WO2015062449A1 - 一种铁钴类芬顿催化剂的制备方法及其产品和应用 - Google Patents

一种铁钴类芬顿催化剂的制备方法及其产品和应用 Download PDF

Info

Publication number
WO2015062449A1
WO2015062449A1 PCT/CN2014/089420 CN2014089420W WO2015062449A1 WO 2015062449 A1 WO2015062449 A1 WO 2015062449A1 CN 2014089420 W CN2014089420 W CN 2014089420W WO 2015062449 A1 WO2015062449 A1 WO 2015062449A1
Authority
WO
WIPO (PCT)
Prior art keywords
wastewater
iron
cobalt
fenton catalyst
solution
Prior art date
Application number
PCT/CN2014/089420
Other languages
English (en)
French (fr)
Inventor
蒋进元
周岳溪
Original Assignee
中国环境科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国环境科学研究院 filed Critical 中国环境科学研究院
Priority to US15/031,273 priority Critical patent/US10118157B2/en
Publication of WO2015062449A1 publication Critical patent/WO2015062449A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/36Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/36Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds
    • C02F2103/365Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds from petrochemical industry (e.g. refineries)
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/36Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds
    • C02F2103/38Polymers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/026Fenton's reagent

Definitions

  • the invention relates to a catalyst, in particular to an iron-cobalt-based Fenton catalyst and a preparation method thereof, and a product and application thereof.
  • the Fenton reaction Since 1894, the Fenton reaction has been effective in degrading many persistent toxic organic pollutants in wastewater, and has begun to attract domestic and international attention in the treatment of organic wastewater.
  • the traditional Fenton technology utilizes the reaction of Fe 2+ and H 2 O 2 to form a highly oxidizing OH.
  • the OH can completely degrade the toxic organic substances in the wastewater into CO 2 , H 2 O and organic salts.
  • the traditional Fenton technology has the disadvantages of pH limitation, secondary pollution of the product, and low utilization of H 2 O 2 .
  • Fenton-like technologies have been developed on the basis of the conventional Fenton method, such as the modified-Fenton method, the light-Fenton method, the electric-Fenton method, and the ultrasound- Fenton method, microwave-Fenton method, zero-valent iron-Fenton method, etc., found that these Fenton-like techniques can specifically overcome some problems in the conventional Fenton method, and can reduce the amount of iron source and hydrogen peroxide.
  • the introduction of ultraviolet light, microwave, ultrasonic, etc., such as Fenton has the disadvantage of high energy consumption and high cost. Therefore, in the Fenton-like reaction process, how to reduce the dosage of iron source and hydrogen peroxide while increasing the reaction rate and treatment effect, reducing energy consumption and reducing cost is particularly important.
  • the technical problem to be solved by the present invention is to provide a water treatment agent with rapid reaction, high treatment efficiency and wide applicability, namely iron-cobalt-based Fenton catalyst and preparation method thereof.
  • the invention also provides the application of the iron-cobalt-based Fenton catalyst in industrial wastewater pretreatment and advanced treatment.
  • a method for preparing an iron-cobalt-based Fenton catalyst comprises the steps of: using FeCl 2 ⁇ 4H 2 O, CoCl 2 ⁇ 6H 2 O as a reaction precursor, KBH 4 as a reaction reducing agent, PVP as a surface protecting agent, and a utilization liquid
  • the phase reduction method is prepared, and finally the product is obtained by aging, suction filtration, washing and vacuum drying.
  • the preparation method of the iron-cobalt-based Fenton catalyst of the present invention comprises the following steps:
  • the product prepared by the method of the present invention that is, an iron-cobalt-based Fenton catalyst.
  • the volume ratio of the wastewater to the H 2 O 2 solution in the step (2) is 500:1 to 1000:1, and the content ratio of the iron cobalt-based Fenton catalyst to the H 2 O 2 is 5: 1 to 10:1.
  • the industrial wastewater is acrylic fiber wastewater, dye wastewater, petrochemical wastewater, phenol acetone production wastewater, ABS synthetic resin wastewater or acrylic acid production wastewater.
  • the processing rate is faster: the industrial wastewater is treated by the invention, and the reaction time is only about 10 minutes, so that a better treatment effect can be achieved.
