure of an SiC semiconductor device (pn diode) manufactured by using the semiconductor device manufacturing method according to the present embodiment.
  • a pn diode 10 using SiC includes a SiC substrate 11, a SiC epitaxial layer 12 (drift layer), an activation layer 113 (anode region), an electric field relaxation region 14, and an anode electrode. 15 and a cathode electrode 16.
  • the SiC epitaxial layer 12 (drift layer) is an n-type layer having a lower concentration than the SiC substrate 11 formed on the first main surface of the high-concentration n-type SiC substrate 11 by an epitaxial growth process.
  • the activation layer 113 (anode region) is a high-concentration p-type layer formed by ion implantation in a predetermined region in the surface of the low-concentration n-type SiC epitaxial layer 12.
  • the electric field relaxation region 14 is a p-type region having a concentration lower than that of the ion implantation layer 13 formed by ion implantation processing in a predetermined region in the surface of the low concentration n-type SiC epitaxial layer 12.
  • the anode electrode 15 is an electrode formed on the surface of the ion implantation layer 13 (anode region).
  • Cathode electrode 16 is an electrode formed on the second main surface of SiC substrate 11 (the surface opposite to the first main surface, that is, the back surface).
  • an electrically active point defect is combined with an interstitial carbon atom particularly in the vicinity of the pn junction interface, and carrier traps are reduced or eliminated. Injection is facilitated and good electrical properties can be realized.
  • SiC epitaxial layer 12 as a first conductivity type (for example, n-type) drift layer is formed on SiC substrate 11 as a silicon carbide semiconductor substrate.
  • impurity ions which are impurities of the second conductivity type (for example, p-type)
  • interstitial carbon-induced ions which are ions that induce interstitial carbon
  • the SiC epitaxial layer 12 is implanted into the SiC epitaxial layer 12 to form a surplus carbon region 31 in which surplus interstitial carbon atoms exist. Further, after the ion implantation layer 13 was formed, the surplus carbon region 31 was formed.
  • interstitial carbon-induced ions are implanted into a region deeper than the interface between the ion implantation layer 13 and the SiC epitaxial layer 12 to form the surplus carbon region 31.
  • the SiC epitaxial layer 12 is heated, the SiC epitaxial layer 12 is heated to activate the impurity ions implanted into the ion implantation layer 13 to form the second conductivity type activation layer 113, and Interstitial carbon atoms are diffused to the activated layer 113 side.
  • the surplus carbon region 31 can be replaced with a surplus carbon region 31A described later. Accordingly, the activation layer 113 can be replaced with an activation layer 113A described later.
  • the surplus carbon region 31 is formed in a region deeper than the interface between the ion implantation layer 13 and the SiC epitaxial layer 12, and the interstitial carbon atoms are activated by heating the SiC epitaxial layer 12.
  • the formation layer 113 side carrier traps in the vicinity of the pn junction interface can be effectively reduced or eliminated. Therefore, minority carrier injection through the pn junction interface is promoted, and the on-resistance of the semiconductor device can be reduced.
  • interstitial carbon-induced ions are implanted into a region deeper than the interface between the ion implantation layer 13 and the SiC epitaxial layer 12 in the surplus carbon region 31, an ion implantation layer in which carrier traps are generated at a higher concentration. It is possible to introduce interstitial carbon atoms while avoiding the 13 surface. Therefore, when the interstitial carbon atoms are diffused by heating the SiC epitaxial layer 12, the point defects near the pn junction interface are more efficiently compared to the case where interstitial carbon-induced ions are implanted into the surface of the ion implantation layer 13. Can be bonded to interstitial carbon atoms. Therefore, it is not necessary to increase the density of the interstitial carbon atom injection surface, and it is sufficient if the density of the injection surface exceeds the density of the lower concentration carrier trap in the vicinity of the pn junction interface.
  • the pn junction interface is diffused when the interstitial carbon atoms are diffused by heating the SiC epitaxial layer 12.
  • the implantation surface density of ions to be implanted is high, new implantation defects may occur.
  • the surplus carbon region 31 when the surplus carbon region 31 is formed, interstitial carbon-induced ions having an implantation surface density higher than the density of carrier traps at the interface between the ion implantation layer 13 and the SiC epitaxial layer 12 are implanted.
  • the surplus carbon region 31 is formed.
  • carrier traps at the interface between the ion implantation layer 13 and the SiC epitaxial layer 12 can be sufficiently reduced or eliminated by implanting interstitial carbon-induced ions.
  • FIG. 25 and FIG. 26 are diagrams for explaining a carrier lifetime profile in an SiC semiconductor device (pn diode) manufactured by using the semiconductor device manufacturing method according to the present embodiment.
  • FIG. 26 schematically shows the carrier lifetime in the YY ′ section (substrate thickness direction) of the pn diode shown in FIG. 25.
  • the vertical axis indicates the carrier lifetime
  • the horizontal axis indicates the depth position on the YY ′ cross section.
  • a, b, c and d are the surface of the activation layer 113, the interface between the lower surface of the activation layer 113 and the SiC epitaxial layer 12 (pn junction interface), the SiC epitaxial layer 12 and the SiC substrate 11, respectively.
  • the depth position of the interface and the back surface of the SiC substrate 11 is shown.
  • A indicates the carrier lifetime at position a (the surface of the activation layer), and B indicates the carrier lifetime at position b (pn junction interface).
  • T indicates the length between the positions bc (the thickness of the drift layer).
  • the activation layer (the anode layer in the case of a pn diode) is formed by ion implantation of a dopant such as aluminum, for example, the activation layer is formed by epitaxial growth. In contrast, many carrier traps are formed in the vicinity of the pn junction interface.
  • carbon ions having an implantation surface density higher than the density of carrier traps at the pn junction interface are implanted into a region deeper than the pn junction interface to form an excess carbon region. Therefore, carrier traps at the pn junction interface can be positively removed or reduced.
  • the carrier lifetime B at the position b (pn junction interface) is compared to the carrier lifetime A at the position a (activation layer surface). A carrier life profile is realized.
  • the carrier life is short.
  • the carrier lifetime takes the maximum value at the carbon ion implantation peak position, and the position b or The profile gradually decreases toward the position c.
  • A, B and T Is desirable.
  • the carrier lifetime A at the surface of the activation layer is 100 ns and the thickness T of the drift layer is 100 ⁇ m
  • the carbon ion implantation surface density and the implantation energy are selected so that the carrier lifetime B at the pn junction interface is 3 ⁇ s or more. It is desirable to do. what if, In this case, minority carriers for allowing the drift layer to undergo sufficient conductivity modulation cannot be supplied from the activation layer, and the on-resistance of the device cannot be reduced.
  • Second Embodiment ⁇ Manufacturing method> 6 to 10 are cross-sectional views schematically showing a process for manufacturing a semiconductor device in which carrier traps in the vicinity of the pn junction interface are reduced or removed by using the semiconductor device manufacturing method according to this embodiment. .
  • description is abbreviate
  • an epitaxial growth process using a predetermined dopant is performed on the first main surface of the n-type SiC substrate 11 (see FIG. 6).
  • ion implantation of dopant atoms is performed on a predetermined region of the first main surface of SiC epitaxial layer 12 through implantation mask 30 (see FIG. 7).
  • the SiC substrate 11 is completely removed by etching or a mechanical method. Thereby, as shown in FIG. 8, the second main surface of SiC epitaxial layer 12 is exposed.
  • an interstitial carbon induced ion implantation process is further performed on a predetermined region of the second main surface of SiC epitaxial layer 12 or the entire main surface.
  • interstitial carbon-induced ions include carbon, silicon, hydrogen, and helium.
  • a surplus carbon region 31A in which surplus interstitial carbon atoms exist is formed.
  • the surplus carbon region 31A where the surplus interstitial carbon atoms exist is formed in a region deeper than the interface between the ion implantation layer 13 and the SiC epitaxial layer 12.
  • the ion implantation process may be performed with a single implantation energy, or may be performed while changing the implantation energy stepwise, for example, from high to low.
  • the implantation surface density during the ion implantation treatment is preferably in the range of 1 ⁇ 10 13 cm ⁇ 2 to 1 ⁇ 10 16 cm ⁇ 2 , and the implantation energy is in the range of 10 keV to 10 MeV. desirable.
  • the temperature of the SiC layer in the ion implantation process is desirably in the range of 10 ° C. to 1000 ° C., more preferably in the range of 200 ° C. to 800 ° C.