  • the industrial wastewater is treated by the water treatment agent of the invention, the COD Cr removal rate of the acrylic fiber wastewater is over 60%, and the COD Cr removal rate of the self-dispensing dye wastewater is as high as 70% or more.
  • Fig. 1 is a graph showing the results of measurement of absorbance before and after treatment of wastewater in Example 2.
  • a method for deep treatment of acrylic acid biochemical effluent by using the preparation method prepared by the above preparation method comprising the following steps:
  • the pH value of the raw material of the acrylic acid biochemical effluent is 6.8-7.5, taking 400 ml of the water sample to be treated, and adjusting the pH value of the water sample to 2.0 with the H 2 SO 4 solution;
  • the mixture obtained in the step (3) is adjusted to a pH of 10.0 or more with a sodium hydroxide solution, and then placed in a water bath, heated in a water bath at 50 ° C, heating time is 1 h;
  • a method for treating dye wastewater by using the product prepared by the above preparation method comprises the following steps:
  • the mixture obtained in the step (3) is adjusted to a pH of 10.0 or more with a sodium hydroxide solution, and then placed in a water bath, heated in a water bath at 50 ° C, heating time is 1 h;
  • a method for preparing an iron-cobalt-based Fenton catalyst comprises the steps of: weighing a certain amount of FeCl 2 ⁇ 4H 2 O, CoCl 2 ⁇ 6H 2 O, and preparing a concentration of 0.5 mol/L Fe 2+ and 0.1 mol/L Co 2+ aqueous solution.
  • a method for deep treatment of wastewater in a petrochemical park by using the product prepared by the above preparation method comprises the following steps:
  • the pH value of petrochemical wastewater is 6.0-7.0, taking 400 ml of water sample to be treated, and adjusting the pH value of the water sample to 2.0 with H 2 SO 4 solution;
  • the mixture obtained in the step (3) is adjusted to a pH of 10.0 or more with a sodium hydroxide solution, and then placed in a water bath, heated in a water bath at 50 ° C, heating time is 1 h;
  • a method for preparing an iron-cobalt-based Fenton catalyst comprises the steps of: weighing a certain amount of FeCl 2 ⁇ 4H 2 O, CoCl 2 ⁇ 6H 2 O, and preparing a concentration of 0.5 mol/L Fe 2+ and 0.25 mol/L Co 2+ aqueous solution.
  • a method for pretreating phenol acetone wastewater by using the product prepared by the above preparation method comprises the following steps:
  • the mixture obtained in the step (3) is adjusted to a pH of 10.0 or more with a sodium hydroxide solution, and then placed in a water bath.
  • the water bath is heated at 50 ° C, and the heating time is 1 h;
  • a method for pretreating acrylic acid wastewater by using the product prepared by the above preparation method comprises the following steps:
  • the pH value of the acrylic acid production wastewater is 5.0 to 6.0, 400 ml of the water sample to be treated is taken, and the pH value of the water sample is adjusted to 2.0 with the H 2 SO 4 solution;
  • the mixture obtained in the step (3) is adjusted to a pH of 10.0 or more with a sodium hydroxide solution, and then placed in a water bath, heated in a water bath at 50 ° C, heating time is 1 h;
  • a method for pretreating ABS synthetic resin wastewater by using the product prepared by the above preparation method comprises the following steps:
  • ABS synthetic resin wastewater pH value of 6.0 ⁇ 7.0 take 400ml of water sample to be treated, adjust the pH value of the water sample to 2.0 with H 2 SO 4 solution;
  • the mixture obtained in the step (3) is adjusted to a pH of 10.0 or more with a sodium hydroxide solution, and then placed in a water bath, heated in a water bath at 50 ° C, heating time is 1 h;
  • the iron-cobalt-based Fenton catalyst of the invention and the preparation method thereof have the same processing rate, and the industrial wastewater is treated, the reaction time is only about 10 minutes, the better treatment effect can be achieved; the treatment efficiency is high, and the industrial wastewater and the acrylic fiber wastewater depth are treated.
  • the removal treatment COD Cr more than 60% since the dye wastewater with COD Cr removal rate of 70% or more; wide range of applications, in addition to a depth in wastewater and dye wastewater, but also chemical waste oil can be used, phenol Pretreatment or advanced treatment of wastewater such as acetone production wastewater, ABS synthetic resin wastewater, and acrylic acid production wastewater has great market prospects and strong industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

本发明公开了一种铁钴类芬顿催化剂的制备方法,包括如下步骤:以FeCl2·4H2O、CoCl2·6H2O为反应前驱物,KBH4为反应还原剂,PVP为表面保护剂,利用液相还原法制备,最后经陈化、抽滤、洗涤、真空干燥得产品。本发明所述铁钴类芬顿催化剂反应快速、处理效率较高、适用性较广,本发明还提供了所述铁钴类芬顿催化剂在工业废水处理中的应用。

Description

一种铁钴类芬顿催化剂的制备方法及其产品和应用 技术领域
本发明涉及一种催化剂,特别是涉及一种铁钴类芬顿催化剂及其制备方法及其产品和应用。
背景技术
近年来,随着城市生活废水得到有效治理,工业废水处理成为水治理的首要问题,其中难降解工业废水是业内公认的废水处理难题。随着我国化学工业的快速发展,各种新型的化工产品被应用到各行各业,特别是制药、化工、印染等重污染工业废水中有机污染物浓度高、结构稳定、可生化性差,常规工艺难以实现达标排放,且其处理成本高,给企业节能减排带来极大压力,也给水环境造成了严重的污染。因此,研究一种高效的处理工业废水技术,以提高废水CODCr去除率,达到出水排放标准甚至是废水资源化是十分必要的。
自1894年以来,芬顿反应对降解废水中许多持久性有毒有机污染物效果显著,开始在有机废水处理方面备受国内外关注。传统芬顿技术是利用Fe2+和H2O2反应生成氧化性极高的·OH的催化反应,·OH可以将废水中有毒有机物彻底降解成CO2、H2O和有机盐等物质。与此同时,传统芬顿技术存在pH限制、产物产生二次污染、H2O2利用率低等缺点。随着研究的进一步深入以及技术方面的发展,在常规芬顿法的基础上开发出许多类芬顿技术,如改性-芬顿法、光-芬顿法、电-芬顿法、超声-芬顿法、微波-芬顿法、零价铁-芬顿法等,研究中发现这些类芬顿技术可以有针对性地克服常规芬顿法存在的一些问题,可以降低铁源和双氧水的用量,达到更有效、更经济的处理效果,但将紫外光、微波、超声波等引入的类芬顿具有能耗大,成本高的缺点。所以在类芬顿反应过程中,如何解决减少铁源和双氧水的投加量的同时提高反应速率和处理效果,减少能量消耗以及降低成本显得尤为重要。
发明内容
本发明要解决的技术问题是研究提供一种反应快速、处理效率较高、适用性较广的水处理剂,即铁钴类芬顿催化剂及其制备方法。
本发明还提供了所述铁钴类芬顿催化剂在工业废水预处理和深度处理中的应用。
一种铁钴类芬顿催化剂的制备方法,包括如下步骤:以FeCl2·4H2O、CoCl2·6H2O为反应前驱物,KBH4为反应还原剂,PVP为表面保护剂,利用液相还原法制备,最后经陈化、抽滤、洗涤、真空干燥得产品。
本发明所述的铁钴类芬顿催化剂的制备方法,包括如下步骤:
分别配制Fe2+和Co2+摩尔浓度为1∶1~10∶1的FeCl2·4H2O和CoCl2·6H2O水溶液,加入浓度为5g/L的表面保护剂PVP 2~10ml,得到混合溶液I;取100ml去离子水,用NaOH调至pH=11.0~12.0,加入1~5g KBH4配成混合溶液II,并将其滴加到混合溶液I中;控制反应温度50±5℃,蠕动泵15~50r/min控制滴速,同时机械搅拌机400-900r/min控制搅拌速度,有黑色沉淀生成;待KBH4和NaOH的混合水溶液滴加完毕,继续搅拌10~40min,陈化0.5~2h,经抽滤、洗涤、真空干燥得产物Fe-Co合金,即产品。
采用本发明所述方法制备得到的产品,即铁钴类芬顿催化剂。
根据本发明所述的铁钴类芬顿催化剂在处理工业废水中的应用。
本发明所述的应用,其中,一种工业废水的处理方法,包括如下步骤:
(1)取待处理的废水水样,调节水样pH值至2.0±0.1;
(2)向废水水样中加入含量为30%的H2O2溶液,再加入铁钴类芬顿催化剂,得到混合液;
(3)将所述混合液充分反应,控制搅拌速度200~400r/min,反应时间5~20min,控制反应过程中pH值范围为2.0±0.5;
(4)调节反应后的所述混合液的pH值大于等于10.0,50℃水浴加热1h;
(5)再次调节混合液pH=7.0,静置沉淀,上清液即为处理后出水。
本发明所述的应用,其中,步骤(2)中废水与H2O2溶液的体积比为500∶1~1000∶1,铁钴类芬顿催化剂与H2O2的含量比为5∶1~10∶1。
本发明所述的应用,其中所述工业废水为腈纶废水、染料废水、石油化工废水、苯酚丙酮生产废水、ABS合成树脂废水或丙烯酸生产废水。
本发明铁钴类芬顿催化剂的制备方法与现有技术不同之处在于,本发明铁钴类芬顿催化剂及其制备方法具有如下优点:
1、处理速率较快:通过本发明处理工业废水,反应时间只需大约10min左右,就可以达到较好的处理效果。
2、处理效率较高:通过本发明水处理剂处理工业废水,腈纶废水深度处理时CODCr去除率达到60%以上,自配染料废水的CODCr去除率高达70%以上。
3、适用范围广:除可用于腈纶废水和染料废水的深度处理外,还可以用石油化工废水、苯酚丙酮生产废水、ABS合成树脂废水、丙烯酸生产废水等废水的预处理或深度处理。
下面结合附图对本发明的协同爆破装药结构作进一步说明。
附图说明
图1为实施例2中废水处理前后吸光度测定结果。
具体实施方式
实施例1