  • the implantation surface density in the ion implantation process is selected so as to exceed the density of carrier traps that can be generated near the pn junction interface (for example, within 500 nm from the pn junction interface) (for example, 1 ⁇ 10 13 cm ⁇ 2 or more). It is desirable that Moreover, in this embodiment, after implanting dopant ions, the SiC substrate 11 is removed and interstitial carbon-induced ions are implanted, but this order may be changed.
  • SiC epitaxial layer 12 dopant atoms in ion implantation layer 13 are activated, and interstitial carbon atoms are diffused toward ion implantation layer 13 to bond with point defects near the pn junction interface. Is done. As a result, as shown in FIG. 10, a p-type activation layer 113A is formed, and carrier traps particularly near the pn junction interface are reduced or eliminated.
  • the heating temperature of SiC epitaxial layer 12 is preferably in the range of 1000 ° C. to 2000 ° C., more preferably in the range of 1400 ° C. to 1800 ° C.
  • FIG. 11 is a cross-sectional view schematically showing an element structure of an SiC semiconductor device (pn diode) manufactured by using the semiconductor device manufacturing method according to the present embodiment.
  • the pn diode 20 using SiC includes an SiC epitaxial layer 12 (drift layer), an activation layer 113A (anode region), an electric field relaxation region 14, an anode electrode 15, and a cathode electrode. 16.
  • the activation layer 113A (anode region) is a high-concentration p-type layer formed by ion implantation in a predetermined region within the surface of the low-concentration n-type SiC epitaxial layer 12.
  • an electrically active point defect is coupled with an interstitial carbon atom particularly in the vicinity of a pn junction interface, and carrier traps are reduced or eliminated. Injection is facilitated and good electrical properties can be realized.
  • SiC substrate 11 as the silicon carbide semiconductor substrate is removed before forming surplus carbon region 31A.
  • surplus carbon region 31A is formed, interstitial carbon-induced ions are implanted from the back surface of the SiC epitaxial layer 12 as the drift layer.
  • Such a configuration increases the degree of freedom of the interstitial carbon-induced ion implantation method.
  • ⁇ Third Embodiment> ⁇ Manufacturing method> 12 to 17 are cross-sectional views schematically showing a process of manufacturing a semiconductor device in which carrier traps in the vicinity of the pn junction interface are reduced or removed by using the semiconductor device manufacturing method according to this embodiment. .
  • description is abbreviate
  • an epitaxial growth process using a predetermined dopant is performed on the first main surface of the n-type SiC substrate 11 (see FIG. 12).
  • ion implantation of dopant atoms is performed on a predetermined region of the first main surface of SiC epitaxial layer 12 through implantation mask 30 (see FIG. 13).
  • the SiC substrate 11 is completely removed by etching or a mechanical method (see FIG. 14).
  • a protective film 17 is formed on the first main surfaces of the SiC epitaxial layer 12 and the ion implantation layer 13.
  • a deposited oxide film is used as the protective film 17.
  • thermal oxidation is performed to form a thermal oxide film 18 on the second main surface of SiC epitaxial layer 12. Since the protective film 17 is formed on the first main surfaces of the SiC epitaxial layer 12 and the ion implantation layer 13, the thermal oxide film 18 is not formed.
  • the thermal oxidation temperature is preferably in the range of 1000 ° C. to 1500 ° C.
  • the thermal oxidation time is preferably in the range of 10 minutes to 100 hours. Thereby, as shown in FIG. 15, thermal oxide film 18 is formed only on the second main surface of SiC epitaxial layer 12.
  • the formation of the protective film 17 may be performed only on the first main surface of the ion implantation layer 13 in the first main surface of the SiC epitaxial layer 12.
  • thermal oxide film 18 is formed on the region where ion implantation layer 13 is not formed on the first main surface of SiC epitaxial layer 12 and on the second main surface by subsequent thermal oxidation, and ion implantation is performed.
  • the thermal oxide film 18 is not formed on the first main surface of the layer 13.
  • the interstitial carbon atoms released to the SiC epitaxial layer 12 by forming the thermal oxide film 18 are combined with point defects existing in the vicinity of the SiC epitaxial layer 12 and the pn junction interface. Traps are reduced or eliminated.
  • the density of point defects existing in the vicinity of the pn junction interface (for example, within 500 nm from the pn junction interface) is many orders of magnitude higher than the density of point defects existing in the SiC epitaxial layer 12, Bonding with point defects occurs mainly in the vicinity of the pn junction interface.
  • the protective film 17 and the thermal oxide film 18 are completely removed by etching or a mechanical method.
  • SiC epitaxial layer 12 by heating the SiC epitaxial layer 12, dopant atoms in the ion implantation layer 13 are activated. As a result, a p-type activation layer 113B is formed as shown in FIG.
  • the heating temperature of SiC epitaxial layer 12 is preferably in the range of 1000 ° C. to 2000 ° C., more preferably in the range of 1400 ° C. to 1800 ° C.
  • SiC epitaxial layer 12 as a first conductivity type (for example, n-type) drift layer is formed on SiC substrate 11 as a silicon carbide semiconductor substrate. Further, impurity ions, which are impurities of the second conductivity type (for example, p-type), are implanted into the surface of the SiC epitaxial layer 12 to form the ion implanted layer 13 into which the impurity ions are implanted. Further, the SiC substrate 11 is removed. Further, after removing the SiC substrate 11, a protective film 17 is formed at least on the surface of the ion implantation layer 13.
  • a thermal oxide film 18 is formed on the surface of the SiC epitaxial layer 12 and the back surface of the SiC epitaxial layer 12. Further, the protective film 17 and the thermal oxide film 18 are removed. Moreover, after forming the ion implantation layer 13, the SiC epitaxial layer 12 is heated.
  • the thermal oxide film 18 When the thermal oxide film 18 is formed, interstitial carbon atoms are released to the SiC epitaxial layer 12 by forming the thermal oxide film 18.
  • the SiC epitaxial layer 12 When the SiC epitaxial layer 12 is heated, the SiC epitaxial layer 12 is heated to activate the impurity ions implanted into the ion implantation layer 13 to form the second conductivity type activation layer 113B.
  • carrier traps in the vicinity of the pn junction interface can be reduced or eliminated by releasing interstitial carbon atoms from the SiC epitaxial layer 12 when the thermal oxide film 18 is formed. Therefore, minority carrier injection through the pn junction interface is promoted, and the on-resistance of the semiconductor device can be reduced.
  • the thermal oxide film 18 is not formed on the surface of the ion implantation layer 13. Therefore, when interstitial carbon atoms are released into the SiC epitaxial layer 12 by forming the thermal oxide film 18, interstitial carbon atoms are introduced while avoiding the surface of the ion implantation layer 13 where carrier traps are generated at a higher concentration. Can do.
  • ⁇ Fourth embodiment> ⁇ Manufacturing method> 18 to 24 are cross-sectional views schematically showing a process of manufacturing a semiconductor device in which carrier traps in the vicinity of the pn junction interface are reduced or removed by using the semiconductor device manufacturing method according to this embodiment. .
  • an epitaxial growth process using a predetermined dopant is performed on the first main surface of the n-type SiC substrate 11 (see FIG. 18).
  • ion implantation of dopant atoms is performed on a predetermined region of the first main surface of SiC epitaxial layer 12 through implantation mask 30 (see FIG. 19).
  • the SiC substrate 11 is completely removed by etching or a mechanical method (see FIG. 20).
  • a protective film 17 is formed on the first main surfaces of the SiC epitaxial layer 12 and the ion implantation layer 13. Subsequently, thermal oxidation is performed to form a thermal oxide film 18 on the second main surface of the SiC epitaxial layer 12 (see FIG. 21).
  • ⁇ Effect> in the method for manufacturing a semiconductor device, at least the surface of the ion-implanted layer 13 after removing the SiC substrate 11 that is a silicon carbide semiconductor substrate and before heating the SiC epitaxial layer 12 as a drift layer. Then, the protective film 17 is formed, the thermal oxide film 18 is formed on the surface of the SiC epitaxial layer 12 and the back surface of the SiC epitaxial layer 12, and the protective film 17 and the thermal oxide film 18 are further removed.
  • the case where the pn diode 20 is used as the semiconductor device has been described as an example.
  • various SiC bipolar devices IGBT, GTO (Gate Turn-Off Thyristor) having a pn junction are used.
  • BJT Bipolar Junction Transistor
  • the material, material or implementation condition for example, SiC crystal type, semiconductor conductivity type, specific thickness and impurity concentration of each layer, etc.
  • the material, material or implementation condition for example, SiC crystal type, semiconductor conductivity type, specific thickness and impurity concentration of each layer, etc.