一种铁钴类芬顿催化剂的制备方法,包括如下步骤:称取一定量FeCl2·4H2O、CoCl2·6H2O,配制浓度为0.5mol/L Fe2+和0.5mol/L Co2+水溶液;分别取100ml于三颈烧瓶中,加入8ml浓度为5g/L的表面保护剂PVP,得到混合溶液I;将2g KBH4加入到pH=11.0~12.0、100mlNaOH水溶液中配制成混合溶液II,将所述混合液II滴加到三颈烧瓶中与所述混合溶液I混合;控制反应温度50℃,蠕动泵30r/min控制滴速,同时机械搅拌机600r/min控制搅拌速度,有黑色沉淀生成;待KBH4和NaOH的混合水溶液滴加完毕,继续搅拌20min,陈化1h,经抽滤、洗涤、真空干燥得产物。
一种采用上述制备方法制备得到的产品对腈纶生化出水进行深度度处理的方法,包括如下步骤:
(1)腈纶生化出水原水pH值为6.8~7.5,取400ml待处理水样,用H2SO4溶液调节水样的pH值至2.0;
(2)先加入含量为30%的H2O2溶液0.5ml,再加入铁钴类芬顿催化剂1.1472g,得到混合液;
(3)搅拌速率控制在200r/min,反应过程中用硫酸溶液控制pH=2.0±0.5,反应时间为10min;
(4)将步骤(3)所得混合液用氢氧化钠溶液调节pH大于等于10.0后,放入水浴锅中水浴加热50℃,加热时间为1h;
(5)将步骤(4)所得混合液冷却后,用氢氧化钠溶液调节pH至7.0,静置沉淀,上清液即为处理后出水,该水样处理前后水质CODCr值如表1所示。
表1.处理前后水样水质
Figure PCTCN2014089420-appb-000001
实施例2
一种铁钴类芬顿催化剂的制备方法,包括如下步骤:称取一定量FeCl2·4H2O、CoCl2·6H2O,配制浓度为0.5mol/L Fe2+和0.05mol/L Co2+水溶液;分别取100ml于三颈烧瓶中,加入10ml浓度为5g/L的表面保护剂PVP;将1gKBH4加入到pH=11.0~12.0、100ml NaOH水溶液中配 制成混合液,将此混合液滴加到三颈烧瓶中;控制反应温度45℃,蠕动泵15r/min控制滴速,同时机械搅拌机400r/min控制搅拌速度,有黑色沉淀生成;待KBH4和NaOH的混合水溶液滴加完毕,继续搅拌10min,陈化2h,经抽滤、洗涤、真空干燥得产物。
一种采用上述制备方法制备得到的产品对染料废水进行处理的方法,包括如下步骤:
(1)自配浓度为200mg/L的碱性红46染料废水,pH值为4.0~4.5,取400ml碱性红46染料废水水样,用硫酸溶液调节水样的pH值至2.1;
(2)先加入含量为30%的H2O2溶液0.8ml,再加入铁钴类芬顿催化剂2.6960g,得到混合液;
(3)将所述混合液充分混合,搅拌速率控制在400r/min,反应过程中用硫酸溶液控制pH=2.0±0.5,反应时间为20min;
(4)将步骤(3)所得混合液用氢氧化钠溶液调节pH大于等于10.0后,放入水浴锅中水浴加热50℃,加热时间为1h;
(5)将步骤(4)所得混合液冷却后,用氢氧化钠溶液调节pH至7.0,静置沉淀,上清液即为处理后出水,该水样处理前后水质CODCr变化如表2所示。
表2.处理前后水样水质
Figure PCTCN2014089420-appb-000002
(6)将步骤(4)所得混合液冷却后,用氢氧化钠溶液调节pH至7.0左右,静置沉淀,上清液即为处理后出水,该水样处理前后吸光度测定结果如图1所示。
实施例3
一种铁钴类芬顿催化剂的制备方法,包括如下步骤:称取一定量FeCl2·4H2O、CoCl2·6H2O,配制浓度为0.5mol/L Fe2+和0.1mol/L Co2+水溶液。分别取100ml于三颈烧瓶中,加入2ml浓度为5g/L的表面保护剂PVP;将5g KBH4加入到pH=11.0~12.0、100ml NaOH水溶液中配制成混合液,将此混合液滴加到三颈烧瓶中;控制反应温度55℃,蠕动泵50r/min控制滴速,同时机械搅拌机900r/min控制搅拌速度,有黑色沉淀生成;待KBH4和NaOH的混合水溶液滴加完毕,继续搅拌40min,陈化0.5h,经抽滤、洗涤、真空干燥得产物。
一种采用上述制备方法制备得到的产品对石油化工园区废水进行深度处理的方法,包括如下步骤:
(1)石油化工废水pH值为6.0~7.0,取400ml待处理水样,用H2SO4溶液调节水样的 pH值至2.0;
(2)先加入含量为30%的H2O2溶液0.4ml,再加入铁钴类芬顿催化剂0.6740g,得到混合液;
(3)将所述混合液充分混合,搅拌速率控制在300r/min,反应过程中用硫酸溶液控制pH=2.0±0.5,反应时间为5min;
(4)将步骤(3)所得混合液用氢氧化钠溶液调节pH大于等于10.0后,放入水浴锅中水浴加热50℃,加热时间为1h;
(5)将步骤(4)所得混合液冷却后,用氢氧化钠溶液调节pH至7.0,静置沉淀,上清液即为处理后出水,该水样处理前后水质CODCr变化如表3所示:
表3.处理前后水样水质
Figure PCTCN2014089420-appb-000003
实施例4
一种铁钴类芬顿催化剂的制备方法,包括如下步骤:称取一定量FeCl2·4H2O、CoCl2·6H2O,配制浓度为0.5mol/L Fe2+和0.25mol/L Co2+水溶液。分别取100ml于三颈烧瓶中,加入5ml浓度为5g/L的表面保护剂PVP;将4g KBH4加入到pH=11.0~12.0、100ml NaOH水溶液中配制成混合液,将此混合液滴加到三颈烧瓶中;控制反应温度50℃,蠕动泵40r/min控制滴速,同时机械搅拌机800r/min控制搅拌速度,有黑色沉淀生成;待KBH4和NaOH的混合水溶液滴加完毕,继续搅拌30min,陈化1.5h,经抽滤、洗涤、真空干燥得产物。