Abstract

 本発明は、オン抵抗の低減を図ることができる半導体装置の製造方法を提供する。本発明は、基板(11)上にドリフト層(12)を形成する。また、ドリフト層表面にイオン注入層13を形成する。また、ドリフト層内に余剰炭素領域31を形成する。また、ドリフト層を加熱する。余剰炭素領域を形成する場合、イオン注入層とドリフト層との界面よりも深い領域に余剰炭素領域を形成する。ドリフト層を加熱する場合、イオン注入層の不純物イオンを活性化させて活性化層113を形成し、格子間炭素原子を活性化層側に拡散させる。

Description

半導体装置の製造方法
 本発明は、半導体装置の電気的特性を改善させるものである。
 SiC(炭化珪素)基板を用いた、ショットキーダイオード、pnダイオード、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)又はIGBT(Insulated Gate Bipolar Transistor)などのパワー半導体装置が、従来から存在している。SiCはSiに比べて高い絶縁破壊電界強度を有するために、SiC基板を用いたこれらの半導体装置は、Siでは適用不可能な超高耐電圧領域(10kV以上)においても用いることができる。
 このような超高耐電圧領域においては、耐圧を確保するために、低濃度かつ厚膜のドリフト層が用いられる。よって、半導体装置がユニポーラデバイスとして用いられる場合にはドリフト抵抗、さらにはオン抵抗が大きくなりやすい。そこで、オン抵抗を低減させるために、しばしばバイポーラデバイスが用いられる。バイポーラデバイスとしては、例えばpnダイオード又はIGBTなどが挙げられる。バイポーラデバイスでは、電子及び正孔の両方のキャリアが伝導に寄与するため、低濃度のドリフト層が見かけ上あたかも高濃度でドーピングされたかのように働き(伝導度変調効果)、オン抵抗が著しく低減する。
 バイポーラデバイスの性能を議論する上で、過剰キャリアが再結合により消失する時定数(キャリアのライフタイム)が重要な指標として挙げられる。ライフタイムが大きいほどバイポーラデバイスにおける伝導度変調効果が大きくなるため、結果としてオン抵抗を低減することができる。一方でライフタイムが大きすぎると、キャリアの蓄積によりバイポーラデバイスのスイッチング特性が悪化し、スイッチング損失の増大が生じる。したがって、デバイスの使用目的に応じて、ライフタイムを最適に制御する必要がある。
 パワーデバイスの材料として通常用いられている、Si又はSiCなどの間接遷移型半導体では、バンド間における電子と正孔との再結合速度が遅いため、ライフタイムは大きくなる。しかし一方で、半導体材料中に不純物、真性欠陥、転位又は積層欠陥などの結晶欠陥が存在する場合は、バンドギャップ中にエネルギー準位(欠陥準位)を作る。電子と正孔とがこの欠陥準位を介して再結合する場合があり、この欠陥は再結合中心と呼ばれる。再結合中心が複数ある場合は、半導体材料としてのライフタイムは、それぞれの再結合過程によるライフタイムの逆数の和の逆数で表される。このため、複数ある再結合過程の中で、最もライフタイムの小さい過程により半導体材料のライフタイムが律速されることになる。
 したがって間接遷移型半導体では、半導体材料が本来備えているバンド間遷移のライフタイムではなく、再結合中心によりライフタイムが決まる。特に、ライフタイムを小さくする主原因となる再結合中心は、ライフタイムキラーと呼ばれる。
 これまでに、SiCのライフタイムキラーとなる欠陥の特定、又は、その低減を目的とした研究成果が数多く報告されている。
 Zhangらは、アズグロウンSiC層における電気的に活性な欠陥(再結合中心又はキャリアトラップと呼ばれる)を、深い準位過渡分光法(Deep Level Transient Spectroscopy:DLTS)及び少数キャリア過渡分光法(Minority Carrier Transient Spectroscopy:MCTS)を用いて、ライフタイムキラーとなる欠陥を特定した(非特許文献1)。非特許文献1によれば、Z1/Z2中心及びEH6/7中心の真性欠陥による電子トラップ、及び、ボロン不純物による正孔トラップが測定された。特に、Z1/Z2トラップ又はEH6/7トラップの密度はライフタイムに対して逆の相関を示すことから、これらがライフタイムキラーであることを示唆している。
 Hiyoshiらは、アズグロウンSiCエピタキシャル層を熱酸化することで、熱酸化過程においてSiC層に放出された格子間炭素原子が拡散し、アズグロウンSiCエピタキシャル層に存在する炭素空孔を埋めるモデルを提案し、熱酸化によりZ1/Z2トラップ又はEH6/7トラップの低密度化が図れることを示した(非特許文献2)。
 Tsuchidaらは、SiC結晶層にイオン注入を施すことで浅い表面層に格子間炭素原子を追加導入し、さらにSiC結晶を加熱することにより、表面層に追加導入された格子間炭素原子を深部へ拡散させるとともに、格子間炭素原子をSiC結晶層に存在する炭素空孔と結合させる。このようにすることで、トラップを電気的に不活性化させる方法を提案した(特許文献1)。
 Kawaharaらは、アルミニウム、リン又は窒素などの不純物(ドーパント)原子をSiC層の表面にイオン注入し、さらに高温アニールにより電気的に活性化させた素子構造に対してDLTS評価を行うことで、イオン注入で生成されるトラップについて調べた(非特許文献3)。非特許文献3には、イオン注入により、特にZ1/Z2トラップ又はEH6/7トラップが高濃度で生成され、これらのトラップがSiC層の表面から深部にかけて減少しながら分布することが示されている。
 また、SiCデバイスの作製過程において、アルミニウム又はボロンなどのドーパント原子をSiC層の表面にイオン注入し、当該表面層内において不純物をアニールすることにより電気的に活性化させて素子構造を形成する際に、炭素原子を同時にイオン注入することが提案されている(特許文献2)。特許文献2によれば、ボロンとともに炭素をSiC表面層にイオン注入し余剰の格子間炭素原子を導入させることで、電気的に活性化するためのアニールの際に、導入された余剰の格子間炭素原子で優先的に炭素空孔を占有し、ボロンが炭素空孔ではなくシリコン空孔へ選択的に導入される。結果として、ボロンを単独でイオン注入する場合よりも、電気的に活性化するボロンの割合が増える(ボロンの活性化率が向上する)ことが示されている。
特開2008-53667号公報 特許第4141505号公報
J.Zhang,「Journal of Applied Physics,Vol.93,No.8」,2003,pp.4708-4714 Toru Hiyoshi,「Applied Physics Express,Vol.2」,2009,pp.091101 Koutarou Kawahara,「Journal of Applied Physics,Vol.108」,2010,pp.033706
 超高耐電圧領域(例えば10kV以上)で用いられるバイポーラデバイスにおいては、オン抵抗を低減するために伝導度変調効果を積極的に利用する。ここで重要なのは、伝導度変調の鍵となる伝導度変調層(ドリフト層)への少数キャリアの注入は、pn接合界面を通じて起こる、ということである。
 ドリフト層がn型半導体の場合は、正孔が少数キャリアとなる。pn接合界面を通じて注入される少数キャリアが多ければ多いほど、伝導度変調効果は大きくなり、結果としてオン抵抗は低減する。一方で、pn接合界面近傍(例えばpn接合界面から500nm以内)において、炭素空孔などの電気的に活性な欠陥、すなわちキャリアトラップが多数存在する場合には、少数キャリアの注入が阻害されるため、伝導度変調効果が小さくなり、結果としてユニポーラ的な(電子又は正孔のどちらか一方のキャリアのみが伝導に寄与する)動作に近づき、オン抵抗の低減は図れない。
 前述のとおり、特にイオン注入でpn接合を形成する場合は、SiC層の表面のみならずpn接合界面近傍にまでキャリアトラップが形成されることから、伝導度変調効果が抑制されてしまいオン抵抗が低減できない、という問題があった。
 本発明は、上記のような問題を解決するためになされたものであり、バイポーラデバイスにおいてオン抵抗の低減を図ることができる半導体装置の製造方法を提供することを目的とする。
 本発明の一態様に関する半導体装置の製造方法は、炭化珪素半導体基板上に、第1導電型のドリフト層を形成するドリフト層形成工程と、前記ドリフト層表面に第2導電型の不純物である不純物イオンを注入し、当該不純物イオンが注入されたイオン注入層を形成するイオン注入層形成工程と、前記ドリフト層内に格子間の炭素を誘起するイオンである格子間炭素誘起イオンを注入し、余剰な格子間炭素原子が存在する余剰炭素領域を形成する余剰炭素領域形成工程と、前記イオン注入層形成工程の後、かつ、前記余剰炭素領域形成工程の後に、前記ドリフト層を加熱する加熱工程とを備え、前記余剰炭素領域形成工程が、前記イオン注入層と前記ドリフト層との界面よりも深い領域に前記格子間炭素誘起イオンを注入し、前記余剰炭素領域を形成する工程であり、前記加熱工程が、前記ドリフト層を加熱することによって、前記イオン注入層に注入された前記不純物イオンを活性化させて第2導電型の活性化層を形成するとともに、前記格子間炭素原子を前記活性化層側に拡散させる工程である。