一种采用上述制备方法制备得到的产品对苯酚丙酮废水进行预处理的方法,包括如下步骤:
(1)苯酚丙酮生产废水pH值为12.0左右,取400ml待处理水样,用H2SO4溶液调节水样的pH值至1.9;
(2)先加入含量为30%的H2O2溶液0.67ml,再加入铁钴类芬顿催化剂1.8063g,得到混合液;
(3)将所述混合液充分混合,搅拌速率控制在200r/min,反应过程中用硫酸溶液控制pH=2.0±0.5,反应时间为10min;
(4)将步骤(3)所得混合液用氢氧化钠溶液调节pH大于等于10.0后,放入水浴锅中 水浴加热50℃,加热时间为1h;
(5)将步骤(4)所得混合液冷却后,用氢氧化钠溶液调节pH至7.0,静置沉淀,上清液即为处理后出水,该水样处理前后水质CODCr变化如表4所示:
表4.处理前后水样水质
Figure PCTCN2014089420-appb-000004
实施例5
一种铁钴类芬顿催化剂的制备方法,包括如下步骤:称取一定量FeCl2·4H2O、CoCl2·6H2O,配制浓度为0.5mol/L Fe2+和0.5mol/L Co2+水溶液;分别取100ml于三颈烧瓶中,加入6ml浓度为5g/L的表面保护剂PVP;将3g KBH4加入到pH=11.0~12.0、100ml NaOH水溶液中配制成混合液,将此混合液滴加到三颈烧瓶中;控制反应温度55℃,蠕动泵20r/min控制滴速,同时机械搅拌机400r/min控制搅拌速度,有黑色沉淀生成;待KBH4和NaOH的混合水溶液滴加完毕,继续搅拌10min,陈化1h,经抽滤、洗涤、真空干燥得产物。
一种采用上述制备方法制备得到的产品对丙烯酸废水进行预处理的方法,包括如下步骤:
(1)丙烯酸生产废水pH值为5.0~6.0,取400ml待处理水样,用H2SO4溶液调节水样的pH值至2.0;
(2)先加入含量为30%的H2O2溶液0.5ml,再加入铁钴类芬顿催化剂1.1472g,得到混合液;
(3)将所述混合液充分混合,搅拌速率控制在400r/min,反应过程中用硫酸溶液控制2.0±0.5,反应时间为20min;
(4)将步骤(3)所得混合液用氢氧化钠溶液调节pH大于等于10.0后,放入水浴锅中水浴加热50℃,加热时间为1h;
(5)将步骤(4)所得混合液冷却后,用氢氧化钠溶液调节pH至7.0,静置沉淀,上清液即为处理后出水,该水样处理前后水质CODCr变化如表5所示:
表5.处理前后水样水质
Figure PCTCN2014089420-appb-000005
实施例6
一种铁钴类芬顿催化剂的制备方法,包括如下步骤:称取一定量FeCl2·4H2O、CoCl2·6H2O,配制浓度为0.5mol/L Fe2+和0.5mol/L Co2+水溶液;分别取100ml于三颈烧瓶中,加入10ml浓度为5g/L的表面保护剂PVP;将2g KBH4加入到pH=11.0~12.0、100ml NaOH水溶液中配制成混合液,将此混合液滴加到三颈烧瓶中;控制反应温度55℃,蠕动泵30r/min控制滴速,同时机械搅拌机900r/min控制搅拌速度,有黑色沉淀生成;待KBH4和NaOH的混合水溶液滴加完毕,继续搅拌400min,陈化1h,经抽滤、洗涤、真空干燥得产物。
一种采用上述制备方法制备得到的产品对ABS合成树脂废水进行预处理的方法,包括如下步骤:
(1)ABS合成树脂废水pH值为6.0~7.0,取400ml待处理水样,用H2SO4溶液调节水样的pH值至2.0;
(2)先加入含量为30%的H2O2溶液0.4ml,再加入铁钴类芬顿催化剂0.6740g,得到混合液;
(3)将所述混合液充分混合,搅拌速率控制在300r/min,反应过程中用硫酸溶液控制2.0±0.5,反应时间为5min;
(4)将步骤(3)所得混合液用氢氧化钠溶液调节pH大于等于10.0后,放入水浴锅中水浴加热50℃,加热时间为1h;
(5)将步骤(4)所得混合液冷却后,用氢氧化钠溶液调节pH至7.0,静置沉淀,上清液即为处理后出水,该水样处理前后水质CODCr变化如表6所示:
表6.处理前后水样水质
Figure PCTCN2014089420-appb-000006
以上所述的实施例仅仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案作出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。
工业实用性
本发明铁钴类芬顿催化剂及其制备方法处理速率较快,处理工业废水,反应时间只需大 约10min左右,就可以达到较好的处理效果;处理效率较高,处理工业废水,腈纶废水深度处理时CODCr去除率达到60%以上,自配染料废水的CODCr去除率高达70%以上;适用范围广,除可用于腈纶废水和染料废水的深度处理外,还可以用石油化工废水、苯酚丙酮生产废水、ABS合成树脂废水、丙烯酸生产废水等废水的预处理或深度处理,具有很大的市场前景和很强的工业实用性。