 本発明の別の態様に関する半導体装置の製造方法は、炭化珪素半導体基板上に、第1導電型のドリフト層を形成するドリフト層形成工程と、前記ドリフト層表面に第2導電型の不純物である不純物イオンを注入し、当該不純物イオンが注入されたイオン注入層を形成するイオン注入層形成工程と、前記炭化珪素半導体基板を除去する基板除去工程と、前記基板除去工程の後、少なくとも前記イオン注入層表面において保護膜を形成する保護膜形成工程と、前記保護膜形成工程の後、前記ドリフト層表面及び前記ドリフト層裏面において、熱酸化膜を形成する熱酸化膜形成工程と、前記保護膜及び前記熱酸化膜を除去する膜除去工程と、前記イオン注入層形成工程の後に、前記ドリフト層を加熱する加熱工程とを備え、前記熱酸化膜形成工程が、前記熱酸化膜を形成することによって、前記ドリフト層に格子間炭素原子を放出させる工程であり、前記加熱工程が、前記ドリフト層を加熱することによって、前記イオン注入層に注入された前記不純物イオンを活性化させて第2導電型の活性化層を形成する工程である。
 本発明の上記態様によれば、イオン注入層とドリフト層との界面よりも深い領域に余剰炭素領域を形成し、さらに、ドリフト層を加熱することによって格子間炭素原子を活性化層側に拡散させることで、pn接合界面近傍におけるキャリアトラップを効果的に減少又は除去することができる。よって、半導体装置のオン抵抗を低減させることができる。
 本発明の目的、特徴、局面、及び利点は、以下の詳細な説明と添付図面とによって、より明白となる。
第1実施形態に関する半導体装置の製造工程を説明するための断面図である。 第1実施形態に関する半導体装置の製造工程を説明するための断面図である。 第1実施形態に関する半導体装置の製造工程を説明するための断面図である。 第1実施形態に関する半導体装置の製造工程を説明するための断面図である。 第1実施形態に関する半導体装置の製造方法を利用して作製した、SiC半導体装置の素子構造を概略的に示した断面図である。 第2実施形態に関する半導体装置の製造工程を説明するための断面図である。 第2実施形態に関する半導体装置の製造工程を説明するための断面図である。 第2実施形態に関する半導体装置の製造工程を説明するための断面図である。 第2実施形態に関する半導体装置の製造工程を説明するための断面図である。 第2実施形態に関する半導体装置の製造工程を説明するための断面図である。 第2実施形態に関する半導体装置の製造方法を利用して作製した、SiC半導体装置の素子構造を概略的に示した断面図である。 第3実施形態に関する半導体装置の製造工程を説明するための断面図である。 第3実施形態に関する半導体装置の製造工程を説明するための断面図である。 第3実施形態に関する半導体装置の製造工程を説明するための断面図である。 第3実施形態に関する半導体装置の製造工程を説明するための断面図である。 第3実施形態に関する半導体装置の製造工程を説明するための断面図である。 第3実施形態に関する半導体装置の製造工程を説明するための断面図である。 第4実施形態に関する半導体装置の製造工程を説明するための断面図である。 第4実施形態に関する半導体装置の製造工程を説明するための断面図である。 第4実施形態に関する半導体装置の製造工程を説明するための断面図である。 第4実施形態に関する半導体装置の製造工程を説明するための断面図である。 第4実施形態に関する半導体装置の製造工程を説明するための断面図である。 第4実施形態に関する半導体装置の製造工程を説明するための断面図である。 第4実施形態に関する半導体装置の製造工程を説明するための断面図である。 第1実施形態に関する半導体装置の製造工程を利用して作製した、SiC半導体装置におけるキャリア寿命プロファイルを説明するための図である。 第1実施形態に関する半導体装置の製造工程を利用して作製した、SiC半導体装置におけるキャリア寿命プロファイルを説明するための図である。
 <第1実施形態>
 <製造方法>
 図1から図4は、本実施形態に関する半導体装置の製造方法を利用して、pn接合界面近傍(pn接合界面から例えば500nm以内)のキャリアトラップが減少又は除去された半導体装置を作製する工程を概略的に示した断面図である。
 はじめに、n型のSiC基板11の第1主面(表面)上に対して、所定のドーパントを用いた、エピタキシャル成長処理を施す。これにより、図1に示されるように、n型のSiC基板11上の第1主面上には、n型のSiCエピタキシャル層12(又はエピ層ともいう)が形成される。
 ここで、上記の炭化珪素(SiC)はワイドギャップ半導体の一種である。ワイドギャップ半導体とは、一般に、およそ2eV以上の禁制帯幅をもつ半導体を指し、窒化ガリウム(GaN)に代表される3族窒化物、酸化亜鉛(ZnO)に代表される2族窒化物、セレン化亜鉛(ZnSe)に代表される2族カルコゲナイド及び炭化珪素などが知られている。本実施形態では炭化珪素を用いた場合を説明するが、他の半導体及びワイドギャップ半導体であっても、同様に適用可能である。
 次に、SiCエピタキシャル層12の第1主面の所定の領域(部分的領域)に対して、注入マスク30を介してp型ドーパント原子のイオン注入処理を施す。ドーパント原子としては、例えば、アルミニウム、ボロン、リン又は窒素などが挙げられる。注入マスク30としては、例えば写真製版用のフォトレジスト又は酸化膜を用いる。これにより、図2に示されるように、SiCエピタキシャル層12の第1主面表面内に、ドーパントイオン(不純物イオン)が注入されたイオン注入層13が形成される。ここで、当該イオン注入処理は、単一注入エネルギーで行われてもよいし、注入エネルギーを段階的に例えば高から低へ変化させながら行われてもよい。また、当該イオン注入処理時の注入面密度は、1×1013cm-2から1×1016cm-2の範囲内にあることが望ましく、注入エネルギーは10keVから10MeVの範囲内にあることが望ましい。また、当該イオン注入処理におけるSiC層の温度は、10℃から1000℃の範囲内にあることが望ましく、より好ましくは200℃から800℃の範囲内にあることが望ましい。
 次に、SiCエピタキシャル層12の第1主面の所定の領域に対して、さらに、格子間の炭素を誘起する格子間炭素誘起イオン注入処理を施す。格子間炭素誘起イオンとしては、例えば、炭素、珪素、水素又はヘリウムなどが挙げられる。これにより、図3に示されるように、余剰な格子間炭素原子が存在する余剰炭素領域31が形成される。ここで重要なのは、当該余剰な格子間炭素原子が存在する余剰炭素領域31は、イオン注入層13とSiCエピタキシャル層12との界面よりも深い領域(SiCエピタキシャル層12内における第1主面から離れる方向を深さ方向とする)に形成される、ということである。より具体的には、余剰炭素領域31は、イオン注入層13とSiCエピタキシャル層12との界面近傍の深い領域側に形成される。望ましくは、余剰炭素領域31は、イオン注入層13とSiCエピタキシャル層12との界面から500nm以内の深い領域側に形成される。ここで、当該イオン注入処理は、単一注入エネルギーで行われてもよいし、注入エネルギーを段階的に例えば高から低へ変化させながら行われてもよい。また、当該イオン注入処理時の注入面密度は、1×1013cm-2から1×1016cm-2の範囲内にあることが望ましく、注入エネルギーは10keVから10MeVの範囲内にあることが望ましい。また、当該イオン注入処理におけるSiC層の温度は、10℃から1000℃の範囲内にあることが望ましく、より好ましくは200℃から800℃の範囲内にあることが望ましい。また、当該イオン注入処理における注入エネルギーは、先のドーパント原子のイオン注入の際に用いた注入エネルギーよりも大きくすることが望ましい。これにより、イオン注入層13とSiCエピタキシャル層12との界面よりも深い領域に、余剰な格子間炭素原子が存在する余剰炭素領域31を形成することができる。また、当該イオン注入処理における注入面密度は、pn接合界面(イオン注入層13とSiCエピタキシャル層12との界面)の近傍(pn接合界面から例えば500nm以内)に生成されうるキャリアトラップの密度を超えるように(例えば1×1013cm-2以上に)選択されることが望ましい。また、本実施形態では、ドーパントイオンを注入した後に格子間炭素誘起イオンを注入したが、この順序が入れ替わってもよい。
 続いて、SiCエピタキシャル層12を加熱することにより、イオン注入層13におけるドーパント原子が活性化されるとともに、格子間炭素原子がイオン注入層13側に拡散され、pn接合界面近傍の点欠陥と結合される。これにより、図4に示されるように、p型の活性化層113が形成されるとともに、特にpn接合界面近傍におけるキャリアトラップが減少又は除去される。ここで、SiCエピタキシャル層12の加熱温度は、1000℃から2000℃の範囲内にあることが望ましく、より好ましくは1400℃から1800℃の範囲内にあることが望ましい。
 図5は、本実施形態に関する半導体装置の製造方法を利用して作製した、SiC半導体装置(pnダイオード)の素子構造を概略的に示した断面図である。
 同図に示されるように、SiCを用いたpnダイオード10は、SiC基板11と、SiCエピタキシャル層12(ドリフト層)と、活性化層113(アノード領域)と、電界緩和領域14と、アノード電極15と、カソード電極16とを備えている。
 SiCエピタキシャル層12(ドリフト層)は、高濃度n型のSiC基板11の第1主面上に、エピタキシャル成長処理により形成された、SiC基板11よりも低濃度のn型層である。活性化層113(アノード領域)は、低濃度n型のSiCエピタキシャル層12表面内の所定の領域にイオン注入処理により形成された高濃度p型の層である。電界緩和領域14は、低濃度n型のSiCエピタキシャル層12表面内の所定の領域にイオン注入処理により形成された、イオン注入層13よりも低濃度のp型領域である。アノード電極15は、イオン注入層13(アノード領域)表面に形成された電極である。カソード電極16は、SiC基板11の第2主面(第1主面と反対側の面、すなわち裏面)上に形成された電極である。
 このようなpnダイオード10によれば、特にpn接合界面近傍において、電気的に活性な点欠陥が格子間炭素原子と結合され、キャリアトラップが減少又は除去されているので、pn界面において少数キャリアの注入が促進され、良好な電気的特性を実現できる。