Claims (7)

  1. 一种铁钴类芬顿催化剂的制备方法,其特征在于:包括如下步骤:以FeCl2·4H2O、CoCl2·6H2O为反应前驱物,KBH4为反应还原剂,PVP为表面保护剂,利用液相还原法制备,最后经陈化、抽滤、洗涤、真空干燥得产品。
  2. 根据权利要求1所述的铁钴类芬顿催化剂的制备方法,其特征在于:包括如下步骤:
    分别配制Fe2+和Co2+摩尔浓度比值为1∶1~10∶1的FeCl2·4H2O和CoCl2·6H2O水溶液,加入浓度为5g/L的表面保护剂PVP 2~10ml,得到混合溶液I;取100ml去离子水,用NaOH调至pH=11.0~12.0,加入1~5g KBH4配成混合溶液II,并将其滴加到混合溶液I中;控制反应温度50±5℃,蠕动泵15~50r/min控制滴速,同时机械搅拌机400-900r/min控制搅拌速度,有黑色沉淀生成;待KBH4和NaOH的混合水溶液滴加完毕,继续搅拌10~40min,陈化0.5~2h,经抽滤、洗涤、真空干燥得产物Fe-Co合金,即产品。
  3. 采用权利要求1或2所述方法制备得到的产品,即铁钴类芬顿催化剂。
  4. 根据权利要求3所述的铁钴类芬顿催化剂在处理工业废水中的应用。
  5. 根据权利要求4所述应用,其特征在于:采用铁钴类芬顿催化剂对工业废水进行处理的方法,包括如下步骤:
    (1)取待处理的废水水样,调节水样pH值至2.0±0.1;
    (2)向废水水样中加入含量为30%的H2O2溶液,再加入铁钴类芬顿催化剂,得到混合液;
    (3)将所述混合液充分反应,控制搅拌速度200~400r/min,反应时间5~20min,控制反应过程中pH值范围为2.0±0.5;
    (4)调节反应后的所述混合液的pH值大于等于10.0,50℃水浴加热0.5~1h;
    (5)再次调节混合液pH=7.0,静置沉淀,上清液即为处理后出水。
  6. 根据权利要求5所述应用,其特征在于:步骤(2)中废水与H2O2溶液的体积比为500∶1~1000∶1,铁钴类芬顿催化剂与H2O2溶液的质量比为5∶1~10∶1。
  7. 根据权利要求4或5或6所述的应用,其特征在于:所述工业废水为腈纶废水、染料废水、石油化工废水、苯酚丙酮生产废水、ABS合成树脂废水或丙烯酸生产废水。
PCT/CN2014/089420 2013-10-31 2014-10-24 一种铁钴类芬顿催化剂的制备方法及其产品和应用 WO2015062449A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/031,273 US10118157B2 (en) 2013-10-31 2014-10-24 Preparation method, product, and application of iron-cobalt fenton-like catalyst

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310533050.1 2013-10-31
CN201310533050.1A CN103521229A (zh) 2013-10-31 2013-10-31 一种铁钴类芬顿催化剂的制备方法及其产品和应用

Publications (1)

Publication Number Publication Date
WO2015062449A1 true WO2015062449A1 (zh) 2015-05-07

Family

ID=49923794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/089420 WO2015062449A1 (zh) 2013-10-31 2014-10-24 一种铁钴类芬顿催化剂的制备方法及其产品和应用

Country Status (3)

Country Link
US (1) US10118157B2 (zh)
CN (1) CN103521229A (zh)
WO (1) WO2015062449A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110773200A (zh) * 2019-11-27 2020-02-11 绍兴文理学院 一种生物炭载硫化铁类芬顿催化剂的制备方法
CN110773199A (zh) * 2019-11-27 2020-02-11 绍兴文理学院 一种磁性炭载纳米硫化亚铁类芬顿催化剂及其制备方法
CN115571968A (zh) * 2022-10-12 2023-01-06 生态环境部南京环境科学研究所 一种利用Co2+催化PMS去除废水中2-氯苯酚的方法
CN116078408A (zh) * 2023-02-17 2023-05-09 东南大学 一种改性异质结类芬顿光催化剂、制法、应用、专用系统及处理方法

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103521229A (zh) * 2013-10-31 2014-01-22 中国环境科学研究院 一种铁钴类芬顿催化剂的制备方法及其产品和应用
CN105692858A (zh) * 2014-11-28 2016-06-22 中国科学院大连化学物理研究所 类芬顿进程降解污水中有机污染物的方法
CN104817206A (zh) * 2015-04-17 2015-08-05 江苏大学 一种催化降解有机废水的方法
CN108350292B (zh) * 2015-08-21 2021-08-10 北卡罗来纳州立大学 用于使织物材料脱色的氧化方法
CN105129906B (zh) * 2015-09-17 2017-05-31 博天环境集团股份有限公司 光催化处理丙烯酸酯废水的方法
CN106824195B (zh) * 2015-12-03 2019-05-28 中国科学院大连化学物理研究所 多孔Fe3Co7@C纳米球及催化降解有机污染物的应用
CN105562013B (zh) * 2016-01-08 2018-05-29 清华大学 一种纳米Ce0掺杂Fe0复合材料及制备和应用方法
CN105642298B (zh) * 2016-01-08 2018-05-29 清华大学 还原性石墨烯负载纳米Ce0/Fe0复合材料及其制备方法和应用
CN105753231B (zh) * 2016-04-13 2018-07-10 佛山市嘉沃农业科技合伙企业(有限合伙) 一种利用芬顿反应去除废水中有机污染物的方法
CN105753095B (zh) * 2016-04-13 2018-07-17 广东韶科环保科技有限公司 一种高效去除水中有机污染物的方法
CN106391030B (zh) * 2016-09-23 2019-02-19 河北师范大学 一种无定形铁锌复合氧化物光芬顿催化剂的制备方法
CN106984316B (zh) * 2017-05-15 2019-04-26 哈尔滨工业大学 一种高效异相类芬顿催化剂微纳枝状铁铜合金的制备方法
CN107774261B (zh) * 2017-11-01 2022-03-11 枣庄学院 一种非均相类Fenton催化剂Co/C复合材料的制备方法
CN109160595A (zh) * 2018-08-14 2019-01-08 南京工业大学 一种复合阴极及其制备方法和在生物电芬顿法中的应用
CN108970634A (zh) * 2018-08-17 2018-12-11 广州大学 负载掺杂型钴系多孔芬顿催化剂的合成方法、负载掺杂型钴系多孔芬顿催化剂及其应用
CN109482188A (zh) * 2018-12-19 2019-03-19 中国环境科学研究院 一种低价介孔铁钴类芬顿催化剂及其制备方法
US11053135B2 (en) * 2019-05-03 2021-07-06 Aegis Technology Inc. Scalable process for manufacturing iron cobalt nanoparticles with high magnetic moment
CN113083364B (zh) * 2019-12-23 2022-09-20 万华化学集团股份有限公司 一种负载型氧化催化剂及其催化氧化丙烯酸废水的方法
CN111420662A (zh) * 2020-05-14 2020-07-17 宜兴国际环保城科技发展有限公司 一种中性类芬顿催化剂、制备及应用
CN112473672A (zh) * 2020-12-04 2021-03-12 上海大学 水合介孔二氧化硅包覆纳米铁钴双金属复合材料及其应用
CN113198473B (zh) * 2021-04-29 2023-02-17 清创人和生态工程技术有限公司 一种过渡金属氧化物类芬顿催化剂及其制备方法与应用
CN113289676A (zh) * 2021-06-17 2021-08-24 哈尔滨工业大学(深圳) 一种新型非均相类芬顿反应催化剂及其合成方法
CN114534737A (zh) * 2022-03-04 2022-05-27 福州大学 一种Co-V双金属类Fenton复合材料及其制备方法和应用
CN114797865B (zh) * 2022-03-31 2023-06-13 南京工业大学 一种类芬顿复合催化剂膜材料及其制备方法和应用
EP4378900A1 (en) * 2022-11-30 2024-06-05 Lummus Technology LLC Process and plant for treatment of wastewater stream from acrylic acid and/or acrylate production plant
CN115814796B (zh) * 2022-12-01 2024-03-01 广西大学 一种类芬顿催化剂及其制备方法和应用
CN116020492B (zh) * 2022-12-15 2024-06-25 贵州大学 一种类芬顿催化剂的制备方法
CN115869950B (zh) * 2022-12-21 2023-07-18 贵州大学 一种含氟硅渣制备类芬顿催化剂并副产氟盐产品的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010054098A (ko) * 1999-12-03 2001-07-02 박윤창 광 펜톤산화처리용 금속산화물 촉매, 이의 제조방법 및이를 이용한 난분해성 유기물의 처리방법
CN102744069A (zh) * 2012-07-27 2012-10-24 哈尔滨工业大学 以改性海泡石为载体的Fe-Co双金属多相类芬顿催化剂的制备方法
CN103521229A (zh) * 2013-10-31 2014-01-22 中国环境科学研究院 一种铁钴类芬顿催化剂的制备方法及其产品和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100125036A1 (en) * 2006-09-19 2010-05-20 Sharma Ramesh K Method and apparatus for continuous catalyst synthesis