 <効果>
 本実施形態によれば、半導体装置の製造方法において、炭化珪素半導体基板としてのSiC基板11上に、第1導電型(例えばn型)のドリフト層としてのSiCエピタキシャル層12を形成する。また、SiCエピタキシャル層12表面に第2導電型(例えばp型)の不純物である不純物イオンを注入し、当該不純物イオンが注入されたイオン注入層13を形成する。また、SiCエピタキシャル層12内に格子間の炭素を誘起するイオンである格子間炭素誘起イオンを注入し、余剰な格子間炭素原子が存在する余剰炭素領域31を形成する。また、イオン注入層13を形成した後、かつ、余剰炭素領域31を形成した。
 そして余剰炭素領域31を形成する場合、イオン注入層13とSiCエピタキシャル層12との界面よりも深い領域に格子間炭素誘起イオンを注入し、余剰炭素領域31を形成する。またSiCエピタキシャル層12を加熱する場合、SiCエピタキシャル層12を加熱することによって、イオン注入層13に注入された不純物イオンを活性化させて第2導電型の活性化層113を形成するとともに、格子間炭素原子を活性化層113側に拡散させる。
 なお、余剰炭素領域31は、後述の余剰炭素領域31Aと入れ替えることもできる。それに伴い、活性化層113は、後述の活性化層113Aと入れ替えることができる。
 このような構成によれば、イオン注入層13とSiCエピタキシャル層12との界面よりも深い領域に余剰炭素領域31を形成し、さらに、SiCエピタキシャル層12を加熱することによって格子間炭素原子を活性化層113側に拡散させることで、pn接合界面近傍におけるキャリアトラップを効果的に減少又は除去することができる。よって、pn接合界面を通じた少数キャリアの注入が促進され、半導体装置のオン抵抗を低減させることができる。
 また、余剰炭素領域31を、イオン注入層13とSiCエピタキシャル層12との界面よりも深い領域に格子間炭素誘起イオンを注入しているため、キャリアトラップがより高濃度で生成されるイオン注入層13表面を避けて格子間炭素原子を導入することができる。よって、SiCエピタキシャル層12を加熱することで格子間炭素原子を拡散させる際に、イオン注入層13表面に格子間炭素誘起イオンを注入した場合に比べて、効率的にpn接合界面近傍の点欠陥と格子間炭素原子とを結合させることができる。したがって、格子間炭素原子の注入面密度を高濃度にする必要がなく、pn接合界面近傍における、より低濃度なキャリアトラップの密度を超えるだけの注入面密度であればよい。
 なお、余剰炭素領域をイオン注入層13とSiCエピタキシャル層12との界面よりも浅い領域に形成する場合は、SiCエピタキシャル層12を加熱することで格子間炭素原子を拡散させる際に、pn接合界面近傍の点欠陥まで格子間炭素原子の拡散を到達させるために、より高濃度の格子間炭素原子の注入面密度で格子間炭素誘起イオンを注入する必要がある。イオン注入層13表面においてはキャリアトラップがより高濃度で生成されるため、当該領域におけるキャリアトラップの密度を超える程度の注入面密度で格子間炭素誘起イオンを導入する必要がある。注入するイオンの注入面密度が高い場合には、新たな注入欠陥が生じるおそれもある。
 また、本実施形態によれば、余剰炭素領域31を形成する場合、イオン注入層13とSiCエピタキシャル層12との界面におけるキャリアトラップの密度より大きい注入面密度である格子間炭素誘起イオンを注入し、余剰炭素領域31を形成する。
 このような構成によれば、格子間炭素誘起イオンを注入することによって、イオン注入層13とSiCエピタキシャル層12との界面におけるキャリアトラップを十分に減少又は除去することができる。
 図25及び図26は、本実施形態に関する半導体装置の製造方法を利用して作製した、SiC半導体装置(pnダイオード)におけるキャリア寿命プロファイルを説明するための図である。図26は、図25に示されるpnダイオードにおけるYY’断面(基板の厚み方向)のキャリア寿命を概略的に示している。図26においては、縦軸がキャリア寿命を示し、横軸がYY’断面上の深さ位置を示している。
 図25において、a、b、c及びdはそれぞれ、活性化層113の表面、活性化層113の下面とSiCエピタキシャル層12との界面(pn接合界面)、SiCエピタキシャル層12とSiC基板11との界面、SiC基板11の裏面の深さ位置を示している。
 また、図26において、Aは、位置a(活性化層の表面)におけるキャリア寿命を示し、Bは、位置b(pn接合界面)におけるキャリア寿命を示している。また、Tは、位置bc間の長さ(ドリフト層の厚さ)を示している。
 本実施形態では、活性化層(pnダイオードの場合はアノード層)を、例えばアルミニウムなどのドーパントをイオン注入して形成することを想定しているため、活性化層をエピタキシャル成長で形成する場合とは異なり、pn接合界面近傍にまでキャリアトラップが多数形成される。
 少数キャリアの注入はpn接合界面を通じて起こるため、伝導度変調を促進してデバイスのオン抵抗の低減を図るためには、pn接合界面のキャリアトラップを積極的に除去又は低減することが重要である。
 本実施形態では、pn接合界面よりも深い領域に、pn接合界面におけるキャリアトラップの密度より大きい注入面密度の炭素イオンを注入し、余剰炭素領域を形成する。そのため、pn接合界面のキャリアトラップを積極的に除去又は低減することができる。その結果、図26に示されるように、位置b(pn接合界面)におけるキャリア寿命Bが、位置a(活性化層の表面)におけるキャリア寿命Aに対して、
Figure JPOXMLDOC01-appb-M000002
 となるようなキャリア寿命プロファイルが実現される。なお、活性化層の表面はキャリアトラップが十分に低減されていないので、キャリア寿命が小さい。
 また、図26に示されるように、注入された炭素イオンは、基板の厚み方向の注入ピーク位置を起点として拡散するため、キャリア寿命は炭素イオンの注入ピーク位置において最大値をとり、位置b又は位置cに向けて徐々に減少するプロファイルとなる。A、B及びTの関係としては、
Figure JPOXMLDOC01-appb-M000003
 とすることが望ましい。例えば、活性化層の表面におけるキャリア寿命Aを100ns、ドリフト層の厚みTを100μmとすると、pn接合界面におけるキャリア寿命Bが3μs以上となるように、炭素イオンの注入面密度及び注入エネルギーを選択することが望ましい。仮に、
Figure JPOXMLDOC01-appb-M000004
 である場合は、ドリフト層が十分な伝導度変調を受けるための少数キャリアを活性化層から供給することができず、デバイスのオン抵抗の低減を図ることができない。
 <第2実施形態>
 <製造方法>
 図6から図10は、本実施形態に関する半導体装置の製造方法を利用して、pn接合界面近傍のキャリアトラップが減少又は除去された半導体装置を作製する工程を概略的に示した断面図である。なお、第1実施形態における場合と同様の内容については、適宜説明を省略する。
 はじめに、n型のSiC基板11の第1主面上に対して、所定のドーパントを用いた、エピタキシャル成長処理を施す(図6参照)。次に、SiCエピタキシャル層12の第1主面の所定の領域に対して、注入マスク30を介してドーパント原子のイオン注入処理を施す(図7参照)。
 次に、SiC基板11をエッチング又は機械的方法により完全に除去する。これにより、図8に示されるように、SiCエピタキシャル層12の第2主面が露出される。
 次に、SiCエピタキシャル層12の第2主面の所定の領域、又は主面全体に対して、さらに、格子間炭素誘起イオン注入処理を施す。格子間炭素誘起イオンとしては、例えば、炭素、珪素、水素又はヘリウムなどが挙げられる。これにより、図9に示されるように、余剰な格子間炭素原子が存在する余剰炭素領域31Aが形成される。ここで重要なのは、当該余剰な格子間炭素原子が存在する余剰炭素領域31Aは、イオン注入層13とSiCエピタキシャル層12との界面よりも深い領域に形成される、ということである。ここで、当該イオン注入処理は、単一注入エネルギーで行われてもよいし、注入エネルギーを段階的に例えば高から低へ変化させながら行われてもよい。また、当該イオン注入処理時の注入面密度は、1×1013cm-2から1×1016cm-2の範囲内にあることが望ましく、注入エネルギーは10keVから10MeVの範囲内にあることが望ましい。また、当該イオン注入処理におけるSiC層の温度は、10℃から1000℃の範囲内にあることが望ましく、より好ましくは200℃から800℃の範囲内にあることが望ましい。また、当該イオン注入処理における注入面密度は、pn接合界面近傍(pn接合界面から例えば500nm以内)に生成されうるキャリアトラップの密度を超えるように(例えば1×1013cm-2以上に)選択されることが望ましい。また、本実施形態では、ドーパントイオンを注入した後にSiC基板11を除去して格子間炭素誘起イオンを注入したが、この順序が入れ替わってもよい。
 続いて、SiCエピタキシャル層12を加熱することにより、イオン注入層13におけるドーパント原子が活性化されるとともに、格子間炭素原子がイオン注入層13側に拡散され、pn接合界面近傍の点欠陥と結合される。これにより、図10に示されるように、p型の活性化層113Aが形成されるとともに、特にpn接合界面近傍におけるキャリアトラップが減少又は除去される。ここで、SiCエピタキシャル層12の加熱温度は、1000℃から2000℃の範囲内にあることが望ましく、より好ましくは1400℃から1800℃の範囲内にあることが望ましい。
 図11は、本実施形態に関する半導体装置の製造方法を利用して作製した、SiC半導体装置(pnダイオード)の素子構造を概略的に示した断面図である。
 同図に示されるように、SiCを用いたpnダイオード20は、SiCエピタキシャル層12(ドリフト層)と、活性化層113A(アノード領域)と、電界緩和領域14と、アノード電極15と、カソード電極16とを備えている。活性化層113A(アノード領域)は、低濃度n型のSiCエピタキシャル層12表面内の所定の領域にイオン注入処理により形成された高濃度p型の層である。
 このようなpnダイオード20によれば、特にpn接合界面近傍において、電気的に活性な点欠陥が格子間炭素原子と結合され、キャリアトラップが減少又は除去されているので、pn界面において少数キャリアの注入が促進され、良好な電気的特性を実現できる。
 <効果>
 本実施形態によれば、半導体装置の製造方法において、余剰炭素領域31Aを形成する前に、炭化珪素半導体基板としてのSiC基板11を除去する。そして余剰炭素領域31Aを形成する場合、ドリフト層としてのSiCエピタキシャル層12裏面から格子間炭素誘起イオンを注入する。
 このような構成によれば、格子間炭素誘起イオン注入方法の自由度が高まる。
 <第3実施形態>
 <製造方法>
 図12から図17は、本実施形態に関する半導体装置の製造方法を利用して、pn接合界面近傍のキャリアトラップが減少又は除去された半導体装置を作製する工程を概略的に示した断面図である。なお、第1実施形態又は第2実施形態における場合と同様の内容については、適宜説明を省略する。
 はじめに、n型のSiC基板11の第1主面上に対して、所定のドーパントを用いた、エピタキシャル成長処理を施す(図12参照)。次に、SiCエピタキシャル層12の第1主面の所定の領域に対して、注入マスク30を介してドーパント原子のイオン注入処理を施す(図13参照)。
 次に、SiC基板11をエッチング又は機械的方法により完全に除去する(図14参照)。
 次に、SiCエピタキシャル層12及びイオン注入層13の第1主面上に、保護膜17を形成する。保護膜17としては、例えば堆積酸化膜を用いる。続いて熱酸化を施すことで、SiCエピタキシャル層12の第2主面上に熱酸化膜18を形成する。SiCエピタキシャル層12及びイオン注入層13の第1主面上には保護膜17が形成されているので、熱酸化膜18は形成されない。ここで、熱酸化温度は1000℃から1500℃の範囲内であることが望ましく、熱酸化時間は10分から100時間の範囲内であることが望ましい。これにより、図15に示されるように、SiCエピタキシャル層12の第2主面上にのみ熱酸化膜18が形成される。
 ここで、保護膜17の形成は、SiCエピタキシャル層12の第1主面のうちの、イオン注入層13の第1主面上のみに施されてもよい。この場合は、続く熱酸化により、SiCエピタキシャル層12の第1主面のうちイオン注入層13が形成されていない領域上、及び、第2主面上に熱酸化膜18が形成され、イオン注入層13の第1主面上には熱酸化膜18は形成されない。
 上記の熱酸化過程において、熱酸化膜18を形成することによってSiCエピタキシャル層12に放出された格子間炭素原子がSiCエピタキシャル層12及びpn接合界面近傍に存在する点欠陥と結合することで、キャリアトラップが減少又は除去される。ここで、pn接合界面近傍(pn接合界面から例えば500nm以内)に存在する点欠陥の密度は、SiCエピタキシャル層12に存在する点欠陥の密度に比べて何桁も大きいため、格子間炭素原子と点欠陥との結合は、主にpn接合界面近傍で生じる。
 次に、図16に示されるように、保護膜17及び熱酸化膜18を、エッチング又は機械的方法により完全に除去する。
 続いて、SiCエピタキシャル層12を加熱することにより、イオン注入層13におけるドーパント原子が活性化される。これにより、図17に示されるように、p型の活性化層113Bが形成される。SiCエピタキシャル層12の加熱温度は、1000℃から2000℃の範囲内にあることが望ましく、より好ましくは1400℃から1800℃の範囲内にあることが望ましい。
 <効果>
 本実施形態によれば、半導体装置の製造方法において、炭化珪素半導体基板としてのSiC基板11上に、第1導電型(例えばn型)のドリフト層としてのSiCエピタキシャル層12を形成する。また、SiCエピタキシャル層12表面に第2導電型(例えばp型)の不純物である不純物イオンを注入し、当該不純物イオンが注入されたイオン注入層13を形成する。また、SiC基板11を除去する。また、SiC基板11を除去した後、少なくともイオン注入層13表面において保護膜17を形成する。また、保護膜17を形成した後、SiCエピタキシャル層12表面及びSiCエピタキシャル層12裏面において、熱酸化膜18を形成する。また、保護膜17及び熱酸化膜18を除去する。また、イオン注入層13を形成した後に、SiCエピタキシャル層12を加熱する。
 そして熱酸化膜18を形成する場合、熱酸化膜18を形成することによって、SiCエピタキシャル層12に格子間炭素原子を放出させる。またSiCエピタキシャル層12を加熱する場合、SiCエピタキシャル層12を加熱することによって、イオン注入層13に注入された不純物イオンを活性化させて第2導電型の活性化層113Bを形成する。
 このような構成によれば、熱酸化膜18を形成する際にSiCエピタキシャル層12に格子間炭素原子を放出させることによって、pn接合界面近傍におけるキャリアトラップを減少又は除去することができる。よって、pn接合界面を通じた少数キャリアの注入が促進され、半導体装置のオン抵抗を低減させることができる。
 また、イオン注入層13表面は保護膜17で覆われているため、熱酸化膜18はイオン注入層13表面には形成されない。よって、熱酸化膜18の形成によるSiCエピタキシャル層12への格子間炭素原子の放出の際、キャリアトラップがより高濃度で生成されるイオン注入層13表面を避けて格子間炭素原子を導入することができる。
 <第4実施形態>
 <製造方法>
 図18から図24は、本実施形態に関する半導体装置の製造方法を利用して、pn接合界面近傍のキャリアトラップが減少又は除去された半導体装置を作製する工程を概略的に示した断面図である。なお、第1実施形態、第2実施形態又は第3実施形態における場合と同様の内容については、適宜説明を省略する。
 はじめに、n型のSiC基板11の第1主面上に対して、所定のドーパントを用いた、エピタキシャル成長処理を施す(図18参照)。次に、SiCエピタキシャル層12の第1主面の所定の領域に対して、注入マスク30を介してドーパント原子のイオン注入処理を施す(図19参照)。
 次に、SiC基板11をエッチング又は機械的方法により完全に除去する(図20参照)。
 次に、SiCエピタキシャル層12及びイオン注入層13の第1主面上に、保護膜17を形成する。続いて熱酸化を施すことで、SiCエピタキシャル層12の第2主面上に熱酸化膜18を形成する(図21参照)。
 次に、保護膜17及び熱酸化膜18を除去した後(図22参照)、SiCエピタキシャル層12の第2主面の所定の領域、又は主面全体に対して、炭素イオン注入処理を施す(図23参照)。そして、余剰な格子間炭素原子が存在する余剰炭素領域31Bを形成した後、SiCエピタキシャル層12を加熱することでp型の活性化層113Cを形成する(図24参照)。
 これにより、上記の熱酸化過程において、熱酸化膜18を形成することによってSiCエピタキシャル層12に放出された格子間炭素原子に加えて、イオン注入処理により余剰な格子間炭素原子が導入されているため、SiCエピタキシャル層12及びpn接合界面近傍(pn接合界面から例えば500nm以内)に存在する点欠陥を、効果的に低減又は除去することができる。
 <効果>
 本実施形態によれば、半導体装置の製造方法において、炭化珪素半導体基板であるSiC基板11を除去した後、かつ、ドリフト層としてのSiCエピタキシャル層12を加熱する前に、少なくともイオン注入層13表面において保護膜17を形成し、SiCエピタキシャル層12表面及びSiCエピタキシャル層12裏面において熱酸化膜18を形成し、さらに、保護膜17及び熱酸化膜18を除去する。
 そして、熱酸化膜18を形成することによって、SiCエピタキシャル層12に格子間炭素原子を放出させる。
 このような構成によれば、熱酸化膜18を形成することによってSiCエピタキシャル層12に放出された格子間炭素原子に加えて、イオン注入処理により余剰な格子間炭素原子が導入されているため、SiCエピタキシャル層12及びpn接合界面近傍(pn接合界面から例えば500nm以内)に存在する点欠陥を、効果的に低減又は除去することができる。
 なお、上記の実施形態では、半導体装置としてpnダイオード20を用いた場合を例として挙げたが、pnダイオードの他に、pn接合を有する各種のSiCバイポーラデバイス(IGBT、GTO(Gate Turn-Off Thyristor)又はBJT(Bipolar Junction Transistor)など)を作製する際にも、本発明の半導体装置の製造方法を適用することにより、デバイスの電気的特性を大幅に向上させることができる。
 上記実施形態では、各構成要素の材質、材料又は実施の条件(例えば、SiCの結晶型、半導体の導電型、各層の具体的な厚さ及び不純物濃度など)についても記載しているが、これらは例示であって記載したものに限られるものではない。
 なお本発明は、その発明の範囲内において、各実施形態の自由な組合せ、又は各実施形態の任意の構成要素の変形、若しくは各実施形態において任意の構成要素の省略が可能である。
 10,20 pnダイオード、11 SiC基板、12 SiCエピタキシャル層、13 イオン注入層、14 電界緩和領域、15 アノード電極、16 カソード電極、17 保護膜、18 熱酸化膜、30 注入マスク、31,31A,31B 余剰炭素領域、113,113A,113B,113C 活性化層。