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010054098A (ko) * 1999-12-03 2001-07-02 박윤창 광 펜톤산화처리용 금속산화물 촉매, 이의 제조방법 및이를 이용한 난분해성 유기물의 처리방법
CN102744069A (zh) * 2012-07-27 2012-10-24 哈尔滨工业大学 以改性海泡石为载体的Fe-Co双金属多相类芬顿催化剂的制备方法
CN103521229A (zh) * 2013-10-31 2014-01-22 中国环境科学研究院 一种铁钴类芬顿催化剂的制备方法及其产品和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEN, YUJIN ET AL.: "Fe-Co Bimetallic Alloy Nanoparticles as a Highly Active Peroxidase Mimetic and its Application in Biosensing", CHEM. COMMUN., vol. 49, 11 April 2013 (2013-04-11), pages 2 *
COSTA, R.C.C. ET AL.: "Novel Active Heterogeneous Fenton System Based on Fe3 xMx04 (Fe, Co, Mn, Ni): the Role of M2+ Species on the Reactivity towards H202 Reactions", JOURNAL OF HAZARDOUS MATERIALS, vol. 129, no. 1-3, 18 November 2005 (2005-11-18), pages 172 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110773200A (zh) * 2019-11-27 2020-02-11 绍兴文理学院 一种生物炭载硫化铁类芬顿催化剂的制备方法
CN110773199A (zh) * 2019-11-27 2020-02-11 绍兴文理学院 一种磁性炭载纳米硫化亚铁类芬顿催化剂及其制备方法
CN110773200B (zh) * 2019-11-27 2022-10-25 绍兴文理学院 一种生物炭载硫化铁类芬顿催化剂的制备方法
CN110773199B (zh) * 2019-11-27 2022-10-25 绍兴文理学院 一种磁性炭载纳米硫化亚铁类芬顿催化剂及其制备方法
CN115571968A (zh) * 2022-10-12 2023-01-06 生态环境部南京环境科学研究所 一种利用Co2+催化PMS去除废水中2-氯苯酚的方法
CN115571968B (zh) * 2022-10-12 2024-03-08 生态环境部南京环境科学研究所 一种利用Co2+催化PMS去除废水中2-氯苯酚的方法
CN116078408A (zh) * 2023-02-17 2023-05-09 东南大学 一种改性异质结类芬顿光催化剂、制法、应用、专用系统及处理方法

Also Published As

Publication number Publication date
US10118157B2 (en) 2018-11-06
US20160271591A1 (en) 2016-09-22
CN103521229A (zh) 2014-01-22

Similar Documents

Publication Publication Date Title
WO2015062449A1 (zh) 一种铁钴类芬顿催化剂的制备方法及其产品和应用
Liu et al. Photoreduction of Cr (VI) from acidic aqueous solution using TiO2-impregnated glutaraldehyde-crosslinked alginate beads and the effects of Fe (III) ions
CN108940335A (zh) 一种基于氮掺杂具有核壳结构可磁场回收铁碳材料的高级氧化还原水处理方法
CN113877581B (zh) 一种铁酸铜尖晶石材料及其制备方法与应用
CN105032375B (zh) 一种磁性石墨基重金属吸附材料的制备方法
Wang et al. A novel ZnO/CQDs/PVDF piezoelectric system for efficiently degradation of antibiotics by using water flow energy in pipeline: Performance and mechanism
CN110980917B (zh) 一种暗反应条件下石墨相氮化碳活化过硫酸盐降解印染废水的方法
CN109647349B (zh) 用于去除工业废水中重金属离子和有机物的改性四氧化三铁纳米复合物及制备方法
CN108479700A (zh) 一种用于六价铬和甲基橙共吸附的多孔炭复合材料的制备方法
CN106219713A (zh) 一种具有自催化降解功能的复合磁性絮凝剂及其制备方法
CN103894216B (zh) 一种磁性纳米氧化银/二氧化钛复合光催化材料的制备方法
CN110508284A (zh) 一种二维四氧化三铁类芬顿催化剂的制备方法及其在含氨基苯磺酸废水降解中的应用
CN110771627B (zh) 磁性复合抗菌材料及其制备方法
CN110394443B (zh) 一种用于处理染料废水的零价纳米铁镍粉体及其制备方法
Pan et al. β-Lactoglobulin amyloid fibrils supported Fe (III) to activate peroxydisulfate for organic pollutants elimination
CN108212127A (zh) 一种功能纳米复合水凝胶的制备方法及应用
CN107159094B (zh) 磁性氢氧化镁吸附剂去除废水中四环素的方法
CN103739035B (zh) 一种染料废水的微波快速处理方法
CN108358299A (zh) 一种臭氧催化降解染料废水的处理工艺
CN102489291B (zh) 一种膨胀石墨负载纳米钒酸铋光催化剂的制备方法
CN115007190B (zh) 一种基于生成单线态氧降解磺胺类药物催化剂的制备方法及其应用
CN104707605A (zh) Cu2O/TiO2复合光热催化剂的制备方法
CN106745650A (zh) 一种利用四氧化三铁纳米笼活化过硫酸钠降解水中有机染料的方法
CN103288167B (zh) 有机膨润土与TiO2联合预处理垃圾渗滤液的方法
CN108927225A (zh) 一种用于染料降解的光催化膜制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14858515

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15031273

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14858515

Country of ref document: EP

Kind code of ref document: A1