Claims (12)

  1.  炭化珪素半導体基板(11)上に、第1導電型のドリフト層(12)を形成するドリフト層形成工程と、
     前記ドリフト層(12)表面に第2導電型の不純物である不純物イオンを注入し、当該不純物イオンが注入されたイオン注入層(13)を形成するイオン注入層形成工程と、
     前記ドリフト層(12)内に格子間の炭素を誘起するイオンである格子間炭素誘起イオンを注入し、余剰な格子間炭素原子が存在する余剰炭素領域(31、31A)を形成する余剰炭素領域形成工程と、
     前記イオン注入層形成工程の後、かつ、前記余剰炭素領域形成工程の後に、前記ドリフト層(12)を加熱する加熱工程とを備え、
     前記余剰炭素領域形成工程が、前記イオン注入層(13)と前記ドリフト層(12)との界面よりも深い領域に前記格子間炭素誘起イオンを注入し、前記余剰炭素領域(31)を形成する工程であり、
     前記加熱工程が、前記ドリフト層(12)を加熱することによって、前記イオン注入層(13)に注入された前記不純物イオンを活性化させて第2導電型の活性化層(113、113A)を形成するとともに、前記格子間炭素原子を前記活性化層(113、113A)側に拡散させる工程である、
    半導体装置の製造方法。
  2.  前記余剰炭素領域形成工程が、前記イオン注入層(13)と前記ドリフト層(12)との界面から500nm以内の深い領域側に前記格子間炭素誘起イオンを注入し、前記余剰炭素領域(31)を形成する工程である、
    請求項1に記載の半導体装置の製造方法。
  3.  前記余剰炭素領域形成工程が、前記ドリフト層(12)表面から前記格子間炭素誘起イオンを注入する工程である、
    請求項1に記載の半導体装置の製造方法。
  4.  前記余剰炭素領域形成工程の前に、前記炭化珪素半導体基板(11)を除去する基板除去工程をさらに備え、
     前記余剰炭素領域形成工程が、前記ドリフト層(12)裏面から前記格子間炭素誘起イオンを注入する工程である、
    請求項1に記載の半導体装置の製造方法。
  5.  前記余剰炭素領域形成工程が、炭素である前記格子間炭素誘起イオンを注入し、前記余剰炭素領域(31、31A)を形成する工程である、
    請求項1から4のうちのいずれか1項に記載の半導体装置の製造方法。
  6.  前記余剰炭素領域形成工程が、注入面密度1×1013cm-2から1×1016cm-2、注入エネルギー10keVから10MeVである前記格子間炭素誘起イオンを注入し、前記余剰炭素領域(31、31A)を形成する工程である、
    請求項1から4のうちのいずれか1項に記載の半導体装置の製造方法。
  7.  前記余剰炭素領域形成工程が、前記イオン注入層(13)と前記ドリフト層(12)との界面におけるキャリアトラップの密度より大きい注入面密度である前記格子間炭素誘起イオンを注入し、前記余剰炭素領域(31、31A)を形成する工程である、
    請求項1から4のうちのいずれか1項に記載の半導体装置の製造方法。
  8.  前記余剰炭素領域形成工程が、前記活性化層(113、113A)表面におけるキャリア寿命Aと、前記活性化層(113、113A)と前記ドリフト層(12)との界面におけるキャリア寿命Bと、前記ドリフト層(12)の厚みTとの関係が、
    Figure JPOXMLDOC01-appb-M000001
     となるように、前記格子間炭素誘起イオンの注入面密度及び注入エネルギーを選択して注入する工程である、
    請求項1から4のうちのいずれか1項に記載の半導体装置の製造方法。
  9.  炭化珪素半導体基板(11)上に、第1導電型のドリフト層(12)を形成するドリフト層形成工程と、
     前記ドリフト層(12)表面に第2導電型の不純物である不純物イオンを注入し、当該不純物イオンが注入されたイオン注入層(13)を形成するイオン注入層形成工程と、
     前記炭化珪素半導体基板(11)を除去する基板除去工程と、
     前記基板除去工程の後、少なくとも前記イオン注入層(13)表面において保護膜(17)を形成する保護膜形成工程と、
     前記保護膜形成工程の後、前記ドリフト層(12)表面及び前記ドリフト層(12)裏面において、熱酸化膜(18)を形成する熱酸化膜形成工程と、
     前記保護膜(17)及び前記熱酸化膜(18)を除去する膜除去工程と、
     前記イオン注入層形成工程の後に、前記ドリフト層(12)を加熱する加熱工程とを備え、
     前記熱酸化膜形成工程が、前記熱酸化膜(18)を形成することによって、前記ドリフト層(12)に格子間炭素原子を放出させる工程であり、
     前記加熱工程が、前記ドリフト層(12)を加熱することによって、前記イオン注入層(13)に注入された前記不純物イオンを活性化させて第2導電型の活性化層(113B)を形成する工程である、
    半導体装置の製造方法。
  10.  前記イオン注入層形成工程が、アルミニウム、ボロン、リン又は窒素である前記不純物イオンを注入し、前記イオン注入層(13)を形成する工程である、
    請求項1から4及び9のうちのいずれか1項に記載の半導体装置の製造方法。
  11.  前記加熱工程において、前記ドリフト層(12)が加熱される温度が、1400℃から1800℃の範囲内である、
    請求項1から4及び9のうちのいずれか1項に記載の半導体装置の製造方法。
  12.  前記酸化膜形成工程において、前記熱酸化膜(18)が形成される温度が、1000℃から1500℃の範囲内である、
    請求項9に記載の半導体装置の製造方法。
PCT/JP2014/073058 2013-11-13 2014-09-02 半導体装置の製造方法 WO2015072210A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015547672A JP6113298B2 (ja) 2013-11-13 2014-09-02 半導体装置の製造方法、および、半導体装置
CN201480062114.7A CN105723499B (zh) 2013-11-13 2014-09-02 半导体装置的制造方法以及半导体装置
DE112014005188.8T DE112014005188T5 (de) 2013-11-13 2014-09-02 Verfahren zum Herstellen eines Halbleiterbauteils
US15/030,763 US10304939B2 (en) 2013-11-13 2014-09-02 SiC semiconductor device having pn junction interface and method for manufacturing the SiC semiconductor device
US16/374,226 US20190237558A1 (en) 2013-11-13 2019-04-03 Sic semiconductor device having pn junction interface and method for manufacturing the sic semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-234581 2013-11-13
JP2013234581 2013-11-13

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/030,763 A-371-Of-International US10304939B2 (en) 2013-11-13 2014-09-02 SiC semiconductor device having pn junction interface and method for manufacturing the SiC semiconductor device
US16/374,226 Division US20190237558A1 (en) 2013-11-13 2019-04-03 Sic semiconductor device having pn junction interface and method for manufacturing the sic semiconductor device

Publications (1)

Publication Number Publication Date
WO2015072210A1 true WO2015072210A1 (ja) 2015-05-21

Family

ID=53057156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073058 WO2015072210A1 (ja) 2013-11-13 2014-09-02 半導体装置の製造方法

Country Status (5)

Country Link
US (2) US10304939B2 (ja)
JP (1) JP6113298B2 (ja)
CN (1) CN105723499B (ja)
DE (1) DE112014005188T5 (ja)
WO (1) WO2015072210A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019083017A1 (ja) * 2017-10-26 2019-05-02 株式会社デンソー 炭化珪素半導体装置およびその製造方法
JP2019080035A (ja) * 2017-10-26 2019-05-23 株式会社デンソー 炭化珪素半導体装置およびその製造方法
CN110106550A (zh) * 2019-05-15 2019-08-09 中国电子科技集团公司第十三研究所 一种外延片的制备方法
JP2020176054A (ja) * 2015-10-27 2020-10-29 住友電気工業株式会社 炭化珪素基板

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105814694B (zh) 2014-10-03 2019-03-08 富士电机株式会社 半导体装置以及半导体装置的制造方法
KR101802410B1 (ko) * 2016-08-10 2017-11-29 파워큐브세미(주) SiC 와이드 트랜치형 정션 배리어 쇼트키 다이오드 및 그 제조방법
US10388778B2 (en) * 2016-11-18 2019-08-20 Nexperia B.V. Low resistance and leakage device
DE112017002379T5 (de) * 2016-12-19 2019-01-24 Fuji Electric Co., Ltd. Halbleitervorrichtung und Verfahren zur Herstellung einer Halbleitervorrichtung
US11127817B2 (en) * 2018-07-13 2021-09-21 Taiwan Semiconductor Manufacturing Co., Ltd. Formation of semiconductor device structure by implantation
DE102019118803A1 (de) * 2019-07-11 2021-01-14 Infineon Technologies Ag Verfahren zum herstellen einer halbleitervorrichtung und halbleitervorrichtung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11274487A (ja) * 1998-03-25 1999-10-08 Denso Corp 炭化珪素半導体装置の製造方法
JP2001094098A (ja) * 1999-09-21 2001-04-06 Denso Corp 炭化珪素半導体装置及びその製造方法
JP2008053667A (ja) * 2006-07-28 2008-03-06 Central Res Inst Of Electric Power Ind SiC結晶の質を向上させる方法およびSiC半導体素子
JP2014146748A (ja) * 2013-01-30 2014-08-14 Toshiba Corp 半導体装置及びその製造方法並びに半導体基板

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5543637A (en) * 1994-11-14 1996-08-06 North Carolina State University Silicon carbide semiconductor devices having buried silicon carbide conduction barrier layers therein
JP3647515B2 (ja) * 1995-08-28 2005-05-11 株式会社デンソー p型炭化珪素半導体の製造方法
SE9603608D0 (sv) * 1996-10-03 1996-10-03 Abb Research Ltd A method for producing a region doped with boron in a SiC-layer
DE10393777T5 (de) * 2002-11-25 2005-10-20 National Institute Of Advanced Industrial Science And Technology Halbleitervorrichtung und elektrischer Leistungswandler, Ansteuerungsinverter, Mehrzweckinverter und Höchstleistungs-Hochfrequenz-Kommunikationsgerät unter Verwendung der Halbleitervorrichtung
EP1713117B1 (en) * 2004-02-06 2011-01-19 Panasonic Corporation Process for producing a silicon carbide semiconductor device
US7718519B2 (en) * 2007-03-29 2010-05-18 Panasonic Corporation Method for manufacturing silicon carbide semiconductor element
JP5699628B2 (ja) * 2010-07-26 2015-04-15 住友電気工業株式会社 半導体装置
CN103946985B (zh) * 2011-12-28 2017-06-23 富士电机株式会社 半导体装置及半导体装置的制造方法
WO2013149661A1 (en) * 2012-04-04 2013-10-10 Fairchild Semiconductor Corporation Sic bipolar junction transistor with reduced carrier lifetime in collector and a defect termination layer
JP2014017325A (ja) 2012-07-06 2014-01-30 Rohm Co Ltd 半導体装置および半導体装置の製造方法
JP5646570B2 (ja) * 2012-09-26 2014-12-24 株式会社東芝 半導体装置及びその製造方法
JP6289952B2 (ja) * 2014-03-19 2018-03-07 株式会社東芝 SiCエピタキシャル基板の製造方法、半導体装置の製造方法
JP2016063190A (ja) * 2014-09-22 2016-04-25 住友電気工業株式会社 炭化珪素エピタキシャル基板の製造方法、炭化珪素エピタキシャル基板および炭化珪素半導体装置
JP6415946B2 (ja) * 2014-11-26 2018-10-31 株式会社東芝 半導体装置の製造方法及び半導体装置
JP2016174032A (ja) * 2015-03-16 2016-09-29 株式会社東芝 半導体装置及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11274487A (ja) * 1998-03-25 1999-10-08 Denso Corp 炭化珪素半導体装置の製造方法
JP2001094098A (ja) * 1999-09-21 2001-04-06 Denso Corp 炭化珪素半導体装置及びその製造方法
JP2008053667A (ja) * 2006-07-28 2008-03-06 Central Res Inst Of Electric Power Ind SiC結晶の質を向上させる方法およびSiC半導体素子
JP2014146748A (ja) * 2013-01-30 2014-08-14 Toshiba Corp 半導体装置及びその製造方法並びに半導体基板

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020176054A (ja) * 2015-10-27 2020-10-29 住友電気工業株式会社 炭化珪素基板
WO2019083017A1 (ja) * 2017-10-26 2019-05-02 株式会社デンソー 炭化珪素半導体装置およびその製造方法
JP2019080035A (ja) * 2017-10-26 2019-05-23 株式会社デンソー 炭化珪素半導体装置およびその製造方法
JP7102948B2 (ja) 2017-10-26 2022-07-20 株式会社デンソー 炭化珪素半導体装置およびその製造方法
CN110106550A (zh) * 2019-05-15 2019-08-09 中国电子科技集团公司第十三研究所 一种外延片的制备方法

Also Published As

Publication number Publication date
JPWO2015072210A1 (ja) 2017-03-16
CN105723499A (zh) 2016-06-29
JP6113298B2 (ja) 2017-04-12
US20190237558A1 (en) 2019-08-01
US10304939B2 (en) 2019-05-28
US20160247894A1 (en) 2016-08-25
DE112014005188T5 (de) 2016-07-21
CN105723499B (zh) 2018-11-06

Similar Documents

Publication Publication Date Title
JP6113298B2 (ja) 半導体装置の製造方法、および、半導体装置
JP6391689B2 (ja) 炭化ケイ素への制御されたイオン注入
US9484470B2 (en) Method of fabricating a GaN P-i-N diode using implantation
US6610572B1 (en) Semiconductor device and method for manufacturing the same
US20160307993A1 (en) Semiconductor device and method of manufacturing semiconductor device
US9716006B2 (en) Semiconductor device manufacturing method and semiconductor device
US11152224B2 (en) Semiconductor device with field stop layer and semiconductor device manufacturing method thereof
JP6237921B2 (ja) 半導体装置および半導体装置の製造方法
JP6880669B2 (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
JP7263740B2 (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
JP2004247545A (ja) 半導体装置及びその製造方法
JP2014056946A (ja) 半導体装置および半導体装置の製造方法
US9887263B2 (en) Silicon carbide semiconductor device and method of manufacturing the same
US20140284622A1 (en) Semiconductor device and method of manufacturing the same
KR20160012879A (ko) 반도체 장치
WO2022025010A1 (ja) 炭化珪素半導体装置
JP2016174032A (ja) 半導体装置及びその製造方法
CN111771259B (zh) 通过Al/Be共注入p型掺杂碳化硅的方法
JP2004039842A (ja) 半導体装置およびその製造方法
JP5333241B2 (ja) 半導体装置の製造方法
JP2023046389A (ja) 吸収層を含む半導体層の形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14862347

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015547672

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112014005188

Country of ref document: DE

Ref document number: 1120140051888

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14862347

Country of ref document: EP

Kind code of ref document: A1